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Abstract

Periodic Relative Motion for Spacecraft Formation

in Elliptic Orbit and Its Application to

Formation Reconfigurtion

Jonghee Bae

Department of Mechanical and Aerospace Engineering

Seoul National University

Spacecraft formation flying has been widely investigated due to increasing

interests in designing clusters around a planet and its applications including

rendezvous and maneuver. Multiple spacecraft in formation have many ad-

vantages such as cooperative mission execution, reduced cost, flexible config-

uration, and robustness. Nonlinear relative motion and periodicity condition

in elliptic orbits are required to achieve the precise and efficient formation

flying and reconfiguration. This dissertation presents periodic relative mo-

tion, formation pattern analysis, and spacecraft maneuvers for the formation

reconfiguration in elliptic reference orbits.

The major achievement of this study is to present a general periodic con-

dition which guarantees the bounded relative motion of spacecraft formation

flying in elliptic orbits. The periodic condition of the circular orbit is easily

obtained from the analytic solution of the Hill-Clohessy-Wiltshire equation.

For the elliptic orbits, however, the periodic condition is restrictively described

in near circular orbits and elliptic orbits at a specific initial position by the

Tschauner-Hempel equation due to complex and coupled relative motion dy-

namics. In this dissertation, the general periodicity condition is derived using
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two analytic approaches: the first one based on the state transition matrix,

and the second one based on the energy matching condition. Furthermore,

the offset condition is investigated to make the leader spacecraft locate at the

center of the formation geometry. As a result, the periodic relative motion is

developed to remove the secular drift and the offset in the along-track direc-

tion. Numerical simulations verify that this periodic condition covers partial

periodicity condition of previous studies. The periodic relative motion pro-

vides a substantial advantage in the sense that an additional correction is not

required with respect to the initial position of the follower spacecraft.

The second accomplishment is to design the formation geometry and to

analyze the formation pattern in the elliptic reference orbit. From understand-

ing the natural formation geometry, the spacecraft can remarkably reduce the

fuel consumption. The formation design method for circular or nearly circular

orbits has been described; however, the formation design and analysis in the

elliptic orbits have not been extensively studied due to the nonlinearity and ec-

centricity. In this dissertation, two formation geometries in the elliptic orbit are

designed by considering natural periodic relative motion: radial/along-track

plane formation and along-track/cross-track plane formation. The formation

patterns including the relative trajectory, velocity, and formation radius are

analyzed with respect to the variation of eccentricity. The eccentricity of the

reference orbit is a critical factor influencing on the variation of formation

radius between two spacecraft in the relative motion.

With the understanding of formation flying in elliptic orbits, the spacecraft

maneuver problem for the formation reconfiguration is investigated consider-

ing two types of control input: continuous control input and impulsive control

input. The formation configuration should be changeable according to the

mission requirements and environments during the operation. The follower

spacecraft changes the formation radius or the formation geometry with re-
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spect to the leader spacecraft, while minimizing the control effort. For the

continuous control input, the optimal control problem in the relative motion

is solved by the Gauss pseudospectral method, where the initial and final rela-

tive positions and velocities are specified. The optimal trajectories between the

radial/along-track plane and the along-track/cross-track plane are provided

using the minimum energy and minimum fuel cost functions. For the impul-

sive control input, the Lambert’s problem is modified to construct the transfer

problem in the relative motion, given two position vectors at the initial and

final time and the flight time. In addition, the minimum velocity change for

transferring orbits is designed through the grid search.

The results of this research establish that the periodic relative motion

is presented at an arbitrary true anomaly in the elliptic reference orbit, the

formation geometries are designed and analyzed to reflect the eccentricity

of the reference orbit, and the formation reconfiguration is described using

two control input types. These results can provide the effective and efficient

formation flying in elliptic reference orbits.

Keywords: Spacecraft formation flying, Relative motion dynamics,

Periodicity condition, Formation design and analysis,

Formation reconfiguration, Elliptic orbit

Student Number: 2005–23437
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Chapter 1

Introduction

1.1 Background and Motivation

Many recent studies have focused on spacecraft formation flying because of

the growing interest in designing clusters around a planet. Flying multiple

spacecraft in a formation has many advantages in terms of flexibility, reli-

ability, financial benefits, and a high image resolution compared to flying a

single large spacecraft [1, 2, 3, 4]. For instance, the formation consisting of

many satellites can construct a virtual antenna to improve the image reso-

lution by sharing the individual measurements, and then it can provide the

Earth mapping and scientific data with high resolution. On the other hand,

if a single large satellite has a serious problem such as a hardware/software

fault, a given mission cannot be performed. In contrast, even though a failure

occurs in one of multiple spacecraft in a formation, the given mission can be

completed using the remaining spacecraft.

