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Abstract

Background: It has been repeatedly stressed that family-based samples suffer less from genetic heterogeneity and
that association analyses with family-based samples are expected to be powerful for detecting susceptibility loci for
rare disease. Various approaches for rare-variant analysis with family-based samples have been proposed.

Methods: In this report, performances of the existing methods were compared with the simulated data set provided
as part of Genetic Analysis Workshop 19 (GAW19). We considered the rare variant transmission disequilibrium test
(RV-TDT), generalized estimating equations-based kernel association (GEE-KM) test, an extended combined multivariate
and collapsing test for pedigree data (known as Pedigree Combined Multivariate and Collapsing [PedCMC]), gene-level
kernel and burden association tests with disease status for pedigree data (PedGene), and the family-based rare variant
association test (FARVAT).

Results: The results show that PedGene and FARVAT are usually the most efficient, and the optimal test statistic
provided by FARVAT is robust under different disease models. Furthermore, FARVAT was implemented with C++, which
is more computationally faster than other methods.

Conclusions: Considering both statistical and computational efficiency, we conclude that FARVAT is a good choice for
rare-variant analysis with extended families.
Background
It has been reported that rare variants may be functionally
more related to diseases than common variants [1–3].
However, in spite of their importance, individual tests of
rare variants lead to large false-negative findings as
the marginal effect of a rare variant cannot be de-
tected unless very large samples are available. Alterna-
tively, the collapsed rare allele counts or variance
inflations for multiple rare variants in a gene can be
compared between affected and unaffected individuals,
and several burden and variance component methods
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have successfully identified the genetic association of
rare variants [3, 4].
In spite of these successful findings, the analysis

with population-based samples suffers from genetic
heterogeneity. The common-disease rare-variant hy-
pothesis assumes that there are multiple rare causal
variants, and it has often been expected that rare
causal variants may not be shared between affected
individuals. Consequently, rare variant association analysis
with population-based samples might suffer from the
genetic heterogeneity between affected individuals, and
various analysis strategies, such as selecting individuals
with extreme phenotypes, have been proposed to
minimize genetic heterogeneity [5, 6]. In particular, indi-
viduals in a family are genetically more homogeneous, and
affected family members have an increased chance to
share the same causal variants. In this context, the
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importance of family-based samples has been repeatedly
stressed, and several family-based approaches have been
proposed [7–10].
In this report, we compare the performance of existing

rare variant association methods for family-based samples
using Genetic Analysis Workshop 19 (GAW19) simulated
data. We considered 5 different methods for dichotomous
phenotypes: the rare variant transmission disequilibrium
test (RV-TDT) [11], generalized estimating equations
based kernel association (GEE-KM) test [9], an extended
combined multivariate and collapsing test for pedigree
data (Pedigree Combined Multivariate and Collapsing
[PedCMC]) [10], gene-level kernel and burden association
tests with disease status for pedigree data (PedGene) [8],
and the family-based rare variant association test (FAR-
VAT) [12]. The family-based association test (FBAT) [13]
was not included in our power comparison, but its power
is expected to be similar to that of the RV-TDT because
both are based on transmission disequilibrium tests. These
methods were utilized to identify causal genes for hyper-
tension, and results were compared with regard to their
statistical and computational efficiency. Our results
showed that PedGene and FARVAT are usually the most
statistically efficient, and with regards to the computa-
tional efficiency, FARVAT is the most efficient.

Methods
Rare variant transmission disequilibrium test
RV-TDT [11] is an extension of the transmission disequi-
librium test (TDT) to analyze parent–child trio data for
rare-variant associations, which can adequately control for
population admixture. RV-TDT is implemented with C
and can calculate five commonly used methods: 1) TDT-
CMC: extension of Combined Multivariate and Collapsing
(CMC) [14]; 2) TDT-BRV: extension of Burden of Rare
Variants (BRV) [15]; 3) TDT-VT-BRV: extension of Vari-
able Threshold (VT) [3] with BRV coding; 4) TDT-VT-
CMC: extension of VT with CMC coding; 5) TDT-WSS:
extension of Weighted Sum Statistic (WSS) [16].

Generalized estimating equations-based kernel association
Wang et al. [9] extended the optimal sequence kernel
association test (SKAT-O) method [17] to family-
Table 1 Empirical sizes calculated with 7210 genes from 200 replica

α RV-TDT GEE-KM

CMC/BRVVT-BRV/VT-CMC/WSS

0.1 0.0108/0.0130/0/0/0 0.2137

0.05 0.0040/0.0040/0/0/0 0.1050

0.01 0.0009/0.0009/0/0/0 0.0163

0.005 0.0004/0.0004/0/0/0 0.0066

0.001 0/0/0/0/0 0.0006
based samples with generalized estimating equations
(GEEs). GEE-KM can handle both continuous and
discrete phenotypes, and the phenotypic correlation
among family members is taken into account with an
empirical correlation matrix. GEE-KM can adjust for
the effect of covariates, and was implemented in the
gskat R package.

