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P-glycoprotein confers acquired resistance
to 17-DMAG in lung cancers with an ALK
rearrangement
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Abstract

Background: Because anaplastic lymphoma kinase (ALK) is dependent on Hsp90 for protein stability, Hsp90
inhibitors are effective in controlling growth of lung cancer cells with ALK rearrangement. We investigated the
mechanism of acquired resistance to 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), a
geldanamycin analogue Hsp90 inhibitor, in H3122 and H2228 non-small cell lung cancer cell lines with ALK
rearrangement.

Methods: Resistant cell lines (H3122/DR-1, H3122/DR-2 and H2228/DR) were established by repeated exposure to
increasing concentrations of 17-DMAG. Mechanisms for resistance by either NAD(P)H/quinone oxidoreductase 1
(NQO1), previously known as a factor related to 17-DMAG resistance, or P-glycoprotein (P-gp; ABCB1/MDR1) were
queried using RT-PCR, western blot analysis, chemical inhibitors, the MTT cell proliferation/survival assay, and cellular
efflux of rhodamine 123.

Results: The resistant cells showed no cross-resistance to AUY922 or ALK inhibitors, suggesting that ALK dependency
persists in cells with acquired resistance to 17-DMAG. Although expression of NQO1 was decreased in H3122/DR-1 and
H3122/DR-2, NQO1 inhibition by dicumarol did not affect the response of parental cells (H2228 and H3122) to 17-DMAG.
Interestingly, all resistant cells showed the induction of P-gp at the protein and RNA levels, which was associated
with an increased efflux of the P-gp substrate rhodamine 123 (Rho123). Transfection with siRNA directed against
P-gp or treatment with verapamil, an inhibitor of P-gp, restored the sensitivity to the drug in all cells with acquired
resistance to 17-DMAG. Furthermore, we also observed that the growth-inhibitory effect of 17-DMAG was decreased in
A549/PR and H460/PR cells generated to over-express P-gp by long-term exposure to paclitaxel, and these cells
recovered their sensitivity to 17-DMAG through the inhibition of P-gp.

Conclusion: P-gp over-expression is a possible mechanism of acquired resistance to 17-DMAG in cells with ALK
rearrangement.
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Background
Targeted therapy using tyrosine kinase inhibitors against
oncogenic driver mutations in non-small cell lung cancer
(NSCLC) has been developed to enhance selective cytotox-
icity against tumor cells. The echinoderm microtubule-
associated protein-like 4 - anaplastic lymphoma kinase gene
(EML4-ALK) fusion oncoprotein, which arises from an
inversion within chromosome 2p and results in constitutive
kinase activity by dimerization of ALK, represents a major
molecular target in lung cancer [1]. Although, ALK-
rearranged lung cancer accounts for only 3-7 % of NSCLC
since its discovery in 2007, this population could represent
more than 70,000 new cases worldwide annually. Further-
more, the detection rates are higher in the selected sub-
group for genetic screening based on clinical features
commonly associated with ALK-rearrangement, including
never or light smoking history, adenocarcinoma histology,
and wild-type epidermal growth factor receptor (EGFR)
and KRAS status [2].
Crizotinib is an oral-administered multitargeted small

molecule tyrosine kinase inhibitor, which inhibits mesen-
chymal epithelial transition growth factor (c-MET) as
well as ALK phosphorylation that is recommended as a
first-line treatment option for patients with locally ad-
vanced or metastatic NSCLC who have the ALK gene
rearrangement [3]. Crizotinib shows superiority over
standard chemotherapy in progression-free survival (7.7
vs. 3.0 mo) and objective response rate (65 % vs. 20 %)
in patients with previously treated, advanced NSCLC
with ALK rearrangement [4]. However, despite the success-
ful initial response, most patients inevitably encounter the
development of acquired resistance while being treated
with crizotinib [5, 6] similar to EGFR tyrosine kinase inhibi-
tors (TKIs). There are multiple resistance mechanisms such
as various acquired mutations, which hamper drug binding,
oncogenic bypass through EGFR or c-KIT activation [5, 7],
and induction of the epithelial-mesenchymal transition [8].
Ceritinib, a second-generation ALK inhibitor, is effective in
patients resistant to crizotinib as well as crizotinib-naive
patients and is approved by the US Food and Drug Admin-
istration for patients who have tumor progression or are
intolerant of crizotinib [9]. The other second-generation
ALK inhibitors such as CH5424802, AP26113, ASP3026,
X-396, and TSR-011 are undergoing phase I or II clinical
trials [10]. In addition, heat shock protein (HSP) 90 inhibi-
tors are suggested as therapeutic options to overcome
resistance on the basis of anti-tumor activity in preclinical
models of ALK-driven lung cancer [11, 12] and small-scale
clinical trials on ALK-positive lung cancers [13].
Hsp90 is a molecular chaperone that plays an import-

