Panel Data Models with Temporal
Effects of Individual Characteristics

Young Hoon Lee*

In most of the panel data literature, the role of individual-variant
intercepts is to control for unobservable individual specific effects.
The unobservables which are represented by the individual effect
should have influences on the dependent variable that are constant
over time but varying over individuals. The primary focus of this
study is on the construction of a regression model that allows time-
varying effects of individual specific components on the dependent
variable.

We discuss fixed effects and random effects and derive the esti-
mators that are analogous to the within and GLS estimators of the
standard panel data model. We derive the asymptotic properties of
the generalized within and GLS estimators. Furthermore, we con-
struct test statistics for the hypothesis that the individual effect has
a constant coefficient over time (JEL Classification; C23).

I. Introduction

Panel data are data that have both a cross-sectional and a time-
series dimmension. Panel data are potentially useful for several rea-
sons. At the most basic level, observing each individual repeatedly is a
way of increasing the total number of observations. Also, some param-
eters may be estimated more readily from cross-sectional information
and others from time-series information. For example, in budget stud-
ies it is often argued that prices display little cross-sectional variation,
so that precise estimation of price elasticities requires time-series
information, while real incomes display little temporal variation, so
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that precise estimation of income elasticities requires cross-sectional
information. Panel data contain both types of information and there-
fore may be very useful.

However, in this study we will be concerned specifically with tech-
niques that are useful when N is large and T is small. Such cases are
common in labor economics as well as consumption and investment
studies, since many longitudinal data sets contain thousands of indi-
viduals but only a few time periods of data per individual. In such
cases the usual motivation for the use of panel data is to control for
possible biases due to unobservable individual characteristics. For
example, Mundlak (1961) considered a Cobb-Douglas production func-
tion for farms, and was concerned about possible biases due to differ-
ences across farms in soil quality, an unobserved variable that affects
output and may be correlated with the inputs. More recently, many
labor economists have estimated wage equations and have been con-
cerned with possible biases due to differences across individuals in
unobserved ability.

The existing panel] data literature has dealt extensively with the prob-
lem of avoiding biases due to unobservables like soil quality or ability,
by assuming the unobservables to be time invariant. The standard
model (henceforth, called ‘the simple model) that is used is the regres-
sion model with individual effects;

Yy=XB+o+¢& i=1...N, t=1,..T (1)

Here Y, is the dependent variable; X, is a K x 1 vector of explanatory
variables; § is a Kx 1 vector of parameters (regression coefficients); o;
is the unobserved individual effect, which is time invariant (does not
depend on #); and g, is the random error. The errors ¢, are assumed to
be independently and identically distributed (i.i.d.) with E{g,) = O and
var (g = 02.

In this model the unobserved individual characteristics represented
by the individual effect ¢ are assumed to have the same effect on the
dependent variable Y, in all time periods. The motivation for this study
is that this assumption is unnecessarily strong, and we will relax it.
Specifically, we will allow the effect of ¢; on Y; to vary over time, though
we will require that the temporal pattern of the effect of o; on Y; must
be the same for all individuals. On the other point of view, we may con-
sider ; as a response of each individual to time-varying changes (for
example, macro shocks). Specially, we will consider the model (hence-
forth, called ‘the general model’).
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Yi= X+ 8+ &
=XB+ 680, +& i=1,.,N, t=1,..T 2

where §; = 8,a;.

The use of this general model could improve empirical studies in sev-
eral area. In the stochastic frontier estimation, Schmidt and Sickles
(1984) applied the simple panel data model (without 6, in (2] so that
equal to (1)) in which interfirm differences in time-invariant individual
effects were interpreted as measures of technical inefficiency. However,
they needed the assumption that technical inefficiency is time-invari-
ant. A main focus in this area after Schmidt and Sickles has been on
how to relax this strong assumption. Kumbhakar (1990) and Cornwell,
Schmidt and Sickles (1990) have proposed panel data models that
allow technical inefficiency to change over time, but rather structured
ways. Kumbhakar specified a model in which &, = n{f) o; where r{t) = [1
+ exp (bt + e2)! (a specific function of time). Cornwell, Schmidt, and
Sickles also suggested the specific case that ¢ is quadratic in time, so
that §; = o + @,y t + 0 2. The use of this general panel data model (eq
(2)) in a stochastic frontier estimation allows more flexibility in the way
that technical inefficiency changes over time and this is a fairly direct
relaxation of Kumbhakar's model and the model of Cornwell, Schmidt
and Sickles as well as the model of Schmidt and Sickles. The general
model includes Kumbhakar's model as a special case when 6, = ).
Models with multiple components (§; = X6, o) are also identified and
could be estimated(see Appendix B). With 1G =3, the model of Cornwell,
Schmidt, and Sickles corresponds to 6, = 1, 8, = t, and 6, = 2 for all t
and the simple model obviously corresponds to 6, = 1 for all t. All three
models are special cases of this general model and are testable.

