Concavity and Differentiability of Value
Function with CRS Return Functions

Byung-Ho Song*

This paper investigates concavity and differentiability of the value
function of a dynamic optimization problem when involved func-
tions and correspondences exhibit CRS property. For the purpose,
the relationship between the value function and the solution of the
associated Bellman equation is investigated beforehand. As a
byproduct of these investigations, the followings are obtained: a
strictly quasi-concave CRS function is strictly concave when at least
one of the independent variable is fixed in a 2 or higher dimensional
case, and quasi-concave CRS function is concave. (JEL Classifica-
tion: C61)

1. Introduction

It is well known that among approaches to dynamic optimization
problems, dynamic programming has its strength in discrete time prob-
lems, and that the theory for it is best developed when the return func-
tions are bounded. But many economic models deal with functions of
homogeneous of degree 1, or Constant-Return-to-Scale (CRS) func-
tions. Consider a firm’'s infinite horizon investment decision problem,
for example. Usually, the production function is CRS and feasibility set
is a cone.! In this case, the dynamic programming theory for problems
with bounded return functions cannot be directly applied.

Song (1986) has shown that in a discrete time case, with a proper
selection of a vector space and a norm, dynamic programming tech-
niques for problems with bounded return functions can be extended to
solve problems with CRS return functions. In this paper, we pursue the
subject further. Especially, the concavity and differentiability of the
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value function is investigated, which is important as a practical matter.
In most applications of the dynamic programming, first order condi-
tions for the Bellman equation play a significant role, and they cannot
be obtained without differentiability of the value function. Also in many
cases, concavity is necessary for further economically meaningful
analysis.

Yet complete analysis of the properties of the value function of
dynamic problems with CRS return functions is not available. Although
Stokey and Lucas (1989) present Song’'s (1986) theory for the CRS
cases, it does not fully explain the properties of value function. This
paper is trying to fill in the gap.

The rest of the paper is organized as follows. In Section II, we give a
specific economic example, to which our analysis can be applied, and
in Section III, we present a general framework for a dynamic problem
with a CRS return function, and summarize known results through
Song (1986} and Stokey and Lucas (1989). In Section IV, we present a
theory about the relationship between value function and solution of
the associated Bellman equation. In Section V, we develop a theory for
the concavity and differentiability of a value function. And we give some
concluding remarks in Section VI.

II. Example

Consider the following firm’s decision problem in a competitive envi-
ronment. It’s production requires two kind's of inputs; the first class of
inputs are available in the market, and the second not. The technology
of production has CRS property and the only way to use more of the
second kind of input is to build them up in previous periods with costs.
An example of this kind is the firm-specific human capital, which can
be increased only through internal job training.

The model can be formulated as follows. In each period, the firm
maximizes its short-run profit,

7, (W) = max pFk, h) - wk.
k20
Here, n(h) is the profit function, F is the production function homoge-
neous of degree 1 in (k, h), k and h are vectors of inputs available and
not available in the market, respectively, and w is a vector of market
prices of inputs k. m(h) is also homogeneous of degree 1, since
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n(Ah) = max Flk,AR) - wk
k k
= max A{F[I’h) -w I}

= A max {F(Ehj— wE}
(e / 2)20 y A

=1 T%( F(k’, h) - wk’
= An(h).
With this short-run profit function, in the long run, the firm solves
max i(—lw)t{n(h )= Clh,., - (I - A)R))
Far 1+7r t t+1 trie

where r is an interest rate, C( - ) is a cost function involved in increas-
ing in h, which is assumed to have CRS property, and I-Aisn X n
diagonal matrix with entry (i, ) being 1 - §,, i.e.,

1-56, 0 - 0O

0 1-6, - ©

I-A=( ) . )
0 0 - 1-6

n

Here, 6, represents depreciation rate of input i
Now suppose that for each h,, the maximum amount the firm can
build for the next period is I + A, where

1+, O 0

0 1l+4+ay -+ O

L
0 0 - 1+ a

Then the maximization problem is

- t
max Z(L) {n(h,) - Clhe., - I - A)h,)

iz i=o\1 + 1
s.t. k, 20,
(I - Ah, < h,,, U+ A)h,,
h, given.

