Browse

Energy flow model considering near field energy for predictions of acoustic energy in low damping medium

Cited 5 time in Web of Science Cited 6 time in Scopus
Authors
Kim, Jong-Do; Hong, Suk-Yoon; Kwon, Hyun-Wung; Song, Jee-Hun
Issue Date
2011-01-17
Publisher
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Citation
JOURNAL OF SOUND AND VIBRATION; Vol.330 2; 271-286
Abstract
The Acoustic Energy Flow Boundary Element Method (AEFBEM) is developed to predict the acoustic energy density and intensity of an engineering system. Up to now, the acoustic energy flow model has been used only for analysis of high frequencies or radiation noise because of plane wave and far-field assumptions. In this research, a new energy flow governing equation that can consider the near field acoustic energy term and spherical wave characteristics is derived successfully to predict the acoustic energy density and intensity of a system in the medium-to-high frequency range. A near field term of acoustic energy in spherical coordinate is added to the relationship between energy density and energy flow. But with the far-field assumption, this term vanishes, so the relationship between energy density and energy flow becomes the same as that of the plane wave. By considering the near field energy term without far-field assumption, the energy density at medium frequencies can be estimated. However, the governing equation has to be numerically manipulated for use in the analysis of complex structures; therefore, the Boundary Element Method (BEM) is implemented. AEFBEM is a numerical analysis method formulated by applying the boundary element method to an acoustic energy flow governing equation. It is very powerful in predicting the acoustic energy density and intensity of complex structures in medium-to-high frequency ranges, and can analyze interior noise and radiating sound. To verify its validity, several numerical results are provided. BEM and AEFBEM were compared with respect to energy density, and the results from both methods were similar. (C) 2010 Elsevier Ltd. All rights reserved.
ISSN
0022-460X
Language
English
URI
http://hdl.handle.net/10371/75084
DOI
https://doi.org/10.1016/j.jsv.2010.08.007
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Architecture and Architectural Engineering (건축학과)Journal Papers (저널논문_건축학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse