Differentiability of the Value Function:
A New Characterization

Taesung Kim*

This paper characterizes the differentiability of the value
function. We provide a characterization of the necessary and suffi-
cient conditions for the differentiability of the value function. This
generalizes the well-known differentiability result of Benveniste and
Scheinkman (1979) which shows that the concavity restriction on
the return function and the convex graph restriction on the con-
straint correspondence are sufficient to prove the differentiability.
In addition to generalization, our proof is quite simple and different °
from that of Benveniste and Scheinkman in not using the concavity
assumptions.

We also show the differentiability of the indirect function in the
envelope theorem under quite weak assumptions. This generalizes
the established results regarding the differentiability of the support
function and that of the cost function. (JEL Classification: C60)

1. Introduction

In working with dynamic models of economic problems the method of
dynamic programming, introduced by R. Bellman, has been widely
used. By defining a value function or indirect function properly, this
method reduces an optimization problem of an arbitrary (possibly infi-
nite] number of periods to a simple problem of two periods without
affecting the optimal solution of the problem. In understanding certain
basic properties of the optimal solution, establishing the differentiabili-
ty of the value function turned out to be very useful.

It has been shown by Benveniste and Scheinkman (1979) that under
fairly general assumptions the value function is once differentiable.
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Since then several authors have established twice differentiability of
the value function with additional assumptions (see Araujo and
Scheinkman 1977; Boldrin and Montrucchio 1989; Santos 1991).
Specifically, Benveniste and Scheinkman (1979) showed that the con-
cave return function and the constraint correspondence with convex
graph are sufficient conditions for the differentiability of the value
function and their proof uses Rockafellar's lemma (see Rockafellar
1970, Theorem 25.1, p. 242) about the properties of the subgradient of
concave function. However, the complete characterization of once dif-
ferentiability of the value function is still unknown. So, the main pur-
pose of this note is to present the necessary and sufficient condition of
once differentiability of the value function, therefore generalizing the
result of Benveniste and Scheinkman.

In section II, we completely characterize the differentiability of the
value function (Theorem 1). As one corollary to our characterization, we
show that if the optimal solution is unique, then the value function is
differentiable (Corollary 1). Benveniste and Scheinkman’s differentiabil-
ity result turns out to be another corollary to our characterization the-
orem (Theorem 2).

Since the differentiability of value function in dynamic programming
is basically of the same nature as that of indirect function in the enve-
lope theorem, in section III we generalize the differentiability result of
indirect function in the envelope theorem. This result also implies the
established results regrading the differentiability of the support func-
tion. In getting the derivative of indirect function with respect to the
parameter, the standard envelope theorem requires twice differentiabil-
ity and appropriate rank condition on the objective function since
proofs usually rely on the implicit function theorem. Instead, we give
necessary and sufficient conditions for the differentiability of the indi-
rect function under once differentiability of the objective function
(Theorem 3). We also give an example of nondifferentiable indirect func-
tion not satisfying our condition.

II. Main Results

We begin by stating a standard deterministic model of dynamic pro-
gramming. A detailed exposition of this model can be found in Harris
(1987) and Stokey, Lucas and Prescott (1989). A social planner is inter-
ested in choosing {x,}"., which maximizes
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iﬁtF(xr-xm) (1)
(=0

subject to x,,, € IN'lx). t=0,1, 2, ...,
x, € X given, < (0, 1),

where X C R, the real-valued function F: X x X — R is called the
return function, I': X — — X, the constraint correspondence, and S, the
discount factor. Corresponding to the problem (1), we have a functional
equation of the form

v(x)= su(p[F(x.y)+ﬁu(y)] for all x e X. (2)
yel(x)

This functional equation is called Bellman equation or the Principle of
Optimality. It is well known that the solution v to the problem (2), eval-
uated at x,, gives the maximum value in (1) when the initial state is x,
and that a sequence {x,,|; attains the maximum value in (1) if and
only if it satisfies

v(x) = Flx. x,,) + Bulx,)). t=0. 1,2, ..
See, for instance, Stokey, Lucas and Prescott {1989). Let
gl =y € T(): vl = Flx, y) + Buly). {3)
and let
D={x y € X x X:yec .

where g is called the optimal policy correspondence. We first introduce
the conditions on I' and F which are often assumed in the dynamic
programming literature.

Condition 1
The constraint correspondence I' X — -» X is nonempty, compact-val-
ued and continuous.

Condition 2
The return function F: D — R is continuous on D and continuously dif-
ferentiable in x.

