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This paper attempts to examine the empirical significance of the
technological opportunities and spillover effects in the relationship
between industrial R&D and productivity growth. Estimation
results are in favor of the general hypothesis that a given level of
investment in knowledge stock will have a greater effect in indus-
tries with relatively rich technological opportunities. However, the
explicit consideration of the spillover effects does not lead to a sig-
nificant improvement in estimation results. Analytically, as Scherer
(1982) argues, spillover effects should play an important role in
explaining output elasticity, but the results of empirical tests in this
paper suggest that the information in the spillover effects is embod-
ied in its own R&D. (JEL Classification: 014)

I. Introduction

The relationship between industrial research and development
{R&D), an important source of technological innovation, and productiv-
ity growth has been the subject of concern since the slowdown in pro-
ductivity growth during 70° and 80’s in the U.S. coincided with the
slowdown in expenditure for R&D. A number of studies have been done
to investigate the relationship. Some of these studies have taken a pro-
duction function approach in which R&D expenditure is an input,
analogous to investment in physical capital.l The studies have found
that the empirical relationship between the flow of services from the
R&D stock and the productivity of traditional inputs are positive and
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the comments by two anonymous referees.

1Griliches (1979, 1980, 1994).
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significant in various formulations, although it is hard to say whether
the quantitative evidence is quite robust.

In this paper, we explicitly introduce the inter-industry spillover of
R&D in a production function framework, and examine the empirical
significance of the spillover effect to productivity growth. Due to the
public good aspect of technological knowledge, the returns of R&D
investment cannot be fully appropriated by the firms undertaking the
R&D projects. Knowledge produced by R&D-performing industries
spills over to other industries; the positive externality of the knowledge
could be an important determinant of productivity growth in other
industries.

This paper also examines the effect of technological opportunity on
the inter-industry variation of the elasticity of productivity with respect
to the service flow from the stock of knowledge. The productivity elas-
ticity with respect to the service flow of knowledge stock is assumed to
be a function of technological opportunity variables measuring the rele-
vance of applied and basic science and of the presence of natural tra-
jectories of innovation to the industry’s progress. The general hypothe-
sis is that a given level of investment in knowledge stock will have a
greater effect in industries with relatively rich technological opportuni-
ties than in industries with relatively poor technological opportunities.

For the spillover effects, there are two channels through which they
could occur. The first type is the spillover through input purchase. An
improved production process lowers cost and therefore prices, to the
benefit of downstream industries; the industries are also benefited by
product innovations in upstream industries as long as the prices of the
new products do not fully reflect their improved quality. A familiar
example of this first type spillover would be the computer industry
where product prices are falling while the quality of the products is
improving.2 The second type of spillover is through positive externality
between two industries not necessarily related by input purchase. For
example, suppose industry i and j are neither purchasing each other's
products nor producing similar products. But the results of R&D
achieved by industry j could produce positive externality for industry
i’s performance if these industries are working on similar research pro-
jects. In this paper we consider only the first type of spillover.

The spillover effect from industry j to industry i is determined by the
extent that industry j's improvements are incorporated in the price of

2Bresnahan (1986).
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its products and are appropriated within the industry. This view
relates to how well rents are captured by the supplying industry, and
how well input prices are measured in the buying industry. We assume
here that deflators of capital inputs are mismeasured, and the mea-
surement error is a function of R&D performed in the capital supplying
industries. This seems to be a reasonable assumption in the sense that
prices of products in R&D intensive industries tend to under-measure
systematically the true values of the products because of the intrinsic
characteristics of knowledge produced from R&D activity.

Scherer (1982), following Schmookler (1966), attempts to measure
the inter-industry R&D spillover by constructing a technological matrix
to trace the flow of technology from the industry in which a new prod-
uct originates to the industries where the product is used. Scherer
(1982) uses the average number of U.S. patents obtained per million
dollars of company-financed R&D in 1974. He observes that three-
fourths of all U.S. industrial R&D is concerned with creating new or
improved externally-sold products, as distinguished from the develop-
ment of production processes used internally by the R&D performing
enterprise,3 and he concludes contributions made by upstream indus-
tries are large and significant because the spillover effect is more likely
come from the product R&D than the internal process R&D. This re-
sult, however, depends on a considerable number of arbitrary assump-
tions. And in general, there are many limitations to patent data as well
described in Levin et al. (1987).4

Empirically, this paper shows that the inter-industry technological
spillover does not play an important role in explaining output elasti-
city. The explicit consideration of the spillover effects does not lead to a
significant improvement in estimation results, and the extent of the
spillover effect is mainly embodied in each industry’s own R&D. Sever-

3Scherer calculated this using the raw data on patent counts.

