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ABSTRACT

Intelligent Data Selection and Semi-Supervised Learning

for Support Vector Regression

Dongil Kim

Department of Industrial Engineering

The Graduate School

Seoul National University

Support Vector Regression (SVR), a regression version of Support Vector
Machines (SVM), employing Structural Risk Minimization (SRM) princi-
ple has become one of the most spotlighted algorithms with the capability
of solving nonlinear problems using the kernel trick. Despite of the great
generalization performance, there still exist open problems for SVR to over-
come. In this dissertation, two major open problems of SVR are studied:
(1) training complexity and (2) Semi–Supervised SVR (SS–SVR).

Since the training complexity of SVR is highly related to the number
of training data n: O(n3), training time complexity and O(n2), the train-
ing memory complexity, it makes SVR difficult to be applied to big–sized
real–world datasets. In this dissertation, a data selection method, Margin
based Data Selection (MDS), was proposed in order to reduce the training
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complexity. In order to overcome the training complexity problem, reduc-
ing the number of training data is an effective approach. Data selection
approach is designed to select important or informative data among all
training data. For SVR, the most important data are support vectors. By
ε–loss foundation and the maximum margin learning, all support vectors of
SVR are located on or outside the ε–tube. With multiple sample learning,
MDS estimated the margin for all training data, efficiently. MDS selected
a subset of data by comparing the margin and ε. Through the experiments
conducted on 20 datasets, the performance of MDS was better than the
benchmark methods. The training time of SVR including running time of
MDS was with 38% ∼ 67% of training time of original datasets. At the
same time, the accuracy loss was 0% ∼ 1% of original SVR model.

Recently, the size of dataset is getting larger, and data are collected
from various applications. Since collecting the labeled data is expensive
and time consuming, the fraction of the unlabeled data over the labeled
data is getting increased. The conventional supervised learning method
uses only labeled data to train. Recently, Semi–Supervised Learning (SSL)
has been proposed in order to improve the conventional supervised learning
by training the unlabeled data along with the labeled data. In this dis-
sertation, a data generation and selection method for SS–SVR training is
proposed. In order to estimate the label distribution of the unlabeled data,
Probabilistic Local Reconstruction method (PLR) was employed. In order
to get robustness to noisy data, two PLRs (PLRlocal and PLRglobal) were
employed and the final label distribution was obtained by the conjugation
of 2–PLR. Then, training data were generated from the unlabeled data
with their the estimated label distribution. The data generation rate was
differed by uncertainty of the labeling. After that, MDS was employed to
reduce the training complexity increased by the generated data. Through
the experiments conducted on 18 datasets, the proposed method could im-
prove about 10% of the accuracy than the conventional supervised SVR,
and the training time of the proposed method including the construction
of final SVR was less than 25% of benchmark methods.

Two applications are analyzed. For response modeling, SVR based
two–stage response modeling, identifying respondents at the first stage and
then ranking them according to expected profit at the second stage, was
proposed. And MDS was employed in order to reduce the training com-
plexity of two–stage response modeling. The experimental results showed
that SVR employed two–stage response model could increase the profit
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than the conventional response model. MDS reduced the training com-
plexity of SVR to about 60% of original SVR with minimum profit loss.
For Virtual Metrology (VM), the proposed SS–SVR method was applied
to a real–world VM dataset by using the unlabeled data with the labeled
data for training. Data were collected from two pieces of equipment of the
photo process. The experimental results showed the proposed SS–SVR
method could improve the accuracy about 8% on average than that of the
conventional VM model. The accuracy of proposed method was better
than benchmark method while the training time of the proposed method
was relatively small than benchmark methods.

....................................................................................

Keywords: Data Mining, Machine Learning, Pattern Recognition, Sup-
port Vector Machines (SVM), Support Vector Regression (SVR), Semi-
Supervised Learning (SSL), Semi-Supervised Support Vector Regression
(SS-SVR), Data Selection, Data Generation, Regression, Customer Rela-
tionship Management (CRM), Response Modeling, Semiconductor Manu-
facturing, Virtual Metrology.
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Notation

Notations used in this dissertation.

X : a set of input variables, X = {xi|i = 1, ..., n}, xi ∈ Rd.

Y : a set of labels, Y = {yi|i = 1, ..., n}, yi = f(xi).

X : n× d matrix of input data, X = [x1, ...,xn]

x : a vector in d-dimensional space, x ∈ Rd.

xi : i-th element of x.

y : a label corresponding to input variables.

n : the number of training data.

f : a function that links between x and y, y = f(x).

C : a cost term of SVR.

w : a weight vector of SVR.

b : a bias term of SVR.

ε : the size of ε–insensitive tube of SVR.

ξ
(∗)
i : a slack variable of the soft margin problem of SVR.

α
(∗)
i : a lagrangian multiplier of the dual optimization problem

of SVR.

F : a high dimensional feature space.

Φ : a mapping to features space, Φ : X → F .

K(·, ·) : a kernel function of SVR, K(xi,xj) = Φ(xi) · Φ(xj).

||a− b|| : Euclidean distance between a and b.

exp(·) : an exponential of components.

iv
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q : the size of working set.

k : the number of nearest neighbors of k–NN.

x
NN(xi,j)

: the jth nearest neighbor of xi.

y
NN(xi,j)

: a label of jth nearest neighbor of xi.

ȳ
NN(xi)

: an average of y
NN(xi,j)

over j.

S(x, y) : a similarity of x and y for HSVM.

si : sparsity of xi for the k–NN based method.

vi : variability of xi for the k–NN based method.

ui : uniqueness of xi for the k–NN based method.

x∗ : a test data point.

D : the original dataset.

Dj : the jth sample set from D.

fj : trained SVR from the jth sample set.

Rij : regression error of a data point xi evaluated by fj .

Mij : binary marking matrix for ε–DS and VDS.

Li : likelihood score of a data point xi for VDS.

S : the expected number of support vectors for VDS.

l : the number of sample sets.

m : the number of data in a sample set (m% of the original
data).

α : the accuracy–training time control parameter for MDS.

L : the labeled data.

Lx : the input variables of the labeled data.

Ly : the label of the labeled data.

U : the unlabeled data.

Ux : the input variables of the unlabeled data.

ŷ : the estimated label of the unlabeled data.

DI : the integrated data set.

UG : the generated data.

DS : the selected data set.

pi : data generation probability.

klocal : the number of nearest neighbors for PLRlocal.

kglobal : the number of nearest neighbors for PLRglobal.

t : the number of trials for data generation.



Contents

Abstract i

Notation iv

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . 2
1.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions of this Dissertation . . . . . . . . . . . . . . . 6

2 Literature Review 9
2.1 Support Vector Regression . . . . . . . . . . . . . . . . . . . 9
2.2 Data Selection for Support Vector Regression . . . . . . . . 12

2.2.1 Time Complexity Reduction . . . . . . . . . . . . . . 12
2.2.2 Data Selection Method . . . . . . . . . . . . . . . . . 13
2.2.3 Data Selection Method for Support Vector Regression 14

2.3 Semi–Supervised Learning for Support Vector Regression . 17
2.3.1 Semi–Supervised Learning . . . . . . . . . . . . . . . 17
2.3.2 Semi–Supervised Learning for Regression . . . . . . 18

vi



CONTENTS vii

3 Data Selection for Support Vector Regression 23
3.1 Voting based Data Selection . . . . . . . . . . . . . . . . . . 24
3.2 Margin based Data Selection . . . . . . . . . . . . . . . . . 25
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Experiment Setting . . . . . . . . . . . . . . . . . . . 28
3.3.2 Experimental Results . . . . . . . . . . . . . . . . . 30

3.4 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Data Generation and Selection for Semi–Supervised Sup-
port Vector Regression 42
4.1 Labeling the Unlabeled Data . . . . . . . . . . . . . . . . . 43
4.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Data Selection and Support Vector Regression . . . . . . . 50
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Experiment Setting . . . . . . . . . . . . . . . . . . . 50
4.4.2 Experimental Results . . . . . . . . . . . . . . . . . 53

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Application 1: Data Selection for Response Modeling 71
5.1 Response Modeling . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Two–Stage Response Modeling . . . . . . . . . . . . . . . . 72
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Experiment Setting . . . . . . . . . . . . . . . . . . . 73
5.3.2 Experimental Results . . . . . . . . . . . . . . . . . 75

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Application 2: Semi-Supervised Support Vector Regres-
sion for Virtual Metrology 80
6.1 Virtual Metrology . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Semi–Supervised Learning for Virtual Metrology . . . . . . 82
6.3 Virtual Metrology Process . . . . . . . . . . . . . . . . . . . 83

6.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . 84
6.3.4 Feature Selection . . . . . . . . . . . . . . . . . . . . 84
6.3.5 Virtual Metrology Modeling . . . . . . . . . . . . . . 85

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 85
6.4.1 Experiment Setting . . . . . . . . . . . . . . . . . . . 85



CONTENTS viii

6.4.2 Experimental Results . . . . . . . . . . . . . . . . . 86
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusion 93
7.1 Summary and Contributions . . . . . . . . . . . . . . . . . . 93
7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . 97

Bibliography 99



List of Tables

3.1 Datasets used in the experiments for the data selection . . . 29
3.2 Training time ratio, evaluation time ratio and RMSE ratio

of bagging compared to MDS on percentage. . . . . . . . . 34
3.3 Summary of the experimental results for data selection. . . 35

4.1 Datasets used in the experiments for SS–SVR . . . . . . . . 52
4.2 Summary of the experimental results for SS–SVR (RMSE

ratio). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Summary of the experimental results for SS–SVR (training

time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Input variables of DMEF4 dataset. . . . . . . . . . . . . . . 74
5.2 Experimental performance of classification models. . . . . . 75

6.1 VM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 The number of selected features. . . . . . . . . . . . . . . . 85
6.3 RMSE of the experimental results on EQ1. . . . . . . . . . 89
6.4 Training time of the experimental results on EQ1. . . . . . 89
6.5 RMSE of the experimental results on EQ2. . . . . . . . . . 90
6.6 Training time of the experimental results on EQ2. . . . . . 90

ix



List of Figures

1.1 ε–tube based on the margin of training data and the ε–loss
function of SVR (Smola and Schölkopf, 2002). . . . . . . . . 2

1.2 Important data among redundant and noisy data. . . . . . 4

2.1 The goal of data selection method. . . . . . . . . . . . . . . 13
2.2 The algorithm of HSVM. . . . . . . . . . . . . . . . . . . . 15
2.3 The stochastic algorithm of the k–NN based method. . . . . 16
2.4 The algorithm of ε–DS. . . . . . . . . . . . . . . . . . . . . 16
2.5 The algorithm of COREG. . . . . . . . . . . . . . . . . . . . 19
2.6 The algorithm of Co–SVR. . . . . . . . . . . . . . . . . . . 20
2.7 The predicted target variances of PLR regression with the

RBF kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Notations and parameters for VDS and MDS. . . . . . . . . 24
3.2 The algorithm of VDS. . . . . . . . . . . . . . . . . . . . . . 25
3.3 A graphical example of MDS. . . . . . . . . . . . . . . . . . 26
3.4 The algorithm of MDS. . . . . . . . . . . . . . . . . . . . . 28
3.5 Experimental results of Dataset 1 to Dataset 4. . . . . . . . 31
3.6 Experimental results of Dataset 5 to Dataset 12. . . . . . . 32
3.7 Experimental results of Dataset 13 to Dataset 20. . . . . . . 33
3.8 Comparison of MDS and bagging. (a) Training time ratio,

(b) evaluation time ratio and (c) RMSE ratio. . . . . . . . . 36
3.9 Sensitivity and precision of different parameter settings. . . 37
3.10 The percentage of RMSE and the training time changes by

different parameter settings. . . . . . . . . . . . . . . . . . . 38

x



LIST OF FIGURES xi

3.11 Sensitivity of MDS for each dataset. . . . . . . . . . . . . . 40

4.1 The overall procedure of the proposed SS–SVR method. . . 43
4.2 Notations for SS–SVR. . . . . . . . . . . . . . . . . . . . . . 44
4.3 The output of PLRlocal (a) and PLRglobal. . . . . . . . . . . 45
4.4 The conjugated new Gaussian distribution. . . . . . . . . . 46
4.5 The regression output from PLR (a) and SVR (b). . . . . . 48
4.6 Integrated dataset constructed with the unlabeled data ((a)

single label values and (b) generated data). . . . . . . . . . 49
4.7 The algorithm of the proposed SS–SVR method. . . . . . . 51
4.8 Experimental results when L=20% for D1 to D6. . . . . . . 54
4.9 Experimental results when L=20% for D7 to D12. . . . . . 55
4.10 Experimental results when L=20% for D13 to D18. . . . . . 56
4.11 Experimental results when L=10% for D1 to D6. . . . . . . 57
4.12 Experimental results when L=10% for D7 to D12. . . . . . 58
4.13 Experimental results when L=10% for D13 to D18. . . . . . 59
4.14 Experimental results when L=5% for D1 to D6. . . . . . . . 60
4.15 Experimental results when L=5% for D7 to D12. . . . . . . 61
4.16 Experimental results when L=5% for D13 to D18. . . . . . 62
4.17 Experimental results when L=1% for D1 to D6. . . . . . . . 63
4.18 Experimental results when L=1% for D7 to D12. . . . . . . 64
4.19 Experimental results when L=1% for D13 to D18. . . . . . 65
4.20 RMSE ratio for all datasets, (a) L=20%, (b) L=10%, (c)

L=5% and L=1%. . . . . . . . . . . . . . . . . . . . . . . . 66
4.21 Training time for all datasets, (a) L=20%, (b) L=10%, (c)

L=5% and L=1%. . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Concept of the two–stage response model. . . . . . . . . . . 72
5.2 Experimental results of response models based on 1–SVM. . 76
5.3 Experimental results of response models based on 2–SVM. . 77
5.4 Training complexity reduced by MDS compared to that of

the original SVR. . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Comparison of original SVR and SVR employing MDS to

various Alpha. . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Concept of the actual metrology and the virtual metrology
(Kang et al., 2009). . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Input and target variables of VM. . . . . . . . . . . . . . . 83
6.3 Process steps the virtual metrology. . . . . . . . . . . . . . 83



LIST OF FIGURES xii

6.4 Experimental results on EQ1. . . . . . . . . . . . . . . . . . 87
6.5 Experimental results on EQ2. . . . . . . . . . . . . . . . . . 88
6.6 RMSE ratio compared to train the labeled data only. . . . . 91



Chapter1
Introduction

Data mining discovers hidden information or important patterns from a
large size of database. Data mining refers to “the process of exploration
and analysis, by automatic or semi–automatic means, of large quantities of
data in order to discover meaningful patterns and rules (Berry and Linoff,
1997, 2000; Shmueli et al., 2007).” Methods utilized for data mining are
originated from various areas: computer science, statistics, artificial intel-
ligence and machine learning. In the process of data mining, mathematical
algorithms are programmed to computers in order to solve the problems,
automatically. The main goal of data mining is to answer the real–world
problems, such as “who will buy?” for a marketing problem or “which one
is fault?” for a manufacturing problem. As the size of database increases in
the big data generation, data mining has become more important for mak-
ing a scientific decision for business intelligence (Davenport and Harris,
2007).

Learning (or training) in data mining refers to identification of a func-
tional relationship of the input variables and the target variable from a
training dataset. There are two major paradigms of learning: supervised
learning and unsupervised learning. In supervised learning, d–dimensional
training data, X = {xi|i = 1, ..., n, xi ∈ Rd}, are given with corresponding
labels or targets, Y = {yi|i = 1, ..., n, yi = f(xi)} (Kang, 2010). La-
bels are either −1 or 1 for binary classification problems while labels are
continuous values for the regression problems. In unsupervised learning,
only training data, X , are given without their labels. The main goal of
unsupervised learning is to understand the structure of the dataset. One
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Figure 1.1: ε–tube based on the margin of training data and the ε–loss
function of SVR (Smola and Schölkopf, 2002).

of the most popular approaches of unsupervised learning is the clustering
analysis. Recently, Semi-Supervised Learning (SSL), training both labeled
data and unlabeled data, has been widely researched in order to improve
the generalization performance of the supervised learning.

1.1 Support Vector Regression

Support Vector Machine (SVM) was developed by Vapnik based on the
Structural Risk Minimization (SRM) principle (Vapnik, 1995). Contrast
to the conventional Empirical Risk Minimization (ERM) algorithms, SVM
trains a dataset on direction of maximizing the generalization performance,
not the empirical accuracy. Support Vector Classifier (SVC), a classifica-
tion version of SVM, maximizes margins of training data, which is cal-
culated by the distance between the closest data from different classes
(Burges, 1998). Also, SVC has the capability of solving nonlinear prob-
lems using the kernel trick (Shawe-Taylor and Cristianini, 2000). With the
great generalization performances, SVC has become one of the most spot-
lighted algorithms and has successfully applied to various areas, such as
text categorization (Joachims, 1998), face recognition (Déniz et al., 2003),
chemistry (Li et al., 2009), manufacturing (Widodo et al., 2007) and re-
sponse modeling (Shin and Cho, 2006).

Support Vector Regression (SVR), a regression version of SVM, was
proposed in order to solve nonlinear regression problems with a maxi-
mum margin algorithm (Smola and Schölkopf, 2002). SVR employs a
ε–insensitive loss function (see Figure 1.1), and training data whose mar-
gin are less than ε are not counted as error. Hence, an ε–sized insensitive
tube (ε–insensitive tube or ε–tube) has constructed while SVR training.
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SVR has the same advantages of SVC. SVR also maximizes the general-
ization performance by employing the SRM principle with ε–insensitive
loss function, and is capable of solving nonlinear problems with the kernel
trick. With those advantages, SVR has been successfully applied to vari-
ous areas: response modeling (Kim and Cho, 2012; Kim et al., 2008), vir-
tual metrology (Kang et al., 2011), finance prediction (Pai and Lin, 2005),
time–series prediction (Thissen et al., 2003) and environment (Ortiz-Garćıa
et al., 2010).

