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Abstract

S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as IP3 receptor-binding protein released with IP3

(IRBIT), regulates IP3-induced Ca2+ release into the cytoplasm of cells. AHCYL1 is a critical regulator of early developmental
stages in zebrafish, but little is known about the function of AHCYL1 or hormonal regulation of expression of the AHCYL1
gene in avian species. Therefore, we investigated differential expression profiles of the AHCYL1 gene in various adult organs
and in oviducts from estrogen-treated chickens. Chicken AHCYL1 encodes for a protein of 540 amino acids that is highly
conserved and has considerable homology to mammalian AHCYL1 proteins (.94% identity). AHCYL1 mRNA was expressed
abundantly in various organs of chickens. Further, the synthetic estrogen agonist induced AHCYL1 mRNA and protein
predominantly in luminal and glandular epithelial cells of the chick oviduct. In addition, estrogen activated AHCYL1 through
the ERK1/2 signal transduction cascade and that activated expression of AHCYL1 regulated genes affecting oviduct
development in chicks as well as calcium release in epithelial cells of the oviduct. Also, microRNAs, miR-124a, miR-1669, miR-
1710 and miR-1782 influenced AHCYL1 expression in vitro via its 39-UTR which suggests that post-transcriptional events are
involved in the regulation of AHCYL1 expression in the chick oviduct. In conclusion, these results indicate that AHCYL1 is a
novel estrogen-stimulated gene expressed in epithelial cells of the chicken oviduct that likely affects growth, development
and calcium metabolism of the mature oviduct of hens via an estrogen-mediated ERK1/2 MAPK cell signaling pathway.
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Introduction

S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is

a member of AHCY family of proteins involved in metabolism of

S-adenosyl-L-homocysteine [1]. AHCYL1 consists of 540 amino

acid residues and has a domain homologous to AHCY in the C-

terminal region and multiple potential phosphorylation sites in the

N-terminal region [2]. Unlike AHCY that catalyzes a reversible

reaction for S-adenosylhomocysteine hydrolysis [3,4], AHCYL1

does not have hydrolase activity for adenosylhomocysteine due to

the substitution of important amino acids in the critical

enzymatically active site [5,6] although it has an AHCY-like

domain in the C-terminal domain [1]. However, AHCYL1 plays

important role in the inositol phospholipid (IP) signaling pathway

by interacting with the inositol 1,4,5-trisphosphate (IP3) receptor,

which is an intracellular Ca2+ release channel located on the

endoplasmic reticulum [2,5,7,8,9,10]. Therefore, AHCYL1 influ-

ences the IP3-induced Ca2+ signaling cascade essential for

numerous cellular and physiological processes such as organ

development, fertilization, and cell death [8,11,12]. Recently,

Cooper and co-workers identified two zebrafish AHCYL1

orthologs and found that the function of AHCYL1 is different

from AHCY and that it plays a key role in zebrafish embryogenesis

in response to IP3 receptor function for release of intracellular

calcium [1]. Although AHCYL1 is highly conserved among

various species, little is known about its expression and functional

roles in chickens or any other avian species.

In mammals, the oviduct undergoes diverse cellular and

molecular changes in response to sex steroids during the

estrous/menstrual cycle and peri-implantation period as these

actions are pivotal to establishing an optimal microenvironment

from gamete transport and embryonic development [13]. Of

these steroid hormones, estrogen is the primary female sex

hormone that controls a number of biological events including

cell proliferation and differentiation, protection against apopto-

sis, and diabetes [14,15]. To investigate mechanisms of action of

sex steroids, their biological effects and signal transduction

cascades, the chicken oviduct is an established model due to its

responsiveness to steroid hormones [16]. The chicken oviduct is
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a highly differentiated linear organ with compartments that

undergo structural, cellular and biochemical changes in response

to sex hormones during egg formation and oviposition [17].

The oviduct of egg-laying hens consists of the infundibulum,

magnum, isthmus, and shell gland essential for fertilization,

production of egg-white proteins, formation of the soft shell

membrane, and formation of the outer egg shell, respectively. In

the chicken oviduct, estrogen induces both cell proliferation and

differentiation, as well as anti-apoptotic effects on cells [18,19].

In particular, estrogen stimulates formation of oviductal tubular

glands and differentiation of epithelial cells into goblet and

ciliated cells [20]. In addition, estrogen regulates the mechanism

for Ca2+ release necessary for formation of the egg shell in the

shell gland of the chicken oviduct [21,22].

We used differential gene profiling data from the chicken

oviduct to identify the avian homolog of the human AHCYL1

transcript and found it to be highly expressed in chicks treated

with the synthetic estrogen agonist diethylstilbestrol (DES) [23].

There is little known about the expression or function of AHCYL1

in most species, except for humans and zebrafish [1,2,6].

Therefore, the objectives of this study were to: 1) compare the

primary sequences of chicken AHCYL1 with those of selected

mammalian species; 2) determine tissue- and cell-specific expres-

sion of AHCYL1 gene in various organs of the mature chicken; 3)

determine whether estrogen regulates expression of AHCYL1

mRNA and protein during development of the chick oviduct; 4)

determine whether AHCYL1 regulates calcium release and

expression of genes related to development of the chicken oviduct

through an estrogen-induced MAPK signaling pathway(s); and 5)

investigate post-transcriptional regulation of AHCYL1 expression

in the chicken oviduct. Results of this study provide novel insights

into the AHCYL1 gene with respect to its sequence, tissue specific

expression and hormonal regulation of its expression during

development of the chicken oviduct.