4Some results of industrial R&D are not patentable. The value and cost of
individual patents vary enormously within and across industries. Many inven-
tions are not patented, while some types of technologies are much more likely to
be patented than others. Moreover, the role of R&D is more than an invention-
producing activity. It would not be justifiable to disaggregate R&D expenditure
simply into product and process R&D if a significant amount of R&D is spent
for development and maintenance of a firm's capacity to assimilate external
knowledge. Firms cannot simply integrate external knowledge into their produc-
tion. They must learn how to make it a part of their organizational knowledge.
This process will also be reflected in R&D expenditures however not in patent
data.
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al other tests also show weak or adverse evidence for the importance of
spillover effects.

For the technological opportunity, the variable is formulated from a
national survey of R&D managers conducted by Yale University’'s
Research Program on Technological Change. Consisting of factors such
as “Relevance of basic science to technological change in the industry,”
“Relevance of applied science,” and etc., the technological opportunity
variable is to measure the susceptibility of the industry to the innova-
tions and R&D. This attempt, being the first of the many to follow.
quantitizes what has been up to now an ill-defined source of residual
variation.

In this paper, technological opportunity variable is regressed as an
independent variable against the estimated elasticity of the productivity
growth respect to the service of knowledge stock. The estimation re-
sults are in favor of the the general hypothesis that a given level of
investment in knowledge stock will have a greater effect in industries
with relatively rich technological opportunities. This result is robust
subject to the treatments of multicollinearity and non-linearity.

II. The Model

Assume a Cobb-Douglas production function which includes the ser-
vice flow from the R&D stock as a distinct factor of production:

@ = ALM2E* K% XPet, 1)

where Q = output; A = a constant; L = labor input; M = non-energy
intermediate material input; E = energy input; K = physical capital ser-
vices; X = the flow of services from knowledge stock; a;, a,, o3, 04, B =
elasticity coefficients; ¢ = all unmeasured factors.

Define total factor productivity (TFP) as a productivity of traditional
inputs:

TFP = Q / L"M*“2E* K. 2)
Combining (1) and (2) gives
TFP = AX’ €. 3)

In TFP = InA + fInX + u. 4)
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The productivity of traditional inputs (TFP) is now expressed as a
function of R&D investment. g is the elasticity of output with respect to
the flow of services from R&D stock.

A variety of theoretical issues has been raised in the attempt to infer
the contribution of R&D to productivity growth.5 Since R&D is a choice
variable, we expect more of R&D to be undertaken in the industries
where the R&D productivity elasticity, 8, is large. The problem of simul-
taneity results in difficulties of econometric inference. Variables in-
volved in the equation of concern also move together over time and
industry; the complicated error structure makes it hard to separate
effects of different sources. Measures of outputs and those of inputs
are also subject to measurement errors. There is in particular no good
measure of real output in government and service sectors. Mismea-
surement of output also comes from the poor quality of output price
indices due to the complexity and changing characteristics of products.
Problems in the definition of R&D input and its deflators constitute
another source of measurement errors. Moreover, the long and variable
lags in the effect of R&D on productivity growth, and other issues
involoved in the diffusion of particular technological development, fur-
ther complicates the already complex problem. There seems to be no
reasonable way to untangle all these problems together. In this paper,
we pay attention to the measurement errors in capital equipment in-
dustries. Actually many economists have observed that output in R&D
intensive industries, such as those of capital equipment, is more likely
to be subject to measurement problem than outputs in less R&D inten-
sive industries.6

Suppose that capital inputs, K, are mismeasured due to errors in the
prices of capital inputs. Let measured capital inputs be mirrored in
deviations from true capital inputs to the extent of the mismeasure-
ment in the deflators:

K, = K P"/P™", (5)

where K, = measured K; Ky = true K; P" = true deflator: P" = measured
deflator: P" = P™ That is,

Kr= K.P"/P" = K.P. 6)
where P = P"/F".

5The issues are well discussed in Griliches (1979.1994).
6See Griliches (1987).
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Assume that the mismeasurement of the jth input deflator is a func-
tion of R&D in the supplying industry j:

P, =f(R) = expl- d,R), (7)

where P, = P/ PJT , the mismeasurement in the deflator of the jth capital
equipment industry: R, = R&D in the industry j; d, = coefficient > 0; exp
(@) = €~ P, is decreasing in R;, and lies between O and 1. If we assume
that the productivity elasticity with respect to each capital input is the
same over different types of capital, then we get a reasonable idea of
how to represent the measurement errors in the ‘aggregate’ price index
of capital inputs in terms of R&D in the capital supplying industries:

Kr= K, I, P, = K, exp (- Zd;R). (8)

Measured TFP is:
TFP™ = Q / LA\M®2E®K = AXP exp(z 7R+ 1) 9)
lnTFP“=lnA+/5'lnX+§yJRj+Ju (10)

where y, = - do,.
Rewrite (10) for industry i at time ¢,

Qe = a; + Bxy + EJ:)’ﬁRjt + Wy (11

where a = In A, g = In TFP", x = In X. To have enough degrees of free-
dom, three groups of capital equipment industries—mechanical indus-
try, electronic and electrical, and instruments are chosen. The choice
of the industries are based on a priori notions about the extent of com-
monality in their technological base and advice from local experts.

