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The objects of study in this paper are transferable utility games
and prescriptions for such games in the form of an array of out-
comes for all coalitions or payoff configurations. We aim to identify a
necessary and sufficient condition on games for the existence of a
payoff configuration which is a core allocation and also satisfies an
equity requirement named population monotonicity. Unlike the con-
ditions found in the previous literature, we identify an ‘operational’
condition: given a game, its zero-normalization is non-negative and
the value of the objective function in the linear programming problem
associated with the game is zero at its solution. (JEL Classifications:
C71, D63)

I. Introduction

The objects of study in this paper are transferable utility games in
coalitional form, and prescriptions for such games in the form of an
array of outcomes for all coalitions or payoff configurations.! We study
the problem of the existence of a payoff configuration which is a core
allocation and also satisfies an equity requirement named population
monotonicity.

Most solutions for games in coalitional form are concerned with out-
comes only for the grand coalition. Typical examples for such solutions
are the core, the Shapley value and the nucleolus, etc. However, since
games in coalitional form contain the full information about what each

*KISDI, 1-33 Juam-dong, Kwachun, Kyunggi-do, 427-070, Korea. (Fax)+82-2-
570-4249. The author is grateful to Professor William Thomson and two referees
for valuable comments and advice.

IThe term payoff configuration was firstly used by Hart (1985).
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coalition can obtain, it is quite natural that a solution prescribes an
outcome for every coalition. Indeed, the Shapley value for non-transfer-
able utility games implicitly deals with outcomes for all coalitions. The
Harsanyi value and the consistent Shapley value explicitly prescribe an
outcome for each coalition.?

Harsanyi interpreted an outcome for a coalition as an optimal threat
of the coalition against its complementary coalition. There is another
interpretation by Hart (1985): an outcome for a coalition is viewed as a
payoff vector that the members of the coalition agree upon if the coali-
tion forms.

Given a game in coalitional form, it is uncertain what coalitions can
actually be formed. So, it may be desirable that solutions prescribe
outcomes for all coalitions. From such a viewpoint of coalition forma-
tion, Dutta and Ray (1989), Sprumont (1990) and other authors stres-
sed the need of prescribing outcomes for all coalitions.

Since a payoff configuration is an array of outcomes or payoff vectors
for all coalitions, it has a structure of a variable population. In many
economic models with a variable population, population monotonicity
has been adopted as an important equity requirement.3 In the context
of games in coalitional form, population monotonicity means that if a
new agent joins a coalition, then all existing members of the coalition get
better off. For example, imagine cost sharing of a public good. As a new
agent joins a coalition, the tax basis also increases but it does not
reduce anyone’s consumption of the public good.* Thus, it is unfair
that joining of a new agent hurts some of the existing members.

In this paper, we introduce the core as our basic solution concept for
transferable utility games. We focus on the problem of the existence of
a {population) monotonic payoff configuration among the core alloca-
tions. Sprumont (1990) identified a necessary and sufficient condition
on games for the existence of such a payoff configuration. However,
since this condition is in the form of an existence condition, it is very

2For definitions of the Shapley value and the Harsanyi value for non-transfer-
able utility games, and for an analytic comparison between the two solutions,
refer to Hart (1985). For a definition of the consistent Shapley value, refer to
Maschler and Owen (1992).

3Population monotonicity is a ‘powerful’ axiom in characterizing many well-
known solutions in the field of the social choice theory. Examples are the Kalai-
Smorodinsky solution and the egalitarian solution in the bargaining theory. For
a comprehensive survey on this literature, see Thomson (1995).

1See Moulin {(1990) for an example of cost sharing of a public good.
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difficult to see whether or not a game satisfies this condition. We aim to
identify an alternative necessary and sufficient condition which offers
an operational criterion for checking whether a game has a monotonic
core payoff configuration.

We associate with each game a linear programming problem. Then,
our necessary and sufficient condition is: given a game, (i) its zero-nor-
malization is non-negative® and (ii) the value of the objective function in
the associated linear programming problem is zero at its solution.
Consequently, in order to check the existence of a monotonic core pay-
off configuration for a game, we need only to obtain its zero-normaliza-
tion and to solve the linear programming problem associated with the
game.

The paper is organized as follows. Section II formalizes the model and
some definitions including population monotonicity, and presents a
preliminary result of Sprumont (1990). Section III formulates our nec-
essary and sufficient condition and gives a proof. Section IV contains
some concluding comments.

I1. Preliminaries

Let N = {1, 2, ..., n} be the set of players. For each S C N, RS is the
cartesian product of |S| copies of R indexed by the elements of S.

