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Altered lipoproteins in patients with
systemic lupus erythematosus are
associated with augmented oxidative
stress: a potential role in atherosclerosis
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Abstract

Background: To examine the structural and oxidative properties of lipoproteins from patients with systemic lupus
erythematosus (SLE).

Methods: The lipid profiles of 35 SLE patients and 15 healthy controls (HCs) were compared. Oxidation status,
susceptibility to oxidation, and structural integrity of low-density lipoprotein (LDL) were determined by measuring
malondialdehyde (MDA), de novo formation of conjugated dienes in the presence of CuSO4, and mobility on gel
electrophoresis, respectively. In vitro foam cell formation and the oxidative potential in zebrafish embryos were
examined.

Results: LDL levels in SLE patients and HCs were similar (p = 0.277). LDL from SLE patients was more fragmented
than that from HCs. In addition, LDL from SLE patients was more oxidized than LDL from HCs (p < 0.001) and more
susceptible to de novo oxidation (p < 0.001) in vitro. THP-1 cells engulfed more LDL from SLE patients than LDL
from HCs (p < 0.001). LDL from SLE patients, which was injected into zebrafish embryos, induced a higher degree of
oxidation and a higher mortality than LDL from HCs (both p < 0.001). The survival of embryos treated with oxidized
LDL was significantly better in the presence of HDL3 from HCs than that from SLE patients (all p < 0.001).

Conclusions: Lipoproteins from SLE patients exhibited greater oxidative potential, which might contribute to
accelerated atherosclerosis in SLE.

Keywords: Atherosclerosis, Oxidation, Lipoproteins, LDL, Systemic lupus erythematosus

Background
Systemic lupus erythematosus (SLE) is a chronic inflam-
matory multisystem disease mediated by immune cell acti-
vation and autoantibody production [1]. Patients with SLE
carry an increased risk (up to 17-fold) of developing a car-
diovascular (CV) disease [2, 3]. Although traditional risk
factors for CV disease are more prevalent in patients with

SLE than in the general population [4–7], they do not
solely account for the increased CV risk observed in these
patients [8, 9]. As an example, a significant reduction of
total cholesterol levels with atorvastatin failed to halt pro-
gression of atherosclerosis or to decrease inflammatory
markers such as C-reactive protein (CRP) in SLE patients
[10, 11]. Therefore, SLE with chronic inflammation
increases CV risk by influencing traditional and non-
traditional pro- and anti-atherogenic factors.
High-density lipoprotein (HDL) is crucial in the pre-

vention of the atherosclerosis. It prevents oxidation of
low-density lipoprotein (LDL) and removes reactive oxy-
gen species from LDL [12, 13]. Dysfunctional HDL has
been linked to an increased risk of atherosclerosis during
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chronic inflammation [14, 15]. Indeed, half of women with
SLE have high levels of pro-inflammatory HDL, which
fails to protect LDL from damaging oxidation [16, 17].
This oxidation of lipoproteins might be further potenti-
ated by reactive oxygen species, which are generated ex-
cessively within the inflamed tissue of SLE patients.
Subsequent accumulation of oxidized LDL (oxLDL)
induces apoptosis of vascular smooth muscle cells and
accelerates cellular senescence [18]. In addition, oxLDL is
engulfed by monocytes, which then produce inflammatory
cytokines and transform into foam cells, thereby contrib-
uting to the development of atherosclerosis [19, 20].
Taken together, the altered structural and functional prop-
erties of lipoproteins might contribute to accelerated
atherosclerosis associated with SLE, possibly via inter-
action with immune cells [5].
Since oxidation of lipoproteins is a crucial step for

atherosclerosis, this study aimed to investigate the oxida-
tive properties of lipoproteins from SLE patients both in
vitro and in vivo.

Methods
Patients
A total of 35 patients fulfilling the 1997 American College
of Rheumatology classification criteria for SLE [21] were
recruited at Seoul National University Hospital. Disease
activity at the time of blood sampling was determined
using the SLE disease activity index 2000 (SLEDAI-2 K)
[22]. Fifteen individuals without other comorbidities were
included as healthy controls (HCs).