The autonomous formation flying has been developed for future space

missions in many countries. National Aeronautics and Space Administration

(NASA) launched the Earth-Observing 1 (EO-1) in 2000, which flew in a

formation with Landsat 7 and demonstrated basic technologies of spacecraft

1



formation flying [5, 6]. NASA provided the StarLight (ST) series for measure-

ments of the Earth’s magnetic field, proposed the Terrestrial Planet Finder

(TPF) to construct a telescope system for discovering the terrestrial plan-

ets such as the Earth [7], and designed the Micro-Arcsecond X-ray Imaging

Mission (MAXIM) consisting of 34 spacecraft to obtain the black hole image

[8]. Moreover, the Magnetospheric Multiscale (MMS) Mission consisting of

four spacecraft was proposed to observe the Earth’s magnetosphere and its

dynamic iteration with the solar wind by NASA [9]. The Air Force Research

Laboratory (AFRL) planned the TechSat 21 program to perform the space-

based radar for ground moving target indication and geolocation using several

micro-satellites [10, 11]. European Space Agency (ESA) launched the Clus-

ter II mission in 2000 and provided the results on magnetospheric dynamics

[12, 13], designed Darwin to search for Earth-like planets [14], and designed

the X-ray Evolving Universe Spectroscopy (XEUS) mission consisting of two

spacecraft in formation to search for the first giant black hole [15]. In addition,

the A-Train is currently performing missions, which is a satellite constellation

by international collaboration between NASA and Centre National d’Etudes

Spatiales (CNES), consisting of five satellites to build high-resolution three-

dimensional images of the Earth’s atmosphere and surface [16]. The Laser

Interferometer Space Antenna (LISA) was designed to develop a space-based

gravitational wave detector at low frequency, which is a joint project between

NASA and ESA [17]. PROBA-3 by ESA and PRISMA by the Swedish Space

Corporation employ a pair of two satellites to test the technologies of space-

craft formation flying [18, 19].

The dynamic motion of the spacecraft in formation is described by the

relative motion between two spacecraft. The Hill-Clohessy-Wiltshire (HCW)

equation is widely used to express the relative motion near Keplerian orbits in

the Local Vertical Local Horizontal (LVLH) frame [20, 21]. To use this equa-
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tion, it is assumed that the reference orbit is circular, the Earth is spherically

symmetric, and the relative distance between two spacecraft is much smaller

than the distance between the spacecraft and center of the Earth. The HCW

equation includes linear constant coefficients, which makes it simple to design

a controller to keep a formation or transfer to another orbit. However, these

assumptions are not valid when the leader spacecraft has an elliptic reference

orbit. To deal with this limitation, the effect of eccentricity of the reference

orbit should be considered in the relative dynamics. The Tschauner-Hempel

(TH) equation describes the relative dynamics in an elliptic orbit, which con-

siders a true anomaly instead of time as an independent free variable [22].

Also, the differential orbital elements are used to express the relative motion

between two satellites [23, 24, 25, 26].

The periodic relative motion of the spacecraft reduces the fuel consump-

tion by satisfying a periodicity condition for formation flying. With the under-

standing of natural relative motion between spacecraft, the periodic condition

eliminates the secular drift of the relative motion and relieves an additional

control input to adjust the orbit. In the circular reference orbit, the periodic

condition can be determined from the analytic solution of the HCW equation.

Six initial conditions in the analytic solution define the relative motion of a

follower spacecraft with respect to the leader spacecraft in the LVLH frame,

and therefore the term contributing to the secular drift can be selected to

be zero. This resulting condition is the periodic condition in a circular orbit

[27]. The periodic condition in a circular orbit, however, cannot guarantee

the periodic relative motion in the elliptic reference orbit. To deal with this

problem, the periodic condition in the elliptic orbit has been developed. The

perturbation method was used to obtain the bounded relative motion consid-

ering the eccentricity of the reference orbit as a perturbed term in the analytic

solution of the HCW equation [28]. The periodic condition at a specific true
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anomaly such as perigee and apogee was also presented using the state transi-

tion matrix [29]. These results only guarantee the bounded relative motion in

near circular reference orbits and elliptic orbits staring at perigee and apogee.

Therefore, the general periodic condition is required to remove the secular

drift at an arbitrary true anomaly in the elliptic reference orbit as well as in

the circular reference orbit.

The spacecraft formation flying requires long time spans of the orbit and

less fuel consumption to maintain the desired formation. For this reason, the

formation design and analysis become an important research area. In a circular

reference orbit, many studies have been investigated to design the formation,

and the design procedure of several formation geometries is presented [30]. For

the elliptic reference orbit, the formation design method has been developed

as the science-based missions; however, the formation design and analysis for

the elliptic reference orbit have not been sufficiently studied yet, because the

relative dynamics in the elliptic reference orbit are more complicated than

that in the circular reference orbit. As a result, analytic investigation on the

formation pattern and design in the elliptic orbit is required.

During the spacecraft operation, the formation reconfiguration may be

needed to change the formation radius or geometry according to the mission

requirements. For the formation reconfiguration, the follower spacecraft should

change the orbit with respect to the leader spacecraft, while minimizing the

control effort. Lots of works on the maneuver problem have been solved in

an inertial frame using the impulsive control input as well as the continuous

control input, which include as the Hohmann transfer consisting of the two-

impulse maneuver in the circular orbit [23, 31]. The formation reconfiguration

problem, however, is different from the traditional maneuver problem, be-

cause the formation of multiple spacecraft is expressed by the relative motion

with respect to the leader spacecraft, not a planet. Therefore, the traditional
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spacecraft maneuver problem should be modified to design the transfer orbit

trajectory of the follower spacecraft, where two relative position vectors and

the flight time in the local frame are specified.

