An Oligopoly Model of
Commercial Fishing

Ferenc Szidarovszky and Koji Okuguchi®

Population dynamics and oligopoly theory are combined to
formulate international fishery under imperfect competition. It is
assumed that fish harvesting countries behave as oligopolist,
but their costs depend on their harvest rates as well as on the
total fish stock, which is governed by the biological growth law.
We show that the number of nonextinct equilibria is 0, 1, or 2,
and characterize the dynamic behavior of the fish stock in terms
of model parameters and initial fish stock level. Finally, we
analyze how the steady state equilibrium fish stock is affected
by entry of a new fishing country. (JEL Classifications: L13, L67)

I. Introduction

In his earlier papers Okuguchi (1996, 1998) has analyzed inter-
national commercial fishing under imperfect competition, where two
countries harvest fish of a single species in an open access sea. It
is assumed that the fish each country harvests is sold not only in
its own country but also in the other country. Therefore the two
countries formm an international duopoly, where each country's
harvesting cost is assumed to depend not only on its harvest rate
but also on the total fish stock, whose intertemporal movement in
the absence of fishing is assumed to be governed by the biological
growth law (that is, logistic law).

In this paper we will extend the existence and stability analysis
of Okuguchi's model to n-country case, namely we will analyze
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international oligopoly in fishery under imperfect competition. In the
theory of oligopoly the qualitative properties, such as stability, of
the dynamic processes often differ for duopoly and for oligopoly
with more than two firms. We will show that for the model
examined in this paper, most of his conclusion for the long-run
dynamics will remain valid in the extended case, but the steady
state equilibrium fish stock will be affected by the number of
fishing countries.

II. Mathematical Model

Let xq denote the amount of fish harvested by country k and sold

in country i (k=1, 2, ---, n; i=1, 2, -+, n). The inverse demand
function in country i is assumed to be the following:
pi=a—b,, (1)

where Yi;=xyt+xat-+xy. The fishing cost of country k is given by
Cie=cict 7ic X /X, V)
where Xi=xn+xot-+xm and X is the total level of fish stock.!

Therefore the profit of country k can be written as

'Suppose a fishing firm in a single country. Its harvest rate x of the fish
is generally formulated as a function of the fish stock X and its fishing
effort E,

x=h(X, E), ﬂ >0, —a—h— >0,
X oE
As a special case we can consider
x=eX"E®,

which leads to
E=el VAL, 8)xi=al8)
Suppose the unit cost of fishing effort to be constant §. Then the total cost
C for harvesting x is
C=g6E.

If, in addition, « = 8 =(1/2) (technology of constant returns to scale in fish
stock and fishing effort) and y = 5¢€'”"/?, the total cost for harvesting x is
given by

X’

<

which is formally identical to (2) without opportunity cost. i.e. c=0. See
Clark (1976).

C=
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n
K= Z‘ PiXia— (Ci+ 76 X/ X), (3)
&
which is a concave function of vector {(xx1, X2, ", Xin).

We assume that the n countries behave as Cournot oligopolists.
Given X, this situation can be modeled as an n-person noncoopera-
tive game with the set of nonnegative vectors being the set of
strategies for all players, and i being the payoff function of player
k. This game is equivalent to a linear complementarity problem
with positive definite coefficient matrix (see Okuguchi and Szidarov-
szky 1990, Section 3.2). Therefore there is a unique Cournot-Nash
equilibrium. Excluding corner equilibrium, the first order conditions
for country k's profit maximization are given by

0 7
— = — b xta— b, — 27X/ X=0.
00Xt
Hence we have for all k and i,
a 27k
Xq=——Yi— —— Xk 5
W=y xR 5
Adding these equations for all values of i leads to the following:

2
Xe=A—-S—B -2k
X

Xk, (6)

where S is the total amount of fish harvested,

noa no 1
A=3 —, B=3 —. (7)

=1 b, i=1 by

Solving equation (6) for Xi we have
A-S
Xe= —————,
1+2B—7k ®)
X

and by adding this equation for all values of k we get one equation
for the single unknown S:

S=(a-85 F—

11498 Tk 9)
from which we see that
Af(
S= _;f,i (10)
1+f(X)

with
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1

M=

f&x =

K (11)

D) A
X

We assume that the fish stock changes according to 5(=X(a — BX) in
the absence of fishing.2 Therefore it changes according to

Af(X) )
Q+fx "’
in the presence of intermational commercial fishing, where ¢ and
B are positive constants, ¢ being the intrinsic growth rate. This
time-invariant nonlinear differential equation will be examined in
the next section.

X=X{a—-BX - (12)

IIl. Existence and Stability of the Steady State

Introduce the notation

AfX)
= 13
gX) (1+f )X (13)
Simple differentiation shows that
2B yx
=5 X (14)
k=1 1+2B—-
which implies that
n -1
X000 = 3 ————, <0.
k=1 (1+ZB—75—)2 (15)
X
Therefore
, - _ 2
g,(X)ZALf(X)X fX) f(X))<0‘ (16)

X1+ (X))

This equation is known as the logistic law, which has been known to fit
well with experimental data for many biological populations and widely used
in the fishery literature, including Clark (1976). There are many alternative
dynamic models of population. See May (1973) for some of alternative
models.
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Hence, g is strictly decreasing in X. Notice next that

_4B7x
i X
f0=3 . (17)
(14215
X
which implies inequality
2B 7«
X2 n X n 1
—f*(X) - = 2;“ — T, < Z} ——————2

(1+2B—) (1+2B——X—) (18)

=fX)—-Xf" (X,

where we used relation (15) is the last step. Finally, simple
differentiation and calculation show that the numerator of g*(X)
{which determines its sign) can be written as

Alf"X+f —f =26 X1+ — Al X—f—f)U2X 1+ P>+ X201+ )f* l
=AX(I+N "X -2 IX(1+f) — (f* X—f—f)(2+2f+2Xf " )).