Results

Sequence Comparison, Pair-wise Alignment and
Phylogenetic Tree Analysis of AHCYL1

The chicken AHCYL1 gene spanned 10.3 kb on chromosome

26. The gene consists of 16 exons and the mRNA has 3,445 bp

encoding a protein with 540 amino acid residues. The primary

sequence of chicken AHCYL1 was compared to those of six

mammals and the zebrafish. Chicken AHCYL1 protein

contained an NAD(P)-binding motif required for catalysis of

S-adenosyl-L-homocysteine into adenosine and homocysteine as

for mammalian AHCYL1s (Figure S1). This verified that

AHCYL1 has a different function from AHCY because

AHCYL1 lacks several binding sites for S-adenosyl-L-homocys-

teine, irrespective of the conserved cysteines required for a tight

globular structure of AHCY and NAD+ binding motifs [1]. In

pair-wise comparisons of chicken AHCYL1 proteins with seven

other vertebrates, chicken AHCYL1 protein has high homology

to mammalian AHCYL1 proteins (91–98%, Table 1). The

phylogenetic tree was constructed using the neighbor-joining

method (Figure S2). The human and orangutan AHCYL1 genes

clustered together and formed a larger cluster with mice and

cattle, and an even larger cluster with sister groups was detected

for dog and zebrafish. However, chicken AHCYL1 is in a

separate branch, but closer to rat than to other mammalian

species. These results indicate that chicken AHCYL1 diverged

from mammalian AHCYL1 at very early stage in its evolution.

AHCYL1 mRNA Expression in Various Organs from
Chickens

Tissue specific expression of AHCYL1 mRNA in brain, heart,

liver, kidney, muscle, gizzard, small intestine, ovary, oviduct and

testis of 1- to 2- year-old males and females was determined by

RT-PCR. High levels of expression of AHCYL1 mRNA were

detected in kidney and testis from male, and liver and oviduct from

female chickens (Figures 1A and 1B), and lower expression in liver,

gizzard and small intestine from males and kidney and gizzard

from females. However, expression of AHCYL1 mRNA was not

detected in other organs analyzed regardless of sex. Based on

differential gene profiling data of the chicken oviduct, the avian

homolog of the human AHCYL1 transcript is highly expressed in

the oviduct of chicks treated with DES [23]. Since little is known

about expression and function of AHCYL1 in the oviduct of any

species [1,2,6], this study focused on its expression in the chicken

oviduct.

Localization of Chicken AHCYL1 mRNA and Protein in
Chicken Oviduct

In situ hybridization analysis was used to determine cell-specific

localization of AHCYL1 mRNA in the chicken oviduct. The

oviduct of egg-laying hens includes the infundibulum (site of

fertilization), magnum (production of components of egg-white),

isthmus (formation of the shell membrane), and shell gland

(formation of the egg shell). As illustrated in Figure 1C, AHCYL1

mRNA was most abundant in the luminal epithelium (LE) of the

infundibulum and shell gland, and it was also expressed at lower

abundance in glandular epithelium (GE) and LE of the magnum

and isthmus, and GE of the infundibulum and shell gland. Little or

no mRNA was detected in stromal cells, blood vessels, immune

cells or myometrium of the oviduct. Results of immunohisto-

chemial analysis (Figure 1D) were consistent with results from in

situ hybridization analyses. The AHCYL1 protein was abundant in

LE of all segments of the oviduct, but less abundant in GE of

magnum, isthmus and shell gland. The nonspecific mouse IgG,

used as a negative control, did not detect AHCYL1 protein in any

segment of the oviduct.

Effects of DES on AHCYL1 mRNA and Protein Expression
in the Chicken Oviduct

Cell-specific expression of AHCYL1 in the oviductal segments

of mature hens suggested regulation by estrogen during develop-

ment of the chick oviduct. We reported that exogenous DES

affects growth, development and differentiation of the chick

Table 1. Pairwise comparison of AHCYL1 proteins between
chicken, mammalian and fish species.

Species Symbol Identity (%)

Chicken (Gallus gallus) AHCYL1 –

vs. Human (Homo sapiens) AHCYL1 96.3

vs. Orangutan (Pongo abelii) AHCYL1 96

vs. Mouse (Mus musculus) Ahcyl1 96.3

vs. Rat (Rattus norvegicus) Ahcyl1 94

vs. Cattle (Bos taurus) AHCYL1 97.8

vs. Dog (Canis lupus familiaris) AHCYL1 98

vs. Zebrafish (Danio rerio) ahcyl1 91

doi:10.1371/journal.pone.0049204.t001

AHCYL1 in the Avian Oviduct
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oviduct and discovered candidate genes and pathways regulating

oviduct development [35]. Therefore, we examined the effects of

DES on AHCYL1 expression in the chick oviduct. As shown in

Figures 2A and 2B, semi-quantitative RT-PCR analysis indicated

that DES increased AHCYL1 mRNA in all segments of the 37-day-

old chick oviduct. Further results from quantitative PCR revealed

that DES induced a 3.3-fold increase (P,0.01) in oviductal

AHCYL1 mRNA as compared to 37-day-old chicks that were not

treated with DES (Figure 2C). In addition, DES stimulated 2.3-,

3.4-, 2.6- and 4.3-fold increases (P,0.01) in AHCYL1 mRNA in

the infundibulum, magnum, isthmus, and shell gland, respectively

(Figure 2D). In situ hybridization analyses revealed that AHCYL1

mRNA is expressed specifically in superficial GE in close

proximity to LE in all segments of the oviduct of chicks treated

with DES (Figure 2E). AHCYL1 mRNA is also expressed at lower

abundance in LE of oviducts from untreated chicks. Consistent

with results from in situ hybridization analyses, immunoreactive

AHCYL1 protein was detected predominantly in superficial GE of

magnum and isthmus, and to a lesser extent in GE of shell glands

of oviducts treated with DES and LE of oviducts from untreated

chicks (Figure 2F).