In this dissertation, a general periodic condition and formation pattern

analysis are presented in an elliptic reference orbit. In addition, the maneuver

problem is solved to change the formation radius or formation type in the

relative motion. The main challenges addressed in this dissertation are as

follows:

• Investigate the general periodicity condition to make the relative motion

between two spacecraft periodic at an arbitrary position in the elliptic

reference orbit

• Design two formation geometries and analyze the formation patterns

with respect to the eccentricity and the true anomaly of the reference

orbit: radial/along-track plane formation and along-track/cross-track

plane formation

• Solve the maneuver problem for the given initial and final conditions

and the flight time in the local frame using two control input types:

continuous control input and impulsive control input

1.2 Literature Survey

The topics related to this dissertation are spacecraft relative motion dynamics,

periodic condition, formation design and analysis, and maneuver problem. The

previous works are described below.

Spacecraft relative motion dynamics

The HCW equation is widely used to describe the relative motion and to solve
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rendezvous and docking problems of satellite systems [20, 21, 27, 31, 32], which

is a simple model based on the linearized dynamics of the relative motion in

circular reference orbits. In this equation, it is assumed that the differential

gravity field is linear without any external perturbation, and the relative dis-

tance between two spacecraft is negligible compared with the distance between

the spacecraft and center of the Earth. The HCW equation is time-invariant,

which is a primary merit, and therefore the application of control is straightfor-

ward. However, the HCW equation has a limitation on expressing the relative

motion in Keplerian elliptic orbits due to the underlying assumptions regard-

ing nonlinearity and eccentricity, and thereby the formation relative motion

deviates from the analytic solution of the HCW equation.

The nonlinearity problem of the HCW equation has been treated by con-

sidering higher-order terms [33, 34, 35, 36], and the eccentricity problem has

been dealt with by using time or a true anomaly as a free variable. Vaddi et

al. considered the effects of the nonlinearity as well as the eccentricity of the

relative motion dynamics in an elliptical orbit and corrected the initial con-

ditions of the HCW equation [28]. Through the TH equation [22], which uses

a true anomaly of the reference orbit as a free variable, Carter obtained the

relative dynamics of the spacecraft formation in the elliptic orbit and derived

the analytic solution [37]. As a result, the relative motion with respect to the

true anomaly is commonly used to design a formation and control scheme for

the spacecraft formation flying [29, 37, 38, 39, 40, 41, 42, 43, 44].

The relative motion between two satellites can also be described using

differential orbital elements [45, 46]. Garrison et al. obtained analytical ex-

pressions of the relative motion in eccentric orbits using a geometric approach

[47], while Schaub studied the relative orbit geometry of the spacecraft for-

mation for a circular reference orbit as well as an elliptic reference orbit [24].

Jiang et al. presented the relative orbit geometry in unperturbed eccentric or-
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bits using the first-order relative position equations with the same semi-major

axes of two satellites [26].

Periodic condition

Using relative motion dynamics, many researchers have studied the initial

conditions for the periodic relative motion of the spacecraft formation flying.

The periodic condition can keep the bounded formation with little fuel con-

sumption. To obtain the periodicity condition, the secular drift term in the

relative motion should be eliminated. In the circular reference orbit, the ini-

tial conditions are simply chosen to remove the secular drift term from the

analytic solution of the HCW equation [27, 30].

In an elliptic reference orbit, much work has focused on the development of

the periodic relative motion. By correcting the analytic solution of the HCW

equation, Vaddi et al. obtained the periodic condition in the elliptic orbit

using the perturbation method [28], and Bond presented a stable solution

which does not have no error growth with the assumption that the reference

orbit is near circular [48]. Vadali et al. and Schaub and Alfriend described the

initial conditions considering J2 perturbation [49, 50]. For the periodic relative

motion, the state transition matrix has been also studied extensively [29, 42,

43, 44, 51, 52]. Melton presented a time-explicit solution for the elliptical orbit

by expanding the state transition matrix up to the second-order in terms of

eccentricity [43], and Broucke presented the state transition matrix which

propagates the relative motion for the rendezvous problem [44]. In Refs. [29,

51], the state transition matrix was used to obtain a solution for the linearized

relative motion based on the TH equation in eccentric orbits. Inalhan et al.

described the periodic conditions at perigee and apogee, and the optimization

problem was solved to compute the initial conditions at other positions with

those specific periodic conditions and the mission objectives as constraints

[29]. Gim and Alfriend described the state transition matrix using a geometric
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method [52].

On the other hand, the energy matching condition was used to find the

initial condition of the periodic relative motion, too. The specific energy of

an elliptic orbit is related to the semi-major axis, and the orbital period of

a spacecraft is also dependent on the semi-major axis [31]; if two spacecraft

have identical semi-major axes, then they have same orbital energy and pe-

riod. To maintain the bounded relative motion, the spacecraft in a formation

have equal orbital period, which means that their semi-major axes should

be identical. This is the energy matching condition for the relative motion

dynamics. Baoyin et al. described the relative motion of the spacecraft for-

mation flying and the periodic conditions considering the same orbital period

using orbital elements [46]. Based on the energy matching condition, Gurfil

dealt with a bounded motion problem and presented the initial conditions

[53]. Xign et al. corrected the initial condition of the HCW equation using the

energy matching condition and described the periodic relative motion [54].