Panel data models are widely used in studying liquidity constraints of
consumption and corporate investment. Zeldes (1989) and Whited
(1992) tested liquidity constraints of consumption and of corporate
investment, respectively, both by using Euler’s equation. Whited
argued that macro shocks, which are identical for all individuals but
time-variant, could influence on the behavior of investment. He derived
the Euler's equations of investment with macro shock effects (macro
shock effects = 6, without ¢, in eq(2)).

An assumption are imposed on his model that each individual’s
response to a macro shock is equal to one another. This assumption
may not be true in the real world, but could be relaxed simply by using
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the general panel data model since 6, represents a macro shock at t
and ¢; represents the individuals i’s response to a macro shock. We
may also test the hypothesis that responses to a macro shock are iden-
tical for all individual. The model of Zeldes can also be improved by the
same way as Whited in studying liquidity constraint of consumption.

This model requires a normalization, and we set 8, = 1. Compared to
the model (1), the new model introduces the (T - 1) new parameters 6,,
03,...,01 to represent the effect of ¢; on Yj for t =2, 3,...,T relative to the
effect of o; on Y.

As a matter of notation, let Y, = (Y}, Yp,....YQ) . & = (&4, €g...-.65" and
X, = (X1, X5..... X3}, each representing the T observations for person i
Then we can write equation (2) as

Y=XB+&éo+¢ (=1,..,N (3)

where £=(1,6), 8= (6,, 6,...,6)".

The simple model (1) thus corresponds to the case that 8, = ;... = 6;
= 1, or equivalently that &or &) is a vector of ones. As we shall see, this
is a testable proposition in our model.

The model we consider can also be compared to the two-way analysis
of covariance model that includes both individual and time effects.
That model can be written as

Yy=XpB+o+6,+¢ i=1,..N, t=1,.,T 4)

The number of parameters in (4) is exactly the same as in our model
(3), but the models are different. Our interpretation of (4) is that it is
suitable in cases in which there are relevant unobservable variables
that vary over time but not over individuals; it does not handle the case
that our model is designed for, in which the effects of unobservable
individual characteristics vary over time. Compared to the two-way
analysis of covariance model (4), our model (3) is more difficult to esti-
mate, because it is nonlinear. However, unlike the analysis of covari-
ance model, our model allows for inclusion of observables that are time
invariant or invariant over individuals, a considerable advantage in
some applications.

We can also model the case of several possible interactions between
time-invariant and individually invariant parameters, as in the model.

G
Y,=XB+ Ylou+e i=1,.., N. (5)
g=1

(4) is nested in (5) with G=2. In the area of liquidity constraints of
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firm, (4) are well used as an Euler's equation. ¢, and 6, represents
firm's characteristics and macro shocks, respectively. However, this
model assumes that each firm responses identically to a macro shock.
{5) makes (4) be more realistic since a,8,; means the firms i's response
(o) to a macro shock (6,).

The plan of this study is as follows. Section II discusses the fixed
effect model in which the parameters ¢, are treated as fixed. We derive
a generalized within estimator, and we show its consistency and asym-
ptotic distribution. Section III discusses the random effects model in
which the individual effects o, are treated as random. We derive the
appropriate GLS estimator and prove that it is more efficient than the
within estimator. Section IV considers tests of the hypothesis that & is
a vector of ones, so that our model reduces to the simple panel data
model. We present Lagrange Multiplier(LM), Likelihood ratio(LR) and
Wald statistics for this hypothesis. Finally, section V gives our conclud-
ing remarks.

II. Fixed Effects

We may rewrite (3) with all NT observations as

Y=XB + ()R8 + €. 6)

If (6) is the true relationship and £+e; where ey is a Tx 1 vector of
ones, the estimates of § from the simple model are not unbiased, since

E(B,)=B+[X(Iy ® M, )XI' X"(Iy ® M, NIy ® £)ax # B.

Thus we expect the simple within estimates to be biased for the coef-
ficients of those variables whose temporal variation is correlated with
the temporal variation in the effect of @ on Y.