DES Activates ERK1/2 Signal Transduction in Chicken
Oviduct Cells

Epithelial cells from the chicken oviduct were isolated and

cultured in the presence or absence of DES and subjected to

protein extraction. Based on results from our preliminary

experiments, we focused on MAPK signaling cascades, especially,

the extracellular-signal regulated kinase1/2 (ERK1/2) signaling

pathway. Based on dose–response experiments (Figure 3A), DES

was used at 2 mg/ml in all experiments to determine cell signaling

pathways mediating effects of DES on activation of ERK1/2

proteins. Western blot analyses of whole oviduct cell extracts with

antibody to phosphorylated target proteins indicated that DES

increased phospho-ERK1/2 (p-ERK1/2) 15.7-fold (P,0.01) over

basal levels within 5 min and this effect was maintained to 30 min

(Figure 3B). In addition, the same dose of DES increased

AHCYL1 protein approximately 3-fold within 2 h and further

stimulated it 6.3-fold over 24 h. Next, we examined effects of an

ERK1/2 inhibitor (U0126) on the ability of DES to increase

synthesis of AHCYL1 protein (Figure 3C). As illustrated in

Figure 3D, 1 to 10 mM U0126 decreased the abundance of

AHCYL1 protein in response to DES treatment. To verify these

results, we performed immunofluorescence analyses and compared

Figure 1. Expression of AHCYL1 in chickens. [A and B] Expression of AHCYL1 in various organs of male and female of chickens. Results of RT-PCR
analysis using cDNA templates from different organs of male [A] and female [B] chickens with chicken AHCYL1 and chicken GAPDH-specific primers.
[C] In situ hybridization analyses of AHCYL1 mRNAs in the chicken oviduct. Cross-sections of the four components of the chicken oviduct
(infundibulum, magnum, isthmus and shell gland) were hybridized with antisense or sense chicken AHCYL1 cRNA probes. [D] Immunoreactive
AHCYL1 protein in the chicken oviduct. For the IgG control, normal mouse IgG was substituted for the primary antibody. Sections were not
counterstained. Legend: LE, luminal epithelium; GE, glandular epithelium; Scale bar represents 100 mm. See Materials and Methods for complete
description.
doi:10.1371/journal.pone.0049204.g001
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expression patterns of AHCYL1 protein in chick oviduct cells

cultured in the presence or absence of DES or presence of DES

with U0126 (Figure 3E). Immunoreactive AHCYL1 protein was

most abundant in the cytoplasm of chicken oviduct epithelial cells

treated with DES, but detectable at lower abundance in the

cytoplasm of cells receiving no treatment or DES treatment with

U0126. Furthermore, DES stimulated calcium release from

epithelia cell of the magnum of the chicken oviduct in a dose-

dependent manner (Figure 3F). However, calcium release was

reduced in these cells when cultured in the presence of both DES

and U0126 as compared to DES alone (Figure 3G).

AHCYL1 Knockdown and Expression of Genes Related to
Oviduct Development in Response to Estrogen

The constitutive expression of AHCYL1 after transfection was

not significantly different in chicken oviduct epithelial cells at 0.5,

1, 10, 25 and 50 nM of AHCYL1-specific siRNA. However,

AHCYL1 protein expression was inhibited 25.3% at 48 h post-

Figure 2. Effect of DES on tissue specific expression of chicken AHCYL1. Both RT-PCR [A and B] and q-PCR [C and D] analyses were performed
using cDNA templates from DES-treated and untreated oviducts. These experiments were conducted in triplicate and normalized to control GAPDH
expression. [E] In situ hybridization analyses revealed cell-specific expression of AHCYL1 mRNA in oviducts of DES-treated and untreated chicks. Cross-
sections of the four segments of chicken oviduct (infundibulum, magnum, isthmus, and shell gland) treated with DES or vehicle were hybridized with
antisense or sense chicken AHCYL1 cRNA probes. [F] Immunoreactive AHCYL1 protein in oviducts of DES-treated and untreated chicks. For the IgG
control, normal goat IgG was substituted for the primary antibody. Sections were not counterstained. See Materials and Methods for complete
description. Legend: Untreated oviduct, non-treated whole oviduct; DES Treatment, DES treated whole oviduct; LE, luminal epithelium; GE, glandular
epithelium; Scale bar represents 100 mm. The asterisks denote statistically significant differences (***P,0.001 and **P,0.01).
doi:10.1371/journal.pone.0049204.g002

Figure 3. DES-induced phosphorylation of ERK1/2, stimulation of AHCYL1 and calcium release in chicken oviduct epithelial cells. [A
and B] Dose-dependent and time-dependent expression of phosphorylated ERK1/2 in DES-treated chicken oviduct epithelial cells. Blots were imaged
to calculate normalized values presented in graphs (bottom) by measurements of levels of phosphorylated protein relative to total protein. [C] In the
DES-treated (2 mg/ml) and non-treated chicken oviduct cells, AHCYL1 protein levels were investigated to determine time-dependent effects of DES.
[D] In chicken oviduct cells treated with DES (2 mg/ml) or both DES and an ERK1/2 inhibitor (U0126) for 24 h, according to results of a preliminary
study to optimize time-dependent treatment effects, AHCYL1 protein decreased due to effects of U0126. In [C and D], blots were imaged to calculate
the normalized values presented in graphs (bottom) for relative abundance of AHCYL1 protein and alpha-tubulin (TUBA) protein. [E]
Immunofluorescence microscopy detected AHCYL1 protein in chicken oviduct epithelial cells treated with DES or both DES and an ERK1/2
inhibitor. AHCYL1 protein was barely detectable in untreated, as well as DES- and ERK1/2 inhibitor-treated cells, but abundant in cytoplasm of DES-
treated oviduct epithelial cells. Cell nuclei were stained with DAPI (blue). All images were captured at 40X objective magnification. [F and G] Cells
were grown in media with various concentration of DES for 24 h or both DES and an ERK1/2 inhibitor. Then, calcium concentration from the cells was
measured. The asterisk denotes a significant effect (***P,0.001, **P,0.01 and *P,0.05). See Materials and Methods for complete description.
doi:10.1371/journal.pone.0049204.g003
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transfection with AHCYL1 siRNA at 100 nM (Figures 4A and

4B). Therefore, we investigated whether DES affects levels of

AHCYL1 expression in chick oviduct cells transfected with

AHCYL1 siRNA for 48 h and then treated with 2 ug/ml DES

for 0, 6 or 24 h. Cell transfected with AHCYL1-specific siRNA

had less AHCYL1 compared to sham-treated cells (p,0.001) and

cells transfected with control siRNA (p,0.001) at each time point

(Figure 4C). Sham and control siRNA cells treated with DES for 6

and 24 h had a greater increase in AHCYL1 protein compared to

sham and control siRNA cells not treated (0 h) with DES

(p,0.05). To examine expression of genes related to chicken

oviduct development and major egg white proteins in response to

estrogen, we examined expression of cathepsin B (CTSB), CTSC,

CTSS, ERBB receptor feedback inhibitor 1 (ERRFI1), pleiotrophin (PTN),

gallinacin 11 (GAL11), ovalbumin, lysozyme (LYZ) and LYZ2 using

quantitative PCR analyses. As illustrated in Figure 4D to 4F, the

expression levels for CTSB, CTSC, CTSS, ERRFI1, PTN, ovalbumin

and LYZ2 mRNAs were decreased significantly by AHCYL1

knockdown as compared to naı̈ve, sham and control siRNA

treatments: CTSB to 0.49- (p,0.001), CTSC to 0.51- (p,0.001),

CTSS to 0.46- (p,0.001), ERRFI1 to 0.22- (p,0.001), PTN to

0.41- (p,0.001), ovalbumin to 0.61- (p,0.05) and LYZ2 to 0.31-fold

(p,0.01). However, the expression of GAL11 and LYZ mRNAs

increased significantly in response to AHCYL1 knockdown:

