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Abstract 

Efficient Small-Molecular-Weight 

Organic Solar Cells through Orientation 

Control and Nano-structuring 
Ji Whan Kim 

Department of Materials Science and Engineering 

The Graduate School of Engineering 

Seoul National University 

Due to the fast growing energy consumption and the growing 

environmental concerns over the climate change risks such as global 

warming, use of solar energy is one of the promising candidates for 

renewable sources of electricity. Among various solar cells, organic solar 

cells (OSCs) are considered to have large potential due to the fact that 

organic materials are cheap and easy to form a film with inexpensive 

process even in the large area. Unfortunately, OSCs have relatively low 

power conversion efficiency compared to other kinds of solar cells. 

Therefore the most important issue in OSCs is how to improve the power 

conversion efficiency (PCE).This thesis reports a couple of methods to 

improve the PCE of small molecular weight OSCs; nano-structuring and 

orientation control of active materials. 
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Small molecular weight OSCs have advantages of easy purification, good 

reproducibility, easy fabrication of multi-layered structure and so on over 

polymer based solar cells. One drawback of small molecular weight OSCs 

is located on the difficulties to form interpenetrating network between 

donor and acceptor molecules in nanometer scale because of the large 

entropy of mixing in the amorphous structure. A new method to form 

small-molecular based bulk heterojunction (BHJ) through alternating 

thermal deposition (ATD) is proposed, which is a simple modification of 

conventional thermal evaporation. The formation of a BHJ in copper(II) 

phthalocyanine (CuPc) and fullerene (C60) systems is confirmed by 

atomic microscopy (AFM), grazing incidence X-ray small angle 

scattering (GISAXS), and absorption measurements. From the analysis of 

the data, CuPc|C60 films fabricated by ATD are composed of nanometer 

sized disk-shape CuPc nano grains and aggregated C60, which explains the 

phase separation of CuPc|C60. Compared with co-deposited OSCs, the 

ATD OSCs show significant enhanced performance. However ZnPc, 

which has the same crystalline structure with CuPc, did not show the 

improvement by ATD due to the initial growth difference. To understand 

the mechanism of ATD, the initial growth of CuPc on different substrate 

condition is monitored using GISAXS. Disk-type nano grains of CuPc 

were observed in an ultrathin CuPc layer evaporated on a hydrophilic Si 
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surface. The disk type grains consisted of a crystalline part and a non-

crystalline part. The disk type grains were smaller in the case of CuPc on 

hydrophobic Si surface, which showed lower crystallinity with random 

distribution. Despite regularly distributed CuPc grains the mobility was 

lower in a thin film transistor device fabricated on a hydrophilic surface 

than on a hydrophobic surface due to the lower average density of the 

molecules relating to porous molecular packing between nanograins on a 

hydrophilic surface. 

Improvement of the performance of OSCs was also achieved by 

controlling the molecular orientation. A highly efficient planar 

heterojunction OSC based on zinc phthalocyanine (ZnPc)/C60 is obtained 

by controlling the orientation of the ZnPc using copper iodide (CuI) as the 

interfacial layer. The proportion of face-on ZnPc molecules was increased 

significantly on the CuI layer compared to the layer without the CuI layer 

analyzed with wide angle X-ray scattering (WAXS) and optical 

absorption. The PCE of the orientation controlled planar heterojunction 

OSC was remarkably enhanced to 3.2% compared with 1.2% without the 

control of the molecular orientation. The mechanism of formation of the 

face-on molecular orientation of ZnPc on CuI layer is proposed. Using the 

two different incidence angles in the glazing incidence wide angle x-ray 

scattering (GIWAXS), it turns out that the ZnPc layer on the (111) g phase 
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CuI is the b phase ZnPc with (ρ01) orientation which is transformed to 

(313) gamma phase ZnPc as the film growth. These phase transitions can 

be explained with quasi epitaxial growth. 