The intercept in equation (11) is allowed to vary across industries to
admit the possibility that some industries have higher measured pro-
ductivity than others.?” An additional industry effect is introduced by
the error term u, One approach to estimating (11) would be to treat
both effects as random. The random effects model, however, will yield
biased estimates of the coefficients unless the effects are independent
of the regressors. For (11) this means that x, and a, must be indepen-
dent. If there is any unobserved variable that affects both the knowl-
edge stock and the shift parameter in the production function, the ran-

7In this brief statistical discussion, we ignore serial correlation in the error
term. Since R&D is assumed to affect the trend in TFP but not the short term
fluctuations, the error term presumably shows serial correlation. We will intro-
duce the problem later.
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dom effect estimates will be biased. But the independence seems
unlikely. Alternatively, equation (11) can be treated as a fixed effects
model. Fixed effects models yield unbiased estimates whether or not
the independence condition is met.

The main problem in estimating (11) is that the R&D variables are
very highly correlated. As a matter of fact, the collinearity problem has
been typical among all types of R&D variables, for example, R&D per-
formed in an industry, R&D attributed to an industry through its pur-
chases from other industries, company-financed and government-
financed R&D, product and process R&D, etc. When I drop some of the
R&D variables in (11), the fit of the equation is fairly good.

Another way to solve the collinearity problem is to reinterprete the
R&D input in each industry using the concept of knowledge stock. The
knowledge stock of an industry i is assumed to be a functions of its
own R&D and the spillover from upstream industries. Knowledge stock
in industry i is affected not only by its own research and development
but also by productivity improvements in industry j to the extent to
which i's purchases are from industry j.8 That is, X, is the flow of ser-
vices from the knowledge stock of each industry; it reflects both its
own R&D and the R&D embodied in inputs purchased from R&D
intensive industries. Therefore, the estimation equation in this frame-
work would be similar to (11) under the assumption that the productiv-
ity elasticity for own R&D and that for R&D spillover are the same.

There might be several alternative ways to see the spillover effect of
R&D. If possible, one would directly estimate the spillover parameter y,
using the maximum likelihood estimation, assuming that u,, given (8,
y), is normally distributed with mean zero and variance of. However
the limitation of the data does not allow us the joint estimation of the
parameters. Since each industry has only eighteen observations, the
system would be under-identified.

Alternatively, y, could be constructed by using available data. To
quantify this spillover effect, a simple weighting scheme is used which
depends on the input-output coefficients relating industries i and j.
Input-output coefficients, i.e. the proportion of inter-industry purchas-
es, are used to measure the “closeness” of industries. Let a proxy for
the service flow from the stock of knowledge in each industry be con-
structed as follows:

8Jaffe (1986) and Levin and Reiss (1988) use the functional forms @, = g(X); X,
= h(R, R} where @, = output of industry i; R, = R&D in industry i R, = R&D in
industry j.
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X,=R,+3S6,R,,

14 Rit 12‘ SNt (12)
where X; = knowledge in industry i; R, = own industry R&D; Ri = j) =
other industry’s R&D; 6, = 7,/ Let us assume that the weighting
function 6, is proportional to the measure of closeness:

OJ[ = Wy, (13)

where w) is an input-output coefficient that measures the proportion of
industry s purchase from industry j. The weighting function 8, can be
interpreted as the effective fraction of knowledge in j transferred into
industry i. Presumably 6, becomes smaller as the distance, in some
sense, between i and j increases.

By assuming that the knowledge stock is determined as (12), we
ignore various lags in both own industry R&D and inter-industry R&D.
This may not be a conceptually justifiable assumption since a particu-
lar research and development project may take more than a year to
complete. When complete and if successful, it may still take some time
before a decision is made to use it or produce it. It also takes time for
knowledge to spillover from one industry to another. An exact formula-
tion might be represented as:

L
Xu = lzohlxi(t—llv (14)

where L is the total lag periods. However, the length of R&D time series
is inadequate to accomodate the reasonably long lags that probably
characterize the process, and any short lag introduced would be totally
ad hoc. With the limitation of R&D data, we not only allow for no lag in
R&D, but also make the current knowledge stock depends only on the
current R&D, which is a different troublesome issue. Pakes and Grili-
ches (1984) however show that the relationship between R&D and
patent application within a firm is close to contemporaneous, and that
the lag effects are significant but relatively small and not well estimat-
ed. We assume a similar assumption for the industry's own R&D as
well as the spillover effects.