GAL11 to 1.64- (p,0.05) and LYZ to 2.88-fold (p,0.001). In

addition, calcium release was reduced significantly in response to

AHCYLI knockdown as compared to control or control siRNA

treated cells (Figure 4G). Moreover, immunoreactive AHCYL1

protein was less abundant in the cytoplasm of the chicken oviduct

cells receiving DES treatment and AHCYL1 siRNA transfection

as compared to treatment with DES and the control siRNA

(Figure 4H).

Post-transcriptional Action of miRNAs on AHCYL1
Expression of AHCYL1 may be regulated at the post-transcrip-

tional level by microRNAs (miRNAs); therefore, we performed a

miRNA target validation assay. Analysis of potential miRNA

binding sites within the 39-UTR of the AHCYL1 gene using the

miRNA target prediction database (miRDB; http://mirdb.org/

miRDB/) revealed six putative binding sites for miR-124a, miR-

1602, miR-1612, miR-1669, miR-1710 and miR-1782 (Figure 5A).

Therefore, we determined whether these miRNAs influenced

AHCYL1 expression via its 39-UTR. A fragment of the AHCYL1

39-UTR harboring binding sites for the miRNAs were cloned in

downstream of the green fluorescent protein (GFP) reading frame,

thereby creating a fluorescent reporter for function of the 39-UTR

region (Figure 5B). After co-transfection of eGFP-AHCYL1 39-

UTR and DsRed-miRNA, the intensity of GFP expression and

percentage of GFP-expressing cells were analyzed by fluorescence

microscopy and FACS. As illustrated in Figures 5C and 5D, in the

presence of miR-124a, miR-1669, miR-1710, miR-1782, the

intensity and percentage of GFP-expressing cells (27.7% in control

vs. 14.2% in miR-124a, 17.1% in miR-1669, 19.4% in the miR-

1782 and 23.2% in miR-1710) were decreased. However, in the

presence of miR-1602 and miR-1612, there was no significant

decrease in green fluorescence compared to the control (data not

shown). Further results from quantitative PCR revealed that DES

induced a 3.38- and 3.18-fold increase (P,0.01) in expression of

miR-1710 and -1782, respectively, in the oviduct as compared to

control chicks (Figure 5E). However, expression of miR-124a and

miR-1669 was decreased in DES-treated oviducts (P,0.05). These

results indicate that miR-124a, miR-1669, miR-1710 and miR-1782,

influence AHCYL1 expression in vitro via its 39-UTR which

suggests that post-transcriptional events regulate or influence

AHCYL1 expression in the chick oviduct.

Discussion

Results of the present study are novel as they provide the first

comparisons among chicken and mammalian AHCYL1 genes with

respect to structure, phylogenetic evolution, tissue specific

expression of AHCYL1 mRNA and protein, and regulation of

expression by estrogen in an ERK1/2-dependent cell signaling

cascade. Our results also indicate that AHCYL1 is post-

transcriptionally regulated by several miRNAs and knockdown

of AHCYL1 results in down-regulation of genes critical to

development of the chick oviduct in response to estrogen in

chicks. These results support our hypothesis that AHCYL1 is

required for growth, development and functional aspects of the

mature oviduct of hens in response to estrogen during their

reproductive cycle.

We reported that differential gene profiling data of the chick

oviduct showed that the avian homolog of human S-adeonosylho-

mocysteine hydrolase like protein 1 (AHCYL1) transcript is highly

expressed in chicks treated with DES [35]. AHCYL1 regulates

numerous important cellular processes, especially Ca2+-dependent

processes, by modulating concentrations of Ca2+ in cytoplasm of

cells [11,12]. However, little is known about expression and

function of AHCYL1 in the oviduct of any species [1,2,6] although

AHCYL1 has potential role(s) in many important biological events

such as development, fertilization, gene expression, secretion and

cell death [8,11,12].

In the present study, we found that the chicken AHCYL1 gene

consists of 16 exons encoding 540 amino acid residues and that it

has high homology (greater than 90%) to mammalian AHCYL1

proteins (Table 1). In addition, expression of AHCYL1 mRNA in

kidney, liver, testis, oviduct, and to a lesser extent, in gizzard and

small intestine of chickens was found. However, expression was

not detected in other organs analyzed in either sex. Furthermore,

as illustrated in Figures 1C and 1D, AHCYL1 mRNA and protein

were most abundant in the LE of the infundibulum and shell

gland, and at lower abundance in GE and LE of the magnum and

isthmus, and GE of the infundibulum and shell gland of the

oviduct. These results indicate that cell- and tissue-specific

expression of AHCYL1 may be associated with functional

mechanism(s) of chicken oviduct functions including calcium

metabolism for formation of the egg shell and oviposition (egg

laying).

