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Abstract

Sparse Learning Models and Their
Applications to Financial Technologies

Youngdoo Son

Department of Industrial Engineering
and Naval Architecture

The Graduate School

Seoul National University

As an era of big-data arises, the more efficient algorithms, in the sense of both
time and storage, are required for data analysis. The sparse learning models
satisfy these requirement, maintaining the ability of existing learning models to
describe data distribution well. Therefore, the sparse learning models have been
studied enormously from the middle of 2000s. Also, as developed data storage
techniques have been applied to several business area, including finance, these
sparse models obtain some possibilities to construct an accurate and efficient
model compared to the existing parametric models.

In this dissertation, we developed two novel sparse learning models using a
kernel method and the automatic relevance determination prior. Then, several
learning models, including both sparse and non-sparse ones, are applied to two

financial applications related to the financial technology,



The first developed model is a sparse support-based clustering model with a
support function derived from the variance function of Gaussian process (GP)
regression using automatic relevance determination prior and variable GP noise
to overcome these clustering problems. The proposed method has a distinct fea-
ture that the support function is represented by a smaller number of representa-
tive vectors (center of kernels) than those of in previous studies. Another feature
of the proposed method is that these representative vectors are in the training
data set and are automatically located during the training process. Simulation
result for various clustering problems show that the proposed method signifi-
cantly reduces the labeling time. The exemplars of handwritten digit data sets

selected using the proposed method are also reported.

The second model is an active learning algorithm for sparse Bayesian regres-
sion. Active learning is one of large and important branches in machine learning
and it aims to build an accurate learning model with a relatively small number
of labeled points which are chosen actively by the constructed learning model.
Active learning algorithms are usually required when the cost of gaining labels
of data points is expensive. We propose two sub-steps to construct the proposed
algorithm. First, we develop a transductive and generalized version of relevance
vector machine which obtains its basis vectors from the unlabeled data set as
well as the labeled one. Next, we suggest three querying strategies which uses
only the relevance vectors automatically selected by the developed model for ac-
tive selection for data points to be labeled. The proposed method were applied
to several artificial and real data sets and showed better performance than the

benchmark, random selections, and these results were statistically significant in

ii



most cases.

As learning model applications to financial data, we pay attention to the
predictions of two financial variables: the market impact costs and the credit
default swap spreads. The first variable, the market impact cost, have not been
analyzed by machine learning algorithms before and the learning application for
the second variable has been rarely studied, but none of them applied several
state-of-the-art learning models and compared the results among them.

For the prediction task of market impact cost, we applied two sparse learn-
ing models, support vector regression and relevance vector machine, and three
non-sparse models, neural networks, Bayesian neural networks, and Gaussian
process, to single transaction data of US equity market and compared their
performances with one another and the benchmark parametric model. The ac-
tive learning algorithm developed in chapter 4 was also applied to predict the
market impact cost. As a result, the learning models except the support vec-
tor regression showed better performance than the parametric benchmark and
the active learning algorithm performed better than the random selection with
much lower number of labeled points than the full sparse Bayesian regression
model.

For the prediction task of credit default swap spreads, we applied the same
five learning models and also a parametric benchmark to daily credit default
swap spreads from 2001 to 2014, which includes the global financial crisis period
when the credit risk of firms were very high, and compared their performances
with one another. Also in this application, support vector regression caused bad

results especially when the credit risk is high. The relevance vector machines

iii =



showed much better performances than the support vector regression but worse

than the other non-sparse learning models.

Keywords: clustering, active learning, sparse Bayesian, financial technology

Student Number: 2012-30287
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Chapter 1

Introduction

In this chapter, the motivations and aims of the research topics in this disser-
tation are given with the overviews of the topics. Then, the organization of the

remaining chapters of the dissertation is provided.

1.1 Motivation of the Dissertation

With a rapid development of storage and digitalization of data, the era of big
data arises. Huge amount of data can be stored and accessible in various areas
including meteorology, genomics, physics, mechanical and electrical engineering,
business, and finance. Analysis of those large scale data with the traditional non-
sparse models requires both time and storage a lot. Therefore, more efficient
techniques for data analysis are required and become more important. The
sparse learning models, one of those efficient techniques, are explored again in
recent days.

Among sparse models, sparse kernel machines have both advantages of ker-
nel methods and sparse models: detect and fit well the complex data distribution

and represented by only a few basis vectors. One of the famous sparse kernel



machines is the relevance vector machine (RVM) which employs the automatic
relevance determination (ARD) prior distribution for the its Bayesian nature.
This ARD prior makes the model very sparse, even sparser than the famous
support vector machine (SVM)(Boser et al., 1992; |Vapnik}, 2000).

There have been a lot of machine learning approaches for financial problems
from a few decades ago(Hutchinson et al., |1994; |S. H. Kim & Noh, 1997} |W .-
H. Chen et al.,2006; Ticknor, [2013) leaning on its old tradition of collecting data
for model verification and financial modeling. With the improvement storage
and digitalization skills for data, financial data also rapidly increases in both
volume and variety. Also, due to newly developed area of financial technology,
data analysis and learning models are required in financial fields other than
ones that the learning algorithms have already been applied to.

Hence, we paid a lot of intention to develop the sparse models using ARD
prior and apply state-of-the-art learning models including sparse ones to the
tasks of estimating and predicting financial variables that the learning models
have yet barely been applied to. In this dissertation, two novel learning algo-
rithms using ARD prior are proposed and two financial application examples

of learning models are presented.

1.2 Aims of the Dissertation

The aim of this dissertations is to develop novel sparse learning algorithms
that can aid big data analyses and to apply several state-of-the-art learning

models to improve predicting performances of financial variables to examine



their applicability to the financial technologies. The topics to be considered in
this dissertation include clustering, active learning, and applications to financial
technology problems. For the first two topics, the sparse learning algorithms
are developed to improvement performances and sparsities of them compared
to the existing or benchmark model. For the last topic, several machine learning
models, including both sparse and non-sparse ones, are applied to two financial
problems related to the financial technology, estimating transaction costs and

credit risks. The detailed research objective of each problem is as follows:

e Developing Sparse Support-based Clustering using Automatic

Relevance Determination (Chapter 3): Support-based clustering meth-

ods, such as support vector clustering and Gaussian process clustering
(GPC), despite of their ability to represent clusters with complex shapes,
suffer from expensive computational cost in the training-labeling stage
and test-clustering phase for large-scale nonconvex clustering problems.
In chapter 3, we propose a novel sparse support-based clustering method
with a support function derived from the variance function of Gaussian
process (GP) regression using ARD prior and variable GP noise to over-
come these clustering problems. One distinct feature of the proposed
method is that its support function is represented by a smaller number of
representative vectors (center of kernels) than those of in previous stud-
ies. Another feature is that these representative vectors are in the training
data set and are automatically located during the training process. The

proposed method is applied to the various clustering data sets to examine



its operability and characteristics.

Developing Active Learning Method for Transductive Sparse
Bayesian Regression (Chapter 4): As one of the most important and
practical areas in machine learning and data mining, active learning aims
to build an accurate learning model with a relatively small number of la-
beled points that are chosen actively by the constructed learning model.
Active learning algorithms play an important role in knowledge-based
systems when the cost of obtaining labeled data points is expensive. In
chapter 4, we propose an active learning algorithm for transductive sparse
Bayesian regression. First, we develop a transductive and generalized ver-
sion of the RVM, which obtains its basis vectors from the unlabeled data
set as well as the labeled one. Then, we suggest three querying strategies
for active learning, which only use the relevance vectors automatically
selected by the developed model for active selection for data points to be

labeled.

Applying Learning Models to Problems Related to Financial
Technologies (Chapter 5): From a few decades ago, several recently
developed technologies have been applied to financial markets. Learning
models have also been employed to estimate and predict financial variables
and market parameters and resulted in better performances than the in
several financial markets. However, there are still remaining the financial
problems the learning models have not been applied yet but may have

possibilities to help to solve those problems. In chapter 5, we pay attention



to the predictions of two financial variables: the market impact costs and
the credit default swap spreads. For the prediction task of market impact
cost, we applied two sparse learning models, support vector regression
(SVR) and RVM, and three non-sparse models, neural networks (NNs),
Bayesian neural networks (BNNs), and GP, to single transaction data
of US equity market and compared their performances with one another
and the parametric benchmark, I-star model(Kissell et al., [2003; Kissell,
2013)). The active learning algorithm developed in chapter 4 was also
applied to predict the market impact cost. For the prediction task of credit
default swap spreads, we applied the same five learning models and also
one parametric benchmark model, the constant intensity model(Jarrow &
Turnbull, |1995), to daily credit default swap spreads from 2001 to 2014

and compared their performances with one another.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In the next chapter,
we review history and previous results of sparse learning models, active learning,
and financial applications of learning models. Then, in chapter 3, we propose
a novel sparse support-based clustering using ARD, which is much sparser and
reduces the labeling time compared to the previous models. In chapter 4, we very
firstly propose the active learning model for RVM as developing a transductive
and generalized version of RVM and suggest three querying strategies to actively

select data points to be labeled. We applied the learning models, both sparse



and non-sparse ones, to the prediction tasks of the market impact costs and
credit default swap spreads and compared the performances with one another
and the parametric benchmarks as well in chapter 5. Finally, in chapter 6,
we conclude this dissertation with summary and possible future work of the

research.



Chapter 2

Literature Review

Since Arthur Samuel first defined machine learning as a ”Field of study that
gives computers the ability to learn without being explicitly programmed” (Simon,
2013) and the first perceptron was developed(Rosenblatt, 1961), the machine
learning models have received enormous attention from both academia and in-
dustry. In the middle of 1980s, the main theme of machine learning was the
multilayer NNs. [Rumelhart et al.| (1985) proposed the back-propagation algo-
rithm by which the weights of the multilayer NN model could be trained effi-
ciently and |Cybenko (1989) studied the properties of activation functions which
are employed to represent the nonlinear distributions of data points. Support
vector algorithms were an avalanche of mid-1990s and early 2000s. The first
SVM was proposed in Boser et al.| (1992)) and it became able to deal with the
non-separable cases by including the slack variables(Cortes & Vapnik} 1995).
It was also extended to the regression model by |Drucker et al.| (1997). Two
previously-mentioned algorithms, NN models and SVMs, has been successfully
adapted to diverse fields in natural sciences, social sciences, engineering, and
real business applications.

As the storage technologies of data has been improved after the middle of



2000s, the research on machine learning models proceeds in two ways. The first
approach is to lean on the development of computing power. The research of
this approach focuses on modifying algorithm for using the improved computing
methods including parallel computing and GPU computing. Solving the prob-
lems that requires huge computation, like deep learning, is also a huge branch
of this theme. The second approach concentrates on modifying the model effi-
ciently to handle the large scale data sets. The sparse models are typical research
topics of this approach.

In this dissertation, as mentioned in the previous chapter, two novel sparse
model using ARD prior distribution are proposed and two financial application
of the state-of-the-art machine learning models including both sparse and non-
sparse ones are presented. We briefly review the related literatures in which

these topics of this dissertation are embedded in the following sections.

2.1 Sparse Learning Models

The research on sparse models has been conducted in different directions. In
this section, we review the history of two different types of research on sparse

models: sparse linear models and sparse kernel models.

2.1.1 Sparse linear models

Sparse linear model algorithms are based on the generalized linear model

p(ylx) = p(ylf (W' ¢(x))) (2.1)



where ¢ is a basis vector and f is a link function. The aim of sparse linear
model is to represent the model with the smaller number of nonzero entries
of the weight vector w. This is achieved by giving a regularization on it. £y-
norm and {i-norm regularizations are the most typical approaches for those
regularizations.

The most famous £1-norm regularization method is the least absolute shrink-
age and selection operator, usually known as LASSO, proposed in Tibshirani
(1996). With the predicted output § = f(w?'¢(x)), the LASSO regression aims

to find the weight vector w satisfying
min £(y,5) + Alwl (2.2)

where L is a loss function between two outputs and A is a parameter for the
regularization. Theoretically, this type of regularization is equivalent to giving
Laplace prior distribution of the weight vector, whose mean is 0 and scale factor
is 1/A. There have been suggested several methods to solve this optimization
problem efficiently.

W. J. Fu|(1998)) and [T. T. Wu and Lange (2008) used the coordinate descent
method to finding an optimal solution. |[Efron et al. (2004) suggested the least
angle regression and shrinkage method, LARS, which provides the curve de-
noting the solution for each value of the regularization parameter A.|Wright et
al.| (2009) and |[Nesterov| (2004) used proximal operators and |Figueiredo| (2003)
used expectation-maximization method to optimize the regularized regression
problem in . Yuan and Lin| (2006) extended LASSO regression to the group

LASSO regression, in which the sparsity is applied to the groups of input fea-



tures.

Although #p-norm regularization causes the regression model sparser than
£1-norm regularization, finding optimal solution for becomes much dif-
ficult if the regularization term of the weight vector is changed to {y-norm.

Therefore, the optimization procedure for {y-norm regularization have been

developed for relatively recent years. Soussen et al| (2011) and |S. Chen and

(1995) used greedy search to find the optimal weights and |O’Hara et al.

(2009) and Bottolo et al| (2010) employed the stochastic approaches. In addi-

tion, |J. C. Huang et al| (2007) and Rattray et al. (2009) suggested variational

inference methods for this optimization problem.

2.1.2 Sparse kernel models

From the development of SVMs(Boser et all [1992), sparse kernel models are

another huge branch of sparse learning algorithms. We review some extensively

used sparse kernel machines here.

SVMs(Boser et al., [1992) are the sparse kernel classification method which

finds the optimal hyperplane, which maximizes the margin of the classifier.

(2000) allowed the misclassification as giving them a penalty term so

SVMs became able to be adapted to the non separable case.
(1997)) extended the SVMs to regression problem using e-insensitive loss func-

tion, i.e. L(y1,y2) = max{e, ly1 — y2|} — €.

There exist ¢1-regularized vector machines(Krishnapuram et al., 2005). ¢;-

regularized vector machines use kernel functions as basis functions like other

usual kernel regression methods but the weights for these basis functions are

10
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regularized with ¢1-norm.

RVMs(Tipping} 2001) is another famous sparse kernel machine method. In
RVMs, the weight vector of the basis kernel functions has the ARD prior,
ie., p(w|A) ~ N(w[0,A"1) = [TX, N(w;]0, A;;"). The most important fea-
ture of RVMs is that it results in the sparser model than the SVMs and the
¢1-regularized vector machines. [Tipping and Faul (2003) suggested the fast
marginalization method to train the RVM faster and [Wipf and Nagarajan
(2008) provided the theoretical background of the sparseness of the ARD prior
in the view of traditional optimization.

There have been some trials to introduce the sparsity to GPs(Cressie}, |1993;
Rasmussen, [1996). For example, Snelson and Ghahramani (2006|) made pseudo
inputs and (Csat6é and Opper] (2002)) used the online approach to construct the
sparse version of GPs.

Relative to supervised learning, there have been lack of attention to un-
supervised and semi-supervised version of sparse learning. However, there also
exist some milestones that should be reviewed.

Tax and Duinl (1999) first suggested the methods for finding support func-
tions represented by the small number of support vectors and able to capture
the complex shape of data distributions, there have been a lot of studies to clus-
ter the points with this support function. These clustering algorithm is called
support vector clustering. Since finding the cluster labels of data points requires
high computational costs, many works have been devoted to improve the speed
of the labeling step since the complete graph labeling method was proposed

in Ben-Hur et al.| (2002). Examples of these works include the approximated
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graph techniques (J. Yang et al. [2002), spectral graph partitioning strategy

(J. Park et al., |2004), ensembles combined strategy (Puma-Villanueva et al.l

2005), chunking strategies (Ban & Abe, [2004), pseudohierarchical technique

(Hansen et al., 2007)), equilibrium vector-based clustering techniques (J. Lee &

LLee, [2005} [2006), fast support vector clustering (Jung et al.,|2010), cone cluster

labeling (S.-H. Lee & Daniels, [2012), and Vornoi cell-based approach(K. Kim

2015). Additionally, Tsang et al. (2005]) suggested another way of finding

the support function requiring much lower time and space complexities using

approximation techniques.

For semi-supervised version of sparse kernel machines, there exists some re-

sults for the semi-supervised classification of SVM. |Joachims| (1999) proposed

the transductive SVMs which give uncertain outputs to unlabeled data points

and find optimal hyperplane and optimal labels for unlabeled points simul-

taneously. |D. Lee and Lee| (2007) suggested the semi-supervised classfication

technique based on the clusters resulted from support vector clustering.

2.2 Active Learning

As one of the most important and practical areas in machine learning and
data mining, active learning aims to build an accurate learning model with
a relatively small number of labeled points that are chosen actively by the
constructed learning model.

Most studies on active learning have been focused on establishing the effi-

cient querying strategy. One of the simplest querying strategies is uncertainty
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sampling (Lewis & Catlett] 1994). Basic uncertainty sampling including margin

sampling (Scheffer et al. 2001) queries the most uncertain point in the clas-

sification case, the point that has the maximum probability belonging to each
class is the smallest, and in the regression case, the point that has the highest
variance among the unlabeled data points. This strategy, which is based on
querying the most uncertain points among the unlabeled data pool, has been
successfully applied to diverse applications including image retrieval
2001)), text classification (Tong & Koller, 2002), drug discovery pro-

cess (Warmuth et al., |2003), object detection problem (Vijayanarasimhan &

\Grauman, 2014), especially for SVM classification, as well as for other kernel

classification methods such as the active kernel logistic regression (Hoi et al.,

2009) that queries the labels of the multiple number of unlabeled data points

and the GPs model (Kapoor et al., [2007).