ant role in the modification and stabilization of a variety
of proteins implicated in tumor cell proliferation and
survival. Both EGFR and EML4–ALK fusions, which are
known to be major oncogenic drivers in NSCLC, are
client proteins for Hsp90 [14, 15, 11]. Therefore, Hsp90
could be an alternative therapeutic target instead of direct
kinase inhibition in ALK-driven lung cancer. In vivo and
in vitro studies demonstrated that treatment with Hsp90
inhibitors such as 17-DMAG, ganetespib (STA-9090), or
IPI-504 reduced protein levels of the ALK fusion protein,
enhanced cell death, led to tumor regression, and pro-
longed survival of xenograft models [14, 15, 12]. Antitumor
activity also has been observed in phase I and II clinical tri-
als with ganetespib or IPI-504 [16, 13], and a number of
Hsp90 inhibitors - both as monotherapies and in combin-
ation with ALK tyrosine kinase inhibitors - are undergoing
clinical trials for ALK-positive lung cancer patients.
Although many studies have identified resistance factors

associated with ALK inhibitors, the mechanisms of resist-
ance to Hsp90 inhibitors are poorly understood. Clarifica-
tion of the resistance mechanisms relevant to ALK-positive
lung cancer may be important to find ways to overcome
drug resistance. In this study, we generated resistant cells
by treating ALK-positive cells with increasing concentra-
tions of 17-DMAG, and investigated the mechanism of
their resistance.

Methods
Cell culture and reagents
The human NSCLC cell line H2228, A549 and H460
were purchased from the American Type Culture Collec-
tion (Rockville, MD). The H3122 cell line was a gift
from Adi F. Gazdar (UT Southwestern, Dallas, TX).
Cells were cultured in 10 % fetal bovine serum (FBS)
supplemented with 100 U/mL penicillin and 100 μg/mL
streptomycin (Invitrogen, Carlsbad, CA) at 37 °C in an
atmosphere with 5 % CO2. Crizotinib, TAE-684, 17-
DMAG, AUY-922, and verapamil hydrochloride were
obtained from Selleck Chemicals Co. Ltd (Houston,
TX). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) solution, 3,3’-methylene-bis(4-hydor-
xycoumarin) (dicumarol), and Rho123 were purchased
from Sigma-Aldrich (St. Louis, MO).

Establishment of 17-DMAG or paclitaxel resistance in
NSCLC cells
Cells resistant to 17-DMAG or paclitaxel were developed
by chronic, repeated exposure to each drug. Over a period
of 6 months, cells were continuously exposed to increasing
concentrations of the drug in culture and the surviving cells
were cloned. These cells could survive exposure >50 nM of
17-DMAG or >100 nM of paclitaxel. In all studies, resistant
cells were cultured in drug-free medium for >1 week to
eliminate the effects of 17-DMAG or paclitaxel.

MTT assay
Cells were seeded onto 96-well plates and incubated over-
night, and then treated with their respective agents for an
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additional 3 days. Cell viability was determined using the
previously described MTT-based method [17]. Each assay
consisted of eight replicate wells and was repeated at least
three times. Data were expressed as the percent survival of
the control, which was calculated using absorbance after
correcting for background noise.

Western blot analysis
Whole cell lysates were prepared using EBC lysis buffer
(50 mM Tris–HCl [pH 8.0], 120 mM NaCl, 1 % Triton
X-100, 1 mM EDTA, 1 mM EGTA, 0.3 mM phenyl-
methylsulfonyl fluoride, 0.2 mM sodium orthovanadate,
0.5 % NP-40, and 5 U/mL aprotinin) and centrifuged.
Proteins were separated using SDS-PAGE and trans-
ferred to PVDF membranes (Invitrogen) for western blot
analysis. Membranes were probed with antibodies
against p-ALK (Tyr1604), ALK, p-Akt (Ser473), P-gp (all
from Cell Signaling Technology, Beverly, MA), Akt,
p-Erk (Thr202/Tyr204), Erk, HSF1, Hsp90, Hsp70,
Hsp27, NQO1, and β-actin (all from Santa Cruz Biotech-
nology, Santa Cruz, CA) as the first antibody, and then
membranes were treated with horseradish peroxidase-
conjugated secondary antibody. All membranes were
developed using an enhanced chemiluminescence sys-
tem (Thermo Scientific, Rockford, IL).