Sample preparation and lipoprotein isolation
Blood was obtained after overnight fasting, and serum
was separated by low-speed centrifugation and stored at
-80 °C until analysis. The storage time did not differ
between SLE and HC samples (109.6 ± 69.2 days vs. 88.4
± 8.7 days, p = 0.40). Lipoproteins, including very low-
density lipoprotein (density <1.019 g/mL), LDL (density
1.019–1.063 g/mL), HDL2 (density 1.064–1.125 g/mL),
and HDL3 (density 1.126–1.225 g/mL) were isolated
from serum by sequential ultracentrifugation as previ-
ously described [23]. Briefly, the density was adjusted by
addition of NaCl and NaBr and samples were centri-
fuged for 24 hours at 10 °C at 100,000 g using a Himac
CP-90α (Hitachi, Tokyo, Japan).
To generate oxLDL, 300 μg of LDL that had been

purified from healthy controls was incubated with
10 μM CuSO4 for 4 hours at 37 °C.

Analysis of lipoproteins
Total cholesterol and triglyceride (TG) levels were mea-
sured using commercially available kits (Diagnostics;
Osaka, Japan). LDL cholesterol levels were calculated
using the Friedewald formula. The protein content of

the lipoproteins was measured using the Lowry protein
assay as previously described [24].

Copper-mediated oxidation of lipoproteins
The amount of oxidized species in lipoproteins was
quantified by measuring malondialdehyde (MDA) levels
using the thiobarbituric acid reactive substance method
as previously described [25].
To investigate the susceptibility to copper-mediated de

novo oxidation, 300 μg of LDL, which was isolated from
SLE or HC, was incubated with 5 μM CuSO4 for 3 hours.
During the incubation, the formation of conjugated dienes
was determined by measuring the absorbance at 234 nm at
37 °C using a Beckman DU 800 spectrophotometer
(Beckman Coulter, Fullerton, CA, USA), equipped with a
MultiTemp III thermocirculator (Amersham Biosciences,
Uppsala, Sweden) [24].

Electrophoresis and Western blot analysis
Apolipoprotein/lipoprotein composition was compared
by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE). Identical amounts of HDL2,
HDL3, and LDL (3 μg of total protein), which had been
pooled from 19 SLE patients or 8 HCs, were loaded into
the lanes (Additional file 1: Table S1 and Figure S1).
For Western blot analysis, proteins were transferred

onto a nitrocellulose membrane and the blots were incu-
bated with goat anti-human apoA-I antibody (clone#
ab7613, Abcam, Cambridge, UK) and then with anti-goat
IgG horseradish peroxidase conjugate (Sigma-Aldrich, St.
Louis, MO, USA). The detection was performed by a
chemiluminescent method (ECL, Amersham Biosciences,
Uppsala, Sweden).
For semi-quantitative analysis of lipoproteins, images

of SDS-PAGE gels and films were scanned using Gel
Doc® XR (Bio-Rad, Hercules, CA, USA) and the intensity
of bands was analyzed using Quantity One software
(version 4.5.2; Bio-Rad, Hercules, CA, USA).

Cholesteryl ester (CE) transfer assay
Recombinant HDL (rHDL) containing apoA-I was synthe-
sized in the presence of [3H]-cholesteryl oleate (TRK886;
3.5 μCi/mg of apoA-I; GE Healthcare, Chicago, IL, USA).
HDL3 (20 μL, 2 mg/mL), [3H]-rHDL, and human LDL
served as a cholesteryl ester (CE) transfer protein, a CE
donor, and a CE acceptor, respectively. After incubation at
37 °C, the amount of CE acceptor was measured using
scintillation counting and the percentage transfer of [3H]-
CE from rHDL to LDL was calculated as previously
described [26, 27].

Paraoxonase assay
Serum paraoxonase activity was determined by measur-
ing the hydrolysis of paraoxon to p-nitrophenol and
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diethyl phosphates in the presence of paraoxonase as a
catalyst. Briefly, 10 μL of diluted serum was added to
200 μL of paraoxon-ethyl (Sigma D-9286; Sigma-Aldrich,
St. Louis, MO, USA) in a buffer containing 90 mM
Tris-HCl, 3.6 mM NaCl, and 2 mM CaCl2 (pH 8.5). The
production of p-nitrophenol at 37 °C was determined by
measuring the absorbance at 405 nm using a Microplate
reader (Bio-Rad, Hercules, CA, USA). A paraoxonase
activity of 1 U/L was defined as the formation of 1 μmol
of p-nitrophenol per minute [28].