The generalization of the within transformation is to premultiply (6)
by the idempotent matrix (Iy®M,) that is defined as M;=IL-P;and P; =
(-t

That is, the transformed regression model is expressed by

UNMYY = (NOMIXB + (IN®Me, @)
since M = 0. The individual effects are deleted by taking deviations
1A distributional assumption for g,(g,: 1.i.d. NO, o2}} is necessary since the

fourth moment of &, appears in the calculation of the covariance matrix of the
estimator.



6 SEOUL JOURNAL OF ECONOMICS

from individual weighted means (P;Y and P:X) instead of taking differ-
ences from individual means in the simple model.

We may not apply OLS to (7) since M;Y; and M.X, are not observables;
M;Y; and M;X; include the parameter vector &. Instead, we construct an
objective function which will be minimized with respect to g and 6. This
objective function is simply the error sum of squares of (7):

N
CSSE = 3 (Y,- X M{Y,~ XJ). ®)
i=1
The reason that we denote this objective function CSSE is that it is
the same as the (concentrated) error sum of squares of (6). By taking
derivatives of (8) with respect to 8 and 6 the first order conditions are
obtained as

9CSSE _ 55 XM, (Y, - X,8)=0 ©)
ap i=1
N
QC;OSE =- é [g(Y( - XBYE(Y, - X, B)
= (10)
N
- 2(Y; - Xtﬁ)'P; {v;- Xiﬂ)e:! =0
i=1
where Y, = (Yp, Ya.....YD , X, = (%, X5..... X'«
The solutions of the first order conditions are the following;
B = (X'(Iy ® M, )X)'X'(Iy ® M, )Y (1)

éw =(1,6,,) is an eigenvector of ﬁm - Xle Ny, - X, Bw),. (12)
i=1

Note 1
For a matrix A, suppose that 4 is an eigenvalue and x is the corre-
sponding eigenvector. Then, Ax = Axand x'Ax = A.

Lemma 1
&, is the eigenvector corresponding to the largest eigenvalue.

Proaof:

CSSE = 3(Y, - X B, Y Mg (Y, - X,,,)
i=1 (13)

- - N - -
- t_ﬁlm—xiﬂw)'m—xiﬁw)—g,l—é-ég Y- XBu WY~ X B Ve
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By Note 1, (13) can be rewritten as
N - - -
CSSE = Y. (Y, - X B, )Y, ~ X,B,) ~ Ay (14)
i=1

where ﬁw is the estimated eigenvalue. We pick the largest. eigenvalue
since we wish to minimize CSSE.

Q.E.D.

The solutions for Bw and bw are not closed forms of the data, since
the solution for 8, depends on bw and vice versa. However, these can be
calculated by iteration starting with any initial value of B,. The esti-
mate f, from the simple model is a good candidate for the initial value.

For the proof of consistency and asymptotic normality of 8, and bw,
we need two theorems provided by Amemiya (1985).2

Theorem 1
Make the Assumptions:

(A) The parameter space © is a compact subset of the Euclidean K-
space (RK), and the true value 6, is in ®

(B) Oy, 6) is continuous in 80 for all y and is a measurable func-
tion of y for all 6©

(C) N1Q\(6) converges to a nonstochastic function Q(6) in probability
uniformly in 60 as N goes to « and Q(6) attains an unique global
maximum at 6.

Define 6y as a value that satisfies

QN(éN) = %[%XQN(B)-

Then év converges to 6, in probability.

Theorem 2
Assumé:
(o) im (1/N) £X,X, exists and is finite and nonsingular.
(@ lim (1/N) o exists and is finite and nonzero.
Then, B, and £, which satisfy

CSSE(,.£,) = Min 2 (Y, - X8 My (Y, - X,f)

2See Amemiya (1985), p. 105-14.
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are consistent.
Proof: The proof that the assumptions (A) and (B) in Theorem 1 hold in
this model is omitted since it is trivial. With () and (8}, it is shown in
Appendix A that
1
P anCSSE(ﬁ, é) = (ﬁo - ﬂ)’Qx (ﬁo - ﬂ) + Qag(’)MgéO

+2(By - BY Qxabo +(T -1)0?