Detection of NQO1 polymorphism
DNA purification and detection of the gene polymorph-
ism were performed according to the previously re-
ported methods [18]. Briefly, for the amplification of the
NQO1 gene fragment (230 bp), a pair of forward and re-
verse primers were as follows; 5’-TCCTCAGAGTGG
CATTCTGC-3’ and 5’-TCTCCTCATCCTGTACCTCT-3’.
The amplification was carried out by using AccuPower
TagPCR PreMix (Bioneer Corp., Daejeon, Korea). Each
PCR mixture contained forward and reverse primers (each
0.5 pmoL) and 50 ng of genomic DNA in a final volume of
20 μL. PCR conditions consisted of initial denaturing
at 94 °C for 5 min, 35 amplification cycles (95 °C for
30 s, 58 °C for 30 s, and 72 °C for 30 s), and a final ex-
tension at 72 °C for 5 min. For restriction fragment
length polymorphism (RFLP), the amplified fragments
were digested with Hinf1 (Thermo Scientific) and ana-
lyzed on agarose gel electrophoresis. The wild-type
(Pro187Ser) allele of NQO1 was identified by a 191 bp
band while the homozygous variant (Ser/Ser) and the
heterozygous variant (Pro/Ser) displayed only a 151 bp
band and two bands (191 bp and 151 bp), respectively.

Quantitative reverse transcription-polymerase chain
reaction (RT-PCR)
Total RNA isolation and cDNA synthesis were performed
using the RNA mini-kit protocol (Qiagen Inc., Valencia,
CA) and Accupower RT mix reagent, according to the
manufacturer’s instructions (Bioneer Corp., Daejeon,
Korea). The oligonucleotide sequences for amplification
were as follows: forward primer 5’-AAGCAGTGCTTTC
CATCA-3’ and reverse primer 5’-TCCTGCCTGGAAGTT
TAG-3’ for NQO1; forward primer 5’-AGGCCTATTACC
CCAGCAT-3’ and reverse primer 5’-CGATCTTGGC
GATGTTGATG-3’ for MRP1; forward primer 5’-AATAG
CACCGACTATCCA-3’ and reverse primer 5’-GTGGGA
TAACCCAAGTTG-3’ for MRP2; forward primer
5’-TGAGATCATCAGTGATACTAA-3’ and reverse primer
5’-ATGCGGCTCTTGCGGAG-3’ for MRP3; forward
primer 5’-GTACATTAACATGATCTGGTC-3’ and reverse
primer 5’-CGTTCATCAGCTTGATCCGAT-3’ for MDR1;
forward primer 5’-GCGAGAAGATGACCCAGATC-3’ and
reverse primer 5’-CCAGTGGTACGGCCAGAGG-3’ for
β-actin; forward primer 5’-GAGTCAACGGATTTGG
TCGT-3’ and reverse primer 5’-TTGATTTTGGAGG
GATCTCG-3’ for glyceraldehydes-3-phosphate de-
hydrogenase (GAPDH). PCR cycling conditions were
as follows: 94 °C for 60 s and primer annealing for
60 s, elongation at 72 °C, for a total of 30–35 cycles
(NQO1, MRP1, MRP2, MRP3, MDR1) and 25 cycles
(β-actin, GAPDH), respectively. A final extension was
terminated by a final incubation at 72 °C for 10 min.
Annealing temperatures were 49 °C for MRP2, 55 °C
for β-actin and MDR1, 58 °C for MRP1 and MRP3,
and 60 °C for NQO1 and GAPDH.
Rhodamine 123 efflux assay
Cells were incubated with or without 1 μM Rho123
for 1 h. The cells were then washed twice in ice-cold
medium and harvested (Rho123 accumulation of cells)
or incubated for 3 h in Rho123-free medium. All sam-
ples were kept at 4 °C until cytometric analysis was
performed. Fluorescence of Rho123 was analyzed on a
FACScalibur flow cytometer and processed by Cell
Quest Software (BD Bioscience, San Jose, CA). Rho123
efflux was measured by counting cells in the M1 re-
gion of the plot and calculated as the percentage of
cells in the M1 region of the plot.
Transfection of small interfering RNA
Small interfering RNA (siRNA) oligonucleotides spe-
cific to P-gp and the siRNA control were purchased
from Santa Cruz Biotechnology. Introduction of
siRNA was performed using Lipofectamine 2000 (Invi-
trogen) in accordance with the manufacturer’s instruc-
tions. After transfection, the suppression of P-gp was
determined by western blot analysis. For the MTT
assay, cells were seeded onto 96-well plates after
siRNA transfection, and then treated with the indi-
cated drugs for 72 h.