Generally, the biological actions of estrogen are mediated by its

cognate nuclear receptors, estrogen receptors alpha (ESR1) and

beta (ESR2) which activate and recruit a variety of transcription

factors with estrogen response elements to the 59 upstream region

of target genes [15,16]. Indeed, several steroid hormones,

including estrogen, are involved in many physiological and

developmental events requiring modification of cell-type and

tissue-specific gene expression [16,36]. Although various animal

models have been used to investigate developmental and

hormonal mechanism of oviduct growth, development and

differentiation, the most well studied and informative model is

the chick oviduct [16]. During development of the chicken

oviduct, estrogen stimulates proliferation and cytodifferentiation of

epithelial cells to tubular gland cells and expression of oviduct-

specific genes [37,38]. In particular, the differentiated tubular

gland cells of the magnum synthesize and secrete the egg-white

proteins including ovalbumin, lysozyme, ovotransferrin, ovomu-

coid and avidin during egg formation [39]. Indeed, the magnum is

the most estrogen-responsive segment of the chicken oviduct. The

AHCYL1 in the Avian Oviduct
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administration of exogenous estrogen to neonatal chicks stimulates

an 8-fold increase in wet weight of the magnum within three days

[40]. Consistent with these results, we reported that exogenous

DES affects growth, development and differentiation of the

chicken oviduct [26] and discovered candidate genes and

pathways regulating oviduct development in chickens [35]. In

the present study, as illustrated in Figure 2, DES treatment

increased AHCYL1 mRNA and protein in LE of the infundibulum

and magnum, and GE of the isthmus and shell gland of the chick

oviduct. These results strongly support our hypothesis that

estrogen-mediated AHCYL1 gene expression plays a crucial role(s)

in growth, differentiation and function of the chicken oviduct.

Results of the current study revealed that estrogen stimulates

activation of ERK1/2 phosphorylation, expression of AHCYL1,

and calcium release by oviduct cells of chicks. Mitogen-activated

protein kinases (MAPKs) are highly conserved in most organisms

and respond to various extracellular stimuli such as mitogens, heat

shock, stress and cytokines [41]. Among the three well-character-

ized subfamilies of MAPKs, the ERK1/2 MAPK pathway plays

important roles in growth and differentiation processes of female

reproductive organs during early pregnancy, including embryonic

and placental development [42,43,44,45]. However, little is known

about the ERK1/2 MAPK signal cascade in growth, development

and differentiation of female reproductive tract such as oviduct

and uterus. In the present study, DES induced a rapid increase in

phosphorylation of ERK1/2 MAPK by 5 min and this effect was

maintained to 30 min before declining by 60 min (Figure 3). In

addition, the same dose of DES increased AHCYL1 protein 3-fold

within 2 h and 6.3-fold by 24 h and induced calcium release in a

dose-dependent manner. Meanwhile, treatment of chicken oviduct

epithelial cells with both an ERK1/2 inhibitor (U0126) and DES

decreased AHCYL1 protein in the cytoplasm of those cells and

inhibited calcium release despite DES treatment. These results

strongly suggest that estrogen influences development and

differentiation of the chick oviduct by activating AHCYL1 and

calcium release in an ERK1/2 MAPK-dependent manner.

RNA interference methods such as the siRNA-mediated

recognition of homologous target mRNA molecule have been

used successfully in biological research to examine effects of

silencing target genes [46]. In this study, we determined that

AHCYL1 knockdown decreases expression of several genes

associated with oviduct development and differentiation including

several members of the cathepsin (CTS) family of lysosomal

proteases. CTSs degrade extracellular matrix (ECM) molecules

including collagens, laminin, fibronectin and proteoglycans and

they are also involved in catabolism of intracellular proteins and

processing of pro-hormones. In addition, the CTSs regulate

intracellular protein metabolism [47], bone resorption [48] and

Figure 4. AHCYL1 knockdown decreased expression of genes associated with oviduct development and production of egg white
proteins. [A] In the control group (naı̈ve, sham and control siRNA treatment) and AHCYL1 silencing group (dose-dependent manner), AHCYL1 mRNA
levels were quantified by RT-PCR and quantitative RT-PCR analyses. [B] In the control group (naı̈ve, sham and control siRNA treatment) and AHCYL1
silencing group (dose-dependent), immunoreactive AHCYL1 protein was quantified by western blotting. [C] The effects of DES treatment (time-
dependent manner) on control cells and cells in which AHCYL1 was silenced is shown in Panels D to F. Total RNA isolated from chicken oviduct
epithelial cells treated with AHCYL1 siRNA (100nM) affected expression of CTSB, CTSC, CTSS, ERRFI1, PTN, GAL11, ovalbumin, LYZ and LYZ2 mRNAs as
determined using quantitative RT-PCR analyses. Legend: CTSB, cathepsin B; CTSC, cathepsin C; CTSS, cathepsin S; ERRFI1, ERBB receptor feedback
inhibitor 1; PTN, pleiotrophin, GAL11; gallinacin 11, LYZ; lysozyme. [G] Cells were grown in medium with the absence and presence of DES with
siRNAs and then changes in amount of calcium released from the cells was measured. [H] Immunofluorescence microscopy detected AHCYL1 protein
in chicken oviduct epithelial cells treated with DES with siRNAs. Cell nuclei were stained with DAPI (blue). All images were captured at 40X objective
magnification. The asterisks denote statistically significant differences (***P,0.001, **P,0.01 and *P,0.05). See Materials and Methods for complete
description.
doi:10.1371/journal.pone.0049204.g004
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Figure 5. In vitro target assay of miR-124a, miR-1602, miR-1612, miR-1669, miR-1710 and miR-1782 on AHCYL1 transcript. [A] Diagram of
miR-124a, miR-1669, miR-1710 and miR-1782 binding sites in AHCYL1 39-UTR. [B] Expression vector maps for eGFP with AHCYL1 39UTR and Ds-Red with
each miRNA. The 39-UTR of the AHCYL1 transcript was subcloned between the eGFP gene and the polyA tail to generate the fusion construct of the
GFP transcript following the miRNA target 39-UTR (pcDNA-eGFP-39UTR) (upper panel) and miRNA expression vector was designed to co-express
DsRed and each miRNA (pcDNA-DsRed-miRNA) (lower panel). [C and D] After co-transfection of pcDNA-eGFP-39UTR for the AHCYL1 transcript and
pcDNA-DsRed-miRNA for the miR-124a, miR-1669, miR-1710 and miR-1782, the fluorescence signals of GFP and DsRed were detected using
fluorescent microscopy [C] and FACS [D]. [E] q-PCR analyses were performed using cDNA templates from DES-treated and untreated chicken oviducts
(mean 6 SEM). These experiments were conducted in triplicate and normalized to control U6 snRNA expression. See Materials and Methods for
complete description. The asterisks denote statistically significant differences (**P,0.01 and *P,0.05).
doi:10.1371/journal.pone.0049204.g005
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antigen presentation [49], as well as cell transformation, differen-

tiation, motility, and adhesion [50]. In the present study, the

expression of cathepin B (CTSB), CTSC, and CTSS mRNAs was

significantly decreased by AHCYL1 knockdown compared to

naı̈ve, sham and control siRNA treatments (Figure 4D). Further-

more, the expression of ERBB receptor feedback inhibitor 1 (ERRFI1),

pleiotrophin (PTN), gallinacin 11 (GAL11), ovalbumin, lysozyme (LYZ)

and LYZ2 mRNAs, which are estrogen-induced genes or genes for

egg white proteins expressed in the oviduct epithelial cells of the

chicken were also significantly affected by AHCYL1 knockdown.