Another querying strategy is to minimize the total expected variance of the

model. (1996)) suggested the uses of this strategy for NN models and
(1996) for the mixture of Gaussian regression and locally weighted regres-

sion. Since reducing the total variance of the model is equivalent to maximizing

its Fisher information, Zha et al.| (2012)) proposed the active learning SVMs

that maximize the information measure (D-optimality) and successfully applied

it to video indexing application. This strategy of maximizing Fisher informa-
tion is the most studied one, particularly in the field of statistics (Chaloner &

Verdinelli, 1995} [Flaherty et al.| 2005} [Schein & Ungarl 2007} [Settles & Craven),
2008; |Zhang & Oles, [2000).

Another widely used querying strategy is the query-by-committee strategy@be
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& Mamitsukal, |1998; McCallum & Nigamy, 1998} |§eung et al. [1992)), which se-

lects the most disagreed instance among the several committee models trained

by the current labeled data set. The regression version of this strategy, as sug-

gested by Burbidge et al. (2007)), selects the unlabeled points with the largest

variance among the predictions by the committee models. Other strategies,

such as selecting the unlabeled point that is expected to change the model

most(Settles & Craven, |2008) and to minimize the expected future error of

the model(Y. Guo & Greiner} [2007; Moskovitch et al., 2007; Roy & McCallum),

2001} Zhu et al., 2003), have also been proposed recently. For further literatures

on active learning, see (2010) and Y. Fu et al| (2013).

2.3 Financial Applications of Learning Models

The financial variable prediction has been a long and yet active research theme
targeted by many researchers since successful prediction helps to make profits
as well as avoid risks. From a long time ago, many people, called chartist, have
believed that the future value of financial time series can be predicted by using
the past values. According to the well-known efficient market hypothesis it is
argued that the stock price is fully random walk without new unpredictable in-
formation, making it almost impossible to predict it. There are, however, several
counter-evidences that the stock price process does not follow the random walk
leaving aside some controversial issues. Two typical such counter-evidences are
the momentum effect and the mean reversion which show that the autocorre-

lations of the return of a stock are positive in short horizons and negative for
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long horizons.
Inspired by these empirical findings, during the last decades many statistical

learning technologies have been applied to predict various financial variables.

The most intensively studied variable is the stock price(W.-H. Chen et al.

2006} [Son et al. [2012; |Ticknor} [2013; |Liao & Choul [2013) and its derivative

markets(Hutchinson et al., 1994} [Han & Lee, 2008; S.-H. Yang & Lee, 2011;

H. Park & Leel |2012; H. Park et al. |2014) and their predictive power were

reliable in usual. There also exist learning approaches for other financial markets

including fixed-income market(S. H. Kim & Noh| [1997; (Cao & Tay| 2003) and

foreign exchange market (Bhattacharyya et al., 2002)).

Financial technology, usually known as Fintech, In a broad sense, the finan-
cial technology includes the efficient procedure for financial transactions, peer-
to-peer lending, and constructing online finance systems. The machine learning

applications related to the financial technology barely exist. There have been

some studies focusing on credit risk and its derivative valuation(Y.-C. Lee, [2007;

K.-j. Kim & Ahn| 2012; Z. Huang et al., 2004} Giindiiz & Uhrig-Homburg, 2011)

which may be useful for peer-to-peer lending business.
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Chapter 3

Sparse Support-based Clustering
using Automatic Relevance
Determination

3.1 Chapter Overview

Clustering, which divides data objects into several similar groups, is one of the
well-known and traditional topics in diverse fields including statistics, machine
learning, and data science. Recently, support-based clustering methods with
kernels have been extensively studied and successfully applied to solve many
difficult clustering problems because of their ability to detect complicated non-
convex shapes better than traditional clustering methods can (Ben-Hur et al.
2002; Ban & Abe, [2004; |J. Lee & Lee, 2005 |Girolami, [2002). The support-
based clustering methods usually consist of two stages. The first stage involves
constructing the support function that detects the cluster structure of a given
data distribution and includes mainly the support functions constructed from
the support vector domain description (SVDD) algorithm (Tax & Duin, |1999)
or those constructed from the variance of the GP regression using squared

exponential kernel with Gaussian noise (H.-C. Kim & Lee, 2007)). The second
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stage involves labeling the data points using the level set of the constructed
support function and includes complete graph-based labeling (Ben-Hur et al.,
2002)), approximated graph technique (J. Yang et al., 2002), spectral graph
partitioning (J. Park et al., 2004), ensemble combining (Puma-Villanueva et
al., 2005), chunking strategy (Ban & Abel [2004), pseudo-hierarchical technique
(Hansen et al., 2007)), dynamic system-based approaches (J. Lee & Lee, 2005,
2006; |Jung et al., 2010), and cone cluster labeling (S.-H. Lee & Daniels, |2012).

Thus far, considerable research has focused on improving the labeling method
because the second stage of labeling is the main bottleneck in the training phase
as the size of the data set increases. However, in the test phase, the complexity
of support-based clustering with kernels mainly depends on the computation
time of the constructed support function, the time complexity of which is pro-
portional to the number of center points used in the kernel representation. In
many applications, having compact sparse models to process new data points
rapidly even when it costs substantial computation time in the training phase
is desirable. However, in practice, the support functions constructed from the
SVDD algorithm involves computing the kernels centered at almost half of the
training data points as the sample size increases, whereas those from the GP
regression involves all of the training data points.

To solve this problem, we propose constructing a sparse representation of
a support function with substantially reduced centered data points. We first
use the GP regression model with a variance function that only depends on
the training input data. We use ARD prior distribution to obtain a compact

sparse model. ARD prior distribution leads to variance functions with larger
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values in a dense area and smaller values in a sparse area, which is the opposite
of the variance function observed in the traditional GP regression model (H.-
C. Kim & Lee|, 2007; [Williams & Rasmussen), 2006). We also introduce a so-
called variable GP noise, instead of traditional constant Gaussian noise, which
enables us to obtain a GP regression model that is compatible with the GP
classification model and allows us to obtain a likelihood function that utilizes
the ARD prior to obtain a sparse model and improve the clustering performance.
As a result, the proposed method constructs a sparse model of the estimated
support function represented by a small number of basis vectors centered at

some representative data points that function as exemplars in a grouped cluster.

This chapter is organized as follows. In Section 2, we present our proposed
method to construct a sparse support function and detail the implementation
strategy to determine the hyper-function and hyper-parameters. We also show
that the proposed method can estimate the support of an unknown data dis-
tribution by using the generalization error bound. In Section 3, we show the
experimental results that are applied to several kinds of clustering data sets.

Section 4 provides some discussions and concludes this study.

3.2 Proposed Method

In this section, we first propose a method to construct a support function using
the GP regression with the ARD prior and the so-called variable GP noise.
Then, we derive a tractable likelihood function to determine hyper-functions

related to a variable GP noise and hyper-parameters related to the ARD prior.
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One key idea in deriving such a compact likelihood is that we can control the
output values in the GP regression at our disposal to match the GP regression
model with the approximated one-class GP classification model with only zero
class. Then, we derive a generalization error bound to show that the obtained
variance function can indeed estimate the support of a data distribution. Finally,
we provide some implementation strategies to label the data points from the

constructed support function.

3.2.1 Constructing the sparse support function using automatic
relevance determination

First let us consider that for a pair of input-output (x,y), the following additive

error regression model
y=f(x)+ex) (3.1)
Here we assume that f follows a restricted GP of the form

f(x) ~GP(0, k(x,x)) (3.2)

where f is restricted to belong to the subclass of linear basis functions of the

form f(x) = w’ ¢(x) with a kernel radial basis function ¢(x) = (¢1(x), ..., on(x))”

where ¢;(x) = K,(x;,x) for some kernel x, (in this paper, mostly we used Gaus-

2
llx; =]l

sian radius basis kernel function, ¢;(x) = ky(xi,x) =€ 202 i =1,..,N)
for the input variable x and a weight vector w. To obtain a sparse model, we’ve
employed an ARD covariance function given by k(x,x') = ¢(x)TA"1gp(x'),

where A is an N x N diagonal matrix with A; = «; > 0. Given a training
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sequences X of size N, this GP defines a joint Gaussian:
p(fIX, o) = N(0,K) (3.3)

where K = ®A~'®7 and ® is an N x N matrix whose i’th row is ¢(x;)7 (as-
suming ® is nonsingular by Micchellis’s theorem under mild condition (Micchelli,
1984)). (Note that from the weight space viewpoint, if the prior distribution for
W is given as p(w|a) = Hf\il N (w;]0, a; ') where e is a hyper-parameter vector
consisted of the precisions of the noise on the weight values, which is the same
with ARD prior, then the covariance function is given as ¢(x)TE(ww!)¢(x') =
P(x)"ATP(x').)

We also assume that € follows a variable GP given by
e(x) ~ GP(0, 5(X)_15x,x') (3.4)

where (x) is a hyper-function of precision to be described in detail below and

dxx' is a Dirac delta function with dx x = 1 if x = x" and 0 otherwise. Then

the GP defines the joint distribution of y = (y1,...,yn)? conditioned on f as

p(ylf, X, e, B) = N(f,B™}) (3.5)
The marginal likelihood is therefore given by

p(y|X, o) = /p(ylf,X,a,B)p(flxva)df

=N(0,K+B™1 (3.6)

Then using the Sherman-Morrison-Woodbury matrix inversion formula, the

posterior predictive distribution of f(x*) for a new test point x* is given by
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p(f(x)x", £, X, a, B) = N(f(x"), p(x")" Sp(x")). (3.7)

where the mean and the covariance matrix of the posterior distribution above

are given by

fx) =ox")"AT'®T(K+B )y
= ¢(x")'z® By (3.8)

Y=(A+o"BP)! (3.9)

and B is an N x N diagonal matrix with B; = B(x;). Note that f = K(K +
B~!)~ly where f = (f(x1), ..., f(xn))7.

One distinct property is that, when the hyper-function S is given, the pre-
dictive variance, ¢(x*)TX¢(x*), does not depend on the target values y but
only on input training samples X, being unsupervised in nature. With a finite
number of kernel basis functions centered on data points, the predictive variance
is enlarged near densely spaced data points and small near the sparse region of
data points, which is frequently observed in the equivalent kernels with local
support (Hastie et al.,2009)). This property is the complete opposite of the case
of GPC proposed in H.-C. Kim and Lee (2007). Based on this observation, we

define the variance function, v(x) as

u(x) = ¢(x)" e(x). (3.10)

The variance function v(x) then estimates the support region by {x : v(x) > 6},

where § = minyex v(x), where X = (x1,...,xy). (See Fig)
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Figure 3.1 One dimensional example for proposed support function. The data
points are marked by blue '*” and basis vectors are marked by red circles. Red
dotted line represents the support function value. It is easily observed that the

support function value is large near the basis vectors.

The performance of clustering using this support function highly depends
on the choice of hyper-function §(x) (or B) because it sometimes has a positive
value on only a narrow area close to a basis vector and is almost zero at a point
a little distant from the basis vectors but in the cluster. In the next subsection,

we suggest a method to solve this problem.

3.2.2 Determining hyper-functions and hyper-parameters

To obtain the parsimonious model for clustering using sparsity, we first de-
termine the hyper-function (x) and then set the hyper-parameters oy, i =

1,..., M used in the ARD prior, where the latter is extensively studied in the
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literature and is well-known that most of a; become infinite, thereby leading to
the sparsity representation of the corresponding entries of f which are zero as
in [Tipping (2001), Wipf and Nagarajan (2008)), and Williams and Rasmussen
(2006]). (3;; is not zero only when neither a; nor «; is infinite due to the inverse
of the matrix A and ¥ can be contracted by discarding the rows and columns
whose entries are all zero and call the corresponding input vectors for the non-
infinity entries of a the basis vectors.) In this subsection, we focus on how to
determine B(x) given other hyper-parameters «;, i = 1,..., M.

Following Williams and Rasmussen| (2006)), we define the logistic GP model
for binary classification as p(y;|x;) = o((2y; —1) f(x;)) where y; € {0,1}, o(2) =
1/(14e %) and f(x) ~ GP(0, k(x,x’)) as for GP regression. If we set all training

target value is zero, i.e. y = 0, then log-posterior distribution is given by

((f) =log p(f|X,y)

=log p(ylf) + log p(f|X) — log p(y[X)
N
== D _{wilog(1+e7/09) 4 (1 - y) log(1 + €/))}
i=1
— 'K 'f — —In|K]| + const.
2 2
Its gradient and Hessian are given by

VIf)=y—o(f) —K'f (3.11)

Vi(f) = —(B(f) + K1) (3.12)
He‘ilf(xi) and B(f) is a diagonal

matrix whose entry B(f); = o(f)i(1 — o'(f);) = %ﬁ;)ﬁ) Using iterative
e i

where o(f) is a vector whose entry o(f); =

reweighted least squares (IRLS) to find the MAP estimate, at convergence, the
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Laplace approximation of the posterior becomes
p(f1X,y) = q(f[X,y) == N(£,(B(f) + K~ ')™) (3.13)

where f satisfies the equation f = K(y — o(f)).
The posterior predictive distribution of f(x*) for a new test point x* is then
given by
p(f(x)x*, X, @) = N(p(x*) 1, ¢(x") S (x")) (3.14)

where the mean vector and the covariance matrix of the posterior distribution

above is given by

m=A'eTK'f, L=(A+&"B(f)®)! (3.15)

Thus, the clustering problem can be cast into the problem of the one-value
regression or the equivalent one-class classification. The result indicates that
the predictive distribution of the regression in should be compatible with
the predictive distribution of the classification in . Specifically, to have
equal predictive variances of regression and classification in and

respectively, we should have

S=A+3"B®) = (A+d"B(H)®) =%
or equivalently
eff(xi)

/B(Xz) =B = B(f)iz' = m

(3.16)

Note that we set ygqss = 0 for the classification outputs here to make hyper
function 3 only depend on input training data X since f = —Ka'(f' ). In contrast,

we do not need to set y,., = 0 for the regression outputs since its predictive
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variance does not depend on y,., and this flexibility of choosing any values of

Yreg makes us to have equal predictive means of regression and classification in

(13.8) and ({3.15]) respectively as follows.

F = K(K + B_l)_lyreg = f‘ = K(yClGSS - U(f))
so that we have (by setting y.jqss = 0)
Vreg = —(K+ B_l)a(f') (3.17)

Given this choice of hyper function 8 and y;.4, hyper-parameter o can now

be found by maximizing the log-marginal likelihood function in (3.6):

L(o) =Inp(y|X, ) (3.18)

N 1 1 _
= 5111(277) ) log |C| — 5)’?@90 1Yreg

where C = B~ + K = B~' + ®A~'®” and y,., = —Co(f) in (3.17). Note
also that all K, f, and B(f') depend on «. To expedite the search for optimal

a, we adopted sequential sparse Bayesian learning algorithm used in [Tipping
and Faul (2003) which is summarized below.
Following Bishop (2006), decomposing C into
C=B'+3A7'®" =B '+ 0, oo, + ] 'dio)
m#i

= C_; +a; gip}.

enables us to rewrite the log-marginal likelihood ([3.18)) as

L(a) = L(a—;) + M)
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where C_; and L(a_;) denote the matrix C and log-marginal likelihood with

the contribution from ¢; removed, respectively, and

1 2
Mag) = 5 (logai — log(a; + s;) + a-(ﬁ- s->

is the term that contains all of the dependence on «; where s; = gbiTC:}qbi where,
and ¢q; = d)iTC:-ng)i. Therefore we can maximize L£(«) over «; by maximizing

only the term A(a;) and «; has an optimal solution given by

2 .
q;’iS‘ it ¢?>s;
o = e (319)

00 if qi2 < s;.

With this sparse solution, by the Sherman-Morrison-Woodbury matrix inver-
sion formula the variance function becomes
v(x) =p(x)" (A + 2"B®) " ¢(x)
=¢(x)" A" p(x)
—¢x)TATIT (B + AT 1PA I p(x)
Therefore, only the ¢;’s corresponding to a; # 0o remains in the variance func-
tion computations leading to sparsity. Figure [4.3] illustrates one dimensional
support function generated by the proposed method. One interesting observa-
tion is that the training data points x; corresponding to a; 7 oo represent the

modes of the estimated support function.