Phagocytosis of LDL by macrophages
LDL isolated from SLE patients or HCs was incubated with
a fluorescent cholesterol derivative (22-(N-7-nitrobenz-2-
oxa-1,3-diazol-4-yl) amino-23, 24-bisnor-5-cholen-3-ol
[NBD-cholesterol], Molecular Probes, Eugene, OR, USA,
N-1148; 70 μg of NBD-cholesterol/mg of apoA-I). THP-1
cells were then differentiated into macrophages in the pres-
ence of phorbol myristate acetate and incubated with 50 μL
of labeled LDL (1 mg of protein/mL in PBS) for 48 hours at
37 °C in a humidified incubator. After washing with PBS,
cells were fixed for 10 min in 4% paraformaldehyde and
photographed under a Nikon Eclipse TE2000 microscope
(Tokyo, Japan) at × 600 magnification (excitation wave-
length = 488 nm; emission wavelength = 535 nm). NBD
positive area was measured.

Senescence-associated (SA)-β-galactosidase activity
Cultured fibroblasts were used at passages 11–15
(approximately 40% confluence). Cells were incubated
with lipoprotein fractions (0.1 mg/mL), fixed with 3%
paraformaldehyde for 5 min, washed with PBS, and in-
cubated with senescence-associated (SA)-β-galactosidase
staining solution (40 mM citric acid, phosphate [pH 6.0],
5 mM potassium ferrocyanide, 5 mM potassium ferri-
cyanide, 150 mM NaCl, 2 mM MgCl2, and 1 mg/mL
5-bromo-4-chloro-3-indolyl-X-galactosidase) for 16 hours
at 37 °C. The cells were then observed under a light
microscope, and the percentage of blue cells was
calculated.

Microinjection of zebrafish embryos
All experimental procedures and maintenance of zebrafish
(Linebrass, AB strain) were approved by the Committee of
Animal Care and Use at Yeungnam University (Gyeongsan,
Korea). Embryos (obtained 4 hours after fertilization) were
microinjected with PBS or lipoproteins using a pneumatic
picopump (PV820, World Precision Instruments; Sarasota,
FL, USA). The embryos were then observed for 48 hours
under a stereomicroscope (Motic SM 168; Hong Kong)
and imaged using a Moticam 2300 CCD camera.

Measurement of oxidation in vivo
After injection, the fluorescence intensity (excitation =
588 nm and emission = 605 nm) of oxidized dihydroethi-
dium (DHE; Sigma-Aldrich, St. Louis, MO, USA) in the
embryos was examined under a Nikon Eclipse TE2000
microscope (Tokyo, Japan) and quantified using Image
Proplus software (version 4.5.1.22; Media Cybernetics,
Bethesda, MD, USA).

Statistical analysis
Results are expressed as the mean ± standard deviation
(SD). Differences between the two groups were assessed
using the Mann-Whitney U test or t test as appropriate.
All reported p values were two-sided, and p values < 0.05
were considered significant. All statistical analyses were
performed using GraphPad Prism 5.01 (GraphPad
Software Inc.; La Jolla, CA, USA).

Results
Patient characteristics
The mean age of the SLE patients was 40.6 ± 11.7 years,
and the majority were female (97.1%). Mean disease
duration was 12.1 ± 7.6 years, and the mean SLEDAI-
2 K was 4.26 ± 4.24. The majority of patients were
taking glucocorticoids (mean prednisolone equivalent
dose, 7.8 mg/d) and hydroxychloroquine at the time of
blood sampling. Only few patients were taking an add-
itional immunosuppressant such as azathioprine or
methotrexate (Table 1).