In addition to the above studies, Sengupta et al. presented the periodic

relative motion by dealing with the second-order nonlinearities of the TH

equations in eccentric orbits [55], and Sengupta and Vadali studied the effects

of the eccentricity and the conditions for the bounded relative motion [56].

They also presented the relationship between the initial conditions and the

differential orbit elements. Jiang et al. presented the periodic condition using

the reference orbital element approach in the elliptical orbit without any per-

turbation [57]. Sabatini et al. described the natural periodic relative motion

using the numerical and analytical approaches, and found a special inclination

having minimum drift relative trajectories [58]. Bando and Ichikawa consid-

ered the periodic orbits in near circular orbits for the formation flying and the

reconfiguration problem [59].
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Formation design and analysis

The problem of the spacecraft formation design has intensively studied con-

sidering various space missions. Generally, the formation flying requires long

time spans of the orbit and less fuel consumption to maintain the desired

formation. As a result, formation design and analysis become a critical issue

when dealing with these requirements. Typical desired formation geometries

are in-track separation and projected circular formation in the circular refer-

ence orbit [60]; for example, the A-Train was designed to have in-track sepa-

ration. Sabol et al. presented a design method using the analytic solution of

the HCW equation and proposed four special formations: in-plane, in-track,

circular, and projected circular formation [30]. This method presented a sim-

ple analytical procedure for the formation design; however, it only provided

the spacecraft formation geometry for the circular reference orbit, not for the

general elliptical reference orbit.

The formation design in elliptic orbits has been extensively studied since

Carpenter et al. proposed the spacecraft formation flying missions for low

Earth orbit (LEO) and highly elliptical orbit (HEO), such as the Molniya

satellite formation which has a long observation time [9, 61]. In Refs. [62, 63],

the orbit initialization method was presented for a tetrahedron geometry, and

Zhang and Sun presented a set of closed-form solutions using the linearized

relative motion to design a formation in eccentric orbits [64]. Wang et al.

presented the initial mean orbital elements for the natural satellite formation

under the first-order geopotential perturbation [65]. Lane and Axelrad illus-

trated a formation design using the differential orbital elements of unperturbed

eccentric orbits [66]. Palmer and Halsall presented a natural formation design

based on an analytic model in near circular orbits considering the Earth’s

oblateness [67]. Xu et al. presented the passive and periodic formations at the

critical inclination to minimize the control efforts under J2 perturbation [68].
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Maneuver problem

The maneuver problem from one orbit to another has been under development,

since the problem determining the orbit trajectory is usually investigated us-

ing observation data. The goals of the traditional maneuver problem are to

change the orbit size or shape of a single spacecraft with respect to a planet

considering mission requirements, and to minimize the control effort during

the maneuver. For the spacecraft formation, on the other hand, the formation

can be reconfigured by increasing or decreasing the formation radius and/or

changing the formation geometry through the maneuver in the relative motion

with respect to the leader spacecraft. This transfer between two orbits can be

generally performed by continuous control input or impulsive control input.

Using the continuous control input, the optimal control problem has been

studied to find the optimal transfer trajectory where two position vectors and

velocity vectors at the initial and final time are specified. The optimal control

problem is solved by two approaches: indirect method and direct method. The

indirect method provides a solution of the optimal control problem, which sat-

isfies the first-order necessary conditions for the optimality according to the

calculus of variations and Pontryagin’s minimum principle [69, 70]. The pri-

mary advantage of the indirect method is a high accurate solution satisfying

the first-order optimality condition. In contrast, the indirect method has small

radius of convergence, and therefore good initial guess of unknown boundary

condition and state/costate variables is required. On the other hand, the opti-

mal control problem can be easily solved by the direct method, which includes

the collocation method and nonlinear programming problem [70]. The main

advantage of the direct method is larger radius of convergence than that of

the indirect method, and thus good initial guess of boundary condition and

state/costate variables is not required. However, the optimality conditions are

not considered, and therefore the solution of the direct method is less accurate
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than that of the indirect method. Lawden presented the primer vector the-

ory for the trajectory optimization [71], Prussing and Chiu used the primer

vector theory for the optimal rendezvous problem using multi-impulse [72],

and Jezewski and Stoolz described the trajectory for minimum-fuel consump-

tions with the constant thrust using the primer vector theory [73]. Based on

the HCW equation, Billik obtained the optimal rendezvous maneuvers using

a differential game approach [74], and Guelman and Aleshin studied the op-

timal bounded low-thrust rendezvous problem [75]. In addition, the optimal

low-thrust rendezvous was presented based on six orbital elements in Refs.

[76, 77], and Schaub et al. presented a feedback control law to keep the for-

mation of satellites using mean orbit elements [78]. The optimal rendezvous

problem in the elliptic orbit based on the TH equation was presented in Refs.

[37, 38, 40, 41, 79, 80, 81, 82]. Zanon and Campbell presented the optimal

low-thrust maneuver for the minimum time or fuel problem, and the optimal

planner for spacecraft formation flying based on the TH equation [83]. Palmer

obtained the solution of the optimal maneuver problem for the spacecraft

formation flying [84].