III. The Data

The data used here are cross sectional-time series data for twenty-
seven “two-and-a-half” digit manufacturing industries over an eighteen
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TABLE 1
INDUSTRIES INCLUDED IN THE STUDY
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DOWNSTREAM INDUSTRIES NSF  SIC CODES

Ordnance & Accessories 1 348

Missiles and Spacecraft 2 376

Food & Kindred Products 3 20

Plastic Materials & Other Synthetics 5 282

Agricultural Chemicals 6 287

Other Chemicals 7 281, 284-6, 289

Drugs & Medicines 8 283

Petroleum Refining 9 29

Rubber & Miscellaneous Plastics 10 30

Stone Clay & Glass Products 11 32

Ferrous Metals & Products 12 331, 332, 339

Nonferrous Metals & Products 13 333-6

Fabricated Metals & Products 14 34

Motor Vehicles & Equipments 25 371

Other Transportation Equipments 26  3733-375, 379

Aircraft and Parts 27 372

CAPITAL SUPPLYING INDUSTRIES NSF  SIC CODES

Engines & Turbines 15 351

Farm Machinery & Equipments 16 352

Construction, Mining & Material-handling 17 353
Equipments

Metalworking Machinery & Equipments 18 354

Office Computing & Accounting Equipments 19 357

Other Machinery except Electrical 20 355, 356, 358, 359

Electric Transformers & Distribution Equipments 21 361

Electric Industrial Apparatus 22 362

Other Electric Equipments & Supplies 23 363, 364, 369

Communication Equipments & Electric Components 24  365-367

Instruments 28 38

year period (1959-76j). To investigate the effect of R&D spillovers
through capital purchase on the estimation of the productivity elastici-
ty, we choose 11 industries to represent capital supplying industries,
using a priori notions about the extent of commonality in their techno-
logical base and advice from local experts. The data for 11 capital sup-
plying industries are embodied in the spillover term in (12), Ry, and the
analysis on the productivity elasticity and the opportunity variables is
done in 16 downstream industries. The description of the industries

included in the analysis is revealed in the Table 1.
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Four types of data are used: data on investment in knowledge stock,
data on total factor productivity, data on input-output coefficients, and
data on technological opportunity. The R&D expenditure data were
supplied by Frank Lichtenberg and are described in detail in Griliches
and Lichtenberg (1984). The time series data on R&D expenditures are
from the industrial R&D survey conducted by the National Science
Foundation. The data record annual expenditures on applied R&D for
twenty-eight “two-and-a-half” digit industries and include both private-
ly and publicly funded R&D conducted by the private sector. The series
classifies R&D expenditures by product line, not by the industry to
which: the conducting firm belongs. We transform R&D expenditures to
a flow of R&D services by assuming that the flow is proportional to the
stock. The R&D stock variable is constructed under two simplifying
assumptions—zero depreciation rate and no lag between expenditures
on R&D and additional productivity relevant to the stock. Lag problems
have already been discussed above; a zero depreciation rate may not be
a bad assumption for an eighteen year period, but it would be a poor
approximation for industries of rapid technological change.

The total factor productivity data were developed by Fromm, Klein,
Riply and Crawford (1979) based on the Annual Survey of Manufac-
turers. The data include current and constant (1972) dollar series on
the value of output and capital, labor, energy and material inputs for
four-digit SIC industries. Under the assumption of constant returns to
scale, current dollar capital services are calculated as a residual, the
difference between the current value of output and the sum of current
expenditures on labor, energy and materials. Since some factors are
omitted, the share of capital is probably exaggerated. The labor data
developed by Fromm, et al. (1979) have been revised by Griliches and
Lichtenberg to include non-production workers, but are not adjusted
for any changes in the quality of labor over the period. The share of
labor is probably understated. Total factor productivity is defined as
the ratio of real output to a torngvist-divisia index of inputs.9

The data on wy are from the input-output tables of 1977 which was
constructed by the Bureau of Economic Analysis in the U.S. Depart-
ment of Commerce. We aggregated input-output coefficients into 27
industries to make them consistent with other data aggregation levels.