(15)

N
where Q, = }1131 % Y XM X,
o i=1

Q =limlg,a2
a Ni:l 0i

N—oeo

Oxo = }}m L EX{Mgaoz-
el i=1

Define a compact parameter space © by § < C,; and & & < C, where
C, and C, are large positive constants and assume (f, &) is an interi-
or point of ©. Then N-! CSSE (8, § converges to (15) uniformly in prob-
ability.

Now, we need show that plim (1/N) CSSE (B, & attains an unique
global minimum at {8, &y). (15) can be written as

1 _ _l_N _ ,
panCSSE(ﬂ'é)_EglNEi[X‘(ﬂO BY+&paq] (16)

M,[X,(B, - BY+Ep0g 1+ (T-1)62.

Notice that the first term in (16) is positive since it is quadratic and
this term is zero at and only at (8,, &): pim (1/N) CSSE (B, &) = (T-1)
2. Thus plim(1/N) CSSE attains an unique global minimum at (£, &)
and assumption (C) holds. Using Theorem 1, B, and &, which minimize
the objective function converge to true B, and &, in probability as N
goes infinity.

Q.E.D.

Using the following theorem by Amemiya (1985), we may derive the
asymptotic normality.

Theorem 3
Make the following assumptions in addition to the assumptions of
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Theorem 1.

(AA) 52, /9896’ exists and is continuous in an open, convex neigh-
borhood of 6.

(BB) N'! 2Q,, / 9696’ )¢ converges to a finite nonsingular matrix A(6,)
= lim EN! (32Q,, / 3606") 6, in probability for any sequence 6y such that
plim 6y"= 6,.

(CC) N-1/2(9Qy / 96 )y— N0, B(6,)). where B(6y) = lim E N-1(dQy, / 98 Je,
(QQN /Aae')eo, A

Let {6y} be a sequence obtained by Achoosing one elt;ment from 6y
defined in Theorem 1 such that plim 6y = 6,. (We call 6y a consistent
root). .

Then, /N (6 — 8,) — NI0,A(8;)! B(6,) A(6p)-1]

Applying Theorem 3, we have

1 ( ICSSE
Alto)= zlvii?eEﬁ( 92077 )10

N> N\ 5080 i=1
=2
6,6
i Qa[IT—I— 5? OJ
0%0

a finite nonsingular matrix, and

1 ( JCSSE JCSSE
B(A,)=lim E-L
(4o) N—wEN( A )lox( on’ )lo

9y lmi{$x 1 xiz.0
_— ! Oy — ———— 4 Q.
X Noee N 5 .20t 6660 5 i50Y0%01

o2 9096]
. +Qu 1 Iry —
(éééo ° )( EE,
where A= (f, ) and 4, = (B, &) .
Therefore,

VN [ﬂ w =B °] — N[0, A(44) ' B(A4)A(A4) 1.
ew - 90

An advantage of the general model over the simple model (1) is the
ability to include time-invariant explanatory variables. To see this, con-
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sider first the simple model with time-invariant regressors Z added:
Y=XB+ (ZRedy+ Go + & (17)

where Z=(Z,, Z, ... Z}Y . G = )Qer.
Premultiplying by Mg = Lyr — (\®(erer)/T), the transformed regres-
sion model

M:Y =[M;X M, (Z®eT)][ﬁJ+MG£
Y

5 (18)
=[MgsX 0][ :|+MG£ =(MsX)B+Mge
Y

since Mg(Z®e =03. This is the reason why we can not incorporate
time-invariant explanatory variables into a fixed effects model.

This problem does not arise in our general model. The equation for
the general model corresponding to (17) is

Y=XB+(Z®er)y+(Uy®&E)a+e

B (19)
=[X (Z®eT)][ ]+(IN ®&o+e.
14
The within transformation leads (19) to
Iy ®M5)Y =IIy ®M§)X (Z® MfeT)][ﬁjl+ (I, ®&)e. (20)
Y

But (I\®M,) (ZRen) =ZRM;e; is generally not equal to zero unless E=en
Therefore, the inclusion of time-invariant regressors4 is allowed, and
their coefficients can be estimated consistently. This is an advantage of
the general model since time-invariant explanatory variables are often
important in many applications. For instance, in a wage equation,
years of schooling, race, union status or sex could be important deter-
minants of the wage. Notice that the overall intercept is also identified

SM4lZQey = Iy - N®lerer )/ D (ZRe
= (ZQe) - [ZRerer €d/T
= (ZQey) - (ZQe)= 0.
4The simple between estimator has to exclude individual-invariant explanato-
ry variables for the same reason that the simple within estimation cannot
include time-invariant regressors. However, those regressors can be included in
the general between estimate.
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in the general model while not in the simple model.