Through Song(1986) and Stokey and Lucas (1989), we know how to
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attack this problem. But we need to know the properties of the firm’'s
long-run profit function in order to obtain economic implications. This
paper presents a theory for the purpose.

III. Model, Assumptions, and Known Results
In general, the dynamic programming problem is

max ¥ B'F(k,.k,,,) (L

thelt~y t=0

s.t. Ik € Tk,
I' is a correspondence;
Irb—D, DCR
ko € D given.

Now assume the following.

Assumption 1
D=R‘orRLA={lk,yye D x DIl yeTI{d}, and F: A— Ris a contin-
uous CRS function. 0 < f < 1.

Assumption 2
For all k € D, I'(k) is non-empty, compact, continuous, and y € TI'(k) if
and only if Ay € I'(Ak) for all A > 0. And if y € Tk, then Iyl < allkl
for some a € (0, 81).

The corresponding functional equation (Bellman equation) to the
problem (1) is

vl = max {Flk, y) + fu(y)}. 2
yeTk)

In order to solve (1) through the Bellman equation (2}, we deal with
the following space. Let S be the space of continuous and real valued
functions with CRS property on the domain D. Define a norm of f & S

by
1fH = sup lylal.

Theorem 1
The normed vector space S is complete.

Proof: See Song (1986)or Stokey and Lucas (1989).
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Q.E.D.

Theorem 2. (Modification of Blackwell's sufficient conditions for a con-
traction)

Let T S — S be an operator satisfying

(i) (monotonicity) If f, g € S, and flX) < g( for all x & D, then THM <
Tg(x for all X € D.

(i) (discounting) There exists some y & (0, 1) such that for all f< S, all
a>0,and all xE D,

Tf+ad < TX + |

where (f+ a)(x = flxd + allxll.
Then Tis a contraction with modulus 7.

Proof: See Song (1986) or Stokey and Lucas (1989).
Q.E.D.

Now define an operator T* S — S for the dynamic problem (1) as fol-
lows.

Tu(x = max {Flk, y} + Bu(y)).
yeT(K

Maximum is attained since Flk, y) + Bv(y} is continuous in y and the
set I is compact. By the theorem of maximum, Tu(k) is continuous, The
new function Tv is CRS since

Tv(Ak) = yE}%{FMk' y) + Buly)}

- Yl_ g, Y
=4 w %}fr((k){F(k’ /1] pv /l}
= A max ){F(k,y’) + Buly”)}

(y)eT (ke
= A{Tvlk)} forall A > 0.
Hence, T is well defined.

Theorem 3

T has a unique fixed point v € S, and for all v, € S, 1Ty, - vil <
(ef)tllvg — vlil for n=0, 1, 2, .... And given v, the policy correspondence
g: D— D, defined by

glk) = {y € T v(k) = Flk, y) + fr(y)},

is compact valued and upper-hemi-continuous.
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Proof: See Song (1986) or Stokey and Lucas (1989).
Q.E.D.

IV. Relationship between Value Function and Solution of
Bellman Equation

Now given k & D, define B(k) as

Bl = (k)2 k, = D, and k,,, € I'tk) forall t= 0, 1, 2, ..., and k, = K}
Define U,: B(k) — R and U, B(lJ — R (extended real line) by

U,(k%) = 3 B'Flk, k,,), and
t=0
U(®) = im U, (k*),

where I = {k)7., € B(k). Also Define v": D — R (extended real line) by

v'(k) = sup Ulk®).
k*<Blid

A sufficient and necessary condition for a function & D— R to be v’ is

Condition (a)
for each k € D, &(k) > Ulk®) for all k¥ € B(k), and

Condition (b)
for any € > O, there exists k® & B(l) such that &l < Uk®) + ¢ for all k
& D.

Note that v is homogeneous of degree 1 with the usual convention that
oo:l = o and ~ oo:A = — oo for all A > 0. To see this, first observe that k* €
B(k} if and only if Ak® € B(Ak) for all A > 0, which is a result of assump-
tion 2, where Ak® = {Ak)7,. Then

v(Ak) = sup U(k®)
S < B{ak)

=i sup U(L)
(1/ AYcS eBk) A

= Av' (k).
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Let g be a correspondence from D into the collection of subsets of
I'(k). We say that it attains v, a solution to (2), if (k) = Ak, y) + pu(y) for
all y € g(k).