The source of the opportunity variables is survey responses to ques-
tions about technological opportunity. The survey data are from a

9See Griliches and Lichtenberg (1984), pp. 486-8, for detail.
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national survey of R&D managers conducted by Yale University's
Research Program on Technological Change. The survey included 130
lines of businesses defined by the Federal Trade Commission. Charac-
teristics of the data are well summarized in Levin et al. (1987). In this
paper, the technological opportunity data are aggregated to the same
level as R&D data. The survey data is not only extensive but also very
informative for the characterization of inter-industry variations in tech-
nological opportunity. Until the survey data were developed, technolog-
ical opportunity had been treated as an ill-defined source of residual
variation. The survey provides the necessary empirical content for a
more precise concept of technological opportunities. Since the survey
data are cross-sectional, they are merged with time series data by
assuming that the opportunity variables are constant over time.

The opportunity variable consists of six variables which are:

y; = the relevance of “basic” sciences to technological change in the

industry

Y = the relevance of “applied” sciences

Yys = process trajectory

y, = product trajectory

ys = contributions from government research laboratories and agen-

cies

Yg = contributions from university research

y, and y, are included as opportunity variables in order to capture
the industry’s potential for technological change resulting from close
ties to science. The basic science included in the survey data are biolo-
gy, chemistry, geology, mathematics, and physics. The applied science
included are agricultural science, material science, computer science,
applied math and operations research, medical science, and metal-
lurgy. y, and y, are the maximum score of each group of sciences. In
both cases respondents were asked to rate the relevance on a seven-
point Likert scale—a scale of one (“not relevant”) to seven (“very rele-
vant”). And because the absolute levels of the variables are from se-
mantic scales, the data for the variables may be subject to substantial
measurement errors

ys and y, are based on the concept of general natural trajectories in
technologies (Nelson and Winter 1982). Natural trajectories are describ-
ed as the direction and rate of incremental innovation, which are not
technology specific but industry specific. Many industries observed
have consistently pursued a certain type of improvement in products or
production process. In these industries, there is a pattern of innovation
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related to these trajectories. The inclusion of the trajectory variables is
based on the hypothesis that as an industry enters a trajectory, the
probability of successful innovation increases and the cost declines;
the productivity of R&D expenditures is enhanced. y; is the maximum
score for a series of questions on process trajectories: changing the
scale of the production process, mechanization/automation, improving
yields, improving material inputs, and converting batch to continuous
processes. y, is the analogous variable for product trajectories: improv-
ing the physical properties, improving the performance of the product,
standardizing the product, designing the product for specific market
segments, tailoring products for specific market segments, tailoring
products for specific individual customer.

ys is included to reflect a positive relationship between publicly con-
ducted research and the industries’ oportunity for technological advan-
ce. The publicly conducted R&D is distinct from the publicly funded
but privately conducted R&D that is counted in R&D expenditures. yg
analogously measures the contribution of university research. The con-
tributions of government and university research are discussed in
Nelson (1982) and Thackray (1983), respectively.

IV. The Estimation and Result

The estimation equation is the same as (4), and g is the elasticity of
output with respect to the flow of services from knowledge stock and is
hypothesized to vary across industries in response to variations in
technological opportunity. Let Y be a vector of opportunity variables
such that g = B(Y, ¢) where c¢ is a matching vector of coefficients. Our
main interest is in parameters of § and the vector c in the following
equations:

Qe = Q, + By + ty (15)
Bi=FRY, d+n,. (16)

The analytical model predicts that all of these coefficients will be posi-
tive. To test this prediction, the 8, s are estimated first using equation
(15). The estimates of ;s are then used in equation (16) to estimate
the opportunity coefficients, c. When equation (15) is run for each
industry, the resulting estimates of §; s will be unbiased. If aucocorrela-
tion is present, the OLS parameter estimates are not efficient and the
standard error estimates are biased. In this case, we will use maximum
likelihood estimation with correction for serial correlation.
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TABLE 2
OLS ESTIMATES OF ELASTICITIES BY INDUSTRIES

INDUSTRY B, (t-stat) R DW
Ordnance & Accessories 0.0823 (4.517) 0.5605 1.003
Missiles and Spacecraft 0.0896 (5.108) 0.6351 2.144
Food & Kindred Products 0.0137 (1.496) 0.1228 0.773
Plastic Materials & Other Synthetics 0.1571 (7.061) 0.7571 1.016
Agricultural Chemicals 0.1126 (6.030) 0.6944 1.007
Other Chemicals 0.0686 (3.611) 0.4491 0.794
Drugs & Medicines 0.2041(16.217) 0.9427 0.663
Petroleum Refining 0.0656 (2.114) 0.2183 0.292
Rubber & Miscellaneous Plastics 0.0856 (5.998) 0.6922 0.717
Stone Clay & Glass Products 0.0447 (5.657) 0.6676 0.930
Ferrous Metals & Products 0.0255 (1.732) 0.1578 0.779
Nonferrous Metals & Products -0.0052(-0.414) 0.0106 1.077
Fabricated Metals & Products 0.0206 (1.716) 0.1554 0.734
Motor Vehicles & Equipments 0.0856(10.652) 0.8764 1.914
Other Transportation Equipments 0.0664 (6.473} 0.7237 0.542
Aircraft and Parts 0.1019 (7.222) 0.7653 1.228