3.2.3 Generalization error bound

We obtain a result with tractable complexity even in high-dimensional cases
that bounds the probabilities lying outside the estimated support region of v(x),

which is similar to the result obtained in Scholkopf et al. (2001) for SVMs.
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Theorem 1. Consider a fized but unknown probability distribution P with no
atomic components on the feature space F with support contained in a ball
of radius 1 about the origin and v(x) = P(x)T Tp(x) in - Assume that
6 = mingex v(x). Then with probability 1 — & over mndomly drawn training

sequences X of size N, for all v > 0, and,

; 2 N?
P(x:vu(x)<0—2y) < N <K+log 26)

1 2N 2N — 1)4
K= 2087 ) Og(fj” ) 4 Dy log <e <( 5 i 1>> +2,
gl

where

c1 =42, ¢y = In(2)/2, ¢ = 103,45 = /|||, and D = D(X, g,0)

Proof. We follows the definition for D(X, f, ) as in|Scholkopf et al.| (2001)); i.e.

for a fixed # € R and a training sequence X = (xy,...,Xy), we define
DX, f,0) =) dx
xeX

where d(x, f,0) = max{0, §— f(x)}. First of all, there exists § = minyex v(x) >
0 since matrix ¥ is positive definite. From the definition of v(x), we note that
v(x) = p(x) Bp(x) = tr(B(x)$(x)" T)

If we let w = Vec(X) and ¥(x) = Vec(¢p(x)p(x)”) (meaning Uy, ;_1)4;(x) =
$i(x)p;(x)) and wy(i—1)+; = Xij, then it follows that v(x) = w - ¥(x) and
so v(x) is a linear function in a kernel defined feature space. Then by using
Theorem 17 in |Scholkopf et al.| (2001)), with probability 1 — §, and all v > 0

X 2
P{\Il(x):U(x):w~\11(x)<0—2'y}§;<K+log]§5>

where

1 2N 2N — 1)4
K =08y ) Og(fz” ) & Dylog <e <( . g 1)) +2,
3

c1 =42, ¢y = In(2)/2, ¢ = 103,54 = v/||Z||F, and D = D(X,v(x),0). O
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This result shows that the variance function of a GP characterizes the sup-
port of a high-dimensional distribution of a given data set and the estimated

support set by GP has tractable complexity even in high-dimensional cases.

3.2.4 Labeling the points from the constructed support func-
tion

One interesting and distinguished feature of the proposed method is that it
automatically detects the training data points that are the modes (called the
representative point or exemplar) of the estimated support function or their
nearby points. This feature enables us to adopt the nearest neighbor labeling
algorithm naturally among other labeling methods given the estimated support
function (Ben-Hur et all 2002; |J. Lee & Lee|, 2005 |J. Yang et al., 2002)), that
is to say, we assign a data point with the same label as that of the nearest rep-
resentative point. Many other support-based clustering methods require to find
the equilibrium points of the estimated support function as the representative
points and this task is usually done by applying its associated gradient systems.
The obtained representative point is normally not included in the training data
set. In contrast, the proposed method automatically constructs the set of the
representative points that coincide with the center of the basis vectors selected.
Therefore, there is no need to find the converging mode points of the estimated
support function via invoking nonlinear optimization solvers for each training
data points. (See Figure [1.3])

To assign a cluster label to the representative point, we construct an adja-

cency matrix A of representative points, as proposed in Ben-Hur et al. (2002);
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J. Lee and Lee (2005), i.e. given a cutting level L where the set {x : v(x) < L}

characterizes the cluster structure, two representative points, say x;,x;, are ad-
jacent with A;; = 1 only if v(Ax; + (1 — A\)x;) < L forall 0 < A <1, and
A;; = 0 otherwise. Then, we assign the same cluster label to the representative

points in the same connected component generated by the adjacency matrix A.

Otherwise, we can use the enhanced strategy suggested in|J. Lee and Lee| (2006)

that characterized the cluster structure at the expense of a longer computing
time. The rest of the data points are then assigned to the same cluster with
the nearest representative point. The adjacency of representative points can be

changed as the value of L varies; thus, the number of clusters can be controlled

accordingly, as detailed in |D. Lee and Lee| (2010). This labeling method also

has an inductive property so that any novel data point in the entire domain

can be labeled accordingly.

3.3 Experimental Results

First, we applied the proposed method to the four two-dimensional toy data

sets with complicated shapes mostly used in H.-C. Kim and Lee (2007) and

they are shown in Figure a) to [£.2(d). The data set in Figure a) and

[4.2b) are from the spectral clustering website(Spectral clustering websitel, [n.d.)

and Figure c) and [4.2(d) are from H.-C. Kim and Lee| (2007). We used
Il =, I
Gaussian radius basis kernel function, x,(x;,x;) = e 27 , to cluster these

data sets using the proposed method. The clustered results are presented in

Figure[4.2[a’) to[4.2(d’). We observed that the proposed method clustered those
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data sets effectively by selecting the appropriate kernel parameters.

3.3.1 Two-dimensional toy data
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Figure 3.2 Clustering results by the proposed method. The data points are
marked by black "*’ and basis vectors are marked by red circles. Green lines
represent the given cutting level L. (a-d) original images (a’-d’) clustering re-

sults

We duplicated the data points of Figure (d) with small Gaussian noise
to examine the sparsity of the proposed method. Then, we constructed the

support function via the proposed method varying the number of data points.

Two existing methods, namely, GPC (H.-C. Kim & Lee, 2007) and support

vector clustering (SVC) (Ben-Hur et al.l [2002)), were also applied to construct

the support functions for comparison. Figure [3.3] shows the number of basis
vectors, the centered points of kernels representing the support function, for

three clustering methods with different numbers of data points. We observed
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that the number of basis vectors is almost invariant for the proposed methods,
whereas the number of basis vectors increases as the number of data increases
for SVC and GPC. The basis vectors of the proposed support function locate
at the center of clusters, but the basis vectors of the other methods do not.
Moreover, the graph of GPC is linear because it uses all input data points as
the basis vectors. The results shown in Figure indicate that the sparsity of

the proposed method strengthens as the number of data points increases.
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“— Gaussian process clustering ||
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Figure 3.3 Graph of the number of basis vectors as the number of data points
increases. The number of basis vectors for the proposed support function is
almost invariant whereas the number of basis vectors for the other methods

increase.
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3.3.2 Real data sets

The proposed method was also applied to some benchmark and real data sets.
The first and last data sets, Shuttle and Forest type, respectively, are from UCI
repository (Asuncion & Newman, 2007). Shuttle is composed of 43,500 objects
of 7 different classes with 9 variables. Forest type is compsoed of 523 instances
of 4 different classes of forest types with 27 variables of both spatial and quality
features. We also tested the proposed method with two handwritten digit data
sets and one letter data set. USPS (Hull, 1994) data set consists of 9,298 gray-
scale images of handwritten digits from 0 to 9, and the number of pixels of each
image is 16 by 16. MNIST data set (LeCun et al., 1998]) contains 28 by 28 gray-
scale images of handwritten digits from 0 to 9. We selected 14,870 images with
digits that are 0 or 1 from MNIST data set for the clustering task. OCR data
set (Spectral clustering website, n.d.) contains 16 by 8 black and white images
of handwritten lower case letters. We selected the three most frequently used
letters(e, i, and n) for the task, which resulted 14,892 data points left. SVC and
GPC were also adopted for the same data sets for comparison. The data sets
are compared by the adjusted Rand index (ARI), a similarity measure between
two partitions of the same data sets, and labeling time. For SVC and GPC,
1% of the data points are selected to determine the equilibrium vector via a
dynamic system presented in J. Lee and Lee| (2005) and the rest of data points
are labeled as the same with the nearest equilibrium point. This is basically the

same labeling method used in K. Kim et al.| (2015).

Table shows a comparison of clustering result of the proposed method
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Table 3.1 ARI and labeling time per data. (SSC: Proposed)

ARI labeling time (x1075s)
SSC | SVC | GPC || SSC | SVC | GPC
Shuttle 0.604 | 0.524 | 0.511 || 3.40 | 9.87 769.3

USPS 0.331 | 0.319 | 0.328 || 1.15 | 51.6 5037.1
MNIST 0.988 | 0.812 | 0.987 || 1.48 | 28.7 10019
OCR 0.544 | 0.314 | 0.539 || 1.47 | 27.8 5992.1
Forest type || 0.412 | 0.340 | 0.443 || 24.5 | 67.3 144.42

and existing methods. We observed that the results of the proposed method
have similar or higher ARI, with significantly shorter computation time in the

labeling phase.

3.3.3 Exemplar selection

001411422
344#45(6€
7927 88Gq

Figure 3.4 Exemplars of handwritten digits in MNIST data set.

From several results previously presented, the basis vectors are located at the
center of the clusters of data points. Thus these basis vectors seem to function

as exemplars. To test if this observation is correct, we applied the proposed
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method to each digit of MNIST data set and determined the basis vectors.
Some of these basis vectors are presented in Figure As shown in the figure,
the basis vectors were selected to represent the different shapes of each digit.
Exemplars of some digits, such as 0, 3, 6, and 8, are not significantly different
from each other and can be united if we change the kernel parameter. The effect
of changing parameters is explained at the end of this section. However, some
digits, such as 1, 2, and 7, have several extensively different shapes, and the

proposed method detected those shapes.

Figure 3.5 The relations between an image and its representative image. Digit

1 in MNIST data set is selected for example.

We selected digit 1 and examined which points were represented by a certain
basis vector to determine whether the selected basis vector represents effectively

other data points. Every data point was assigned to the nearest representative
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point, and the results are shown in Figure We observed that most of the
images of the four types of digit 1 seem to be connected to their representative
images. However, some of the first and third types of images do not appear
to be connected to appropriate representative images because these two types
take a large share among the four types of digit 1 shown in Figure [3.4] and
they are extensively distributed on the feature space. This limitation of the
nearest neighbor labeling algorithm considers every basis vector equally impor-
tant regardless of its weight. Thus, other labeling methods using sophisticated
algorithms, such as complete graph (Ben-Hur et al., [2002) or dynamic system

approach (J. Lee & Lee, 2005, 2006)), can overcome this problem.

3.3.4 Application to image segmentation

As a real application of clustering, the proposed method was adopted to the
image segmentation task. Images for segmentation were taken from The Berke-
ley segmentation dataset and benchmark (Arbelaez et all 2007). Each pixel of
the original image was transformed into a three-dimensional vector on the color
space, for example, the RGB space. The size of all images used for this task
was 321 by 481. Thus the total number of pixels was 154,401. The segmentation
results are shown in Figure Figure [3.6a) to[3.6(d) present the original im-
ages for the segmentation task and Figure[3.6(a’) to[3.6(d’) show the segmented
images. We observed that similar colors on the images are clustered together

after image segmentation.
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Figure 3.6 Image segmentation results (a-d) Original image (a’-d’) Segmented

image by the proposed method

3.3.5 Effects of the parameters

To analyze the effect of changing the Gaussian radial basis kernel function
parameter, o, on the clustering result, we adapted the proposed method to a
simple data set varying the parameter where the cutting level, L, is fixed to
1.5. The results are shown in Figure [3.7] We observed that the number of basis
vector increases as o decreases. The increase in the number of basis vectors
results in the separation of clusters. Particularly, as o decreases, the cluster

boundary fits the data more tightly. This characteristic coincides with that of

SVC, as reported in Ben-Hur et al. (2002).

Although selecting the appropriate parameter is important to obtain the
desired clustering result, the result can vary with the value of cutting level L.

Figure shows that different L values can result in different cluster assign-
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Figure 3.7 Labeling results of toy data set with varying the value of the pa-
rameter o where the cutting level L is fixed to 1.5. (a) ¢ =1 (b) 0 = 0.6 (c)
0=0.42 (d) 0 =0.3

ments. If cutting level L decreases, then the separated clusters merge if the
minimum value of the support function between two clusters, that is, on the
line segment between the local maximum points of one cluster and another
cluster, is larger than the new cutting level. The two clusters at the bottom of

Figure (a) merged in Figure (b) where the cutting level L decreased from
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Figure 3.8 Labeling results of toy data set with varying the value of the cutting
level L where the parameter o is fixed to 0.3. (a) L =1.5 (b) L =10.3

1.5 to 0.3.

3.3.6 Comparison with Other Algorithms

To find the characteristics of the proposed algorithm, we applied the proposed
algorithm to the several benchmark data sets from and compared
the results with the existing clustering algorithms: k-medoids, single linkage,
DBSCAN, and spectral clustering. Figure [3.9shows the results after clustering.

From Figure[3.9] we can notice that the proposed algorthm works well for the
most of the benchmark data sets. The proposed method is better to represent
sophisticated distributions than the k-medoids algorithm, overlapped clusters
than the single linkage algorithm, and sparse distributions than DBSCAN, the
density-based algorithm, and the spectral clustering algorithm. Table shows

ARI values of these results.
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Table 3.2 ARI of the proposed and other clustering algorithms for the bench-

mark data sets

k-medoids | single linkage | DBSCAN | spectral | proposed

atom 0.1362 1.0000 1.0000 | 1.0000 1.0000
chain link 0.0867 1.0000 1.0000 | 1.0000 1.0000
engytime 0.8168 0.0000 0.7294 | 0.0000 0.4679
Lsun 0.4631 1.0000 0.9492 | 0.9841 1.0000
target 0.6364 1.0000 1.0000 | 0.7237 1.0000
tetra 1.0000 0.0000 0.6958 | 1.0000 1.0000

two diamonds 1.0000 0.0000 0.9457 | 1.0000 1.0000
wingnut 0.8269 1.0000 0.9687 | 1.0000 1.0000

3.4 Chapter Summary

In this study, we propose a sparse support-based clustering method with a
support function represented by a small number of kernel basis vectors. The
method utilizes the ARD prior and the variable GP noise to build a sparse
support function from the GP regression model. The method assigns the hypo-
thetical output values (not related to the cluster labels) of the clustering data
sets to obtain a tractable likelihood function in the GP regression model to de-
termine hyper-functions and hyper-parameters efficiently. The theoretical result
shows that the constructed support function can indeed estimate the support
of the given data distribution.

The proposed method has several features compared with the findings of

previous studies on support-based clustering methods. First, the constructed
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support function is represented by a significantly smaller number of kernel
center points than the other methods. Second, the kernel center points are
automatically selected from the given data points during the training process
and can represent the rest of the data, playing a similar role as representative
points or exemplars. Third, the simple nearest neighbor method can naturally
be used as the labeling method to boost the labeling in the training phase as
well as the clustering in the test phase. Finally, the operability of clustering and
characteristics explained previously were verified through several experiments
including some benchmark and real clustering data sets, image segmentation,

and handwritten digits by determining its representative data.

The proposed method still has possibilities to be improved on several points.
First, in case that the precision of clustering is important, more sophisticated
labeling algorithms, such as complete graph approach(Ben-Hur et al., [2002) and
dynamic system approach(J. Lee & Leel 2005, |2006; K. Kim et al., [2015]), can
be used for the proposed support function rather than the naive nearest neigh-
bor approach which concentrates on reducing labeling time. Next, although the
selected parameters o and L result in variation in the shape and number of clus-
ters, determining appropriate parameters is sometime difficult. If a method or
criterion for selecting the parameters is recommended for the proposed meth-
ods as for previous methods(K.-P. Wu & Wang, 2009), it may be helpful to
use the proposed method. Finally, the number and dimension of the data set
can increase in the application to some real data sets. If the algorithm of the
proposed method is parallelized, then the proposed method can be effectively

applied to large data sets with powerful parallel computing methods that have
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been developed recently.
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Figure 3.9 Clustering results with benchmark data sets of several algorithms.
(a) k-medoids (b) single linkage clustering (c) DBSCAN (d) spectral clustering
(e) proposed
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Chapter 4

A Novel Active Learning Method for
Transductive Sparse Bayesian
Regression

4.1 Chapter Overview

Active learning, also called query learning or optimal experimental design, is
an important branch of machine learning that builds a suitable learning model
with actively provided labeled data points. Unlike semi-supervised or transduc-
tive learning, which constructs the learning model with (passively) provided
labeled and unlabeled points, active learning constructs its relevant training
data points with labels that are reductively essential in efficient learning and
asks the user or the membership counselor to label them; for example, active
learning makes queries for data to be labelled. Hence, active learning can play
a very important role when the cost of obtaining the labels of the data points
is expensive, as in the case of using commercial text, speech, or video class
labels, which should be annotated by a human expert(Lang, |1995; [Zhu et al.,
2005; Settles & Cravenl |2008} Zha et al., 2012), scientific or engineering results

from complicated experiments(Flaherty et al.l 2005 |J. Guo et al., 2004 King
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et al., (2004} 2009; 2004)), or market research or survey results often used in

business and the social sciences.
In the last decade, many active learning strategies have been developed for
the state-of arts kernel machines such as SVMs and GPs. They are mostly based

on querying the most uncertain points among the unlabeled data pool and in-

clude multikernel SVR (Ceperic et al., |2012), e-SVR (Ceperic et al., 2014)),

active SVR (Demir & Bruzzone, 2014)), kernel ridge regression (Douak et al.l

2013)), Bayesian ridge kernel regression (Paisley et al.,[2010), and GP regression

(Seo et all 2000) and (Krause & Guestrin, 2007)). Comparatively, there have

been very few studies on active learning strategies for sparse Bayesian learn-
ing models such as RVM, despite of its recent explosion of interest 2004;

Naveen| [2012; [Matsumoto & Horil [2014; [Ribeiro et al., [2006; [Sabuncu et al.,
2014} |Shuib et al. [2014; Tipping), |2001). Silva and Ribeiro| (2007) proposed an

active learning procedure for RVM by querying the label of the furthest point
from the relevance vectors with its application to text classification.
suggested another active learning procedure to find the optimal
queries. However, this procedure requires a different procedure for active learn-
ing to make queries for labeling and build the final model using RVM.