Kim et al. BMC Cancer  (2015) 15:553 Page 4 of 11
Results
Cells with acquired resistance to 17-DMAG are sensitive
to ALK inhibitors
Several 17-DMAG-resistant sublines, derived from par-
ental H3122 and H2228 cell lines, were established by
stepwise selection using increasing concentrations of 17-
DMAG, as described in the Materials and Methods sec-
tion. The sublines with acquired resistance included two
clones (H3122/DR-1 and H3122/DR-2) from H3122 and
only one clone (H2228/DR) from H2228 because H2228
cells did not form colonies. As shown in Fig. 1, all resist-
ant cells showed approximately 10-fold higher resistance
to 17-DMAG than the parental cells, although H3122/
DR cells acquired a higher resistance than H2228/DR
cells. Interestingly, 17-DMAG-resistant cells showed no
cross-resistance to AUY922, a potent, novel synthetic
resorcinylic isoxazole amide inhibitor of Hsp90, as well
as to ALK inhibitors. These results demonstrate that 17-
DMAG-resistant cells maintain their ALK dependency.
The EML4-ALK fusion oncoprotein has been estab-

lished as a client protein of Hsp90, and Hsp90 inhibitors
were shown to lower ALK levels in cells in culture and
xenografts, leading to growth inhibition [15, 12]. To
evaluate why the resistant cells were sensitive to
AUY922, we examined the modulation of ALK signaling
using western blot analysis. Following AUY922 treat-
ment we observed that the suppression of ALK activity,
Akt, and Erk was similar in both parental and 17-
DMAG-resistant cells (Fig. 2). Unlike that observed in
parental cells, the activity of ALK in all 17-DMAG-
resistant cells was maintained in the presence of 0.1 μM
Fig. 1 Establishment of acquired resistance to 17-DMAG in H3122 and H22
growth inhibition were determined using the MTT assay. Cells were treated
were calculated with data from at least three independent experiments. Ba
sensitive to AUY922 and ALK tyrosine kinase inhibitors such as crizotinib an
17-DMAG, showing that the inhibitory effect of 17-
DMAG on ALK signaling was lower in all resistant cells
than in parental cells. These findings may not result
from the reduction of drug binding affinity because
known drug-resistance mutations within the N-terminal
domain of Hsp90 containing its ATP-binding site were
not detected (data not shown). Taken together, these re-
sults indicate that the acquisition of 17-DMAG resist-
ance may be caused by failing to completely abolish
ALK activity.

NQO1 expression is not associated with acquired
resistance to 17-DMAG
NQO1 expression, induction of other heat shock pro-
teins (Hsp70 and Hsp27), or activation of heat shock
factor 1 (HSF1) have led to resistance to Hsp90 inhibi-
tors [19–22]. We first examined these factors at the
basal protein level. No difference was detected in the
above-mentioned factors between parental and resistant
cells, but NQO1 expression was significantly decreased
in H3122/DR-1 and H3122/DR-2 cells, although its
levels were unaltered in H2228/DR cells (Fig. 3a). NQO1
protein levels are influenced by a single nucleotide poly-
morphism (C609T) in the NQO1 gene [21]. However, we
did not detect any polymorphism in the NQO1 gene in
H3122/DR-1 and H3122/DR-2 cells (Fig. 3b). In
addition, both parental and resistant cells showed a simi-
lar level of NQO1 mRNA expression (Fig. 3c). To further
investigate the relationship between NQO1 and sensitiv-
ity to 17-DMAG, we treated cells with dicumarol, a se-
lective inhibitor of NQO1. Parental cells did not
28 cells. Cell viability and the drug concentrations responsible for 50 %
with 17-DMAG, AUY922, crizotinib, or TAE-684 for 72 h. The values
rs represent standard deviation. Resistant cells to 17-DMAG were still
d TAE-684