Much work on the trajectory optimization has been developed using the

direct method [85, 86, 87, 88, 89, 90]. The optimal guidance algorithm of the

spacecraft formation was described and applied to the MMS Mission and LISA

in Ref. [91]. The optimization problem of low-thrust reconfiguration maneuver

was studied for the spacecraft formation flying via the direct method in Ref.

[92]. Gong et al. presented a method for the formation configuration in the

eccentric orbit using the pseudospectral method [93], and Huntington and

Rao studied the optimal reconfiguration problem of the spacecraft formation

using the Gauss pseudospectral method [94]. Moreover, Wu et al. described

the optimal trajectory minimizing the fuel for the reconfiguration of spacecraft

formation using the Legendre pseudospectral method [95].
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The traditional maneuver problem of the spacecraft orbit transfer has been

solved by two-impulsive control inputs. The Hohmann transfer is well known as

two-burn minimum fuel transfer in the circular coplanar orbits [23, 31, 96]. For

the general two-impulse maneuver problem between two fixed position vectors

with the specified flight time, the transfer orbit can be determined by solving

the Lambert’s problem [31, 97, 98], and therefore the required velocity vectors

of the resulting transfer orbit can be calculated at the initial and final time.

Many researchers utilized the Lambert’s problem to obtain the transfer trajec-

tory between two orbits with respect to a planet [99, 100, 101, 102, 103, 104].

Won considered minimum-fuel and minimum-time orbit transfer problem in

two coplanar elliptic orbits [100]. Prussing considered the minimum-fuel im-

pulsive spacecraft trajectory through the multiple-revolution [101], and Shen

and Tsiotras studied the optimal fixed-time, two-impulse rendezvous problem

between two satellites in the coplanar circular orbit using multiple-revolution

Lambert’s problem [102, 103]. Thomas and Surka concerned the rendezvous

problem between two satellites in nonplanar eccentric orbits through the Lam-

bert’s problem [104], and Jiang et al. presented the two-point boundary value

problem which was solved by the Lambert’s problem for the formation of

satellites [105].

For the spacecraft formation, in addition to the above works, Tillerson

et al. presented the optimal trajectory using the linear programming (LP)

[106, 107], and Richards et al. used the Mixed-Integer Linear Programming

(MILP) for the trajectory planning subject to the collision avoidance [108]. In

Ref. [109], the spacecraft planning problem was formulated as minimum time

or fuel problem, and the reconfiguration of the spacecraft formation was stud-

ied using the generating function where the initial and final position vectors

and the flight time are specified in Ref. [110]. Vaddi et al. studied the formation

reconfiguration problem using the impulsive control based on Gauss’s varia-
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tional equation [111]. Ketema considered the optimal transfer problem using

two impulsive control inputs considering the relative motion of the spacecraft

formation [112].

1.3 Contribution

In this dissertation, several contributions are made especially for the periodic

relative motion and maneuver problem for spacecraft formation flying in the

elliptic reference orbit. The major contributions are summarized as follows:

• Periodic relative motion in elliptic reference orbits (Chapter 3):

The general periodicity condition is derived to guarantee the bounded rela-

tive motion at an arbitrary position in elliptic orbits. In previous works, the

initial condition of the periodic relative motion in elliptic orbits was obtained

by correcting the analytic solution of the HCW equation through the pertur-

bation method. Moreover, the periodic conditions at specific positions such

as perigee and apogee were described using a state transition matrix, and

these conditions were considered as constraints in the optimization problem

to determine the periodic condition at an arbitrary position. Therefore, it is

necessary to analytically obtain the general periodic condition in the elliptic

reference orbit so as to understand the complicated relative motion and to

maintain the bounded relative motion. In this study, the general periodicity

condition in the elliptic orbit is investigated using two approaches: state tran-

sition matrix approach and energy matching condition approach. In the state

transition matrix approach, a true anomaly is taken as a free variable, and

the analytic general periodicity condition is presented at an arbitrary initial

position in the elliptic orbit. After that, the relationship between the general

initial condition of the state transition matrix approach and that of the energy

matching condition approach is established. As a result, the periodic relative
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motion with zero secular drift is derived using the resulting periodic condition.

Numerical simulation verifies that the periodic condition covers each partial

periodic condition of the previous studies. Consequently, the provided periodic

condition in the elliptic reference orbit can lead the periodic relative motion

at an arbitrary position as well as at specific positions including perigee and

apogee without any extra computation such as the perturbation method or

the optimization method.