Despite of the great generalization performance, there still exist open
problems for SVR to overcome. In this dissertation, two major issues of
SVR are studied:

(1) Training complexity: The training complexity of SVR is relatively
high to analyze a large size of dataset, which makes SVR difficult
to be applied to real–world datasets. An effort of reducing training
complexity is needed to be studied.

(2) Semi–supervised SVR (SS–SVR): With the importance of using
unlabeled data, SSL has been widely studied. However SSL for SVR
is rarely proposed and is possible to be improved. For SS–SVR, issues
which should be considered are that (a) how to use the unlabeled data
along with the labeled data, (b) how to train SVR with a large size of
the unlabeled data.

1.2 Data Selection

One of the major drawbacks of SVR is the training complexity. The train-
ing complexity of SVR is strongly correlated to the number of training
data, as is that of SVM: O(n3) of the training time complexity and O(n2)
of the training memory complexity, where n is the number of training
data. The training time of SVR is expensive, and occasionally, SVR does
not work in a limited memory space for large datasets. Recently, the size
of training dataset is getting larger and larger. Data analysis for a real–
world problem includes the construction of various models with different
samples of a dataset to verify multiple strategic actions. Moreover, SVR
contains an additional hyper–parameter which requires that the SVC, ε,
be set empirically. Hence, the training complexity problem is more critical
for SVR than for SVC.



Data Selection 4

Figure 1.2: Important data among redundant and noisy data.

To overcome this training complexity problem, decomposition methods,
such as Chunking, Sequential Minimal Optimization (SMO), SVMlight,
Successive Overrelaxation (SOR) and Library SVM (LIBSVM), have been
proposed in order to divide the original optimization problem into a series
of smaller problems (Platt, 1998). However, the training complexities of
these methods are still strongly correlated with the number of training data
(Shin and Cho, 2007). Also, a Linear SVM method employing a cutting–
plane algorithm (Joachims, 2006) and Primal Estimated sub–GrAdient
SOlver for SVM (Pegasos) employing a stochastic gradient decent algo-
rithm (Shalev-Shwartz et al., 2007) have been proposed. Both methods
changed the optimization problem of the original SVM. However, the lin-
ear SVM and Pegasos were basically designed for modeling a spare dataset
which including a large number of zero features and a small number of
non–zero features. Moreover, they needs parameters to set empirically,
and several iterations to converse.

Other research studies have focused on the data selection method,
which relies on the assumption that there are important or informative
data among the redundant data and noisy data in the original dataset
(see Figure 1.2). The goal of data selection is that selection of important
data (or removal of redundant and noisy data) to train before training all
data. The performance loss occurred when removing training data should
be minimized. At the same time, training time including data selection
processing time should be shorter than the original training time.

For data selection for SVM, most data selection studies using meth-
ods such as SVM–KM (Almeida et al., 2000), Neighborhood Property
based Pattern Selection (NPPS) (Shin and Cho, 2007), a cross–training
based method (Bakir et al., 2005) have focused their efforts on classifica-
tion problems, rather than regression problems. Those methods cannot
be applied to regression problems. For regression problems, a Heuristic
SVM (HSVM) (Wang and Xu, 2004), a k–NN based method (Sun and
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Cho, 2006), ε–based data selection method (ε–DS) (Kim and Cho, 2006)
and Reducing examples of SVR (RSVR) (Guo and Zhang, 2007) have been
proposed. However, there have been some drawbacks with the use of these
methods. HSVM is basically useful for time–series problems. Hence, an
additional effort is needed to conduct the partitioning part of HSVM for
non time–series problems. Moreover, HSVM and the k–NN based method
have cut–off parameters that directly and empirically determine the num-
ber of data selected. ε–DS selects data inside the ε–DS while RSVR took
an interesting idea which selects support vectors. However, HSVM, the
k–NN based method, ε–DS and RSVR tend to degrade accuracy when it
trains high dimensional datasets. A new data selection method for SVR
is needed to be developed with the minimum accuracy loss and an easy
usability.

1.3 Semi-Supervised Learning

The conventional supervised learning uses only labeled data to train. How-
ever, the labeled data are often difficult, expensive or time consuming to
obtain. “SSL addresses this problem by using large amount of unlabeled
data, together with the labeled data, to build better classifiers” (Zhu,
2006).

SSL is originally designed for classification problems. Co–training
method (Blum and Mitchell, 1998; Mitchell, 1999), the most popular multi–
view algorithm, is a common solution for SSL. Co–training constructs two
different training models each of which trains different view of the labeled
dataset. Graph–based method is one of other solutions for SSL, but the
graph–based method is more likely to applied for transductive learning,
which has a slightly different view than SSL (Joachims, 1999; Vapnik,
1995; Zhu, 2006). SSL and transductive learning are successfully applied
to marketing (Lee et al., 2010), image sensing (Maulik and Chakraborty,
2011) and web mining (Sun et al., 2011) applications.

Recently, SSL for regression has been proposed (Brefeld et al., 2006;
Cortes and Mohri, 2006; Sindhwani et al., 2005; Wang et al., 2011, 2010;
Zhou and Li, 2007; Zhu, 2006). SSL for regression is more difficult than SSL
for classification. In order to use the unlabeled data for training, SSL for
regression needs to estimate continuous numbers as labels, which is more
difficult than estimating binary labels for SSL for classification. Hence,
most of those SSL for regression methods employ the multi–view algorithm
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which estimates the labels of the unlabeled data using regression models
as base learners. COREG (Zhou and Li, 2007), a co–training method
for regression employing k–Nearest Neighbor (k-NN) regressor as the base
learner, showed a great performance.

For the Semi–Supervised SVR (SS–SVR), co–training based method
(Co–SVR) was proposed (Wang et al., 2011, 2010). Since the training per-
formance of the base learner is very important for co–training, the idea that
co–training employing SVR is reasonable. However, there are some draw-
backs of Co–SVR. First of all, co–training is a time consuming method.
Since co–training is an iterative method with adding the unlabeled data
into training dataset, as the iterations go, the training complexity of co–
training is getting higher. Since the training time complexity of SVR is
O(n3), this problem is critical especially for Co–SVR. Second, co–training
re–trains the base SVR model with adding one unlabeled data point inde-
pendently, and measures the improvement of model accuracy. Since SVR
employs SRM principle with ε–loss function to avoid overffiting, one added
unlabeled data point may not affect to the model accuracy. Third, SVR
estimates a regression function calculated by a linear combination of sup-
port vectors. Thus, the estimated labels of the unlabeled data are just
interpolations of training data. In that case, the estimated labels of the
unlabeled data do not give any new information of the underlying function.
Finally, SVR estimates the regression function under the maximum mar-
gin algorithm with parameter of ε. The estimated labels of the unlabeled
data are needed to be distributed around the regression function, not to
be distributed on the function.

1.4 Contributions of this Dissertation

The main contributions of this dissertation are three–fold:

(1) A new data selection method, Margin based Data Selection (MDS),
for SVR is proposed to reduce the training complexity of SVR. Be-
cause, the training complexity of SVR is highly related to the number
of training data, the data selection is the most efficient approach to
reduce the training complexity. For SVR, the most important data are
support vectors, which affect the construction of a regression model.
However, before training, there is no way to identify which training
data will become the support vectors. Using the fact that support
vectors are always located on or outside the ε–tube (See Figure 1.1),
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the training data with a margin equal or greater than ε should be se-
lected. With multiple bootstrap learning, the margins of all training
data are estimated and data with a margin equal or greater than ε are
selected. MDS automatically determines the number of data selected
according to a parameter α which allows MDS to control the trade–off
between the training complexity and model performance.

(2) A new data generation and selection framework for SS–SVR is pro-
posed. For SSL, the key part is the use of the unlabeled data along
with the labeled data. Probabilistic Local Reconstruction (PLR) (Lee
et al., 2012a,b) is employed to estimate labels of the unlabeled data.
PLR is a local topology based linear reconstruction method. Since the
output of PLR is represented as a probabilistic form, the estimated
label distribution of each unlabeled data point can be obtained. Then,
the data generation step is conducted. In data generation step, train-
ing data are multiply generated from the estimated label distribution
of the unlabeled data. The data generating rate is differed by the un-
certainty of the estimation for each unlabeled data point. Since the
unlabeled data are multiply generated, the number of training data
is larger than the original training data including the unlabeled data.
Hence, the data selection method, MDS is applied to select the impor-
tant data for the training efficiency.

(3) Data selection for SVR and data generation and selection for SS-SVR
are applied to real–world datasets. First, a response modeling dataset
as a marketing problem is involved. In order to estimate the amount
of money spent for each respondent, two–stage response modeling is
proposed. MDS is applied to reduce the training complexity. Second,
a virtual metrology dataset as a manufacturing problem is involved.
With both real–world datasets, the possibility of the proposed methods
applying to real–world problems is analyzed.

The remainder of this dissertation is organized as follows. In Chapter 2,
literature reviews of SVR, data selection and SSL is presented. In Chapter
3, Voting based Data Selection (VDS), which is a preliminary version of
MDS, and MDS algorithm is summarized as well as their experimental
results on benchmark datasets. In Chapter 4, the data generation and
selection method for SS–SVR is proposed with experimental results on
benchmark datasets. In Chapter 5, the data selection method are applied
to a real–world marking problem, i.e. response modeling. In Chapter 6,
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experimental results for SS–SVR conducted on a real–world manufacturing
problem is presented. Finally, Chapter 7 concludes this dissertation with
the summary and limitations of the proposed approaches as well as the
future works.



Chapter2
Literature Review

2.1 Support Vector Regression

For a brief review of SVR, consider a regression function f(x) to be esti-
mated with training data {(xi, yi), i = 1, · · · , n} as follows:

f(x) = w · x+ b, with w,x ∈ Rd, b ∈ R
where {(x1, y1), . . . (xn, yn)} ⊂ Rd × R. (2.1)

By the SRM principle, the generalization accuracy is optimized by the
flatness of the regression function. Since the flatness is guaranteed on small
w, SVR is moved to minimize the norm, ∥w∥2. An optimization problem
could be formulated:

Minimize
1

2
∥w∥2

s.t. yi −w · xi − b ≤ ε (2.2)

w · xi + b− yi ≤ ε

where ε is the size of the ε–tube. This is called the hard margin problem of
SVR. In the hard margin problem, SVR does not allow any training data to
be located outside the ε–insensitive tube (ε–tube). Since this assumption
is too strong to solve real–world problems, the soft margin problem of SVR
is formulated:

9
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Minimize
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

s.t. yi −w · xi − b ≤ ε+ ξi (2.3)

w · xi + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0,

where C, ε, and ξi, ξ
∗
i are the trade–off cost between the empirical error

and the flatness, the size of the ε–tube and slack variables, respectively.
In the soft margin problem, the slack variables, ξi and ξ∗i , are employed in
order to robust to noisy data. The ε–loss function can be formulated:

|ξ|ε = 0 if |ξ| 5 ε

|ξ|ε = |ξ| − ε otherwise. (2.4)

By introducing a dual set of variables αi and α∗
i , the optimization

problem could be converted into the unconstraint optimization problem:

L =
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )−
n∑

i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑

i=1

αi(ε+ ξi − yi +w · xi + b) (2.5)

−
l∑

i=1

α∗
i (ε+ ξ∗i − yi −w · xi − b).

With the partial derivatives of L, the dual optimization form can be
obtained:

Maximize − 1

2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )(xi · xj)

−ε

n∑
i=1

(αi + α∗
i ) +

n∑
i=1

yi(αi − α∗
i ) (2.6)

s.t.

n∑
i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C].
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Then, the solution of SVR can be obtained:

w =

n∑
i=1

(αi − α∗
i )xi, thus f(x) =

n∑
i=1

(αi − α∗
i )(xi · xj) + b. (2.7)

In order to solve nonlinear problems, kernel trick is employed. Let us
the training data xi be mapped into a high–dimensional feature space F ,
Φ : X → F , where Φ is a mapping function. The optimization problem
and the solution can be changed as:

Minimize
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

s.t. yi −w · Φ(xi)− b ≤ ε+ ξi (2.8)

w · Φ(xi) + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0,

f(x) =

n∑
i=1

(αi − α∗
i )(Φ(xi) · Φ(xj)) + b. (2.9)

In order to calculate Φ(x), the explicit mapping function should be
defined. However, if the calculation of the solution consists of the inner
product of the mapped data, those inner product can be replaced by a
kernel function by the kernel trick, K(xi,xj) = Φ(xi) · Φ(xj) . The poly-
nomial kernel, K(xi,xj) = (xi · xj)

d, the Gaussian kernel, K(xi,xj) =

exp(− ||xi−xj ||2
2σ2 ) and the sigmoid kernel K(xi,xj) = tanh(κ(xi · xj) + Θ)

are commonly used kernels (Schölkopf and Smola, 2002).
Except the bias term, b, the solution of SVR is constituted with a linear

combination of training data and their weights, αi and α∗
i . If either αi or α

∗
i

is greater than zero, the data point xi becomes a support vector. Support
vectors are used to construct the regression function f(x), while the non
support vectors, which have zero αi and α∗

i values, do not affect the results.
Hence, support vectors are the most important and informative data for
training SVR. With the ε–loss function, support vectors are always located
outside the ε–tube.
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2.2 Data Selection for Support Vector Regression

2.2.1 Time Complexity Reduction

Despite of the great generalization performance of SVR, one drawback that
makes SVM difficult to use in practice is the training complexities. Nowa-
days, we have giga–tera–pita bytes of data to analyze in large databases.
However, the training complexity of SVM is strongly correlated to the
number of training data: O(n3) of the training time complexity and O(n2)
of the training memory complexity, where n is the number of training
data. Hence, the time it takes for SVM to train real world datasets is too
long, and occasionally, SVM does not work because the size of the kernel
matrix constructed from training data is too large for the memory limits.
Moreover, in order to apply SVM to real–world problems, several sensitive
hyper–parameters of SVM (or SVR) should be set, empirically.

To solve this drawback, some researches have been conducted using
the decomposition method. The decomposition method splits an origi-
nal optimization problem into a series of smaller optimization problems.
Chunking, SMO, SVMlight, SOR and LIBSVM have been proposed with
time complexity T · O(nq + q), where T is the number of iterations and
q is the size of the working set (Platt, 1998). However, the training time
complexities of those methods are still strongly correlated with the number
of training data (Shin and Cho, 2007). Also, a Linear SVM method em-
ploying a cutting–plane algorithm (Joachims, 2006) and Primal Estimated
sub–GrAdient SOlver for SVM (Pegasos) employing a stochastic gradient
decent algorithm (Shalev-Shwartz et al., 2007) have been proposed. Both
methods changed the optimization problem of the original SVM to reduce
the training complexity of Quadratic Program (QP) in the optimization
of SVM. The training complexity of the linear SVM method was O(sn)
while that of Pegasos was O( d

(λϵ)), where s, d, λ and ϵ are the number of
non–zero features, a bound of the number of non–zero features, a penalty
parameter and a solution accuracy, respectively. However, the linear SVM
and Pegasos were basically designed for modeling a spare dataset which
including a large number of zero features and a small number of non–zero
features. Moreover, they needs parameters to set empirically, and several
iterations to converse. These parameters and iterations may be a criti-
cal issue when applying to real–world applications with a large number of
training data.
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Figure 2.1: The goal of data selection method.

2.2.2 Data Selection Method

Other research studies focused on the data selection method. This method
relies on the assumption that there are important or informative data
among redundant data and noisy data in the original dataset. The goal of
data selection is that selection of important data (or removal of redundant
and noisy data) to train before training all data. The performance loss
occurred when removing training data is needed to be minimized. At the
same time, training time including data selection processing time should
be shorter than the original training time (see Figure 2.1). In the data
selection method, the most important data are selected, and these are
used to form a smaller subset. For SVM, support vectors are the most
important method. Hence, most researches of data selection for SVM have
been focused on selecting support vectors. SVM–KM (Almeida et al.,
2000), one of the first method proposed, employs k–Means clustering to
check whether or not a data point is likely to become a support vector.
SVM–KM runs k–Means clustering for all training data, and check whether
or not each cluster consists more than one class of data. Clusters formed
only by data that belong to the same class label can be disregard and used
only their centers. On the other hand, clusters with more than one class are
unchanged and trained. Neighborhood Property based Pattern Selection
(NPPS) (Shin and Cho, 2007) made an improvement of the idea of SVM–
KM by employing the k-Nearest Neighbors method (k-NN) to identify
those data which are located near the decision boundary. NPPS identified
data likely to become support vectors, when the data is located near the
decision boundary but is not noise. With “Label Probability”, “Neighbors
Entropy” and “Neighbors Match”, NPPS selected data likely to become
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support vectors. Shin and Cho (2007) had also proposed a fast version of
NPPS. Fast NPPS started k–NN with a small subset of all training data,
and expanded the working subset. Fast NPPS improved the training speed
of NPPS within a reasonable bound of accuracy. A Cross–Training based
method selects a subset of data with an averaged margin calculated by
the cross–training method (Bakir et al., 2005). The cross–training based
method had proposed the possibility of estimating margin with sample
set learning. However, those approaches were developed specifically for
classification problems, not for ordinary regression problems.