Theorem 1 below shows that under some regularity conditions. the
following condition is necessary and sufficient for the differentiability of
the value function.
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Sondition 38
F F , , oF
s x y = ox, (x, y’) for all y, y” € g{x. So, we write it as ox, (x. g(x9).

T

If the optimal policy correspondence g : X — — X is a singleton-val-
ued function, then Condition 3 is automatically satisfied. In Theorem 2
below we also show that Condition 3 is satisfied if F is concave in (x, y)
and I' has a convex graph. We can now state our main characterization
theorem.

Theorem 1

Let T and F satisfy Conditions 1, 2, and let v and g satisfy (2) and (3).
Suppose that x, € int X and g(x,)) C int I'(x,). Then if Condition 3 holds,
v is continuously differentiable at x, with

Jdv

9 ()= (x,.g(x,)) for i=1,2,...n.
ax; ax;

On the other hand, if v is differentiable, then Condition 3 is satisfied.

Proaf: To show that Condition 3 is sufficient for the continuous differ-
entiability of v, let h; = (1, ..., 0, h, O, ..., 0) and y, € g(x). Since y, €
int T'(xy) and T" is continuous, it follows that y, € int ['(x, + h) for h suf-
ficiently small. Therefore, for sufficiently small h,

vix, + h) - vlx,)
= {Flx, + hy, yo) + Bulyl} - (Flx, Yo + Buly
(by the definition of y, and the fact the y, € I'(x, + h)) (4)
= Flx, + h;, y,) - Flx,, Yo

JF .
—(x,y,)-h,
ax; (%)

where x is between x, and x, + h; by the mean value theorem. On the
other hand choose y, such that y, € glx, + h). Since g is an upper
hemi-continuous correspondence by Berge’s maximum theorem, one
can choose §y € glx,) such that y, — y as h — 0. Since y & int I'(x,),
yy € int I(x,) for sufficiently small h. Therefore, for sufficiently small h,

vix, + h) - vix)
S ARX, + hy yn) + Bulynt - (Fx, yp) + Bulyn))
(by the definition of y, and the fact the y,, € int I'(x,)) (4)
Fx, + hy, yp) — Flx,. yp)

JoF .
S;T(X.yh]-h.
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where x is between X, and x, + h; by the mean value theorem. It follows
from (4) and (5) that for h positive,
< v(x, +h;)-v(x,) < JF

~—()?,yh). (6)

LLNFI
Ix; Yo h ox,;

For h negative, inequality opposite to (6) holds. Note that X, X — x, and
Yn— § as h— 0. Since y,, y € g(x,),

F
ox;

F

ox. (x,.g(x,)).

9 (xot) =2 (x,.5) =
ox;

by Condition 3. Therefore by letting h — O it follows from (6) that

oF

ox, {x,.9(x,)).

dv
—(x =
3xi( o)
To show that Condition 3 is necessary for the differentiability of v, let
Y, € glx,). Define G: R" — Ras

G = Flx, yJ) + Polyy) — v(4.

Then for all x near x,, G(» < 0 and G(x) = O since y, € gix,). Since v
and F is differentiable in x, so is G. Therefore,

JG

JF dv
22 (x,) =2 (x, ) - 22 (x,) =O.
ax; (o) x; (oY) Ix; (x,)

Since this holds for all y, € gl(x,), Condition 3 holds
Q.E.D.

Notice that if g is singleton-valued, then Condition 3 is automatically
satisfied. Therefore, the unique optimal policy for each state guaran-
tees the differentiability of the value function.

Corollary 1

Let I' and F satisfy Conditions 1 and 2, and let v and g satisfy (2) and
(3). Assume also that g is a singleton-valued function. If x, € int X and
glx) C int I'(x,), then v is continuously differentiable at x, with

v
ox

(xo):a—F(xo,g(xo)) fori=12,...,n.
ox;

Benveniste and Scheinkman (1979) assumed the the graph of T is
convex and F is concave in (x, y) to prove the differentiability of the
value function. However, the following theorem shows that convex
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graph of I' and concavity of F imply Condition 3. Therefore, our result
generalizes that of Benveniste and Scheinkman.

Theorem 2

Let I' and F satisfy Conditions 1, 2 and assume that

1) I'' X — — X has a convex graph, and

2) F: D — Ris concave.

Then Condition 3 is satisfied, therefore v is continuously differentiable
at x, € int X with g(x,) C int T'(x,).