• Formation pattern analysis and design (Chapter 4):

The formation geometry in elliptic orbits is designed and its pattern is ana-

lyzed with respect to the eccentricity of the reference orbit. For the circular

as well as nearly circular orbits, the relative motion of the spacecraft forma-

tion can be easily established in the radial/along-track plane. However, for

the elliptic reference orbits, it is difficult to analyze and design the relative

motion due to the nonlinearity and eccentricity. To perform various formation

missions, the relative motion between spacecraft should be studied more rig-

orously, which will lead to understand the spacecraft formation in the elliptic

reference orbit. In this study, two formation types are designed to achieve

various formation missions: the radial/along-track plane formation and along-

track/cross-track plane formation. Furthermore, the designed formations are

analyzed; the variation of the relative distance between two spacecraft is pre-

sented according to the eccentricity of the reference orbit in all formation

types. These results provide the tendency of the formation radius as a func-

tion of eccentricity of the reference orbit, and therefore the obtained results

can provide the constraints and guideline to design the spacecraft formation

mission between two spacecraft in the elliptic orbits.
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•Maneuver problem in relative motion using continuous and

impulsive control input (Chapter 5):

Transfer trajectories considering the energy and fuel efficiencies are designed

to perform the formation reconfiguration. Maneuver problem between two or-

bits is required to change the formation geometry with respect to the leader

spacecraft. Considering the type of thruster, different maneuver problem is de-

fined. For the continuous thrust, a general optimal control problem is treated,

and for the impulsive thrust, the Lambert’s problem is considered. Note that

the traditional maneuver problem is solved in an inertial frame with respect to

a planet; however, in this study, it is required to obtain the transfer trajectory

with respect to the leader spacecraft in the LVLH frame. For the continuous

control input, the optimal control problem is solved based on nonlinear pro-

gramming problem considering two cost functions, the minimum energy and

the minimum fuel, where two relative position and velocity vectors are spec-

ified in the formation design procedure. For the impulsive control input, the

classical Lambert’s problem is modified to solve the maneuver problem in the

relative dynamics between two spacecraft in the LVLH frame. Furthermore,

the transfer orbit and the velocity change, ∆V , are obtained for the specified

initial and final position vectors, and the minimum ∆V is presented through

the grid search for the impulsive control input.

1.4 Dissertation Outline

This dissertation focuses on the periodic relative motion and the maneuver

problem for the spacecraft formation flying in an elliptic reference orbit. This

dissertation is organized as follows.

Chapter 2 describes the celestial mechanics and the relative motion dy-

namics. To express the motion of spacecraft in an orbit, three types of ref-

erence frames are introduced. Six orbital elements are described to present
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the two-body orbit, which are widely used to illustrate the orbit of space-

craft. Moreover, the relative motion between two spacecraft is expressed for

the spacecraft formation flying. For a circular orbit, the HCW equation and

its analytic solution are described, and for an elliptic orbit, the TH equation

and its analytic solution are presented.

Chapter 3 presents the general periodic condition via two approaches: state

transition matrix and energy matching condition approaches. The state tran-

sition matrix can express the state propagation of the given initial conditions,

and the energy matching condition can present the energy and period of the

reference orbit of spacecraft. The analytic periodic solution is presented using

the resulting periodic condition. Numerical simulation is performed to verify

and compare the general periodic condition with the results of previous works.

Chapter 4 analyzes the formation pattern and discusses the initialization

for the spacecraft formation. To design and analyze the formation, two for-

mation types are considered: radial/along-track plane formation and along-

track/cross-track plane formation. The change of the formation patterns in

two formation geometries are studied with respect to the eccentricity and true

anomaly of the reference orbit. Moreover, the initial conditions consisting of

the relative position and velocity vectors are derived for the two formation

types. Numerical simulation is performed to illustrate the formation patterns,

and the variation of the formation radius is analyzed with respect to the ec-

centricity of the leader spacecraft. In addition, the angle difference between

two follower spacecraft is presented according to the formation radius and the

eccentricity of the reference orbit.

Chapter 5 describes the maneuver problem for the formation reconfigu-

ration using the continuous and impulsive control inputs. For the continuous

control input, the optimal control problem is selected using the nonlinear pro-

gramming, and two cost functions are considered: (i) minimum energy, and
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(ii) minimum fuel, during the maneuver. For the impulsive control input, the

classic Lambert’s problem is modified to solve the transfer problem of the

relative motion dynamics between two spacecraft in the LVLH frame.

Chapter 6 provides the numerical simulation results to verify the effective-

ness of the maneuver for the spacecraft formation. For the numerical simula-

tion, changing the formation radius and geometry in two formation types is

considered. The transfer trajectories during the maneuver are shown for the

continuous control input and impulsive control input proposed in Chapter 5.

For the impulsive control input, the grid search is used to find a set of the

initial and final position vectors having the minimum velocity change, and

then corresponding transfer orbit is presented.

Chapter 7 summarizes the concluding remarks of this dissertation, and

provides recommendations for further works.
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Chapter 2

Celestial Mechanics and

Relative Motion Dynamics

2.1 Introduction

Spacecraft formation flying can be described using the equation of motion in

an inertial reference frame, the differential orbital elements, and the relative

dynamics of orbit motion based on the rotating frame. Moreover, the nonlinear

equation of motion is linearized with assumptions such as the HCW equation

for circular reference orbits and the TH equation for elliptic reference orbit.

These equations have been used to solve the rendezvous and docking problem,

and they are also applied to the design of spacecraft formation and maneuver

problem.

Three types of reference frames are illustrated to present the motion of

a spacecraft in an orbit around the Earth in Section 2.2. In addition, the

six orbital elements are expressed in Section 2.3, which describe a spacecraft

orbit instead of the position and velocity vectors with respect to the Earth in

Cartesian coordinate system. In Section 2.4, the nonlinear relative dynamics

are presented by the two-body problem. Moreover, the HCW equation and
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the analytic solution are described in Section 2.4.1, and the TH equation

and its analytic solution presented by the true anomaly as a free variable are

expressed in Section 2.4.2.