Pedigree combined multivariate and collapsing
PedCMC [10] was proposed as an extension of the com-
bined multivariate and collapsing test [14] for population-
based samples to family-based samples. The genotypes for
rare variants in each gene are coded as either 0 or 1,
according to the presence of rare alleles, and sums of
coded genotypes are compared between affected and
unaffected individuals.

PedGene
Schaid et al. [8] proposed burden and kernel statistics
for extended families, and it was implemented in the
PedGene R package. The kernel statistic is a variance
component test and is more efficient than a burden
test if there are both protective and deleterious variants
in a gene.

Family-based rare variant association test
Choi et al. [12] proposed FARVAT based on the quasi-
likelihood. FARVAT provides burden-type, C-alpha-type
and optimal sequence kernel association test (SKAT-O)–
type statistics. SKAT-O–type statistics are derived by
weighting burden-type and C-alpha-type statistics with
an optimal weight [3]. FARVAT was implemented with
C++. The C-alpha statistic corresponds to the kernel
test in PedGene.

Data
We focused on the sequencing data in a pedigree-based
sample from GAW19. Individuals with systolic blood
pressure (SBP) less than 140 or diastolic blood pressure
(DBP) greater than 90 were assigned to be affected by
hypertension. Genotypes for 959 individuals imputed
from 464 sequenced subjects were used in our analysis,
and we considered rare variants whose minor allele
tes

PedCMC PedGene FARVAT

Kernel/burden C-alpha/burden/SKAT-O

0.0714 0.0895/0.0879 0.0865/0.0888/0.0864

0.0357 0.0490/0.0433 0.0445/0.0434/0.0450

0.0079 0.0141/0.0098 0.0112/0.0092/0.0115

0.0043 0.0086/0.0056 0.0065/0.0050/0.0068

0.0011 0.0029/0.0017 0.0020/0.0013/0.0021



Fig. 1 Quantile–quantile (Q-Q) plots for all methods
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frequencies were less than 0.05. Rare variants were
annotated with high-, moderate-, and low-risk effect
by using SnpEff software [18], and those variants were
used for gene-set analysis. The set file included
58,969 single-nucleotide polymorphisms (SNPs) for
7210 genes, which was used to evaluate the statistical
validity for all methods. We focused on the hyperten-
sion status, and the analysis results from 200 simu-
lated data were compared.

Results and discussion
Empirical sizes
For the evaluation of statistical validity, the empirical
type I error estimates for all methods were calculated at
various significance levels with 200 replicates. We used
Q1 as the phenotype and converted it to binary pheno-
type with prevalence 22.6 %. There were 7210 genes in
each replicate, and thus 71,442,000 p values were utilized
to calculate the empirical sizes. Table 1 shows the empir-
ical type 1 error estimates for all methods at various sig-
nificance levels. Results showed that RV-TDT methods
have obvious deflated type 1 error rates, and GEE-KM
test has an inflated type 1 error rate. The other methods
seem to preserve the nominal significance levels. Figure 1
shows quantile-quantile (Q-Q) plots, and the estimated
genomic inflation factor, λ, for all methods. All results
from 200 replicates were combined and were utilized to
build Q-Q plots. Figure 1 shows that PedCMC, Ped-
Gene, and FARVAT seem to control the type 1 error
rates well, but the estimated inflation factors of C-alpha
Table 2 Empirical power for the top 6 causal genes affecting both s

GENE Proportion of
causal variants

GEE-KM PedCMC P

K

MAP4 10 % 0.005 0.110

50 % 0.075 0.165

NRF1 10 % 0.010 0.000

50 % 0.005 0.020

TNN 10 % 0.045 0.005

50 % 0.085 0.020

LEPR 10 % 0.010 0.075

50 % 0.000 0.010

FLT3 10 % 0.000 0.245

50 % 0.035 0.040

ZNF443 10 % 0.215 0.005

50 % 0.185 0

Mean 10 % 0.048 0.073

50 % 0.064 0.043

Median 10 % 0.010 0.040

50 % 0.055 0.020
and SKAT-O tests from FARVAT show some inflation.
Q-Q plots of results from RV-TDT show obvious defla-
tion, and the extent of deflation is substantial for VT-
BRV, VT-CMC, and WSS. Statistics in RV-TDT han-
dle only trio data, and it may be the main reason of
the deflation. The results for GEE-KM appear to be
invalid. GEE-KM used the sandwich estimators for
the correlation matrix between family members, and
its results can be biased if the number of repeated
measurement is not sufficient [19]. In our case, family
sizes are different, and thus the sandwich estimator was
estimated with a single observation, which may be the
main reason of the invalid results from GEE-KM.