Comparison of serum lipid profiles between SLE patients
and HCs
There was no difference in total cholesterol levels between
SLE patients and HCs (190.1 ± 54.1 mg/dL vs. 178.3 ±
25.5 mg/dL, p = 0.43). However, TG levels were significantly
higher in SLE patients than in HCs (168.9 ± 70.1 mg/dL vs.
69.5 ± 18.8 mg/dL, p < 0.001). There was no difference be-
tween SLE patients and HCs with respect to LDL levels
(134.7 ± 54.5 mg/dL vs. 118.3 ± 29.9 mg/dL, p = 0.28).
However, HDL levels in SLE patients were significantly
lower than those in HCs (21.7 ± 9.3 mg/dL vs. 46.2 ±
9.3 mg/dL, p < 0.001) (Fig. 1a). Serum cholesterol ester
transfer protein (CETP) activity, which decreases HDL
levels by preferentially transferring cholesterol esters
from HDL to apoB-containing LDL, was higher in SLE
patients than in HCs (38.4% ± 6.8% vs. 34.2% ± 2.6%,
p = 0.03) (Fig. 1b).

Lipoproteins from SLE patients show increased
fragmentation
The mobility of HDL2, HDL3, and LDL in SDS-PAGE
gels was examined. The majority of HDL2 and HDL3
lipoproteins resolved as bands corresponding to the
molecular weight of apoA-I (28.3 kDa), which was then
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confirmed as apoA-I on Western blot analysis. The
intensity of the lipoprotein bands in HC samples was
stronger than that from SLE (Fig. 1c; left and middle
panels). LDL proteins isolated from SLE patients were
more fragmented than those from HCs (Fig. 1c; right
panel, short arrows).

SLE-associated lipoproteins show increased oxidation
The increased fragility of SLE-associated lipoproteins sug-
gests that they might have undergone additional structural
modifications, such as oxidation. Therefore, we isolated
HDL2, HDL3, and LDL from SLE patients and HCs and
measured the degree of oxidation. HDL2, HDL3, and LDL
from SLE patients exhibited higher levels of oxidized spe-
cies than those from HCs (HDL2, 22.6 ± 4.7 vs. 11.3 ± 2.0,

p < 0.001; HDL3, 17.5 ± 2.4 vs. 7.8 ± 1.1, p < 0.001; and LDL,
56.2 ± 10.2 vs. 25.4 ± 2.3, p < 0.001) (Fig. 2a). Next, we
examined whether lipoproteins from SLE patients were
more susceptible to de novo oxidation. The oxidation rate
of LDL from SLE patients (SLE-LDL) was significantly
higher than LDL from HCs (HC-LDL) (3.6% ± 0.5% vs.
1.9% ± 0.3%, p < 0.001) under conditions of cupric ion-
mediated oxidative stress (Fig. 2b). In addition, paraoxonase
activity (an HDL-associated enzyme that protects LDL
from oxidation) was significantly lower in SLE patients than
in HCs (3.53 ± 0.19 vs. 4.04 ± 0.16, p < 0.001) (Fig. 2c).

SLE-LDL induces foam cell generation and cellular
senescence
THP-1 cells (a human monocytic cell line derived from
an acute monocytic leukemia) were incubated with LDL
isolated from SLE patients or HCs. THP-1 cells phagocy-
tosed significantly more SLE-LDL than HC-LDL (NBD
positive area: 2501 ± 401.2 vs. 524.1 ± 59.9 arbitrary units
(AUs), p < 0.001) and transformed into foam cells (Fig. 3a
and b). Exposure of human fibroblasts to SLE-LDL
induced accelerated cellular senescence, as reflected by
increased β-galactosidase activity (70.9 ± 17.9 vs. 16.3 ± 2.4,
p < 0.001) (Fig. 3c and d).

SLE lipoproteins cause oxidative stress in zebrafish
embryos
Zebrafish embryos were injected with LDL isolated from
SLE patients or HCs. SLE-LDL induced significantly
higher levels of DHE oxidation in vivo than HC-LDL
(1592.0 ± 58.7 AUs vs. 459.6 ± 66.4 AUs, p < 0.001)
(Fig. 4a and b). Next, embryos were injected with oxLDL
in the presence of anti-oxidative HDL3 isolated from
SLE patients or HCs. Embryos exposed to oxLDL alone
showed marked oxidation of DHE (Fig. 4c; left panel).
Co-injection of HDL3 from HCs or SLE patients reduced
DHE oxidation than oxLDL alone (both p < 0.001). How-
ever, HDL3 from SLE patients induced significantly more
DHE oxidation than that from HCs (3358 ± 208.8 AUs
vs. 1299 ± 75.1 AUs, p < 0.001) (Fig. 4d).
SLE-LDL was toxic to embryos: 8 hours after injection,