Theorem 4
v satisfies (2) in the sense that

v = sup {Flk, y) + fU'iy)k
yr(

Proof: Fix k € D. For any y € I'(k) and for any sequence {kij7o € B(y),
(k. y. k;, k, ...) € B(k). Hence from condition (a} above,

b'00) 2 Fll,y) + BF(Y. k) + BZ Bl i)
From condition (b), given ¢ > O, we can choose {k)70 € Bly) such that
v'(k) < Fly. k) + g BiF(k, k,,,) + € forall y.
Hence

v'(k) 2 Flk,y) + BFly. k) + B f‘. BFlk,. k1)
t=1

2 Flic.y) + v’ (y) - &
= F(k.y) + fv’(y) - Pe forall yeTlk)andall € <O.

This implies v'(l) > Flk, y) + pv'(y) for all y € I'(k). Again from condi-
tion (b), given £ > 0, we can choose {k}7.o € Bl(k) such that

v'(k) < Fly.k}) + 3 BFU K, + €.
t=1

Hence v'(l) < Flk, k}) + pu(k}) + £ since

3 BFUC Kk,) < o' (k).

t=1
k was fixed arbitrarily. Therefore, v* = sup {Flk, y) + Bu.(y)) for each k €
D follows immediately. ysr

Q.E.D.

Theorem 5

If v satisfies (2) with Liinmﬁ"v(k,,) =0 for all k € D, and all k° € B(k), then
vl = V(i) for all k € D.
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Proaf: vlk,) > Ak, k,,,) + Bulk,,,) for all n > 0.
So Un(ks) + Bnﬂu(knﬂ) = Un(ks) + Bn+lﬂkn+]’ kn+2] + Bn+20(kn+2)
= Uy (k) + pr+2ulk,,,) for all n > 0.
Hence, v(k) > U(k%) + f*'vlk,.)
> Up (k) + f2ulk,,p) for all n > 0.

This implies
vlke) 2 Um{U, *) + B olk, 1)}

= lim U, (k)

=U(k®) forall ke D andall k°® e Blk).
Now fix k &€ D. Given ¢ > 0, it is possible to choose y, € I'(k) such that

v(lg < Flk, y,) + Poly)) + & and
given y,, it is also possible to choose y, € I'(y,) such that
wy)) < Fly,, yo) + Bulys) + &

So vlk) < Flk, y)) + BFlyy, Yo) + Pulys) + &1 + ).

Continuing this procedure, we can generate a sequence y° = {y¢, such
that Yo = kv Yna S r(yn)v and

v(yn) S Hyn’ yn+1) + Bv(ym»l) + &

Hence,

n 1- BrH—l

vlk) < 3 BFWY, Ypn) + B 0W,0 + 8(—1—[3—J
t=1 -
£
<Uy®) + .
W) -5
This means for any ¢ > 0, condition (b) is satisfied. Therefore, v = v'".
Q.E.D.

Theorem 6

If v satisfies (2) with lim,_,.f"%(k,) < O for all k € D, and k° & B(k),
then v(k) < v'(k) for all k & D.

Proof: From the second half of the proof of the Theorem 5, we know
that given € > 0, there exists y* € B(k) such that
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vlk) < U(y®) + im " 'uly,,,,) + €
SUy®)+¢ forall keD.

Hence v{lk) < v'(l) + € for all k € D and for all € > 0. Therefore, v(k) <
v'(k) for all k  D.
Q.E.D.

Theorem 7

Assume the hypothesis of Theorem 6 and assume that for any k* €
B(k}, there is k¥ € B(k) such that Uk*') 2 Uk®) and limf"v(k’) = 0.
Then v(k) = v'(i} for all k = D.

