Feasibility of Micro Electrode Array (MEA) Based on Silicone-Polyimide Hybrid for Retina Prosthesis

Cited 0 time in webofscience Cited 22 time in scopus
Kim, Eui Tae; Kim, Cinoo; Lee, Seung Woo; Seo, Jong-Mo; Chung, Hum; Kim, Sung June
Issue Date
Association for Research in Vision and Ophthalmology (ARVO)
Investigative Ophthalmology and Visual Science, published online ahead of print March 5, 2009
silicone elastomerpolyimidehybrid electrodeartificial retina
Purpose: To adopt micropatterning technology in manufacturing silicone elastomer based microelectrode arrays for retinal stimulation, a silicone-polyimide hybrid microelectrode array was proposed and tested in vivo. Methods: Gold microelectrodes were created by semiconductor manufacturing technology based on polyimide, and were hybridized with silicone elastomer by spin coating. The stability of the hybrid between the two materials was flex and blister tested. The feasibility of the hybrid electrode was evaluated in rabbit eye by reviewing optical coherence tomography (OCT) findings after suprachoroidal implantation. Results: The flex test showed no dehiscence between the two materials for 24 h of alternative flexion and extension from -45.0° to +45.0°. During the blister test, delamination was observed at 8.33±1.36 psi of pressure stress; however, this property was improved to 11.50±1.04 psi by oxygen plasma treatment before hybridization. OCT examination revealed that, the implanted electrodes were safely located in the suprachoroidal space during the 4-week follow-up period. Conclusion: The silicone-polyimide hybrid microelectrode array showed moderate physical properties, which are suitable for in vivo application. Appropriate pretreatment before hybridization improved electrode stability. In vivo testing indicated that thiselectrode is suitable as a stimulation electrode in artificial retina.
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Electrical and Computer Engineering (전기·정보공학부)Journal Papers (저널논문_전기·정보공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.