Empirical power
Genes with the top 6 largest effects on both simulated
SBP and DBP were selected to evaluate the empirical
powers for all methods. Rare variants in the selected
genes with causal effects on SBP and DBP are all in-
cluded for each gene-set file, and a certain number of
rare variants with no effect in each gene were randomly
selected to make the proportion of causal variants 10,
25, and 50 %. We found that the results for 25 % are
similar to those for 10 and 50 %, and we only presented
results for 10 and 50 % in Table 2. In addition, the re-
sults for RV-TDT are all zero, and thus are not presented
in Table 2. Table 2 shows that the FARVAT method
seems to be the most efficient and it is followed by
PedGene, though the differences are small. In particular,
the statistical efficiency of burden and C-alpha/kernel
imulated SBP and DBP at the 0.05 significance level

edGene FARVAT

ernel Burden C-alpha Burden SKAT-O

0.065 0.015 0.160 0.055 0.105

0.190 0.485 0.270 0.545 0.435

0.005 0.010 0.015 0.020 0.020

0.115 0.065 0.070 0.015 0.055

0.005 0.005 0.005 0.010 0.005

0.025 0.020 0.025 0.025 0.025

0.005 0.045 0.010 0.055 0.030

0.020 0.010 0.020 0.020 0.010

0.440 0.160 0.505 0.255 0.450

0.525 0.410 0.450 0.395 0.425

0.090 0.090 0.060 0.065 0.050

0.190 0.045 0.125 0.010 0.075

0.102 0.054 0.126 0.077 0.110

0.178 0.173 0.160 0.168 0.171

0.035 0.030 0.038 0.055 0.040

0.153 0.055 0.098 0.023 0.065



Table 3 Summary for all methods

Method Design Phenotype Burden C-alpha SKAT-O Covariate Language Computing time (hour)

RV-TDT Retrospective Binary C 20

GEE-KM Prospective Binary/Continuous √ √ √ R 40

PedCMC Retrospective Binary √ C 1.7

PedGene Retrospective Binary √ √ R 40

FARVAT Retrospective Binary √ √ √ C 1.7
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statistics depends on the unknown disease model, and
the empirical power estimates of the SKAT-O–type
FARVAT are usually close to the most efficient ap-
proaches. Therefore, the robust statistic against unknown
genetic distributions of causal variants is uniquely pro-
vided by FARVAT. Power when 50 % of rare variants are
causal is less than the power when 10 % are causal, which
might be attributed to insufficient number of replicates.
Overall, we can conclude that FARVAT and PedGene are
usually the most efficient methods for the rare-variant
analysis with extended families, and the SKAT-O test
provided by FARVAT is a robust method under different
disease models.
Furthermore, we compared other features of each

method, such as computational time, and the summary
is provided in Table 3. According to Table 3, GEE-KM is
a unique statistic for prospective design, and it compares
the phenotypic distributions for each coded genotype
whereas the other methods compare genetic distribu-
tions between affected and unaffected individuals. GEE-
KM is also a unique approach that can adjust effect of
covariates with a logistic link function. PedGene and
FARVAT use the linear mixed model to adjust the effect
of covariates. Work by Crowder [20, 21] suggests that
the choice of a linear mixed model often work reason-
ably well for dichotomous phenotypes. The SKAT-O–
type statistic, which is robust against the distribution of
genetic effects, is uniquely provided by FARVAT. Last,
in our analyses, we used Intel Xeon CPU E5-2620 0 @
2.00GHz with 10 node and 80 gigabyte memory, and
computational times to complete all analyses is shown.
The computational time difference is related with the
programming language, and software implemented with
C/C++ is usually fast [17]. Table 3 shows that FARVAT
is the most computationally efficient.

Conclusions
In this report, we evaluated several FBATs for detecting
rare variants using GAW19 data. We found that FAR-
VAT and PedGene usually provide similar statistical effi-
ciency, and recommend the SKAT-O–type statistic
provided by FARVAT because its power has been robust
under various disease models. In addition, FARVAT was
implemented with C++, and we found that it was com-
putationally fast. Furthermore, it can load various input
file formats, and provides additional information about
minor allele counts. Therefore, we can conclude that
FARVAT is a good strategy for rare-variant analysis with
extended families in terms of both computational and
statistical efficiency.
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