Fig. 2 Modulation of ALK signaling in parental and 17-DMAG-resistant cells. Cells were treated with the indicated concentrations of 17-DMAG or
AUY922 for 6 h. The molecules of ALK-related signaling activity were detected by western blot analysis
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display cytotoxicity to dicumarol until the concentra-
tion reached 20 μM (Fig. 3d), and thus cells were
treated with 17-DMAG after dicumarol treatment. All
cells showed an identical sensitivity to 17-DMAG
regardless of dicumarol treatment (Fig. 3e). These re-
sults indicate that reduction of NQO1 expression or
activity is unlikely to be the main resistance mechan-
ism in ALK-positive cells.

The induction of P-gp leads to 17-DMAG resistance
Previous studies have shown that the geldanamycin
(17-AAG) and ansamycin derivatives of Hsp90 inhibitors
are inactive in P-gp/MDR1- and/or MRP1-expressing cell
lines [23–25]. We examined the mRNA and protein level
of the major transporters involved in drug pumping. As
shown in Fig. 4a and b, mRNA levels of multidrug resist-
ance proteins (MRP1-3) showed no difference between par-
ental and resistant cells, but those of P-gp were significantly
increased in all resistant cells. We next used Rho123 as a
surrogate indicator to determine the activity of P-gp. P-gp-
mediated transport, indicated by intracellular decrease in
Rho123 fluorescence, was studied using flow cytometry.
Compared with parental cells (H3122 and H2228), a signifi-
cant decrease in intracellular Rho123 was observed in all
resistant cells, and the mean percentage of Rho123 efflux
(M1 region) from cells was 6.5 % (H3122), 37.3 % (H3122/
DR-1), 49.5 % (H3122/DR-2), 12.5 % (H2228) and 28.1 %
(H2228/DR) (Fig. 4c). To determine whether the induction
of P-gp affected the sensitivity to 17-DMAG, we used an
siRNA and verapamil, a selective inhibitor of P-gp [26, 27],
to inhibit the expression and activity of P-gp, respectively.
siRNA treatment effectively suppressed the P-gp expression
(Fig. 4d), and there were no significant changes in the rate
of proliferation after treatment with 5 μM verapamil in all
cell lines (data not shown). The inhibition of P-gp (by sup-
pression of protein expression or reduction of activity) re-
stored responsiveness to 17-DMAG in all resistant cells
(Fig. 4e). Interestingly, H2228 cells showed a slightly in-
creased sensitivity to 17-DMAG through the inhibition of
P-gp. When resistant cells were pretreated with verapamil,
sensitivity to 17-DMAG was restored, and the inhibition of
ALK signaling by 17-DMAG was equal to that of the par-
ental cells (Fig. 4f).
We also found that the induction of P-gp led to resist-

ance to 17-DMAG in adenocarcinoma and large cell
lung cancer cell lines. Paclitaxel-resistant cells were gen-
erated using A549 and H460 cell lines. These resistant
cells acquired about 100-fold higher resistance to