2.2.3 Data Selection Method for Support Vector Regres-
sion

Recently, data selection methods designed especially for SVR such as a
Heuristic SVM (HSVM) (Wang and Xu, 2004), ε–PS (Kim and Cho, 2008),
Reducing examples of SVR (RSVR) (Guo and Zhang, 2007) and k–NN
based method (Sun and Cho, 2006) have been proposed. The algorithm
of HSVM is presented in Figure 2.2. HSVM splits the training data into k
exclusive groups. Then the similarity is calculated between each data point
and the center of each group as a reverse of their Euclidean distance as in
Eq. 2.10. Data which have a greater similarity than the pre–fixed threshold
are selected. The k–NN based data selection method was also proposed by
taking entropy and variability into account. In some sense, HSVM reduces
redundant data among the original dataset. The k–NN based method
removes those data which are located in a dense region and have not a
unique label value. After conducting k–NN for the training data, sparsity,
variability and uniqueness can be calculated as in Eq. 2.11, Eq. 2.12 and
Eq. 2.13, respectively. The algorithm of the stochastic version of this
method is presented in Figure 2.3. This method has reduced the number
of data maintaining a comparable level of accuracy. ε–DS is designed for
selecting data falling inside of the ε–tube. The motivation of ε–DS is to
remove noisy data and is to turn the soft margin problem of SVR into the
hard margin problem. However, ε–DS tends to remove too many support
vectors. The algorithm of ε–DS is presented in Figure 2.4. RSVR is a
similar approaches to HSVM. However, RSVR employs an iterative search
with k–NN while HSVM employs k–Means clustering. However, those four
methods have a couple of critical parameters which are to be empirically
determined: k for HSVM, k–NN based method and RSVR. Moreover the
number of data selected was manipulated with parameters or thresholds
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HSVM Algorithm

1. Initialize the similarity threshold S

2. Divide the training data into k groups of size mj

3. For each data point group Dj , j = 1, ...k

3.1. Compute the mean x̄
′
j of Dj ,

and seek the center–like data point x̄j ∈ Dj , which is closest to x̄
′
j

3.2. Compute the similarity Sj
i (i = 1, ...m)

between each data point xj
i ∈ Dj and x̄j according to Eq. 2.10,

where mj is the number of training data belonging to Dj

3.3. If Sj
i > S, then xj

i is removed

4. Train SVR with the remained training data

Figure 2.2: The algorithm of HSVM.

to be determined by users without any guidelines. The number of data
selected to train a model is rarely known for all real–world problems. Also,
those methods tend to degrade accuracy when they train high dimensional
datasets.

S(x,y) = f(
1

||x− y||2
) = f(

1√∑d
i=1(xi − yi)2

) (2.10)

si =
1

k

k∑
j=1

||xi − x
NN(xi,j)

|| (2.11)

vi =
1

k

k∑
j=1

|y
NN(xi,j)

− ȳ
NN(xi)

| (2.12)

ui = |yi − ȳ
NN(xi)

| (2.13)
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k–NN based method Algorithm (Stochastic)

1. Initialize the number of selected data, s

2. Compute fitness(i) and p(xi) for all xi ∈ D

FOR(i=1 to n)

fitness(i)← (2vi + si)

END FOR

FOR(i=1 to n)

p(xi)← fitness(i)∑n
j=1 fitness(j)

END FOR

3. Select s data from D with p(xi)

Figure 2.3: The stochastic algorithm of the k–NN based method.

ε–DS Algorithm

1. Initialize the number of sample sets l

Initialize the number of data in each sample set, m

Initialize the number of data to be selected, s

2. Make l samples sets of size m, Dj for j = 1, · · · , l, from the original dataset D

by random sampling without replacement

3. Train SVR fj with Dj , ∀j
4. Evaluate the original dataset D by fj , ∀j
5. Mij = 1, if a data point xi is found inside the ε–tubes of fj (otherwise Mij = 0)

6. Calculate pi =
∑l

j=1 Mij∑n
i=1

∑l
j=1 Mij

7. Select s data stochastically without replacement based on pi,

8. Train final SVR with s selected data

Figure 2.4: The algorithm of ε–DS.
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2.3 Semi–Supervised Learning for Support Vec-
tor Regression

2.3.1 Semi–Supervised Learning

The conventional supervised learning uses labeled data to train. However
the labeled data are often difficult, expensive or time consuming to obtain.
Two major paradigms to use the unlabeled data with the labeled data are
researched: SSL and transductive learning. The difference between SSL
and the transductive learning is the perspective for the unlabeled data.
In SSL, the unlabeled data are different from test data (Chapelle et al.,
2006; Zhu, 2006). Hence, SSL constructs a model using both the labeled
data and the unlabeled data, and then the constructed model is applied
to estimate the labels of test data. On the other hand, in the transductive
learning, the unlabeled data are same with the test data (Joachims, 1999;
Vapnik, 1995). Hence, the concept of tranductive learning is to involving
the unlabeled test data when training the model. The graph–based method
is the most popular algorithm for transductive learning. The graph–based
method defines a graph where the nodes are the labeled data and the
unlabeled data in the dataset and the edges reflect the similarity based on
local topologies of data (Zhu, 2006). The limitations for the graph–based
methods are: (1) training complexity problem, (2) unstable to noisy data
and (3) re–training is needed when the dataset has changed.

For SSL, co–training methods are widely proposed. Co–training (Blum
and Mitchell, 1998; Mitchell, 1999) is a specific form of the multi–view
method (de SA, 1993). Co–training trains two base models each of which
has a different view for the training data from the other. The different
views can be gained by different sampling, different model parameters or
different features included. Each base model evaluates the unlabeled data
and every unlabeled data have two labels from two base models. And then,
each base model trains new training datasets adding unlabeled data one
by one. An unlabeled data point which improves the model’s accuracy
most is added to the other model’s training dataset. The basic idea of
those co–training and the graph–based method is that the local topology
of input variables play the key role in estimation of the unlabeled data.
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2.3.2 Semi–Supervised Learning for Regression

Contrast to SSL for classification, SSL for regression is still an open prob-
lem. Only binary class labels are needed to be estimated for SSL classifi-
cation. With the structure of input variables of the labeled data and the
unlabeled data, the unlabeled data are determined whether their labels are
-1 or +1 for SSL classification. However, continuous numbers are needed to
be estimated to labels for SSL regression. Because of this obstacle, meth-
ods for SSL regression have mostly focused on co–training based algorithm.
The advantage of co–training for SSL regression is that a regression model
can be directly involved for estimating labels of the unlabeled data.

COREG (Zhou and Li, 2007) is one of the most well–developed algo-
rithms for SSL regression. The algorithm of COREG is presented in Figure
2.5. In COREG, k–NN regression model is employed as the base models
of co–training. If two base models train the same view of dataset, this
method can be fallen into the self–training. In order to make a different
view for both base models, two initial training datasets are constructed
by sampling from the labeled data, randomly. In addition, each k–NN is
set to use different parameter k, the number of nearest neighbors as well
as the different distance measures: Mahalanobis distance and Euclidean
distance. Plentiful experiments showed that COREG can improve the per-
formance of the conventional supervised regression models or self–training
based method.

Co–SVR (Wang et al., 2011, 2010) was also proposed. The algorithm
of Co–SVR is presented in Figure 2.6. The framework of Co–SVR is very
similar with that of COREG except Co–SVR employs SVR for base mod-
els. Even though Co–SVR is applied to a remote sensing water quality
retrieving problem, there are some limitations for Co–SVR. Because SVR
is a function estimation model, not a local topology based model, Co–SVR
has a possibility to be trained as a self–training. Hence, the additional
unlabeled data may not have new information for the underlying function.

To avoid the self–training problem, a local topology based method
seems to be a better solution for SSL regression. In this dissertation,
PLR is adapted as base learners. One of the basic local topology based
method is the k–NN method. For a given test data x∗, k–NN learning
estimates its target value using the following equation,

ŷ∗ =

k∑
i=1

w
NN(x∗,i)

y
NN(x∗,i)

= wT
NN(x∗)

y
NN(x∗)

, (2.14)
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Figure 2.5: The algorithm of COREG.

where NN(x∗, i) is the ith nearest neighbor for x∗. This equation has two
user-specific parameters to be empirically determined: (1) the number of
nearest neighbors, k and (2) the weights assigned to the selected neighbors,
w

NN(x∗)
= [w

NN(x∗,1)
, ..., w

NN(x∗,k)
]T . (Kang and Cho, 2008; Lee et al.,

2012b)
With the assumption that a data point in the input space can be de-

scribed by a combination of its neighbors, the local reconstruction is the
problem to capture the underlying combination or topology to minimize
the difference between the data point and its description (Kang and Cho,
2008). The Locally Linear Reconstruction (LLR) method attempts to de-
scribe a given test data point x∗ by the linear reconstruction of its k nearest
neighbors:
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Figure 2.6: The algorithm of Co–SVR.

x∗ = XNNwNN , (2.15)

where x
NN(i)

, i = 1, ..., k and x∗ and XNN = [x
NN(1)

, ...,x
NN(k)

] denote the

ith nearest neighbor of a test data point and neighbors matrix of the x∗.
The LLR can be solved by minimizing the reconstruction error E(wNN )
as follows,

E(wNN ) =
1

2
(x∗ −XNNwNN )

T (x∗ −XNNwNN ). (2.16)

The explicit solution of the LLR regression is

wNN = [(xT
∗ XNN )(X

T
NN

XNN )
−1]T . (2.17)

PLR is a general and probabilistic form of LLR. PLR employs a prob-
abilistic view in order to capture the reconstruction uncertainty. Hence,
the reconstruction equation can be re–formed by adding the ϵ which is a
uncertainty of the reconstruction as follow:

x∗ = XNNw + ϵ, ϵ ∼ N(0, σ2I). (2.18)

Then, the likelihood is the test data point x∗ is

p(x∗|XNN ,w) = N(x∗|XNNw, σ2), (2.19)
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Figure 2.7: The predicted target variances of PLR regression with the RBF
kernel.

with a zero mean Gaussian prior over the weight parameters, p(w) =
N(w|0,Σ), the posterior of the weights can be calculated using Bayes’
rule as follows,

p(w|XNN ,x∗) ∝ p(x∗|XNN ,w)p(w)

= N(x∗|XNNw, σ2)N(w|0,Σ)
= N(w|µp,Σp), (2.20)

where the posterior mean µp = σ−2(σ−2XT
NN

XNN +Σ−1)−1XT
NN

x∗, which
is the weight solution in PLR, and the posterior covariance matrix Σp =
(σ−2XT

NN
XNN +Σ−1)−1.

In order to solve the nonlinear problems, the kernel trick can be em-
ployed for PLR. The final predictive distribution for a given test data point
x∗ with kernelizing is,

y∗ = µT
p (yNN − ȳNN1k×1) + ȳNN

= kT
∗ (K+ σ2I)−1yNN + ȳNN [1− kT

∗ (K+ σ2I)−11k×1], (2.21)

σ2
∗ =

1

k
(yNN − ȳNN1k×1)

T (σ−2K+ I)−1(yNN − ȳNN1k×1), (2.22)

where 1k×1 is the k×1 column vector with every element being one. Then
the predictive variance of the test data point x∗ can be obtained as:

σ2
NN =

1

k
(yNN − ȳNN1k×1)

T (yNN − ȳNN1k×1). (2.23)
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The PLR solution and the predicted target variance for given test data
is illustrated in Figure 2.7



Chapter3
Data Selection for Support Vector
Regression

In Chapter 3, the algorithms of the data selection methods for SVR are
presented as well as their experimental results. In order to reduce the
training complexity of SVR, the selection of a smaller subset consisting
important data to train is one of the effective approaches. For SVR, the
most important data are support vectors. Only support vectors are in-
volved in the calculation of the regression function while others are not
used at all. Hence, SVR can train the same regression model even if input
data were only support vectors. For the data selection’s view, the support
vectors are an ideal subset to be selected. Unfortunately, there is no way to
identify support vectors before training all data. The goal of the proposed
method is to find support vectors without training all data.

For the data selection of SVR, two data selection algorithms are pro-
posed. First, Voting based Data Selection (VDS) is proposed. VDS is an
early version of data selection for SVR research, which shows the possibil-
ity of selecting data which are likely to become support vectors by binary
voting of multiple sample learning. Second, Margin based Data Selection
(MDS) is proposed. MDS is an extended and general version of VDS.
MDS estimates margin of all training data with multiple sample learning.
And then, MDS selects data which are likely to become support vectors by
comparing the margin and the ε. The purpose of both VDS and MDS is
to select data which are likely to become support vectors in a short time.
The notation and parameters used in Chapter 3 is presented in Figure 3.1.

23
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Notations

D: Original dataset

Dj : The jth sample set from D

fj : Trained SVR from the jth sample set

Rij : Regression error of a data point xi evaluated by fj

M : Marking matrix for VDS

Li: Likelihood score of a data point xi for VDS

S: The expected number of support vectors for VDS

Margin(xi): The averaged margin of data point xi for MDS

Parameters

l: The number of sample sets

m: The number of data in a sample set (m% of the original data)

α: The accuracy–training time control parameter for MDS

Figure 3.1: Notations and parameters for VDS and MDS.

3.1 Voting based Data Selection

VDS is a simple version of data selection for SVR (Kim and Cho, 2008).
The geometrical characteristic of support vectors are used to identify data
which are likely to become support vectors. Support vectors are located
on or outside the ε–tube. Hence, training data which are likely to become
support vectors are probably located on or outside the ε–tube. Thus, the
proposed data selection method can be summarized as estimation of the
regression errors (residuals) of training data. Since the process time of the
data selection should be shorter than the training time of all data, multiple
sample learning is employed.

Initially, l bootstrap samplesDj = {(xj
i , y

j
i ), i = 1, · · · ,m% of n and

j = 1, · · · l} containing m% of the original training data from the original
dataset D = {(xi, yi), i = 1, · · · , n} is constructed. Then, an SVR is
trained with each sample set Dj and obtained l SVR regression functions
fj (j = 1, · · · , l), which may not perform well but the training complex-
ity is much lower than that of the original. Every data xi in the original
dataset D is evaluated by each regression function fj , to identify whether
it is located inside or outside the ε–tube. If a data point xi is located on or
outside the ε–tube of fj , the data point is marked as 1, i.e. Mij = 1. Then

Li =
∑l

j=1Mij , the number of total markings of the data point xi can
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VDS Algorithm

1. Initialize the number of sample sets l

Initialize the number of data in each sample set, m

2. Make l samples sets of size m, Dj for j = 1, · · · , l, from the original dataset D

by random sampling without replacement

3. Train SVR fj with Dj , ∀j
4. Evaluate the original dataset D by fj , ∀j
5. Mij = 1, if a data point xi is found outside the ε–tubes of fj (otherwise Mij = 0)

6. Calculate Li =
∑k

j=1 Mij

7. Calculate S = 1
k

∑k
j=1 sj , where sj =

∑n
i=1 mij

8. Select S data deterministically with largest Li,

or select S data stochastically without replacement according to pi =
Li∑n

i=1 Li
.

9. Train final SVR with S selected data

Figure 3.2: The algorithm of VDS.

be calculated, which is used as the estimated likelihood of xi to become a
support vector. At the same time, the expected number of support vectors
S = 1

l

∑l
j=1 sj , (where sj =

∑n
i=1Mij) can be calculated by averaging the

number of data marked by fj . Finally, VDS select S data deterministically
with largest Li. Or, VDS select S data stochastically based on the prob-
ability pi = Li∑n

i=1 Li
. Finally, an SVR is trained again with the selected

data. Figure 3.2 presents the algorithm. One of the advantages of VDS
is that the critical parameter which affects the number of data selected is
not involved.

3.2 Margin based Data Selection

VDS estimates the likelihood of becoming a support vector with binary
voting. Even this method was effective, information loss can occur. During
the data selection steps, the regression errors (residuals) of all training data
are calculated. Then each residual value is turned into a binary value which
only explained whether or not each data point was located outside the ε–
tube. Information was lost by discarding the residual values, which had
more information than the binary values. In addition, this method did
not have a parameter which allowed users to control the accuracy–training
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Figure 3.3: A graphical example of MDS.

time trade off.
MDS is an extended and general version of VDS. First of all, MDS

estimates margin of each training data using the residual values, directly.
In the SVR principle, the distance between a data point and the regression
function is called the margin of the data point. Using multiple sample
learning, MDS estimates margin for all training data and selects data with
a margin greater than ε. Hence, the information loss occurred by the
binary voting of VDS can be minimized. Also, MDS employs a parameter
which controls the accuracy–training time trade off.

The early part of MDS is same as VDS. Initially, l bootstrap samples
Dj = {(xj

i , y
j
i ), i = 1, · · · ,m% of n and j = 1, · · · l} containing m%
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of the original training data from the original dataset D = {(xi, yi), i =
1, · · · , n} is constructed. Then, an SVR is trained with each sample set
Dj and obtained l SVR regression functions fj (j = 1, · · · , l), which may
not perform well but the training complexity is much lower than that of
the original. Every data xi in the original dataset D is evaluated by each
regression function fj . Then, the regression error of the data point xi

evaluated by fj as Rij can be recorded. Using Rij , the averaged margin of
data point xi, Margin(xi), can be calculated with following equation:

Margin(xi) = Averagej(Rij) + α× Stdj(Rij)

where 0 ≤ α ≤ 1, (3.1)

where α is a control parameter of the accuracy–training time trade–off.
Figure 3.3 illustrates an example of MDS: (a) original dataset and an SVR
trained on it, (b) a sample set and an SVR trained on it, (c) original
dataset and data outside the ε–tube marked as red and the others as blue
(d) selected data and the resulting SVR trained using them.

If α = 0, the average value of Rij over j is used as the margin of data
point xi. However, if α > 0, MDS accounts for the standard deviation
of Rij over j. Hence, the parameter α controls the selection sensitivity,
which determines the number of data selected by MDS. α has some ad-
vantages over the threshold parameters of other algorithms. First, α does
not directly determine the number of data selected. Rather, α plays a role
in determining how much additional information is added to the baseline
Averagej(Rij). Additionally, from the experimental results in Section 3.3,
α is bounded in 0 ∼ 1.

The data selection rule compares Margin(xi) and ε, a hyper-parameter
of SVR, as depicted in Eq. 3.2. If Margin(xi) is greater than or equal to
ε, the data point xi is estimated to be located outside the ε–tube and is
likely to be an SV. If Margin(xi) is smaller than ε, xi is located inside the
ε–tube, which means xi is not likely to be an SV. Hence, we can say that
MDS automatically determines the number of data selected based on the
averaged margin and the pre–defined parameter ε.