 

Keywords: organic solar cells, bulk heterojunction, molecular orientation, 

crystalline structure 
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Chapter 1. Introduction 

1.1 Introduction to organic solar cells 

A solar cell, so called a photovoltaic cell, is an electrical device that 

converts the energy of light into electricity by the photovoltaic effect. Due 

to the fast growing energy consumption and the growing environmental 

concerns over the climate change risks such as global warming, using 

solar energy is one of the promising candidates for renewable sources of 

electricity. Using solar energy reduces the dependence on fossil fuels and 

is environmentally clean compared to other forms of electricity 

production. Current photovoltaic cells in the markets are mostly based on 

silicon or inorganic semiconductors like GaAs or CdTe. However, the 

fabrication costs, the rarity of the materials and the use of toxic solvents in 

the fabrication process are the problems to be solved. Many of these 

problems can be solved using organic materials.  

Organic materials are cheap and easy to form a film with inexpensive 

process even in the large area cells. Organic solar cells (OSCs) require a 

few hundred nanometer thick film, they can be light and flexible, 

therefore have great possibility for mobile applications. Figure 1.1 shows 

some examples of applications for OSCs, transparent and flexible solar 

cells using organic materials. 
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Figure 1.1 Examples of application of OSCs. (top)[1]Oxford 

Photovoltaics uses non-toxic organic solar cell materials printed directly 

on to glass to produce clean energy. (bottom) Flexible OSC module by 

Fraunhofer ISE.[2] 
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Although OSCs has the attractive features such as the use of roll-to-roll 

processes generating cheap, flexible and large-area devices, the power 

conversion efficiency (PCE) is still low compared to the inorganic solar 

cells. Figure 1.2 shows the current status of photovoltaic devices. The 

highest efficiency reported is 44.4% with multiple-junction concentrated 

photovoltaics using InGaP, GaAs, and InGaAs [3], however  the PCEs of 

OSCs are around 10%[4]. Many research efforts improved the efficiency 

and helped to understand the basic processes and barriers, the PCEs have 

improved rapidly[5][6].  
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Figure1.2 Best research-cell efficiencies for various solar cells by the 

time. [7] 
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1.2 Operation principles of organic solar cells 

The operation mechanism of typical planar (or bi-layer) heterojunction 

OSCs[8] is shown in Figure 1.3. The planar heterojunction OSCs contains 

electron donor and electron acceptor in between the conductive electrodes. 

These two layers have differences in electron affinity and ionization 

energy, therefore local electric fields exists. Once the organic materials 

absorb the light, the excitons are formed. These excitons diffuse to donor-

acceptor interface then dissociate to holes and electrons due to the electric 

fields at the interface. Then the holes and electrons are collected to the 

conductive electrodes. The problem in these planar heterojunction OSCs 

lies in the exciton diffusion length of the organic materials. The diffusion 

length of organic materials is typically on the order of 10 nm. In order to 

generate the hole and electron, the excitons have to diffuse to the donor-

acceptor interface. The organic materials need at least 100 nm to absorb 

most of the light. This indicates that a small fraction of excitons reach to 

the interface contributing to electricity generation. Only the excitons that 

formed in the shaded region in Figure 1.3 are able to generate current. 
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Figure 1.3 The operation mechanism of planar heterojunction organic 

solar cells. The excitons formed in shaded region contribute to current. 
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To overcome the tradeoff between the absorption length and the exciton 

diffusion length in the planar heterojunction OSCs, mixed donor-acceptor 

layers were adopted to create an interpenetrating network by phase 

separation on a nanoscale. Figure 1.4 shows a typical conceptual drawing 

of bulk heterojunction OSCs. If the length scale of the mixture is similar 

to the exciton diffusion length, most of the exciton generated by absorbing 

light can reach to the interface, where exciton dissociation occurs. The 

shaded region in the figure contributes to current. 

A typical current-voltage characteristic under illumination is shown in 

Figure 1.5. The point where the current is zero is open circuit voltage, VOC. 

JSC represents short circuit current where the OSC is under short circuit 

condition, zero applied bias. The maximum point of power generated, 

Pmax, for the device can be obtained from the J-V curve. The ration 

between Pmax and the product of JSC and VOC is called fill factor (FF). To 

characterize the performance of solar cells, power conversion efficiency 

(PCE) is mostly used. The PCE is defined as Equation 1-1. 

