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As an era of big-data arises, the more efficient algorithms, in the sense of both

time and storage, are required for data analysis. The sparse learning models

satisfy these requirement, maintaining the ability of existing learning models to

describe data distribution well. Therefore, the sparse learning models have been

studied enormously from the middle of 2000s. Also, as developed data storage

techniques have been applied to several business area, including finance, these

sparse models obtain some possibilities to construct an accurate and efficient

model compared to the existing parametric models.

In this dissertation, we developed two novel sparse learning models using a

kernel method and the automatic relevance determination prior. Then, several

learning models, including both sparse and non-sparse ones, are applied to two

financial applications related to the financial technology,
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The first developed model is a sparse support-based clustering model with a

support function derived from the variance function of Gaussian process (GP)

regression using automatic relevance determination prior and variable GP noise

to overcome these clustering problems. The proposed method has a distinct fea-

ture that the support function is represented by a smaller number of representa-

tive vectors (center of kernels) than those of in previous studies. Another feature

of the proposed method is that these representative vectors are in the training

data set and are automatically located during the training process. Simulation

result for various clustering problems show that the proposed method signifi-

cantly reduces the labeling time. The exemplars of handwritten digit data sets

selected using the proposed method are also reported.

The second model is an active learning algorithm for sparse Bayesian regres-

sion. Active learning is one of large and important branches in machine learning

and it aims to build an accurate learning model with a relatively small number

of labeled points which are chosen actively by the constructed learning model.

Active learning algorithms are usually required when the cost of gaining labels

of data points is expensive. We propose two sub-steps to construct the proposed

algorithm. First, we develop a transductive and generalized version of relevance

vector machine which obtains its basis vectors from the unlabeled data set as

well as the labeled one. Next, we suggest three querying strategies which uses

only the relevance vectors automatically selected by the developed model for ac-

tive selection for data points to be labeled. The proposed method were applied

to several artificial and real data sets and showed better performance than the

benchmark, random selections, and these results were statistically significant in
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most cases.

As learning model applications to financial data, we pay attention to the

predictions of two financial variables: the market impact costs and the credit

default swap spreads. The first variable, the market impact cost, have not been

analyzed by machine learning algorithms before and the learning application for

the second variable has been rarely studied, but none of them applied several

state-of-the-art learning models and compared the results among them.

For the prediction task of market impact cost, we applied two sparse learn-

ing models, support vector regression and relevance vector machine, and three

non-sparse models, neural networks, Bayesian neural networks, and Gaussian

process, to single transaction data of US equity market and compared their

performances with one another and the benchmark parametric model. The ac-

tive learning algorithm developed in chapter 4 was also applied to predict the

market impact cost. As a result, the learning models except the support vec-

tor regression showed better performance than the parametric benchmark and

the active learning algorithm performed better than the random selection with

much lower number of labeled points than the full sparse Bayesian regression

model.

For the prediction task of credit default swap spreads, we applied the same

five learning models and also a parametric benchmark to daily credit default

swap spreads from 2001 to 2014, which includes the global financial crisis period

when the credit risk of firms were very high, and compared their performances

with one another. Also in this application, support vector regression caused bad

results especially when the credit risk is high. The relevance vector machines
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showed much better performances than the support vector regression but worse

than the other non-sparse learning models.
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Chapter 1

Introduction

In this chapter, the motivations and aims of the research topics in this disser-

tation are given with the overviews of the topics. Then, the organization of the

remaining chapters of the dissertation is provided.

1.1 Motivation of the Dissertation

With a rapid development of storage and digitalization of data, the era of big

data arises. Huge amount of data can be stored and accessible in various areas

including meteorology, genomics, physics, mechanical and electrical engineering,

business, and finance. Analysis of those large scale data with the traditional non-

sparse models requires both time and storage a lot. Therefore, more efficient

techniques for data analysis are required and become more important. The

sparse learning models, one of those efficient techniques, are explored again in

recent days.

Among sparse models, sparse kernel machines have both advantages of ker-

nel methods and sparse models: detect and fit well the complex data distribution

and represented by only a few basis vectors. One of the famous sparse kernel
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machines is the relevance vector machine (RVM) which employs the automatic

relevance determination (ARD) prior distribution for the its Bayesian nature.

This ARD prior makes the model very sparse, even sparser than the famous

support vector machine (SVM)(Boser et al., 1992; Vapnik, 2000).

There have been a lot of machine learning approaches for financial problems

from a few decades ago(Hutchinson et al., 1994; S. H. Kim & Noh, 1997; W.-

H. Chen et al., 2006; Ticknor, 2013) leaning on its old tradition of collecting data

for model verification and financial modeling. With the improvement storage

and digitalization skills for data, financial data also rapidly increases in both

volume and variety. Also, due to newly developed area of financial technology,

data analysis and learning models are required in financial fields other than

ones that the learning algorithms have already been applied to.

Hence, we paid a lot of intention to develop the sparse models using ARD

prior and apply state-of-the-art learning models including sparse ones to the

tasks of estimating and predicting financial variables that the learning models

have yet barely been applied to. In this dissertation, two novel learning algo-

rithms using ARD prior are proposed and two financial application examples

of learning models are presented.

1.2 Aims of the Dissertation

The aim of this dissertations is to develop novel sparse learning algorithms

that can aid big data analyses and to apply several state-of-the-art learning

models to improve predicting performances of financial variables to examine
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their applicability to the financial technologies. The topics to be considered in

this dissertation include clustering, active learning, and applications to financial

technology problems. For the first two topics, the sparse learning algorithms

are developed to improvement performances and sparsities of them compared

to the existing or benchmark model. For the last topic, several machine learning

models, including both sparse and non-sparse ones, are applied to two financial

problems related to the financial technology, estimating transaction costs and

credit risks. The detailed research objective of each problem is as follows:

• Developing Sparse Support-based Clustering using Automatic

Relevance Determination (Chapter 3): Support-based clustering meth-

ods, such as support vector clustering and Gaussian process clustering

(GPC), despite of their ability to represent clusters with complex shapes,

suffer from expensive computational cost in the training-labeling stage

and test-clustering phase for large-scale nonconvex clustering problems.

In chapter 3, we propose a novel sparse support-based clustering method

with a support function derived from the variance function of Gaussian

process (GP) regression using ARD prior and variable GP noise to over-

come these clustering problems. One distinct feature of the proposed

method is that its support function is represented by a smaller number of

representative vectors (center of kernels) than those of in previous stud-

ies. Another feature is that these representative vectors are in the training

data set and are automatically located during the training process. The

proposed method is applied to the various clustering data sets to examine
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its operability and characteristics.

• Developing Active Learning Method for Transductive Sparse

Bayesian Regression (Chapter 4): As one of the most important and

practical areas in machine learning and data mining, active learning aims

to build an accurate learning model with a relatively small number of la-

beled points that are chosen actively by the constructed learning model.

Active learning algorithms play an important role in knowledge-based

systems when the cost of obtaining labeled data points is expensive. In

chapter 4, we propose an active learning algorithm for transductive sparse

Bayesian regression. First, we develop a transductive and generalized ver-

sion of the RVM, which obtains its basis vectors from the unlabeled data

set as well as the labeled one. Then, we suggest three querying strategies

for active learning, which only use the relevance vectors automatically

selected by the developed model for active selection for data points to be

labeled.

• Applying Learning Models to Problems Related to Financial

Technologies (Chapter 5): From a few decades ago, several recently

developed technologies have been applied to financial markets. Learning

models have also been employed to estimate and predict financial variables

and market parameters and resulted in better performances than the in

several financial markets. However, there are still remaining the financial

problems the learning models have not been applied yet but may have

possibilities to help to solve those problems. In chapter 5, we pay attention
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to the predictions of two financial variables: the market impact costs and

the credit default swap spreads. For the prediction task of market impact

cost, we applied two sparse learning models, support vector regression

(SVR) and RVM, and three non-sparse models, neural networks (NNs),

Bayesian neural networks (BNNs), and GP, to single transaction data

of US equity market and compared their performances with one another

and the parametric benchmark, I-star model(Kissell et al., 2003; Kissell,

2013). The active learning algorithm developed in chapter 4 was also

applied to predict the market impact cost. For the prediction task of credit

default swap spreads, we applied the same five learning models and also

one parametric benchmark model, the constant intensity model(Jarrow &

Turnbull, 1995), to daily credit default swap spreads from 2001 to 2014

and compared their performances with one another.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In the next chapter,

we review history and previous results of sparse learning models, active learning,

and financial applications of learning models. Then, in chapter 3, we propose

a novel sparse support-based clustering using ARD, which is much sparser and

reduces the labeling time compared to the previous models. In chapter 4, we very

firstly propose the active learning model for RVM as developing a transductive

and generalized version of RVM and suggest three querying strategies to actively

select data points to be labeled. We applied the learning models, both sparse

5



and non-sparse ones, to the prediction tasks of the market impact costs and

credit default swap spreads and compared the performances with one another

and the parametric benchmarks as well in chapter 5. Finally, in chapter 6,

we conclude this dissertation with summary and possible future work of the

research.
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Chapter 2

Literature Review

Since Arthur Samuel first defined machine learning as a ”Field of study that

gives computers the ability to learn without being explicitly programmed”(Simon,

2013) and the first perceptron was developed(Rosenblatt, 1961), the machine

learning models have received enormous attention from both academia and in-

dustry. In the middle of 1980s, the main theme of machine learning was the

multilayer NNs. Rumelhart et al. (1985) proposed the back-propagation algo-

rithm by which the weights of the multilayer NN model could be trained effi-

ciently and Cybenko (1989) studied the properties of activation functions which

are employed to represent the nonlinear distributions of data points. Support

vector algorithms were an avalanche of mid-1990s and early 2000s. The first

SVM was proposed in Boser et al. (1992) and it became able to deal with the

non-separable cases by including the slack variables(Cortes & Vapnik, 1995).

It was also extended to the regression model by Drucker et al. (1997). Two

previously-mentioned algorithms, NN models and SVMs, has been successfully

adapted to diverse fields in natural sciences, social sciences, engineering, and

real business applications.

As the storage technologies of data has been improved after the middle of
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2000s, the research on machine learning models proceeds in two ways. The first

approach is to lean on the development of computing power. The research of

this approach focuses on modifying algorithm for using the improved computing

methods including parallel computing and GPU computing. Solving the prob-

lems that requires huge computation, like deep learning, is also a huge branch

of this theme. The second approach concentrates on modifying the model effi-

ciently to handle the large scale data sets. The sparse models are typical research

topics of this approach.

In this dissertation, as mentioned in the previous chapter, two novel sparse

model using ARD prior distribution are proposed and two financial application

of the state-of-the-art machine learning models including both sparse and non-

sparse ones are presented. We briefly review the related literatures in which

these topics of this dissertation are embedded in the following sections.

2.1 Sparse Learning Models

The research on sparse models has been conducted in different directions. In

this section, we review the history of two different types of research on sparse

models: sparse linear models and sparse kernel models.

2.1.1 Sparse linear models

Sparse linear model algorithms are based on the generalized linear model

p(y|x) = p(y|f(wTφ(x))) (2.1)
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where φ is a basis vector and f is a link function. The aim of sparse linear

model is to represent the model with the smaller number of nonzero entries

of the weight vector w. This is achieved by giving a regularization on it. `0-

norm and `1-norm regularizations are the most typical approaches for those

regularizations.

The most famous `1-norm regularization method is the least absolute shrink-

age and selection operator, usually known as LASSO, proposed in Tibshirani

(1996). With the predicted output ŷ = f(wTφ(x)), the LASSO regression aims

to find the weight vector w satisfying

min
w
L(y, ŷ) + λ‖w‖1 (2.2)

where L is a loss function between two outputs and λ is a parameter for the

regularization. Theoretically, this type of regularization is equivalent to giving

Laplace prior distribution of the weight vector, whose mean is 0 and scale factor

is 1/λ. There have been suggested several methods to solve this optimization

problem efficiently.

W. J. Fu (1998) and T. T. Wu and Lange (2008) used the coordinate descent

method to finding an optimal solution. Efron et al. (2004) suggested the least

angle regression and shrinkage method, LARS, which provides the curve de-

noting the solution for each value of the regularization parameter λ. Wright et

al. (2009) and Nesterov (2004) used proximal operators and Figueiredo (2003)

used expectation-maximization method to optimize the regularized regression

problem in (2.2). Yuan and Lin (2006) extended LASSO regression to the group

LASSO regression, in which the sparsity is applied to the groups of input fea-
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tures.

Although `0-norm regularization causes the regression model sparser than

`1-norm regularization, finding optimal solution for (2.2) becomes much dif-

ficult if the regularization term of the weight vector is changed to `0-norm.

Therefore, the optimization procedure for `0-norm regularization have been

developed for relatively recent years. Soussen et al. (2011) and S. Chen and

Wigger (1995) used greedy search to find the optimal weights and O’Hara et al.

(2009) and Bottolo et al. (2010) employed the stochastic approaches. In addi-

tion, J. C. Huang et al. (2007) and Rattray et al. (2009) suggested variational

inference methods for this optimization problem.

2.1.2 Sparse kernel models

From the development of SVMs(Boser et al., 1992), sparse kernel models are

another huge branch of sparse learning algorithms. We review some extensively

used sparse kernel machines here.

SVMs(Boser et al., 1992) are the sparse kernel classification method which

finds the optimal hyperplane, which maximizes the margin of the classifier.

Vapnik (2000) allowed the misclassification as giving them a penalty term so

SVMs became able to be adapted to the non separable case. Drucker et al.

(1997) extended the SVMs to regression problem using ε-insensitive loss func-

tion, i.e. L(y1, y2) = max{ε, |y1 − y2|} − ε.

There exist `1-regularized vector machines(Krishnapuram et al., 2005). `1-

regularized vector machines use kernel functions as basis functions like other

usual kernel regression methods but the weights for these basis functions are
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regularized with `1-norm.

RVMs(Tipping, 2001) is another famous sparse kernel machine method. In

RVMs, the weight vector of the basis kernel functions has the ARD prior,

i.e., p(w|A) ∼ N (w|0,A−1) =
∏N
i=1N (wi|0, A−1

ii ). The most important fea-

ture of RVMs is that it results in the sparser model than the SVMs and the

`1-regularized vector machines. Tipping and Faul (2003) suggested the fast

marginalization method to train the RVM faster and Wipf and Nagarajan

(2008) provided the theoretical background of the sparseness of the ARD prior

in the view of traditional optimization.

There have been some trials to introduce the sparsity to GPs(Cressie, 1993;

Rasmussen, 1996). For example, Snelson and Ghahramani (2006) made pseudo

inputs and Csató and Opper (2002) used the online approach to construct the

sparse version of GPs.

Relative to supervised learning, there have been lack of attention to un-

supervised and semi-supervised version of sparse learning. However, there also

exist some milestones that should be reviewed.

Tax and Duin (1999) first suggested the methods for finding support func-

tions represented by the small number of support vectors and able to capture

the complex shape of data distributions, there have been a lot of studies to clus-

ter the points with this support function. These clustering algorithm is called

support vector clustering. Since finding the cluster labels of data points requires

high computational costs, many works have been devoted to improve the speed

of the labeling step since the complete graph labeling method was proposed

in Ben-Hur et al. (2002). Examples of these works include the approximated
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graph techniques (J. Yang et al., 2002), spectral graph partitioning strategy

(J. Park et al., 2004), ensembles combined strategy (Puma-Villanueva et al.,

2005), chunking strategies (Ban & Abe, 2004), pseudohierarchical technique

(Hansen et al., 2007), equilibrium vector-based clustering techniques (J. Lee &

Lee, 2005, 2006), fast support vector clustering (Jung et al., 2010), cone cluster

labeling (S.-H. Lee & Daniels, 2012), and Vornoi cell-based approach(K. Kim

et al., 2015). Additionally, Tsang et al. (2005) suggested another way of finding

the support function requiring much lower time and space complexities using

approximation techniques.

For semi-supervised version of sparse kernel machines, there exists some re-

sults for the semi-supervised classification of SVM. Joachims (1999) proposed

the transductive SVMs which give uncertain outputs to unlabeled data points

and find optimal hyperplane and optimal labels for unlabeled points simul-

taneously. D. Lee and Lee (2007) suggested the semi-supervised classfication

technique based on the clusters resulted from support vector clustering.

2.2 Active Learning

As one of the most important and practical areas in machine learning and

data mining, active learning aims to build an accurate learning model with

a relatively small number of labeled points that are chosen actively by the

constructed learning model.

Most studies on active learning have been focused on establishing the effi-

cient querying strategy. One of the simplest querying strategies is uncertainty
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sampling (Lewis & Catlett, 1994). Basic uncertainty sampling including margin

sampling (Scheffer et al., 2001) queries the most uncertain point in the clas-

sification case, the point that has the maximum probability belonging to each

class is the smallest, and in the regression case, the point that has the highest

variance among the unlabeled data points. This strategy, which is based on

querying the most uncertain points among the unlabeled data pool, has been

successfully applied to diverse applications including image retrieval (Tong &

Chang, 2001), text classification (Tong & Koller, 2002), drug discovery pro-

cess (Warmuth et al., 2003), object detection problem (Vijayanarasimhan &

Grauman, 2014), especially for SVM classification, as well as for other kernel

classification methods such as the active kernel logistic regression (Hoi et al.,

2009) that queries the labels of the multiple number of unlabeled data points

and the GPs model (Kapoor et al., 2007).