These results suggest that estrogen-induced AHCYL1 regulates

downstream genes for oviduct growth/remodeling and mainte-

nance of oviduct function during the reproductive cycle of

chickens.

MicroRNAs (miRNAs), as post-transcriptional regulators, play

essential roles in a wide variety of biological processes including

vertebrate growth, development and differentiation [51]. In the

current study, we performed a miRNA target validation assay

based on the hypothesis that AHCYL1 expression is regulated at

the post-transcriptional level by miRNAs. As illustrated in Figure 5,

co-transfection of eGFP-AHCYL1 39-UTR and DsRed-miRNA

decreased the percentage of GFP-positive cells and GFP fluores-

cence density in miR-124a, miR-1669, miR-1710 and miR-1782

transfected cells, but not in cell transfected with miR-1602 and

miR-1612 when compared to untreated control cells. However, as

illustrated in Figure 5E, the in vivo DES-mediated decrease in miR-

124a and miR-1669 supports this hypothesis, whereas the DES-

mediated increase in miR-1710 and miR-1782 is inconsistent with

the in vitro data. These results indicate that miR-1710 and miR-

1782 may act indirectly or regulate expression of other DES-

regulated genes in vivo. Collectively, these four miRNAs influence

AHCYL1 expression in vitro via its 39-UTR which suggests that

post-transcriptional regulation influences AHCYL1 expression in

the chick oviduct. In addition, we propose that, of these four

miRNAs, miR-124a and miR-1669 are closely related to the

regulatory pathways of oviduct development and differentiation in

chickens; however, this requires further investigation.

Based on the collective results from the present studies, we

propose a model (Figure 6) in which estrogen activates receptor

tyrosine kinase (RTK) and phosphorylated RTK activates RAS-

RAF-MEK to stimulate the ERK1/2 signal transduction cascade

to effect expression of genes affecting growth- and/or development

of the chick oviduct and to stimulate oviduct-specific genes for the

production of egg white proteins and calcium release during egg

formation. In conclusion, results of the present study provide

important insights into the mechanism by which AHCYL1

regulates growth, development and functional aspects of the

mature oviduct of hens in response to estrogen-mediated ERK1/2

MAPK cell signaling during their reproductive cycle.

Materials and Methods

Experimental Animals and Animal Care
The experimental use of chickens for this study was approved by

the Institute of Laboratory Animal Resources, Seoul National

University (SNU-070823-5). White Leghorn (WL) hens, roosters,

and chicks were subjected to standard management practices at

the University Animal Farm, Seoul National University, Korea.

All chickens were exposed to a light regimen of 15 h light and 9 h

dark with ad libitum access to feed and water.

Tissue Samples
Following euthanasia of the WL hens and roosters, tissue

samples were collected from brain, heart, liver, kidney, muscle,

small intestine, gizzard, ovary, oviduct and testis of 1- to 2- year-

old males (n = 5) and females (n = 5). The collected samples were

frozen or fixed in 4% paraformaldehyde for further analyses.

Frozen tissue samples were cut into 5- to 7- mm pieces, frozen in

liquid nitrogen vapor, and stored at 280uC. The other samples

were cut into 10 mm pieces and fixed in fresh 4% paraformal-

dehyde in PBS (pH 7.4). After 24 h, fixed tissues were changed to

70% ethanol for 24 h and then dehydrated and embedded in

Paraplast-Plus (Leica Microsystems, Wetzlar, Germany). Paraffin-

embedded tissues were sectioned at 5 mm.

Diethylstilbestrol (DES) Treatment and Oviduct Retrieval
Female chicks were identified by PCR analysis using W

chromosome-specific primer sets [24]. Treatment with DES and

recovery of the oviduct were performed as reported previously

[25,26]. Briefly, a 15 mg DES pellet was implanted subcutane-

ously in the abdominal region of 1-week-old female chicks for 10

days. The DES pellet was removed for 10 days, and a 30 mg dose

was administered for 10 additional days. Five 37-day-old chicks in

each group were euthanized using 60%–70% carbon dioxide.

Subsets of these samples were frozen or fixed in 4% paraformal-

dehyde for further analyses. Paraffin-embedded tissues were

sectioned at 5 mm.RNA Isolation.

Total cellular RNA was isolated from frozen tissues using Trizol

reagent (Invitrogen, Carlsbad, CA) according to the manufactur-

er’s recommendations. The quantity and quality of total RNA was

determined by spectrometry and denaturing agarose gel electro-

phoresis, respectively.

Sequence Analysis
For pair-wise comparisons and multiple sequence alignment,

the amino acid sequences encoded by AHCYL1 genes from each

species were aligned using Geneious Pro Version 5.04 [27] with

default penalties for gap and the protein weight matrix of

BLOSUM (Blocks Substitution Matrix). A phylogenetic tree was

constructed using the neighbor-joining method [28] of the

Geneious Pro Version 5.04 [27]. To determine the confidence

level for each internal node on the phylogenetic tree, 1,000

nonparametric bootstrap replications were used [29].