ὖὅὉ
ὖ

ὖ

ὠ Ͻὐ ϽὊὊ

ὖ
                                                                ρ ρ 

where Plight represent incident light power  
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Figure 1.4Conceptual drawing of bulk heterojunction organic solar cell. 

The exactions generated in the shaded region can be dissociated. 
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Figure 1.5 J-V characteristics for typical solar cells under illumination. 

Arrows indicates the ways to improve the solar cell performances. 
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To enhance the performances of OSCs, JSC, VOC, and FF need to be 

enhanced. JSC is related with the amount of absorbed light within the 

range of exciton diffusion length[9]. VOC is closely related to the energy 

difference between the highest occupied molecular orbital (HOMO) of the 

donor and the lowest unoccupied molecular orbital (LUMO)[10,11]. FF is 

more complicated, however it is known to be related with the charge 

transport properties of donor and acceptor materials. 

To obtain higher JSC, bulk heterojunction with efficient interpenetrating 

network is one of the solutions. Another solution to enhance the JSC is 

controlling the molecular orientation. By matching the molecular 

transition dipole moment to the electric field of incident light, the total 

amount of absorption within the exciton diffusion length can be enhanced. 

In addition well-ordered molecular orientation affects not only HOMO-

LUMO energy levels but also the ionization potentials in organic thin 

films[12-14] resulting change in VOC. High electron and hole mobilities 

are required to achieve a high FF favoring the face-on packing of 

molecules along with high crystallinity[15]. Figure 1.6 summarizes the 

effects of molecular orientation to the OSC performances.  
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Figure 1.6 Importance of molecular orientation on the performance of 

organic solar cells 

  

W. Chen et al, JAP 106, 064910 (2009)
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1.3 Outline of the thesis 

In Chapter 2, a new method to form small-molecular-weight based bulk 

heterojunction (BHJ) through alternative (or alternating) thermal 

deposition (ATD) is proposed, which is a simple modification of 

conventional thermal evaporation. By ATD, the thickness of alternating 

donor and acceptor layers was precisely controlled down to 0.1 nm, which 

is critical to form BHJs. The formation of a BHJ in copper(II) 

phthalocyanine (CuPc) and fullerene (C60) systems is confirmed by 

atomic force microscopy (AFM), grazing incidence X-ray small angle 

scattering (GISAXS), and absorption measurements. From the analysis of 

the data, CuPc|C60 films fabricated by ATD are composed of nanometer 

sized disk-shape CuPc nano grains and aggregated C60, which explains the 

phase separation of CuPc|C60. Compared with tradition co-deposited film, 

the OSCs show significantly enhanced performance. 

In Chapter 3, the initial growth of CuPc on different substrate condition is 

monitored using GISAXS. Disk-type nano grains of CuPc were observed 

in an ultrathin CuPc layer evaporated on a hydrophilic Si surface. The 

disk type grains consisted of a crystalline part and a non-crystalline part. 

The disk type grains were smaller in the case of CuPc on hydrophobic Si 

surface, which showed lower crystallinity with random distribution. 

Despite regularly distributed CuPc grains the mobility was lower in a thin 
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film transistor device fabricated on a hydrophilic surface than on a 

hydrophobic surface due to the lower average density of the molecules 

relating to porous molecular packing between nanograins on a hydrophilic 

surface. 

In Chapter 4, the effects of molecular orientation control to the 

performance of OSCs are mentioned. A highly efficient planar 

heterojunction OSC based on zinc phthalocyanine (ZnPc)/C60 by 

controlling the orientation of the ZnPc by using copper iodide (CuI) as the 

interfacial layer is obtained. The proportion of face-on ZnPc molecules 

was increased significantly on the CuI layer compared to the layer without 

the CuI layer analyzed with wide angle X-ray scattering (WAXS) and 

optical absorption. The PCE of the orientation controlled planar 

heterojunction OSC was remarkably enhanced to 3.2% compared with 1.2% 

without the control of the molecular orientation. 