In the simple model with fixed effects, assuming the normality of the
& the conditional maximum likelihood estimator (CMLE) is equal to
the within estimator. Furthermore, the MLE is the same as the CMLE
(or within estimator}. Thus the incidental parameters problem is not
relevant in the simple model.

The above results do not hold in the general model. The same type of
derivation as in the simple model for the CMLE can not be applied in
the general model. The individual mean, Y, is a sufficient statistic for
oy in the simple model and the likelihood conditional on Y’i does not
depend upon incidental parameter o, However, P;Y; in the general
model corresponds to Y, in the simple model, and it is not a sufficient
statistic since it is not a function of only the data. A parameter ¢ is
included in P;Y;

It is impossible to have many different individual effects in the simple
model since they would not be identified. However, we may include a
number of individual specific components in the general regression
mode. For details, see Appendix B.

We have discussed a generalization of the conventional fixed effects
model that allows different time-effects of individual specific compo-
nents on the dependent variable. We derive a consistent estimator of
the regression coefficients (8} and of the coefficients of the individual
effects (£§) using the conventional within transformation. We noted that
the coefficients of time-invariant explanatory variables, which cannot
be estimated in the simple model, may be estimated consistently. The
inclusion of several individual specific components in the regression
model is also introduced, and the results are similar to those with one
individual specific component. Unlike the simple model, the asymptotic
theory of this model does not agree with normal likelihood theory. The
sufficient statistic for the individual effects depends on other parame-
ters, and so the CMLE cannot be obtained by the usual method (see
Chamberlain 1980) by conditioning on a sufficient statistic. The MLE is
consistent, but this must be proved directly, and the usual formula for
its asymptotic covariance matrix(the inverse of the information matrix)
does not apply.

III. Random Effects

An alternative approach in panel data models is to assume that the
individual components are random. That is to say, random effects
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models consider the individual effects to be independently identically
distributed and to be independent of the disturbance and the explana-
tory variables.

Hsiao (1985)5 mentions the difference between fixed effects models
and random effects models. The fixed effects model is regarded as pro-
viding inference conditional on the effects in the sample, whereas the
random effects model is regarded as providing unconditional inference
with respect to the population of effects.

The within estimator does not consider variation between indivi-
duals. The GLS estimator used in the random effects model considers
both variation between individuals and variation over time within each
individual. Therefore, the GLS estimator can be expressed as a combi-
nation of the within and the between estimators. The GLS estimator is
more efficient than the within estimator because of the utilization of
the variation between individuals.

The regression equation (2) is considered as

Y,=XpB+v, i=1..N t=1,.T @1

where v, = 6,0 + €.
We let E(@) = u and assume that d, = o; — u is 1.i.d. with Var{d}) = 62 and
a is uncorrelated with X. :

The covariance matrix of the error term is taken into account in GLS
estimation. The covariance structure of v is as follows:

' =L (- (1 - @UNPY) (22)

XU

0.2

o®+ %02
GLS can be obtained by OLS applied to the transformed regression
model

where g2 =

T2 y=3512 X8+ TV 2ex®u + T %0 (23)

where £/ = (1/0 )(Iyr - (1 - QUNOPY) = (1/0)([NOMy) + q[y®P) and ey
is a Nx 1 vector of ones. This transformation is a combination of the
within and the between transformations. For example, 6 /%Y = (I\®
MY + q(IyQPyY.

Since Z:” 2 includes the parameter vector §, we cannot simply apply
OLS to (23). We will derive the GLS estimator of 8 and 8 which mini-

5See Hsiao (1985), p. 131.
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mizes the objective function, equal to the error sum of squares of the
transformed equation (23).
That is, we wish to minimize

SSE = [Y - XB - (en®@&ul Uyr — (1- PHINQPIIY - XB - (en®@8ul. (24
From the derivative of SSE with respect to u, we obtain

~ 1 ’
=— Y - XpB). 25
Hors Ng’é(e@a (Y-XB (25)
Substituting (24) into (25), we obtain the concentrated SSE
CSSE = (Y - XBYl(Iy ® M)+ q*(M,, ® P )IY - XB) (26)

where M, =Iy- eyey /N.