Semiquantitative RT-PCR Analysis
The expression level of AHCYL1 mRNA in various organs from

chickens, including the oviduct, was assessed using semi-quanti-

tative RT-PCR as described previously [30]. The cDNA was

synthesized from total cellular RNA (2 ug) using random hexamer

(Invitrogen, Carlsbad, CA) and oligo (dT) primers and AccuPo-

werH RT PreMix (Bioneer, Daejeon, Korea). The cDNA was

diluted (1:10) in sterile water before use in PCR. For AHCYL1, the

sense primer (59-TTT GGA GGG AAG CAA GTG GC-39) and

antisense primer (59-GCT CAA TCA GAG CCA GAG CC-39)

amplified a 481-bp product. For GAPDH (housekeeping gene;

glyceraldehyde 3-phosphate dehydrogenase), the sense primer (59-

TGC CAA CCC CCA ATG TCT CTG TTG-39) and antisense

primer (59-TCC TTG GAT GCC ATG TGG ACC AT-39)

amplified a 301-bp product. The primers, PCR amplification and

verification of their sequences were conducted as described

previously [30]. PCR amplification was conducted using approx-

imately 60 ng cDNA as follows: 1) 95uC for 3 min; 2) 95uC for 20

sec, 60uC for 40 sec, and 72uC for 1 min for 35 cycles (AHCYL1)

and 30 cycles (GAPDH); and 3) 72uC for 5 min. The amount of

DNA present was quantified by measuring the intensity of light

emitted from correctly sized bands under UV light using a Gel

DocTM XR+ system with Image LabTM software (Bio-Rad).
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Quantitative PCR Analysis
Total RNA was extracted from each oviduct of untreated and

DES-treated chicks using TRIzol (Invitrogen) and purified using

an RNeasy Mini Kit (Qiagen). Complementary DNA was

synthesized using AccuPowerH RT PreMix (Bioneer, Daejeon,

Korea). Gene expression levels were measured using SYBRH
Green (Sigma, St. Louis, MO, USA) and a StepOnePlusTM Real-

Time PCR System (Applied Biosystems, Foster City, CA, USA).

The PCR conditions were 95uC for 3 min, followed by 40 cycles at

95uC for 20 sec, 64uC for 40 sec, and 72uC for 1 min using a

melting curve program (increasing the temperature from 55uC to

95uC at 0.5uC per 10 sec) and continuous fluorescence measure-

ments. Sequence-specific products were identified by generating a

melting curve in which the CT value represented the cycle number

at which a fluorescent signal was significantly greater than

background, and relative gene expression was quantified using

the 2–DDCT method [31]. For the control, the relative quantifica-

tion of gene expression was normalized to the CT value of the

untreated oviduct.

In Situ Hybridization Analysis
For hybridization probes, PCR products were generated from

cDNA with the primers used for RT-PCR analysis. The products

were gel-extracted and cloned into pGEM-T vector (Promega).

After verification of the sequences, plasmids containing gene

sequences were amplified with T7- and SP6-specific primers

(T7:59-TGT AAT ACG ACT CAC TAT AGG G-39; SP6:59-

CTA TTT AGG TGA CAC TAT AGA AT-39) then digoxigenin

(DIG)-labeled RNA probes were transcribed using a DIG RNA

labeling kit (Roche Applied Science, Indianapolis, IN). The signal

was visualized by exposure to a solution containing 0.4 mM 5-

bromo-4-chloro-3-indolyl phosphate, 0.4 mM nitroblue tetrazoli-

um, and 2 mM levamisole (Sigma).

Immunohistochemistry
Immunocytochemical localization of AHCYL1 protein in the

chicken oviduct was performed as described previously [32] using

an anti-human AHCYL1 monoclonal antibody (catalog number:

ab56761; abcam, Cambridge, UK) at a final dilution of 1:500

(1 mg/ml). Antigen retrieval was performed using the boiling

citrate method as described previously [32]. Negative controls

included substitution of the primary antibody with purified non-

immune mouse IgG at the same final concentration.

Western Blot Analyses
Chicken oviduct cells were isolated and cultured with minor

modifications as we described previously [33]. Cells were grown in

DMEM-F12 containing 10% charcoal-stripped FBS until they

were 80% confluent and starved in serum free medium for 24 h

before DES treatment. The protein content was determined using

the Bradford protein assay (Bio-Rad, Hercules,CA) with bovine

serum albumin (BSA) as the standard. Proteins were denatured,

separated using 10% SDS-PAGE and transferred to nitrocellulose.

Blots were developed using enhanced chemiluminescence detec-

tion (SuperSignal West Pico, Pierce, Rockford, IL) and quantified

by measuring the intensity of light emitted from correctly sized

bands under ultraviolet light using a ChemiDoc EQ system and

Quantity One software (Bio-Rad, Hercules, CA). Immunoreactive

AHCYL1 and phosphorylated ERK1/2 protein was detected

using an anti-human AHCYL1 monoclonal antibody (catalog

number: ab56761; abcam, Cambridge, UK) at a final dilution

1:500 and anti-mouse phospho-ERK1/2 monoclonal IgG (catalog

number: sc-7383; Santa Cruz, CA) at a final dilution 1:1000,

respectively. As a loading control, western blotting with mouse

anti-beta actin IgG (catalog number: sc-47778; Santa Cruz, CA)

or anti-rabbit total ERK1/2 polyclonal IgG (catalog number:

9102; Cell signaling Technology) was performed.

Figure 6. Schematic illustrating the current working hypothesis on estrogen-induced ERK1/2 MAPK signaling cascades in chicken
oviduct cells. Evidence from the present study indicates that estrogen stimulates the classical estrogen- and alternative ERK1/2 MAPK signaling
pathways. Legend: RTK, receptor tyrosine kinase; RAS, synaptic Ras-GTPase-activating protein; RAF (also known as MAPK3), mitogen-activated protein
kinase (MAPK) kinase kinase; MEK (also known as MAPK2), MAPK kinase; ERK1/2, extracellular signal-regulated kinase; ERE, estrogen response element;
ER, endoplasmic reticulum.
doi:10.1371/journal.pone.0049204.g006
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Immunofluorescence Microscopy
Oviduct cells obtained from laying hens were examined for

AHCYL1 protein expression patterns by immunofluorescence

microscopy as described previously [34]. Briefly, oviduct cells were

cultured to 80% confluency in charcoal-stripped FBS to remove

sex steroids, starved and then treated with 2 mg/ml DES and

10 mM U0126 (ERK1/2 inhibitor) for 24 h. Each type of cell was

seeded onto Lab-Tek chamber slide (Nalge Nunc International,

Rochester, NY). After 24 h, cells were fixed with 220uC methanol

and immunofluorescence staining was performed using an anti-

human AHCYL1 monoclonal antibody (catalog number:

ab56761; abcam, Cambridge, UK). Cells were then incubated

with Alexa Fluor 488 rabbit anti-mouse IgG secondary antibody

(A21204, Invitrogen). Slides were overlayed with DAPI before

images were captured using a Zeiss confocal microscope LSM710

(Carl Zeiss) fitted with a digital microscope camera AxioCam using

Zen 2009 software.