Another querying strategy is to minimize the total expected variance of the

model. Cohn (1996) suggested the uses of this strategy for NN models and Cohn

et al. (1996) for the mixture of Gaussian regression and locally weighted regres-

sion. Since reducing the total variance of the model is equivalent to maximizing

its Fisher information, Zha et al. (2012) proposed the active learning SVMs

that maximize the information measure (D-optimality) and successfully applied

it to video indexing application. This strategy of maximizing Fisher informa-

tion is the most studied one, particularly in the field of statistics (Chaloner &

Verdinelli, 1995; Flaherty et al., 2005; Schein & Ungar, 2007; Settles & Craven,

2008; Zhang & Oles, 2000).

Another widely used querying strategy is the query-by-committee strategy(Abe
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& Mamitsuka, 1998; McCallum & Nigamy, 1998; Seung et al., 1992), which se-

lects the most disagreed instance among the several committee models trained

by the current labeled data set. The regression version of this strategy, as sug-

gested by Burbidge et al. (2007), selects the unlabeled points with the largest

variance among the predictions by the committee models. Other strategies,

such as selecting the unlabeled point that is expected to change the model

most(Settles & Craven, 2008) and to minimize the expected future error of

the model(Y. Guo & Greiner, 2007; Moskovitch et al., 2007; Roy & McCallum,

2001; Zhu et al., 2003), have also been proposed recently. For further literatures

on active learning, see Settles (2010) and Y. Fu et al. (2013).

2.3 Financial Applications of Learning Models

The financial variable prediction has been a long and yet active research theme

targeted by many researchers since successful prediction helps to make profits

as well as avoid risks. From a long time ago, many people, called chartist, have

believed that the future value of financial time series can be predicted by using

the past values. According to the well-known efficient market hypothesis it is

argued that the stock price is fully random walk without new unpredictable in-

formation, making it almost impossible to predict it. There are, however, several

counter-evidences that the stock price process does not follow the random walk

leaving aside some controversial issues. Two typical such counter-evidences are

the momentum effect and the mean reversion which show that the autocorre-

lations of the return of a stock are positive in short horizons and negative for
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long horizons.

Inspired by these empirical findings, during the last decades many statistical

learning technologies have been applied to predict various financial variables.

The most intensively studied variable is the stock price(W.-H. Chen et al.,

2006; Son et al., 2012; Ticknor, 2013; Liao & Chou, 2013) and its derivative

markets(Hutchinson et al., 1994; Han & Lee, 2008; S.-H. Yang & Lee, 2011;

H. Park & Lee, 2012; H. Park et al., 2014) and their predictive power were

reliable in usual. There also exist learning approaches for other financial markets

including fixed-income market(S. H. Kim & Noh, 1997; Cao & Tay, 2003) and

foreign exchange market (Bhattacharyya et al., 2002).

Financial technology, usually known as Fintech, In a broad sense, the finan-

cial technology includes the efficient procedure for financial transactions, peer-

to-peer lending, and constructing online finance systems. The machine learning

applications related to the financial technology barely exist. There have been

some studies focusing on credit risk and its derivative valuation(Y.-C. Lee, 2007;

K.-j. Kim & Ahn, 2012; Z. Huang et al., 2004; Gündüz & Uhrig-Homburg, 2011)

which may be useful for peer-to-peer lending business.
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Chapter 3

Sparse Support-based Clustering

using Automatic Relevance

Determination

3.1 Chapter Overview

Clustering, which divides data objects into several similar groups, is one of the

well-known and traditional topics in diverse fields including statistics, machine

learning, and data science. Recently, support-based clustering methods with

kernels have been extensively studied and successfully applied to solve many

difficult clustering problems because of their ability to detect complicated non-

convex shapes better than traditional clustering methods can (Ben-Hur et al.,

2002; Ban & Abe, 2004; J. Lee & Lee, 2005; Girolami, 2002). The support-

based clustering methods usually consist of two stages. The first stage involves

constructing the support function that detects the cluster structure of a given

data distribution and includes mainly the support functions constructed from

the support vector domain description (SVDD) algorithm (Tax & Duin, 1999)

or those constructed from the variance of the GP regression using squared

exponential kernel with Gaussian noise (H.-C. Kim & Lee, 2007). The second
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stage involves labeling the data points using the level set of the constructed

support function and includes complete graph-based labeling (Ben-Hur et al.,

2002), approximated graph technique (J. Yang et al., 2002), spectral graph

partitioning (J. Park et al., 2004), ensemble combining (Puma-Villanueva et

al., 2005), chunking strategy (Ban & Abe, 2004), pseudo-hierarchical technique

(Hansen et al., 2007), dynamic system-based approaches (J. Lee & Lee, 2005,

2006; Jung et al., 2010), and cone cluster labeling (S.-H. Lee & Daniels, 2012).

Thus far, considerable research has focused on improving the labeling method

because the second stage of labeling is the main bottleneck in the training phase

as the size of the data set increases. However, in the test phase, the complexity

of support-based clustering with kernels mainly depends on the computation

time of the constructed support function, the time complexity of which is pro-

portional to the number of center points used in the kernel representation. In

many applications, having compact sparse models to process new data points

rapidly even when it costs substantial computation time in the training phase

is desirable. However, in practice, the support functions constructed from the

SVDD algorithm involves computing the kernels centered at almost half of the

training data points as the sample size increases, whereas those from the GP

regression involves all of the training data points.

To solve this problem, we propose constructing a sparse representation of

a support function with substantially reduced centered data points. We first

use the GP regression model with a variance function that only depends on

the training input data. We use ARD prior distribution to obtain a compact

sparse model. ARD prior distribution leads to variance functions with larger
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values in a dense area and smaller values in a sparse area, which is the opposite

of the variance function observed in the traditional GP regression model (H.-

C. Kim & Lee, 2007; Williams & Rasmussen, 2006). We also introduce a so-

called variable GP noise, instead of traditional constant Gaussian noise, which

enables us to obtain a GP regression model that is compatible with the GP

classification model and allows us to obtain a likelihood function that utilizes

the ARD prior to obtain a sparse model and improve the clustering performance.

As a result, the proposed method constructs a sparse model of the estimated

support function represented by a small number of basis vectors centered at

some representative data points that function as exemplars in a grouped cluster.

This chapter is organized as follows. In Section 2, we present our proposed

method to construct a sparse support function and detail the implementation

strategy to determine the hyper-function and hyper-parameters. We also show

that the proposed method can estimate the support of an unknown data dis-

tribution by using the generalization error bound. In Section 3, we show the

experimental results that are applied to several kinds of clustering data sets.

Section 4 provides some discussions and concludes this study.

3.2 Proposed Method

In this section, we first propose a method to construct a support function using

the GP regression with the ARD prior and the so-called variable GP noise.

Then, we derive a tractable likelihood function to determine hyper-functions

related to a variable GP noise and hyper-parameters related to the ARD prior.
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One key idea in deriving such a compact likelihood is that we can control the

output values in the GP regression at our disposal to match the GP regression

model with the approximated one-class GP classification model with only zero

class. Then, we derive a generalization error bound to show that the obtained

variance function can indeed estimate the support of a data distribution. Finally,

we provide some implementation strategies to label the data points from the

constructed support function.

3.2.1 Constructing the sparse support function using automatic

relevance determination

First let us consider that for a pair of input-output (x, y), the following additive

error regression model

y = f(x) + ε(x) (3.1)

Here we assume that f follows a restricted GP of the form

f(x) ∼ GP(0, k(x,x′)) (3.2)

where f is restricted to belong to the subclass of linear basis functions of the

form f(x) = wTφ(x) with a kernel radial basis function φ(x) = (φ1(x), ..., φN (x))T

where φi(x) = κr(xi,x) for some kernel κr (in this paper, mostly we used Gaus-

sian radius basis kernel function, φi(x) = κr(xi,x) = e−
‖xi−x‖2

2σ2 , i = 1, ..., N)

for the input variable x and a weight vector w. To obtain a sparse model, we’ve

employed an ARD covariance function given by k(x,x′) = φ(x)TA−1φ(x′),

where A is an N × N diagonal matrix with Aii = αi > 0. Given a training
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sequences X of size N , this GP defines a joint Gaussian:

p(f |X,α) = N (0,K) (3.3)

where K = ΦA−1ΦT and Φ is an N ×N matrix whose i’th row is φ(xi)
T (as-

suming Φ is nonsingular by Micchellis’s theorem under mild condition (Micchelli,

1984)). (Note that from the weight space viewpoint, if the prior distribution for

w is given as p(w|α) =
∏N
i=1N (wi|0, α−1

i ) where α is a hyper-parameter vector

consisted of the precisions of the noise on the weight values, which is the same

with ARD prior, then the covariance function is given as φ(x)TE(wwT )φ(x′) =

φ(x)TA−1φ(x′).)

We also assume that ε follows a variable GP given by

ε(x) ∼ GP(0, β(x)−1δx,x′) (3.4)

where β(x) is a hyper-function of precision to be described in detail below and

δx,x′ is a Dirac delta function with δx,x′ = 1 if x = x′ and 0 otherwise. Then

the GP defines the joint distribution of y = (y1, ..., yN )T conditioned on f as

p(y|f ,X,α,B) = N (f ,B−1) (3.5)

The marginal likelihood is therefore given by

p(y|X,α) =

∫
p(y|f ,X,α,B)p(f |X,α)df

= N (0,K + B−1) (3.6)

Then using the Sherman-Morrison-Woodbury matrix inversion formula, the

posterior predictive distribution of f(x∗) for a new test point x∗ is given by
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p(f(x∗)|x∗, f ,X,α,B) = N (f̄(x∗),φ(x∗)TΣφ(x∗)). (3.7)

where the mean and the covariance matrix of the posterior distribution above

are given by

f̄(x∗) = φ(x∗)TA−1ΦT (K + B−1)−1y

= φ(x∗)TΣΦTBy (3.8)

Σ = (A + ΦTBΦ)−1 (3.9)

and B is an N × N diagonal matrix with Bii = β(xi). Note that f̄ = K(K +

B−1)−1y where f̄ = (f̄(x1), ..., f̄(xN ))T .

One distinct property is that, when the hyper-function β is given, the pre-

dictive variance, φ(x∗)TΣφ(x∗), does not depend on the target values y but

only on input training samples X, being unsupervised in nature. With a finite

number of kernel basis functions centered on data points, the predictive variance

is enlarged near densely spaced data points and small near the sparse region of

data points, which is frequently observed in the equivalent kernels with local

support (Hastie et al., 2009). This property is the complete opposite of the case

of GPC proposed in H.-C. Kim and Lee (2007). Based on this observation, we

define the variance function, υ(x) as

υ(x) = φ(x)TΣφ(x). (3.10)

The variance function υ(x) then estimates the support region by {x : υ(x) ≥ θ̂},

where θ̂ = minx∈X υ(x), where X ≡ (x1, . . . ,xN ). (See Fig.4.3.)
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Figure 3.1 One dimensional example for proposed support function. The data

points are marked by blue ’*’ and basis vectors are marked by red circles. Red

dotted line represents the support function value. It is easily observed that the

support function value is large near the basis vectors.

The performance of clustering using this support function highly depends

on the choice of hyper-function β(x) (or B) because it sometimes has a positive

value on only a narrow area close to a basis vector and is almost zero at a point

a little distant from the basis vectors but in the cluster. In the next subsection,

we suggest a method to solve this problem.

3.2.2 Determining hyper-functions and hyper-parameters

To obtain the parsimonious model for clustering using sparsity, we first de-

termine the hyper-function β(x) and then set the hyper-parameters αi, i =

1, . . . ,M used in the ARD prior, where the latter is extensively studied in the
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literature and is well-known that most of αi become infinite, thereby leading to

the sparsity representation of the corresponding entries of f which are zero as

in Tipping (2001), Wipf and Nagarajan (2008), and Williams and Rasmussen

(2006). (Σij is not zero only when neither αi nor αj is infinite due to the inverse

of the matrix A and Σ can be contracted by discarding the rows and columns

whose entries are all zero and call the corresponding input vectors for the non-

infinity entries of α the basis vectors.) In this subsection, we focus on how to

determine β(x) given other hyper-parameters αi, i = 1, . . . ,M .

Following Williams and Rasmussen (2006), we define the logistic GP model

for binary classification as p(yi|xi) = σ((2yi−1)f(xi)) where yi ∈ {0, 1}, σ(z) =

1/(1+e−z) and f(x) ∼ GP(0, k(x,x′)) as for GP regression. If we set all training

target value is zero, i.e. y = 0, then log-posterior distribution is given by

`(f) = log p(f |X,y)

= log p(y|f) + log p(f |X)− log p(y|X)

=−
N∑
i=1

{yi log(1 + e−f(xi)) + (1− yi) log(1 + ef(xi))}

− 1

2
fTK−1f − 1

2
ln |K|+ const.

Its gradient and Hessian are given by

∇`(f) = y − σ(f)−K−1f (3.11)

∇2`(f) = −(B̃(f) + K−1) (3.12)

where σ(f) is a vector whose entry σ(f)i = 1
1+e−f(xi)

and B̃(f) is a diagonal

matrix whose entry B̃(f)ii = σ(f)i(1 − σ(f)i) = e−f(xi)

(1+e−f(xi)
2
)
. Using iterative

reweighted least squares (IRLS) to find the MAP estimate, at convergence, the
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Laplace approximation of the posterior becomes

p(f |X,y) ≈ q(f |X,y) := N (f̃ , (B̃(f̃) + K−1)−1) (3.13)

where f̃ satisfies the equation f̃ = K(y − σ(f̃)).

The posterior predictive distribution of f(x∗) for a new test point x∗ is then

given by

p(f(x∗)|x∗,X,α) ≈ N (φ(x∗)T m̃,φ(x∗)T Σ̃φ(x∗)) (3.14)

where the mean vector and the covariance matrix of the posterior distribution

above is given by

m̃ = A−1ΦTK−1f̃ , Σ̃ = (A + ΦT B̃(f̃)Φ)−1 (3.15)

Thus, the clustering problem can be cast into the problem of the one-value

regression or the equivalent one-class classification. The result indicates that

the predictive distribution of the regression in (3.7) should be compatible with

the predictive distribution of the classification in (3.14). Specifically, to have

equal predictive variances of regression and classification in (3.9) and (3.15)

respectively, we should have

Σ = (A + ΦTBΦ)−1 = (A + ΦT B̃(f̃)Φ)−1 = Σ̃

or equivalently

β(xi) = Bii = B̃(f̃)ii =
e−f̃(xi)

(1 + e−f̃(xi)2)
(3.16)

Note that we set yclass = 0 for the classification outputs here to make hyper

function β only depend on input training data X since f̃ = −Kσ(f̃). In contrast,

we do not need to set yreg = 0 for the regression outputs since its predictive
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variance does not depend on yreg and this flexibility of choosing any values of

yreg makes us to have equal predictive means of regression and classification in

(3.8) and (3.15) respectively as follows.

f̄ = K(K + B−1)−1yreg = f̃ = K(yclass − σ(f̃))

so that we have (by setting yclass = 0)

yreg = −(K + B−1)σ(f̃) (3.17)

Given this choice of hyper function β and yreg, hyper-parameter α can now

be found by maximizing the log-marginal likelihood function in (3.6):

L(α) = ln p(ŷ|X,α)

=− N

2
ln(2π)− 1

2
log |C| − 1

2
yT
regC

−1yreg

(3.18)

where C = B−1 + K = B−1 + ΦA−1ΦT and yreg = −Cσ(f̃) in (3.17). Note

also that all K, f̃ , and B̃(f̃) depend on α. To expedite the search for optimal

α, we adopted sequential sparse Bayesian learning algorithm used in Tipping

and Faul (2003) which is summarized below.

Following Bishop (2006), decomposing C into

C = B−1 + ΦA−1ΦT = B−1 +
∑
m 6=i

α−1
m φmφ

T
m + α−1

i φiφ
T
i

= C−i + α−1
i φiφ

T
i .

enables us to rewrite the log-marginal likelihood (3.18) as

L(α) = L(α−i) + λ(αi)
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where C−i and L(α−i) denote the matrix C and log-marginal likelihood with

the contribution from φi removed, respectively, and

λ(αi) =
1

2

(
logαi − log(αi + si) +

q2
i

αi + si

)
is the term that contains all of the dependence on αi where si = φT

i C−1
−iφi where,

and qi = φT
i C−1
−iφi. Therefore we can maximize L(α) over αi by maximizing

only the term λ(αi) and αi has an optimal solution given by

αi =


s2i

q2
i−si

if q2
i > si

∞ if q2
i ≤ si.