In this chapter, we propose a novel active learning algorithm for sparse
Bayesian regression. To this end, we first develop a transductive and generalized
version of RVM regression wherein the basis of the model can be selected from
the unlabeled data points as well as the labeled data points. Then, we propose
an active learning strategy that can make queries for labeling using only the

relevance vectors automatically determined from the developed model, thereby
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making it unnecessary to require an additional procedure for active learning.

The remainder of this chapter is organized as follows. In section 2, we pro-
pose a transductive GRVM with an active learning procedure and present its
algorithm and implementation. Section 3 gives the experimental results of both
artificial data sets and real data sets. Finally, we make concluding remarks and

cite the future directions of this research in section 4.

4.2 Proposed method

RVM, which is proposed by Tipping| (2001), is a sparse Bayesian learning
method based on ARD prior on its weights and is successively applied to various
regression and classification tasks. One of the advantages of using RVM over
other kernel methods, such as SVM and GP regression, is its sparseness with
comparable performances and computational costs (Naveen, 2012} |Shuib et al.|

2014).

Here, we propose a transductive and generalized version of the RVM re-
gression, namely a transductive GRVM, which can be used when only a small
portion of the data points are labeled. Then, we suggest three querying strate-
gies that exploit the characteristics of transductive GRVM. After obtaining
the labels of queried data points, the proposed algorithm repeats training the
model with the new labeled data sets and querying other data points until the

stopping criterion is satisfied.
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4.2.1 Transductive sparse Bayeasin regression

The aim of the transductive GRVM suggested in this section is to construct
GRVM model which uses both labeled and unlabeled data points and selects
the relevance vectors from both of them.

Like other regression models using basis functions, we consider a Bayesian

regression of the form:
y=f(x)+e (4.1)

where € is a noise with mean zero and variance o2 that are uncorrelated with
data (we are assuming a more general case than a Gaussian noise NV(0, 0?)) and
f(x) = wlo(x) where w is a weight vector and ¢(x) = [¢1(%),..., on(x)]T
is a vector of basis functions. In this paper, we use a kernel function k(x,x’)
as a basis function where the i’th basis function is given by ¢;(x) = k(x, x;).
¢o(x) = 1 is sometimes included in the basis vector to represent the bias term.

Now let {Xr,yr} be the labeled data set and {Xy/} be the unlabeled data
set. We also assume that there are L labeled data points and U unlabeled data
points, and the total number of data points is N = L+U. Rhe regression model

can be represented as

v =®rriuw +e€p (4.2)

where @7, 1,1 is an L x (L + U) matrix composed of kernel values of labeled
points and the whole points whose ij’th element is x(x;,x;) where x; is selected
from the labeled data points, i.e. the rows of X, and x; is selected from the
whole points, i.e. the rows of X = [XE XE]T Here, w is an IV x 1 weight vector

and €7, is an L x 1 noise vector with zero mean vector and covariance matrix
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0?1} where I, refers to the L dimensional identity matrix.

To obtain a sparse solution, we employ a generalized version of an ARD prior
as in Tipping| (2001) for the weight vector, i.e. p(w|A) has zero mean vector
and N x N-covariance matrix A~!) with the diagonal matrix A = diag{A4;;} as
the hyperparameter. These hyperparameters, the ARD prior A and the noise
02, can be found by type-II maximum likelihood (empirical Bayes) estimation.

Since it is difficult in general to obtain the exact marginal likelihood func-
tion conditional on X, A, and o2, we derive it by applying the Laplace approx-
imation to the joint distribution of labeled outputs and unlabeled predictive
outputs. Notice that both labeled outputs, y; and unlabeled predictive out-
puts, fy = ®y 4pw, a vector of f(x) in for the unlabeled data points
where ®y 14 is a U x (L +U) kernel value matrix of unlabeled points and the
whole points, have zero mean vectors and the covariance matrix of y; and fy

conditional on X, A, and ¢? is given by

cov(yr,yz) cov(yr,fu)
cov(fy,yr) cov(fy, fy)
The covariances conditional on X, A, and ¢ can now be obtained by applying
the formula of conditional expectations as follows.
cov(yr,yr) = Elyryl] =Ew [E[(®L 0w +e€L)(®rrrow +er)T [w]]
= & 1 0Ew[wwl @] + 0%,

—157T 2
= ®LLvAT Py t+o7IL

COV(yL, fU) = E[nyFUF] =Ew [E[(@L7L+UW + GL)(CIZ’U,LJFUW)T‘WH

T T —15T
= ‘I’L,L—i-UEw[WW ](I)U,L+U:‘1)L,L+UA (I)U,L—i-U
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COV(fU,fU) = E[fog] = Ew [E[(‘I’UL_._UW)((I’U,L_i_UW)T‘W]]

. T T _ —15T
= @y rvEw[ww @y = PurivAT Ry iy

After applying the Laplace approximation, we obtain the following approxi-

mated joint distribution of y; and f; conditional on X, A, and o2.

—15T 2 —15T
yL PrLrvAT Ryt ol PLvAT P

~N |0,
fir ‘I’U7L+UA_1(I>F£7L+U CI)U,LJrUA_l(I)aLJrU
(4.3)

Therefore, its corresponding approximated marginal likelihood function of y,

is given by

p(yL‘XLaXUrAvUQ) = fp(yLan’X[nXU?A?O—Q)de

I~ N(O, <I)L,L+UA_1(I)}:,L+U + U2IL). (4.4)

In maximizing the likelihood in with respect to the hyperparameters A
and (3, most of the entries of A become infinite as in the traditional RVM; thus
only a small portion of data points are selected as relevance vectors. However,
those relevance vectors are also chosen from the unlabeled data points as well as
the labeled ones because the basis vector includes the kernel functions centered
at the unlabeled data points.

Because of the ARD prior, it can be shown as described in |Tipping (2001)
and Tipping and Faul (2003) that most of diagonal elements in A become
infinite as a result of likelihood maximization and the corresponding weights
become zero. Thus, the regression model in can be represented only by
a small number of kernel functions relevant to the input points corresponding

to the nonzero weights. These points are called relevance vectors.
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Finally, our transductive version of sparse Bayesian regression is given by
the posterior predictive distribution for a new point x* which can be derived

using the Sherman-Morrison-Woodbury formula as follows:
p(y*|X*7 yiL, XLa XU’ A? B) ~ N(mf(X*), 02 + J2¢(X*)T2¢(X*)) (45)
where

mp(x*) = o) Erv®L iYL (4.6)

Siv = (PA+®L L @) (4.7)

One notable fact here is that the final model does not involve the computations

of the kernel values between the unlabeled points.

4.2.2 Active Learning Strategy

Our key idea for active learning strategy is based on the observations that
the obtained relevance vectors are located at the local maximal points of the
predictive variance or near them. Figure[d.1]illustrates this behavior by showing
1D example generated by the proposed transductive regression. The predictive
mean and 95% confidence interval estimated by the predictive variance are
denoted by a green line and red dotted lines, respectively, in Figure (a).
The relevance vectors are denoted by red circles. Figure (b) represents the

2 with a blue line and

predicted variance, subtracting the common value o
the relevance vectors with red circles. In this figure we can observe that the
most of the relevance vectors are selected at the extreme points, local optimal

points and boundary points, of the predictive mean function and the variance

51



values have the local maximal values at these relevance vectors. This observation
can be inferred from the fact that the covariance matrix 3 in has zero
values except the entries with both row and column indices corresponding to the
nonzero weights, or non-infinite values of A;;. Then the first term in variance,
o(x*) TS ye(x*), has a larger value near the relevance vector because ¢(x*)
has a larger value for the entries corresponding to nonzero values of X y.

%10

08

06

04

0.2

-0.2

-0.4 . . . . . . . .

Figure 4.1 1D example of RVM regression. (a) Predictive mean is denoted by
a green line and 95% confidence interval is denoted by red dotted lines. The
relevance vectors are denoted by red circles. (b) Variances without the common

term (02). The relevance vectors are denoted by red circles.

Based on this property, we propose the following querying strategies for

active learning with no additional calculation.

e Querying all unlabeled relevance vectors: Our first strategy is sim-
ply querying all of the unlabeled relevance vectors. This strategy does
not require any other calculation and makes queries for the labels of the

obtained relevance vectors.
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e Querying the most uncertain relevance vector: The second strategy
is querying the most uncertain point among the unlabeled relevance vec-
tors. It coincides with the regression version of the traditional uncertainty
sampling which considers the point with the largest variance as the most
uncertain point. This strategy involves a simple additional computation
for the variance of the unlabeled relevance vectors, not the whole data

points.

e Querying the farthest relevance vector: Our last querying strategy
is similar to the second one. However, this strategy selects one unlabeled
relevance vector with the highest minimal distance to the labeled points

is maximum among the unlabeled relevance vectors, i.e.

Xquery = argmax min dist(x, x;) (4.8)
xERVy X1

where RVy is the set of unlabeled relevance vectors, x; is selected from
the labeled data set, and dist(x,x2) is a pre-defined distance function
between two points x; and xX5. Although this strategy requires an ad-
ditional computation for calculating the distances, it prevents querying
some redundant points located close to the labeled points and selects only
the points far from the given labeled points to give new information to

the model.

Among these three strategies, the first one involves the smallest number of
iterations because it requires the labels of several data points at once. However,
the limitation of this strategy is that it may require large cost in the case when

the labeling cost is expensive.
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4.2.3 Algorithm and Implementations

The proposed method first trains the proposed transductive GRVM model with
a given initially labeled and unlabeled data sets. After the training phase, the
method requires the labels of querying points selected by the querying strategy
given in section The detailed procedure for the proposed method is now

given as follows.

There are some implementation issues that need to be addressed. First, to
implement the proposed transductive GRVM, we used Probabilistic modeling
toolkit(Murphy & Dunham), [2008)) and the fast marginal likelihood maximization
proposed in [Tipping and Faul| (2003) to reduce computational complexity. The
naive implementation requires O(N?) computations to find hyperparameters
where N is the number of training instances. Meanwhile, the fast marginal like-
lihood maximization algorithm (Tipping & Faul, 2003)) requires O(M?3) where
M is the number of relevance vectors included in the model by adding and
removing the candidate basis vector by one at once. M can be N at its max-
imum, however, these values appear to be very smaller in practice. Therefore,
the complexity of the proposed method is of O(cM?) complexity where ¢ and M
refer to the maximum number of iterations the maximum number of relevance

vectors included in the model during the iteration, respectively.

When the user chooses the initial selection of the labeled data points, one
can select L1 points randomly from the whole data set D which is the sim-
plest approach requiring no extra calculation. However, the performance and

convergence speed can be very sensitive with the choice of initial selections.
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Algorithm 1 Active learning for transductive GRVM

(AL. Initialization:)

1:

2:

Select data points which are labeled initially from given data points D =
{Xk}]kvzl‘

Construct the transductive RVM model proposed in section with the
initially labeled data points Di = {Xk,yk}£;1 and remaining unlabeled

data points D}, = {xk}éV:LIH.

(A2. Construct the active learning model:)

1:
2:
3:

10:
11:
12:

13:
14:
15:

Set j = 1.
repeat
Find the set of unlabeled relevance vectors RVy and select the querying
set D, based on the querying strategy presented in section .
if querying all unlabeled relevance vector then
D, :=RVy.
else if querying the most uncertain relevance vector then
Dy := {x : x = argmax, cgy, Var(xy)}.
else if querying the farthest relevance vector then
D, := {x : X = argmax,cgy,, minxleD}; dist(x,x;)}.
end if
Dfrl = D% U{xq¢, ¥¢}x,ep, and D?JH = D{] \ Dy.
Construct the transductive RVM model with new labeled data points,
Dfrl, and unlabeled points, D{]H.
Jj—Jj+1
until the stopping criterion is satisfied.

Save the relevance vectors and the corresponding weights of the final model.

Clustering-based approach can be a good alternative. This approach first clus-

ters the whole data points and selects a few points from each cluster. This

approach may reflect the distribution of data points thereby being used for

pursuing higher performance and faster convergence, although it requires one
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additional clustering phase. Any other sampling method can also be applied in
addition.

If all relevance vectors are selected from the labeled points, the model con-
verges and the algorithm stops. At times, some stopping criteria other than
convergence might be required for practical reasons, including labeling cost
and computational time. In this case, we can give a few suggestions. The first
criterion is to set the maximum number of iterations and stop the algorithm if
the number of iteration exceeds that number. The second is to stop the algo-
rithm when the ratio of labeled points exceeds the pre-set value. The last one
is to stop the algorithm if the number of relevance vectors becomes higher than
some pre-set tolerance. The combination of these methods can also be used for

the stopping criterion.

4.3 Experimental Results

4.3.1 Toy data sets

To verify the performance of the algorithm, we first applied the proposed algo-
rithm to two artificial data sets, sinc data set with a curved shape and spiral
data set with a linear shape. Figure illustrates these two data sets where blue
stars and red lines denote the noise-additive points used for the experiments
and the noise-free true values, respectively.

In our experiment, Gaussian kernel, x(x;,x;) = exp{—|x; — x;||3/20%},
is used for the basis kernel function where the kernel parameter o is deter-

mined by a 10-fold cross-validation result using the whole data points. For the
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Figure 4.2 Toy data sets for the proposed method. Red lines denote the true
values and blue stars are noise-additive data points. (a) sinc data set (b) spiral

data set

initialization of the proposed method, we randomly selected three initial la-
beled points. Next, we used the querying the farthest relevance vector strategy
proposed in section and stopped the algorithm if the number of labeled
points exceeded 20, i.e., 10% of the whole data points. The results are shown
in Figure Figure [£.3((a) indicates the logarithm value of mean squared er-
ror (MSE) and Figure b) shows the number of relevance vectors. Proposed,
symbolized by the blue solid lines with squares, refers to the average results of
the proposed method with 10 times repetition, whereas Supervised, represented
by red dashed-dot lines with circles, refers to the results of RVM using the same
number of randomly selected labeled points as that of the proposed method.
For each number of labeled points, we averaged the results of 100 random se-
lections for Supervised result. Standard errors of both Proposed and Supervised

results are not presented because these are too small to be noticed compared
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to their means. In addition, Full, denoted by green dashed lines, is the result of

a general RVM applied to the whole data points that are all labeled.

14

—8— Proposed —H8— Proposed
g =~ Supervised =9~ Supervised
1 Full 1 12 Full ]

01

log(MSE)
# of relevance vectors

o=
60029

il oo-0-0-0C ]

o-0@

6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
# of labeled points # of labeled points

(a) (b)

Figure 4.3 Simulation results of sinc data set. (a) logarithm values of MSE (b)

number of relevance vectors.

In Figure the proposed method overwhelms the random selection after
a few number of iterations for sinc data set with the comparable number of rel-
evance vectors. The MSE values of the proposed method and random selection
at L = 20 are (6.01 & 0.69) x 10% and (2.23 £ 2.31) x 1072, respectively. The
random selection model has a large standard error because random selection
sometimes fails to construct the robust model. Figure is shown from the
fourth iteration, i.e. L=6, for visibility since the results of proposed methods
are not robust for a few first iterations, hence their MSE values are very high.
The MSE of the proposed method is expectedly larger than that of the full
RVM since the number of relevance vectors used for labeling in the proposed

method is smaller than that used for the full method.
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Figure 4.4 Simulation results of spiral data set. (a) logarithm values of MSE

(b) number of relevance vectors.

Figure presents the simulation results of spiral data set. Figure (a)
shows logarithm values of MSE and Figure [4.4[b) indicates the number of rel-
evance vectors. The initial number of labeled points is 30 and the iterations
proceed until the number of labeled points does not exceed 55, which is almost
10% of the given data points. Querying the farthest relevance vector strategy
is also used for the querying strategy. The proposed method results in signifi-
cantly lower MSE value than the random selection, 2.05=+0.80 and 10.36 +2.00,

whereas both their MSEs are higher than that of the full RVM, 0.0061.

Figure illustrates changes of the model through iterations. Blue stars
denote the original input points, red circles signify the selected relevance vec-
tors, and black plus signs represent the labeled points. The predictive model
constructed in each iteration is denoted by the green line. As the iteration step

proceeds, the model changes to fit the data points and the number of labeled
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Figure 4.5 Example of changing models for sinc data set with (a) L = 3 (b)
L=7()L=9(d) L=13(e) L =17 (f) L = 20. Given data points, labeled
points, and relevance vectors are denoted by blue '*’, black '+’, and red ’o’

respectively. The predictive mean of the model is represented by the green line.

60

= -

5 4 208



points increases with the selected querying strategy. As discussed earlier, we
can observe that most of the relevance vectors are located near the extreme

position, hence, the selected labeled vectors are also located at these positions.