Margin(xi) ≥ ε (3.2)

In VDS, however, the margin of a data point xi was not estimated.
Rather, whether or not a data point xi was located outside the ε–tube
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MDS Algorithm

1. Initialize the number of sample sets, l

Initialize the number of data in each sample set, m

Initialize the control parameter, α

2. Make l sample sets of size m, Dj for j = 1, · · · , l, from D

by random sampling without replacement

3. Train SVR fj with Dj , ∀j
4. Evaluate the original dataset D by fj , ∀j
5. Rij = Regression error of xi evaluated by fj

6. Margin(xi) = Averagej(Rij) + α× Stdj(Rij)

7. If Margin(xi) ≥ ε, select the data point xi

8. Train final SVR with S selected data

Figure 3.4: The algorithm of MDS.

was only checked. Thus, important information in Rij was discarded by
converting Rij into Mij as in Eq. 3.3. Moreover, VDS work only provided
the likelihood score of a data point xi to become an support vectors, while
MDS gives us the margin of a data point xi. Also, the parameter of MDS,
α, which controls the sensitivity of the number of data selected, results in
an MDS different from that of VDS. MDS also has the advantage that the
number of data selected is determined automatically.

If Rij ≥ ε, then Mij = 1

If Rij < ε, then Mij = 0 (3.3)

The MDS algorithm is presented in Figure 3.4.

3.3 Experimental Results

3.3.1 Experiment Setting

A total of 20 datasets, including two artificial datasets and 18 real world
benchmark datasets, were used for the experiments. Real world benchmark



Experimental Results 29

Table 3.1: Datasets used in the experiments for the data selection

No. Name ♯ Train ♯ Test ♯ Attribute Origin Feature
1 Artificial Dataset 1000 1000 1 Generated Art.
2 Add10 2000 2000 5 Delve Datasets Art.
3 Santa Fe A 890 100 10 Santa Fe Comp. T.S.
4 Santa Fe D 2000 2000 10 Santa Fe Comp. T.S.
5 Santa Fe E 1490 500 10 Santa Fe Comp. T.S.
6 Sun Spot 2000 1000 10 TSDL T.S.
7 Melbourne Temp. 2000 1000 10 TSDL T.S.
8 Gold 700 300 10 TSDL T.S.
9 S&P 500 2000 1000 10 TSDL T.S.
10 Wind 2000 2000 11 Statlib Non–T.S.
11 Abalone 2000 2000 10 Delve Datasets Non–T.S.
12 Computer Activity 2000 2000 12 Delve Datasets Non–T.S.
13 Bank 8FM 2000 2000 8 Delve Datasets Non–T.S.
14 Bank 8NH 2000 2000 8 Delve Datasets Non–T.S.
15 Pumadyn 8FM 2000 2000 8 Delve Datasets Non–T.S.
16 Pumadyn 8NH 2000 2000 8 Delve Datasets Non–T.S.
17 Census House 8L 2000 2000 8 Delve Datasets Non–T.S.
18 Census House 8H 2000 2000 8 Delve Datasets Non–T.S.
19 Census House 16L 2000 2000 16 Delve Datasets Non–T.S.
20 Census House 16H 2000 2000 16 Delve Datasets Non–T.S.

datasets were gathered from Delve datasets1, Time Series Data Library
(TSDL)2 and Statlib3. All datasets are summarized in Table 3.1.

The features of regression datasets can be partitioned into three types.
“Art.”, “T.S.” and “Non–T.S.” indicates an artificial dataset, a time se-
ries dataset and a non–time series multi–variate dataset, respectively. An
artificial dataset, D1, was generated based on the mathematical function,
y = sin (2x) + ξ where x ∈ [0, 5] and ξ ∼ N(0, 0.52). Add10 dataset
is another artificial dataset gathered from the Delve datasets. only five
relevant input features were included, excluding five noise terms. Time
series datasets were reformulated as regression problems by using the pre-
vious 10 values to estimate the following single value, which is a typical
way to solve time series problems. The Wind dataset was reformulated to
estimate the wind speed of the Dublin station using other 11 observed sta-
tions’ wind speeds. The dataset 13 to the dataset 20 from Table 3.1 came
from three datasets: Bank, Pumadyn and Census House. The number
following the dataset name denotes the number of features used. FM, NH,
L and H stand for ‘fairly linear–moderate noise’, ‘nonlinear–high noise’,

1Delve Dataset: http://www.cs.toronto.edu/˜delve/data/datasets.
html/

2TSDL: http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL/
3Statlib: http://lib.stat.cmu.edu/datasets/



Experimental Results 30

‘low task difficulty’ and ‘high task difficulty’, respectively. We expected
to analyze the model performances varied with the different characteris-
tics of training datasets, such as linearity and training complexity. To
evaluate the performances, the original dataset was randomly split into
training data and test data. The hyper–parameters of SVR were deter-
mined by cross–validation with C × ε = {0.1, 0.5, 1, 3, 5, 7, 10, 20, 50, 100}×
{0.01, 0.05, 0.07, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9, 1}. RBF kernel was used as a
kernel function and the kernel parameter σ was fixed to 1.0 for all datasets.
All datasets were normalized.

VDS and MDS were compared with HSVM, k–NN based method (Sun
and Cho, 2006) and random sampling. For the HSVM method, the parti-
tioning parameter is set to 10 while the similarity threshold was fixed at
1.2. Since, HSVM is designed only for time series problems, the partition-
ing step was exchanged with k–Means clustering to be used for non–time
series problems. A stochastic version of the k–NN based method was im-
plemented. The k of k–NN was fixed to 5. To use the k–NN based method,
the number of data selected should be determined as a parameter. The
parameter is set to be similar to the number of data selected by MDS.
VDS and MDS have two parameters to set. Based on the model param-
eter selection which is presented in Section 3.4, l and m were determined
to be 10 and 10% of n, respectively. The performances of each method
are measured by Root Mean Squared Error (RMSE) (Eq. 3.4) and train-
ing time (sec.), including data selection time and SVR training time. All
experimental results were averaged over 30 repetitions.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − f(xi))2 (3.4)

3.3.2 Experimental Results

Figure 3.5 shows the experimental results of the artificial dataset, Add10
dataset, Sunspot dataset and Melbourne temperature dataset. The pairs
of RMSE and training time in seconds are plotted corresponding to each
method. The closer a result is plotted to the origin, the better the method
performs. The solid line with triangles indicates the results of the random
sampling from 10% to 100% of n. Marked squares indicate the experimen-
tal results of MDS with α=0, α=0.5 and α=1, respectively. The results
of random samples were almost polynomially decreased as the number of
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Figure 3.5: Experimental results of Dataset 1 to Dataset 4.

data selected decreases. As shown in Figure 3.5, the result of the MDS are
satisfactory. MDS preformed better than benchmark methods, including
random sampling in terms of pairs of RMSE and training time.

Figure 3.6 and Figure 3.7 show the rest of the experimental results.
MDS showed more accurate regression performances than the random sam-
pling given the same training time. MPBS showed different RMSE and
training time pairs with the different values of α. It seems that α can
control the accuracy of the result and the training time complexity. MDS
outperformed the benchmark methods the datasets, regardless of whether
the dataset were artificial, time–series or non–time series. As mentioned
earlier, Dataset 13 to Dataset 20 have their own characteristics. In Figure
3.7, the figures presented in the left column are the results from datasets
that have relatively little with linear noise, while the figures in the right
column are the results from datasets with relatively large nonlinear noise.
MDS works well over all kinds of datasets, regardless of noise level and the
linearity of the noise.
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Figure 3.6: Experimental results of Dataset 5 to Dataset 12.
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Figure 3.7: Experimental results of Dataset 13 to Dataset 20.
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Table 3.2: Training time ratio, evaluation time ratio and RMSE ratio of
bagging compared to MDS on percentage.

MDS Bagging, Bagging, Bagging, Bagging,

10% 30% 50% 70%

Training time ratio 100 14.65 88.23 187.76 326.94

Evaluation time ratio 100 179.65 441.35 640.80 836.46

RMSE ratio 100 142.94 113.78 107.57 104.44

Since MDS employed a multiple sample set based learning, the com-
parison of MDS with Bootstrap Aggregating (Bagging) (Breiman, 1996)
for SVR was conducted. Bagging is one of the finest bootstrap sample
learning method. The original data are partitioned to l bootstrap sample
set with replacement. In each bootstrap sample set, the number of data is
smaller than that of the original data. Then, the base learners train each
bootstrap sample set. The final decision for a test data point is obtained
by merging (voting or averaging) the results of all base learners. The base
learners of bagging should be low bias and high variance model, and the
variance of base learners is smoothed by merging. For bagging, the hyper–
parameters for SVR were set to the same values of those for MDS. The
number of bootstraps of bagging was set to 10, which was same as the
default value of l for MDS. The number of data in a bootstrap was varied
from 10% of the original data to 30%, 50% and 70%.

Figure 3.8 illustrates the experimental results on 20 datasets. Figure
3.8 (a) depicts the training time ratio of bagging SVR compared to MDS on
percentage while Figure 3.8 (b) and Figure 3.8 (c) depict the evaluation
time ratio and RMSE ratio, respectively. Each bar indicates the result
for each dataset while the numbers after bagging indicates the sampling
rate for each bootstrap. For the training time of bagging SVR, MDS
resulted between “Bagging, 30%” and “Bagging, 50%”. The training time
of “Bagging, 10%” was very fast. However, for the evaluation time, bagging
took longer time than MDS. Since bagging employs all base learners to
evaluate a test data point, the evaluation complexity of bagging is relatively
high. In terms of RMSE, MDS was more accurate than bagging on average.
For details, the experimental results are summarized by averaging over all
datasets in Table 3.2. The accuracy of those bagging SVRs was lower
than MDS. Bagging SVRs used less training time than MDS only when
the sampling rate of each bootstrap of bagging was lower than 50% of the
original data. On the other hand, the evaluation time of bagging SVRs
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Table 3.3: Summary of the experimental results for data selection.

VDS MDS MDS MDS

(α=0) (α=0.5) (α=1)

Fraction of Average 101.04 101.24 100.11 99.98

RMSE to train Min 95.91 98.66 95.99 98.37

all data (%) Max 106.23 106.25 102.60 100.36

Fraction of Average 38.20 38.17 53.99 67.40

training time to train Min 2.76 2.67 2.84 3.33

all data (%) Max 66.99 72.74 86.81 113.66

Sensitivity (%) Average 86.01 85.84 92.79 96.27

resulted in 2∼8 times that of MDS.
All experimental results were summarized in Table 3.3. Table 3.3 shows

the fraction of RMSE of VDS and MDS compared to RMSE of the case
of training all data in percentage and training time of VDS and MDS
compared to that of the case of training all data in percentage. The training
performance of VDS is very similar to MDS with α = 0. However, the α
increases, the performance of MDS overcome the performance of VDS. This
experimental result showed that MDS is a extended and general version of
VDS, as mentioned earlier. On average MDS with α = 0 can train SVR
using only 38.17 % of the original training time and a 1.24 % accuracy
degradation. In case that requires higher model accuracy, the user can
set a larger α. When α = 0.5, the experimental results showed that MDS
degraded RMSE by only 0.11 %, but the overall training time, including
data selection time, took only half of the original training time. Moreover,
MDS with α = 1 trained SVR in 67.40 % of original training time, but
that did not degrade the results. MDS can select on average of 85.84 %,
9.79 % and 96.27 % of actual support vectors when α was 0 , 0.5 and 1,
respectively.

3.4 Parameter Analysis

The MDS method requires two parameters for building multiple sample
sets. l is the number of bootstraps while m % of n data are randomly
included in a sample set. If l and m increases, more sample sets and
more samples are involved. Larger l and m values guarantee the increased
accuracy of MDS. If l and m become too large, however, then MDS takes
too much time. Hence, it is important to select the most efficient and
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(a)

(b)

(c)

Figure 3.8: Comparison of MDS and bagging. (a) Training time ratio, (b)
evaluation time ratio and (c) RMSE ratio.
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Figure 3.9: Sensitivity and precision of different parameter settings.

effective set of l and m. To observe the effects of values of different l and
m, experiments were conducted with different parameter sets, l × m =
{10, 20} × {10, 20}.

Since, MDS is designed to select support vectors, we must determine
whether MDS accomplishes that task. Figure 3.9 showed the sensitivity
(a) and the precision (b) of different parameter settings. The sensitivity
and the precision can be calculated as in Eq. 3.5 and Eq. 3.6, respectively.
For comparison, the sensitivity and the precision of the random sampling
is also plotted. For all datasets and all parameter settings, the sensitivity
and the precision of MDS is higher than random sampling. It seems that
MDS tends to select more support vectors and less non–support vectors



Parameter Analysis 38

0 5 10 15 20
−20

−15

−10

−5

0

5

10
The % of RMSE changes with differect parameters (Alpha = 0)

Dataset

R
M

S
E

 C
ha

ng
e 

(%
)

 

 
MDS, l=20, m=10%
MDS, l=10, m=20%
MDS, l=20, m=20%

(a)

0 5 10 15 20
−100

0

100

200

300

400

500

600

700

800

900
The % of training time changes with differect parameters (Alpha = 0)

Dataset

T
ra

in
in

g 
tim

e 
C

ha
ng

e 
(%

)

 

 
MDS, l=20, m=10%
MDS, l=10, m=20%
MDS, l=20, m=20%

(b)

Figure 3.10: The percentage of RMSE and the training time changes by
different parameter settings.

and random sampling. The sensitivity of MDS is about 86%. That means
MDS has a capability of selecting most of support vectors. Parameter l and
m are not sensitive to select support vectors, but parameter m is slightly
sensitive to avoid selecting non–support vectors.

Sensitivity =
The ♯ of actual support vectors selected

The ♯ of actual support vectors
(3.5)

Precision =
The ♯ of actual support vectors selected

The ♯ of data selected
(3.6)
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Then the relation between parameter settings and model performances
is compared. Figure 3.10 (a) shows the changes of RMSE with different
parameters compared to the default parameter setting, l = 10 and m = 10,
in terms of percentage, while Figure 3.10 (b) shows the changes of training
time in the same manner. RMSE changes were approximately 0 % for
17 datasets among 20 datasets. However, the training time changes were
dramatically large. Especially, the training time is very sensitive to m.
When m = 20, the training time increased by more than 100 %, while the
RMSE was almost the same. The conclusion is that even if l and m affect
the precision, l and m rarely affect RMSE, the model accuracy. However, l
and m affect the training time, dramatically. Hence, the default parameter
setting, which was l = 10 and m = 10, is effective and efficient.

3.5 Summary

Research efforts have focused on reducing the training complexity of SVM.
Since the training complexity of SVM is highly correlated to the num-
ber of training data, data selection is an effective method in order to re-
duce the training complexity of SVM. In addition, since data selection
is working as a preprocessing step, data selection method can be applied
with other training complexity reducing methods, such as decomposition
method based SVM or a linear SVM. Moreover, the memory space can
be saved by storing only a smaller subset of selected data, not all original
data.

This Chapter proposed two data selection methods, VDS and MDS,
to reduce the training time complexity of SVR using the characteristics
of support vectors. Only those data that were likely to become support
vectors were selected and used for training. VDS is a preliminary method
using the binary voting method while MDS is an extended and general
version of VDS. VDS selected data with binary voting of multiple sam-
ple learning. MDS estimated the averaged margin of training data, and
those data which have the averaged margin greater than ε are selected
to train. Both VDS and MDS automatically determined the number of
data selected, which is a key factor in obtaining good results, and makes
MDS less ambiguous. The parameter α controls the number of data se-
lected by the model. This allows the model to adapt to the various noise
level. With a high α, the sensitivity of selecting support vectors can be in-
creased (see Figure 3.11). Through the experiments including 20 datasets,
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Figure 3.11: Sensitivity of MDS for each dataset.

MDS provided better generalization performances than the other bench-
mark methods. MDS performed well for diverse datasets: artificial, time
series, non–time series, linear, non–linear, low noise or high noise.

Another strong point of the proposed methods are that it has fewer
critical parameters than benchmark methods. For example, it is known
as an NP–hard problem to find the optimal k of the k–NN based method.
Moreover, several threshold parameters affect the results but are ambigu-
ous to users. There is no guideline for those parameters, and a parameter
set which is determined to be the best for a certain dataset is rarely the best
for other datasets. However, MDS, only the parameters l and m, which
do not affect the result directly, and α can be bounded between 0 and
1. Based on our analysis of the model parameters, the default parameter
setting was very effective.

There are some limitations of the current work. First of all, the data
redundancy can occur. MDS selects data which are likely to become sup-
port vectors by estimating margin of training data. Hence, MDS tends
to select too many data if the number of support vectors are too large or
the parameter ε is too small. Other methods, such as HSVM and k–NN
based method, have focused on selecting a representative data point from
a dense region in order to reduce redundant data. An additional effort that
selecting representative data from a dense region to avoid redundancy can
be employed to selected data by MDS. Second, the parameter analysis of
MDS needs to be more detailed. MDS has two parameters: l, the number
of multiple sample set and m, the number of data in a sample set. Though
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the experiments, some guidelines for those parameters can be obtained and
they were effective. However, the fundamental bounds for parameters are
not researched. Efforts to determination of the fundamental bounds are
future research area.



Chapter4
Data Generation and Selection for
Semi–Supervised Support Vector
Regression

For SS–SVR, there are two common stages: (1) labeling the unlabeled
data and (2) training models with the labeled data and the unlabeled data
labeled from the first stage. In the first stage, the labels of the unlabeled
data are estimated to use the unlabeled data in the construction of the final
regression model. In the second stage, the final regression model is trained
with the labeled and the unlabeled data in order to obtain a model which
can be applied to unseen test data. The main motivation of SS–SVR is to
adapt the great generalization performance of SVR by using SVR for the
final model. For SS–SVR, the usage of the unlabeled data should be fit to
train the final SVR model. In addition, the training complexity problem
of SVR and SSL can be considered.