68.3% ± 3.0% of embryos exposed to SLE-LDL remained
alive compared with 94.6% ± 1.1% exposed to HC-LDL.
After 48 hours, the mean survival rate of SLE-LDL-
exposed embryos was 49.3% ± 2.8% whereas that of
HC-LDL-exposed embryos was 85.0% ± 2.9% (p < 0.001)
(Fig. 4e). The injection of oxidized LDL purified from
HCs reduced the embryo survival to 48.6% after
48 hours. The toxicity of oxLDL was partially reversed
or neutralized by co-injection of protective HDLs: co-in-
jection of HDL3 from HCs improved the embryo sur-
vival as compared to HDL3 from SLE patients (75.1% ±
2.1% vs. 62.0% ± 3.1%, p < 0.001) (Fig. 4f ).

Table 1 Baseline demographic and clinical characteristics of the
study participants

SLE patients
(n = 35)

Healthy controls
(n = 15)

p value

Age, years, mean ± SD 40.6 ± 11.7 37.7 ± 6.1 0.244

Female, n (%) 34 (97.1) 13 (86.6) 0.211

Height, cm 160. ± 7.1* 161.8 ± 6.3 0.415

Weight, kg 54.7 ± 9.5* 53.3 ± 6.5 0.620

Body mass index, kg/m2 21.3 ± 3.1* 20.4 ± 2.0 0.277

Smoking, n (%) 3 (9.4) 0 (0) 0.306

Alcohol, n (%) 1 (3.1) 0 (0) 0.681

Diabetes, n (%) 2 (5.7) 0 (0) 0.486

Hypertension, n (%) 11 (31.4) 0 (0) 0.011

Dyslipidemia, n (%) 4 (11.4) 0 (0) 0.227

SLE duration, years 12.1 ± 7.6

ESR, mm/hour 25.4 ± 22.5

SLEDAI-2 K 4.26 ± 4.24

C3 (mg/dL) 75.4 ± 23.6

C4 (mg/dL) 12.6 ± 7.2

Treatment, n (%)

Corticosteroids 35 (100) 0 (0)

Corticosteroid dose
(prednisolone equivalent),
mg/day

7.8 (8.4) 0 (0)

Hydroxychloroquine 31 (88.6) 0 (0)

Azathioprine 2 (5.7) 0 (0)

Methotrexate 1 (2.9) 0 (0)

Statins 2 (5.7) 0 (0)

ACE inhibitors 2 (5.7) 0 (0)

ARB 2 (5.7) 0 (0)

Aspirin 1 (2.9) 0 (0)
*Available for 32 patients
ACE angiotensin-converting enzyme, ARB angiotensin receptor blocker, ESR
erythrocyte sedimentation rate, SLE systemic lupus erythematosus, SLEDAI-2 K,
SLE disease activity index 2000
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Discussion
Increased generation of oxLDL is crucial for the patho-
genesis of atherosclerosis: oxLDL accumulates in vascu-
lar walls and attracts monocytes, which then
differentiate into tissue macrophages and release inflam-
matory cytokines [29]. Foam cells within the vessel wall
form the lipid core of an atherosclerotic plaque [30–32].
Furthermore, oxLDL induces cellular senescence,
impairs endothelial cell function, and inhibits the release
of protective nitric oxide [33, 34]. Accordingly, because
statins make LDL less available for oxidation by reducing
the hepatic synthesis of cholesterol (which is the main
lipid component of LDL) [35], they lead to a significant
reduction in CV-related mortality in the general popula-
tion [36]. However, atorvastatin did not inhibit or re-
verse the atherosclerosis in patients with SLE, although
it reduced LDL levels [10]. This suggests that not only
the quantity but also the quality of lipoproteins might, at
least in part, account for the non-traditional risk factors
for accelerated atherosclerosis in SLE patients.