4.3.2 Real data sets

To verify the performance of the proposed method for real applications, we next
applied the proposed method to four real data sets from the UCI repository(Asuncion
& Newman, 2007) (abalone, airfoil, concrete, and wine-red) and another data
set of American-type put option prices of S&P 100 index (Am. option). The

basic characteristics of these data sets are shown in Table .11

Table 4.1 Basic characteristics of data sets

Data set # of instances | # of dimensions | Output range
abalone 4177 8 1-29
airfoil 1503 5 103.38-140.99
concrete 1030 8 2.33-82.60

wine-red 1599 11 3-8

Am. option 6954 2 1.03-125.95

The comparison results for each of the three suggested querying strategies
are shown in Table to respectively. In the Proposed column, we reported
the averages and standard errors of MSE, number of relevance vectors, and
number of labeled points for at least 20 converged results for the proposed
method. The convergence of model means that the all relevance vectors are

selected from the labeled point set so there are no remaining points to be
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queried. We also limited the maximum number of labeled points to 50% of the
whole data points. In the Supervised column, we reported the averaged results
of random selections where the predictive models are constructed with the same
number of randomly-selected labeled points as that of the proposed algorithm.
For each number of labeled points, the random selection was repeated at least
100 times and its results were averaged so that they can be compared with the
proposed method. Here, superscripts * and ** are given to the data if the result
of Proposed applied to it was significantly better than that of Supervised by
Wilcoxon signed-rank test with the level of significance a set to 0.05 and 0.01
respectively.

As is shown in the Tables to[4.4], the proposed algorithm performed sig-
nificantly better than the random selection regardless of the querying strategy
for all the used data sets. In addition, all these results are statistically signif-
icant, although we observed some different characteristics among the applied
three querying strategies. The second querying strategy in Table query-
ing the most uncertain relevance vector, has converged with smaller number of
labeled points than the other strategies; however, it has higher standard er-
ror than the other strategies, implying that the constructed models converge

differently depending on its initial selection of labeled points.

The first querying strategy in Table querying all unlabeled relevance
vectors, and the last strategy in Table[d.4], querying the farthest relevance vector,
usually result in smaller variance than the other, whereas they converge with a
large number of labeled data. Based on these results, it appears that the models

constructed by the proposed method, with a variety of initial selections, become
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Table 4.3 Experimental results for data sets. Querying the most uncertain relevance vector strategy is used for the

querying strategy. # of RV refers to the number of relevance vectors and L is the averaged number of labeled points

that the proposed algorithm converges.

Proposed Supervised Full
Data set
MSE # of RV L MSE # of RV | MSE # of RV

abalone 8.15 £ 0.79** 5.40 23.40 9.33 +0.85 3.64 4.23 26
airfoil 13.30 + 7.49** 5.15 27.55 | 2715.81 +994.83 17.06 4.96 122
concrete 49.17 4+ 40.96** 3.70 27.00 | 290.11 4+ 108.28 7.71 22.50 63
wine-red 0.92 + 0.22** 9.05 32.70 1.02 £ 0.13 5.02 0.36 33
Am. option || 19.58 £ 16.74** 6.90 46.80 45.88 +16.27 7.05 1.27 25
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similar as new labeled points are added when using the first or last strategy.

The convergence of active learning is sometimes difficult to determine and
the active learning algorithm should often be stopped before the convergence.
As shown in Figure (a), the performances of the proposed method near the
convergence are not much varied. Table[I.5]shows the average performances of at
least 5 results before the convergence. The last querying strategy, querying the
farthest relevance vector, was exploited for this experiment. This simulation was
repeated more than 20 times for each data set and the results were averaged.
As a result, MSEs shown in Table are not much different from those in

Table [£.4] as expected.

Table 4.5 Experimental results for data sets before the convergence. Querying
the farthest relevance vector strategy is used for the querying strategy. 5 results
before the convergence were averaged and these averaged results were averaged

again by more than 20 times repeated simulations.

Proposed Supervised
Data set
MSE # of RV MSE # of RV

abalone 8.42 4+ 1.70 6.86 8.92 +£1.00 3.87
airfoil 4.57 £ 3.72** 10.61 800.74 + 784.14 35.23
concrete 75.34 4+ 25.53** 25.53 84.44 + 32.02 22.16
wine-red 0.76 4+ 0.22** 11.23 0.95+0.12 5.62
Am. option 2.79 +1.61** 14.58 22.79 + 8.63 10.58

In summary, the first and third strategies typically resulted in smaller MSEs
than the second strategy; however, the latter required the smallest number

of labeled points, which can minimize the labeling cost. Meanwhile, the first
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strategy queries several points at once, the required number of iterations can
be smaller than the others if the converged number of labeled points are similar.
Therefore, we recommend the user to select the querying strategy based on the

purpose of the task and cost of labeling.

4.4 Chapter Summary

In this study, the novel active learning method for transductive sparse Bayesian
regression is proposed. First, we develop a transductive and generalized version
of RVM in which the relevance vectors of the constructed model are selected
from the unlabeled data points as well as the labeled data points. Next, we
propose three querying strategies for the active selection of the labeled point
set using only the relevance vectors automatically obtained from the devel-
oped model, thereby making an additional process for active learning unnec-
essary. The proposed active learning algorithm is completed by repeating the
two previously-mentioned procedures until the model converges or one of the
stopping criteria is satisfied.

The proposed method outperformed the random selection algorithm for
both artificial and real data sets, whereas it did not perform well compared
with the full RVM model that used the whole data points as labeled. The three
strategies showed different characteristics when applied to the real data sets.
The first querying strategy, querying all unlabeled relevance vectors, and the
last querying strategy, querying the farthest relevance vector, showed signifi-

cantly small MSEs and standard errors but they required a large number of
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labeled points to converge. The second strategy, querying the most uncertain
relevance vector, converged with a small number of labeled points, which means
that the labeling cost can be minimized, while MSEs and standard errors from
this strategy were higher than those of the other strategies.

There are possible ways to improve the proposed method. First, the user
should select the initial set of labeled points. In this paper, we randomly selected
three points from given data points and the method worked successfully. How-
ever, other sophisticated sampling methods, including clustering approaches,
may improve the performances of the first few iterations. The stopping crite-
rion is another issue that the user must decide on. It is difficult to predict when
the model converges, however, we observed that the proposed methods per-
formed significantly better than the random selection after several iterations,
and the MSEs at a few iterations before convergence were comparable to that
at convergence. Thus, it seems that an earlier stopping than the optimal model
may have prevented the occurrence of severe problems. Finally, other querying
strategies which use the information criteria can be developed. Similar to the
suggestions of previous studies(Zhang & Oles, 2000; |Schein & Ungar, 2007} |Set-
tles & Craven, 2008|), a querying strategy based on information theory can be
applied to the transductive GRVM developed in this study in order to construct

another active learning algorithm for sparse Bayesian regression.
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Chapter 5

Applications to Financial
Technologies

5.1 Chapter Overview

The financial variable prediction has been a long and yet active research theme
targeted by many researchers since successful prediction helps to make profits
as well as avoid risks. There have been many machine learning approaches for
financial markets but there are still remaining the unsolved problems that the
learning models can make better results. In this chapter, we applied machine
learning models, including both sparse and non-sparse ones, to two financial
technology problems: high-frequency market impact costs estimation and credit
default swap (CDS) prediction.

The remainder of this chapter is organized as follows. In the next section, we
briefly review the machine learning algorithms that are applied to the financial
problems. Then, the experimental results of each financial problem are follow-
ing. First, in section 3, learning models are applied to estimate and predict the
market impact costs of US markets, then learning models are used to price CDS

spreads in section 4. Finally, we conclude this chapter with summary and some
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other future research directions in section 5.

5.2 Preliminaries

Before introducing financial application problems targeted in this chapter, we
describe some machine learning algorithms which were commonly used for the
following problems. In this section, we review the four learning models: artificial
neural networks (ANNs), BNNs, GPs, SVMs, and RVMs. The last two models

are sparse models, while the other are not.

5.2.1 Artificial Neural Networks

ANNs(Rosenblatt], |1961) are extensively used highly nonlinear nonparametric
model which can be used for the regression task. Mimicking a human brain,
an ANN model is composed of layers which also consist of nodes, conducting
a role as neurons in the brain. There are usually three types of layers in an
ANN: input layer, output layer, and hidden layer. The input layer is the first
layer and it has nodes that propagates the value of input variables to the next
layer. The output layer is the last layer has nodes that make the overall outputs.
The hidden layers are located at between the input layer and the output layer
and they have nodes that makes the nonlinear output from inputs propagated
from the previous layer. The nonlinear output f(x) of each node has a form as

follows:

f(x) = Q(Z wihi(x)) (5.1)
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where x is the input vector from the previous layer, g is an activation function,
h;’s are functions that transform the input vector. The sigmoid functions, S-
shaped functions such as hyperbolic tangent function, logistic function, and
probit function, are commonly used for the activation function.

Training of ANN means the optimization of weights w;’s in Eq. . The
widely used optimization algorithm is back-propagation algorithm(Rumelhart et
al., [1985). In back-propagation algorithm, the weights are chosen backwardly
from the output layer to the first hidden layer to minimize the loss, squared
sum of errors in usual. The ANNs show good performances after training the
weights but it is difficult in this model to determine the relationship between

inputs and outputs.

5.2.2 Bayesian Neural Networks

BNN is a variant of NN training algorithm, which was originally proposed in
MacKay| (1992). Similar to other algorithms with Bayesian nature, this algo-
rithm assumes a Gaussian-type prior over weights on the networks, or equiva-
lently regularizes the error function via sum of squares of weights.

Suppose we have n input-output pairs {z;,y;} with y; = f(x;) + €;, where ¢;
are i.i.d Gaussian errors. In BNN setting, the objective function is represented
as F(w,a, B;{z;,yi}) = BEp+aEw, where Ep = >, (y; — a;)? is the sum of
squares of errors from network output a; and target y; corresponding to x;, and
Eyy is the sum of squares of the network weights. The relative importance be-
tween regularization and fitting the data is determined by adjusting relative size

between o and 3, which can be done by maximizing the posterior distribution
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P(a, B{zi, yi})-

Foresee and Hagan| (1997) proposed an algorithm which iteratively optimizes
the weight and parameters, using Gauss-newton approximation to the Hessian
of the objective function F. After initializing «, 8 and weights, the algorithm

runs as follows:

1. Take one step of the Levenberg-Marquardt algorithm to minimize the

objective F'(w) = BEp + aEywy.

2. Compute the effective number of parameters v = N — 2atr(H) ™!, making
use of the Gauss-Newton approximation to the Hessian: H = V2F(w) ~

28J7.J + 2aly where J is the Jacobian matrix of the training set errors.

3. Compute new estimates for the objective function parameters: o = ﬁ(w)

and 3 = 25;&,).

5.2.3 (Gaussian Processes

GP regression (Cressiel 1993; Rasmussen, (1996) is a collection of random vari-
ables such that any finite combination of them follows the Gaussian distribu-
tion. A GP f(x) can be completely determined by its mean function m(x) and

covariance function k(x,x’) as

Assume that the set of data D = {(x;,y;)}I~; is given with the noisy output

y; where the variance of the output noise is denoted by o. Then, the covariance
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of the output vector y = (y1,...,yn) is given as
cov(y) =K

where K is an N x N matrix whose i,j’th entry is k(x;,x;). Then, with a new

input x* and define the mean function m(x) = 0,

y K+ 0’1 kI
~N |0, (5.2)
f* k. K

where f* = f(x*), ks = k(x*,x%), and k, = (k(x1,x*),...,k(x,,x*))T. Then
the distribution for predictive output f* can be easily calculated by using the

conditional distribution for normal distribution as follows:
P(f*|D) = N(k[ (K + 0’I) 'y, ko — kI (K + 0°T) " 'k.). (5.3)

As shown in Eq. , the GP regression gives the variance of the predictive
output as well as the mean value, thus it belongs to the class of Bayesian
regression.

Training of GP refers to optimizing the hyperparameters in the kernel func-

tion k and the output noise o2 by maximizing the log-likelihood function
1l 7 21y —1 1 2 N
log P(y|D) = —5y (K+01) 'y — 3 log det(K + o°I) — ) log2m. (5.4)

The log-likelihood function in Eq. (5.4]) varies with the exploited kernel func-
tions and the most widely used kernel function is a squared exponential kernel
function which has the form k(x,x’) = C exp(—v||x — x'||?) where C and 7 are

hyperparameters. For more details, see[Williams and Rasmussen| (2006); Bishop

(2006).
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5.2.4 Support Vector Machines

SVM is originally developed as a binary classifier(Boser et al., |1992; Vapnik,
2000) but has also been used as a regression model(Drucker et al., [1997) exten-

sively. Here, we explain these two versions of SVMs separately as follows.

Support vector machine classification

SVM classifier first utilizes a nonlinear transfer mapping ® to map all training
data into a high-dimensional feature space. Next, to find an optimal linear

classifier of the form

f(z;) = wl ®(z;) +b. (5.5)

in the mapped high-dimensional feature space, it tries to find the parameters
w and b which make the classifier in Eq. optimal in the sense that the
margin, the distance between the classifier and the nearest point ®(z;), is max-
imized. Finding the optimal w and b can be achieved by solving the following
optimization problem:

1 2
min - 5.6
nin o f|w] (5.6)

subject to y;(w? ®(x;) + b) > 1 where y; is a binary target of the instance z;.
In the case of overlapping or misclassified training instances, we can add

the penalty term for these misclassification and then the optimization problem

in Eq. (5.6) can be changed into:
min S wl? + 03¢ (5.7)
w)b,€ 2 —' '

subject to y;(wl ®(x;) +b) > 1 — & where &; is a slack variable to allows soft
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margins. The solution of Eq. (5.7)) is then given by

w = Z oy ®(x4) (5.8)

where o is the solution of the following quadratic optimization problem, which

is dual of the primal problem (5.7):

1
mgxz @G5 Z a0 yyik(zi, x) (5.9)
i .3
Here k(x;,x;) = (®(z;), P(z;)) is called a kernel function. There are many

candidates for the kernel functions and in this paper, the radial basis kernel
function is used (Bishop, [2006)).

The nearest points x; that are nearest to the decision boundary are corre-
spondent with o > 0 and are called support vectors. There are two kinds of
support vectors. Ones are support vectors for the class +1 and the others are
for the class -1. After finding optimal w and b with training data, like the other

classifiers, we can classify the test instances as follows:

1 if f(xz;) >0,
target, = (=) (5.10)
—1 otherwise.

Support vector machine regression

SVR is a kernel regression that minimizes the e-insensitive loss function

L(y1,y2) = max{e, |y1 — ya|} — € (5.11)

with some e > 0. This loss function is zero if |y; — y2| < € and |y; — y2| — €

otherwise. Defining the regression function f(x,w) =< w,¢(x) > +b with
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basis functions ¢ and penalize with the errors larger than ¢, the SVR problem,

which minimizes ||[w|? to reduce the complexity of model, becomes

1 - _
min o [|w* +C Y (65 +&) (5.12)
’ i=1

with the constraints

yi — f(xi,w) < e+ &'

f(xi,w) —yi e+ & (5.13)
&6 >0
for all ¢+ = 1,...,n. Using Karush-Kuhn-Tucker conditions, we can get the

following dual problem
1 n n 3 3 n 3 n 3
max —2 373 (aF —a7 )} —a7 ki %) € S0F —a7)+ 3 (0F —aD

(5.14)
with the constraints 0 < aj,ai_ < C where the kernel function, k(x;,x;) =<

d(x:), p(x;) >and w = 31 (af —a; )p(x;). This dual problem can be solved

i
by a quadratic programming solver and then the predictive value for the new

input x* becomes
n

y* = Z(Oz;-F — o Jk(x3,x") + b (5.15)
i=1
where b =y — >0 (o — o )k(xi,xx) for any k = 1,...,n. For more details,

see |Drucker et al.| (1997)); Bishop| (2006).

5.2.5 Relevance vector machines

RVM, firstly proposed in [Tipping (2001)), is a Bayesian regression whose weight

vector has an ARD prior. Here, we briefly give the formalism of RVM regression.

76



Like other regression models using basis functions, RVM regression has the
form as follows:
y=f(x)+e (5.16)
where € ~ N(0,571) and f(x) = wl¢(x) where w is a weight vector and
o(x) = [$1(x),...,6n(x)]T is a vector of basis functions. For RVM, a kernel
function k(x,x’) is used as a basis function thus the i’th basis function ¢;(x) =
k(x,X;). ¢o(x) = 1 is sometimes included in the basis vector to represent the
bias term. Also, a weight vector has an ARD prior, p(w|A) ~ N (w|0,A™!) =
[T, N (w;]0, A;') with the diagonal matrix A as the hyperparameter.
The two hyperparameters, the noise precision S and the prior precision A,
can be found by typical maximum likelihood estimation where the likelihood

function is defined as
P51 AL5) = [ plyIX,w, 5)p(w|A)dw

~N(0,8A'®T + 571I) (5.17)
where ® is a N x N matrix whose i’th row is ¢(x;)T. Because of the ARD
prior, most of diagonal elements in A become infinite as a result of likelihood
maximization and the corresponding weights become zero. Thus, the regression
model in (5.16]) can be represented only with a small number of kernel functions
relevant to the input points corresponding to the nonzero weights and these
points are called relevance vectors. The detailed description for this sparsity can

be found in [Tipping| (2001) and [Tipping and Faul (2003)). Then the predictive

distribution for a new point x* are derived as following:

Py X" £,X, AL B) ~ N(f(x'), 7 + o(x*) T Ep(x7)) (5.18)



where

f(x") = Bo(x") =y (5.19)

Y= (A+p2Te) L (5.20)

5.3 Analyzing market impact costs using nonparamet-
ric learning models

5.3.1 Motivation

Transaction costs have been considered as one of the important factors affecting
the investment performance for a long time. As statistical and computational
technologies have been adapted to estimate and predict several financial vari-
ables from a few decades ago, the high-frequency trades of financial assets have
been popular and thus the estimation and prediction of transaction costs be-
comes more important. Transactions costs are usually classified into two major
categories: explicit costs and implicit costs. Explicit costs, also called direct
costs, are transaction costs that can be explicitly stated and measured. These
costs include commissions, transaction fees, and taxes. Implicit costs, or indi-
rect costs, are costs that cannot be measured directly including bid-ask spreads,
time risk costs, and market impact costs. These costs are usually regarded im-
provable by an appropriate trading strategies.