In this dissertation, the proposed SS–SVR algorithm can be summa-
rized in four detail stages: (1) labeling the unlabeled data, (2) data gener-
ation, (3) data selection and (4) training the final SVR model. In the first
stage, the unlabeled data are labeled using 2–PLR regression methods.
Contrast to the conventional co–training method, the label of each unla-
beled data point is estimated as the Gaussian probabilistic distribution
form, not a single value. In addition, the iterative learning of co–training
is not employed in order to reduce the training complexity of SS–SVR. In
the second stage, the training data are generated from the unlabeled data

42
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Figure 4.1: The overall procedure of the proposed SS–SVR method.

and their estimated label distribution. With the uncertainty of estimated
labels for the unlabeled data, the data generation rate is varied. The un-
labeled data with high uncertainty have high probability to be generated
while the unlabeled data with low uncertainty have low probability to be
generated. The integrated set is constructed by the labeled data and the
generated unlabeled data. In the third stage, the data selection method is
applied. Since the size of training dataset is increased by the data gener-
ation of the second stage, the data selection method should be employed
in order to decrease the training complexity. In the final stage, the final
SVR model is trained by the selected set from the third stage. The overall
procedure of the proposed method is illustrated in Figure 4.1 while the
notation is presented in Figure 4.2.

4.1 Labeling the Unlabeled Data

In Section 4.1, the process of labeling the unlabeled data is presented.
Normally, the training dataset consists of the labeled dataset and the un-
labeled dataset. Let us consider the labeled data L = {Lx, Ly} where Lx

is the input variables of the labeled data and Ly is the label. And the
unlabeled data can be notated as U . Since the unlabeled data do not have
their labels, U has only Ux.

As mentioned earlier, the local topology based method is better than
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Notations

L: The labeled data

Lx: The input variables of the labeled data

Ly: The target variable of the labeled data

U : The unlabeled data

Ux: The input variables of the unlabeled data

ŷ: The estimated label of the unlabeled data

DI : The integrated data set

UG: The generated data

DS : The selected data set

pi: Data generation probability

Parameters

klocal: The number of nearest neighbors for PLRlocal

kglobal: The number of nearest neighbors for PLRglobal

t: The number of trials for data generation

Figure 4.2: Notations for SS–SVR.

the function based method when labeling the unlabeled data. Because the
local topology based method can describe the unlabeled data surroundings.
On the other hand, the function based method for labeling the unlabeled
data has a risk of an interpolation, which rarely gives new information of
the unlabeled data. In order to obtain the estimated label distribution
of the unlabeled data, PRL is employed. PLR is a key parameter to set,
the number of nearest neighbors k. Even PLR was designed to be a k–
invariant method, however, there still exists a risk for the noisy data when
estimating the label distribution.

In order to overcome that risk and obtain the robust results, two PLR
models are employed. The first model, PLRlocal, plays a role in focus-
ing on the local area of each unlabeled data point with a small k. This
model captures the local topology of nearest labeled data for each unla-
beled data. However, PLRlocal can be sensitive to noisy data. The second
model, PLRglocal, plays a role in focusing on the global distribution of the
labeled data with a large k. PLRglocal may be worse to capture the local
topology than the PLRlocal. However, PLRglocal can be good at capturing
the global distribution of the labeled data. Hence, those two PLR models
play each role with different k: klocal and kglobal. Figure 4.3 (a) depicts
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Figure 4.3: The output of PLRlocal (a) and PLRglobal.

the output of PLRlocal focusing on the local topology while Figure 4.3 (b)
depicts the output of PLRglobal capturing the global distribution. PLRlocal

captured the local topology well, but the target variance was sensitive to
noisy data. On the other hand, PLRglobal captured the global distribution
of the labeled distribution.

The outputs of both PLRs are obtained as a Gaussian probabilistic
distribution form, ŷi = N(ȳi, σ

2). To use the label distribution, not a
label value, the final output combined the output of 2–PLR is needed to
also a Gaussian probabilistic distribution form. Hence, the conjugation
method which is widely used for Bayesian method (Bishop, 2006; Duda
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Figure 4.4: The conjugated new Gaussian distribution.

et al., 2001; Mitchell, 1997) was employed. The prior probability and the
likelihood probability can be conjugated as the posterior probability as
shown in Figure 4.4. Since PLRlocal has more near data–driven view, it
mimics the likelihood of the Bayesian method. On the other hand, since
PLRglobal focuses on the global distribution of the underlying function,
it mimics the prior of the Bayesian method. The conjugated ȳ and the
conjugated σ2 can be calculated in Eq. 4.1 and Eq. 4.2, respectively.

ȳconjugate =

ȳglobal
σ2
global

+ n×ȳlocal
σ2
local

1
σ2
global

+ n
σ2
local

. (4.1)

σ2
conjugate =

1
1

σ2
global

+ n
σ2
local

. (4.2)

4.2 Data Generation

The conventional SSL method uses the single label value, ȳ. However,
some drawbacks exist. One drawback is that the uncertainty of labeling
the unlabeled data is not considered. Some unlabeled data located in a
dense region constituted by the labeled data are well–labeled by the local
topology model. On the other hand, the estimated labels of some other
unlabeled data located in a sparse region have much uncertainty. If the
uncertainty is not considered, the final regression method may train wrong
labels of the unlabeled data. Another drawback occurs when training
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SVR. SVR employs the ε–tube and maximizes margins of the training
data. Hence, the training data should be distributed in a margin region
of the regression function. Machine learning–based regression methods
estimate the labels based on interpolation. As shown in Figure 4.5, the
single labels are formed narrowly around the underlying function. Then,
maximum margin model may give an arbitrary results. In addition, the
single labels are located in the labeled data surroundings because of the
interpolation. The unlabeled data do not have any additional information
of the underlying function, but just give redundant information of the
training data. Then, only a few labeled data is selected to be support
vectors.

In order to overcome the drawbacks of the conventional SSL method,
the data generation was conducted. Contrast to the conventional SSL
method, the proposed method obtains the estimated label distribution of
each unlabeled data point by 2–PLR and their conjugation. Data gener-
ation of the proposed method refers to a multiple random generation of
training data from the unlabeled data, Uxi and its estimated label distri-
bution, ŷi = N(ȳi, σ

2
i ). Since Uxi is a static term, a generated data point

is described as {Uxi ,ŷi = N(ȳi, σ
2
i )}. The integrated dataset, DI , is con-

structed with the generated dataset of the unlabeled data point, UG, and
the labeled data: DI = L

∪
UG. Data generation gives advantages for the

SSL. First of all, data generation overcomes the problem occurred by the
interpolation of the labeled data. Since the labels of the unlabeled data
are generated from Gaussian distributions, the training data are located
around the target function with some margins. Second, the uncertainty
of labeling the unlabeled data can be considered. In PLR learning, σ2

i is
calculated related to the variation of the nearest neighbors of each data
point, xi. Hence, the larger σ

2, the sparser the nearest neighbors is located
around the unlabeled data point. Hence, those unlabeled data which have
large σ2

i can be considered to have high labeling uncertainties. On the
other hand, those unlabeled data which have small σ2

i can be considered
to have low labeling uncertainties.

In data generation stage, each unlabeled data point, Uxi , has different
generation rate. For the unlabeled data with high uncertainties, more
training data should be generated in order to generate more information
of that region. Moreover, if σ2

i is large, which means the confidence of
ȳi

2 is too low, the single ȳi
2 has low probability to be the labels of Uxi .

Hence, for those unlabeled data, the probability to be generated should be
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Figure 4.5: The regression output from PLR (a) and SVR (b).

high. On the other hand, for the unlabeled data with low uncertainties,
less training data should be generated in order to prevent the duplication.
Similar training data can be generated with small σ2

i . Those training data
increase the training complexity, but do not give additional information we
have expected to the unlabeled data. Hence, the generation rate should
be proportional to σ2

i . In this research, the data generation probability, pi
is calculated by scaling of σ2

i as in Eq. 4.3. Every unlabeled data have t
numbers of independent trials to be generated. pi determines whether an
unlabeled data point is generated or not for every t trials, independently.
Then, those unlabeled data with high uncertainty have more chances to
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Figure 4.6: Integrated dataset constructed with the unlabeled data ((a)
single label values and (b) generated data).
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be generated while others have less chances. Figure 4.6 compares the
integrated dataset with the labeled data and the unlabeled data with their
single labels (a) and the integrated dataset constructed by the labeled data
and the generated data (b). The data generation gives more information
of the unlabeled data located in an uncertain region.

pi =
σ2
i −min(σ2)

max(σ2)−min(σ2)
. (4.3)

4.3 Data Selection and Support Vector Regres-
sion

SSL is a time consuming method. The basic assumption of the SSL is
that the number of the unlabeled data are very large, 10∼100 times of
the number of the labeled data. Moreover, the proposed method employs
the data generation step. The size of training dataset is even larger than
the original training dataset. Hence, an additional method is needed to
decrease the training complexity. Since the proposed method is designed
for SS–SVR, the training time complexity follows that of SVR. The main
issue of the training complexity of SVM is the number of training data. The
training complexity of SVR is strongly correlated to the number of training
data: O(n3) of the training time complexity and O(n2) of the training
memory complexity, where n is the number of training data. Hence, the
data selection method proposed in Chapter 3, MDS, is employed to reduce
the training complexity of SVR. The algorithm of the proposed method is
summarized in Figure 4.7.

4.4 Experimental Results

4.4.1 Experiment Setting

For the experiments, 18 benchmark datasets, including one artificial dataset
and 17 real–world datasets, were used. Real–world benchmark datasets
were gathered from Delve datasets1, Time Series Data Library (TSDL)2

and Statlib3. All datasets are summarized in Table 4.1.

1Delve Dataset: http://www.cs.toronto.edu/˜delve/data/datasets.
html/

2TSDL: http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL/
3Statlib: http://lib.stat.cmu.edu/datasets/



Experimental Results 51

The Proposed SS–SVR Method Algorithm

1. Initialization

klocal: The number of nearest neighbors for PLRlocal

kglobal: The number of nearest neighbors for PLRglobal

t: The number of trials for data generation

ADDUx : An empty set for the unlabeled input data

ADDUy : An empty set for the estimated labels

2. Labeling the unlabeled data

Nlocal←PLRlocal(Lx, Ly, Ux, klocal)

Nglobal←PLRglobal(Lx, Ly, Ux, kglobal)

Nconjugate←Conjugation(Nlocal, Nglobal)

3. Data generation

pi =
σ2
i −min(σ)

max(σ)−min(σ)

FOR all Uxi

FOR 1 to t

r ← Uniform(0, 1)

IF pi > r

ADDUx ← ADDUx

∪
Uxi

ADDUy ← ADDUy

∪
ŷi ∼ N(ȳi, σ

2
i )

END IF

END FOR

END FOR

DIx = Lx

∪
ADDUx

DIy = Ly

∪
ADDUy

4. Data selection

{Selectx, Selecty} =MDS(DIx , DIy )

5. Run SVR

ŷ = f(x)←SVR(Selectx, Selecty)

Figure 4.7: The algorithm of the proposed SS–SVR method.
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Table 4.1: Datasets used in the experiments for SS–SVR

No. Name ♯ Train ♯ Test ♯ Attribute Origin Feature
1 Add10 2000 2000 5 Delve Datasets Art.
2 Santa Fe A 890 100 10 Santa Fe Comp. T.S.
3 Santa Fe D 2000 2000 10 Santa Fe Comp. T.S.
4 Santa Fe E 1490 500 10 Santa Fe Comp. T.S.
5 Sun Spot 2000 1000 10 TSDL T.S.
6 Melbourne Temp. 2000 1000 10 TSDL T.S.
7 Gold 700 300 10 TSDL T.S.
8 Wind 2000 2000 11 Statlib Non–T.S.
9 Abalone 2000 2000 10 Delve Datasets Non–T.S.
10 Computer Activity 2000 2000 12 Delve Datasets Non–T.S.
11 Bank 8FM 2000 2000 8 Delve Datasets Non–T.S.
12 Bank 8NH 2000 2000 8 Delve Datasets Non–T.S.
13 Pumadyn 8FM 2000 2000 8 Delve Datasets Non–T.S.
14 Pumadyn 8NH 2000 2000 8 Delve Datasets Non–T.S.
15 Census House 8L 2000 2000 8 Delve Datasets Non–T.S.
16 Census House 8H 2000 2000 8 Delve Datasets Non–T.S.
17 Census House 16L 2000 2000 16 Delve Datasets Non–T.S.
18 Census House 16H 2000 2000 16 Delve Datasets Non–T.S.

The features of regression datasets can be partitioned into three types.
“Art.”, “T.S.” and “Non–T.S.” indicates an artificial dataset, a time series
dataset and a non–time series multi–variate dataset, respectively. Add10
dataset is another artificial dataset gathered from the Delve datasets. We
used only five relevant input features, excluding five noise terms. Time
series datasets were reformulated as regression problems by using the pre-
vious 10 values to estimate the following single value, which is a typi-
cal way to solve time series problems. The Wind dataset was reformu-
lated to estimate the wind speed of the Dublin station using other 11
observed stations’ wind speeds. The dataset 9 to the dataset 18 from Ta-
ble 4.1 came from three datasets: Bank, Pumadyn and Census House. The
number following the dataset name denotes the number of features used.
FM, NH, L and H stand for ‘fairly linear–moderate noise’, ‘nonlinear–
high noise’, ‘low task difficulty’ and ‘high task difficulty’, respectively.
Since one dimensional dataset is not suitable for SSL problems, the one
dimensional dataset used in Chapter 3 was not analyzed. We expected
to analyze the model performances varied with the different characteris-
tics of training datasets, such as linearity and training complexity. To
evaluate the performances, the original dataset was randomly split into
training data and test data. The hyper–parameters of SVR were deter-
mined by cross–validation with C × ε = {0.1, 0.5, 1, 3, 5, 7, 10, 20, 50, 100}×
{0.01, 0.05, 0.07, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9, 1}. RBF kernel was used as a
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kernel function and the kernel parameter σ was fixed to 1.0 for all datasets.
All datasets were normalized.

The proposed method was compared to COREGkNN , COREGSV R and
Co–SVR. COREG is from Zhou and Li (2007). Both COREG–based meth-
ods employ k–NN for labeling the unlabeled data. The difference between
COREGkNN and COREGSV R is that COREGkNN and COREGSV R em-
ploy k–NN and SVR for the final training part, respectively. The number
of k was fixed to 3 and 5 for two k–NN base models used for COREG. Co–
SVR is from Wang et al. (2010). The hyper–parameters for Co–SVR was
set to the same values which were set to the original training dataset. The
GA part for Co–SVR is omitted in order to reduce the training complexity.
For the initialization of both co–training based methods, the labeled data
were partitioned into two different training sets, randomly. The number
of data in a working set of the unlabeled data is set to 100 and 40 for
COREG and Co–SVR, respectively. The number of maximum iteration is
set to 100 for all co–training based methods. The proposed method also
has parameters to set. The number of nearest neighbors for 2–PLR were
set to 5 and 20 for klocal and kglobal, respectively. The number of trails for
each unlabeled data in data generation, t, was set to 3, 5 and 7.

The original training data were randomly sampled to be the labeled
data, and the rest of them were used as the unlabeled data. The labels
of the unlabeled data were masked and not used in the training and the
test. The ratio of the labeled data were 20%, 10%, 5% and 1% of the
original data. Since the experimental results can be biased by samplings
for the labeled section and the data generation, the experimental results
were averaged over 10-time repetitions. The performances of each method
are measured by RMSE (Eq. 3.4) and training time (sec.), including the
SSL part.

4.4.2 Experimental Results

Figure 4.8-4.19 presents the experimental results for 18 datasets, from
the labeled ratio is 20% to 1%. The pairs of RMSE and training time
in seconds are plotted corresponding to each method. The closer a re-
sult is plotted to the origin, the better the method performs. The ex-
perimental results of COREGkNN , COREGSV R and Co–SVR are plotted
as upper triangles, lower triangles and diamonds, respectively. The ex-
perimental results of the proposed method with various t are plotted as
squares connected with a line. The accuracy of the proposed method is
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Figure 4.8: Experimental results when L=20% for D1 to D6.
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Figure 4.9: Experimental results when L=20% for D7 to D12.
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Figure 4.10: Experimental results when L=20% for D13 to D18.
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Figure 4.11: Experimental results when L=10% for D1 to D6.
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Figure 4.12: Experimental results when L=10% for D7 to D12.
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Figure 4.13: Experimental results when L=10% for D13 to D18.
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Figure 4.14: Experimental results when L=5% for D1 to D6.
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Figure 4.15: Experimental results when L=5% for D7 to D12.
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Figure 4.16: Experimental results when L=5% for D13 to D18.
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Figure 4.17: Experimental results when L=1% for D1 to D6.
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Figure 4.18: Experimental results when L=1% for D7 to D12.
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Figure 4.19: Experimental results when L=1% for D13 to D18.
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Figure 4.20: RMSE ratio for all datasets, (a) L=20%, (b) L=10%, (c)
L=5% and L=1%.

comparable to COREGkNN . However, the training time of the proposed
method is about 30% of COREGkNN . The proposed method showed bet-
ter efficiency than COREGkNN . On the other hand, among the proposed
method, COREGSV R and Co–SVR, which employ SVR as the final regres-
sion method, the proposed method showed the best experimental results.
The accuracy is smallest and the training time is shortest for all datasets.
For the proposed method, the parameter t is not sensitive to most datasets.
It seems that even a small number of trials, data generation can cover an
effective range of training space.

Figure 4.20 illustrates RMSE ratio for all datasets while Figure 4.21
illustrates training time for all datasets. RMSE ratio is the fraction of
RMSE of a method to RMSE of only labeled data trained. For exam-
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Figure 4.21: Training time for all datasets, (a) L=20%, (b) L=10%, (c)
L=5% and L=1%.
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Table 4.2: Summary of the experimental results for SS–SVR (RMSE ratio).

L=20% L=10% L=5% L=1% Avg.

COREGkNN 95.28 88.67 84.92 86.56 88.86

COREGSV R 101.78 98.41 96.53 95.19 97.98

Co–SVR 111.74 113.07 111.32 108.28 111.10

Proposed, 1 95.47 91.26 88.79 91.60 91.78

Proposed, 3 94.08 89.92 87.55 90.09 90.41

Proposed, 5 94.16 89.99 87.52 89.86 90.38

Proposed, 7 94.21 90.01 87.48 89.72 90.36

Table 4.3: Summary of the experimental results for SS–SVR (training
time).