In Chapter 5, a mechanism of formation of the face-on molecular 

orientation of ZnPc on CuI layer is proposed. Using the two different 

incidence angles in the glazing incidence wide angle x-ray scattering 

(GIWAXS), the crystalline structures of ZnPc at the surface and that of 

ZnPc at the CuI interface were distinguishable. b phase ZnPc with (ρ01) 

orientation were formed on the (111) g phase CuI and (313) g phase ZnPc 
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on (ρ01)b-phase ZnPc. These phase transitions can be explained with 

quasi epitaxial growth. 
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Chapter 2. Nano-structure control with alternating thermal 

deposition 

2.1 Introduction 

The performances of organic solar cells (OSCs) have improved 

significantly in recent years[1-5]. To overcome the tradeoff between the 

absorption length (La, ~100 nm) and the exciton diffusion length (LD, ~10 

nm) in donor/acceptor (DA) planar heterojunction (PHJ) OSCs [6],mixed 

DA layers were adopted to create an interpenetrating network by phase 

separation on a nanoscale[2-5],[7].This bulk heterojunction (BHJ) concept 

has achieved large success in polymer based solar cells[3,4]. In small 

molecular OSCs, however, co-deposited mixed layers have not been so 

successful as in polymer solar cells due to a large entropy of mixing to 

reduce the tendency of the phase separation and the formation of 

interpenetrating networks. Nevertheless, co-deposited layers have been 

believed to form BHJs, which does not seem to be true because of the lack 

of any crystalline phase in the x-ray diffraction of the co-deposited 

layers[8]. Although the device performance was improved by co-

deposition of donor and acceptor materials, the direct evidence of the 

mixed layer has not been reported yet. Despite the successful fabrication 

of BHJs with organic vapor phase deposition[9,10], co-deposition by 
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thermal evaporation is still widely used to form the mixed layer of donor 

and acceptor materials in many groups because of the simplicity of the 

technique and the accessibility of the equipment. 

New simple and easy controlled growth of small-molecular-weight 

OSCs with modified thermal evaporation, i.e. alternative (or alternating) 

thermal deposition (ATD) is proposed. With ATD, we succeeded to 

control the thicknesses of donor and acceptor layers separately down to 

0.1 nm. OSCs fabricated using the ATD method showed significantly 

enhanced power conversion efficiency compared to co-deposited OSCs. 

We compared the difference in the morphology of the co-deposited layers 

and ATD layers using grazing incidence x-ray small angle scattering 

(GISAXS). This is the first report about nano structural distribution of 

donor and acceptor molecules in a co-deposited layer and ATD layer. 
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2.2 Experiments 

X-ray reflectivity (XRR) and GISAXS (grazing incidence small angle x-

ray scattering) measurements were done at the 5A beam line of Pohang 

Light Source of Koreafor copper(II) phthalocyanine (CuPc) based 

samples. The x-ray energy was 11.6 keV. GISAXS was done at two 

different incident angles of 0.1º (lower than the critical angle of CuPc:C60) 

and 0.25º (higher than the critical angle of CuPc:C60) to distinguish x-ray 

signals from the surface region and the bulk region. The distance from the 

sample to detector was 2 m, and a 2D image plate was used for the 

GISAXS measurements. For zinc phthalocyanine (ZnPc) based samples, 

x-ray measurements were performed at the 12ID-B and 12ID-C beam 

lines of the Advanced Photon Source (APS) at the Argonne National 

Laboratory. The x-ray energy was 12 eV. The distance from the sample to 

the detector was 1994.6 mm for GISAXS. A PILATUS 2M detector was 

used. 

Atomic force microscope (AFM) topographic and phase images were 

taken in a PSIA XE-100 scanning probe microscope with non-contact 

mode. CuPc, co-deposited CuPc:C60 and ATD CuPc|C60 films are 

deposited under vacuum of 10
-7
 torr on Si wafer cleaned with piranha 

solution. 
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The UV-VIS absorption spectra of studied films were recorded with a 

VARIAN Cary 5000 UV-Vis spectrophotometer. 50 nm-thick films were 

thermally evaporated on clean quartz substrates. 

