Substituent Effect on the Luminescent Properties of a Series of Deep Blue Emitting Mixed Ligand Ir(III) Complexes

Cited 0 time in webofscience Cited 0 time in scopus
Lyu, Yi-Yeol; Byun, Younghun; Kwon, Ohyun; Han, Eunsil; Jeon, Woo Sung; Das, Rupasree; Char, Kookheon
Issue Date
American Chemical Society
J. Phys. Chem. B 2006, 110, 10303
The syntheses of the bright deep blue emitting mixed ligand Ir(III) complexes comprising two cyclometalating, one phosphine and one cyano, ligands are reported. In this study, a firm connection between the nature of the excited states and the physicochemical behavior of the complexes with different ligand systems is elucidated by correlating the observed crystal structures, spectroscopic properties, and electrochemical properties with the theoretical results obtained by the density functional theory (DFT) methods. The cyclometalating ligands used here are the anions of 2-(4‘,6‘-difluorophenyl)-pyridine (F2ppy), 2-(4‘,6‘-difluorophenyl)-4-methyl pyridine (F2ppyM), and 4-amino-2-(4‘,6‘-difluorophenyl)-pyridine (DMAF2ppy). The phosphine ligands are PhP(O−(CH2CH2O)3−CH3)2 and Ph2P(O−(CH2CH2O)n−CH3), where Ph = phenyl and n = 1 (P1), 3 (P3), or 8 (P350). The thermal stabilities of the complexes were enhanced upon increasing the “n” value. The crystal structures of the complexes, [(DMAF2ppy)2Ir(P1)CN], (P1)DMA, and [(F2ppyM)2Ir(P3)CN], (P3)F2M, show the cyano and phosphine groups being in a cis configuration to each other and in a trans configuration to the coordinating Cring atoms. The long Ir−Cring bond lengths are ascribed to the trans effect of the strong phosphine and cyano ligands. DFT calculations indicate that the highest occupied molecular orbital (HOMO) is mainly contributed from the d-orbitals of the iridium atom and the π-orbitals of cyclometalating and cyano ligands, whereas the lowest unoccupied molecular orbital (LUMO) spreads over only one of the cyclometalating ligands, with no contribution from phosphine ligands to both frontier orbitals. Dimethylamino substitution increases the energy of the emitting state that has more metal-to-ligand-charge-transfer (MLCT) character evidenced by the smaller vibronic progressions, smaller difference in the 1MLCT and 3MLCT absorption wavelengths, and higher extinction coefficients (ε) than the F2ppy and F2ppyM complexes. However, the increase in the basicity of the dimethylamino group in the DMAF2ppy complexes in the excited states leads to distortions and consequent nonradiative depopulation of the excited states, decreasing their lower photoluminescence (PL) efficiency. The effect of the substituents in the phosphine ligand is more pronounced in the electroluminescence (EL) than in the PL properties. Multilayer organic light emitting devices (OLEDs) are fabricated by doping the Ir(III) complexes in a blend of mCP (m-bis(N-carbazolyl benzene)) and polystyrene, and their device characteristics are studied. The (P3)F2M complex shows a maximum external quantum efficiency (ηex) of 2%, a maximum luminance efficiency (ηL) of 4.13 cd/A at 0.04 mA/cm2, and a maximum brightness of 7200 cd/m2 with a shift of the Commission Internationale de L'Eclairage (CIE) coordinates from (0.14, 0.15) in film PL to (0.19, 0.34) in EL.
1520-6106 (print)
1520-5207 (online)
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.