L=20% L=10% L=5% L=1% Avg.

COREGkNN 37.95 28.40 24.24 21.89 28.12

COREGSV R 44.12 32.12 26.15 22.94 31.33

Co–SVR 133.46 42.37 18.70 5.13 49.42

Proposed, 1 1.34 1.29 1.27 1.17 1.27

Proposed, 3 10.65 6.19 3.93 2.32 5.77

Proposed, 5 11.08 6.63 4.56 3.14 6.35

Proposed, 7 11.44 7.10 5.19 4.13 6.97

ple RMSE ratio of the proposed method is calculated as RMSERatio =
RMSEproposed

RMSElabeled
× 100. The smaller RMSE ratio is the better improvement a

method was. RMSE ratio measures the improvement of SSL than the con-
ventional supervised learning. The RMSE ratio of the proposed method is
stable regardless of the labeled ratio and datasets. The proposed method
outperforms COREGSV R and Co–SVR, and is comparable to COREGkNN .
The training time of the proposed method showed the greatest among other
benchmark methods.

The overall experimental results are summarized in Table 4.2 and Ta-
ble 4.3. The number after “Proposed” indicates the parameter t. “Pro-
posed, 1” is the experimental results of the proposed method without data
generation. As shown in Table 4.2, the data generation stage can im-
prove the accuracy than one without it. The proposed method outper-
forms all the methods employing SVR as a final model, COREGSV R and
Co–SVR. The accuracy of the proposed method was about 1.5% higher
than COREGkNN . However, as shown in Table 4.3, the training time of
the proposed method was only 20∼25% of training time of COREGkNN .
the proposed method can be concluded as a very efficient SS–SVR method.
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The accuracy was stable when the parameter t has changed excluding t = 1
while the training time was differed. For these benchmark datasets, t = 3
was enough to train. The training time of “Proposed, 1” was very short.
The reason was, without data generation, the estimated labeled of the un-
labeled data were just interpolation of the labeled data. Hence, only a few
number of support vectors from the labeled data is involved to be trained
by SVR while the unlabeled data are just located inside the ε–tube.

4.5 Summary

In Chapter 4, a new method for SS–SVR was proposed. In SSL, a large
number of the unlabeled data are used in training. Since the labels of
regression data are continuous numbers, SSL regression method is more
complex when estimating the labels of the unlabeled data than SSL classi-
fication method. Co–training, which employs regression models to estimate
the labels of the unlabeled data, is the most popular approaches for SSL
regression. However, the conventional co–training based SSL regression
methods have some drawbacks. One big obstacle is the training com-
plexity occurring because co–training approach employs iterative learning.
And uncertainty of estimated labels of the unlabeled data tend to degrade
the performance of SSL regression. Some co–training based SSL regression
methods tend to conclude a self–training result because of the interpolation
problem.

The proposed SS–SVR method employed the data generation to over-
come the uncertainty issue, and employed the data selection to overcome
the training complexity problem. In order to obtain the estimated label
distribution for the unlabeled data, PLR, which is a probabilistic recon-
struction method, was employed. Since PLR is a local topology based
method, the self–training issue could be avoided when a function esti-
mation based method is employed to estimate the label of the unlabeled
data. The parameter, k, was one that makes PLR sensitive. In order to
overcome that issue, 2–PLR were employed. PLRlocal captured the local
topology of the unlabeled data while PLRglobal captured the global label
distribution. The final output was constructed by conjugating both PLRs’
outputs. Then, the training data were generated from the unlabeled data
and their estimated label distributions. Those unlabeled data with high
uncertainty have high probability to be generated in order to generate more
information. On the other hand, those unlabeled data with low uncertainty
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have low probability to be generated in order to avoid redundancy. Ev-
ery unlabeled data have same chances of trials, and in each trial, the σ2

i

determines whether the unlabeled data point, Uxi , was generated or not.
Since the proposed method generated more training data than the original
training data, the data selection method, MDS, was employed to reduce
the training complexity.

The experiments conducted on 18 datasets, and COREGkNN , COREGSV R

and Co–SVR were employed to the performance evaluation of the proposed
method. The ratio of the labeled data was varied to 20%, 10%, 5% and
1% of original training dataset. The proposed method outperforms all
the SVR re–training methods, COREGSV R and Co–SVR. The accuracy of
the proposed method was about 1.5% higher than COREGkNN , but very
comparable. However, the training time of the proposed method was only
20∼25% of training time of COREGkNN . The accuracy was stable to the
parameter, t.

There are some limitations and future works of current work. Fist,
some unlabeled data need to be removed when training the final SVR
model. For SS–SVR, the uncertainty was used for determining the data
generation rate. However, estimated labels of some unlabeled data may be
too uncertain to be used for training. In that case, those data should be
rejected to train the final regression model. Co–training based methods
tend to reject the unlabeled data which are not upgrade the model accu-
racy. An unlabeled data point rejection step should be considered to avoid
training the unlabeled data with arbitrary target values. Second, this ap-
proach can be applied to other regression methods. The future research
direction can be the generalization of this work to other regression model
based SSL.



Chapter5
Application 1: Data Selection for
Response Modeling

5.1 Response Modeling

A response model identifies customers who are likely to respond and the
amount of profit expected from each customer using customer databases
consisting of demographic data and purchase history for the purpose of
direct marketing. With this model, marketers are able to decide who
to contact within a limited marketing budget. A well–targeted response
model can increase profit, while a mis–targeted response model not only
decreases profit but also worsens the relationship between the company
and customers (Blatberg et al., 2008; Gönül et al., 2000; Shin and Cho,
2006).

Various learning methods have been applied to response modeling. Lo-
gistic regression based response models (Hosmer and Lemeshow, 2000; Sen
and Srivastava, 1990) and decision tree based response model (Haughton
and Oulabi, 1997) have been proposed with its simplicity, explainability
(Shin, 2005). For more complex methods, NN–based response modeling
(Ha et al., 2005), SVM–based response modeling (Shin and Cho, 2006),
1–SVM based response modeling (Lee and Cho, 2007) and SSL–based re-
sponse modeling (Lee et al., 2010) have been proposed. Those methods
were employed a classification method in order to identify respondents. On
the other hand, the importance of feature selection was reported in Malt-
house (1999) and Malthouse (2002). The accuracy of a response model

71
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Figure 5.1: Concept of the two–stage response model.

can be improved when a proper feature set is selected and used for train-
ing. Another issue of the response model is the class–imbalanced problem.
Since the response rate of a marketing campaign is very low, most response
modeling dataset consist of a few respondents and many non–respondents.
Class–imbalanced problem occurs when the number of data of a specific
class is greater than the number of data of the other class. Since the ma-
jority class is overestimated, the normal binary classifier cannot construct
the ideal class boundary. In order to overcome the class–imbalanced prob-
lem, under sampling, over sampling, ensemble and one–class learning have
been widely used (Chawla et al., 2004).

5.2 Two–Stage Response Modeling

Usually, a response model employs a classification model to predict the
likelihood to respond of each customer. Then, those likelihoods are directly
used to sort the predicted respondents. However, as pointed out in KDD98
1, there may be an inverse correlation between the likelihood to respond
and the dollar amount to spend to some marketing datasets (Kim et al.,
2008; Wang et al., 2005). In this case, profit may not be maximized because
some low–spending customers are top–ranked, while some high–spending
customers may be low–ranked. This is because the more dollar amount
is involved, the more cautious a customer becomes in making a purchase
decision. Therefore, an additional effort to maximize the profit should be
added to the conventional response modeling.

1KDD98: http://www.kdnuggets.com/meetings/kdd98/kdd-cup-98.
html/
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Two-stage response modeling (See Figure 5.1), identifying respondents
at the first stage and then ranking them according to expected profit at
the second stage, was proposed to overcome this problem (Kim et al.,
2008). In the first stage, conventional classification response models can be
directly applied to predict desirable respondents based on their likelihood
to respond. However, for the second stage, a new model is needed to
estimate the purchase amount of respondents. SVR is one possible solution
for use in the second stage of the two-stage response modeling with its
ability of solving nonlinear problems.

The training complexity problem is still an issue for two–stage response
modeling. Response modeling datasets usually consist of very large train-
ing data, sometimes including billions of transactions from millions of cus-
tomers. In addition, data analysis for a marketing campaign includes the
construction of various models with different samples of a dataset to verify
multiple marketing actions. Moreover, SVR contains an additional hyper–
parameter which requires that the SVM classifier, ε, be set empirically.
Hence, response modeling with SVR consists of a repeated modeling pro-
cess with a very large dataset and including parameter searching processes.
The training complexity of SVR must be reduced for use in practical two-
stage response modeling.

5.3 Experimental Results

5.3.1 Experiment Setting

In Section 5.3, the experimental profit results of a real–world market-
ing dataset, The Direct Marketing Educational Foundation 4 (DMEF4)
dataset2, is presented. The DMEF4 contains 101,532 customers and 91 in-
put variables with a 9.4% response rate for a donation mailing task. Only
15 relevant input variables were used for training, as shown in Table 5.1,
following previous research (Ha et al., 2005; Malthouse, 2002; Yu and Cho,
2006). For performance evaluation, we constructed ten random datasets
following the procedure of Lee and Cho (2007). The original dataset was
randomly partitioned in half: the training set and the test set. Each
dataset had 50,766 training data including 4,876 respondents and 50,766
test data including 4,875 respondents. All performances were measured by
averaging the experimental results of these ten datasets.

2DMEF Dataset: http:////www.directworks.org/academics/
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Table 5.1: Input variables of DMEF4 dataset.

Name Formulation Description

ORIGINAL VARIABLES
Purseas Number of seasons with a purchase
Falord LTD fall orders
Ordtyr Number of orders this year
Puryear Number of years with a purchase
Sprord LTD spring orders Derived Variables
DERIVED VARIABLES
Recency Order days since 10/1992
Tran53 I(180 ≤ recency ≤ 270)
Tran54 I(270 ≤ recency ≤ 366)
Tran55 I(366 ≤ recency ≤ 730)
Tran38 1/recency

Comb2
∑14

m=1 ProdGrpm

Number of product groups purchased from this
year

Tran46
√
comb2

Tran42 log(1 + ordtyr× falord) Interaction between the number of orders

Tran44
√
ordhist× sprord

Interaction between LTD orders and LTD spring
orders

Tran25 1/(1+lorditm) Inverse of latest-season items

For the first stage of response modeling, we implemented two differ-
ent classification models, 1–class SVM (1–SVM) and 2–class SVM (2–
SVM), both of which have been successfully applied to response modeling
with great generalization performances. For 1–SVM, only respondent data
were trained. For 2–SVM, both respondent and non–respondent data were
trained, while the undersampling method was used to overcome the class–
imbalanced problem. The performance of a response model was measured
by averaging over ten undersampling experiments because of the random-
ness. Then, for the second stage of response modeling, SVR and SVR with
MDS was employed. For the original SVR, all respondent data with pos-
itive actual purchase amounts were employed. For SVR with MDS, MDS
selected the important data from the original dataset and the selected set
were trained by SVR.

The hyper-parameters of 1–SVM, 2–SVM and SVR were set using ten
fold cross–validation, while an RBF kernel with σ fixed at 1.0 was employed
for all models. The control parameter of MDS, α, was varied as 0, 0.5 and 1,
while l and m were set to 10 and 20% of original dataset. All experimental
results with MDS were averaged over ten repetitions, and all data were
normalized.
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Table 5.2: Experimental performance of classification models.

Classification Method BCR ROC Distance

1–SVM 54.89% 66.06%

2–SVM 71.40% 30.79%

5.3.2 Experimental Results

Before analyzing the experimental results of response modeling, the perfor-
mances of the classification models should be discussed. The measurements
for a class–imbalanced problem, the Balanced Classification Rate (BCR)
and ROC distance. The equation of BCR and ROC distance is depicted
in Eq. 5.2 and Eq. 5.1,

BCR =

√
TP

NR
× TN

NNR
, (5.1)

ROCDistance =

√
FN

NR

2

× FP

NNR

2

, (5.2)

where TP , TN , FN , FP , NR, NNR indicate True Positive, True Negative,
False Negative, False Positive, the number of respondents and the number
of non–respondents, respectively. Hence, a larger BCR and smaller ROC
Distance guarantees a better performance. As shown in Table 5.2, 2–SVM
outperformed 1–SVM because 2–SVM includes both respondents and non–
respondents into account, and the undersampling method upgraded the
performance. However, both experiments showed comparable results to
those in other studies on response modeling with real–world marketing
datasets.

Figure 5.2 shows the experimental results of response models based on
1–SVM in terms of actual profit per mail. The X–axis indicates the ordered
decile, sorted in terms of model score, while the Y–axis indicates the corre-
sponding actual profit. The mailing costs varied from $1, $3, $5 and $10,
“1–SVM only” indicates the experimental result from a response model
using only 1–SVM, which is a conventional response model, while “SVR
only”’ indicates the experimental result from a response model with only
SVR. We also included a previous version of this function, “Hybrid Score”
(Kim and Cho, 2010) for comparison. For “1–SVM + SVR,” we selected



Experimental Results 76

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

The ordered decile, sorted in terms of each model’s score

A
ct

ua
l P

ro
fit

 (
$)

Profit Evaluation, (Mailing Cost = $1, Alpha = 0)

 

 
1−SVM only
SVR only
Hybrid Score
1−SVM + SVR
1−SVM + Random + SVR
1−SVM + MDS + SVR

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

30

35

40

The ordered decile, sorted in terms of each model’s score

A
ct

ua
l P

ro
fit

 (
$)

Profit Evaluation, (Mailing Cost = $3, Alpha = 0)

 

 
1−SVM only
SVR only
Hybrid Score
1−SVM + SVR
1−SVM + Random + SVR
1−SVM + MDS + SVR

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

25

30

35

40

The ordered decile, sorted in terms of each model’s score

A
ct

ua
l P

ro
fit

 (
$)

Profit Evaluation, (Mailing Cost = $5, Alpha = 0)

 

 
1−SVM only
SVR only
Hybrid Score
1−SVM + SVR
1−SVM + Random + SVR
1−SVM + MDS + SVR

1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

20

25

30

35

The ordered decile, sorted in terms of each model’s score

A
ct

ua
l P

ro
fit

 (
$)

Profit Evaluation, (Mailing Cost = $10, Alpha = 0)

 

 
1−SVM only
SVR only
Hybrid Score
1−SVM + SVR
1−SVM + Random + SVR
1−SVM + MDS + SVR

Figure 5.2: Experimental results of response models based on 1–SVM.

respondents with 1–SVM and ranked them by predicted purchase amount
from SVR. We also employed MDS to reduce the number of training data
of SVR, “1–SVM + MDS + SVR,” and employed random sampling to
compare the data selection performance, “1–SVM + Random + SVR.” As
shown in Figure 5.2, there were strong inverse correlations between the
1–SVM score and the actual profit. On the other hand, the two–stage
response models showed higher profits than did the conventional response
model, while “1–SVM + MDS + SVR” showed comparable results. The
profit earned from “1–SVM + MDS + SVR” was almost the same as the
profit from the model without MDS, while “1–SVM + Random + SVR”
had an inferior profit.

Figure 5.3 shows the experimental results of response models based
on 2–SVM in terms of actual profit. Similar to the results based on 1–
SVM, there was no linear correlation between 2–SVM output and actual
profit. The results showed that the two–stage response model was es-
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Figure 5.3: Experimental results of response models based on 2–SVM.

pecially suitable for identifying top–ranked respondents. Similar to the
results of 1–SVM, the performances of “2–SVM + MDS + SVR””’ are
very comparable to those of the original SVR.

Figure 5.4 shows the reduced training time complexity due to MDS
compared to the complexity of the original SVR for the ten training datasets
used in Figure 5.2 and Figure 5.3. For the ten training datasets, the train-
ing time complexities decreased an average of 57% of that of the original
SVR. With those results, it seems that SVR employing MDS results in
profit almost the same as that of the original SVR while using only 57%
of the training time. We concluded that MDS can be used for the efficient
training for SVR with minimum loss of accuracy.

Figure 5.5 shows the effect of the MDS control parameter α. The ratios
of the RMSE of SVR with MDS to the RMSE of SVR without MDS are
plotted for ten training sets. An α of 1 results in the best and most stable
training accuracy. A smaller α results in suboptimal training accuracy but
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Figure 5.4: Training complexity reduced by MDS compared to that of the
original SVR.

more efficient training. This demonstrates that α controls the trade–off
between model accuracy and training efficiency. We suggest that a smaller
α is useful in parameter search or early stages of response modeling, while
a higher α is useful for final customer–targeting stages.

5.4 Summary

Support Vector Regression (SVR) has been employed for response model-
ing. One drawback to this method is its relatively high training complex-
ity. Since the training complexity of SVR is highly correlated to the size
of training dataset, and response modeling usually includes large market-
ing datasets, the data selection approaches are preferred. In this paper,
we proposed the Margin based Data Selection method (MDS) to reduce
the training complexity of SVR for two–stage response modeling. MDS
selects only those data that are likely to become support vectors and au-
tomatically determines the number of data selected. This property is es-
sential for obtaining good results and reducing the parameter search time
which is time–consuming and requiring experiences for both the training
algorithm and the dataset characteristic. The parameter α controls the
number of data selected by the model, allowing for adaptation to various



Summary 79

1 2 3 4 5 6 7 8 9 10
90

100

110

120

130

140

150

160

170

# of training set

F
ra

ct
io

n 
of

 R
oo

t M
ea

n 
S

qa
ur

ed
 E

rr
or

 (
R

M
S

E
)

Comparison of performance varied with Alpha

 

 
Original SVR
SVR with MDS (Alpha = 0)
SVR with MDS (Alpha = 0.5)
SVR with MDS (Alpha = 1)

Figure 5.5: Comparison of original SVR and SVR employing MDS to
various Alpha.

noise levels or different marketing stages. Through the experiments in-
cluding 20 datasets, we showed that MDS provided better generalization
performances than did the other benchmark methods regardless of their
characteristics of artificial, time series, non–time series, linear, non–linear,
low noise or high noise. For the experiments using a real–world marketing
dataset, we implemented both the first and the second stage of response
modeling involving 1–SVM, 2–SVM, SVR and MDS. The experimental
results showed that MDS successfully reduced the training complexity of
SVR for response modeling with minimum loss of accuracy.