The ordinary least square estimates of 8 appear in Table 2 with the
Durbin-Watson statistics, t-statistics, and R?. The Durbin-Watson test
at the five percent significance level shows the prevalence of serial cor-
relation in most industries except two, the missiles and spacecraft
industry and the motor vehicles and equipments industry. To produce
better estimates in those industries that show serial correlation, maxi-
mum likelihood estimation with autocorrelation was done. We increas-
ed the order of autocorrelation until each Durbin-Watson statistic indi-
cated that the null hypothesis of zero correlation could not be rejected
at the five percent significance level. After the AR (1} correction, the
Durbin-Watson statistics for two industries—petroleum refining, and
transportation equipment (other than motor vehicles) industry—were
still low. After the AR (2) correction, each Durbin-Watson statistic was
high enough to accept the null hypothesis. Therefore the error struc-
ture of the equation (15) is assumed as follows:

My = Pridg-) + Poflyg + Uy {17)

The final result of the estimates of g ;s are summarized in Table 3.
As expected, the elasticities are either positive or essentially zero. Twel-
ve out of the sixteen industries have a significantly positive elasticity at
the five percent level. The elasticity of output with respect to the knowl-
edge stock varies from a very low number to about 0.16. Furthermore,
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TABLE 3
ML witH AR(2) ESTIMATES OF ELASTICITIES BY INDUSTRIES

Industry B (t-stat) big
Ordnance & Accessories 0.0803 (3.032) 0.3999
Missiles and Spacecraft 0.0899 (5.266) 0.6697
Food & Kindred Products 0.0216 (2.377) '0.3247
Plastic Materials & Other Synthetlcs 0.1609 (6.699) 0.7735
Agricultural Chemicals 0.1168 (5.344) 0.6830
Other Chemicals 0.0810 (5.579) 0.7143
Drugs & Medicines 0.1578 (6.117) 0.7281
Petroleum Refining 0.0687 (2.043) 0.2616
Rubber & Miscellaneous Plastics 0.0912 (7.019) 0.8081
Stone Clay & Glass Products 0.0452 (6.391) 0.7742
Ferrous Metals & Products 0.0259 (1.486) 0.1531
Nonferrous Metals & Products -0.0108(-0.914) 0.0572
Fabricated Metals & Products 0.0255 (1.781) 0.2236
Motor Vehicles & Equipments 0.0899(15.961}) 0.9460
Other Transportation Equipments 0.0599 (4.253) 0.6114
Aircraft and Parts 0.0969 (5.561) 0.6956

those industries with relatively high elasticities are, in general, those in
which technological change has been particularly rapid: drugs, chemi-
cals, plastics, missiles and aircraft and parts. The fit of the equation is
fairly good. Some of the explanatory effect of the knowledge stock in
the equations may be the result of the correlation between knowledge
stock and time. If there is some other variable that also is correlated
positively with time and measured TFP, the observed effect of the
knowledge stock may be exaggerated. The four industries with insignif-
icant B, s seem to fall in the industry group with insignificant R&D
activity or technological stagnation. Industry level R&D expenditure as
a percentage of sales is presented in Table 4 to illustrate the inter-
industry difference in R&D activity. In 1976, the last year of the sam-
pling period, the R&D sales ratio varies from 0.2 percent to 8.3 percent
across the industry. We applied a fixed effects model to see if the poor
fit in those four industries is due to omitted variables that are industry
specific and time-invariant. But the estimation result was not improved
by using the fixed effects model. For those industries, the production
function approach represented in equation (15) may not be an appro-
priate approach to explain the variance in total factor productivity.

To see the effect of technological opportunity on the elasticity of out-
put, regression was run of the form:
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TABLE 4
R&D/SALES RATIO BY INDUSTRIES(%6)

Industry 1975 1976
Ordnance & Accessories 1.5 1.7
Missiles and Spacecraft 1.9 2.3
Food & Kindred Products 0.4 0.5
Plastic Materials & Other Synthetics 3.7 3.5
Agricultural Chemicals 2.6 2.8
Other Chemicals 2.1 2.0
Drugs & Medicines 8.7 8.3
Petroleum Refining 0.2 0.2
Rubber & Miscellaneous Plastics 2.3 1.8
Stone Clay & Glass Products 14 1.3
Ferrous Metals & Products 0.4 0.4
Nonferrous Metals & Products 0.7 0.7
Fabricated Metals & Products 1.1 1.3
Motor Vehicles & Equipments 1.8 1.4
Other Transportation Equipments 0.7 0.8
Aircraft and Parts 5.7 5.5