(3.19)

With this sparse solution, by the Sherman-Morrison-Woodbury matrix inver-

sion formula the variance function becomes

υ(x) =φ(x)T (A + ΦTBΦ)−1φ(x)

=φ(x)TA−1φ(x)

− φ(x)TA−1ΦT (B−1 + ΦA−1ΦT )−1ΦA−1φ(x)

Therefore, only the φi’s corresponding to αi 6=∞ remains in the variance func-

tion computations leading to sparsity. Figure 4.3 illustrates one dimensional

support function generated by the proposed method. One interesting observa-

tion is that the training data points xi corresponding to αi 6=∞ represent the

modes of the estimated support function.

3.2.3 Generalization error bound

We obtain a result with tractable complexity even in high-dimensional cases

that bounds the probabilities lying outside the estimated support region of υ(x),

which is similar to the result obtained in Schölkopf et al. (2001) for SVMs.
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Theorem 1. Consider a fixed but unknown probability distribution P with no

atomic components on the feature space F with support contained in a ball

of radius 1 about the origin and υ(x) = φ(x)TΣφ(x) in (3.10). Assume that

θ̂ = minx∈X υ(x). Then with probability 1 − δ over randomly drawn training

sequences X of size N , for all γ > 0, and,

P (x : υ(x) < θ̂ − 2γ) ≤ 2

N

(
K + log

N2

2δ

)
,

where

K =
c1 log(c2γ̂

2N)

γ̂2
+Dγ̂ log

(
e

(
(2N − 1)γ̂

D
+ 1

))
+ 2,

c1 = 4c2, c2 = ln(2)/c2, c = 103, γ̂ = γ/‖Σ‖, and D = D(X, g, θ̂)

Proof. We follows the definition for D(X, f, θ) as in Schölkopf et al. (2001); i.e.

for a fixed θ ∈ < and a training sequence X ≡ (x1, . . . ,xN ), we define

D(X, f, θ) =
∑
x∈X

d(x, f, θ).

where d(x, f, θ) = max{0, θ−f(x)}. First of all, there exists θ̂ = minx∈X υ(x) >

0 since matrix Σ is positive definite. From the definition of υ(x), we note that

υ(x) = φ(x)TΣφ(x) = tr(φ(x)φ(x)TΣ)

If we let ω = Vec(Σ) and Ψ(x) = Vec(φ(x)φ(x)T ) (meaning ΨN∗(i−1)+j(x) =

φi(x)φj(x)) and ωN∗(i−1)+j = Σij , then it follows that υ(x) = ω · Ψ(x) and

so υ(x) is a linear function in a kernel defined feature space. Then by using

Theorem 17 in Schölkopf et al. (2001), with probability 1− δ, and all γ > 0

P{Ψ(x) : υ(x) = ω ·Ψ(x) < θ̂ − 2γ} ≤ 2

N

(
K + log

N2

2δ

)
,

where

K =
c1 log(c2γ̂

2N)

γ̂2
+Dγ̂ log

(
e

(
(2N − 1)γ̂

D
+ 1

))
+ 2,

c1 = 4c2, c2 = ln(2)/c2, c = 103, γ̂ = γ/‖Σ‖F , and D = D(X, υ(x), θ̂).
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This result shows that the variance function of a GP characterizes the sup-

port of a high-dimensional distribution of a given data set and the estimated

support set by GP has tractable complexity even in high-dimensional cases.

3.2.4 Labeling the points from the constructed support func-

tion

One interesting and distinguished feature of the proposed method is that it

automatically detects the training data points that are the modes (called the

representative point or exemplar) of the estimated support function or their

nearby points. This feature enables us to adopt the nearest neighbor labeling

algorithm naturally among other labeling methods given the estimated support

function (Ben-Hur et al., 2002; J. Lee & Lee, 2005; J. Yang et al., 2002), that

is to say, we assign a data point with the same label as that of the nearest rep-

resentative point. Many other support-based clustering methods require to find

the equilibrium points of the estimated support function as the representative

points and this task is usually done by applying its associated gradient systems.

The obtained representative point is normally not included in the training data

set. In contrast, the proposed method automatically constructs the set of the

representative points that coincide with the center of the basis vectors selected.

Therefore, there is no need to find the converging mode points of the estimated

support function via invoking nonlinear optimization solvers for each training

data points. (See Figure 4.3.)

To assign a cluster label to the representative point, we construct an adja-

cency matrix A of representative points, as proposed in Ben-Hur et al. (2002);
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J. Lee and Lee (2005), i.e. given a cutting level L where the set {x : υ(x) ≤ L}

characterizes the cluster structure, two representative points, say xi,xj , are ad-

jacent with Aij = 1 only if υ(λxi + (1 − λ)xj) ≤ L for all 0 ≤ λ ≤ 1, and

Aij = 0 otherwise. Then, we assign the same cluster label to the representative

points in the same connected component generated by the adjacency matrix A.

Otherwise, we can use the enhanced strategy suggested in J. Lee and Lee (2006)

that characterized the cluster structure at the expense of a longer computing

time. The rest of the data points are then assigned to the same cluster with

the nearest representative point. The adjacency of representative points can be

changed as the value of L varies; thus, the number of clusters can be controlled

accordingly, as detailed in D. Lee and Lee (2010). This labeling method also

has an inductive property so that any novel data point in the entire domain

can be labeled accordingly.

3.3 Experimental Results

First, we applied the proposed method to the four two-dimensional toy data

sets with complicated shapes mostly used in H.-C. Kim and Lee (2007) and

they are shown in Figure 4.2(a) to 4.2(d). The data set in Figure 4.2(a) and

4.2(b) are from the spectral clustering website(Spectral clustering website, n.d.)

and Figure 4.2(c) and 4.2(d) are from H.-C. Kim and Lee (2007). We used

Gaussian radius basis kernel function, κr(xi,xj) = e−
‖xi−xj‖

2

2σ2 , to cluster these

data sets using the proposed method. The clustered results are presented in

Figure 4.2(a’) to 4.2(d’). We observed that the proposed method clustered those
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data sets effectively by selecting the appropriate kernel parameters.

3.3.1 Two-dimensional toy data
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Figure 3.2 Clustering results by the proposed method. The data points are

marked by black ’*’ and basis vectors are marked by red circles. Green lines

represent the given cutting level L. (a-d) original images (a’-d’) clustering re-

sults

We duplicated the data points of Figure 4.2(d) with small Gaussian noise

to examine the sparsity of the proposed method. Then, we constructed the

support function via the proposed method varying the number of data points.

Two existing methods, namely, GPC (H.-C. Kim & Lee, 2007) and support

vector clustering (SVC) (Ben-Hur et al., 2002), were also applied to construct

the support functions for comparison. Figure 3.3 shows the number of basis

vectors, the centered points of kernels representing the support function, for

three clustering methods with different numbers of data points. We observed
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that the number of basis vectors is almost invariant for the proposed methods,

whereas the number of basis vectors increases as the number of data increases

for SVC and GPC. The basis vectors of the proposed support function locate

at the center of clusters, but the basis vectors of the other methods do not.

Moreover, the graph of GPC is linear because it uses all input data points as

the basis vectors. The results shown in Figure 3.3 indicate that the sparsity of

the proposed method strengthens as the number of data points increases.
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Figure 3.3 Graph of the number of basis vectors as the number of data points

increases. The number of basis vectors for the proposed support function is

almost invariant whereas the number of basis vectors for the other methods

increase.
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3.3.2 Real data sets

The proposed method was also applied to some benchmark and real data sets.

The first and last data sets, Shuttle and Forest type, respectively, are from UCI

repository (Asuncion & Newman, 2007). Shuttle is composed of 43,500 objects

of 7 different classes with 9 variables. Forest type is compsoed of 523 instances

of 4 different classes of forest types with 27 variables of both spatial and quality

features. We also tested the proposed method with two handwritten digit data

sets and one letter data set. USPS (Hull, 1994) data set consists of 9,298 gray-

scale images of handwritten digits from 0 to 9, and the number of pixels of each

image is 16 by 16. MNIST data set (LeCun et al., 1998) contains 28 by 28 gray-

scale images of handwritten digits from 0 to 9. We selected 14,870 images with

digits that are 0 or 1 from MNIST data set for the clustering task. OCR data

set (Spectral clustering website, n.d.) contains 16 by 8 black and white images

of handwritten lower case letters. We selected the three most frequently used

letters(e, i, and n) for the task, which resulted 14,892 data points left. SVC and

GPC were also adopted for the same data sets for comparison. The data sets

are compared by the adjusted Rand index (ARI), a similarity measure between

two partitions of the same data sets, and labeling time. For SVC and GPC,

1% of the data points are selected to determine the equilibrium vector via a

dynamic system presented in J. Lee and Lee (2005) and the rest of data points

are labeled as the same with the nearest equilibrium point. This is basically the

same labeling method used in K. Kim et al. (2015).

Table 3.1 shows a comparison of clustering result of the proposed method
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Table 3.1 ARI and labeling time per data. (SSC: Proposed)

ARI labeling time (×10−5s)

SSC SVC GPC SSC SVC GPC

Shuttle 0.604 0.524 0.511 3.40 9.87 769.3

USPS 0.331 0.319 0.328 1.15 51.6 5037.1

MNIST 0.988 0.812 0.987 1.48 28.7 10019

OCR 0.544 0.314 0.539 1.47 27.8 5992.1

Forest type 0.412 0.340 0.443 24.5 67.3 144.42

and existing methods. We observed that the results of the proposed method

have similar or higher ARI, with significantly shorter computation time in the

labeling phase.

3.3.3 Exemplar selection

Figure 3.4 Exemplars of handwritten digits in MNIST data set.

From several results previously presented, the basis vectors are located at the

center of the clusters of data points. Thus these basis vectors seem to function

as exemplars. To test if this observation is correct, we applied the proposed
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method to each digit of MNIST data set and determined the basis vectors.

Some of these basis vectors are presented in Figure 3.4. As shown in the figure,

the basis vectors were selected to represent the different shapes of each digit.

Exemplars of some digits, such as 0, 3, 6, and 8, are not significantly different

from each other and can be united if we change the kernel parameter. The effect

of changing parameters is explained at the end of this section. However, some

digits, such as 1, 2, and 7, have several extensively different shapes, and the

proposed method detected those shapes.

Figure 3.5 The relations between an image and its representative image. Digit

1 in MNIST data set is selected for example.

We selected digit 1 and examined which points were represented by a certain

basis vector to determine whether the selected basis vector represents effectively

other data points. Every data point was assigned to the nearest representative
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point, and the results are shown in Figure 3.5. We observed that most of the

images of the four types of digit 1 seem to be connected to their representative

images. However, some of the first and third types of images do not appear

to be connected to appropriate representative images because these two types

take a large share among the four types of digit 1 shown in Figure 3.4, and

they are extensively distributed on the feature space. This limitation of the

nearest neighbor labeling algorithm considers every basis vector equally impor-

tant regardless of its weight. Thus, other labeling methods using sophisticated

algorithms, such as complete graph (Ben-Hur et al., 2002) or dynamic system

approach (J. Lee & Lee, 2005, 2006), can overcome this problem.

3.3.4 Application to image segmentation

As a real application of clustering, the proposed method was adopted to the

image segmentation task. Images for segmentation were taken from The Berke-

ley segmentation dataset and benchmark (Arbelaez et al., 2007). Each pixel of

the original image was transformed into a three-dimensional vector on the color

space, for example, the RGB space. The size of all images used for this task

was 321 by 481. Thus the total number of pixels was 154,401. The segmentation

results are shown in Figure 3.6. Figure 3.6(a) to 3.6(d) present the original im-

ages for the segmentation task and Figure 3.6(a’) to 3.6(d’) show the segmented

images. We observed that similar colors on the images are clustered together

after image segmentation.
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(a) (b) (c) (d)

(a’) (b’) (c’) (d’)

Figure 3.6 Image segmentation results (a-d) Original image (a’-d’) Segmented

image by the proposed method

3.3.5 Effects of the parameters

To analyze the effect of changing the Gaussian radial basis kernel function

parameter, σ, on the clustering result, we adapted the proposed method to a

simple data set varying the parameter where the cutting level, L, is fixed to

1.5. The results are shown in Figure 3.7. We observed that the number of basis

vector increases as σ decreases. The increase in the number of basis vectors

results in the separation of clusters. Particularly, as σ decreases, the cluster

boundary fits the data more tightly. This characteristic coincides with that of

SVC, as reported in Ben-Hur et al. (2002).

Although selecting the appropriate parameter is important to obtain the

desired clustering result, the result can vary with the value of cutting level L.

Figure 3.8 shows that different L values can result in different cluster assign-
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Figure 3.7 Labeling results of toy data set with varying the value of the pa-

rameter σ where the cutting level L is fixed to 1.5. (a) σ = 1 (b) σ = 0.6 (c)

σ = 0.42 (d) σ = 0.3

ments. If cutting level L decreases, then the separated clusters merge if the

minimum value of the support function between two clusters, that is, on the

line segment between the local maximum points of one cluster and another

cluster, is larger than the new cutting level. The two clusters at the bottom of

Figure 3.8(a) merged in Figure 3.8(b) where the cutting level L decreased from
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Figure 3.8 Labeling results of toy data set with varying the value of the cutting

level L where the parameter σ is fixed to 0.3. (a) L = 1.5 (b) L = 0.3

1.5 to 0.3.

3.3.6 Comparison with Other Algorithms

To find the characteristics of the proposed algorithm, we applied the proposed

algorithm to the several benchmark data sets from Ultsch (2005) and compared

the results with the existing clustering algorithms: k-medoids, single linkage,

DBSCAN, and spectral clustering. Figure 3.9 shows the results after clustering.

From Figure 3.9, we can notice that the proposed algorthm works well for the

most of the benchmark data sets. The proposed method is better to represent

sophisticated distributions than the k-medoids algorithm, overlapped clusters

than the single linkage algorithm, and sparse distributions than DBSCAN, the

density-based algorithm, and the spectral clustering algorithm. Table 3.2 shows

ARI values of these results.
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Table 3.2 ARI of the proposed and other clustering algorithms for the bench-

mark data sets

k-medoids single linkage DBSCAN spectral proposed

atom 0.1362 1.0000 1.0000 1.0000 1.0000

chain link 0.0867 1.0000 1.0000 1.0000 1.0000

engytime 0.8168 0.0000 0.7294 0.0000 0.4679

Lsun 0.4631 1.0000 0.9492 0.9841 1.0000

target 0.6364 1.0000 1.0000 0.7237 1.0000

tetra 1.0000 0.0000 0.6958 1.0000 1.0000

two diamonds 1.0000 0.0000 0.9457 1.0000 1.0000

wingnut 0.8269 1.0000 0.9687 1.0000 1.0000

3.4 Chapter Summary

In this study, we propose a sparse support-based clustering method with a

support function represented by a small number of kernel basis vectors. The

method utilizes the ARD prior and the variable GP noise to build a sparse

support function from the GP regression model. The method assigns the hypo-

thetical output values (not related to the cluster labels) of the clustering data

sets to obtain a tractable likelihood function in the GP regression model to de-

termine hyper-functions and hyper-parameters efficiently. The theoretical result

shows that the constructed support function can indeed estimate the support

of the given data distribution.

The proposed method has several features compared with the findings of

previous studies on support-based clustering methods. First, the constructed
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support function is represented by a significantly smaller number of kernel

center points than the other methods. Second, the kernel center points are

automatically selected from the given data points during the training process

and can represent the rest of the data, playing a similar role as representative

points or exemplars. Third, the simple nearest neighbor method can naturally

be used as the labeling method to boost the labeling in the training phase as

well as the clustering in the test phase. Finally, the operability of clustering and

characteristics explained previously were verified through several experiments

including some benchmark and real clustering data sets, image segmentation,

and handwritten digits by determining its representative data.

The proposed method still has possibilities to be improved on several points.

First, in case that the precision of clustering is important, more sophisticated

labeling algorithms, such as complete graph approach(Ben-Hur et al., 2002) and

dynamic system approach(J. Lee & Lee, 2005, 2006; K. Kim et al., 2015), can

be used for the proposed support function rather than the näıve nearest neigh-

bor approach which concentrates on reducing labeling time. Next, although the

selected parameters σ and L result in variation in the shape and number of clus-

ters, determining appropriate parameters is sometime difficult. If a method or

criterion for selecting the parameters is recommended for the proposed meth-

ods as for previous methods(K.-P. Wu & Wang, 2009), it may be helpful to

use the proposed method. Finally, the number and dimension of the data set

can increase in the application to some real data sets. If the algorithm of the

proposed method is parallelized, then the proposed method can be effectively

applied to large data sets with powerful parallel computing methods that have
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been developed recently.
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Figure 3.9 Clustering results with benchmark data sets of several algorithms.

(a) k-medoids (b) single linkage clustering (c) DBSCAN (d) spectral clustering

(e) proposed
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Chapter 4

A Novel Active Learning Method for

Transductive Sparse Bayesian

Regression

4.1 Chapter Overview

Active learning, also called query learning or optimal experimental design, is

an important branch of machine learning that builds a suitable learning model

with actively provided labeled data points. Unlike semi-supervised or transduc-

tive learning, which constructs the learning model with (passively) provided

labeled and unlabeled points, active learning constructs its relevant training

data points with labels that are reductively essential in efficient learning and

asks the user or the membership counselor to label them; for example, active

learning makes queries for data to be labelled. Hence, active learning can play

a very important role when the cost of obtaining the labels of the data points

is expensive, as in the case of using commercial text, speech, or video class

labels, which should be annotated by a human expert(Lang, 1995; Zhu et al.,

2005; Settles & Craven, 2008; Zha et al., 2012), scientific or engineering results

from complicated experiments(Flaherty et al., 2005; J. Guo et al., 2004; King
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et al., 2004, 2009; Liu, 2004), or market research or survey results often used in

business and the social sciences.