Proof; From theorem 6, v(k) < v'(k) for all k & D. From condition (b), it
is possible to choose k° & B(k) such that v'(k) < Ulk®) + ¢ for a given € >
0. Then by hypothesis, it is possible to choose k*° & B(k) such that
Ulks") > Ulk®) and limp"v(k}) = 0. Then from the first part of the proof of
the Theorem 5, we conclude that v{k) < Ulk®"). Hence v'(l) < u(k) + € for
all £ > 0. Therefore, v(k) = v'(k) for all k € D.

Q.E.D.

Theorem 8
If (k) = v'(k) for all k € D, g attains v", and limf"v(k;) < O for a
sequence k* & Bl such that k,,,, € g(k,), then v'(k) = Uk9).

Proof: Since k,,, € glk,), U'(l) = U, (k%) + f*1V'(k,,,) for all n > 0. Hence
vlky) = Um{U, () + 10" (K )}
= Ulk®) + lim ™10 (k, )
< Ulk?®).
But v'(k) > Ulk®) by the definition of v". Therefore, v'(k) = U(kS).
Q.E.D.

Theorem 9

Let F, B, and I satisfy assumptions 1 and 2, v satisfy (2), and g attain
v. Then given k, € D, vlk,) is the value of the objective function in
problem (1) at the maximum. Moreover, a sequence {k;5, is the solu-
tion to problem (1) if and only if it satisfies k,,, € g(k).

Proof: We know v exists and unique from Theorem 3. Since the unit
ball is compact in R, |fw(k)| = =k, Il- 1ulk,/ Kk, )| < Brilk I-M
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for all k, = 0. lk,ll < allk, |l by Assumption 2 since k, & I'lk,.,). So
e, I < allkgll. Thus

0 < 1Bk = Brlli,ll- Loli,/ Il e, )| < Braniii Il -M.

Then off < 1 implies that limf"v(k,) = 0. Therefore, by Theorem 5, v
solves (1) and v{ky) is the value of the objective function.

The fact that if {k,)7, satisfies k,,, € g(k), it is the solution of prob-
lem (1) comes from Theorem 8 and that 1}1& Pu(k,) =

To prove the converse, suppose that (i}}2, solves (1) with i = k.
Then

vlk,) = max ¥ BFik, .k,,,)

letlto t=0

iﬁ F(k kt+1) + ‘kmax {ﬂn+1F(kn+l kn+2) + Zﬁ F(k ktH)}

t=0 t}[ n+2 t=n+2

B'Flk; . k,,)) + B*'olk.,,), n =012,

M::

t=0
Setting n = N- 1 and again n = N, we have

viky) = z BF(k; ki) + BYulicy)

t=1

N » * n+ .
= ZﬁtF(kt’kt+l)+ﬂ lv(kN+l)’ N = 1;2;...,
t=0

so that vlicy) = Flky, kiy,1) + pullcy,), N=1, 2, .... Also setting n = 0, we
have v(ky) = Flk;, k}) + Bulk}). Hence by the definition of g it follows that
Q.E.D.

V. Concavity and Differentiability of Value Function

Now we are ready for the differentiability of the value function if we
assume the following.

Assumption 3
Fis strictly quasi-concave.

Assumption 4
Fisconvex forall k € D. Andforallk, K € Dandall0 < < 1,y
I'(k) and y & I'(lK) implies that 8y + (1 - 8}y < {6k + (1 — GiK).
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Theorem 10
Let F, B, and T satisfy assumptions 1 to 4, v solve (2), and g be policy
correspondence. Then v is concave and g is a continuous (single val-
ued) function.

In order to prove this theorem, we need the following lemmas.

Lemma 1
Assume h is CRS and strictly quasi-concave. Then for any 6 € (0, 1),
h{6x; + (1 — 6)x;) > Bh{x;} + (1 - Ohix,} if x, 2 0 and x; # tx, forall t € R.