Source: Aggregation of the FTC line of business data to the level consistent with
other data in the analysis.

b;= AY, d + ¢, (18)

where b; is the estimate of B, Y = (Y, Yp.... Yi) and ¢ = (co, ¢;, ... ).
The error term ¢, contains the error term 1, from equation (16) and the
error introduced by using an estimate of 8 as the left hand variable.
Thus, the error in equation (18) might be heteroskedastic. Both White
and Breusch-Pagan tests of heteroskedasticity were run. But these
tests do not reject the null hypothesis of homoscedasticity at the 5%
level. The OLS estimates of the opportunity variables are reported in
Tabel 5. The fit of the equation is reasonably good, suggesting that the
opportunity variables explain a substantial proportion of the variance
in the elasticity. The estimates generally support the predictions of the
analytical model. The coefficients on y, (basic sciences) and y, (product
trajectory) are significantly positive. The coefficient on y, (applied sci-
ences), yz (process trajectory), ys (government research), and yg (uni-
versity research) are not significantly different from zero. The insignifi-
cant coefficients on these four opportunity variables could be the result
of collinearity among the regressors. ‘A detailed analysis including the
eigenvalues of the Y'Y matrix, condition indices, and the decomposi-
tion of the variances of estimates with respect to each eigenvalue indi-
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TABLE 5
TECHNOLOGICAL OPPORTUNITY COEFFICIENTS
Variable Coefficient (t-stat)
Intercept -0.3171 (-2.269)
U 0.0373 (2.891)
Y 0.0057 (0.411)
Ys -0.0412 (-1.986) R =0.7802
Ya 0.0602 {3.133)
Ys -0.0104 (-0.698)
Yo 0.0219 (1.188)
TABLE 6
COLLINEARITY DIAGNOSTICS FOR THE OPPORTUNITY REGRESSION
Condition Variance Decomposition
Eigenvalue -
Number intercept 1y, Y Ys Ya Ys Ys
6.834 1.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
0.118 7.591 0.002 0.001 0.003 0.003 0.003 0.094 0.031
0.026 16.282 0.000 0.044 0.008 0.000 0.002 0.299 0.226
0.010 25.821 0.043 0.473 0.002 0.012 0.035 0.100 0.199
0.006 33.688 0.014 0.057 0.828 0.000 0.170 0.010 0.003
0.003 43.547 0.019 0.276 0.156 0.665 0.196 0.097 0.012
0.002 65.651 0.923 0.149 0.003 0.319 0.574 0.399 0.528
TABLE 7
PEARSON CORRELATION COEFFICIENTS AMONG OPPORTUNITY VARIABLES
Y Yo Ys Ya Ys Ye
Y, 1.00 0.32 0.53 0.02 0.37 0.46
Yy 0.32 1.00 0.42 0.34 0.36 0.14
Ys 0.53 0.42 1.00 0.19 0.09 -0.02
Ya 0.02 0.34 0.19 1.00 0.22 -0.20
Ys 0.37 0.36 0.09 0.22 1.00 0.79
Ys 0.46 0.14 -0.02 -0.20 ) 0.79 1.00

cates linear dependencies among the y; s. The collinearity diagnostics
are reported in Table 6. The range of the condition numbers indicates
serious collinearity problems. The Pearson correlation coefficients re-
ported in Table 7 further confirms the presence of collinearity. There
are high correlations, especially between y, and y;, and between ys and
Ye: the null hypothesis of zero correlation was rejected at the five per-
cent level for those two pairs. It is not surprising to discover multi-
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collinearity among the opportunity variables since they measure differ-
ent aspects of the same general phenomenon.

We used a linear function for F(*) in the above estimation of equa-
tion (16), and therefore implicitly assumed separability of effects of
opportunity variables on R&D productivity. One might want to do non-
linear regression assuming an ‘ad hoc’ functional form for F(*). In-
stead of using an arbitrary nonlinear function, we would rather intro-
duce a factor analysis to surmount the multicollinearity problem and
to test the robustness of the positive relationship between R&D pro-
ductivity and technological opportunity. Using the technological oppor-
tunity data to the level of the individual respondent, the six opportuni-
ty variables can be insightfully condensed to two principal components.
The weights associated with the first two principal components are pre-
sented in Table 8. The table clearly shows that the first principal com-
ponent gives substantial weights to y; and yg, and also to y, and y;;
the weighting is reversed for the second principal component. The
straightforward interpretation of the first two principal components
would be, respectively, the technological opportunity reflected in re-
search activity “outside the firm,” and that embodied in the “innovation
history of the firm.” As Table 8 show, the first two components explain
54 percent for the variance in the six opportunity variables. For the
investigation of R&D productivity, we need to calculate standardized
principal component scores for each respondent and aggregate them to
the industry level of the analysis. When b is regressed on the first two
principal components, the coefficients of the “outside the firm” oppor-
tunity regressor is fairly high in absolute level, and also is significantly
positive, as expected. But the regressor that represents the technologi-
cal opportunity embodied in the “innovation history” is insignificant.
When we consider the fact that the two components explain only 54
percent of the variance in the six opportunity variables, it is plausible
that other aspects of technological opportunity are left out from the
regression, hence the estimates may be overestimated. However, the
results of the principal component analysis suggest a certain robust-
ness in the productivity relationship to technological opportunity as
determined by research activity outside the firm.