An (n-person) transferable utility game in codlitional form or a game is
a function v: {SIS C N, S # @} — R, which assigns to each non-empty
coalition or{ N, a real number. A vector x & RV is a payoff vector for the
game v if El x, = v(N).

Given a game v, given a non-empty coalition T € N, the subgame of v
with respect to T, denoted vy is defined by vy = vl g gc1 g The sub-
game configuration of the game v is defined as (v)pcy 1 (for short,
(v7). This is an array of all subgames of v. An array of vectors (x9gcy s.0
in the product Ilgcy .0 RS is a payoff configuration for the game v if for
all S C N,Lgs 28 = u(S).

We naturally extend the usual notion of the core for games to sub-
games and to subgame configurations as follows,

Definition
Given a game v, given a non-empty coalition S & N, the core of the sub-

SFormal definitions of the zero-normalization and non-negativity are given in
Section II.
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game vg, denoted C(vg) is defined by
Clvg = x5 € RSI lgsxﬁ = vy(S), l‘eszfz v(M vT C S},

and the core of the subgame configuration (vg), denoted C((vg) is natu-
rally defined as the product of the core payoff vectors for each sub-
game, Ty Clug).

Population monotonicity is our equity requirement for payoff configu-
rations. This axiom requires that for any coalition, if a new agent joins
the coalition, then it makes every member in the coalition better off. It
is formulated as follows.

Definition
A payoff configuration (x% is (population) monotonic if for all S, T € N
with SC T, forallie S, x¥ <X

A payoff configuration (x5 is a monotonic core payoff configuration for v
if (x¥ is monotonic and (x5 < Ig y Clug.

We need the following definitions for technical and expository pur-
poses. A game v is zero-normalized if v(i) = O for all i & N. Given a game
v, the zero-normalization of v, denoted 1° is defined by °(S) = V(S)-X 5
v() for all S € N. A game v is non-negative if for all S € N, v(S) 2 0. A
game v is monotonic if for all S, TC Nwith S C T, v(S) < v(T). A game v
is a null game if v(S) = O for all S. A game v is a simple game if for all S,
v(S) € (0,1}. A game v is a unanimity game if there exists T < N with T
# @ such that

1 if T S

0 otherwise.

v(S) = {

Player iis a veto player in the game v if for all S € N\{i, v(S) = 0. A game
with at least one veto player is a veto-controlled game.

The next theorem shows a necessary and sufficient condition on
zero-normalized games for the existence of a monotonic core payoff
configuration.

Theorem 1 (Sprumont, 1990)

Given a zero-normalized game 1°, there exists a monotonic core payoff
configuration for ° if and only if 1° is a positive linear combination of
monotonic veto-controlled simple games.

Remark: Note that a game has a monotonic core payoff configuration if
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and only if its zero-normalization has one.® Then, Theorem 1 implies
that a game has a monotonic core payoff configuration if and only if its
zero-normalization is a positive linear combination of monotonic veto-
controlled simple games.

Remark: Note that the condition in Theorem 1 is in the form of an
existence condition. So, it is hard to check whether a game satisfies
this condition. Especially, when the number of players is large, it is
almost impossible to check games with this condition. Sprumont
(1990) offered another necessary and sufficient condition which is of
the same type as the balancedness condition for the non-emptiness of
the core.” Unfortunately, the second condition is not so operational
because it is complicated by an infinite number of vectors of ‘subbal-
anced’ weights. As pointed out by Sprumont (1990}, the two conditions
do not offer an operational criterion for checking whether a game has a
monotonic core payoff configuration.

ITI. A Necessary and Sufficient Condition for a
Computational Test

In this section, we identify an alternative necessary and sufficient
condition which can perform a computational test for the existence of a
monotonic core payoff configuration. Firstly, we associate with each
zero-normalized game a linear programming problem in the following
way.

We arbitrarily fix the order of non-empty coalitions such as (S,, ...,
S,.1). Let 0!, ..., ' be all the distinct non-null, monotonic veto-con-
trolled simple games. For each i=1, ..., [, let w* & R?™! be such that

w=mS) vj=1,..2"-1,

where S, is the j-th coalition in the fixed order of coalitions. Let the
matrix W be defined by W= (w! ... w!). Let y € R?*! and a € R. Then,
given a game v, the linear programming problem associated with v is:

2n-1
min, [)51 y st Wa+y=b and ay=058

6See Sprumont (1990, p. 383).

7See Theorem 2 in Sprumont (1990).