2.2 Reference Frame

2.2.1 Earth Centered Inertial Frame

The Earth Centered Inertial (ECI) frame is a non-rotating reference frame as

shown in Fig. 2.1, where the Newton’s laws are valid. The origin of the frame

is located at the center of the mass of the Earth and the axes are pointing

in fixed directions with respect to the stars. The X − Y plane coincides with

the Earth’s equatorial plane, the X-axis is taken to point from the center of

the mass of the Earth to the direction of vernal equinox, the Z-axis is taken

normal to the X − Y plane in the direction of the north pole, and the Y -axis

Figure 2.1: Earth Centered Inertial (ECI) frame
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is chosen to complete a right-handed coordinate system.

2.2.2 Earth Centered Earth Fixed Frame

The Earth Centered Earth Fixed (ECEF) frame has the origin located at the

center of the Earth, and the XE − YE plane coincides with the Earth’s equa-

torial plane as shown in Fig. 2.2. The XE-axis points toward the intersection

between the Greenwich meridian and equator, which is 0◦ longitude and 0◦

latitude, the ZE-axis points through the north pole, and the YE-axis points

in the direction of 90◦E longitude. The XE-, YE-, and ZE-axes rotate relative

to the ECI frame with a constant angular velocity, ωE = 7.2921× 10−5 rad/s

due to the daily rotation of the Earth, thus the ECEF frame is not an inertial

reference frame.

Figure 2.2: Earth Centered Earth Fixed (ECEF) frame
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2.2.3 Local Vertical Local Horizontal Frame

The Local-Vertical-Local-Horizontal (LVLH) frame is widely used to describe

the relative motion, as shown in Fig. 2.3. The LVLH frame is attached to a

spacecraft and orbit-fixed with an origin at the center of the spacecraft, so

the LVLH frame rotates with angular velocity. The x-axis points in the radial

direction of the spacecraft radius vector ~R, the y-axis points in the along-track

direction, and the z-axis is perpendicular to the orbital plane and points in

the direction of the angular momentum vector. Note that the y-axis does not

coincide with the velocity vector; y-axis is align with the velocity vector for a

circular orbit and for an elliptic orbit at perigee and apogee.

Figure 2.3: Local Vertical Local Horizontal (LVLH) frame
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2.3 Orbital Elements

To describe an orbit of a given spacecraft, six parameters are required. For

instance, three elements of position and three elements of velocity can present

the orbit of a spacecraft. However, these six parameters are difficult to il-

lustrate an orbit, and thus six parameters as Keplerian orbital elements are

commonly used to show an orbit of a spacecraft.

Six orbital elements can present the two-body orbit and the initial con-

ditions for solving the equations of motion, as initial position and velocity

vectors can provide a solution of the differential equations of motion. Fig-

ure 2.4 shows the classical orbital elements {a, e, i, Ω, ω, ν}; a is semi-major

axis, e is eccentricity, i is inclination, Ω is longitude of the ascending node, ω

is argument of perigee, and ν is true anomaly. Two constant values, a and e,

Figure 2.4: Orbital elements
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determine the size and shape of an orbit; a describes half the distance across

the major axis of an orbit, and e defines the shape of an orbit. i defines the

tilt of the orbital plane with respect to the equatorial plane (0◦ ≤ i ≤ 180◦), Ω

is the angle between the vernal equinox direction (X) and the ascending node

in the equatorial plane (0◦ ≤ Ω ≤ 360◦), which defines the location where

a spacecraft crosses from the Southern Hemisphere into the Northern Hemi-

sphere, ω is the angle from the ascending node to perigee (0◦ ≤ ω ≤ 360◦),

and ν presents the current position of a spacecraft relative to the perigee

(0◦ ≤ ν ≤ 360◦).

Three parameters, i, Ω, and ω, can describe the orbit plane orientation

as (3-1-3) Euler angles, and then the following direction cosine matrix can be

obtained as

C = C(i,Ω, θ) =
cos Ω cos θ − sin Ω sin θ cos i sin Ω cos θ + cos Ω sin θ cos i sin θ sin i

− cos Ω sin θ − sin Ω cos θ cos i − sin Ω sin θ + cos Ω cos θ cos i cos θ sin i

sin Ω sin i − cos Ω sin i cos i


(2.1)

where θ = ω+ν. With Eq. (2.1), the inertial position vector ~R can be expressed

as

~R = R


cos Ω cos θ − sin Ω sin θ cos i

sin Ω cos θ + cos Ω sin θ cos i

sin θ sin i

 (2.2)

where R is the distance between a spacecraft and the Earth. Therefore, orbital

elements can directly illustrate the current inertial position vector.
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2.4 Relative Motion Dynamics

In this section, the relative motion between the leader and follower spacecraft

is expressed for the spacecraft formation flying.