Here, we provide direct evidence that circulating lipo-
proteins in patients with SLE are altered and show specific
physicochemical properties. First, SLE-LDL exhibited
greater oxidation and fragility than HC-LDL. Second,
SLE-LDL was more susceptible to de novo oxidation.
Third, SLE-LDL induced foam cells and accelerated cellu-
lar senescence. Fourth, injection of SLE-LDL into zebra-
fish embryos caused greater oxidative stress and higher
embryonic mortality. Finally, HDL from SLE patients had
impaired anti-oxidative and protective effects. In short, li-
poproteins from SLE patients showed higher oxidative
and lower anti-oxidative potential than lipoproteins from
HCs with detrimental physiological effects.
Serum lipoproteins are produced by the liver. During

acute systemic inflammation, inflammatory cytokines in-
crease the hepatic production of acute phase reactants.
The levels of serum amyloid protein (SAA), an apolipo-
protein associated with HDL [37], increase during active
inflammation, as occurs during active SLE [16]. Thus,
the SAA content of HDL increases at the expense of

Fig. 1 Comparison of serum lipid profile between SLE patients and heathy controls. a Fasting levels of total cholesterol, triglyceride (TG), HDL, and LDL
were compared between SLE patients (n = 35) and HCs (n = 15). SLE patients had higher levels of TG and lower levels of HDL than HCs. b The serum
activity of CETP was significantly higher in SLE patients than in HCs. c Equivalent amounts of HDL2, HDL3, and LDL pooled from SLE (n = 19) patients
and HCs (n = 8) were subjected to SDS-PAGE (6% gels for HDL2 and HDL3 and 15% gels for LDL). HDL2 and HDL3 ran as a single band which was
identified as apoA-I on Western blot (WB). The intensity of the band of apoA-I was weaker in SLE samples than in HC samples (left and middle panels).
The proteins derived from SLE-LDL ran as multiple fragments (right panel, arrow), whereas HC-LDL ran as a single band. The numbers under the bands
represent the relative band intensity whereas the intensity of SLE bands was set as 1.00). Results are representative of three independent experiments.
Data are expressed as the mean and SEM. CETP cholesterol ester transfer protein, M markers, HC healthy control, SLE systemic lupus erythematosus
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Fig. 2 Increased oxidation of lipoproteins from systemic lupus erythematosus (SLE) patients. a HDL2, HDL3, and LDL were isolated from SLE patients
(n = 19) and healthy controls (HCs) (n = 8), and their oxidation status (i.e., MDA levels) was measured. All lipoprotein fractions from SLE patients showed
significantly higher levels of oxidation than those from HCs. b LDL was incubated in the presence of 5 μM CuSO4, and the formation of conjugated
dienes over time was measured as a marker of de novo oxidation. LDL from SLE patients was significantly more susceptible to oxidation than that
from HCs. c Serum paraoxonase activity was significantly lower in SLE samples than in HC samples. Data are expressed as the mean and SEM. HC
healthy controls, MDA malondialdehyde, SLE systemic lupus erythematosus

Fig. 3 Monocytes show increased uptake of LDL from SLE patients. a and b THP-1 cells were incubated with LDL isolated from SLE patients (n = 19) and
HCs (n = 8). THP-1 cells phagocytosed significantly more LDL from SLE patients and showed greater foam cell formation (NBD-positive area: 2501 ± 401.2
AUs vs. 524.1 ± 59.9 AUs, respectively; p< 0.001). c Human fibroblast cells were incubated with LDL from SLE patients or HCs, and β-galactosidase activity
(a surrogate marker for cellular senescence) was measured. β-galactosidase activity was higher in fibroblasts treated with SLE-LDL (blue) than in those
treated with HC-LDL. d SLE-LDL induced significantly higher β-galactosidase activity than HC-LDL (β-gal positive area: 70.9 AUs vs. 16.3 AUs, respectively;
p< 0.001). Representative images (×400 magnification) from at least three independent experiments are shown. Data are expressed as the mean and SEM.
AU arbitrary units, gal galactosidase, HC healthy control, MDA malondialdehyde, NBD 22-(N-7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino-23, 24-bisnor-5-cholen-
3-ol, SLE systemic lupus erythematosus
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apoA-I; this impairs the reverse cholesterol transport of
HDL [38]. Here, we found that the proportion of apoA-I
in HDL2 and HDL3 from SLE patients seemed to be
lower than that in HDL2 and HDL3 from HCs (Fig. 1c).
Also, LDL from SLE patients was more fragile and more
susceptible to oxidation (Fig. 2). Reduced paraoxonase
activity, which protects LDL from oxidative modifica-
tion, might potentiate the generation of oxLDL in SLE
[17]. Taken together, HDL dysfunction (possibly due to
altered composition), reduced paraoxonase activity, and
increased susceptibility of LDL to oxidation might all
contribute to increased generation of oxLDL. Consistent
with increased LDL oxidation, we found that THP-1
cells readily engulfed SLE-LDL and transformed into
foam cells (Fig. 3). Since monocytes from SLE are the
same as those from HCs in terms of their capacity to
take up oxLDL and transform into foam cells [39], the
increased phagocytosis of SLE-LDL is likely due to SLE-
specific alterations in structure/function of lipoproteins.
To the best of our knowledge, this study is the first to