The sign g* coincides with the sign of the bracketed term, which
can be simplified and bounded as follows:

FrXP+f) - 2f X(1+f)+2f+4f 2+2f > - 2(Xf ' )?
>~ 2(f—Xf " )(1+f) —2f * X(1+f)+2fraf >+2f % — 2f (20)
=2f°>0,

where we used relations (18) and (15). Hence g is strictly convex in X.
The nonextinct steady state or the bionomic equilibrium for the

fish stock satisfies equation
a — BX=g{X). (21)

The left hand side is strictly decreasing and linear, the right hand
side is strictly decreasing and strictly convex, therefore we have the
following possibilities, as in Okuguchi (1996):

Case 1. There is no real root of equation (21). This case is
illustrated in Figure 1;

Case 2. Equation (21} has only one root; and

1

Tk

=2 %
=— >
g 2B @
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g(0)

a/B

FIGURE 1
CASE 1 wWITHOUT REAL RoOT
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X* alB

FIGURE 2
CASE 2 WITH A SINGLE ROOT
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v

X* al8

FIGURE 3
CASE 3 WITH A SINGLE RooTt

g(0) 1

v

x* X" 4/8 X

FIGURE 4
CASE 4 WITH Two REAL RoOTS
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which case is shown in Figure 2;

Case 3. There is only one real root and g(0)< ¢, which case is
shown in Figure 3;

Case 4. There are two real roots.

Notice that the facts g(0)>0 and )](im gX)=0 imply that these four
cases contain all possibilities.

Let Xo=X{0) denote the initial total level of fish stock. In Case 1, X
is always negative, therefore X(t) is strictly decreasing. Since X*=0
is the only equilibrium, X(t) converges to zero as t—co, resulting in
extinction of fish stock. In Case 2, X is always negative, unless X(t)
=X*. Therefore, if X(0)>X", then X{(t) converges to X*, and if X(0)<
X*, then X(t) converges to zero. In Case 3, X<0 for X>X*, and X>
0 for X<X*. In the first case X decreases, and in the second case
X increases. Therefore X(t) converges to X* regardless of the value
of X(0). In case 4, we have three subcases. If X(0)<X*, then X(t)
decreases and converges to zero; if X*<X(0)<X**, then Xt}
increases, therefore X(t)—X**. If X(0)>X**, then X(t) decreases and
X(t)—»X**.

IV. Entry

In the preceding analysis we have assumed a fixed number of
fishing countries. In this section we will examine the effects on the
steady state equilibrium fish stock of entry of a new fishing
country or the effects of the number of fishing countries. Let the
number of fishing countries increase from n to n+1. The country n+1
is assumed to have the inverse demand function

pnﬂ:am-l_bmlyml (1)
and the fishing cost
7 n+ X2n+
Cro1 =Crot+ -—‘X—‘ @)

The steady state fish stocks can be compared on the basis of
equation (21). Let g(X) for n countries and that for n+1 countries
be denoted by gn(X) and gn-1(X), respectively. We use similar
notations for A, B and f(X). To compare the steady states we have
to examine the sign of
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gn+1 X)— gn(X) .
Since An1>An, the above expression becomes positive if
f n+1 (X) -~ f H(X) , ( 2 2)
1+frn(X) 1+£(X)
which holds if and only if
fn+l(X)_fnm>0- (23)

It is in general impossible to know the validity of (23). In order
to avoid this indeterminacy, we consider a simple case and assume
symmetric countries, hence

ax=a, bx=b, ck=c, re=7. k=1, 2, -, n+l.

A simple calculation yields

n+l n
n+ —Jn = - 0.
frer 0 =fol) 2(+1) 7 2y 24)
1+ 1+

bX bX

Hence, given X, the curve for gn.1(X} lies above that for gn(X).

Suppose gn{X) in Figures 1 and 2. In these cases the fish becomes
extinct in the event of entry of a new country. In the case of
Figure 3, g..1{X) may have a unique intersection with the downward
sloping line, touch it, or lie completely above it. Hence, the unique
positive steady fish stock becomes smaller or the fish becomes
extinct if the number of fishing countries increases. In the case of
Figure 4 with two distinct steady state fish stocks, g..1{X} may
intersect twice with the downward sloping line, touch it or le
completely above it. If the first possibility occurs, the larger steady
state fish stock decreases and the smaller one increases in the
event of entry of a new fishing country, while in the case of the
second possibility a unique steady state exists. Finally, if the third
possibility arises, the fish becomes extinct.

V. Concluding Remarks

In an open access sea more than two countries, such as China,
South Korea and Japan in the East Sea, engage in commmercial
fishing. In this paper we have formulated a dynamic model of
international commercial fishing on the basis of Cournot oligopoly
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taking into consideration of the fish population dynamics. We have
proved the number of nonextinct steady states to be 0, 1 or 2 and
characterized the dynamic behavior of the fish stock. Finally, we
have also analyzed how the steady states are affected by an
increase in the number of fishing countries.

(Received March, 1998; Revised September, 1998)
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