The values ;s and @y s which minimize CSSE are derived by taking
derivatives of CSSE with respect to § and 6 and setting them to zero.
This gives

Bows = (XUIy ® M) +q2(M,, ® P)IX)" - X'[(Iy ® M)

27
+q*(M,, ®F)IY

N

EtLs 1s eigenvector of Y [y1-g2e; +(1-+1-q?)e]
i=1

[V1- g%e, +(1-y1-g2)el

(28)

- _ 1X b1
where e =Y, - X,fgis. e=7v‘i—21(Yi_XiﬁGLS]‘

The proof that EGLS is the eigenvector corresponding to the largest
eigenvalue is essentially the same as the proof of Lemma 1. Similarly,
the asymptotic properties of f;; s and &; s are derived using Theorem 1
& 3 as before, and we obtain.

VN F ous = F °} — N[0, A'BA™]. (29)

6GLS - 90

The matrix A comes from the second derivatives of CSSE while B is
derived from the cross-products of the first derivatives. These are (K +
T- 1) X (K + T~ 1) matrices given by:



14 SEOUL JOURNAL OF ECONOMICS

Oxx HIX! - X,65)

A=2

1
£6éo

. W2+0-g)0l )y, - 0%,

£60

X,65)

Oxx  H(X!-
B =402 >0 =202A
6090

éoﬁo

o (W2+(1-go W, -

where Qyy = lim ix'[u,v ®M,)+q*(M,, ® P,)IX,

=—ZX and X.=(X;,X3,...X4).
Na
The efficiency gain of the GLS estimator compared to the within esti-
mator is shown by the difference of the asymptotic covariance matri-
ces. If Cov (ﬂw 6,) - Cov([ins, Q;Ls) is positive semidefinite (PSD), ﬁm.s
and 9(;15 are more efficient than 8, and 6,
Note that the covariance matrices of the within and the GLS estima-
tors are block-diagonal when y = 0. This gives

[Varifors)l - [Var(B ) = X’ (IN®P)X , which is PSD. (30)

[VafbeLs)]'l - [Var(8)] = 0. (31)

Thus BGLs is more efficient than Bw and bGLS and bw are equally effi-
cient. However, the efficiency gain of GLS over within disappears as T
goes to infinity since ¢2—0 as T—oo.

Because of the lack of knowledge of g2, we need a feasible GLS esti-
mator using a consistent estimator of g2. We can estimate @2 from the
results of the within and the between regressors: or, for that matter,
from the within and between sums of squares evaluated at any consis-
tent estimates. Specifically

. SSE

2 _ w = 52 32
plim & pth(T—l)—K (32)

/\ E
plim o +§§oz-pth—SSK—1—02+§’§a§ (33)
plim 2 = plimoocw N-K-1 _ 0 (34)

SSE, N(T-1)-K



PANEL DATA MODELS 15

Since @ is consistently estimated, the asymptotic properties of the fea-
sible GLS estimator are asymptotically equivalent to those of the GLS
estimator.

As in the fixed effects model, we can include a finite number of indi-
vidual specific components in the random effects model. For details,
see Appendix B.

We have discussed a generalization of the conventional random
effects model that assumes ¢; to be i.i.d. and independent of the distur-
bance and the explanatory variables. We derived the GLS estimator,
showed that it is consistent, and derived its asymptotic distribution.
The GLS estimator is more efficient than the within estimator, but the
efficiency gain disappears as T—oo.

IV. Test Statistics

It is meaningful to test the hypothesis that 8 is a vector of ones. This
is the restriction that reduces our general model to the usual simple
panel data model. The within estimator and the GLS estimator of the
simple model are not consistent if 8=e;,. In the case of the within esti-
mator,

plim B, = pim(XM;X) XM,Y
=ﬁ+%’1m(X'MGX)‘1XMG(IN ®&Ea=p

(35)

since Mg(I[y®&+0.6 This means that the conventional panel data model
produces inconsistent estimators (has a specification problem) if 8+
er.

We may develop test-statistics for the hypothesis 8ey; based on the
work of Ronald Gallant (1985).7 Gallant considers estimators derived
by minimizing an objective function S,(6), where n = sample size and 6
= pararmneters. Our estimators minimize objective functions and there-
fore fit his framework. For example, for GLS we have

N
2 S(B.6)

Sw(B.8) = %H

SMIN®E) = Uyr - (N (erer )/ D] UnD9)
= (Iv®8 - INlerer §/D] + 0.
7See Gallant (1985), p. 217-20.
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_ 1
2N7?
-1
2Nz?