Market impact cost, one of the implicit transaction costs, the cost caused by
the difference between the price before the transaction and the price that the
transaction is executed actually. There have been several literatures focusing

on analyzing market impact costs. Lillo et al.| (2003)) and |Gabaix et al.| (2003)
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fitted the impacts of single transactions to a concave power-law function of the

volume of the transaction. [Bouchaud et al| (2004) used a logarithm function

of the transaction volume to estimate the market impact costs.

(2002) exploited the hyperbolic tangent function for the same task.

(2005)) and Kato| (2014]) used a stochastic process of the asset price which in-

cludes a function of the transaction size to explain the market impacts. [Frino et

(2008)) estimated the impact cost by using linear regression with quantized

transaction sizes. Bershova and Rakhlin| (2013 analyzed the market impacts

of the large institutional orders in the US equity market and found that the

permanent impact function has a concave form with respect to the transaction

size in contrast to the other previous results(Almgren et al., 2005; Huberman &

2005) that the permanent impact function has a linear form. There have

been some other researches using other input variables to estimate the market

impact costs. I-star model described in Kissell et al.|(2003)) and [Kissell (2013) is

a log-linear regression model which uses three inputs, transaction size, volatil-

ity, and underlying trading rate and they affected the estimated market impact

costs independently. Bikker et al.| (2007)) and Bikker et al. (2008) used more

than 40 independent variables to fit the market impact cost to simple linear
regression function. However, most of these previous studies showed the limita-
tion in performance because of the fixed parametric or simple linear regression

form of the market impact model.
Nonparametric machine learning models have been preferred to be applied

to various other areas including financial data analysis due to their abilities in

fitting and predicting performances for complex data sets. Most of those finan-
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cial applications have been focused on the stock price prediction(W.-H. Chen
et al., |2006; Son et al., |2012; Ticknor} [2013; Liao & Choul [2013) and its deriva-

tive markets(Hutchinson et al. [1994; Han & Lee| 2008, H. Park et al., 2014)

and most of them showed the accurate prediction results. There have also been

several studies for other markets including credit and its derivative markets

(C. Lee, [2007; |Gundiz & Uhrig-Homburg, 2011} |K.-j. Kim & Ahn| 2012), fixed-

income markets(S. H. Kim & Nobl [1997; (Cao & Tay, [2003)), and foreign ex-

change markets(Bhattacharyya et al., |2002). Although nonparametric models

have been successfully applied to diverse financial applications, they have not

been employed to analyze the market impact costs yet.

In this section, we introduce nonparametric approaches to estimate and
predict the market impact costs. To the best of our knowledge, this is the first
approach which applies nonparametric learning models to analyze the market
impact cost. The proposed nonparametric approach has two main advantages.
First, the nonparametric approaches usually fit the data better than the para-
metric case. Second, the nonparametric approaches have a versatility in the
number of input variables so the general procedure does not change when the
number or kinds or input variables change while the parametric approaches re-
quire the new parametric models in those cases. Trough simulation, we analyzed
the market impact costs of transactions of small-cap, mid-cap, and large-cap

stocks in US equity market both altogether and separately by selecting the same

types of input variables with I-star model(Kissell, 2013; Kissell et al., 2003) and

compared the results.
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5.3.2 High-frequency Trade with Transaction Costs

Son et al.| (2012) applied four learning models, linear regression, logistic regres-
sion, NN, and SVM, to predict the trend of high-frequency Korea Stock Price
Index (KOSPI) 200, by using the market lead-lag relationship. The brief results

are shown in Table .1l ANN refers to the NN model and SVM refers to the

Table 5.1 Prediction accuracy of four classifiers

Classifier || Linear reg. | Logistic reg. | ANN | SVM
Dataset 1 0.624 0.612 0.612 | 0.611
Dataset 2 0.622 0.625 0.635 | 0.628
Dataset 3 0.611 0.613 0.618 | 0.616
Average 0.619 0.616 0.621 | 0.618

SVMs. Dataset 1 contains high-frequency data from 2011 Mar 7th to 11th as a
training set and data from 2011 Mar 14th to 18th as a test set. As rolling-over
the datasets, dataset 2 contains data from 2011 Mar 14th to 18th as a training
set and data from 2011 Mar 21st to 25th as a test set. Dataset 3 has the training

data from 2011 Mar 21st to 25th and the test data from 2011 Mar 28th to Apr

1st. This rolling-over of datasets is presented in Figure [5.1

Table 5.2 Virtual trading returns (in percentage)

Classifier || Base | Linear reg. | Logistic reg. | ANN | SVM

Dataset 1 || 6.28 79.44 75.70 73.52 | 69.92

Dataset 2 || 3.54 31.80 31.93 35.47 | 33.67

Dataset 3 || 6.88 29.42 29.89 30.85 | 29.80

Average 5.57 46.88 45.84 46.61 | 44.46
81




Dataset 2

Week 1 Week 2 Week 3
|

Dataset 1 Dataset 3

Figure 5.1 The dataset separation with rolling-over.

The virtual trading based on these learning models results in the returns
shown in Table These returns from the learning models are much higher
than the baseline, a simple buy-and-hold strategy. However, these results in
Table (.2 did not consider the transaction cost. Since the trades in
were conducted every one minute, the transaction cost can affect the re-
sult significantly. For example, if transaction cost for each transaction is 0.3%,
which is the transaction tax rate of Korean stock market, the cost becomes
about 506% per a week even with neglecting the compound calculation. There-
fore, predicting transaction costs at a certain market situation is important for
the maximization of the returns especially for the high-frequency trade using

the developed technologies.

5.3.3 Review of I-star model

In this section, we briefly review one benchmark parametric model, I-star model (Kissell

2013} Kissell et al., [2003)), which uses three input variables to describe the mar-

ket impact cost. The I-star model is composed of two separated equations cal-

culating I*, a theoretical instantaneous cost, and M I, the market impact cost
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appeared in the real market, respectively. The equations calculate them are

given as follows:

I" =ay - Size® - Vol (5.21)

MI = b I*- POV® 4 (1 — b)) I* (5.22)

where Size, Vol, and POV are input variables and a1, as, as, a4, and by are
parameters to be determined.

The first input variable of and is Size, the normalized order
size. According to Kissell (2013), it is represented as Size = Q/ADV, where
@ is the imbalance, the absolute value of difference between buy order and
sell order, and ADV is 30-day average daily volume. Thus Size implies the
magnitude of pressure from this order relative to the averaged daily volume.
The second input variable, Vol, is the volatility of the equity return and 30-day
averaged volatility was used in Kissell (2013)). The last input variable, POV,
is an acronym for percentage of volume and it reflects the market liquidity
condition. [Kissell (2013) simply expressed POV = Q/(Q + V) where V is the
expected volume traded for the period of time that the imbalance order @ is
executed. If the market is liquid or the imbalance trade order @) is executed
slowly, V' becomes large and thus POV becomes small. Small POV results in
small M1 value so the market impact cost will be small when the market is
liquid.

The market impact cost in is composed of two components, temporary
impact cost and permanent impact cost which are the first and last term in the

right hand side of (5.22]) respectively. Since Size and Vol are used to calculate
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the value of I*, they affect both the temporary and permanent part of the
market impact. However, the other input variable POV only appears in the
temporary impact part. This implies that the smaller POV, when the other
input variables are invariant, incurs the smaller market impact cost but this
effect is temporarily and the permanent impact to the market is independent
of the market liquidity condition.

There are several parameters that should be estimated. These parameters
can be determined with data sets, including input variable values and market
impact costs observed in the market, by general parameter estimation tech-

niques such as nonlinear optimization and grid search.

5.3.4 Data Description and Procedures

We describe the proposed procedure to calculate the market impact cost by
using nonparametric regression models with the example of single transaction
data of representative US stocks. The proposed nonparametric approaches can
also separate permanent and temporary costs with an appropriate selection of

input variables.

General procedures

First, we mention the general procedure to find market impact costs by using
nonparametric regression models before the descriptions of the simulation con-
ducted in the current paper. The whole procedure is classified into three stages:
data collection, data preprocessing, and cost analysis. Figure [5.2 represents the

summary of the whole procedure.
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Data Collection |:> Data Preprocessing |:> Cost Analysis

» Data cleaning: .
outlier elimination,
missing value

Model construction:
neural networks,
support vector

= Market variables:
transaction size, price,
daily volume, ...

Imputation, .. regression, Gaussian
= Nonmarket variables: . processes, ...
| | .
market sentiment, Featulre great'on' . .
news, accounting, normalized size, = Estimation and

percentage of volume,

moving averages, ... Prediction

investor type, ...

Figure 5.2 Summary of the general procedure of nonparametric approach for

market impact cost.

The main task at the first stage, data collection, is to gather necessary
data. Collecting non-traditional data outside of the market like news, reports,
opinions, and any other variables than may affect the price or liquidity can also
be useful as well as the traditional market variables because the nonparametric
models do not require any restriction on the data and the general procedure of

analyzing market impact costs using them will not be changed.

The gathered data at the first stage are preprocessed to make input variables
at the second stage. First, data cleaning processes like outlier elimination and
missing value imputation are conducted. Then, the input variables which will

be used for the nonparametric models are derived from these cleaned data.

At the final stage, nonparametric models to estimate and predict market im-

pact costs are constructed using input variables created in the previous stage.
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Using the constructed models, the diverse analysis of data-driven market im-
pact costs such as determining and permanent and temporary portion can be

conducted.

Data description

For the simulation of the proposed nonparametric approach, we gathered the
single transaction data of the stocks of US equity markets from Bloomberg
terminal for the period from 2014/06/02 to 2014/06/26. We selected 17 rep-
resentative firms which have large market capitals among each of S&P 500,
S&P MidCap 400, and S&Ps SmallCap 600 indices for large cap, mid cap, and
small cap firms respectively. The tickers of the selected firms are presented in
Table 5.3l

The collected transactions data are classified into three data sets, large cap,
mid cap, and small cap by their capitals and another data set all cap which
includes all transactions regardless of the market capital. For each size of capi-
tals, the number of collected transactions are about 15 million, 2 million and 1
million for large cap, mid cap, and small cap, respectively and thus all cap data
set has about 18 million transactions in total. The procedures in the following

sections will be applied commonly to all of those data sets.

Creating and bucketing input variables

We made three input variables, Size, Vol, and POV, which correspond to I-star
model (Kissell et al.l [2003; [Kissell, [2013) and one output variable, the market

impact cost. Since the I-star was originally applied to the daily-aggregated
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Table 5.3 Tickers of selected firms. 17 firms having large market capitals among

each of large, mid, and small cap indices by S&P are chosen.

Large cap | Mid cap | Small cap
AAPL ADS FNGN
XOM AMG TDY

GOOGL | GMCR WST
GOOG TSCO DAR
MSFT MHK WWW

JNJ LKQ TYL
WEFC HFC TTC
GE HSIC CGNX
CVX DDD QCOR
WMT PII CNC
JPM UA ENS
PG CHD MDSO
VZ BEAV LHO
IBM XEC VSAT
PFE JBHT MMS
T TRMB VDC
ORCL EQIX SF

transactions, we slightly modified the input variables suitable for the single

high-frequent transactions. First, we define the market impact cost, denoted by

cost, as

cost = side - log(p;/po) - 10*

(5.23)

where side is 1 if a trade is a buy-initiated trade and —1 if a trade is a sell-

initiated trade, pg is a mid-price just before the trade, and p; is an executed
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price of the trade. Since cost is multiplied by 10%, the unit of cost becomes basis

point (bp). The first input variable Size is the normalized trade size as follows:

Vi
ATV

(5.24)

Size =

where ATV is the average trade volume of the previous day. In the original
I-star model, the imbalanced trade size is normalized by 30-day average daily
volume since the trade size itself is daily=aggregated. Thus, to apply the single
transactions, we divide each trade size by the average single trade size of the
previous day. The second input variable Vol is defined as the 30-day volatility
and this is the same with the original I-star model since the volatility is the
characteristic of each stock, not related to the trade size or frequency. POV,
the percentage of volume, in Kissell (2013) is defined as Q/V where @ is the
daily imbalanced size and V is the total trade volume of that day. A single
transaction may be affected by the market liquidity more locally rather than

the liquidity of the whole day. Thus we define POV for single transactions as

Vi

POV = —t
V=

(5.25)

where V;(—7,7) is the total traded volume from 7 minutes before the trade to
7 minutes after the trade. According to the previous study(Frino et al.. 2008),
we expected that the single transaction affects and is affected by the market
within about 15 minutes and thus we decided 7 equals to 15.

After creating input variables, we made three dimensional bins of input
and bucketed the transactions into them. For each bin, Size has the value of

multiples of 0.01, i.e. 0,0.01,0.02, ..., and Vol has the value of multiple of 0.05.
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POV has the values of multiples of 0.0002 for large cap data set and multiples
of 0.001 for the other data sets. Each transaction was bucketed to the bin which
has the nearest value. For example, a transaction from mid cap data set with
the input variables (Size, Vol, POV') = (0.0137,0.022,0.0038) was put to the
bin having the values (Size, Vol, POV) = (0.01,0.02,0.004). The output, cost,
of each bin is defined by the average cost of transactions belonging to the bin.

Finally, we selected bins containing enough number of transactions. The
criterion number will be different for data sets. We selected the bins containing
more than 20, 30, 60, 100 transactions and then the number of survived bins
are 2931, 3356, 5706, 5119 for small cap, mid cap, large cap, and all cap. If the
selecting criterion with 100 transactions, there remain 2721, 1627, and 1106
buckets for large cap, mid cap, and small cap, respectively. The sum of those
buckets is 5454 and it does not exceed the number of selected buckets from the
all transactions, 5119. Therefore, we can expect that the selected buckets from
all cap data are mostly made up with the buckets from transactions of each

capital size group.

Analyzing market impact costs

To the nonparametric machine learning models to the bins of transactions, we
set 70% of survived bins as the training set the rest of 30% as the test set for
each data set. To find appropriate parameter sets of nonparametric models, we
used 10-fold cross validation for the training set. After finding the parameter set,
each model was retrained for the whole training set with the chosen parameter

set and applied to the test set. As a parametric benchmark, we used I-star
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model with the same data sets. As described in section I-star model also
requires to find some parameters. We found the parameters for I-star model by
grid search and 10-fold cross validation of the training set and applied it to the

test set as the same with the nonparametric models.

5.3.5 Simulation results

First, we applied the nonparametric machine learning models and the bench-
mark parametric model, I-star model, to the selected bins of each data set.
We used four different measures, mean absolute error (MAE), relative MAE
(RMAE), root mean squared error (RMS), and relative RMS (RRMS), to esti-
mate the errors of the model. The summarized results are shown in Table [5.4]
through[5.71 NN, BNN, SVR, GP, RVM and I-star refer to results of NN, BNN,
SVR, GP, RVM, and I-star model, respectively.

Through Table to we can notice that the nonparametric approach
fits the data distribution better than the parametric benchmark with the same
input features and instances as we expected. However, the performances of non-
parametric models were also different among the models. For example, BNNs
reduced the errors from 7.27% to 43.00% relative to I-star model but SVR
reduced the errors just from -0.005% to 15.03%. This phenomenon is more
clarified by Figure [5.3] which represented the errors in the tables above.

We can easily find that the four nonparametric models, NN, BNN, GP, and
RVM show much better performances than the parametric benchmark while
SVR model performs slightly better than the benchmark and worse than the

other nonparametric models in general. In some cases like RMS for small cap
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Table 5.5 Test errors of the nonparametric models and the parametric benchmark models for mid cap data set.

Cross validation errors are also displayed in the parentheses. The best model for each error measure is boldfaced.

Methods MAE RMAE RMS RRMS
NN | 0.5266 (0.5254) | 0.2831 (0.2932) | 0.7851 (0.7542) | 0.4184 (0.4381)
BNN || 0.5405 (0.5186) | 0.2914 (0.2889) | 0.7892 (0.7423) | 0.4188 (0.4338)
GP 0.5517 (0.5178) | 0.2802 (0.2778) | 0.8311 (0.7597) | 0.3907 (0.4144)
SVR || 0.6202 (0.5936) | 0.3268 (0.3251) | 0.8914 (0.8358) | 0.4672 (0.4746)
RVM || 0.5524 (0.5340) | 0.3180 (0.3185) | 0.7815 (0.7442) | 0.4677 (0.4843)
Istar || 0.6540 (0.6226) | 0.3453 (0.3424) | 0.9373 (0.8730) | 0.4972 (0.5080)
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Table 5.7 Test errors of the nonparametric models and the parametric benchmark models for all cap data set. Cross

validation errors are also displayed in the parentheses. The best model for each error measure is boldfaced.