Chapter6
Application 2: Semi-Supervised
Support Vector Regression for
Virtual Metrology

6.1 Virtual Metrology

In semiconductor manufacturing, a wafer needs to be processed by hun-
dreds of different manufacturing processes, such as photolithography (photo)
and etching. In a manufacturing process, a wafer containing thousands
of semiconductors is processed according to recipes. The quality mea-
surement of a semiconductor product is yield, which indicates how many
semiconductors activate in a wafer. However, yield determined after all
of the processes cannot detect faulty wafers occurred in the process. If
such faulty wafers remain during subsequent processes, they increase the
manufacturing cost and production lead time. Hence, an additional qual-
ity management measurement for the early detection of faulty wafers is
needed.

In order to detect faulty wafers earlier, a metrology process is employed
after each manufacturing process (Kang et al., 2009). In the metrology
process, metrology equipment inspects the wafer quality indicators, such
as the critical dimension of the etching process or the axes distortion of the
photo process. If the metrology value is within the pre–defined metrology
thresholds, then the wafer is considered as normal, otherwise the wafer is
deemed to be faulty (Kourti and MacGregor, 1995; Qin, 2003; Qin et al.,
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2006; Su et al., 2007). However, the actual metrology process requires
extra cost, increased human resources and a longer cycle time (Chang
et al., 2006; Cheng and Cheng, 2005). Hence, only one wafer per a process
lot of 25 wafers is sampled for inspection and the remaining 24 wafers are
not inspected at all.

Many efforts have been made to overcome this limitation. One exam-
ple is statistical process control (SPC) based on the fault detection and
classification (FDC) data. In semiconductor manufacturing, each piece
of processing equipment contains hundreds of sensors to monitor process
conditions, such as temperature, pressure and the process time. FDC
data refer to those observations directly from the sensors in the processing
equipment. Univariate SPC inspects each FDC variable independently and
decides that a wafer is faulty when an FDC variable is located outside the
pre–defined lower control limit (LCL) and upper control limit (UCL). Mul-
tivariate SPC uses a dimensionality reduction method, such as principal
component analysis (PCA), to condense FDC variables into one explain-
able variable, and then classifies wafers based on that explainable variable.
However, FDC–based SPC has critical limitations. First, since FDC data
are originally collected to monitor the process conditions, the critical vari-
ables that affect the quality of the wafers are not known. In addition,
the range of values for each variable that makes a wafer faulty is also not
known. Moreover, since FDC data have high–dimensional and high vari-
ance variables, the conventional SPC cannot detect nonlinear correlations
and intersections among those variables.

To overcome the limitation of FDC–based SPC, virtual metrology (VM)
has been proposed to model the relationships between FDC data and
metrology values (Chen et al., 2005). VM refers to “the estimation of
metrology values based on process data such as fault detection and clas-
sification (FDC), context and previous metrology.” (Besnard and Toprac,
2006) The bottom of Figure 6.1 illustrates the concept of VM, while the
top depicts the actual metrology. Since VM can employ nonlinear models
such as NN and SVM, VM has an advantage in that it considers the non-
linear relationships between FDC variables and the metrology variable. In
addition, since VM predicts the metrology values of all wafers, more ac-
curate quality management is possible without increasing production lead
time. Based on those advantages, the VM concept has been successfully
applied to run–to–run (R2R) control and faulty wafer detection systems
(Kang et al., 2011; Kim et al., 2012). For application to fab–wide semicon-
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Figure 6.1: Concept of the actual metrology and the virtual metrology
(Kang et al., 2009).

ductor manufacturing processes, a more accurate VM model is required.
A less accurate VM model will decrease the manufacturing performance.

6.2 Semi–Supervised Learning for Virtual Metrol-
ogy

Supervised regression methods, such as Multivariate Linear Regression
(MLR) (Johnson and Wichern, 1998), k–NN regression (Bishop, 2006;
Duda et al., 2001) and Neural Networks (NN) (Haykin, 1999) have been
employed for training a VM model. Recently, SVR–based VM model is
widely used with its great performances (Kang et al., 2011, 2009; Kim
et al., 2012). The conventional supervised VM model used only labeled
data to train. Since all processed wafers have FDC data, the input data
are very plenty. However, only one out of 25 wafers is sampled for inspec-
tion by the metrology step. Hence, only 1

4 of the input data have their
corresponding target data (Figure 6.2). Other 3

4 data exist without target
data. This nature of VM makes it a good application for SSL. In order to
upgrade the performance of VM, the SS–SVR method proposed in Chapter
4 is applied with a real–world dataset.
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Figure 6.2: Input and target variables of VM.

Figure 6.3: Process steps the virtual metrology.

6.3 Virtual Metrology Process

6.3.1 Overview

Figure 6.3 indicates the VM process steps. Data acquisition and prepro-
cessing steps were conducted first. Then, features were selected for VM
modeling from among hundreds of original input variables, i.e., FDC vari-
ables. Finally, VM modeling including SSL step was conducted with the
constructed VM training dataset so that the effect of SS–SVR could be
evaluated.

6.3.2 Data Acquisition

The dataset used in this research was collected during a photolithography
(photo) process at a Korean semiconductor manufacturing company over
four months. During the photo process, the quality of the wafer can be
decreased by axis rotation and distortion, etc. FDC data were acquired
from two pieces of processing equipment (EQ1 and EQ2) and metrology
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Table 6.1: VM dataset.

Process Period # of the # of the # of FDC variables
equipment labeled data unlabeled data (input variables)

EQ1 P1 230 3670 117
P2 172 2872 117
P3 137 2313 112
P4 167 3870 112
P5 452 6546 112
P6 818 9929 112
P7 138 1654 112
P8 195 2325 112

EQ2 P1 226 3377 117
P2 180 2639 117
P3 136 2293 112
P4 170 3398 112
P5 450 6008 112
P6 816 9100 112
P7 138 1523 112
P8 195 2132 112

data from metrology equipment after the photo process. 133 FDC variables
and one corresponding metrology variable were collected.

6.3.3 Data Preprocessing

Seven preventive maintenance (PM) processes took place during the pe-
riod of data collection. PM causes significant changes in the recipe and
the sensors of the processing equipment. Hence, the original dataset was
partitioned into eight datasets (P1–P8) by PM periods to construct in-
dependent VM models for each instance of PM. After that, some FDC
variables, which are not needed for modeling, such as wafer ID and pro-
cess ID, were deleted. All datasets used are summarized in Table 6.1.

6.3.4 Feature Selection

As shown in Table. 6.1, FDC variables 112–117 differed by period. How-
ever, those FDC variables were originally collected for process monitoring
by sensors in the processing equipment, not for VM modeling. Hence, we
had to select features that are useful for training VM models (Kang et al.,
2011, 2009; Kim et al., 2012). If all original features are used, then the
model complexity increases while overfitting occurs. In this research, we
employed the genetic algorithm (GA) for feature selection (Mitchell, 1996;
Yang and Honavar, 1998). Since the focus of this chapter is SS–SVR based



Experimental Results 85

Table 6.2: The number of selected features.

Equipment Period # of selected features
(GA–SVR)

EQ1 P1 14
P2 11
P3 5
P4 9
P5 12
P6 8
P7 2
P8 5

EQ2 P1 8
P2 8
P3 2
P4 10
P5 7
P6 7
P7 8
P8 6

VM, SVR was used as the base model for GA (GA–SVR) with only labeled
data. The number of selected features are summarized in Table. 6.2.

6.3.5 Virtual Metrology Modeling

After all preprocessing steps including feature selection, the VM model was
trained. For the conventional VM model, supervised regression methods,
such as MLR and SVR, have been usually employed. However, contrast
to the conventional VM model, SSL based VM models were employed in
order to upgrade the accuracy of VM. In addition, in order to see whether
the performance was upgraded or not by SSL, a VM model trained only
labeled data was employed.

6.4 Experimental Results

6.4.1 Experiment Setting

For benchmark methods, COREGkNN , COREGSV R and Co-SVR, which
were once used in the experiment in Chapter 4, were employed. Those
co–training methods have parameters to set. The size of the working set
for the unlabeled data was set to 200 for COREG and was set to 40 for Co-
SVR. The maximum number of iterations was set to 100 for all methods.
The number of nearest neighbors for COREG was set to 5. Each initial
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training set for COREG had all labeled data while the unlabeled data
was partitioned into each initial training set for Co-SVR, as described in
Wang et al. (2010); Zhou and Li (2007). For the proposed method, the
number of nearest neighbors for 2–PLR were set to 5 and 20 for klocal and
kglobal, respectively. The number of trails for each unlabeled data in data
generation, t, is set to 3, 5. The hyper–parameters of SVR were determined
by cross–validation. RBF kernel was used as a kernel function and the
kernel parameter σ was fixed to 1.0 for all datasets. All datasets were
normalized. The features were selected by GA. The number of populations,
the number of maximum iterations, the crossover rate and the mutation
rate were set to 100, 300, 0.5 and 0.03, respectively.

Five–fold cross–validation was used for the performance evaluation.
The labeled data partitioned into five folds, randomly, and a model was
trained with the unlabeled data with the labeled data from four folds. The
labeled data of the other fold was set to be the test data. The RMSE was
selected for performance measurements. RMSE measures the average of
the difference between the actual target value and the estimated target
values by VM, which is commonly used in real semiconductor manufactur-
ing.

6.4.2 Experimental Results

Figure 6.4 and Figure 6.5 show the experimental results on EQ1 and EQ2,
respectively. The pairs of RMSE and training time in seconds are plotted
corresponding to each method. The closer a result is plotted to the origin,
the better the method performs. The benchmark methods, COREGkNN ,
COREGSV R and Co-SVR were plotted as upper triangles, lower triangles
and diamonds, respectively. The performances of the proposed method
varied by the parameter t were plotted as blue squares and connected with
a line. The experimental results of the proposed method were not affected
by the parameter t, except P1 of EQ1, P5 and P8 of EQ2. However, even
in those cases, the accuracy were not sensitive to t. The performances
of the proposed method were comparable to COREGkNN or COREGSV R

while the proposed method outperformed Co-SVR.
For more details, Table 6.3 and Table 6.4 depict the RMSE results

and the training time of the experimental results on EQ1, respectively.
The training dataset differed by training period, P1-P8, each of which
was considered as a independent dataset. COREGkNN , COREGSV R and
Co-SVR are the benchmark methods. “Proposed, 3” and “Proposed 5”
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Figure 6.4: Experimental results on EQ1.
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Figure 6.5: Experimental results on EQ2.
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Table 6.3: RMSE of the experimental results on EQ1.

Labeled COREGkNN COREGSV R Co-SVR Proposed, 3 Proposed, 5
P1 0.3461 0.3297 0.3443 0.3493 0.3394 0.3389
P2 0.3543 0.3594 0.3510 0.3710 0.3522 0.3517
P3 0.3547 0.3268 0.3410 0.3525 0.3198 0.3199
P4 0.4056 0.3421 0.3582 0.3660 0.3437 0.3436
P5 0.3191 0.2810 0.3191 0.3159 0.2923 0.2929
P6 0.3167 0.3247 0.3107 0.3151 0.3074 0.3077
P7 0.4021 0.3518 0.3736 0.3797 0.3538 0.3523
P8 0.3318 0.3174 0.3318 0.3363 0.3122 0.3121
Avg. 0.3538 0.3291 0.3412 0.3482 0.3276 0.3274

Table 6.4: Training time of the experimental results on EQ1.

COREGkNN COREGSV R Co-SVR Proposed, 3 Proposed, 5
P1 110.43 61.61 33.51 59.97 114.71
P2 74.86 50.41 212.34 33.76 56.73
P3 59.43 48.87 1489.20 19.50 28.93
P4 91.18 47.24 3884.27 43.76 60.60
P5 231.89 72.48 1855.78 127.53 207.39
P6 418.72 83.05 4342.64 166.13 260.26
P7 41.98 46.36 3353.78 13.89 19.60
P8 59.41 47.87 22.77 18.48 30.44
Avg. 135.99 57.24 1899.29 60.38 97.33

indicate the proposed method with the different parameter, t = {3, 5},
respectively. As shown in Table 6.3, COREGkNN outperformed for four
datasets while the proposed method outperformed for three datasets in
terms of RMSE. However, “Proposed, 5” was the best on the average of
RMSE and “Proposed, 3” was the second. Even COREGkNN was best for
some datasets, it may not be stable for all datasets. Table 6.4 shows the
training time of each method. The proposed method was faster than co–
training based benchmark methods, except COREGSV R. Both “Proposed,
3” and “Proposed, 5” showed better efficiency than COREGkNN and Co-
SVR. The reason that COREGSV R used less time than COREGkNN is
that the interpolation problem occurred by the single target value of the
unlabeled data, which makes SVR use a few numbers of support vectors.
Hence, the accuracy of COREGSV R was worse than COREGkNN and the
proposed method.

Table 6.5 and Table 6.6 depict the RMSE results and the training time
of the experimental results on EQ2, respectively. COREGSV R and the
proposed method outperformed three datasets, each. However, “Proposed,
3” was the best on the average of RMSE and “Proposed, 5” was the second.
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Table 6.5: RMSE of the experimental results on EQ2.

Labeled COREGkNN COREGSV R Co-SVR Proposed, 3 Proposed, 5
P1 0.3602 0.3529 0.3498 0.3793 0.3463 0.3476
P2 0.3502 0.3253 0.3380 0.3616 0.3323 0.3325
P3 0.3497 0.3057 0.3073 0.3863 0.3050 0.3054
P4 0.2709 0.2774 0.2747 0.3796 0.2749 0.2753
P5 0.3136 0.3011 0.3110 0.3206 0.3020 0.3020
P6 0.1727 0.1889 0.1724 0.1745 0.1776 0.1776
P7 0.4772 0.4575 0.4429 0.5101 0.4509 0.4526
P8 0.3719 0.3503 0.3719 0.3794 0.3479 0.3473
Avg. 0.3331 0.3199 0.3210 0.3489 0.3171 0.3175

Table 6.6: Training time of the experimental results on EQ2.

COREGkNN COREGSV R Co-SVR Proposed, 3 Proposed, 5
P1 96.99 51.60 2001.86 49.62 77.01
P2 66.65 48.84 2365.47 33.92 53.94
P3 56.55 46.22 3436.35 19.77 28.05
P4 87.44 5018 178.48 23.10 32.10
P5 235.37 79.27 90.32 129.94 230.56
P6 332.21 33.93 2255.14 97.46 120.34
P7 40.27 45.16 1730.96 6.70 9.80
P8 57.87 47.57 36.03 16.23 26.05
Avg. 121.67 50.34 1511.83 47.09 72.23

COREGSV R showed worse than COREGkNN in terms of the average of
RMSE. The proposed method may be much stable than COREG method.
Table 6.6 showed the training time of the experimental results on EQ2.
“Proposed, 3” showed the best training time, while Co-SVR showed the
worst. Based on Table 6.3-Table 6.6, the proposed method showed the best
RMSE for various datasets on average. The training time of the proposed
method, differed by the parameter t, was short than the training time of
COREGkNN and Co-SVR. Consequently, the proposed method showed the
most efficient experimental results for various datasets in terms of RMSE
and the training time.

Figure 6.6 illustrated RMSE ratio compared to the conventional VM
model which trains the labeled data only. The improvement of RMSE
by using SSL methods can be measured in Figure 6.6. As the results,
the proposed method can improve the conventional VM model for 5-8% in
terms of RMSE which is the best results compared to benchmark methods.
For the VM, where a small improvement can upgrade the quality of wafers,
those experimental results showed that the proposed method can improve
the conventional VM model.
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Figure 6.6: RMSE ratio compared to train the labeled data only.

6.5 Summary

In semiconductor manufacturing, quality management is a key issue. Since
the main quality measurement, yield, is gathered at the end of the man-
ufacturing process, the metrology process is applied after each individual
process for the early detection of faulty wafers to save the manufacturing
cost. However, the metrology process only measures one sample wafer out
of a lot consisting of 25 wafers. To overcome that problem, VM is pro-
posed. VM estimates the metrology values for all wafers by modeling the
relationship between the FDC variables and the metrology variables. The
performance of VM determines the success of the quality management for
semiconductor manufacturing.

The conventional VM model employs a supervised regression method
in order to identify the relationship between the FDC variables and the
metrology value. Since metrology values of the labeled data for VM is
obtained by actual metrology steps, there exist a lot of the unlabeled data.
The SSL regression, which trains both labeled and unlabeled data, can
improve the performance of the conventional VM model.

In this Chapter, the proposed SS–SVR method in Chapter 4 was ap-
plied to the semi–supervised VM problem. The proposed method employed
2–PLR for labeling the unlabeled data. Through the data generation, infor-
mation for the uncertain region could be generated and data were located
for training the maximum margin model. In order to reduce the training
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complexity, EMPS from Chapter 3 was employed. The experiments con-
ducted on a real–world semiconductor manufacturing dataset collected by
two pieces of equipment (EQ) over four months at a Korean semiconductor
manufacturing company. The metrology values for the labeled data were
collected from a metrology machine. The original dataset was divided into
eight training periods based on PM. A GA–based wrapper approach was
employed for feature selection. Then, the SSL regression methods including
the proposed method were employed to train a VM model. COREGkNN ,
COREGSV R and Co-SVR were employed for benchmark methods. The
experimental results showed that the proposed method were the most ef-
ficient method among the benchmark methods. RMSE of the proposed
method was comparable to COREG methods. However, the training time
of the proposed method was better than the training time of COREG.
In addition, the average RMSE of the proposed method was the best,
which means the proposed method was stable to various datasets. The
proposed method can improve the accuracy of the conventional VM by
5-8%. Semiconductor processing units are getting smaller and the details
in manufacturing recipes are getting more important, and the proposed
method is able to make the semiconductor manufacturing process more
accurate and more efficient.