— ’ 2 -
(Y - XBYIlIy @ M)+ * (M., ®P Y -XB) o0

CSSE
where a preliminary estimator8 72 is 62 derived from the within estima-

tor (32).
The null hypothesis is considered as

Hy:h(B.6) = Hm- e, , =0 (37)

where H=[0: I ] is a (T- 1)X(K + T- 1) matrix. Then, the LM statis-
tic given by Gallant (p. 219} is

LM =N[M] A'H'(HVH')'H A"[MJ (38)
) F

where A s = restricted estimate of [ﬁ ] = [B GLS ]
A eT-l
BsLs = GLS estimator with 6 = er.; imposed,

V=A1l B A1

a1 ¥3Sy(Aas)
NS 9Adr/

1% ISy lAeis) | ISw(Aars) |
Nia dA A

The LM statistic in (38) has asymptotically a Chi-square distribution
with (T - 1) degrees of freedom. Gallant (p. 220) also provides a test-
statistic analogous to the usual likelihood ratio and Wald statistics:

LR =2N[Sy (Ags)- Sy (Agys)] 39)

= glflcssp:(ims }- CSSE(Agys)]

W=N- hifs. Gs) (HVE ) h(Bss, @ois) (40)

1 & .
8Gallant originally defines ©2 =3y Eietet and ¢ as least squares residuals ob-
tained from each univariate model when he discuss muitivariate nonlinear least
squares. See Gallant (1985), p. 149-50.
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where

iGLs - [ﬁGLS

= unrestricted GLS estimate of ﬂj}
Bars 0

{/= unrestricted GLS estimate of V.

Under general conditions we have also that LR and W are asymptotical-
ly Chi-square with T - 1 degrees of freedom.

V. Conclusions

The usual motivation for the use of panel data model in labor eco-
nomics and in related areas is the desire to avoid potential bias caused
by the omission of unmeasured individual characteristics from the
regression equation. For example, in a wage equation, individual “abili-
ty” (or “ambition”) is usually unobservable, and may have an effect on
wage. If so, the omission of ability from the regression will cause a bias
in the estimation of the coefficients of those variables that are correlat-
ed with ability. The usual solution to this problem is to assume that
ability (or more properly the effect of ability on wage) is time invariant
and can therefore be captured by a time-invariant individual-specific
effect. However, the assumption that the individual effects are time-
invariant is very strong. In this paper we have considered a model that
weakens this assumption. In particular, we assume an unobservable
time-invariant individual variable (such as ability), but we do not
assume that its effect on the dependent variable is time invariant.
Rather, we need only to assume that the effect of this variable on the
dependent variable has the same temporal pattern for all individuals.
Thus, for example, the effect of ability on wage may differ across the
business cycle, or may display a trend, so long as it does so for all indi-
viduals. We estimate this temporal pattern along with the other param-
eters of the model.

In the liquidity constraint studies of consumption and investment
using panel data, a time dummy is included as a macro shock in
Euler’s equation. There is also a strong assumption that the responses
of all economic agents to a macro shock are identical. This assumption
can be relaxed in the sense that each individual has a different res-
ponse to a macro shock from each other but has the same pattern of
response over-time.

We develop fixed-effects and random-effects treatments of our model.
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Fixed-effects treatments are relevant when the motivation for the use of
panel data is bias reduction, as discussed above, while random-effects
treatments are relevant when the motivation is efficiency of estimation.
Our model is nonlinear so estimation is more complicated than in the
usual simple model. In both the fixed and random effects cases we pro-
pose a method of estimation, and we prove the consistency and asymp-
totic normality of the estimates. This is non-trivial since the standard
likelihood theory does not apply, due to the so-called incidental param-
eters problem (the number of unobservable effects increases with sam-
ple size). We also propose asymptotically valid tests of the restrictions
that reduce our model to the usual panel data model.

A promising line of future research is to consider models that are
intermediate between the simple model, in which individual effects
have a time-invariant effect on the dependent variable, and our model,
in which the temporal pattern of these effects is completely unrestrict-
ed. Kumbhakar (1990) has proposed one such model in the frontier
production function setting, and our model can be used to test the
specification of his model or of other similar models. It is obviously an
empirical question how much flexibility of specification the data will
typically support.

Appendix A: Derivation of plim (1/N) CSSE
FACT:

plim (1/N) CSSE(B, & = (Bo - B Ox (Bo — B) + Q.50 Mo
+2(Bo = B Qxo &o + (T- 1)02

and is finite.
Proof: The true relationship is
Y= Xbo + &0 + & - Al)

By substituting (Al) into CSSE.