Methods MAP RMAP RMS RRMS
NN 0.4096 (0.3746) | 0.4096 (0.2173) | 0.7557 (0.6388) | 0.3507 (0.3210)
BNN || 0.3789 (0.3683) | 0.2182(0.2170) | 0.6667(0.6251) | 0.3192 (0.3292)
GP 0.4327 (0.4059) | 0.2586 (0.2519) | 0.7383 (0.6598) | 0.3601 (0.3576)
SVR || 0.4488 (0.4256) | 0.2766 (0.2710) | 0.7485 (0.6840) | 0.3933 (0.3964)
RVM || 0.3914 (0.3853) | 0.2357 (0.2383) | 0.6965 (0.6412) | 0.3541 (0.3681)
I-star || 0.4747 (0.4517) | 0.2989 (0.2931) | 0.7784 (0.7029) | 0.4163 (0.4149)
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Figure 5.3 Test errors of the nonparametric machine learning models and the
parametric benchmark. (a) small cap data set (b) mid cap data set (c) large cap

data set (d) all cap data set
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data set, SVR performs even worse than the benchmark model.

Table 5.8 Training and test time for GP and RVM. A unit for all values is

second.
GP RVM
Training time | Test time | Training time | Test time
small cap 49.51 0.2321 2.1956 0.0263
med cap 20.16 0.3112 0.6857 0.0368
large cap 65.46 0.4302 0.5840 0.0449
all cap 549.33 0.8611 7.5780 0.0651

RVM and GP have their Bayesian property in common, but the former is
sparse whileas the latter is not. The main advantage of sparse models is fast
computation compared to the non sparse models maintaining the comparable
performances. Table shows the training and test time for two methods.
It is noticeable that both training and test time of RVM are much faster than
those of GP while those models showed comparable performances as represented
through Table[5.4] to Table this is a typical result from the sparse and non

sparse models.

For RVM, we applied the active learning algorithm proposed in chapter 4 to
the training set of each data set with the parameters selected by 10-fold cross
validation above and the results are shown in Table. Q1, Q2, and Q3 refer
to the first, second, and third querying strategies in section 4.3.2, respectively.

The results coincide the results in chapter 4. Active learning algorithms

except the second querying strategy showed better MSEs than the random
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selection, while using the whole data set as labeled showed the best performance.
The second querying strategy performs slightly better than the random selection
in the sense of mean MSEs but these results were not statistically significant,
while the results of the other two strategies were statistically significant with the
level of confidence av = 0.01. The number of relevance vectors for the results of
Active learning is much lower than those of the full RVM results and a slightly
higher than those of the results of random selections. The number of labeled

points, of course, were much less than the total number of input points.

5.4 Predicting Credit Default Swaps via Nonparamet-
ric Learning Models

5.4.1 Motivation

Credit market is one of the most important financial markets and has received
wide attention especially from the credit crisis in 2008. A default probability is
one of the typical measures to represent the credit risk of a firm or nation but
it is difficult to determine since many firms and nations, or obligors, are linked
by various contracts and obligations and thus a credit-related event, including
default, of one obligor may affects many other obligors. The default probability
is usually measured by the credit derivatives traded in the credit market because
their prices do not highly affected by the other factors than credit risk unlike
defaultable bond prices. For example, Biihler and Trapp| (2009) showed that
the 95% of the credit default swap (CDS) spread stems from the credit risk

while only 4% from the liquidity. The mispricing of these derivatives can lead
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to misunderstanding of default probability. Also, credit estimation becomes the
core part of individual lending market which is one of famous areas of financial
technologies. Thus, accurate pricing for credit derivatives from the credit crisis
period has become an important consideration.

During the last two decades, many researches have been made to price credit
derivatives and their models can be categorized into two classes of models.
One class of models, called structural models, assume that a certain stochastic

process for the fundamental value of the firm and defines an event of default as

the fundamental value hits a predetermined barrier(Merton, 1974} Black & Cox],

11976} Finger et al.,[2002). the other class of models, called reduced-form models

or intensity-based models, assume that the default is driven by an exogenous

factors and an event of default follows a Poisson process with a stochastic

intensity (Vasicekl 1977 |J. C. Cox et al.,[1985; Jarrow & Turnbull, 1995)). There

have also existed a large number of studies that compared those models by the

predicted credit derivative prices(Jones et al., [1984; Ogden) |1987; Duffee| [1999;

[Lyden & Saraniti, 2001} [Eom et al., 2004} Bakshi et al.,[2006; |Guinduz & Uhrig-|

Homburg}, 2011) but there has not been a robust conclusion that a certain model

overwhelms the others for pricing and predicting credit derivatives traded in the
real market.

On the other hand, nonparametric learning models have extensively been
used to predict financial time series in recent years due to their flexibility which

fits the models to the data well. Most of those results have been focused on

the stock(W.-H. Chen et all, [2006; Son et al., [2012; Ticknor| 2013} [Liao &

2013)) and its derivative markets(Hutchinson et all 1994} Han & Lee,
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2008; |S.-H. Yang & Lee, 2011; H. Park & Lee, 2012; H. Park et al., 2014) and

achieved accurate prediction results. However, relatively a few studies have been

conducted for the other markets including the fixed-income market(S. H. Kim &

Nohl, [1997; |Cao & Tay, 2003) and the foreign exchange market(Bhattacharyya

2002)). For the credit market, most of studies using learning methods

have concentrated on credit rating analysis. [Y.-C. Lee (2007) and [K.-j. Kim|

and Ahn| (2012) used SVMs to classify the rating of firm and |Z. Huang et al,

(2004) classified the rating of corporate bonds using both SVMs and ANNs.

For credit derivatives pricing, Giindiiz and Uhrig-Homburg) (2011) applied the

SVR (Drucker et al.| [1997)) to predicting one-dimensional output corresponding

five-year maturity CDS spread of one firm using the spreads of other firms
at the same moment called a cross-sectional design or using the past value of
spreads of the same firm called a time series design and compared it with those

of the Merton model (Merton, 1974) and the constant intensity model

& Turnbull, |1995). However, only one specific spread was used in prediction

although considering and predicting the spreads of other liquid maturities at the
same time are practically important and no advanced state-of-the-art machine

learning models other than SVR were used for comparison.

To our knowledge, no empirical studies have been made that prices and
predict the multi-valued CDS spreads using several nonparametric learning
models and even the earlier studies on other financial markets such as stocks
or options were made to determine and predict one-dimensional outputs for
its price values. In this chapter we aim to conduct a comprehensive study

that compares the predictive power of several nonparametric models using the
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multi-valued real CDS spread data from January 2001 to February 2014 as
well as those of different credit ratings. For our experiment, we applied four

well-known state-of arts nonparametric learning regression models (support vec-

tor regression(SVR)(Drucker et all 1997), artificial neural networks(ANNs),

Bayesian neural networks(BNN), Gaussian processes(GPs) (Cressie, 1993; Ras-|

1996)), and relevance vector machine(RVM)(Tipping, 2001)) to predic-

tion of six dimensional outputs consisting of CDS spreads with six different

maturities, 1, 2, 3, 5, 7, and 10 years. Also to verify the relative predictive per-

formance of nonparametric learning models, we’ve applied a benchmark para-

metric model, called constant intensity model (Jarrow & Turnbull, |1995) that

showed a better result than other parametric models consistently.

5.4.2 Structure of CDS

A pays a fee for the protection from
default risk until maturity.

Protection Protection
Buyer A Seller B

B pays the default payment
if default occurs

Figure 5.4 The structure of CDS.

A simple structure of CDS (Schonbucher} 2003) is described in Figure

as a preliminary. Assume that a party A has a risky asset and wants to protect

itself from the default risk. If another party B wants to ensure A this protection,
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they may agree a CDS contract. By the CDS contract, A pays a fixed fee, called
premium leg, periodically until the default occurs or the contract matures and
B pays default payment, called protection leg, to A when the default occurs.
The amount of default payment is usually the same with the loss of A from
default. As a result, A gets a protection from a default risk while it maintains
the returns from the risk asset and B gets a fixed fee periodically.

Pricing the CDS spreads belongs to the multi-valued regression problem
since its output consists of several continuous variables, each of which corre-
sponds to a spread of one maturity with the same type. To price and predict
the CDS spreads, we next review one benchmark parametric model, called con-
stant intensity model (Jarrow & Turnbull, [1995) that showed a relatively better
result than other parametric models consistently and four state-of-the-art ma-
chine learning models that are known to have high flexibility and predictive
power: ANNs, BNNs, SVR, and GP regression. Each of these models is briefly

explained below.

5.4.3 Parametric Constant intensity model

Constant intensity model(Jarrow & Turnbull, 1995), used as a benchmark in
this section, is one of the widely used reduced-form models for credit deriva-
tive pricing. Reduced-form models generally assume that the default happens
stochastically and independently from market information thus they do not
assume any fundamental values unlike the structural models which assume a
fundamental asset value process of a firm. The process of default in the reduced-

form models is usually described as a Cox process(D. R. Cox, [1955)), which is
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a Poisson process with a stochastic intensity. The intensity, or hazard rate, of

default process is defined as

N — Tim Pt <1 <t+4dt)
YT a0 P(r > t)ot

(5.26)

where P(7 € B) denotes the probability that the default time 7 is included in
a set of time B. Once the intensity process is defined, the default probability

density P(7 € [t,t + dt]) can be easily calculated as
P(r € [t,t + dt]) = E[\e Jo 4], (5.27)

In constant intensity model, the intensity process is defined as a constant,
i.e. At = A\. Thus, the Cox process for the default becomes a Poisson process with
intensity A and so the default time follows the exponential distribution with the
parameter A. Thus the survival probability in this model simply becomes P(7 >
t) = e~ and the premium leg and protection leg become as follows(Duffie &

Singleton, 2012):

N
Voreminm = F§»_ e COTNTO(D (i) — 7(i - 1)) (5.28)
=1
Vorotection = F(1—R) Y er@TW (e AT o=ATW) = (5.99)
=1

Equating two values above, we obtain the fair CDS spread in this model:

(]- - R) Zi\il eT(i)T(i) (e—)\T(z’—l) . e—AT(i))
SN e~ COFNTO(T(7) — T(i — 1))

(5.30)

s =

and simply § = % when the time interval T'(i + 1) — T'(i) = At for

ali=1,...,N.

103



5.4.4 Design of experiments

Data description

We used daily CDS contract data obtained from MARKIT database. The whole
period of data set used is from January 2001 to February 2014. First, we elimi-
nated data by the type of currency and region. The only US dollar denominated
and Northern American contracts were used for the experiments. Then we se-
lected five representative firms for each implied rating, AA, A, BBB, BB, B,
and C. The implied rating is graded based on the five year CDS spread of the
firm. Also, any two firms having the same rating are not included in the same
industrial sector. For the CDS spreads we’ve used six different maturities, 1,
2, 3, 5, 7, and 10 years, since they are very liquidly traded credit derivatives

among several credit derivatives.

The statistics of the selected data are summarized in Table and [B.111
The spreads are represented as a percentage. Noticeably, data of most rating
groups have very high standard deviations and maxima. This is a typical feature
of the positively skewed data set and this coincides the highly positive skewness
values as shown in the tables. This positive skewnesses seem to be originated

from the high CDS spreads of the global financial crisis period.

Figure [5.5] shows the term structures of the mean and median spreads for
each rating group. In the graph of mean spreads, we can see that the spreads
decrease as the implied rating improves when the maturity is fixed except for
the group of BBB rating. The reason for this exception is that the mean value is

sensitive to some large values. Especially, Ford Motor Company in the group of
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Table 5.10 Basic statistics of the selected data set of the AA to BBB rating

groups. The spreads are represented as a percentage (100 bp).

Rating | Statistics Maturity
1Y 2Y 3Y oY Y 10Y
mean 0.3705 | 0.4424 | 0.5077 | 0.6418 | 0.7211 | 0.8081
std.dev. 0.6938 | 0.6909 | 0.6532 | 0.6446 | 0.6292 | 0.6173
min 0.0140 | 0.0223 | 0.0305 | 0.0574 | 0.0825 | 0.1120
AL median 0.1572 | 0.2316 | 0.3035 | 0.4410 | 0.5470 | 0.6544
max 8.4001 | 7.8672 | 7.7486 | 7.3746 | 7.0579 | 6.8820
skew 6.2316 | 5.7746 | 4.9098 | 4.1485 | 3.9504 | 3.7062
mean 1.1168 | 1.1935 | 1.2925 | 1.4633 | 1.5205 | 1.5799
std.dev. 3.4282 | 2.9976 | 2.8149 | 2.4867 | 2.2196 | 2.0047
min 0.0110 | 0.0200 | 0.0381 | 0.0677 | 0.0900 | 0.1023
A median 0.3021 | 0.4304 | 0.5712 | 0.8129 | 0.9392 | 1.0560
max 67.7230 | 53.0722 | 45.6853 | 38.1119 | 33.2684 | 29.1860
skew 8.9471 | 7.6979 | 6.9729 | 6.2172 | 5.7942 | 5.4023
mean 3.2994 | 3.5232 | 3.6397 | 3.7565 | 3.7107 | 3.6576
std.dev. | 12.0486 | 11.1026 | 10.2291 | 9.2389 | 8.5481 | 7.9098
min 0.0447 | 0.0752 | 0.1000 | 0.1800 | 0.2117 | 0.2516
BBb median 0.6347 | 0.7921 | 0.8928 | 1.1566 | 1.2384 | 1.2909
max 134.238 | 129.014 | 123.176 | 117.764 | 114.133 | 108.237
skew 7.4621 | 7.1876 | 7.0362 | 7.0393 | 7.1650 | 7.2775
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Table 5.11 Basic statistics of the selected data set of the BB to C rating groups.

The spreads are represented as a percentage (100 bp).

Maturity
Rating | Statistics
1Y 2Y 3Y 5Y Y 10Y

mean 21716 | 2.4243 | 2.6317 | 2.9900 | 3.0781 | 3.1377

std.dev. 3.8042 | 3.4495 | 3.1998 | 2.9326 | 2.7774 | 2.6447

min 0.0369 | 0.0658 | 0.0951 | 0.1730 | 0.2100 | 0.2773

BB median 0.7279 | 1.1917 | 1.5603 | 2.1566 | 2.4054 | 2.6094
max 58.6189 | 37.7039 | 34.7189 | 29.4581 | 26.3604 | 22.7197

skew 4.4169 | 3.3698 | 2.8427 | 2.1328 | 1.8674 | 1.6544

mean 2.6014 | 3.3860 | 4.0913 | 5.0095 | 5.1440 | 5.2297

std.dev. 2.2829 | 2.6063 | 2.8358 | 2.9178 | 2.7293 | 2.5829

min 0.0950 | 0.3750 | 0.4500 | 0.7519 | 0.7537 | 0.8345

B median 1.8617 | 2.7500 | 3.4869 | 4.6540 | 5.0072 | 5.2866
max 16.0751 | 18.0306 | 17.9076 | 18.3501 | 16.7750 | 15.2661

skew 1.5652 | 1.5299 | 1.3985 | 1.0524 | 0.8066 | 0.6073

mean 10.95254 | 10.9582 | 10.8783 | 10.7015 | 10.2037 | 9.8036

std.dev. 33.4680 | 29.4195 | 25.8971 | 22.8022 | 20.5104 | 18.7787

min 0.0489 | 0.0857 | 0.1906 | 0.3719 | 0.5518 | 0.7164

¢ median 2.8764 | 3.4114 | 3.9314 | 4.6025 | 4.6884 | 4.8191
max 393.177 | 429.800 | 402.680 | 397.940 | 267.801 | 239.643

skew 7.3444 | 7.3754 | 6.9731 | 6.9465 | 6.6013 | 6.5255
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Maturity

Maturity

(b)

Figure 5.5 The term structure of mean and median spreads for each rating
group. (a) mean spreads (b) median spreads
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BBB has very large maximum spreads values because the automotive industry
was one of the industries that had a very severe situation in the financial crisis
period. The graph of median spreads shows more typical structures than that
of mean spreads. The spreads decrease as the implied rating improves except
for the B and C grades when the maturity is greater than or equal to five years.
In addition, the spreads increase when the maturity increases in the graph
of median spreads while there are decreasing term structure graphs for some

implied rating groups in the graph of mean spreads.

Experimental procedures

We predicted the CDS spreads for six different maturities using the CDS spreads
of past 14 days and those past values are exploited as the input variables with-
out any manipulations. Since there are six values of CDS spreads, one for each
maturity, the total dimension of input variables is 84 and the total dimension
of target variables is 6. This structure of data object is displayed in Figure [5.6]
Then we divided the constructed data set into non-overlapping one-month sub-
periods. Since the period of the whole da ta set includes the contracts from
January 2001 to February 2014, 158 subperiods were constructed in total for
each firm.

For the prediction using nonparametric models, we used the roll-over strat-
egy as follows. First, train the model with the first subperiod and test the model
with the next subperiod. Repeating this process until the last subperiod is used
as the test set. This roll-over strategy is briefly summarized in Figure This

roll-over strategy was also used to calibrate the parameters for the benchmark
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Input Target

Dimension: 84 Dimension: &
| |
Dayl1 Day2 3 13 14 15
2 3 4 14 15 16
3 4 15 16 17
T T+ T+2 T+13 T+14 T+13

CDS Prices at Day t
(maturity) 1y 2y 3y Sy Ty 10y

Figure 5.6 The structure of data set. Each instance has 84 input variables and

6 target variables.