show that LDL from SLE patients exhibits deleterious
oxidative effects in vivo using zebrafish embryos. Zebra-
fish embryo is suitable to study in vivo oxidation, since

their optical clarity allows dynamic tracking of the oxi-
dation process using a fluorescence probe [40]. Further
studies are needed to show whether the alteration of li-
poproteins can be translated into accelerated athero-
sclerosis in vivo as well.
It is not clear whether the findings observed herein are

SLE-specific or are generalizable to other chronic inflam-
matory diseases such as rheumatoid arthritis and primary
systemic vasculitis, both of which are associated with an
increased risk of CV-related morbidity [41]. Since even a
slight increase in CRP levels is associated with increased
CV-related morbidity, one might speculate that smolder-
ing inflammation in general might be associated with
alterations in the properties of lipoproteins [42, 43]. The
finding that anti-oxidant vitamins did not prevent athero-
sclerosis raises the question of whether the detrimental
effects of oxidized lipoproteins are irreversible [44]. Tight
control of SLE disease activity and the associated systemic
inflammation, might reduce CV risk as seen in patients
with rheumatoid arthritis [45].
The present study has several limitations. First, the

HCs were not matched for all comorbidities. Second, the
relatively small number of SLE patients does not allow

Fig. 4 LDL from SLE patients induces oxidative stress in vivo. a Zebrafish embryos were injected with LDL from SLE patients (n = 19) or HCs (n = 8), and
oxidation of dihydroethidium (DHE, bright red; a surrogate marker for reactive oxygen species production) was observed under a fluorescence microscope.
The embryos injected with SLE-LDL showed increased fluorescence compared with those treated with PBS or HC-LDL. b SLE-LDL induced significantly
more oxidation than HC-LDL. c The embryos injected with oxLDL alone showed strong fluorescence, which was reduced upon co-injection of HDL3 from
HCs or SLE patients. d HDL3 from SLE patients induced significantly more DHE oxidation than that from HCs. e Injection of SLE-LDL reduced the embryo
survival to a greater extent than HC-LDL or PBS. f The embryos treated with purified oxLDL showed a markedly reduced survival rate after 48 hours. HDL3
from SLE patients and HCs increased the survival of embryos treated with oxLDL. HC-HDL3 improved the survival to a greater extent than SLE-HLD3. Data
are expressed as the mean and SEM (*p< 0.001). AU arbitrary units, DHE dihydroethidium, HC healthy control, MDA malondialdehyde, SLE systemic
lupus erythematosus
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to assess the effects of medical treatment, particularly
those of corticosteroids, hydroxychloroquine, and statins,
which could have pleiotropic effects on lipid metabolism
[46]. Third, since the lipid oxidation can occur during
storage, the possible impact of the storage time on the de-
gree of spontaneous lipid oxidation needs further investi-
gation. Fourth, due to a technical limitation, the protein
fragments in the SLE-LDL could not be unequivocally
identified as apolipoproteins. Fifth, it might be of interest
to examine changes in the physicochemical properties of
lipoproteins in treated SLE patients over time. Ultimately,
further studies should determine whether the findings of
the present study can be translated into an in vivo model
of accelerated atherosclerosis.

Conclusions
Lipoproteins from SLE patients show altered structural
and functional properties with higher oxidative potential
in vitro and in vivo. Further studies should examine
whether alterations in lipoproteins directly contribute to
the accelerated atherosclerosis associated with SLE.
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