N
CSSE = 3(B, - BY X{M. X, (B, - ) + PENATRS

i=1

N N
+ X EMe + 2121(ﬂo - ﬂ)’Xi,Mééoagi
{=1 =

z

N
+2Y (B - BY X Mg +23 05, EGM ;.
1 i=1

i

It
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Using the assumptions (o) and (),

Qx = lim TV— ZX’MéX is finite.

N—oroo
QuEoM.£, is finite since §oM;&, = 0 if & = & and
EoM&o = oo if & & = O.

1 N
plim N E,IE{M &

= To? ——phm Ztrace(eiéé ‘g;) = (T -1)o2.

3

It is true that

2
1 X, 1 X
PmNzX%%Jsgﬂﬁg&&&kghgﬁj

Noow

and lim — ZX &pE4 X, and lim 1N 2 Zaol are finite.

Now N
Note that ZX,’Pééoao, =0if&¢, =0andif & = &,
i=1

2

2
1 X
[lim N 2 ZX Pg&oam} =|:1£13}°1_V‘EIX150‘101] .

N
Therefore, @y &, = lim 1 2 XM Eoag, is finite.
¢ Now= N o
1 N
plim — % (B, - BY X;M,¢; = 0.
N o
lim L 3 ag &M, e, =0
im — > oy, oM. = 0.
P N & %oic0 £€;
Using (A 2) - (A 8), we can show

plim (1/N) CSSE(B, & = (Bo - B 9xlBo — B + Qoo M: &
+ 28~ ) Qo + (T- o2

and to be finite.

19

A2

a3

A4

(A5)

(A 6)

A7

(A8

Q.E.D.
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Appendix B: General Model with Multiple Components

In the fixed effects model, the regression equation is
Yi=XB+&oy+...+&éag+6,1i=1,..,N B1)

where &, = (1, 6}, 5= (6p, b5 ... 81", g=1.2,....G.
For identification we make the orthorgonality assumption &7, & = 0, g
A

We can obtain solutions for 8 in terms of 6 and 6 in terms of B by the
same analysis as the one-component model.

Bo = (X (INOMe)X)! X (INOMe)Y (B2)

Where M@ = IT_ P{l - P§2 goeey PéG and Pég = Cg[élggg)'l élg, g = 1,...,G- &gw
is the eigenvector corresponding to the gth largest eigenvalue of

(Y, - XB,) (Y, - XB) - (B 3)

The same asymptotic theory in the one-component model is applied
to show that the estimators are consistent and to derive their asymp-
totic covariance matrix.

In the random effects model, the regression equation is then

Y;=XB+v, i=1,.,N (B 4)

where v, = & 0y, + &00, + ... + Egog + &
The assumptions in this regression model are as follows:

(A.1) Elay) = y,, and Var(ey) = 0% o is independent of oy, for all g, f, i,
and j except g = fand i = j. It is independent of X and ¢ and we denote
O = Oigy— Hy-

(A.2) The orthogonality conditions hold: §,&= 0, g=f.

We can derive the solutions for 8 and each 8, by minimizing CSSE with
respect to  and 6, This yields

G
Bors = (X'IUIy ® Mg)+ Yq5(M, ® P; )IX)!
g=1

G (B5)
X'lIy ®Mg)+ 2.q2(M, ®P; )IY
g=1

where ¢ = 0%/(0” + §;£,07,)
&ors =(1, G1s’) is the eigenvector corresponding to the largest
eigenvalue of
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g[,h— qge‘- +(1-41- q§ )E][Jl— qgei +(1—-4/1- qg )é],, (B6)

The estimates in (B5) and (B6) are consistent and asymptotically effi-
cient by the same reasoning in the one-component model.

As in the one-component case, we can get a consistent estimator of qZ
using the results of the within and the between regressors. Specifically

SSE,

lLim 572 — 1i w — 52 (B7)
P o plim —N(T— G) o
B
Plixn o2 + 6;690‘219 = plim -m'?—gé—i =02+ géggogg (B8)
SSE, N

lim 2 = pli —N ___q?
plim G2 = plim SSE,, NIT-0) qZ (BY)

where SSEg, = (Y- XB) (M., ® P, WY - XB).
The properties of the feasible GLS estimation using a consistent esti-
mator of ng are asymptotically equivalent to those of the GLS estimator.

(Manuscript received October, 1993; final revision received January,
1994)
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