In the last decade, many active learning strategies have been developed for

the state-of arts kernel machines such as SVMs and GPs. They are mostly based

on querying the most uncertain points among the unlabeled data pool and in-

clude multikernel SVR (Ceperic et al., 2012), ε-SVR (Ceperic et al., 2014),

active SVR (Demir & Bruzzone, 2014), kernel ridge regression (Douak et al.,

2013), Bayesian ridge kernel regression (Paisley et al., 2010), and GP regression

(Seo et al., 2000) and (Krause & Guestrin, 2007). Comparatively, there have

been very few studies on active learning strategies for sparse Bayesian learn-

ing models such as RVM, despite of its recent explosion of interest(Liu, 2004;

Naveen, 2012; Matsumoto & Hori, 2014; Ribeiro et al., 2006; Sabuncu et al.,

2014; Shuib et al., 2014; Tipping, 2001). Silva and Ribeiro (2007) proposed an

active learning procedure for RVM by querying the label of the furthest point

from the relevance vectors with its application to text classification. Paisley

et al. (2010) suggested another active learning procedure to find the optimal

queries. However, this procedure requires a different procedure for active learn-

ing to make queries for labeling and build the final model using RVM.

In this chapter, we propose a novel active learning algorithm for sparse

Bayesian regression. To this end, we first develop a transductive and generalized

version of RVM regression wherein the basis of the model can be selected from

the unlabeled data points as well as the labeled data points. Then, we propose

an active learning strategy that can make queries for labeling using only the

relevance vectors automatically determined from the developed model, thereby
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making it unnecessary to require an additional procedure for active learning.

The remainder of this chapter is organized as follows. In section 2, we pro-

pose a transductive GRVM with an active learning procedure and present its

algorithm and implementation. Section 3 gives the experimental results of both

artificial data sets and real data sets. Finally, we make concluding remarks and

cite the future directions of this research in section 4.

4.2 Proposed method

RVM, which is proposed by Tipping (2001), is a sparse Bayesian learning

method based on ARD prior on its weights and is successively applied to various

regression and classification tasks. One of the advantages of using RVM over

other kernel methods, such as SVM and GP regression, is its sparseness with

comparable performances and computational costs (Naveen, 2012; Shuib et al.,

2014).

Here, we propose a transductive and generalized version of the RVM re-

gression, namely a transductive GRVM, which can be used when only a small

portion of the data points are labeled. Then, we suggest three querying strate-

gies that exploit the characteristics of transductive GRVM. After obtaining

the labels of queried data points, the proposed algorithm repeats training the

model with the new labeled data sets and querying other data points until the

stopping criterion is satisfied.
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4.2.1 Transductive sparse Bayeasin regression

The aim of the transductive GRVM suggested in this section is to construct

GRVM model which uses both labeled and unlabeled data points and selects

the relevance vectors from both of them.

Like other regression models using basis functions, we consider a Bayesian

regression of the form:

y = f(x) + ε (4.1)

where ε is a noise with mean zero and variance σ2 that are uncorrelated with

data (we are assuming a more general case than a Gaussian noise N (0, σ2)) and

f(x) = wTφ(x) where w is a weight vector and φ(x) = [φ1(x), . . . , φN (x)]T

is a vector of basis functions. In this paper, we use a kernel function κ(x,x′)

as a basis function where the i’th basis function is given by φi(x) = κ(x,xi).

φ0(x) = 1 is sometimes included in the basis vector to represent the bias term.

Now let {XL,yL} be the labeled data set and {XU} be the unlabeled data

set. We also assume that there are L labeled data points and U unlabeled data

points, and the total number of data points is N = L+U . Rhe regression model

can be represented as

yL = ΦL,L+Uw + εL (4.2)

where ΦL,L+U is an L × (L + U) matrix composed of kernel values of labeled

points and the whole points whose ij’th element is κ(xi,xj) where xi is selected

from the labeled data points, i.e. the rows of XL, and xj is selected from the

whole points, i.e. the rows of X = [XT
L XT

U ]T. Here, w is an N×1 weight vector

and εL is an L × 1 noise vector with zero mean vector and covariance matrix
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σ2IL where IL refers to the L dimensional identity matrix.

To obtain a sparse solution, we employ a generalized version of an ARD prior

as in Tipping (2001) for the weight vector, i.e. p(w|A) has zero mean vector

and N ×N -covariance matrix A−1) with the diagonal matrix A = diag{Aii} as

the hyperparameter. These hyperparameters, the ARD prior A and the noise

σ2, can be found by type-II maximum likelihood (empirical Bayes) estimation.

Since it is difficult in general to obtain the exact marginal likelihood func-

tion conditional on X, A, and σ2, we derive it by applying the Laplace approx-

imation to the joint distribution of labeled outputs and unlabeled predictive

outputs. Notice that both labeled outputs, yL and unlabeled predictive out-

puts, fU = ΦU,L+Uw, a vector of f(x) in (5.16) for the unlabeled data points

where ΦU,L+U is a U × (L+U) kernel value matrix of unlabeled points and the

whole points, have zero mean vectors and the covariance matrix of yL and fU

conditional on X, A, and σ2 is given bycov(yL,yL) cov(yL, fU )

cov(fU ,yL) cov(fU , fU )


The covariances conditional on X, A, and σ2 can now be obtained by applying

the formula of conditional expectations as follows.

cov(yL,yL) = E[yLyT
L ] = Ew

[
E[(ΦL,L+Uw + εL)(ΦL,L+Uw + εL)T|w]

]
= ΦL,L+UEw[wwT]ΦT

L,L+U + σ2IL

= ΦL,L+UA−1ΦT
L,L+U + σ2IL

cov(yL, fU ) = E[yLfT
U ] = Ew

[
E[(ΦL,L+Uw + εL)(ΦU,L+Uw)T|w]

]
= ΦL,L+UEw[wwT]ΦT

U,L+U = ΦL,L+UA−1ΦT
U,L+U
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cov(fU , fU ) = E[fU fT
U ] = Ew

[
E[(ΦU,L+Uw)(ΦU,L+Uw)T|w]

]
= ΦU,L+UEw[wwT]ΦT

U,L+U = ΦU,L+UA−1ΦT
U,L+U

After applying the Laplace approximation, we obtain the following approxi-

mated joint distribution of yL and fU conditional on X, A, and σ2.yL

fU

 ≈ N
0,

ΦL,L+UA−1ΦT
L,L+U + σ2IL ΦL,L+UA−1ΦT

U,L+U

ΦU,L+UA−1ΦT
L,L+U ΦU,L+UA−1ΦT

U,L+U



(4.3)

Therefore, its corresponding approximated marginal likelihood function of yL

is given by

p(yL|XL,XU ,A, σ
2) =

∫
p(yL, fU |XL,XU ,A, σ

2)dfU

≈ N (0,ΦL,L+UA−1ΦT
L,L+U + σ2IL). (4.4)

In maximizing the likelihood in (4.4) with respect to the hyperparameters A

and β, most of the entries of A become infinite as in the traditional RVM; thus

only a small portion of data points are selected as relevance vectors. However,

those relevance vectors are also chosen from the unlabeled data points as well as

the labeled ones because the basis vector includes the kernel functions centered

at the unlabeled data points.

Because of the ARD prior, it can be shown as described in Tipping (2001)

and Tipping and Faul (2003) that most of diagonal elements in A become

infinite as a result of likelihood maximization and the corresponding weights

become zero. Thus, the regression model in (5.16) can be represented only by

a small number of kernel functions relevant to the input points corresponding

to the nonzero weights. These points are called relevance vectors.
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Finally, our transductive version of sparse Bayesian regression is given by

the posterior predictive distribution for a new point x∗ which can be derived

using the Sherman-Morrison-Woodbury formula as follows:

p(y∗|x∗,yL,XL,XU ,A, β) ∼ N (mf (x∗), σ2 + σ2φ(x∗)TΣφ(x∗)) (4.5)

where

mf (x∗) = φ(x∗)TΣL+UΦT
L,L+UyL (4.6)

ΣL+U = (σ2A + ΦT
L,L+UΦL,L+U )−1. (4.7)

One notable fact here is that the final model does not involve the computations

of the kernel values between the unlabeled points.

4.2.2 Active Learning Strategy

Our key idea for active learning strategy is based on the observations that

the obtained relevance vectors are located at the local maximal points of the

predictive variance or near them. Figure 4.1 illustrates this behavior by showing

1D example generated by the proposed transductive regression. The predictive

mean and 95% confidence interval estimated by the predictive variance are

denoted by a green line and red dotted lines, respectively, in Figure 4.1-(a).

The relevance vectors are denoted by red circles. Figure 4.1-(b) represents the

predicted variance, subtracting the common value σ2, with a blue line and

the relevance vectors with red circles. In this figure we can observe that the

most of the relevance vectors are selected at the extreme points, local optimal

points and boundary points, of the predictive mean function and the variance

51



values have the local maximal values at these relevance vectors. This observation

can be inferred from the fact that the covariance matrix Σ in (5.20) has zero

values except the entries with both row and column indices corresponding to the

nonzero weights, or non-infinite values of Aii. Then the first term in variance,

φ(x∗)TΣL+Uφ(x∗), has a larger value near the relevance vector because φ(x∗)

has a larger value for the entries corresponding to nonzero values of ΣL+U .
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Figure 4.1 1D example of RVM regression. (a) Predictive mean is denoted by

a green line and 95% confidence interval is denoted by red dotted lines. The

relevance vectors are denoted by red circles. (b) Variances without the common

term (σ2). The relevance vectors are denoted by red circles.

Based on this property, we propose the following querying strategies for

active learning with no additional calculation.

• Querying all unlabeled relevance vectors: Our first strategy is sim-

ply querying all of the unlabeled relevance vectors. This strategy does

not require any other calculation and makes queries for the labels of the

obtained relevance vectors.
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• Querying the most uncertain relevance vector: The second strategy

is querying the most uncertain point among the unlabeled relevance vec-

tors. It coincides with the regression version of the traditional uncertainty

sampling which considers the point with the largest variance as the most

uncertain point. This strategy involves a simple additional computation

for the variance of the unlabeled relevance vectors, not the whole data

points.

• Querying the farthest relevance vector: Our last querying strategy

is similar to the second one. However, this strategy selects one unlabeled

relevance vector with the highest minimal distance to the labeled points

is maximum among the unlabeled relevance vectors, i.e.

xquery = argmax
x∈RVU

min
xl

dist(x,xl) (4.8)

where RVU is the set of unlabeled relevance vectors, xl is selected from

the labeled data set, and dist(x1,x2) is a pre-defined distance function

between two points x1 and x2. Although this strategy requires an ad-

ditional computation for calculating the distances, it prevents querying

some redundant points located close to the labeled points and selects only

the points far from the given labeled points to give new information to

the model.

Among these three strategies, the first one involves the smallest number of

iterations because it requires the labels of several data points at once. However,

the limitation of this strategy is that it may require large cost in the case when

the labeling cost is expensive.
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4.2.3 Algorithm and Implementations

The proposed method first trains the proposed transductive GRVM model with

a given initially labeled and unlabeled data sets. After the training phase, the

method requires the labels of querying points selected by the querying strategy

given in section 4.2.2. The detailed procedure for the proposed method is now

given as follows.

There are some implementation issues that need to be addressed. First, to

implement the proposed transductive GRVM, we used Probabilistic modeling

toolkit(Murphy & Dunham, 2008) and the fast marginal likelihood maximization

proposed in Tipping and Faul (2003) to reduce computational complexity. The

näıve implementation requires O(N3) computations to find hyperparameters

where N is the number of training instances. Meanwhile, the fast marginal like-

lihood maximization algorithm (Tipping & Faul, 2003) requires O(M3) where

M is the number of relevance vectors included in the model by adding and

removing the candidate basis vector by one at once. M can be N at its max-

imum, however, these values appear to be very smaller in practice. Therefore,

the complexity of the proposed method is of O(cM3) complexity where c and M

refer to the maximum number of iterations the maximum number of relevance

vectors included in the model during the iteration, respectively.

When the user chooses the initial selection of the labeled data points, one

can select L1 points randomly from the whole data set D which is the sim-

plest approach requiring no extra calculation. However, the performance and

convergence speed can be very sensitive with the choice of initial selections.
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Algorithm 1 Active learning for transductive GRVM

(A1. Initialization:)

1: Select data points which are labeled initially from given data points D =

{xk}Nk=1.

2: Construct the transductive RVM model proposed in section 4.2.1 with the

initially labeled data points D1
L = {xk, yk}L1

k=1 and remaining unlabeled

data points D1
U = {xk}Nk=L1+1.

(A2. Construct the active learning model:)

1: Set j = 1.

2: repeat

3: Find the set of unlabeled relevance vectors RVU and select the querying

set Dq based on the querying strategy presented in section 4.2.2..

4: if querying all unlabeled relevance vector then

5: Dq := RVU .

6: else if querying the most uncertain relevance vector then

7: Dq := {x : x = argmaxxu∈RVU Var(xu)}.
8: else if querying the farthest relevance vector then

9: Dq := {x : x = argmaxx∈RVU min
xl∈DjL

dist(x,xl)}.
10: end if

11: Dj+1
L := DjL

⋃
{xq, yq}xq∈Dq and Dj+1

U := DjU \ Dq.
12: Construct the transductive RVM model with new labeled data points,

Dj+1
L , and unlabeled points, Dj+1

U .

13: j ← j + 1.

14: until the stopping criterion is satisfied.

15: Save the relevance vectors and the corresponding weights of the final model.

Clustering-based approach can be a good alternative. This approach first clus-

ters the whole data points and selects a few points from each cluster. This

approach may reflect the distribution of data points thereby being used for

pursuing higher performance and faster convergence, although it requires one
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additional clustering phase. Any other sampling method can also be applied in

addition.

If all relevance vectors are selected from the labeled points, the model con-

verges and the algorithm stops. At times, some stopping criteria other than

convergence might be required for practical reasons, including labeling cost

and computational time. In this case, we can give a few suggestions. The first

criterion is to set the maximum number of iterations and stop the algorithm if

the number of iteration exceeds that number. The second is to stop the algo-

rithm when the ratio of labeled points exceeds the pre-set value. The last one

is to stop the algorithm if the number of relevance vectors becomes higher than

some pre-set tolerance. The combination of these methods can also be used for

the stopping criterion.

4.3 Experimental Results

4.3.1 Toy data sets

To verify the performance of the algorithm, we first applied the proposed algo-

rithm to two artificial data sets, sinc data set with a curved shape and spiral

data set with a linear shape. Figure 4.2 illustrates these two data sets where blue

stars and red lines denote the noise-additive points used for the experiments

and the noise-free true values, respectively.

In our experiment, Gaussian kernel, κ(xi,xj) = exp{−‖xi − xj‖22/2σ2},

is used for the basis kernel function where the kernel parameter σ is deter-

mined by a 10-fold cross-validation result using the whole data points. For the
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Figure 4.2 Toy data sets for the proposed method. Red lines denote the true

values and blue stars are noise-additive data points. (a) sinc data set (b) spiral

data set

initialization of the proposed method, we randomly selected three initial la-

beled points. Next, we used the querying the farthest relevance vector strategy

proposed in section 4.2.2 and stopped the algorithm if the number of labeled

points exceeded 20, i.e., 10% of the whole data points. The results are shown

in Figure 4.3. Figure 4.3(a) indicates the logarithm value of mean squared er-

ror (MSE) and Figure 4.3(b) shows the number of relevance vectors. Proposed,

symbolized by the blue solid lines with squares, refers to the average results of

the proposed method with 10 times repetition, whereas Supervised, represented

by red dashed-dot lines with circles, refers to the results of RVM using the same

number of randomly selected labeled points as that of the proposed method.

For each number of labeled points, we averaged the results of 100 random se-

lections for Supervised result. Standard errors of both Proposed and Supervised

results are not presented because these are too small to be noticed compared
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to their means. In addition, Full, denoted by green dashed lines, is the result of

a general RVM applied to the whole data points that are all labeled.
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Figure 4.3 Simulation results of sinc data set. (a) logarithm values of MSE (b)

number of relevance vectors.

In Figure 4.3, the proposed method overwhelms the random selection after

a few number of iterations for sinc data set with the comparable number of rel-

evance vectors. The MSE values of the proposed method and random selection

at L = 20 are (6.01 ± 0.69) × 103 and (2.23 ± 2.31) × 10−2, respectively. The

random selection model has a large standard error because random selection

sometimes fails to construct the robust model. Figure 4.3 is shown from the

fourth iteration, i.e. L=6, for visibility since the results of proposed methods

are not robust for a few first iterations, hence their MSE values are very high.