Proof: If h(x;) = hi{x,), then by the strict quasi-concavity of h, h{6x; + (1
— 6)x) > 6hix)) + (1 — 6h(x,). If h{x;) # h(x;), then without loss of general-
ity assume h(x,;) < h(xy). CRS property and strict quasi-concavity
implies that h(x) # 0 if x # 0.2 Let U = hix))/h(x;). then h{ux;) = ph(x)) =
h(x;). Hence

Oh{x,} + (1 - B)h(x,)
= 6h(x;) + (1 - B)h(ux,)
= {8 + u(l - 6)}h(x,).

h{ox, + (1 - B)x,}

Let A=
h(x,)

Then h{(A/1)x,} = hifx, + (1 - 6)x,). From strict quasi-concavity,

h{a(ﬂ.xl) +(1- a)(% X, J}

> ah{a(ﬂxl) +(1- a)h(% Xy ]}

= h(ix,)
= h{6x, +{1- 0)x,} forall a € (0,1).

Let a= 6/{6 + (1 - Qu}. Clearly, 0 < a < 1 with 8 € (0, 1). Hence

h{ 0 g, + U O ix2}

0+(1-0)u 6+(1-0u u

2Suppose not, i.e., h(x) = O for some x # 0. Then h(Ax = O for all A > 0, which
contradicts to the strict quasi-concavity of h. So h{xJ # 0 if x# 0.
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R,
X1 X° = 6X, +(1- 6)x 2
A
B
Xl
Xx° X,
’ A’
B
X,
0 R,
FIGURE 1
A
=———hifx; +(1- 0)x,}
6+0-u

> hi{ox, + (1 - 0)x,}.

Then A/{6 + (1 — 8y} > 1 since h{6x;, + (1 - 8)x,) # O from the assumption
that x, #0and x; # tx, forall t € R. So

Ah(x)) > {6 + (1 — Gu}hix,), and
Ah(x)) = hiox; + (1 - Gx)

> (@ + (1 -~ Guthix)
= 6h(x;) + (1 - Ohlxy).

Therefore, hifx; + (1 - 8)x,} > 6h{x;) + (1 - Ghlx,).
Q.E.D.

The above proof can be illustrated in a 2-dimensional diagram.
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Three level curves Passing through x;, x,, and X¢ are drawn where x°
= 6x; + (1 — 6x,, and h(A) = h(x°). The line segments x4, andR are
parallel. Then on the line segment BB which passes through »° and is
parallel to )?g B has the value of 6h(x;) + (1 - 6lh(x,), since

0 - —_—
X oal ||B’ x| and
X — Xy "xl = xl"
- °| -
Xy — X _1-6)= |x’1—13"
x, = x| e = x|

Since the level curves are convex to the origin, the line segment BB is
closer to the origin than the line segment AA’ . This implies that

h(A) > h(B), i.e., h{6x, + {1 - Ox,} > 6h{x;) + (1 - Bh{x).

Notice that the above lemma implies that if at least one of the ele-
ment in vector x is fixed, the h(x is strictly concave.

Lemma 2
If h(x is CRS and quasi-concave, then it is concave.

Proof: The proof is almost identical as that of lemma 1.
Q.E.D.

Lemma 3
Suppose f;, are sequence of concave functions in the space S, and f,, —
v in the topology of S defined in Section II. Then v is concave.

Proof: Let k, K, and 8 be given, and let k° = 6k + (1 - )k’ . Assume k #
0, K #0, and 8 € (0, 1). In other cases, trivially 8v(k) + (1 - Quv(k') =
v(k9). Then given ¢ > O, there exist N, N', and N° such that

(i) ()

< "k" ’ "fn - v"
< gi| forall n = N,
[olkc’) - £, (k)| < gf)k’| forall n 2 N’, and

otk - £, (k)| = K| -

[otkc®) - f,0%) < fic®| forall n = N°.

Let 6 = maxiell kll, el K1), el k°Il}, and M = max {N, N, N°. Then v(k) <
Sl + 8, vk} < fi(K') + 8, and v(K°) > (k%) - & for all n > M. Hence
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Gl + (1-Qul )< 8f(N+(1-~-QRAK )+ &
< fO0) + 6
< v(k9) + 26.

Since &€ was chosen arbitrarily, 8u(ld + (1 - (k') < v(k°) + 28 holds for
all > 0. Hence 6u(k) + (1 - v} < v(k9), i.e., v is concave.
Q.E.D.