Target-specific siRNAs for AHCYL1 Knockdown
For messenger RNA sequences of chicken AHCYL1

(NM_001030913.1), three potential small interfering RNA target

sites were determined using the Invitrogen design program. The

most effective target sequence (GTG AGA AGC AGC AAA CCA

A) was screened out and synthesized. Silencer Negative Control 1

siRNA (Ambion, Austin, TX), with no homology to any known

gene, was used as a negative control. Down-regulation of

AHCYL1 expression was confirmed by quantitative PCR and

Western blotting analyses. The information on primers used for q-

PCR is described in Table 2.

Transfection
Chicken oviduct cells were treated with specific AHCYL1

siRNA or controls that included naı̈ve treatment (no siRNA or

Lipofectamine 2000) and sham treatment (Lipofectamine 2000

only). Transfection of siRNA was according to the manufacturer’s

procedure. To analyze the effect of DES on chicken oviduct cells,

DES was added to the culture medium 48 h post-transfection and

the incubation continued for either 6 or 24 h. Using red

fluorescein-labeled control siRNA duplexes (Invitrogen), we

estimated that more than 95% of the cells were transfected.

MicroRNA Target Validation Assay
The 39-UTR of AHCYL1 was cloned and confirmed by

sequencing. The 39-UTR was subcloned between the eGFP gene

and the bovine growth hormone (bGH) poly-A tail in

pcDNA3eGFP (Clontech, Mountain View, CA) to generate the

eGFP-miRNA target 39-UTR (pcDNA-eGFP-39UTR) fusion

constructs. For the dual fluorescence reporter assay, the fusion

constructs containing the DsRed gene and either miR-124a, miR-

1602, miR-1612, miR-1669, miR-1710 or miR-1782 were designed

to be co-expressed under control of the CMV promoter (pcDNA-

DsRed-miRNA). The pcDNA-eGFP-39UTR and pcDNA-DsRed-

miRNA (4 mg) were co-transfected into 293FT cells using the

calcium phosphate method. When the DsRed-miRNA is ex-

pressed and binds to the target site of the 39-UTR downstream of

the GFP transcript, green fluorescence intensity decreases due to

degradation of the GFP transcript. At 48 h post-transfection, dual

fluorescence was detected by fluorescence microscopy and

calculated by FACSCalibur flow cytometry (BD Biosciences).

For flow cytometry, the cells were fixed in 4% paraformaldehyde

and analyzed using FlowJo software (Tree Star Inc., Ashland,

OR).

Calcium Release Assay
Chicken intact or AHCYL1 siRNA knockdowned oviduct cells

were treated with various concentrations of DES for 24 h and the

supernatant was used to evaluate the release of calcium using

Calcium Assay kit (Cayman Chemical, Ann Arbor, MI) according

to the manufacturer’s instructions. The 100 ml working detection

reagent was added to 10 ml supernatant and gently mixed,

incubated at room temperature for 5 min. Calcium concentration

was quantified using a microplate reader with a 595 nm

absorbance and compared to a calcium standard curve.

Statistical Analyses
Differences in the variance between untreated and DES-treated

oviducts were analyzed using the F test, and differences between

means were detected using the Student’s t test. The probability

value of P,0.05 was considered statistically significant. Excel

(Microsoft, Redmond, WA, USA) was used for statistical analyses.

Supporting Information

Figure S1 Multiple sequence alignment of chicken, fish and

mammalian AHCYL1 proteins. (A) The amino acid sequences of

AHCYL1 proteins from chicken (Gallus gallus), human (Homo

sapiens), orangutan (Pongo abelii), mouse (Mus musculus), rat (Rattus

norvegicus), cattle (Bos taurus), dog (Canis lupus familiaris) and zebrafish

(Danio rerio) were aligned using Geneious Pro Version 5.04 [27]

with default penalties for gap and the protein weight matrix of

BLOSUM (Blocks Substitution Matrix). Shaded amino acid

sequences are identical among all species examined. Dashes

represent gaps among the sequences. The conserved functional

domains in AHCYL1 proteins were identified using the Pfam-A

family matrix and NCBI conserved domain database.

(TIF)

Figure S2 The phylogenetic tree generated from alignments of

primary sequences of chicken, fish and mammalian AHCYL1

proteins. The amino acid sequences were obtained from each

GenBank (Table 1). The phylogenetic tree was constructed by the

neighbor-joining method using the Geneious program. The

Table 2. Primers used for quantitative RT-PCR.

Gene
Sequence (59R39):
Forward and Reverse

GenBank
Accession No.

Product
Size (bp)

AHCYL1 GCCATTCCAACACGGAGAT NM_001030913.1 179

GATAGAGAGGACAAAGGTGGG

CTSB CTGGAGAAATGTGAATGGCG NM_205371.1 157

CTGGGGACTGAAGACTGGCT

CTSC GCACTACGGCATCACATCCT XM_417207.2 151

AACCTGCTCCCCTGACACAT

CTSS TGCCACGTGCTCCAAGTATG NM_001031345.1 173

CGTGGTTCACCTCCTGTGTG

ERRFI1 AGGAGAGGAGGAGAGTATGG XP_417525.2 125

CTGGAACACAGAAGCAGAAC

PTN CCCTGCTGAACCCAGTGATA XM_416358.2 174

AAAATGCCCCCATCCTCTC

GAPDH CAGAACATCATCCCAGCGTC NM_204305 133

GGCAGGTCAGGTCAACAACA

doi:10.1371/journal.pone.0049204.t002
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numbers next to the branches indicate bootstrap values from 1000

replicates. Bar shows a genetic distance.

(TIF)
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