This approach has limitations that should be addressed in future work.
First of all, the original training dataset were divided into eight datasets
based on PM in order to train individual models for each training period.
Further studies should aim to automatically adapt to the major changes in
data trends. Second, this approach can be applied to other semiconductor
manufacturing processes besides the photo process.



Chapter7
Conclusion

7.1 Summary and Contributions

In this dissertation, two major open problems for SVR were considered:
(1) reduction of the training complexity and (2) utilization of the unlabeled
data for SS–SVR.

• Training complexity
The training complexity of SVR is too high to train a large number of
data. The training complexity of SVR is highly related to the number
of training data n: O(n3), training time complexity and O(n2), the
training memory complexity. Since the number of training data increases
in the big data generation, the training time of SVR is expensive, and
occasionally, SVR does not work in a limited memory space for large
datasets.

In order to reduce the training complexity, a data selection method,
MDS, was proposed. Since the training complexity of SVR is highly
related to the number of training data, reducing he number of train-
ing data is an effective approach to overcome the training complexity
problem. Data selection approach is designed to select important or
informative data among all training data. The goal of data selection
is to reduce the training complexity as low as possible while retaining
the accuracy as high as possible. For SVR, the most important data
are support vectors which are the components of linear combination for
a constructed SVR regression function. Since the support vectors are

93
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selected from training data during the SVR training, before training, it
is impossible to identify support vectors. MDS used a geometrical char-
acteristic of support vectors. By ε–loss foundation and the maximum
margin learning, all support vectors of SVR are located on or outside the
ε–tube. That means the margin of support vector are equal or greater
than the predefined parameter, ε. With multiple sample learning, MDS
estimated the expected margin for all training data, efficiently. Those
training data, whose expected margin is equal or greater than ε, were
selected to train the final SVR. Through the experiments conducted on
20 datasets, the performance of MDS was better than the benchmark
methods. The training time of SVR including running time of MDS was
with 38% ∼ 67% of training time of original datasets. At the same time,
the accuracy loss was 0% ∼ 1% of original SVR model.

• Semi–supervised SVR (SS–SVR)
Recently, the size of dataset is getting larger and data are collected from
various applications. Data can be divided into two groups: the labeled
data and the unlabeled data. Since collection of the labeled data is
expensive and time consuming, the fraction of the unlabeled data is
getting increased. The conventional supervised learning method uses
only labeled data. Many SSL methods have been proposed in order
to improve the conventional supervised learning methods by using the
unlabeled data along with the labeled data. However, since the target
variable is a continuous variable, SSL regression is more tricky than SSL
classification.

Co–training based methods were the state–of–the–art for the SSL regres-
sion. Co–training has some drawbacks. First, the training complexity
of co–training is relatively high. Co–training is an iterative method and
construct u models for each iteration where u is the number of the un-
labeled data. Moreover, the number of training data is getting larger
by adding the unlabeled data as the iteration goes. Second, the uncer-
tainty of estimating the labels of the unlabeled data is not considered.
For some unlabeled data, the estimation of the corresponding label may
not be correct. Finally, co–training method uses single label for the un-
labeled data, which may occur an interpolation problem. Since SVR is a
maximum margin learning method, the unlabeled data with single label
value may not give new information of the underlying function.

In this dissertation, a data generation and selection method for SS–SVR
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training was proposed. In order to estimate the label distribution of the
unlabeled data, a probabilistic local reconstruction method, PLR, was
employed. Label distribution of the unlabeled data have two advantages
than label value itself. First, the uncertainty can be estimated. The
standard deviation of the estimated label distribution represents the un-
certainty of estimation for the unlabeled data. Second, the information
of a region that label value can located can be obtained rather than a sin-
gle label value. Two PLR were employed in order to stable to noisy data,
and the final label distribution was obtained by the conjugation of 2–
PLR. Then, the data generation step was employed. With the estimated
label distribution, training data were generated from the unlabeled data.
The number of data generated was differed by the uncertainty. For those
unlabeled data with high uncertainty, the data generation rate is rela-
tively high in order to obtain information for the uncertain region. On
the other hand, for those unlabeled data with low uncertainty, the data
generation rate is relatively low in order to avoid redundancy. After
that, MDS was employed to reduce the training complexity increased by
the generated data. Through the experiments conducted on 18 datasets,
the proposed method showed good results. The proposed method could
improve about 10% of the accuracy than the conventional supervised
SVR, which is comparable results to benchmark methods. At the same
time, the training time of the proposed method including the construc-
tion of final SVR was less than 25% of benchmark methods. As conse-
quence, the proposed method can improve the conventional supervised
SVR using the unlabeled data with a minimum additional time. The
experimental results were rarely affected by the parameter t.

For the applications, real–world datasets were employed. A response
modeling dataset for response modeling was employed for a marketing
application while a virtual metrology dataset for semiconductor manufac-
turing was employed for a manufacturing application.

• Response modeling application
A response model identifies customers who are likely to respond and the
amount of profit expected from each customer using customer databases
consisting of demographic data and purchase history for the purpose
of direct marketing. Usually, a response model employs a classification
model to predict the likelihood to respond of each customer. However the
classification response model may not maximize the profit of a response
model.
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In this dissertation, SVR based two–stage response modeling, identify-
ing respondents at the first stage and then ranking them according to
expected profit at the second stage, was proposed. Since response mod-
eling datasets usually consist of very large training data, the training
complexity problem is still an issue for SVR based two–stage response
modeling. Hence, MDS was employed in order to reduce the train-
ing complexity of two–stage response modeling. One–class SVM and
two–class SVM were employed for the first stage of two–stage response
modeling. SVR with MDS was employed the second stage. The exper-
imental results showed that SVR employed two–stage response model
could increase the profit than the conventional response model. MDS
reduced the training complexity of SVR to about 60% of original SVR
with minimum profit loss.

• Virtual metrology application
In semiconductor manufacturing, a wafer needs to be processed by hun-
dreds of different manufacturing processes. A metrology process is em-
ployed after each manufacturing process for the quality management.
However, since the actual metrology process requires extra cost, in-
creased human resources and a longer cycle time, only one wafer per
a process lot of 25 wafers is sampled for inspection and the remaining 24
wafers are not inspected at all. To overcome the limitation VM has been
proposed to model the relationships between FDC data and metrology
values. The conventional VM employs a supervised regression method
with the labeled data having actual metrology values.

In this dissertation, a SS–SVR method was applied to a real–world VM
dataset by using the unlabeled data with the labeled data for training.
Data were collected from two equipments of the photo process. Co–
training based benchmark methods were employed to performance eval-
uation. The experimental results showed the proposed SS–SVR method
could improve about 8% of average accuracy than the conventional VM
model, which were comparable results to benchmark methods. The ad-
ditional training time for the proposed method was relatively small than
benchmark methods.
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7.2 Limitations and Future Work

In this dissertation, methods for the training complexity of SVR and the
training approach of SS–SVR have been proposed. Even the proposed
methods showed a good performance by plenty experiments, there still
exist future works. The limitations of the proposed methods and the di-
rection of future works can be addressed as follows.

• Data redundancy
MDS selects data which are likely to become support vectors by esti-
mating margin of training data. This is a different view to others which
selects a few representative data from a dense region. Hence, MDS tends
to select too many data if the number of support vectors are too large or
the parameter ε is too small. An additional effort that selecting repre-
sentative data from a dense region to avoid redundancy can be employed
to selected data by MDS.

• Unlabeled data rejection
For SS–SVR, the uncertainty was used for determining the data gener-
ation rate. However, estimated labels of some unlabeled data may be
too uncertain to be used for training. In that case, those data should be
rejected to train the final regression model. Co–training based methods
tend to reject the unlabeled data which are not upgrade the model ac-
curacy. An unlabeled data point rejection step should be considered to
avoid training the unlabeled data with arbitrary labels.

• Parameter selection
MDS has two parameters: l, the number of multiple sample set and m,
the number of data in a sample set. The proposed SS–SVR method has
three parameters: klocal, the number of nearest neighbors for PLRlocal,
kglobal the number of nearest neighbors for PLRglobal and t, the number
of trials for data generation. Though the experiments, some guidelines
for those parameters can be obtained and they were effective. However,
the fundamental bounds for parameters are not researched. Efforts to
determination of the fundamental bounds are future research area.

• Extension of SS–SVR for other regression models
The proposed SS–SVR method is basically designed for SS–SVR. The
data generation step spreads training data in order to keep a margin area
for maximum margin learning method, such as SVR. However, the idea
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of SS–SVR proposed in this dissertation can be applied to other regres-
sion models, such as NN regression or k–NN regression. Of course, the
data generation step including estimating the label distribution of the
unlabeled data should be tuned for those Empirical Risk Minimization
(ERM) based regression models or instance learning based regression
models. Another research direction is the development of SSL regres-
sion framework for all regression models, rather than limited to SS–SVR.

• Applications
A marketing application and a manufacturing application were experi-
mented in this dissertation. However, more application can be exper-
imented, such as telecommunications, SNS and mobile application us-
ages. Especially, SNS has become an emerging area, and a lot of data
including the unlabeled data has been generated. One research direction
can be a development of a sentiment estimation model using SS–SVR
for the SNS documents.
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초  록 

 

 

Support Vector Regression(SVR) 알 고 리 즘 은  Support Vector 
Machines(SVM)의  회 귀 분 석  버 전 이 다 . SVR 은  SVM 과  마 찬 가 지 로  
구 조 적  위 험  최 소 화 (Structural Risk Minimization: SRM) 원 리 를  통 해  
일 반 화  성 능 (general ization performance)를  높 일  수  있 으 며 , 
커 널 (kernel) 함 수 를  이 용 하 여  비 선 형  문 제 를  해 결 할  수  있 다 . 위 와  
같 은  장 점 을  바 탕 으 로  SVR 은  현 재  가 장  각 광 받 고  있 는  회 귀 분 석  
모 델 이 다 . 그 러 나  SVR 에 서 도  아 직  해 결 되 지  못 한  문 제 들 이  남 아 있 다 . 본  
논 문 에 서 는  가 장  큰  두  가 지  문 제 를  다 루 고 자  한 다 . 

첫  번 째 는  학 습  복 잡 도 (training complexity) 문 제 이 다 . SVR 의  학 습  
복 잡 도 는  대 용 량 의  데 이 터 를  학 습 하 기 에  너 무  크 다 . SVR 의  학 습  
복 잡 도 는  학 습  데 이 터 의  수 와  밀 접 한  관 련 이  있 는 데 , 학 습  시 간  복 잡 도 는  
O(n3)이 고  학 습  메 모 리  복 잡 도 는  O(n2)이 다 (n 은  학 습  데 이 터 의  수 ). 본  
논 문 에 서 는  학 습  복 잡 도 를  줄 이 기  위 해  Margin based Data 
Selection(MDS) 알 고 리 즘 을  제 안 한 다 . SVR 의  학 습  복 잡 도 는  학 습  
데 이 터 의  수 에  가 장  큰  영 향 을  받 기  때 문 에 , 학 습  복 잡 도 를  줄 이 기  
위 해 선  학 습  데 이 터 의  수 를  줄 이 는  것 이  가 장  효 과 적 인  방 법 이 다 . 데 이 터  
선 택 (data selection) 기 법 은  학 습 에  유 용 한  소 수 의  데 이 터 를  전 체  학 습  
데 이 터 로 부 터  선 택 하 여  새 로 운  학 습  데 이 터  셋 을  만 드 는  것 을  의 미 한 다 . 
SVR 학 습 에 서  가 장  중 요 한  데 이 터 는  Support Vectors(SVs)이 다 .  단 , 
SVR 의  SVs 는  ε -loss 방 식 에  따 라  ε -tube 의  경 계  위  혹 은  바 깥  
쪽 에  위 치 하 게  된 다 . MDS 는  다 중  샘 플  학 습 을  통 해  학 습  데 이 터 의  평 균  
마 진 (averaged margin)을  계 산 한  후 , 평 균  마 진 과  ε 과 의  비 교 를  통 해  
SVs 가  될  가 능 성 이  높 은  데 이 터 를  선 택 한 다 . MDS 의  성 능  평 가 를  위 해 , 
20 개 의  데 이 터  셋 을  이 용 한  실 험 을  진 행 하 였 다 . 그  결 과 , DMS 는  다 른  
비 교  방 법 들 보 다  우 위 의  성 능 을  보 여 주 었 다 . 전 체  데 이 터 를  학 습 할  때 와  
비 교 해 서  평 균  38~67%의  학 습  시 간 만 을  이 용 하 고 도  학 습 이  완 료 되 었 다 . 
그 와  동 시 에  평 균 적 인  정 확 도 는  0~1%의  저 하 만  있 었 다 . 

두  번 째 는  반 교 사  학 습 (semi-supervised learning) 문 제 이 다 . 일 반 적 인  
교 사  학 습 (supervised learning)은  타 겟  값 이  있 는  labeled 데 이 터 만 을  
사 용 하 여  학 습 한 다 . 하 지 만  실 제  데 이 터 의  대 부 분 은  타 겟  값 이  존 재 하 지  
않 는  unlabeled 상 태 로  존 재 한 다 . 반 교 사  학 습 은  이 러 한  unlabeled 
데 이 터 를 labeled 데 이 터 와  함 께  학 습 하 여  모 델 의  성 능 을  높 이 려 는  
목 적 으 로  제 안 되 었 다 . 분 류  문 제 와 는  달 리  회 귀  문 제 의  경 우  예 측 해 야  
하 는  unlabeled 데 이 터 의  타 겟 이  연 속 형  변 수 이 기  때 문 에  더  어 려 움 이  
있 다 . 본  논 문 에 서 는  SVR 의  반 교 사  학 습  모 델 (SS-SVR)을  제 안 하 였 다 . 
Unlabeled 데 이 터 의  타 겟 을  예 측 할  때 , 레 이 블  값 이  아 닌  레 이 블  분 포 를  
예 측 하 기  위 해  확 률  기 반  지 역  재 구 축  방 법 인  Probabil istic Local 
Roconstruction(PLR)을  사 용 하 였 다 . 단 , PLR 은  노 이 즈  데 이 터 에  민 감 할  
수  있 으 므 로  두  개 의  PLR 모 델 을  사 용 하 여 , 각 각  지 역 적  재 구 축 과  



전 역 적  재 구 축 을  담 당 하 게  하 였 다 . 그 리 고  두  모 델 의  결 과 를  다 시  
조 합 (conjugation)하 여  최 종 적 인  unlabeled 데 이 터 의  레 이 블  분 포 를  
예 측 하 였 다 . 그  후 , 각  unlabeled 데 이 터 의  불 확 실 성 (uncertainty)에  
따 라  학 습  데 이 터 를  생 성 (generation)하 였 다 . 학 습  데 이 터 는  unlabeled 
데 이 터 와  그  레 이 블  분 포 에  따 라  여 러  개 를  생 성 하 는 데 , 불 확 실 성 이  높 은  
데 이 터 는  정 보 량 을  늘 려 주 기  위 해  다 수 를  생 성 하 고 , 불 확 실 성 이  낮 은  
데 이 터 는  중 복 을  막 기  위 해  소 수 를  생 성 하 였 다 . 그  후  기 존 에  제 안 했 던  
MDS 기 법 을  사 용 하 여  학 습  데 이 터 의  수 를  적 정  수 준 으 로  유 지 하 여 서  
학 습  복 잡 도 를  감 소 시 켰 다 . 제 안  SS-SVR 기 법 의  성 능  평 가 를  위 해 , 
16 개 의  데 이 터  셋 을  이 용 한  실 험 을  진 행 하 였 다 . 제 안  기 법 은  labeled 
데 이 터 만  학 습 하 는  교 사  학 습  방 법 의  SVR 에  비 해  평 균  10% 정 도 의  
정 확 도  향 상 을  기 록 하 였 다 . 이  성 능 은  비 교  방 법 들  중 에 서 도  우 수 한  
성 능 에  해 당 된 다 . 또 한  제 안  기 법 은  비 교  방 법 들  중  가 장  단 축 된  학 습  
시 간 을  보 여 주 었 다 . 비 교  방 법 들  중  가 장  빠 른  방 법  대 비  평 균  25%의  
학 습  시 간 만 으 로  비 슷 한  성 능 의  학 습 을  진 행 할  수  있 었 다 . 

제 안 된  두  가 지  방 법 론 의  실 제  문 제 로 의  적 용 성 을  평 가 하 기  위 해 , 실 제  
데 이 터 셋 에  적 용 하 는  실 험 을  하 였 다 . 첫  번 째 로  반 응  모 델 링 (response 
modeling)에  MDS 를  적 용 하 였 다 . 이  과 정 에 서  기 존  반 응  모 델 링 과 는  
달 리  분 류  모 델 과  회 귀  모 델 을  함 께  사 용 하 는  2 단 계  반 응  모 델 (two-
stage response model)을  제 안 하 였 다 . 성 능  평 가 는  반 응  모 델 의  
수 익 률 로  평 가 하 였 는 데 , 2 단 계  반 응  모 델 은  기 존  반 응  모 델 보 다  더  높 은  
수 익 률 을  보 여 주 었 다 . 동 시 에  MDS 를  적 용 한  2 단 계  반 응  모 델 은  
최 소 한 의  수 익 률  저 하 와  함 께  SVR 의  학 습  복 잡 도 를  60% 수 준 으 로  
감 소 시 킬  수  있 었 다 . 두  번 째 로 는  가 상  계 측 (virtual metrology)에  SS-
SVR 을  적 용 하 였 다 . 실 제  반 도 체  공 정 에 서  얻 어 진  가 상  계 측  데 이 터 셋 에  
SS-SVR 을  적 용 한  결 과 , 평 균 적 으 로  8%의  성 능  향 상 이  이 루 어 졌 다 . 
이 는  비 교  방 법 들  대 비  우 수 한  성 능 이 었 다 . 또 한  학 습  시 간  역 시  비 교  
방 법 들  중  가 장  단 축 된  시 간 을  기 록 하 였 다 . 
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