Proof: Let h,= (0, ..., 0, h, 0, ..., 0). Since F is concave and the graph of
I' is convex, it is easy to see that the value function v is concave.
Therefore, v possesses both left- and right-hand derivatives (see e.g.,
Rockafellar 1970, Theorem 1) and

m —lox, +h)-vix, )12 Hm L[olx, +h,)-vix,)] )
h<0h—0 h h>0h—0 h

On the other hand, let y, € g(x,). Since y, € int I'(x,)) and T is continu-
ous, it follows that y, € int I'(x, + h) for h sufficiently small. So, for suf-
ficiently small h,

vlx, + h) - v(x)

2 (Flx, + hy, yJ + Bulyl - 1Flxo, yo) + Bulyo}
(by the definition of y, and the fact that y, € I'(x, + h))

= Flx, + h;, yo) - Flx,, y,)

Therefore, it follows that

1 JF
2 - > o (8)
h)gﬂo n v(x, +h;)-vlx,)12 yféfﬁl ox, (x5.4)
and lim -1—[v(x0 +h,)-v(x,)l< inf a—F(xo.y]. 9
h<0ho0 h yeglx,) 3Xl.

It follows from (7), (8) and (9) that

oF JF
sup —I(x,.y}< inf —I(x,.y).
ye;?x‘?,;axi( oY) yey(xa)(?x(( y)

Therefore., JF / dx; (x,, Y = IF / dx, (x,, y') forall y, y” € g(x,).
Q.E.D.

We can apply the similar idea to generalizing the differentiability of
the indirect function in the envelop theorem, which will be discussed in
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the next section.

II1. Applications

Consider a parameterized maximization problem of choosing z:

maximize F(p, 2)
subject to z € Z,

where z C R"and p € P C R™ For each p, let
v(p)= su?F(p.Z) (10)
and let

glp) =1z Z: vip) = FAp. 2)}.

Now we can state the generalized version of the envelope theorem.

Theorem 3

Suppose that the continuous function F: P x Z — R is continuously
differentiable in z. Let p, € int P. Then if JF /dp, (p,. 2) is same for all z
€ g(p,). the indirect function v is continuously differentiable at p, with

)y OF

ap, Po)=

, ap. (p,.g{p,)) for i=1.2,...m.

On the other hand, if vis differentiable at p,. then JF /dp, (p,. 2) is
same for all z € g(p,).

Proaof: Proof is essentially the same as that in Theorem 1 if we replace
x with p, y with z, T'(x) with Z for all x, and equation (2} with equation
(10) for the definition of v,.

Q.E.D.

Remark 1

1) Notice that v is continuously differentiable if g is singleton-valued.

2) The standard version of envelope theorem assumes twice differentia-
bility of the objective function and the appropriate rank condition on
the first-order condition since proofs usually rely on the implicit func-
tion theorem in getting the derivative of indirect function v. However,
Theorem 3 only assumes once differentiability of the objective function
in parameter p since our proof does not rely on the implicit function
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theorem.

The continuous differentiability of the support function (see, Roc-
kafellar 1970, Theorem 2, p. 243 or Richter 1987) and that of the cost
function in input prices (see, Saijo 1983) can be derived as a corollary
of the above envelope theorem. For, these are the cases in which the
objective function F{p, z) of Theorem 3 has the form of p - z.

Corollary 2

Suppose that f: R, — R is upper semi-continuous, strictly quasi-con-
cave production function. Then for each y, the cost function o -, y):
R, — R, defined by

c(p,y):ingpz, where Z ={x e R}: f(x)2y),

is continuously differentiable at p, € R, with

oc
op;

i

(p,.y}=g:(p,.Y),

where glp, y) = {z € Z: dp. y) = pzl.

Proof: Since fis strictly quasi-concave, g( - , y) is single-valued for each
y. Since {x € R}: fid > y} is bounded from below and closed by upper
semicontinuity of f, for each y g( - . y} is a nonempty-valued, continu-
ous function by the maximum theorem. If we let Z={x € R: flX) > y)
and Flp, 2) = -pz, then dp, y) = -sup,cz F(p. 2). Therefore, the conclu-
sion of the corollary follows from Theorem 3.

Q.E.D.

However, the next example shows that if JF / dp,(p. 2} is not same for
all z € g(p), indirect function v is not necessarily differentiable.

Example 1
Let F: R X R— Rbe

—(z+2)? ifz<-1
F(p.z)= -%pz3+22+%pz+%p—2 if -1<z<1
-(z-2)%+p ifz>1

Then Fis continuously differentiable. It is easy to show that
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-2 if p<O
g(p)=41{-2,2} ifp=0
2 if p>0
and
(p) o if p<O
13} =
p p ifp=20
Note that

JF JF
—(0,2)# —(0,-2
8p( )# 8p( )

and v is not differentiable at O.
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