8Vector inequalities: x =2 ye= x 2y Vi x2yex 2 yandx£y, x>y < x>
Yy, Vi
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where b = (1° (S)), ..., 1° (Syn;)) and P is the zero-normalization of v.

Remark: To identify the matrix W which is composed of all the distinct
non-null monotonic veto-controlled simple games, we follow the next
steps.

Step 1. We identify 22* 1 — 1 non-null simple games.
Let V® be the class of non-null simple games.

Step 2. For each v € V®, for each coalition S with v(S) = 1, if there
exists a coalition § such that § 2 S and uv(S') = 0, then we delete v
from V.

Then, only non-null monotonic simple games remain. Let V™ be the
class of such games.

Step 3. For each v & V™, if for all i & N, there exists a coalition S
such that i € S and v(S) = 1, then delete v from V™.

Then, we end up with all the non-null monotonic veto-controlled simple
games.®

The following lemma shows that non-negativity of 1° is a necessary
condition for the existence of a monotonic core payoff configuration for
v.

Lemma 1
If there exists a monotonic core payoff configuration for v, then its zero-
normalization 1° is non-negative.

Proof: Suppose to the contrary that there exists S € N such that |S1 2
2 and ° (S) <0. Since there exists a monotonic core payoff configura-
tion for v, it follows from Theorem 1 that t° is a positive linear combi-
nation of monotonic games. Since a positive linear combination of
monotonic games is also monotonic, it follows that ° is a monotonic
game. Since ° (i) = O for all i, it follows from monotonicity of ¢ that for
all S € Nwith IS| =2, v (S) > 0, which contradicts the hypothesis.
Q.E.D.

9Step 1-3 are computer-programmable.
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The next lemma by Gale (1960) presents a necessary and sufficient
condition on linear equation systems for the existence of a non-nega-
tive solution in terms of linear programming. This lemma plays a key
role in the proof of Theorem 2.

Lemma 2. (Gale, 1960)

Let A be an m x n matrix with n>2 m, and x € R"and ¢, y € R™ with ¢
= 0. Then, the linear equation system Ax = ¢ has a non-negative solu-
tion if and only if the value of the objective function in the following lin-
ear programming problem

minx'y)';nly, st. Ax+y=c and xy=0

is zero at its solution.

The next theorem shows a necessary and sufficient condition which
can perform a computational test for the existence of a monotonic core
payoff configuration. Checking up this condition only requires solving a
linear programming problem.

Theorem 2

Given a game v, there exists a monotonic core payoff configuration for v
if and only if (i) its zero-normalization 1° is non-negative and (ii) the
value of the objective function in the linear programming problem asso-
ciated with v is zero at its solution.

Proof: By Lemma 1, part (i) of the above condition is a necessary condi-
tion for the existence of a monotonic core payoff configuration for v. Let
V* be the class of games whose zero-normalizations are non-negative.
Then, it remains to show that on V*, part (ii) is a necessary and suffi-
cient condition for the existence of a monotonic core payoff configura-
tion for v.

According to Shapley (1953), every game is a linear combination of
unanimity games. Note that every unanimity game is a non-null
monotonic veto-controlled simple game. Then, every game is a linear
combination of non-null monotonic veto-controlled simple games.
Therefore, there exists a € R! such that 1° = £, q, ' That is,
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Theorem 1 implies that there exists a monotonic core payoff configura-
tion for v if and only if the linear equation system Wa = b has a non-
negative solution. 1°
Since v & V*, it follows that ° (S) = O for all S. Therefore, b = 0.
Since there are 2" - 1 (n-person) unanimity games, it follows that [ > 2"
— 1. Since Wis a (2" ~ 1) x | matrix, and a € R! and b, y € R2“1,
Lemma 2 completes the proof.
Q.E.D.

IV. Concluding Comments

In this paper, we discovered a necessary and sufficient condition for
the existence of a monotonic core payoff configuration in the case of
transferable utility games. Unlike Sprumont (1990)'s conditions, our
condition offers an operational criterion for checking whether a game
has a monotonic core payoff configuration. Since linear programming is
involved in the condition, we can routinize the process of checking up
the condition by a computer program.

A natural research agenda is to extend the existence problem to the
case of non-transferable utility games. Since our result depends on the
linearity of transferable utility games (that is, a game is a linear combi-
nation of monotonic veto-controlled simple games), it may be impossi-
ble to extend our result to the non-transferable utility case. Moulin
(1990) also pointed out the difficulty in tackling the existence problem
in the case of non-transferable utility games. We leave the agenda to
future research.

(Received March, 1996; Revised May. 1997)
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