The MSE of the proposed method is expectedly larger than that of the full

RVM since the number of relevance vectors used for labeling in the proposed

method is smaller than that used for the full method.
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Figure 4.4 Simulation results of spiral data set. (a) logarithm values of MSE

(b) number of relevance vectors.

Figure 4.4 presents the simulation results of spiral data set. Figure 4.4(a)

shows logarithm values of MSE and Figure 4.4(b) indicates the number of rel-

evance vectors. The initial number of labeled points is 30 and the iterations

proceed until the number of labeled points does not exceed 55, which is almost

10% of the given data points. Querying the farthest relevance vector strategy

is also used for the querying strategy. The proposed method results in signifi-

cantly lower MSE value than the random selection, 2.05±0.80 and 10.36±2.00,

whereas both their MSEs are higher than that of the full RVM, 0.0061.

Figure 4.5 illustrates changes of the model through iterations. Blue stars

denote the original input points, red circles signify the selected relevance vec-

tors, and black plus signs represent the labeled points. The predictive model

constructed in each iteration is denoted by the green line. As the iteration step

proceeds, the model changes to fit the data points and the number of labeled
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Figure 4.5 Example of changing models for sinc data set with (a) L = 3 (b)

L = 7 (c) L = 9 (d) L = 13 (e) L = 17 (f) L = 20. Given data points, labeled

points, and relevance vectors are denoted by blue ’*’, black ’+’, and red ’o’

respectively. The predictive mean of the model is represented by the green line.
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points increases with the selected querying strategy. As discussed earlier, we

can observe that most of the relevance vectors are located near the extreme

position, hence, the selected labeled vectors are also located at these positions.

4.3.2 Real data sets

To verify the performance of the proposed method for real applications, we next

applied the proposed method to four real data sets from the UCI repository(Asuncion

& Newman, 2007) (abalone, airfoil, concrete, and wine-red) and another data

set of American-type put option prices of S&P 100 index (Am. option). The

basic characteristics of these data sets are shown in Table 4.1.

Table 4.1 Basic characteristics of data sets

Data set # of instances # of dimensions Output range

abalone 4177 8 1-29

airfoil 1503 5 103.38-140.99

concrete 1030 8 2.33-82.60

wine-red 1599 11 3-8

Am. option 6954 2 1.03-125.95

The comparison results for each of the three suggested querying strategies

are shown in Table 4.2 to 4.4 respectively. In the Proposed column, we reported

the averages and standard errors of MSE, number of relevance vectors, and

number of labeled points for at least 20 converged results for the proposed

method. The convergence of model means that the all relevance vectors are

selected from the labeled point set so there are no remaining points to be
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queried. We also limited the maximum number of labeled points to 50% of the

whole data points. In the Supervised column, we reported the averaged results

of random selections where the predictive models are constructed with the same

number of randomly-selected labeled points as that of the proposed algorithm.

For each number of labeled points, the random selection was repeated at least

100 times and its results were averaged so that they can be compared with the

proposed method. Here, superscripts ∗ and ∗∗ are given to the data if the result

of Proposed applied to it was significantly better than that of Supervised by

Wilcoxon signed-rank test with the level of significance α set to 0.05 and 0.01

respectively.

As is shown in the Tables 4.2 to 4.4, the proposed algorithm performed sig-

nificantly better than the random selection regardless of the querying strategy

for all the used data sets. In addition, all these results are statistically signif-

icant, although we observed some different characteristics among the applied

three querying strategies. The second querying strategy in Table 4.3, query-

ing the most uncertain relevance vector, has converged with smaller number of

labeled points than the other strategies; however, it has higher standard er-

ror than the other strategies, implying that the constructed models converge

differently depending on its initial selection of labeled points.

The first querying strategy in Table 4.2, querying all unlabeled relevance

vectors, and the last strategy in Table 4.4, querying the farthest relevance vector,

usually result in smaller variance than the other, whereas they converge with a

large number of labeled data. Based on these results, it appears that the models

constructed by the proposed method, with a variety of initial selections, become
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similar as new labeled points are added when using the first or last strategy.

The convergence of active learning is sometimes difficult to determine and

the active learning algorithm should often be stopped before the convergence.

As shown in Figure 4.3(a), the performances of the proposed method near the

convergence are not much varied. Table 4.5 shows the average performances of at

least 5 results before the convergence. The last querying strategy, querying the

farthest relevance vector, was exploited for this experiment. This simulation was

repeated more than 20 times for each data set and the results were averaged.

As a result, MSEs shown in Table 4.5 are not much different from those in

Table 4.4 as expected.

Table 4.5 Experimental results for data sets before the convergence. Querying

the farthest relevance vector strategy is used for the querying strategy. 5 results

before the convergence were averaged and these averaged results were averaged

again by more than 20 times repeated simulations.

Data set
Proposed Supervised

MSE # of RV MSE # of RV

abalone 8.42± 1.70 6.86 8.92± 1.00 3.87

airfoil 4.57± 3.72∗∗ 10.61 800.74± 784.14 35.23

concrete 75.34± 25.53∗∗ 25.53 84.44± 32.02 22.16

wine-red 0.76± 0.22∗∗ 11.23 0.95± 0.12 5.62

Am. option 2.79± 1.61∗∗ 14.58 22.79± 8.63 10.58

In summary, the first and third strategies typically resulted in smaller MSEs

than the second strategy; however, the latter required the smallest number

of labeled points, which can minimize the labeling cost. Meanwhile, the first
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strategy queries several points at once, the required number of iterations can

be smaller than the others if the converged number of labeled points are similar.

Therefore, we recommend the user to select the querying strategy based on the

purpose of the task and cost of labeling.

4.4 Chapter Summary

In this study, the novel active learning method for transductive sparse Bayesian

regression is proposed. First, we develop a transductive and generalized version

of RVM in which the relevance vectors of the constructed model are selected

from the unlabeled data points as well as the labeled data points. Next, we

propose three querying strategies for the active selection of the labeled point

set using only the relevance vectors automatically obtained from the devel-

oped model, thereby making an additional process for active learning unnec-

essary. The proposed active learning algorithm is completed by repeating the

two previously-mentioned procedures until the model converges or one of the

stopping criteria is satisfied.

The proposed method outperformed the random selection algorithm for

both artificial and real data sets, whereas it did not perform well compared

with the full RVM model that used the whole data points as labeled. The three

strategies showed different characteristics when applied to the real data sets.

The first querying strategy, querying all unlabeled relevance vectors, and the

last querying strategy, querying the farthest relevance vector, showed signifi-

cantly small MSEs and standard errors but they required a large number of
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labeled points to converge. The second strategy, querying the most uncertain

relevance vector, converged with a small number of labeled points, which means

that the labeling cost can be minimized, while MSEs and standard errors from

this strategy were higher than those of the other strategies.

There are possible ways to improve the proposed method. First, the user

should select the initial set of labeled points. In this paper, we randomly selected

three points from given data points and the method worked successfully. How-

ever, other sophisticated sampling methods, including clustering approaches,

may improve the performances of the first few iterations. The stopping crite-

rion is another issue that the user must decide on. It is difficult to predict when

the model converges, however, we observed that the proposed methods per-

formed significantly better than the random selection after several iterations,

and the MSEs at a few iterations before convergence were comparable to that

at convergence. Thus, it seems that an earlier stopping than the optimal model

may have prevented the occurrence of severe problems. Finally, other querying

strategies which use the information criteria can be developed. Similar to the

suggestions of previous studies(Zhang & Oles, 2000; Schein & Ungar, 2007; Set-

tles & Craven, 2008), a querying strategy based on information theory can be

applied to the transductive GRVM developed in this study in order to construct

another active learning algorithm for sparse Bayesian regression.
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Chapter 5

Applications to Financial

Technologies

5.1 Chapter Overview

The financial variable prediction has been a long and yet active research theme

targeted by many researchers since successful prediction helps to make profits

as well as avoid risks. There have been many machine learning approaches for

financial markets but there are still remaining the unsolved problems that the

learning models can make better results. In this chapter, we applied machine

learning models, including both sparse and non-sparse ones, to two financial

technology problems: high-frequency market impact costs estimation and credit

default swap (CDS) prediction.

The remainder of this chapter is organized as follows. In the next section, we

briefly review the machine learning algorithms that are applied to the financial

problems. Then, the experimental results of each financial problem are follow-

ing. First, in section 3, learning models are applied to estimate and predict the

market impact costs of US markets, then learning models are used to price CDS

spreads in section 4. Finally, we conclude this chapter with summary and some
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other future research directions in section 5.

5.2 Preliminaries

Before introducing financial application problems targeted in this chapter, we

describe some machine learning algorithms which were commonly used for the

following problems. In this section, we review the four learning models: artificial

neural networks (ANNs), BNNs, GPs, SVMs, and RVMs. The last two models

are sparse models, while the other are not.

5.2.1 Artificial Neural Networks

ANNs(Rosenblatt, 1961) are extensively used highly nonlinear nonparametric

model which can be used for the regression task. Mimicking a human brain,

an ANN model is composed of layers which also consist of nodes, conducting

a role as neurons in the brain. There are usually three types of layers in an

ANN: input layer, output layer, and hidden layer. The input layer is the first

layer and it has nodes that propagates the value of input variables to the next

layer. The output layer is the last layer has nodes that make the overall outputs.

The hidden layers are located at between the input layer and the output layer

and they have nodes that makes the nonlinear output from inputs propagated

from the previous layer. The nonlinear output f(x) of each node has a form as

follows:

f(x) = g(
∑
i

wihi(x)) (5.1)
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where x is the input vector from the previous layer, g is an activation function,

hi’s are functions that transform the input vector. The sigmoid functions, S-

shaped functions such as hyperbolic tangent function, logistic function, and

probit function, are commonly used for the activation function.

Training of ANN means the optimization of weights wi’s in Eq. (5.1). The

widely used optimization algorithm is back-propagation algorithm(Rumelhart et

al., 1985). In back-propagation algorithm, the weights are chosen backwardly

from the output layer to the first hidden layer to minimize the loss, squared

sum of errors in usual. The ANNs show good performances after training the

weights but it is difficult in this model to determine the relationship between

inputs and outputs.

5.2.2 Bayesian Neural Networks

BNN is a variant of NN training algorithm, which was originally proposed in

MacKay (1992). Similar to other algorithms with Bayesian nature, this algo-

rithm assumes a Gaussian-type prior over weights on the networks, or equiva-

lently regularizes the error function via sum of squares of weights.

Suppose we have n input-output pairs {xi, yi} with yi = f(xi) + εi, where εi

are i.i.d Gaussian errors. In BNN setting, the objective function is represented

as F (w, α, β; {xi, yi}) = βED +αEW , where ED =
∑n

i=1(yi−ai)2 is the sum of

squares of errors from network output ai and target yi corresponding to xi, and

EW is the sum of squares of the network weights. The relative importance be-

tween regularization and fitting the data is determined by adjusting relative size

between α and β, which can be done by maximizing the posterior distribution
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P (α, β|{xi, yi}).

Foresee and Hagan (1997) proposed an algorithm which iteratively optimizes

the weight and parameters, using Gauss-newton approximation to the Hessian

of the objective function F . After initializing α, β and weights, the algorithm

runs as follows:

1. Take one step of the Levenberg-Marquardt algorithm to minimize the

objective F (w) = βED + αEW .

2. Compute the effective number of parameters γ = N−2αtr(H)−1, making

use of the Gauss-Newton approximation to the Hessian: H = ∇2F (w) ≈

2βJTJ + 2αIN where J is the Jacobian matrix of the training set errors.

3. Compute new estimates for the objective function parameters: α = γ
2EW (w)

and β = n−γ
2ED(w) .

5.2.3 Gaussian Processes

GP regression (Cressie, 1993; Rasmussen, 1996) is a collection of random vari-

ables such that any finite combination of them follows the Gaussian distribu-

tion. A GP f(x) can be completely determined by its mean function m(x) and

covariance function k(x,x′) as

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

Assume that the set of data D = {(xi, yi)}ni=1 is given with the noisy output

yi where the variance of the output noise is denoted by σ2. Then, the covariance
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of the output vector y = (y1, . . . , yn) is given as

cov(y) = K

where K is an N ×N matrix whose i,j’th entry is k(xi,xj). Then, with a new

input x∗ and define the mean function m(x) = 0, y

f∗

 ∼ N
0,

 K + σ2I kT∗

k∗ k∗∗


 (5.2)

where f∗ = f(x∗), k∗∗ = k(x∗,x∗), and k∗ = (k(x1,x
∗), . . . , k(xn,x

∗))T . Then

the distribution for predictive output f∗ can be easily calculated by using the

conditional distribution for normal distribution as follows:

P (f∗|D) = N (kT∗ (K + σ2I)−1y, k∗∗ − kT∗ (K + σ2I)−1k∗). (5.3)

As shown in Eq. (5.3), the GP regression gives the variance of the predictive

output as well as the mean value, thus it belongs to the class of Bayesian

regression.

Training of GP refers to optimizing the hyperparameters in the kernel func-

tion k and the output noise σ2 by maximizing the log-likelihood function

logP (y|D) = −1

2
yT (K + σ2I)−1y − 1

2
log det(K + σ2I)− N

2
log 2π. (5.4)

The log-likelihood function in Eq. (5.4) varies with the exploited kernel func-

tions and the most widely used kernel function is a squared exponential kernel

function which has the form k(x,x′) = C exp(−γ‖x− x′‖2) where C and γ are

hyperparameters. For more details, see Williams and Rasmussen (2006); Bishop

(2006).
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5.2.4 Support Vector Machines

SVM is originally developed as a binary classifier(Boser et al., 1992; Vapnik,

2000) but has also been used as a regression model(Drucker et al., 1997) exten-

sively. Here, we explain these two versions of SVMs separately as follows.

Support vector machine classification

SVM classifier first utilizes a nonlinear transfer mapping Φ to map all training

data into a high-dimensional feature space. Next, to find an optimal linear

classifier of the form

f(xi) = wTΦ(xi) + b. (5.5)

in the mapped high-dimensional feature space, it tries to find the parameters

w and b which make the classifier in Eq. (5.5) optimal in the sense that the

margin, the distance between the classifier and the nearest point Φ(xi), is max-

imized. Finding the optimal w and b can be achieved by solving the following

optimization problem:

min
w,b

1

2
‖w‖2 (5.6)

subject to yi(w
TΦ(xi) + b) ≥ 1 where yi is a binary target of the instance xi.

In the case of overlapping or misclassified training instances, we can add

the penalty term for these misclassification and then the optimization problem

in Eq. (5.6) can be changed into:

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi (5.7)

subject to yi(w
TΦ(xi) + b) ≥ 1 − ξi where ξi is a slack variable to allows soft
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margins. The solution of Eq. (5.7) is then given by

w =
∑
i

α∗i yiΦ(xi) (5.8)

where α∗i is the solution of the following quadratic optimization problem, which

is dual of the primal problem (5.7):

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyjk(xi, xj) (5.9)

Here k(xi, xj) = 〈Φ(xi),Φ(xj)〉 is called a kernel function. There are many

candidates for the kernel functions and in this paper, the radial basis kernel

function is used (Bishop, 2006).

The nearest points xi that are nearest to the decision boundary are corre-

spondent with α∗i > 0 and are called support vectors. There are two kinds of

support vectors. Ones are support vectors for the class +1 and the others are

for the class -1. After finding optimal w and b with training data, like the other

classifiers, we can classify the test instances as follows:

targeti =

 1 if f(xi) > 0,

−1 otherwise.
(5.10)

Support vector machine regression

SVR is a kernel regression that minimizes the ε-insensitive loss function

L(y1, y2) = max{ε, |y1 − y2|} − ε (5.11)

with some ε > 0. This loss function is zero if |y1 − y2| < ε and |y1 − y2| − ε

otherwise. Defining the regression function f(x,w) =< w,φ(x) > +b with
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basis functions φ and penalize with the errors larger than ε, the SVR problem,

which minimizes ‖w‖2 to reduce the complexity of model, becomes

min
w,b

1

2
‖w‖2 + C

n∑
i=1

(ξ+
i + ξ−i ) (5.12)

with the constraints

yi − f(xi,w) ≤ ε+ ξ+
i

f(xi,w)− yi ≤ ε+ ξ−i (5.13)

ξ+
i , ξ

−
i ≥ 0

for all i = 1, . . . , n. Using Karush-Kuhn-Tucker conditions, we can get the

following dual problem

max
α+,α−

−1

2

n∑
i=1

n∑
j=1

(α+
i −α

−
i )(α+

j −α
−
j )k(xi,xj)−ε

n∑
i=1

(α+
i −α

−
i )+

n∑
i=1

(α+
i −α

−
i )yi

(5.14)

with the constraints 0 ≤ α+
i , α

−
i ≤ C where the kernel function, k(xi,xj) =<

φ(xi),φ(xj) > and w =
∑n

i=1(α+
i −α

−
i )φ(xi). This dual problem can be solved

by a quadratic programming solver and then the predictive value for the new

input x∗ becomes

y∗ =

n∑
i=1

(α+
i − α

−
i )k(xi,x

∗) + b (5.15)

where b = yk −
∑n

i=1(α+
i −α

−
i )k(xi,xk) for any k = 1, . . . , n. For more details,

see Drucker et al. (1997); Bishop (2006).