Proof of Theorem 10: By Assumption 3 and Lemma 2, F is concave.
Let f& S be concave, y and Yy solve

Tf (k) = ;IJ?(XH{F(k’ y) + Bf(y}}, and

Tf (k') = J?ra(lig){F (k’,y) + Bf(y)}, respectively.

And let y° = 6y + (1 - @)y and k° = 6k + (1 - OK . By Assumption 4, °
= & I'(k%). Then

TAKO) > RO, ) + BAYY)
> 6F(k y) + By} + (1 - K , y') + By )}
= 6T + (1 - OTAK ).

Hence choosing f, to be concave, we can generate a sequence of con-
cave functions, {f)7, in S using T, i.e., f, = Tf,. Since f, — v, by
Lemma 3 v is concave. Flk, y) is strictly concave in y by Lemma 1. Then
Flk, y) + Buly) is strictly concave. I'(k) is convex for each k. Hence the
maximum of (2) is attained at a unique y-value. Therefore, glk) is a
! (single-valued) function and the continuity of g follows from the fact
that it is upper-hemi-continuous.

Q.E.D.

Theorem 11
Assume the hypotheses of Theorem 10, and let v, € S be concave. Let
{v)7-0 be a sequence generated by T, and define (g,}=., by

gnlk} = argmax crylFlk, y) + fv(y)), n=0,1,2, ...
Then g, — g pointwise, i.e., for each k € D, g,(iJ — g(k).

Proof: Let ¢(y) = {Flk, y) + Bu(y)} and ¢.(y) = {Flk, y) + Pu,ly)} fixing k €
D. Since v and v, are concave, and Flk, y) is strictly concave by Lemma
1, ¢ and ¢, are strictly concave. Since I'(k) is compact for each k € D,
there exists y* such that
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Hy'll = sup{liyll ly € T(9).
Y

Hence the fact that {v,} — v in the sense of sup norm on the unit ball in
R™ implies {v,} — v uniformly. Hence {¢,} — ¢ uniformly. Then by
Theorem 3.8 in Stokey and Lucas (1989), the conclusion of this theo-
rem follows immediately.

Q.E.D.

Now assume the following for differentiability.

Assumption 5
For each fixed y, F(., y) is continuously differentiable on the interior of
Iy}, where I'l{y} = {k € Dly & I'(K)}.

Theorem 12

Let F, B and I satisfy assumptions 1 to 5, and let v solve (2) and g be
the policy correspondence, which is a single valued function under the
assumptions. If I, € Int D and g(k,) € Int I'(ie), then v is continuously
differentiable at k, with derivatives given by

oulko) _ dF ik, glicy)}

fa i=1,2,...,n
ok, Ik, or n

Proof: Since g(k,} € Int I'(kp), and T is continuous, it follows that gli)
€ Int I'(i) for all k in some neighborhood J of k. Define w: J — Rby

w(k) = Fik, glko)} + Buiglico)).

F is strictly concave by Lemma 1, and differentiable in its first n argu-
ments by Assumption 5. So w is strictly concave and differentiable.
Also

wlk) < ;rel?.()’(d {Flk, y) + Buy)} = v{ld, forall ke J,
with equality at k,, because glky) = I'(id for all k & J. Thus by Theorem

4.10 in Stokey and Lucas (1989), v is differentiable.
Q.E.D.

VI. Conclusion

The main result of this paper is the establishment of concavity and
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differentiability of value function when involved functions and corre-
spondences exhibit CRS property. As the example in Section II sug-
gests, some important economic problems fall into this category, which
makes our results useful.

In order to establish concavity and differentiability of value function,
we had to first clarify the relationship between the value function and
the solution of the associated Bellman equation. Since the space we are
dealing with is different from that for bounded return functions, we
cannot say a priori that the relationship in the bounded case carries
over to CRS case. But in Section IV we verified that it does.

In conclusion, under assumptions 1 through 5, the solution of
Bellman equation exists, is unique, is the solution of the original maxi-
mization problem, and is concave and differentiable when involved
functions and correspondences exhibit CRS property. As a byproduct
on the way to this conclusion, we have that a strictly quasiconcave
CRS function is strictly concave when at least one of the independent
variable is fixed in a 2 or higher dimensional case, and that a quasi-
concave CRS function is concave.
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