Fig. 3 Assessment of NQO1 expression in the parental and acquired resistant cells. a Lysates from each cell line were subjected to western blot
analysis. The indicated antibodies were used to evaluate the level of proteins involved in resistance to Hsp90 inhibitors. b NQO1 gene fragments
were amplified (left panel) and digested by Hinf1 endonuclease (right panel) to assess for gene variations. c Total mRNA levels of NQO1 were
measured by quantitative RT-PCR. Cells were treated with the indicated concentrations of dicumarol (d) or a combination of 17-DMAG with
20 μM dicumarol (e). Cell viability was determined using the MTT assay
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paclitaxel than the parental cells (Fig. 5a). Interestingly,
induction of P-gp was observed in all paclitaxel-resistant
cells, although H460/PR cells displayed a higher level of
expression of P-gp than A549/PR cells (Fig. 5b). A cell
survival assay showed that verapamil completely over-
came paclitaxel resistance (Fig. 5c). These results dem-
onstrated that the induction of P-gp plays a significant
role in the acquisition of resistance to paclitaxel. As ex-
pected, paclitaxel-resistant cells showed cross-resistance
to 17-DMAG, and the inhibition of P-gp restored sensitiv-
ity to 17-DMAG in paclitaxel-resistant cells (Fig. 5d-f). As
shown in 17-DMAG-resistant cells, the induction of P-gp
did not affect the sensitivity to AUY922 (Fig. 5g). These
results further confirmed that P-gp expression is not asso-
ciated with the efficacy of AUY922, but plays a major role
in the mechanism of 17-DMAG resistance.
Discussion
In our present study, we established three drug-resistant
cell lines to investigate the mechanisms of acquired re-
sistance to 17-DMAG in lung cancer with ALK re-
arrangement. We show from our findings that induction
of P-gp expression is the main mechanism of resistance.
In addition, we extend this finding to acquired resistance
to paclitaxel.
The compound 17-DMAG is the first water-soluble
analog of 17-AAG, has excellent bioavailability, and is
quantitatively metabolized much less than is 17-AAG
[28]. Thus, the mechanisms of acquired resistance to
these drugs may be similar. NQO1 is a homodimeric
metabolic enzyme that catalyzes the conversion of qui-
nones to hydroquinones and has an important role in
sensitivity to 17-AAG [29, 21]. Loss or low activity of
NQO1, by the reduction of its mRNA or the emergence
of inactivating polymorphisms in the NQO1 gene, leads
to resistance to 17-AAG in pancreatic cancer cells and
glioblastoma cell lines [30, 21]. NQO1 expression is re-
duced in H3122/DR-1 and −2 cells, but not in H2228/
DR cells. Nor do we find any differences in mRNA levels
or DNA polymorphisms in NQO1 between the parental
and resistant cell lines. In addition, there are no signifi-
cant changes in cell survival after treatment of the par-
ental cells with dicumarol. These results suggest that
NQO1 depletion is an unlikely resistance mechanism to
17-DMAG in cells with ALK rearrangement.
Hsp90 is a chaperone of client proteins relevant in

NSCLC pathogenesis, including ALK and EGFR [31].
The inhibition of Hsp90 simultaneously disrupts these
oncogenic signaling pathways, and consequently, cancer
cell proliferation is inhibited by the induction of apop-
tosis or cell cycle arrest. Hsp90 inhibitors may be used



Fig. 4 Induction of P-gp/MDR1 expression in 17-DMAG-resistant cells. a Detection of MRPs and MDR1 mRNA was performed by quantitative
RT-PCR. The sizes of the PCR products were 525 bp (MRP1), 1254 bp (MRP2), 828 bp (MRP3), 157 bp (MDR1), and 230 bp (GAPDH). b P-gp expression was
assessed using western blot analysis. c Cells were treated with 1 μM Rho123 for 1 h (gray peak) and then incubated with Rho123-free media for 3 h (red
blank peak). Rho123 fluorescence was analyzed by flow cytometry. Rho123 efflux was measured by counting cells at the left of the dashed line of the plot
(M1 region). d Control and P-gp siRNAs (100 nM) were introduced into parental or resistant cells, and P-gp silencing was confirmed by
western blot analysis. e Cells were treated with the indicated concentrations of 17-DMAG after transfection of P-gp siRNA or pretreatment
with 5 μM verapamil. Cell viability was measured 72 h later using the MTT assay. f Cells were pretreated with or without 5 μM verapamil
and then treated with the indicated concentrations of 17-DMAG for 6 h. The proteins involved in ALK-related signaling were detected by
western blot analysis
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Fig. 5 Induction of P-gp/MDR1 expression in paclitaxel-resistant cells. a The response to paclitaxel was assessed as described in Fig. 1. b P-gp
expression was analyzed using western blot analysis. c Cells were pretreated with or without 5 μM verapamil and then treated with the indicated
concentrations of paclitaxel. After 72 h, cell viability was measured using the MTT assay. d Control or P-gp siRNAs (100 nM) were introduced into
resistant cells, and P-gp silencing was confirmed by western blot analysis. e, f and g Cells were treated with the indicated concentrations of
17-DMAG or AUY922 after transfection of P-gp siRNA or pretreatment with 5 μM verapamil. Cell viability was measured 72 h later using the MTT assay
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to combat resistance to tyrosine kinase inhibitors
(EGFR-TKIs and ALK inhibitors) regardless of secondary
mutations [32, 12]. Hsp90 inhibitors inhibit the down-
stream effector pathways by controlling ALK through its
degradation. We also observe that Hsp90 inhibitors
sufficiently suppress the ALK signaling pathway in par-
ental cells, but all 17-DMAG-resistant cells require
higher concentrations of 17-DMAG to inhibit these
pathways. Interestingly, resistant cells do not show
cross-resistance to a different kind of Hsp90 inhibitor,
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AUY922, or to ALK tyrosine kinase inhibitors, crizotinib
and TAE-684. These results imply that the resistant cells
are still dependent on ALK signaling, and that acquisi-
tion of resistance to 17-DMAG may be caused by low
intracellular 17-DMAG concentrations.
P-glycoprotein and multidrug resistance proteins (MRPs),