5.2.5 Relevance vector machines

RVM, firstly proposed in Tipping (2001), is a Bayesian regression whose weight

vector has an ARD prior. Here, we briefly give the formalism of RVM regression.
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Like other regression models using basis functions, RVM regression has the

form as follows:

y = f(x) + ε (5.16)

where ε ∼ N (0, β−1) and f(x) = wTφ(x) where w is a weight vector and

φ(x) = [φ1(x), . . . , φN (x)]T is a vector of basis functions. For RVM, a kernel

function κ(x,x′) is used as a basis function thus the i’th basis function φi(x) =

κ(x,xi). φ0(x) = 1 is sometimes included in the basis vector to represent the

bias term. Also, a weight vector has an ARD prior, p(w|A) ∼ N (w|0,A−1) =∏N
i=1N (wi|0, A−1

ii ) with the diagonal matrix A as the hyperparameter.

The two hyperparameters, the noise precision β and the prior precision A,

can be found by typical maximum likelihood estimation where the likelihood

function is defined as

p(y|X,A, β) =

∫
p(y|X,w, β)p(w|A)dw

∼ N (0,ΦA−1ΦT + β−1I) (5.17)

where Φ is a N × N matrix whose i’th row is φ(xi)
T. Because of the ARD

prior, most of diagonal elements in A become infinite as a result of likelihood

maximization and the corresponding weights become zero. Thus, the regression

model in (5.16) can be represented only with a small number of kernel functions

relevant to the input points corresponding to the nonzero weights and these

points are called relevance vectors. The detailed description for this sparsity can

be found in Tipping (2001) and Tipping and Faul (2003). Then the predictive

distribution for a new point x∗ are derived as following:

p(y∗|x∗, f ,X,A, β) ∼ N (f(x∗), β−1 + φ(x∗)TΣφ(x∗)) (5.18)
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where

f(x∗) = βφ(x∗)TΣΦTy (5.19)

Σ = (A + βΦTΦ)−1. (5.20)

5.3 Analyzing market impact costs using nonparamet-

ric learning models

5.3.1 Motivation

Transaction costs have been considered as one of the important factors affecting

the investment performance for a long time. As statistical and computational

technologies have been adapted to estimate and predict several financial vari-

ables from a few decades ago, the high-frequency trades of financial assets have

been popular and thus the estimation and prediction of transaction costs be-

comes more important. Transactions costs are usually classified into two major

categories: explicit costs and implicit costs. Explicit costs, also called direct

costs, are transaction costs that can be explicitly stated and measured. These

costs include commissions, transaction fees, and taxes. Implicit costs, or indi-

rect costs, are costs that cannot be measured directly including bid-ask spreads,

time risk costs, and market impact costs. These costs are usually regarded im-

provable by an appropriate trading strategies.

Market impact cost, one of the implicit transaction costs, the cost caused by

the difference between the price before the transaction and the price that the

transaction is executed actually. There have been several literatures focusing

on analyzing market impact costs. Lillo et al. (2003) and Gabaix et al. (2003)
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fitted the impacts of single transactions to a concave power-law function of the

volume of the transaction. Bouchaud et al. (2004) used a logarithm function

of the transaction volume to estimate the market impact costs. Plerou et al.

(2002) exploited the hyperbolic tangent function for the same task. Almgren et

al. (2005) and Kato (2014) used a stochastic process of the asset price which in-

cludes a function of the transaction size to explain the market impacts. Frino et

al. (2008) estimated the impact cost by using linear regression with quantized

transaction sizes. Bershova and Rakhlin (2013) analyzed the market impacts

of the large institutional orders in the US equity market and found that the

permanent impact function has a concave form with respect to the transaction

size in contrast to the other previous results(Almgren et al., 2005; Huberman &

Stanzl, 2005) that the permanent impact function has a linear form. There have

been some other researches using other input variables to estimate the market

impact costs. I-star model described in Kissell et al. (2003) and Kissell (2013) is

a log-linear regression model which uses three inputs, transaction size, volatil-

ity, and underlying trading rate and they affected the estimated market impact

costs independently. Bikker et al. (2007) and Bikker et al. (2008) used more

than 40 independent variables to fit the market impact cost to simple linear

regression function. However, most of these previous studies showed the limita-

tion in performance because of the fixed parametric or simple linear regression

form of the market impact model.

Nonparametric machine learning models have been preferred to be applied

to various other areas including financial data analysis due to their abilities in

fitting and predicting performances for complex data sets. Most of those finan-
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cial applications have been focused on the stock price prediction(W.-H. Chen

et al., 2006; Son et al., 2012; Ticknor, 2013; Liao & Chou, 2013) and its deriva-

tive markets(Hutchinson et al., 1994; Han & Lee, 2008; H. Park et al., 2014)

and most of them showed the accurate prediction results. There have also been

several studies for other markets including credit and its derivative markets(Y.-

C. Lee, 2007; Gündüz & Uhrig-Homburg, 2011; K.-j. Kim & Ahn, 2012), fixed-

income markets(S. H. Kim & Noh, 1997; Cao & Tay, 2003), and foreign ex-

change markets(Bhattacharyya et al., 2002). Although nonparametric models

have been successfully applied to diverse financial applications, they have not

been employed to analyze the market impact costs yet.

In this section, we introduce nonparametric approaches to estimate and

predict the market impact costs. To the best of our knowledge, this is the first

approach which applies nonparametric learning models to analyze the market

impact cost. The proposed nonparametric approach has two main advantages.

First, the nonparametric approaches usually fit the data better than the para-

metric case. Second, the nonparametric approaches have a versatility in the

number of input variables so the general procedure does not change when the

number or kinds or input variables change while the parametric approaches re-

quire the new parametric models in those cases. Trough simulation, we analyzed

the market impact costs of transactions of small-cap, mid-cap, and large-cap

stocks in US equity market both altogether and separately by selecting the same

types of input variables with I-star model(Kissell, 2013; Kissell et al., 2003) and

compared the results.
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5.3.2 High-frequency Trade with Transaction Costs

Son et al. (2012) applied four learning models, linear regression, logistic regres-

sion, NN, and SVM, to predict the trend of high-frequency Korea Stock Price

Index (KOSPI) 200, by using the market lead-lag relationship. The brief results

are shown in Table 5.1. ANN refers to the NN model and SVM refers to the

Table 5.1 Prediction accuracy of four classifiers

Classifier Linear reg. Logistic reg. ANN SVM

Dataset 1 0.624 0.612 0.612 0.611

Dataset 2 0.622 0.625 0.635 0.628

Dataset 3 0.611 0.613 0.618 0.616

Average 0.619 0.616 0.621 0.618

SVMs. Dataset 1 contains high-frequency data from 2011 Mar 7th to 11th as a

training set and data from 2011 Mar 14th to 18th as a test set. As rolling-over

the datasets, dataset 2 contains data from 2011 Mar 14th to 18th as a training

set and data from 2011 Mar 21st to 25th as a test set. Dataset 3 has the training

data from 2011 Mar 21st to 25th and the test data from 2011 Mar 28th to Apr

1st. This rolling-over of datasets is presented in Figure 5.1.

Table 5.2 Virtual trading returns (in percentage)

Classifier Base Linear reg. Logistic reg. ANN SVM

Dataset 1 6.28 79.44 75.70 73.52 69.92

Dataset 2 3.54 31.80 31.93 35.47 33.67

Dataset 3 6.88 29.42 29.89 30.85 29.80

Average 5.57 46.88 45.84 46.61 44.46
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Figure 5.1 The dataset separation with rolling-over.

The virtual trading based on these learning models results in the returns

shown in Table 5.2. These returns from the learning models are much higher

than the baseline, a simple buy-and-hold strategy. However, these results in

Table 5.2 did not consider the transaction cost. Since the trades in Son et al.

(2012) were conducted every one minute, the transaction cost can affect the re-

sult significantly. For example, if transaction cost for each transaction is 0.3%,

which is the transaction tax rate of Korean stock market, the cost becomes

about 506% per a week even with neglecting the compound calculation. There-

fore, predicting transaction costs at a certain market situation is important for

the maximization of the returns especially for the high-frequency trade using

the developed technologies.

5.3.3 Review of I-star model

In this section, we briefly review one benchmark parametric model, I-star model(Kissell,

2013; Kissell et al., 2003), which uses three input variables to describe the mar-

ket impact cost. The I-star model is composed of two separated equations cal-

culating I∗, a theoretical instantaneous cost, and MI, the market impact cost
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appeared in the real market, respectively. The equations calculate them are

given as follows:

I∗ = a1 · Sizea2 · V ola3 (5.21)

MI = b1I
∗ · POV a4 + (1− b1)I∗ (5.22)

where Size, V ol, and POV are input variables and a1, a2, a3, a4, and b1 are

parameters to be determined.

The first input variable of (5.21) and (5.22) is Size, the normalized order

size. According to Kissell (2013), it is represented as Size = Q/ADV , where

Q is the imbalance, the absolute value of difference between buy order and

sell order, and ADV is 30-day average daily volume. Thus Size implies the

magnitude of pressure from this order relative to the averaged daily volume.

The second input variable, V ol, is the volatility of the equity return and 30-day

averaged volatility was used in Kissell (2013). The last input variable, POV ,

is an acronym for percentage of volume and it reflects the market liquidity

condition. Kissell (2013) simply expressed POV = Q/(Q + V ) where V is the

expected volume traded for the period of time that the imbalance order Q is

executed. If the market is liquid or the imbalance trade order Q is executed

slowly, V becomes large and thus POV becomes small. Small POV results in

small MI value so the market impact cost will be small when the market is

liquid.

The market impact cost in (5.22) is composed of two components, temporary

impact cost and permanent impact cost which are the first and last term in the

right hand side of (5.22) respectively. Since Size and V ol are used to calculate
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the value of I∗, they affect both the temporary and permanent part of the

market impact. However, the other input variable POV only appears in the

temporary impact part. This implies that the smaller POV , when the other

input variables are invariant, incurs the smaller market impact cost but this

effect is temporarily and the permanent impact to the market is independent

of the market liquidity condition.

There are several parameters that should be estimated. These parameters

can be determined with data sets, including input variable values and market

impact costs observed in the market, by general parameter estimation tech-

niques such as nonlinear optimization and grid search.

5.3.4 Data Description and Procedures

We describe the proposed procedure to calculate the market impact cost by

using nonparametric regression models with the example of single transaction

data of representative US stocks. The proposed nonparametric approaches can

also separate permanent and temporary costs with an appropriate selection of

input variables.

General procedures

First, we mention the general procedure to find market impact costs by using

nonparametric regression models before the descriptions of the simulation con-

ducted in the current paper. The whole procedure is classified into three stages:

data collection, data preprocessing, and cost analysis. Figure 5.2 represents the

summary of the whole procedure.

84



 Market variables: 
transaction size, price, 
daily volume, … 
 

 Nonmarket variables: 
market sentiment, 
news, accounting, 
investor type, … 

Data Collection 

 Data cleaning: 
outlier elimination, 
missing value 
imputation, … 
 

 Feature creation: 
normalized size, 
percentage of volume, 
moving averages, … 

Data Preprocessing 

 Model construction: 
neural networks, 
support vector 
regression, Gaussian 
processes, … 
 

 Estimation and 
Prediction 

Cost Analysis 

Figure 5.2 Summary of the general procedure of nonparametric approach for

market impact cost.

The main task at the first stage, data collection, is to gather necessary

data. Collecting non-traditional data outside of the market like news, reports,

opinions, and any other variables than may affect the price or liquidity can also

be useful as well as the traditional market variables because the nonparametric

models do not require any restriction on the data and the general procedure of

analyzing market impact costs using them will not be changed.

The gathered data at the first stage are preprocessed to make input variables

at the second stage. First, data cleaning processes like outlier elimination and

missing value imputation are conducted. Then, the input variables which will

be used for the nonparametric models are derived from these cleaned data.

At the final stage, nonparametric models to estimate and predict market im-

pact costs are constructed using input variables created in the previous stage.
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Using the constructed models, the diverse analysis of data-driven market im-

pact costs such as determining and permanent and temporary portion can be

conducted.

Data description

For the simulation of the proposed nonparametric approach, we gathered the

single transaction data of the stocks of US equity markets from Bloomberg

terminal for the period from 2014/06/02 to 2014/06/26. We selected 17 rep-

resentative firms which have large market capitals among each of S&P 500,

S&P MidCap 400, and S&Ps SmallCap 600 indices for large cap, mid cap, and

small cap firms respectively. The tickers of the selected firms are presented in

Table 5.3.

The collected transactions data are classified into three data sets, large cap,

mid cap, and small cap by their capitals and another data set all cap which

includes all transactions regardless of the market capital. For each size of capi-

tals, the number of collected transactions are about 15 million, 2 million and 1

million for large cap, mid cap, and small cap, respectively and thus all cap data

set has about 18 million transactions in total. The procedures in the following

sections will be applied commonly to all of those data sets.

Creating and bucketing input variables

We made three input variables, Size, V ol, and POV , which correspond to I-star

model(Kissell et al., 2003; Kissell, 2013) and one output variable, the market

impact cost. Since the I-star was originally applied to the daily-aggregated
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Table 5.3 Tickers of selected firms. 17 firms having large market capitals among

each of large, mid, and small cap indices by S&P are chosen.

Large cap Mid cap Small cap

AAPL ADS FNGN

XOM AMG TDY

GOOGL GMCR WST

GOOG TSCO DAR

MSFT MHK WWW

JNJ LKQ TYL

WFC HFC TTC

GE HSIC CGNX

CVX DDD QCOR

WMT PII CNC

JPM UA ENS

PG CHD MDSO

VZ BEAV LHO

IBM XEC VSAT

PFE JBHT MMS

T TRMB VDC

ORCL EQIX SF

transactions, we slightly modified the input variables suitable for the single

high-frequent transactions. First, we define the market impact cost, denoted by

cost, as

cost = side · log(pt/p0) · 104 (5.23)

where side is 1 if a trade is a buy-initiated trade and −1 if a trade is a sell-

initiated trade, p0 is a mid-price just before the trade, and pt is an executed
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price of the trade. Since cost is multiplied by 104, the unit of cost becomes basis

point (bp). The first input variable Size is the normalized trade size as follows:

Size =
Vt

ATV
(5.24)

where ATV is the average trade volume of the previous day. In the original

I-star model, the imbalanced trade size is normalized by 30-day average daily

volume since the trade size itself is daily=aggregated. Thus, to apply the single

transactions, we divide each trade size by the average single trade size of the

previous day. The second input variable V ol is defined as the 30-day volatility

and this is the same with the original I-star model since the volatility is the

characteristic of each stock, not related to the trade size or frequency. POV ,

the percentage of volume, in Kissell (2013) is defined as Q/V where Q is the

daily imbalanced size and V is the total trade volume of that day. A single

transaction may be affected by the market liquidity more locally rather than

the liquidity of the whole day. Thus we define POV for single transactions as

POV =
Vt

Vt(−τ, τ)
(5.25)

where Vt(−τ, τ) is the total traded volume from τ minutes before the trade to

τ minutes after the trade. According to the previous study(Frino et al., 2008),

we expected that the single transaction affects and is affected by the market

within about 15 minutes and thus we decided τ equals to 15.

After creating input variables, we made three dimensional bins of input

and bucketed the transactions into them. For each bin, Size has the value of

multiples of 0.01, i.e. 0, 0.01, 0.02, . . ., and V ol has the value of multiple of 0.05.
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POV has the values of multiples of 0.0002 for large cap data set and multiples

of 0.001 for the other data sets. Each transaction was bucketed to the bin which

has the nearest value. For example, a transaction from mid cap data set with

the input variables (Size, V ol, POV ) = (0.0137, 0.022, 0.0038) was put to the

bin having the values (Size, V ol, POV ) = (0.01, 0.02, 0.004). The output, cost,

of each bin is defined by the average cost of transactions belonging to the bin.

Finally, we selected bins containing enough number of transactions. The

criterion number will be different for data sets. We selected the bins containing

more than 20, 30, 60, 100 transactions and then the number of survived bins

are 2931, 3356, 5706, 5119 for small cap, mid cap, large cap, and all cap. If the

selecting criterion with 100 transactions, there remain 2721, 1627, and 1106

buckets for large cap, mid cap, and small cap, respectively. The sum of those

buckets is 5454 and it does not exceed the number of selected buckets from the

all transactions, 5119. Therefore, we can expect that the selected buckets from

all cap data are mostly made up with the buckets from transactions of each

capital size group.

Analyzing market impact costs

To the nonparametric machine learning models to the bins of transactions, we

set 70% of survived bins as the training set the rest of 30% as the test set for

each data set. To find appropriate parameter sets of nonparametric models, we

used 10-fold cross validation for the training set. After finding the parameter set,

each model was retrained for the whole training set with the chosen parameter

set and applied to the test set. As a parametric benchmark, we used I-star
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model with the same data sets. As described in section 5.3.3, I-star model also

requires to find some parameters. We found the parameters for I-star model by

grid search and 10-fold cross validation of the training set and applied it to the

test set as the same with the nonparametric models.