Finally, to see the importance of the spillover effect in the R&D pro-
ductivity relationship, we repeat the same regressions performed in
this paper, using an alternative proxy of the service flow of the knowl-
edge stock. If we assume zero spillover effect, X would be the same as
own industry R&D, R,. The results of the estimation using R, is almost
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TABLE 8
PRINCIPAL COMPONENTS ANALYSIS OF TECHNOLOGICAL OPPORTUNITY

Coefficients of

1st Prin. Comp. 2nd Prin. Comp.

y, Basic Science Relevance 0.60 0.16
Yy, Applied Science Relevance 0.64 0.11
ys Process Trajectory 0.36 0.64
y, Product Trajectory 0.25 0.66
ys Contribution of the Government 0.73 -0.40
ys Contribution of Universities 0.74 -0.38
Cumulative Variance Explained 0.34 0.54

the same as those with X;, Using X, instead of R, doesn’t improve the
regression results significantly.

The similarity in the coefficients of X, and R; seems to come from the
high correlation between own R&D and others’ R&D. We also estimated
the equation (10) rewritten here as:

Qy =a1+6iRa+6Jl-2J9thjz+!‘it~ (19)
Estimating the coefficients §; and §, we observed the multicollinearity
again.

The similarity in coefficients of X, and R, probably reflects the fact
that an industry in rapid technological change both invests more in
R&D and receives greater spillover from upstream industries. These
results suggest that the information in the spillover term is embodied
in its own industry R&D. Knowledge stock itself can be an input into
production but it might not be separated conceptually into knowledge
attained in its own industry and knowledge transferred from other
industries.

Another way to investigate the significance of inter-industry techno-
logical flow in explaining output elasticity is to test a hypothesis that
product R&D explains more of the productivity improvement than pro-
cess R&D. This originates from the idea that product R&D is relatively
more relevant to the inter-industry spillover effect than is process
R&D. We ran three regressions: (i) correlate of TFP to product R&D, (ii)
correlate of TFP to process R&D, and (iii) correlate of TFP to both prod-
uct and process R&D. The result is that process R&D explains more of
the variation in TFP than does product R&D. Thus, the evidence for
R&D spillover effects remains tenuous.
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V. Conclusion

Estimation results confirm the positive relationship between the flow
of services from the R&D stock and the productivity of traditional
inputs. To investigate the role of technological opportunity for produc-
tivity improvement, we used a two stage estimation method and a prin-
cipal component analysis, and other auxiliary analyses of data charac-
teristics. The analytical results were also in favor of the general hypoth-
esis that a given level of investment in knowledge stock will have a
greater effect in industries with relatively rich technological opportuni-
ties. Findings on the technological opportunity relationship are encour-
aging in general, but they also need to be interpreted carefully, because
of the presence of substantial measurement errors in the survey data
and in the proxy of the service flow of the knowledge stock, aside from
other problems involved in the inconsistency between theoretical con-
cepts and the data. The level of aggregation and the assumption of time
invariance for the opportunity variables are also troublesome. Aggrega-
tion to the industry level consistent with time series data creates a con-
siderable intra-industry variation in the relevant variables. If the
opportunity variables have changed substantially over the sample peri-
od, it is not clear how the estimation results of coefficients are to be in-
terpreted. However, these results do represent one of only a few at-
tempts at measuring the effects of the opportunity variables that are
conceptually interesting and empirically important but have been treat-
ed as ill-defined residual variations.

Using several different approaches, we attempted to verify the impor-
tance of inter-industry technological spillover in explaining output
elasticity and to examine the significance of its conceptual distinction
from own industry research. But the empirical significance of the
spillover effects could not be established. The results suggest that the
information in the spillover term is embodied in its own R&D. As
Evenson and Kislev (1973) and Mowery (1983) observed, firms that
invest in their own R&D are more capable of exploiting knowledge
spillovers from external sources.

(Received August, 1994; Revised April, 1995)
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