ATP-binding cassette (ABC)-superfamily multidrug ef-
flux pumps are responsible for some cases of chemore-
sistance. Expression of these pumps reduces cellular
accumulation of cytostatic agents due to active efflux of
these substrates [33–36]. The mRNA, protein, and activity
of only one MRP family member P-gp is significantly
induced in all 17-DMAG-resistant cells. Although verap-
amil pretreatment restores sensitivity to 17-DMAG in all
resistant cells, a P-gp-specific siRNA was also used because
verapamil can inhibit all MRP drug efflux pump proteins
including P-gp. Similar to resistant cells, the inhibition of
P-gp in the parental line H2228 enhances the sensitivity of
cells to 17-DMAG, but not in the H3122 line. The baseline
P-gp expression in the H2228 line may contribute to its
slight resistance to 17-DMAG compared to H3122 cells.
Therefore, we suggest that the induction of P-gp is associ-
ated with the primary or acquired resistance to 17-DMAG
in cells with ALK rearrangement.
Induction of P-gp also leads to 17-DMAG resist-

ance in other resistant cells. A number of drugs, such
as taxol, doxorubicin, vincristine, VP-16, and cis-
diamminedichloroplatinum (II), increase P-gp expres-
sion in lung cancer cell lines and animal models after
chronic exposure [37–40]. Consistent with previous
studies, we also detected induction of P-gp in cells
with acquired resistance to paclitaxel. These resistant
cells show cross-resistance to 17-DMAG, whilst the
inhibition of P-gp restores the sensitivity to paclitaxel
and 17-DMAG. Clinical evaluation of Hsp90 inhibi-
tors, as single agents and in combination with various
chemotherapy-agents, is currently in progress. Our
findings suggest that P-gp expression should be con-
sidered in preclinical and clinical evaluation.
Overexpression of P-gp that recognizes a wide variety

of chemotherapeutic agents and pumps them out of the
cell is one of the principal causes of treatment failure in
cancer. Diverse attempts are being made to overcome
resistance via P-gp overexpression, although significant
side effects remain a concern [41]. The four parental cell
lines including H3122, H2228, A549, and H460 and cell
lines resistant to 17-DMAG or paclitaxel showed persist-
ent sensitivity to AUY922, a novel non-geldanamycin
Hsp90 inhibitor. Consistent with our current results,
previous studies have shown that AUY922 has effective-
ness independent of P-gp expression [42, 21]. Thus, the
treatment with new Hsp90 inhibitors may help over-
come the acquired resistance to 17-DMAG caused by
P-gp expression. A second alternative way to overcome
resistance is through combination therapy; many drugs
are known to inhibit the activity of P-gp [43–45]. We
find that combined treatment with 17-DMAG and rapa-
mycin overcomes drug resistance in 17-DMAG-resistant
cells (Additional file 1). Previous studies have demon-
strated rapamycin as a P-gp inhibitor [46, 47], and rapa-
mycin is already approved for clinical use. Other types of
Hsp90 inhibitors or a combination with additional thera-
peutic drugs, such as new P-gp inhibitors, are candidate
strategies to overcome 17-DMAG-resistance caused by
P-gp expression.

Conclusions
In summary, the induction of P-gp expression may con-
tribute to the acquired resistance to 17-DMAG in lung
cancer cells with an ALK rearrangement. This resistance
may be overcome by using a new Hsp90 inhibitor that is
independent of P-gp expression or through a combined
treatment with 17-DMAG and P-gp inhibitors.

Additional file

Additional file 1: Effects of treatment with a combination of 17-DMAG
and rapamycin on parental and 17-DMAG-resistant cells. Cells
were treated with the indicated concentrations of 17-DMAG, rapamycin,
or combination of two drugs for 72 h. Cell viability was measured 72 h
later using the MTT assay. (TIFF 185 kb)
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