5.3.5 Simulation results

First, we applied the nonparametric machine learning models and the bench-

mark parametric model, I-star model, to the selected bins of each data set.

We used four different measures, mean absolute error (MAE), relative MAE

(RMAE), root mean squared error (RMS), and relative RMS (RRMS), to esti-

mate the errors of the model. The summarized results are shown in Table 5.4

through 5.7. NN, BNN, SVR, GP, RVM and I-star refer to results of NN, BNN,

SVR, GP, RVM, and I-star model, respectively.

Through Table 5.4 to 5.7, we can notice that the nonparametric approach

fits the data distribution better than the parametric benchmark with the same

input features and instances as we expected. However, the performances of non-

parametric models were also different among the models. For example, BNNs

reduced the errors from 7.27% to 43.00% relative to I-star model but SVR

reduced the errors just from -0.005% to 15.03%. This phenomenon is more

clarified by Figure 5.3 which represented the errors in the tables above.

We can easily find that the four nonparametric models, NN, BNN, GP, and

RVM show much better performances than the parametric benchmark while

SVR model performs slightly better than the benchmark and worse than the

other nonparametric models in general. In some cases like RMS for small cap
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Figure 5.3 Test errors of the nonparametric machine learning models and the

parametric benchmark. (a) small cap data set (b) mid cap data set (c) large cap

data set (d) all cap data set
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data set, SVR performs even worse than the benchmark model.

Table 5.8 Training and test time for GP and RVM. A unit for all values is

second.

GP RVM

Training time Test time Training time Test time

small cap 49.51 0.2321 2.1956 0.0263

mid cap 20.16 0.3112 0.6857 0.0368

large cap 65.46 0.4302 0.5840 0.0449

all cap 549.33 0.8611 7.5780 0.0651

RVM and GP have their Bayesian property in common, but the former is

sparse whileas the latter is not. The main advantage of sparse models is fast

computation compared to the non sparse models maintaining the comparable

performances. Table 5.8 shows the training and test time for two methods.

It is noticeable that both training and test time of RVM are much faster than

those of GP while those models showed comparable performances as represented

through Table 5.4 to Table 5.7, this is a typical result from the sparse and non

sparse models.

For RVM, we applied the active learning algorithm proposed in chapter 4 to

the training set of each data set with the parameters selected by 10-fold cross

validation above and the results are shown in Table. 5.9. Q1, Q2, and Q3 refer

to the first, second, and third querying strategies in section 4.3.2, respectively.

The results coincide the results in chapter 4. Active learning algorithms

except the second querying strategy showed better MSEs than the random
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selection, while using the whole data set as labeled showed the best performance.

The second querying strategy performs slightly better than the random selection

in the sense of mean MSEs but these results were not statistically significant,

while the results of the other two strategies were statistically significant with the

level of confidence α = 0.01. The number of relevance vectors for the results of

Active learning is much lower than those of the full RVM results and a slightly

higher than those of the results of random selections. The number of labeled

points, of course, were much less than the total number of input points.

5.4 Predicting Credit Default Swaps via Nonparamet-

ric Learning Models

5.4.1 Motivation

Credit market is one of the most important financial markets and has received

wide attention especially from the credit crisis in 2008. A default probability is

one of the typical measures to represent the credit risk of a firm or nation but

it is difficult to determine since many firms and nations, or obligors, are linked

by various contracts and obligations and thus a credit-related event, including

default, of one obligor may affects many other obligors. The default probability

is usually measured by the credit derivatives traded in the credit market because

their prices do not highly affected by the other factors than credit risk unlike

defaultable bond prices. For example, Bühler and Trapp (2009) showed that

the 95% of the credit default swap (CDS) spread stems from the credit risk

while only 4% from the liquidity. The mispricing of these derivatives can lead
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to misunderstanding of default probability. Also, credit estimation becomes the

core part of individual lending market which is one of famous areas of financial

technologies. Thus, accurate pricing for credit derivatives from the credit crisis

period has become an important consideration.

During the last two decades, many researches have been made to price credit

derivatives and their models can be categorized into two classes of models.

One class of models, called structural models, assume that a certain stochastic

process for the fundamental value of the firm and defines an event of default as

the fundamental value hits a predetermined barrier(Merton, 1974; Black & Cox,

1976; Finger et al., 2002). the other class of models, called reduced-form models

or intensity-based models, assume that the default is driven by an exogenous

factors and an event of default follows a Poisson process with a stochastic

intensity(Vasicek, 1977; J. C. Cox et al., 1985; Jarrow & Turnbull, 1995). There

have also existed a large number of studies that compared those models by the

predicted credit derivative prices(Jones et al., 1984; Ogden, 1987; Duffee, 1999;

Lyden & Saraniti, 2001; Eom et al., 2004; Bakshi et al., 2006; Gündüz & Uhrig-

Homburg, 2011) but there has not been a robust conclusion that a certain model

overwhelms the others for pricing and predicting credit derivatives traded in the

real market.

On the other hand, nonparametric learning models have extensively been

used to predict financial time series in recent years due to their flexibility which

fits the models to the data well. Most of those results have been focused on

the stock(W.-H. Chen et al., 2006; Son et al., 2012; Ticknor, 2013; Liao &

Chou, 2013) and its derivative markets(Hutchinson et al., 1994; Han & Lee,
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2008; S.-H. Yang & Lee, 2011; H. Park & Lee, 2012; H. Park et al., 2014) and

achieved accurate prediction results. However, relatively a few studies have been

conducted for the other markets including the fixed-income market(S. H. Kim &

Noh, 1997; Cao & Tay, 2003) and the foreign exchange market(Bhattacharyya

et al., 2002). For the credit market, most of studies using learning methods

have concentrated on credit rating analysis. Y.-C. Lee (2007) and K.-j. Kim

and Ahn (2012) used SVMs to classify the rating of firm and Z. Huang et al.

(2004) classified the rating of corporate bonds using both SVMs and ANNs.

For credit derivatives pricing, Gündüz and Uhrig-Homburg (2011) applied the

SVR (Drucker et al., 1997) to predicting one-dimensional output corresponding

five-year maturity CDS spread of one firm using the spreads of other firms

at the same moment called a cross-sectional design or using the past value of

spreads of the same firm called a time series design and compared it with those

of the Merton model (Merton, 1974) and the constant intensity model (Jarrow

& Turnbull, 1995). However, only one specific spread was used in prediction

although considering and predicting the spreads of other liquid maturities at the

same time are practically important and no advanced state-of-the-art machine

learning models other than SVR were used for comparison.

To our knowledge, no empirical studies have been made that prices and

predict the multi-valued CDS spreads using several nonparametric learning

models and even the earlier studies on other financial markets such as stocks

or options were made to determine and predict one-dimensional outputs for

its price values. In this chapter we aim to conduct a comprehensive study

that compares the predictive power of several nonparametric models using the
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multi-valued real CDS spread data from January 2001 to February 2014 as

well as those of different credit ratings. For our experiment, we applied four

well-known state-of arts nonparametric learning regression models (support vec-

tor regression(SVR)(Drucker et al., 1997), artificial neural networks(ANNs),

Bayesian neural networks(BNN), Gaussian processes(GPs) (Cressie, 1993; Ras-

mussen, 1996)), and relevance vector machine(RVM)(Tipping, 2001) to predic-

tion of six dimensional outputs consisting of CDS spreads with six different

maturities, 1, 2, 3, 5, 7, and 10 years. Also to verify the relative predictive per-

formance of nonparametric learning models, we’ve applied a benchmark para-

metric model, called constant intensity model (Jarrow & Turnbull, 1995) that

showed a better result than other parametric models consistently.

5.4.2 Structure of CDS

Protection 
Buyer A

Protection 
Seller B

A pays a fee for the protection from
default risk until maturity.

B pays the default payment 
if default occurs

Figure 5.4 The structure of CDS.

A simple structure of CDS (Schönbucher, 2003) is described in Figure 5.4

as a preliminary. Assume that a party A has a risky asset and wants to protect

itself from the default risk. If another party B wants to ensure A this protection,
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they may agree a CDS contract. By the CDS contract, A pays a fixed fee, called

premium leg, periodically until the default occurs or the contract matures and

B pays default payment, called protection leg, to A when the default occurs.

The amount of default payment is usually the same with the loss of A from

default. As a result, A gets a protection from a default risk while it maintains

the returns from the risk asset and B gets a fixed fee periodically.

Pricing the CDS spreads belongs to the multi-valued regression problem

since its output consists of several continuous variables, each of which corre-

sponds to a spread of one maturity with the same type. To price and predict

the CDS spreads, we next review one benchmark parametric model, called con-

stant intensity model (Jarrow & Turnbull, 1995) that showed a relatively better

result than other parametric models consistently and four state-of-the-art ma-

chine learning models that are known to have high flexibility and predictive

power: ANNs, BNNs, SVR, and GP regression. Each of these models is briefly

explained below.

5.4.3 Parametric Constant intensity model

Constant intensity model(Jarrow & Turnbull, 1995), used as a benchmark in

this section, is one of the widely used reduced-form models for credit deriva-

tive pricing. Reduced-form models generally assume that the default happens

stochastically and independently from market information thus they do not

assume any fundamental values unlike the structural models which assume a

fundamental asset value process of a firm. The process of default in the reduced-

form models is usually described as a Cox process(D. R. Cox, 1955), which is
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a Poisson process with a stochastic intensity. The intensity, or hazard rate, of

default process is defined as

λt = lim
δt→0

P (t < τ < t+ δt)

P (τ > t)δt
(5.26)

where P (τ ∈ B) denotes the probability that the default time τ is included in

a set of time B. Once the intensity process is defined, the default probability

density P (τ ∈ [t, t+ dt]) can be easily calculated as

P (τ ∈ [t, t+ dt]) = E[λte
−

∫ t
0 λsds]dt. (5.27)

In constant intensity model, the intensity process is defined as a constant,

i.e. λt = λ. Thus, the Cox process for the default becomes a Poisson process with

intensity λ and so the default time follows the exponential distribution with the

parameter λ. Thus the survival probability in this model simply becomes P (τ >

t) = e−λt and the premium leg and protection leg become as follows(Duffie &

Singleton, 2012):

Vpremium = F ŝ

N∑
i=1

e−(r(i)+λ)T (i)(T (i)− T (i− 1)) (5.28)

Vprotection = F (1−R)

N∑
i=1

er(i)T (i)(e−λT (i−1) − e−λT (i)). (5.29)

Equating two values above, we obtain the fair CDS spread in this model:

ŝ =
(1−R)

∑N
i=1 e

r(i)T (i)(e−λT (i−1) − e−λT (i))∑N
i=1 e

−(r(i)+λ)T (i)(T (i)− T (i− 1))
. (5.30)

and simply ŝ = (1−R)(eλ∆t−1)
∆t when the time interval T (i + 1) − T (i) = ∆t for

all i = 1, . . . , N .
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5.4.4 Design of experiments

Data description

We used daily CDS contract data obtained from MARKIT database. The whole

period of data set used is from January 2001 to February 2014. First, we elimi-

nated data by the type of currency and region. The only US dollar denominated

and Northern American contracts were used for the experiments. Then we se-

lected five representative firms for each implied rating, AA, A, BBB, BB, B,

and C. The implied rating is graded based on the five year CDS spread of the

firm. Also, any two firms having the same rating are not included in the same

industrial sector. For the CDS spreads we’ve used six different maturities, 1,

2, 3, 5, 7, and 10 years, since they are very liquidly traded credit derivatives

among several credit derivatives.

The statistics of the selected data are summarized in Table 5.10 and 5.11.

The spreads are represented as a percentage. Noticeably, data of most rating

groups have very high standard deviations and maxima. This is a typical feature

of the positively skewed data set and this coincides the highly positive skewness

values as shown in the tables. This positive skewnesses seem to be originated

from the high CDS spreads of the global financial crisis period.

Figure 5.5 shows the term structures of the mean and median spreads for

each rating group. In the graph of mean spreads, we can see that the spreads

decrease as the implied rating improves when the maturity is fixed except for

the group of BBB rating. The reason for this exception is that the mean value is

sensitive to some large values. Especially, Ford Motor Company in the group of
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Table 5.10 Basic statistics of the selected data set of the AA to BBB rating

groups. The spreads are represented as a percentage (100 bp).

Rating Statistics
Maturity

1Y 2Y 3Y 5Y 7Y 10Y

AA

mean 0.3705 0.4424 0.5077 0.6418 0.7211 0.8081

std.dev. 0.6938 0.6909 0.6532 0.6446 0.6292 0.6173

min 0.0140 0.0223 0.0305 0.0574 0.0825 0.1120

median 0.1572 0.2316 0.3035 0.4410 0.5470 0.6544

max 8.4001 7.8672 7.7486 7.3746 7.0579 6.8820

skew 6.2316 5.7746 4.9098 4.1485 3.9504 3.7062

A

mean 1.1168 1.1935 1.2925 1.4633 1.5205 1.5799

std.dev. 3.4282 2.9976 2.8149 2.4867 2.2196 2.0047

min 0.0110 0.0200 0.0381 0.0677 0.0900 0.1023

median 0.3021 0.4304 0.5712 0.8129 0.9392 1.0560

max 67.7230 53.0722 45.6853 38.1119 33.2684 29.1860

skew 8.9471 7.6979 6.9729 6.2172 5.7942 5.4023

BBB

mean 3.2994 3.5232 3.6397 3.7565 3.7107 3.6576

std.dev. 12.0486 11.1026 10.2291 9.2389 8.5481 7.9098

min 0.0447 0.0752 0.1000 0.1800 0.2117 0.2516

median 0.6347 0.7921 0.8928 1.1566 1.2384 1.2909

max 134.238 129.014 123.176 117.764 114.133 108.237

skew 7.4621 7.1876 7.0362 7.0393 7.1650 7.2775
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Table 5.11 Basic statistics of the selected data set of the BB to C rating groups.

The spreads are represented as a percentage (100 bp).

Rating Statistics
Maturity

1Y 2Y 3Y 5Y 7Y 10Y

BB

mean 2.1716 2.4243 2.6317 2.9900 3.0781 3.1377

std.dev. 3.8042 3.4495 3.1998 2.9326 2.7774 2.6447

min 0.0369 0.0658 0.0951 0.1730 0.2100 0.2773

median 0.7279 1.1917 1.5603 2.1566 2.4054 2.6094

max 58.6189 37.7039 34.7189 29.4581 26.3604 22.7197

skew 4.4169 3.3698 2.8427 2.1328 1.8674 1.6544

B

mean 2.6014 3.3860 4.0913 5.0095 5.1440 5.2297

std.dev. 2.2829 2.6063 2.8358 2.9178 2.7293 2.5829

min 0.0950 0.3750 0.4500 0.7519 0.7537 0.8345

median 1.8617 2.7500 3.4869 4.6540 5.0072 5.2866

max 16.0751 18.0306 17.9076 18.3501 16.7750 15.2661

skew 1.5652 1.5299 1.3985 1.0524 0.8066 0.6073

C

mean 10.95254 10.9582 10.8783 10.7015 10.2037 9.8036

std.dev. 33.4680 29.4195 25.8971 22.8022 20.5104 18.7787

min 0.0489 0.0857 0.1906 0.3719 0.5518 0.7164

median 2.8764 3.4114 3.9314 4.6025 4.6884 4.8191

max 393.177 429.800 402.680 397.940 267.801 239.643

skew 7.3444 7.3754 6.9731 6.9465 6.6013 6.5255
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Figure 5.5 The term structure of mean and median spreads for each rating

group. (a) mean spreads (b) median spreads
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BBB has very large maximum spreads values because the automotive industry

was one of the industries that had a very severe situation in the financial crisis

period. The graph of median spreads shows more typical structures than that

of mean spreads. The spreads decrease as the implied rating improves except

for the B and C grades when the maturity is greater than or equal to five years.

In addition, the spreads increase when the maturity increases in the graph

of median spreads while there are decreasing term structure graphs for some

implied rating groups in the graph of mean spreads.

Experimental procedures

We predicted the CDS spreads for six different maturities using the CDS spreads

of past 14 days and those past values are exploited as the input variables with-

out any manipulations. Since there are six values of CDS spreads, one for each

maturity, the total dimension of input variables is 84 and the total dimension

of target variables is 6. This structure of data object is displayed in Figure 5.6.

Then we divided the constructed data set into non-overlapping one-month sub-

periods. Since the period of the whole da ta set includes the contracts from

January 2001 to February 2014, 158 subperiods were constructed in total for

each firm.

For the prediction using nonparametric models, we used the roll-over strat-

egy as follows. First, train the model with the first subperiod and test the model

with the next subperiod. Repeating this process until the last subperiod is used

as the test set. This roll-over strategy is briefly summarized in Figure 5.7. This

roll-over strategy was also used to calibrate the parameters for the benchmark
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Figure 5.6 The structure of data set. Each instance has 84 input variables and

6 target variables.
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model. The parameters of the benchmark model were selected as optimal to

the train subperiod and applied to the test subperiod to measure the predic-

tion performance.

