SHERP

Waveform inversion using a back-propagation algorithm and a Huber function

Cited 0 time in webofscience Cited 0 time in scopus
Authors
Ha, Taeyoung; Chung, Woo-Keen; Shin, Changsoo
Issue Date
2009-04
Publisher
Society of Exploration Geophysicists (SEG)
Citation
Geophysics, 74, R15-R24
Keywords
least squares approximationsoceanographic techniquesseismic wavesseismologywaveform analysis
Abstract
Waveform inversion faces difficulties when applied to real seismic data, including the existence of many kinds of noise. The l1-norm is more robust to noise with outliers than the least-squares method. Nevertheless, the least-squares method is preferred as an objective function in many algorithms because the gradient of the l1-norm has a singularity when the residual becomes zero. We propose a complex-valued Huber function for frequency-domain waveform inversion that combines the l2-norm (for small residuals) with the l1-norm (for large residuals). We also derive a discretized formula for the gradient of the Huber function. Through numerical tests on simple synthetic models and Marmousi data, we find the Huber function is more robust to outliers and coherent noise. We apply our waveform-inversion algorithm to field data taken from the continental shelf under the East Sea in Korea. In this setting, we obtain a velocity model whose synthetic shot profiles are similar to the real seismic data.
ISSN
0016-8033
Language
English
URI
http://hdl.handle.net/10371/6105
DOI
https://doi.org/10.1190/1.3112572
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Energy Systems Engineering (에너지시스템공학부)Journal Papers (저널논문_에너지시스템공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse