Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients

Cited 0 time in webofscience Cited 275 time in scopus
Bae, Wan Ki; Char, Kookheon; Hur, Hyuck; Lee, Seonghoon
Issue Date
American Chemical Society
Chem. Mater. 2008, 20, 531-539
We demonstrate a single-step synthetic method for highly luminescent (i.e., quantum yield up to 80%) and stable quantum dots (QDs) by using the reactivity difference between Cd and Zn precursors and that between Se and S precursors. A wide range of emission wavelengths (500−610 nm) with a narrow fwhm (<35 nm) is obtained by changing the ratios of the precursors. Under the reaction conditions selected, Cd- and Se (with a bit of S)-based cores are formed first and Zn- and S-based shells are formed successively; therefore, the QDs have a core/shell structure with composition gradients, which relieve the lattice mismatch between core and shells. The QDs are characterized using the combined techniques of HR-TEM, UV–vis, PL spectroscopy, and ICP-AES. The QDs also have energy gradients depending on their compositions in a radial direction, which energetically confine carriers (electrons and holes) to the cores. This leads to the stability of QDs during their surface passivation from oleic acid to mercaptopropionic acid and ensures their processibility for further purposes such as optoelectronic and biological applications.
0897-4756 (print)
1520-5002 (online)
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.