Figure 5.7 Roll-over prediction strategy of CDS spreads.

The parameters and other settings of nonparametric models were basically

the same with that of the parametric benchmark model explained above. For

ANNs and BNNs, the sigmoid function was used as an activation function except

for the last layer for which the linear function is used as an activation function.

For SVR and RVM, the radial basis kernel, K(x,y) = exp(−γ‖x − y‖2), was

used for the basis kernel function. GP used constant mean and covariance func-

tions with the Gaussian likelihood function for hyperparameters. The specific

values of parameters and other variables were selected from the train subperiod,

with an appropriate validation task, and applied to the test subperiod.

In addition, we applied three othre models: linear regression, ridge regres-

sion, and Cox-Ingersoll-Ross (CIR) model. For those models, the parameters
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were selected appropriately to one subperiod and the errors were measured for

the next subperiod with those parameters.

For measuring the performance, we took the average value of relative root-

mean-squared error (RMSE) of all test sets. The relative RMSE for each test

set is computed as

Rel. RMSE =

[
1

|D|
∑
t∈D

{
1

|M |
∑
m∈M

(
s(m, t)− ŝ(m, t)

s(m, t)

)2
}] 1

2

(5.31)

where D is the set of dates that the data set includes, M is the set of maturities,

s(m, t) is the actual spread value for the maturity m and date t, and ŝ(m, t) is

the predicted value. The weights for the different maturities and dates are set

to be all the same.

5.4.5 Experimental Results

For more analysis, we averaged the prediction results for each implied rating

group and this results are shown in Table 5.13 and Figure 5.8. For the averaged

results, BNNs showed the best performances for every group except AA-rated

one where GP performed the best. SVR did not show a significantly different

performance with the benchmark model (i.e. the constant intensity model) and

this result coincides with the previous research of (Gündüz & Uhrig-Homburg,

2011) that only considered one value CDS spread with 5 year maturity. Espe-

cially, SVR was worse than the constant intensity model in the relatively low

grade groups, BB and C, according to Figure 5.8. RVM performed well for high

grade firms but did not show good results for low grade firms. It was also worse

than the benchmark for C grade firms. In contrast, the other three nonparamet-
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Figure 5.8 Averaged relative RMSE of predicted CDS spreads for each implied

rating group.

ric models showed much better prediction accuracy than the benchmark model

with not much difference among them for all the implied rating groups.

Figure 5.9 shows two examples of the CDS spread prediction, one from the

high grade firms and the other from the low grade firms. The first example is

selected as the spreads of AT&T Incorporation which belongs to the group of

AA rated firms. We can observe that the all nonparametric model predicted

well for this example. However, in the second example, the predicted spreads

of H&R Block Incorporation which belongs to the group of BB rated firms, it

is obviously presented that SVR performed worse than the other models.
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Figure 5.9 Examples of the term structure of predicted spreads. Original refers

to the actual spread from the market. (a) T from AA rating group (b) HRB

from BB rating group.
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Figure 5.10 Averaged relative RMSE of predicted CDS spreads for the global

financial crisis period.

Additionally, to compare the predictive performance of the models in finan-

cial crisis, we applied the prediction models to the global financial crisis period

from 2007 to 2009. The results are shown in Figure 5.10. The nonparametric

models except the SVR consistently showed significantly better performances

than the benchmark model. However, SVR performed worse than the bench-

mark even for the high grades unlike the moderate preiod. In the crisis period,

CDS spreads of most firms increased sharply thus even the high grade firms

might have large spread values than the low grade firms of the moderate pe-

riod. Thus, SVR which showed bad performances for low grade firms in the
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whole period did not forecast well even for the high grade firms in the crisis

period. Therefore, SVR might not be useful in predicting the credit risks of

low-rated firms or in making forecasts during a crisis when the credit risks of

most firms are large.

5.5 Chapter Summary

In this chapter, we conducted an empirical study on the predictive perfor-

mance of nonparametric machine learning models for market impact costs and

CDS spread prediction. This study has several features. First, five state-of-arts

nonparametric machine learning models including ANNs, BNNs, SVR, GP re-

gression, and RVM have been compared to verify their performances to predict

market impacts and CDS spreads with a benchmark parametric model whereas

the previous studies were usually focused on parametric models or additional

one nonparametric model. Second, the data set used in this study is very ex-

tensive. For the market impact prediction, the total number of transactions

exceeds 18 million. 17 firms were selected from each indices of large, mid, and

small cap firms, while the previous studies mostly focused on the large cap

firms. The market impact prediction in this chapter used independent variables

from single transactions thus it has advantages to be applied to technological

high-frequency trades compared to the previous studies analyzing large size

trades. The active learning model developed in chapter 4 was also applied to

this task. For the CDS spread prediction, the data set contains daily contract

data from January 2001 to February 2014 including the global financial crisis
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period. Also, the data sets for two applications in this chapter contain various

kinds of firms. CDS spreads of various rating of firms, from AA to C, were

used for the prediction whereas most of the earlier studies focused on AA or

A ratings. Finally, the prediction for the CDS spreads with different maturities

were conducted simultaneously, i.e. the multi-valued CDS spreads, not just the

spread of the one maturity since it is very important to analyze the spreads of

different maturities at a specific time for any firms for market users.

As a results of this study, most nonparametric machine learning models pos-

sibly except the SVR and the RVM outperformed robustly than the benchmark

parametric models for both tasks. Especially, BNNs showed the best perfor-

mances in usual, whereas SVR and RVMs sometimes performed worse than the

benchmark model.

There are still remaining possible tasks that can be improved by the non-

parametric learning approaches. For example, the path-dependent multi-asset

derivative pricing is one of difficult task for the existing parametric models. The

learning models can help to solve this problem. As mentioned, one of the ad-

vantage of learning models is they can take any variables as input values. Thus,

including derived variables from the original variables or non-market variables

like news or text data can also improve the results of the tasks conducted in

this chapter.
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Chapter 6

Conclusion

6.1 Summary of research

As an era of big data arises, sparse learning models are explored again since

they requires both small storage space and computational time with the compa-

rable performances. In this dissertation, we developed two novel sparse learning

models using ARD prior distribution and applied both sparse and non sparse

learning models to financial problems to improve the estimation and prediction

performances.

In chapter 3, we propose a sparse support-based clustering method whose

support function is represented by a small number of kernel basis vectors. The

proposed method applied the ARD prior and the variable GP noise to the GP

regression model to build a sparse support function. The method assigns the

hypothetical output values, which are not directly related to the cluster labels,

of the clustering data sets to obtain a tractable likelihood function in the GP

regression model to determine hyper-functions and hyper-parameters efficiently.

The rigorous theoretical background for constructed support function can in-

deed estimate the support of the given data distribution is also given in addition.
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The proposed method has several features compared with the findings of previ-

ous studies on support-based clustering methods. First, the constructed support

function is represented by a significantly smaller number of kernel center points

than the other methods. Second, the kernel center points are automatically se-

lected from the given data points during the training process and can represent

the rest of the data, playing a similar role as representative points or exem-

plars. Third, the simple nearest neighbor method can naturally be used as the

labeling method to boost the labeling in the training phase as well as the clus-

tering in the test phase. Finally, the operability of clustering and characteristics

explained previously were verified through several experiments including some

benchmark and real clustering data sets, image segmentation, and handwritten

digits by determining its representative data.

Then, we develop the novel active learning method for transductive sparse

Bayesian regression in chapter 4. We first propose a transductive and general-

ized version of RVM in which the relevance vectors of the constructed model

are selected from the unlabeled data points as well as the labeled data points.

Next, we propose three querying strategies for the active selection of the la-

beled point set using only the relevance vectors automatically obtained from

the developed model, thereby making an additional process for active learning

unnecessary. The proposed active learning algorithm is completed by repeating

the two previously-mentioned procedures until the model converges or one of

the stopping criteria is satisfied. The proposed method outperformed the ran-

dom selection algorithm for both artificial and real data sets, whereas it did

not perform well compared with the full RVM model that used the whole data

120



points as labeled. The three strategies showed different characteristics when

applied to the real data sets. The first querying strategy, querying all unlabeled

relevance vectors, and the last querying strategy, querying the farthest relevance

vector, showed significantly small MSEs and standard errors but they required

a large number of labeled points to converge. The second strategy, querying

the most uncertain relevance vector, converged with a small number of labeled

points, which means that the labeling cost can be minimized, while MSEs and

standard errors from this strategy were higher than those of the other strategies.

Finally, in chapter 5, we applied the state-of-the-art learning models includ-

ing sparse kernel machines to two financial problems: predicting the market

impact costs and the credit default swap spreads. A market impact cost, one of

the implicit transaction cost, is a transaction cost caused by the price difference

between one before the transaction and one of actual execution. Since there had

not been we exploited learning models to predict the market impact costs, we

tried to estimate and predict the market impacts of equity market. In addition

to the learning models, we chose and applied one parametric model to single

transaction data of US stock markets. In this study, we used single transaction

data from the firms belonging to large, mid, or small cap index and analyzed

them both separately and altogether, while the previous studies usually focused

on the trade of large cap firms. Credit default swap is the most liquidly traded

credit derivative, which is an insurance contract between one party holding a

risk asset and its counterparty ensuring the compensation when the default of

the risk asset occurs. Also for these credit default swaps, there had not been

a research result of applying several machine learning methods and comparing
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the result among one another. We applied several machine learning methods

and one parametric benchmark model to predict spreads of daily CDS contracts

from 2001 to 2014. For both tasks, the machine learning models showed bet-

ter performances than the parametric benchmark models. In addition, for the

market impact prediction, we applied the active learning algorithm developed

in chapter 4 gained the results that coincide the results for other data sets in

chapter 4.

6.2 Future Work

For each topic included in this dissertation, there are several directions for fur-

ther research to improve the proposed methods and their results, and investigate

the related research topic.

Possible future work to imporve the proposed sparse support clustering

method proposed in chapter 3 are as follows. First, in case that the precision of

clustering is important, more sophisticated labeling algorithms, such as com-

plete graph approach(Ben-Hur et al., 2002) and dynamic system approach(J. Lee

& Lee, 2005, 2006), can be used for the proposed support function rather than

the näıve nearest neighbor approach which concentrates on reducing labeling

time. Next, although the selected parameters σ and L result in variation in the

shape and number of clusters, determining appropriate parameters is sometime

difficult. If a method or criterion for selecting the parameters is recommended

for the proposed methods as for previous methods(K.-P. Wu & Wang, 2009),

it may be helpful to use the proposed method. Finally, the number and dimen-
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sion of the data set can increase in the application to some real data sets. If the

algorithm of the proposed method is parallelized, then the proposed method

can be effectively applied to large data sets with powerful parallel computing

methods that have been developed recently.

There exist also possible ways to improve the active learning algorithm

in chapter 4. First, the user should select the initial set of labeled points. In

this paper, we randomly selected three points from given data points and the

method worked successfully. However, other sophisticated sampling methods,

including clustering approaches, may improve the performances of the first few

iterations. The stopping criterion is another issue that the user must decide on.

It is difficult to predict when the model converges, however, we observed that

the proposed methods performed significantly better than the random selection

after several iterations, and the MSEs at a few iterations before convergence

were comparable to that at convergence. Thus, it seems that an earlier stopping

than the optimal model may have prevented the occurrence of severe problems.

Finally, other querying strategies which use the information criteria can be

developed. Similar to the suggestions of previous studies(Zhang & Oles, 2000;

Schein & Ungar, 2007; Settles & Craven, 2008), a querying strategy based on

information theory can be applied to the transductive GRVM developed in

this study in order to construct another active learning algorithm for sparse

Bayesian regression.

As mentioned in chapter 5, one of the advantage of learning models is they

can take any variables as input values. Including derived variables from the

original variables or non-market variables like news or text data can also im-
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prove the results of the tasks conducted in this chapter. There are also still

remaining unsolved financial tasks that can be improved possibly by the non-

parametric learning approaches. For example, the path-dependent multi-asset

derivative pricing is one of difficult task for the existing parametric models. The

combination of learning models and traditional solutions for the problem like

Monte Carlo method can help to solve this problem.
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국문초록

빅데이터 시대가 도래하면서, 데이터 분석을 위해서는 시간과 저장 양쪽 측면에서

더욱 효율적인 알고리즘이 요구된다. 축약 학습 모델 (sparse learning model) 은

데이터의 분포를 잘 설명하는 기존 모델들의 능력을 유지시키는 동시에, 이러한

요구를만족시킨다.따라서,축약학습모델은 2000년대중반부터널리연구되었으

며, 금융을 포함한 다양한 산업 분야에서 발달된 데이터 저장 기술이 적용되면서,

이러한 축약 모델이 기존에 존재하는 파라미트릭 모델에 비하여 더 정확하고 효율

적인 모델을 구성할 가능성이 생겨났다.

본 연구에서는, 커널 방법론과 ARD (automatic relevance determination) 사

전 분포를 가지는 두 축약 학습 모델을 개발하였다. 또한, 축약 모델과 완전 (full)

모델들을 포함한 다양한 학습 모델들을 두 가지 금융 기술과 관련된 문제에 적용

하였다.

첫 번째 모델은 ARD 사전분포를 가지는 GP (Gaussian process) 회귀 모형과

가변 GP 노이즈로부터 유도된 서포트 함수를 가지는 축약 서포트 기반 군집화

모델이다. 제안된 방법론은 기존 연구에서 제안된 서포트 함수보다 더 적은 대표

벡터로표현되는특징을가지고있다.제안된방법론의또다른특징으로는이러한

대표 벡터들이 학습 기간 동안 자동으로 학습 데이터의 중앙에 위치하도록 선택이

되는 것이다. 다양한 군집화 문제의 시뮬레이션 결과를 통하여 제안된 방법론이

위와 같은 특징들을 이용하여 레이블링 시간을 유의미하게 감소시키는 것을 확인

하였다.또한제안된방법론을이용하여선택된손으로쓴숫자들의대표적인형태

또한 제시되었다.
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두번째모델은축약베이지안회귀분석을위한능동학습 (active learning)알

고리즘이다. 능동 학습은 기계학습의 크고 중요한 분야 중 하나로, 만들어진 학습

모델로부터 능동적으로 선택된 상대적으로 적은 수의 레이블 된 데이터를 이용하

여 정확한 학습 모델을 만드는 것을 목표로 한다. 이러한 능동 학습은 일반적으로

레이블을 얻는 비용이 큰 경우 요구된다. 본 연구에서는 두 세부 단계를 통하여

본 알고리즘을 제안하였다. 첫째로, 대표 벡터를 레이블이 된 데이터 뿐 아니라,

레이블이 되지 않은 데이터로부터도 선택하는 변환적 (transductive) 이고 일반화

된 RVM (relevance vector machine) 회귀 모델을 개발하였다. 다음으로, 개발된

모델을 통하여 자동으로 선택된 대표 벡터들을 이용하여 레이블 될 데이터들을

능동적으로 선택할 수 있는 세 가지 조회 전략을 제시하였다. 제안된 방법론은

여러 인공 데이터와 실제 데이터에 적용되었고, 대부분의 경우에서 임의 선택보다

통계적으로 유의미한 결과를 나타내었다.

학습 모델을 금융 데이터에 적용함에 있어, 본 연구에서는 시장 충격 비용과

신용 부도 스왑 스프레드의 예측에 집중하였다. 첫 번째 변수인 시장 충격 비용은

기존에 학습 모델을 통하여 분석된 적이 없으며, 두 번째 변수인 신용 부도 스왑

스프레드는소수의연구가진행되었으나,그중다양한최신학습모델을적용하고

그들을 서로 비교하는 연구는 존재하지 않았다.

시장 충격 비용 예측의 경우, 미국 주식시장의 단일 거래 데이터에 SVR (sup-

port vector regression), RVM의 두 축약 학습 모델과, 인공신경망 (neural net-

works),베이지안인공신경망,그리고 GP의세완전모델을적용하여기준파라미

트릭모델과함께서로의결과를비교하였다.챕터 4에서제안된능동학습방법론

또한 시장 충격 비용을 예측하기 위해 적용되었다. 결과적으로, SVR을 제외한 모

든 학습 모델이 파라미트릭 기준보다 좋은 성능을 보였고, 능동 학습 또한 모든

데이터를 전부 사용한 축약 베이지안 회귀 모델보다 훨씬 적은 수의 레이블 된
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데이터로 임의선택보다 좋은 결과를 나타내었다.

신용 부도 스왑 스프레드 예측의 경우, 위와 같은 다섯 학습 모델과 더불어 하

나의 파라미트릭 기준 모델을 기업들의 신용 위기가 매우 컸던 금융 위기 기간을

포함한 2001년부터 2014년까지의일간신용부도스왑스프레드에적용하고그결

과를 비교하였다. 이번 문제에서도, SVR은 좋지 않은 결과를 나타내었으며, 특히

신용위기가높은경우더좋지않은결과를나타내었다. RVM은 SVR보다는훨씬

좋은 결과를 보였으나, 다른 완전 모델들에 비하여는 좋지 않은 결과를 보였다.

주요어: 군집화, 능동 학습, 축약 베이지안, 금융 기술

학번: 2012-30287
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