109 o A_] 1?;' _F__” 1j1 1_]1-



model. The parameters of the benchmark model were selected as optimal to
the train subperiod and applied to the test subperiod to measure the predic-

tion performance.

2001/1 Train
!
2001/2 Test Train
T +
2001/3 '\,“‘ Test Train
¥ &
\ |
2001/4 Test
\7\ | :
\\ J, /
Y ,_// Train
\l
201472 \ /" T:st
-
Input Target Accumulated Error Measure
e ——— (as the function of M &)

Figure 5.7 Roll-over prediction strategy of CDS spreads.

The parameters and other settings of nonparametric models were basically
the same with that of the parametric benchmark model explained above. For
ANNs and BNNs, the sigmoid function was used as an activation function except
for the last layer for which the linear function is used as an activation function.
For SVR and RVM, the radial basis kernel, K(x,y) = exp(—v|/x — y||?), was
used for the basis kernel function. GP used constant mean and covariance func-
tions with the Gaussian likelihood function for hyperparameters. The specific
values of parameters and other variables were selected from the train subperiod,
with an appropriate validation task, and applied to the test subperiod.

In addition, we applied three othre models: linear regression, ridge regres-

sion, and Cox-Ingersoll-Ross (CIR) model. For those models, the parameters
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were selected appropriately to one subperiod and the errors were measured for
the next subperiod with those parameters.

For measuring the performance, we took the average value of relative root-
mean-squared error (RMSE) of all test sets. The relative RMSE for each test

set is computed as

Rel. RMSE =

1 1 s(m, t) — 8(m, )\ > 2
wZ{wrZ( S ) )H (531

teD meM

where D is the set of dates that the data set includes, M is the set of maturities,
s(m,t) is the actual spread value for the maturity m and date ¢, and §(m,t) is
the predicted value. The weights for the different maturities and dates are set

to be all the same.

5.4.5 Experimental Results

For more analysis, we averaged the prediction results for each implied rating
group and this results are shown in Table and Figure[5.8] For the averaged
results, BNNs showed the best performances for every group except AA-rated
one where GP performed the best. SVR did not show a significantly different
performance with the benchmark model (i.e. the constant intensity model) and
this result coincides with the previous research of (Gunduz & Uhrig-Homburg;,
2011) that only considered one value CDS spread with 5 year maturity. Espe-
cially, SVR was worse than the constant intensity model in the relatively low
grade groups, BB and C, according to Figure RVM performed well for high
grade firms but did not show good results for low grade firms. It was also worse

than the benchmark for C grade firms. In contrast, the other three nonparamet-
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Table 5.12 Averaged relative RMSE of predicted CDS spreads for each firm. The boldface

result and the diverged results due to bad calibration are remained as blanks.

represents the best

Implied rating | Ticker | ANN | BNN | SVR | GP [ RVM | LR Ridge | CIR [ Benchmark
AMGN | 0.1705 | 0.1611 | 0.4607 | 0.1562 | 0.1536 | 0.5963 | 0.7167 | 0.3046 0.4789

CsX 0.1461 | 0.1365 | 0.2331 | 0.1382 | 0.1315 | 1.1684 | 0.2074 0.4969

AA IBM 0.1410 | 0.1326 | 0.2760 | 0.1266 | 0.1240 | 0.7881 | 0.3177 | 0.2947 0.4846
JPM 0.1745 | 0.1603 | 0.3051 | 0.1538 | 0.1578 | 0.3587 | 0.1472 | 0.3223 0.4677

T 0.1424 | 0.1361 | 0.3021 | 0.1380 | 0.1733 | 0.4393 | 0.1405 | 0.2867 0.4644

CAT 0.1466 | 0.1441 | 0.2166 | 0.1396 | 0.1425 | 0.5693 | 0.5106 | 0.2983 0.5225

P 0.1298 | 0.1155 | 0.2720 | 0.1159 | 0.1570 | 0.6043 | 0.7180 | 0.2850 0.4936

A AIG 0.1623 | 0.1826 | 0.4528 | 0.1826 | 0.3062 | 0.5161 | 0.8462 | 0.3290 0.4653
cuU 0.1500 | 0.1425 | 0.3635 | 0.1500 | 0.2750 | 0.3789 | 0.5581 0.2175

CNP 0.1194 | 0.1096 | 0.2329 | 0.1095 | 0.1076 | 1.6285 | 0.6914 0.4785

CA 0.1363 | 0.1281 | 0.7150 | 0.1351 | 0.2749 | 0.5712 | 0.7401 | 0.3241 0.3528

F 0.1405 | 0.1466 | 0.3884 | 0.1522 | 0.4380 | 2.5302 | 0.8142 | 0.3146 0.3591

BBB MAY 0.1145 | 0.1072 | 0.2870 | 0.1151 | 0.1140 | 0.5402 | 0.3928 0.3837
PH 0.0878 | 0.0897 | 0.2335 | 0.1123 | 0.0862 | 0.3568 | 0.2637 0.4962

N 0.1322 | 0.1275 | 0.2875 | 0.1269 | 0.1244 | 0.4453 | 0.1063 0.4688

KBH | 0.1319 | 0.1320 | 0.2986 | 0.1380 | 0.2821 | 0.4242 | 0.1530 | 0.3140 0.2371

HRB 0.1763 | 0.1954 | 0.8024 | 0.2030 | 0.2192 | 0.4256 | 0.1413 0.2989

BB SLMA 0.1581 | 0.1556 | 0.4005 | 0.1611 | 0.4044 | 1.2397 | 0.5504 | 0.2995 0.4466
DPL 0.1223 | 0.1134 | 0.2765 | 0.1110 | 0.1089 | 0.6359 | 0.4322 | 0.2578 0.4480

EP 0.1520 | 0.1420 | 0.7713 | 0.1451 | 0.3373 | 0.5246 | 0.6811 | 0.3186 0.4221

AMKR | 0.1205 | 0.1279 | 0.2666 | 0.1323 | 0.2453 | 0.3968 | 0.8413 0.4788

INTEL | 0.1270 | 0.1160 | 0.1671 | 0.1184 | 0.2558 | 1.2045 | 0.5986 0.4831

B PLCOAL | 0.0305 | 0.0357 | 0.1652 | 0.0355 | 0.0353 | 0.4114 | 0.1745 | 0.2687 0.4690
THC 0.1123 | 0.1030 | 0.2761 | 0.1048 | 0.2402 | 0.4153 | 0.2279 0.4169

FST 0.0975 | 0.1019 | 0.1910 | 0.1043 | 0.1086 | 0.5108 | 0.7214 | 0.2882 0.5272

BOW 0.1219 | 0.1105 | 0.4008 | 0.1123 | 0.3745 | 0.8040 | 0.6365 | 0.2980 0.3770

DYN | 0.2469 | 02353 | 0.8476 | 0.2386 | 0.5580 | 0.5942 | 0.2003 0.3634

C AMR | 0.1032 | 0.1124 | 0.7381 | 0.1132 | 0.5850 | 0.5172 | 0.7695 0.2922
e 0.1687 | 0.1553 | 0.4131 | 0.1774 | 0.5004 | 0.7558 | 0.3767 | 0.3333 0.3185

JCP 0.1733 | 0.1518 | 0.2305 | 0.1540 | 0.2838 | 0.5363 | 0.1969 | 0.3188 0.4748
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Figure 5.8 Averaged relative RMSE of predicted CDS spreads for each implied

rating group.

ric models showed much better prediction accuracy than the benchmark model

with not much difference among them for all the implied rating groups.

Figure [5.9| shows two examples of the CDS spread prediction, one from the
high grade firms and the other from the low grade firms. The first example is
selected as the spreads of AT&T Incorporation which belongs to the group of
AA rated firms. We can observe that the all nonparametric model predicted
well for this example. However, in the second example, the predicted spreads
of H&R Block Incorporation which belongs to the group of BB rated firms, it

is obviously presented that SVR performed worse than the other models.
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Figure 5.9 Examples of the term structure of predicted spreads. Original refers
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Figure 5.10 Averaged relative RMSE of predicted CDS spreads for the global

financial crisis period.

Additionally, to compare the predictive performance of the models in finan-
cial crisis, we applied the prediction models to the global financial crisis period
from 2007 to 2009. The results are shown in Figure [5.10} The nonparametric
models except the SVR consistently showed significantly better performances
than the benchmark model. However, SVR performed worse than the bench-
mark even for the high grades unlike the moderate preiod. In the crisis period,
CDS spreads of most firms increased sharply thus even the high grade firms
might have large spread values than the low grade firms of the moderate pe-

riod. Thus, SVR which showed bad performances for low grade firms in the
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whole period did not forecast well even for the high grade firms in the crisis
period. Therefore, SVR might not be useful in predicting the credit risks of
low-rated firms or in making forecasts during a crisis when the credit risks of

most firms are large.

5.5 Chapter Summary

In this chapter, we conducted an empirical study on the predictive perfor-
mance of nonparametric machine learning models for market impact costs and
CDS spread prediction. This study has several features. First, five state-of-arts
nonparametric machine learning models including ANNs, BNNs, SVR, GP re-
gression, and RVM have been compared to verify their performances to predict
market impacts and CDS spreads with a benchmark parametric model whereas
the previous studies were usually focused on parametric models or additional
one nonparametric model. Second, the data set used in this study is very ex-
tensive. For the market impact prediction, the total number of transactions
exceeds 18 million. 17 firms were selected from each indices of large, mid, and
small cap firms, while the previous studies mostly focused on the large cap
firms. The market impact prediction in this chapter used independent variables
from single transactions thus it has advantages to be applied to technological
high-frequency trades compared to the previous studies analyzing large size
trades. The active learning model developed in chapter 4 was also applied to
this task. For the CDS spread prediction, the data set contains daily contract

data from January 2001 to February 2014 including the global financial crisis
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period. Also, the data sets for two applications in this chapter contain various
kinds of firms. CDS spreads of various rating of firms, from AA to C, were
used for the prediction whereas most of the earlier studies focused on AA or
A ratings. Finally, the prediction for the CDS spreads with different maturities
were conducted simultaneously, i.e. the multi-valued CDS spreads, not just the
spread of the one maturity since it is very important to analyze the spreads of
different maturities at a specific time for any firms for market users.

As a results of this study, most nonparametric machine learning models pos-
sibly except the SVR and the RVM outperformed robustly than the benchmark
parametric models for both tasks. Especially, BNNs showed the best perfor-
mances in usual, whereas SVR and RVMs sometimes performed worse than the
benchmark model.

There are still remaining possible tasks that can be improved by the non-
parametric learning approaches. For example, the path-dependent multi-asset
derivative pricing is one of difficult task for the existing parametric models. The
learning models can help to solve this problem. As mentioned, one of the ad-
vantage of learning models is they can take any variables as input values. Thus,
including derived variables from the original variables or non-market variables
like news or text data can also improve the results of the tasks conducted in

this chapter.
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Chapter 6

Conclusion

6.1 Summary of research

As an era of big data arises, sparse learning models are explored again since
they requires both small storage space and computational time with the compa-
rable performances. In this dissertation, we developed two novel sparse learning
models using ARD prior distribution and applied both sparse and non sparse
learning models to financial problems to improve the estimation and prediction
performances.

In chapter 3, we propose a sparse support-based clustering method whose
support function is represented by a small number of kernel basis vectors. The
proposed method applied the ARD prior and the variable GP noise to the GP
regression model to build a sparse support function. The method assigns the
hypothetical output values, which are not directly related to the cluster labels,
of the clustering data sets to obtain a tractable likelihood function in the GP
regression model to determine hyper-functions and hyper-parameters efficiently.
The rigorous theoretical background for constructed support function can in-

deed estimate the support of the given data distribution is also given in addition.
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The proposed method has several features compared with the findings of previ-
ous studies on support-based clustering methods. First, the constructed support
function is represented by a significantly smaller number of kernel center points
than the other methods. Second, the kernel center points are automatically se-
lected from the given data points during the training process and can represent
the rest of the data, playing a similar role as representative points or exem-
plars. Third, the simple nearest neighbor method can naturally be used as the
labeling method to boost the labeling in the training phase as well as the clus-
tering in the test phase. Finally, the operability of clustering and characteristics
explained previously were verified through several experiments including some
benchmark and real clustering data sets, image segmentation, and handwritten

digits by determining its representative data.

Then, we develop the novel active learning method for transductive sparse
Bayesian regression in chapter 4. We first propose a transductive and general-
ized version of RVM in which the relevance vectors of the constructed model
are selected from the unlabeled data points as well as the labeled data points.
Next, we propose three querying strategies for the active selection of the la-
beled point set using only the relevance vectors automatically obtained from
the developed model, thereby making an additional process for active learning
unnecessary. The proposed active learning algorithm is completed by repeating
the two previously-mentioned procedures until the model converges or one of
the stopping criteria is satisfied. The proposed method outperformed the ran-
dom selection algorithm for both artificial and real data sets, whereas it did

not perform well compared with the full RVM model that used the whole data
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points as labeled. The three strategies showed different characteristics when
applied to the real data sets. The first querying strategy, querying all unlabeled
relevance vectors, and the last querying strategy, querying the farthest relevance
vector, showed significantly small MSEs and standard errors but they required
a large number of labeled points to converge. The second strategy, querying
the most uncertain relevance vector, converged with a small number of labeled
points, which means that the labeling cost can be minimized, while MSEs and

standard errors from this strategy were higher than those of the other strategies.

Finally, in chapter 5, we applied the state-of-the-art learning models includ-
ing sparse kernel machines to two financial problems: predicting the market
impact costs and the credit default swap spreads. A market impact cost, one of
the implicit transaction cost, is a transaction cost caused by the price difference
between one before the transaction and one of actual execution. Since there had
not been we exploited learning models to predict the market impact costs, we
tried to estimate and predict the market impacts of equity market. In addition
to the learning models, we chose and applied one parametric model to single
transaction data of US stock markets. In this study, we used single transaction
data from the firms belonging to large, mid, or small cap index and analyzed
them both separately and altogether, while the previous studies usually focused
on the trade of large cap firms. Credit default swap is the most liquidly traded
credit derivative, which is an insurance contract between one party holding a
risk asset and its counterparty ensuring the compensation when the default of
the risk asset occurs. Also for these credit default swaps, there had not been

a research result of applying several machine learning methods and comparing

121 :



the result among one another. We applied several machine learning methods
and one parametric benchmark model to predict spreads of daily CDS contracts
from 2001 to 2014. For both tasks, the machine learning models showed bet-
ter performances than the parametric benchmark models. In addition, for the
market impact prediction, we applied the active learning algorithm developed
in chapter 4 gained the results that coincide the results for other data sets in

chapter 4.

6.2 Future Work

For each topic included in this dissertation, there are several directions for fur-
ther research to improve the proposed methods and their results, and investigate
the related research topic.

Possible future work to imporve the proposed sparse support clustering
method proposed in chapter 3 are as follows. First, in case that the precision of

clustering is important, more sophisticated labeling algorithms, such as com-

plete graph approach(Ben-Hur et al.,2002) and dynamic system approach(J. Lee

& Leel 2005] 2006), can be used for the proposed support function rather than
the naive nearest neighbor approach which concentrates on reducing labeling
time. Next, although the selected parameters ¢ and L result in variation in the
shape and number of clusters, determining appropriate parameters is sometime
difficult. If a method or criterion for selecting the parameters is recommended
for the proposed methods as for previous methods(K.-P. Wu & Wang,, 2009),

it may be helpful to use the proposed method. Finally, the number and dimen-
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sion of the data set can increase in the application to some real data sets. If the
algorithm of the proposed method is parallelized, then the proposed method
can be effectively applied to large data sets with powerful parallel computing
methods that have been developed recently.

There exist also possible ways to improve the active learning algorithm
in chapter 4. First, the user should select the initial set of labeled points. In
this paper, we randomly selected three points from given data points and the
method worked successfully. However, other sophisticated sampling methods,
including clustering approaches, may improve the performances of the first few
iterations. The stopping criterion is another issue that the user must decide on.
It is difficult to predict when the model converges, however, we observed that
the proposed methods performed significantly better than the random selection
after several iterations, and the MSEs at a few iterations before convergence
were comparable to that at convergence. Thus, it seems that an earlier stopping
than the optimal model may have prevented the occurrence of severe problems.
Finally, other querying strategies which use the information criteria can be
developed. Similar to the suggestions of previous studies(Zhang & Oles, [2000;
Schein & Ungar, 2007; Settles & Craven, 2008), a querying strategy based on
information theory can be applied to the transductive GRVM developed in
this study in order to construct another active learning algorithm for sparse
Bayesian regression.

As mentioned in chapter 5, one of the advantage of learning models is they
can take any variables as input values. Including derived variables from the

original variables or non-market variables like news or text data can also im-
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prove the results of the tasks conducted in this chapter. There are also still
remaining unsolved financial tasks that can be improved possibly by the non-
parametric learning approaches. For example, the path-dependent multi-asset
derivative pricing is one of difficult task for the existing parametric models. The
combination of learning models and traditional solutions for the problem like

Monte Carlo method can help to solve this problem.
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