The ITO-coated glass substrates were cleaned with acetone and isopropyl 

alcohol. The substrates were exposed to UVïO3 for 10 min before use. 

CuPc, ZnPc, C60, 2,9-dimethyl-4,7-dipheyl-1,10-phenanthroline (BCP) 

and Al are thermally deposited under vacuum of 10
-7

 torr. All layers are 

successively evaporated without breaking the vacuum and all devices 

were encapsulated in N2 ambient before photocurrent measurements. The 

photocurrents were measured under illumination from an AM1.5 solar 

simulator (300W Oriel 91160A). The light intensity was carefully 

calibrated using a standard silicon solar cell (NREL). A Keithley 237 

source measurement unit was used for current densityïvoltage 

characteristics 
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2.3 Results and Discussion 

Figure 2.1a shows the schematic diagram of the ATD method. A vacuum 

chamber is separated into two compartments with a shield. A donor (D) 

material and an acceptor (A) material are evaporated in different 

compartments simultaneously under vacuum. The deposition rates of the 

molecules are separately controlled. The substrates are located off center 

of the rotating axis so that donor and accepter molecules can be deposited 

alternatively by rotation. This is a very simple method to deposit 

alternative DA layers in series. Moreover the thickness of the alternatively 

deposited layers can be controlled easily down to sub-monolayer by 

controlling the rotation speed and deposition rates, which is a critical 

factor to grow BHJs in the alternatively deposited films. When the 

thickness of each layer per rotation is thinner than a few angstroms (less 

than the thickness of the monolayer), discontinuous films are formed 

regardless of the film forming mechanisms[11]. Once a discontinuous 

film of one component is formed, successive deposition of other 

component is likely to fill the gap by aggregation to create nano-

crystalline BHJs if the interaction energy between the D-A molecules is 

smaller than the interaction energy between the same molecules. This 

technique allows easy control of the thermodynamic parameters such as 

the composition and the growing temperature as well as the kinetic 
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parameters such as the deposition rate.  Figure 2.1b shows the proposed 

mechanism of forming efficient bulk heterojunction using ATD.  
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Figure 2.1aA schematic diagram of alternating thermal deposition (ATD) 

and molecular structures of CuPc and C60. 
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Figure 2.1b Proposed bulk heterojunction formation mechanism with 

ATD 
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2.3.1 CuPc and C60 system 

In this study, we used copper (II) phthalocyanine (CuPc) and fullerene 

(C60) as donor and acceptor molecules to demonstrate the concept of ATD. 

The CuPc|C60 is expected to form BHJs by the ATD method because the 

interaction energy between CuPc and C60 (0.044 eV) is much lower than 

that between the same molecules (CuPc: 0.867 eV, C60: 1.5 eV)[10]. For 

the demonstration, a 1.09-nm-thick layer of CuPc|C60 (0.545 nm|0.545 nm) 

is formed in each rotation of the substrate. The deposition rate of each 

source was maintained to 1 Å  s
-1

. 

The structure of CuPc|C60 film formed by ATD was analyzed with x-ray 

reflectivity and GISAXS measurement. Figure 2.2a shows the reflectivity 

curves of 50 nm thick layers of CuPc (blue dots), ATD CuPc|C60 (red dots) 

and co-deposited CuPc:C60 (black dots) on Si substrates, respectively. The 

structural information of the films was obtained by the analysis of the data 

using a single layer model on a silicon substrate with a kinematic 

approximation about the x-ray reflection in a thin film system[12,13].  
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Figure 2.2(a) X-ray reflectivity measurement about CuPc 50nm (blue), 

ATD CuPc|C60 (red), and co-deposited CuPc:C60 (black). (b), (c), (d) 

GISAXS images about CuPc 50nm, ATD CuPc|C60, co-deposited 

CuPc:C60, respectively. 

  








































































































































































































