Publications

Detailed Information

High Dietary Inorganic Phosphate Increases Lung Tumorigenesis and Alters Akt Signaling

Cited 94 time in Web of Science Cited 110 time in Scopus
Authors

Jin, Hua; Xu, Cheng-Xiong; Lim, Hwang-Tae; Park, Sung-Jin; Shin, Ji-Young; Chung, Youn-Sun; Park, Se-Chang; Chang, Seung-Hee; Youn, Hee-Jeong; Lee, Kee-Ho; Lee, Yeon-Sook; Ha, Yoon-Cheol; Chae, Chan-Hee; Beck, George R., Jr.; Cho, Myung-Haing

Issue Date
2009-01
Publisher
American Thoracic Society
Citation
American Journal of Respiratory and Critical Care Medicine, Vol.179 No.1, pp.59-68
Abstract
Rationale: Phosphate (Pi) is an essential nutrient to living organisms. Recent surveys indicate that the intake of Pi has increased steadily. Our previous studies have indicated that elevated Pi activates the Akt signaling pathway. An increased knowledge of the response of lung cancer tissue to high dietary Pi may provide an important link between diet and lung tumorigenesis. Objectives: The current study was performed to elucidate the potential effects of high dietary Pi on lung cancer development. Methods: Experiments were performed on 5-week-old male K-ras(LA1) lung cancer model mice and 6-week-old male urethane-induced lung cancer model mice. Mice were fed a diet containing 0.5% Pi (normal Pi) and 1.0% Pi (high Pi) for 4 weeks. At the end of the experiment, all mice were killed. Lung cancer development was evaluated by diverse methods. Measurement and Main Results: A diet high in Pi increased lung tumor progression and growth compared with normal diet. High dietary Pi increased the sodium-dependent inorganic phosphate transporter-2b protein levels in the lungs. High dietary consumption of Pi stimulated pulmonary Akt activity while suppressing the protein levels of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 as well as Akt binding partner carboxyl-terminal modulator protein, resulting in facilitated cap-dependent protein translation. In addition, high dietary Pi significantly stimulated cell proliferation in the lungs of K-ros(LA1) mice. Conclusions: Our results showed that high dietary Pi promoted tumorigenesis and altered Akt signaling, thus suggesting that careful regulation of dietary Pi may be critical for lung cancer prevention as well as treatment.
ISSN
1073-449X
Language
English
URI
https://hdl.handle.net/10371/8611
DOI
https://doi.org/10.1164/rccm.200802-306OC
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Bacteriophage Therapy, Veterinary Medicine, Veterinary Microbiology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share