First, let us describe the two-body problem. Two bodies exist with mass

m1 and m2 moving in space. The motion can be described with respect to an

inertial frame which has basis unit vectors {ix, iy, iz}, when the only forces

are gravitational attraction. The position and velocity of mi in the inertial

frame can be defined by

ri = xiix + yiiy + ziiz (2.3)

vi =
dxi
dt

ix +
dyi
dt

iy +
dzi
dt

iz (2.4)

The distance between two bodies is obtained as

r12 = ||r1 − r2|| (2.5)

The force of attraction for m1 and m2 can be expressed according to

Newton’s second law as

m1
d2r1
dt2

= G
m1m2

r312
(r2 − r1) (2.6)

m2
d2r2
dt2

= G
m1m2

r321
(r1 − r2) (2.7)

where G is the universal gravity constant. Equations (2.6) and (2.7) yield

m1
d2r1
dt2

+m2
d2r2
dt2

= 0 (2.8)

The gravitational coefficient µ is defined as

µ = G(m1 +m2) (2.9)

For the spacecraft in the Earth’s orbit, because the mass m2 of the space-

craft can be negligible compared to the mass m1 of the Earth (m1 � m2), µ

can be approximated as

µ = Gm1 (2.10)
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From Eqs. (2.6) and (2.7), the equation of motion of m2 relative to m1 can be

expressed as follows:

r̈ = − µ
r3

r (2.11)

where r = r2 − r1. Equation (2.11) is known as the two-body problem. The

gravitational potential energy function can be obtained as

V (r) = −µ
r

(2.12)

Next, the relative motion between the leader and follower spacecraft is

considered for the spacecraft formation flying as shown in Fig. 2.5. In Fig.

2.5, R ∈ <3 is the position vector of the leader spacecraft, Rf ∈ <3 is the

position vector of the follower spacecraft, and ρ ∈ <3 is the relative position

vector of the follower spacecraft with respect to the leader spacecraft; Rf is

given as

Rf = R+ ρ (2.13)

Figure 2.5: Relative motion between leader and follower Spacecraft
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If the Earth is assumed to be a uniformly distributed sphere, the leader

and follower spacecraft have a gravitational potential function V and Vf from

Eq. (2.12) as follows:

V = − µ
R

(2.14)

Vf = − µ

Rf
(2.15)

where R = ||R|| is the distance between the leader spacecraft and the Earth,

and Rf = ||Rf || is the distance between the follower spacecraft and the Earth.

The equations of motion between the Earth and leader spacecraft and between

the Earth and follower spacecraft in the ECI frame, respectively, are given by

R̈ = − µ

R3
R (2.16)

R̈f = − µ

R3
f

Rf (2.17)

The relative position vector in ECI frame, I, can be expressed as

[ρ]I = Rf −R (2.18)

The relative acceleration is given by

[ρ̈]I = − µ

R3
f

Rf +
µ

R3
R (2.19)

To present the relative motion between the leader and follower spacecraft in

rotating LVLH frame, L, the relative motion in the ECI frame is expressed in

terms of the LVLH frame using following transport theorem [113].

[ρ̈]I = ρ̈+ 2ω × ρ̇+ ω̇ × ρ̇+ ω × (ω × ρ) (2.20)

where ρ = [ρ]L and ω = [ωx ωy ωz]
T ∈ <3 is the angular velocity. If only

external forces act on a central gravitational field, then ωx = ωy = 0 and

ωz = θ̇ = ν̇, as the argument of perigee is constant, where θ is the latitude

angle of the leader spacecraft, θ̇ is the orbital angular velocity, and ν is the
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true anomaly of the leader spacecraft. In the LVLH frame, R ≡ [R 0 0]T

and ρ ≡ [x y z]T , and then Rf is defined as follows:

Rf = [R+ x y z]T (2.21)

Substituting Eqs. (2.19) and (2.21) into Eq. (2.20), the nonlinear relative

dynamics can be represented as follows:

ẍ = 2θ̇ẏ + θ̈y + θ̇2x− µ(R+ x)

{(R+ x)2 + y2 + z2}3/2
+

µ

R2

ÿ = −2θ̇ẋ− θ̈x+ θ̇2y − µy

{(R+ x)2 + y2 + z2}3/2
(2.22)

z̈ = − µz

{(R+ x)2 + y2 + z2}3/2

In the orbital mechanics, the radius and angular velocity of the leader space-

craft are defined as [113]

R =
a(1− e2)
1 + e cos ν

(2.23)

θ̇ =
n(1 + e cos ν)2

(1− e2)3/2
(2.24)

where a is the semi-major axis, e is the eccentricity, and n =
√

µ
a3

is the

natural frequency of the leader spacecraft.

2.4.1 Hill-Clohessy-Wiltshire Equation

If the leader spacecraft has a circular reference orbit, then e = 0, and R and

θ̇ in Eq. (2.22) are constant; R = a, θ̇ = n, and θ̈ = 0. In addition, it is

assumed that the follower spacecraft is very close to the leader spacecraft

(||ρ|| � ||R||). Then, Eq. (2.22) can be rewritten as follows:

ẍ = 2nẏ + 3n2x

ÿ = −2nẋ (2.25)

z̈ = −n2z
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Equation (2.25) is the Hill-Clohessy-Wiltshire (HCW) equation [20, 21]. Note

that the relative motion in the circular reference orbit has decoupled in-plane

motion (x − y) from the cross-track motion (z); the in-plane motion can be

modeled as a coupled harmonic oscillator, and out-of-plane motion can be

modeled as a harmonic oscillator.

The analytic solution of the HCW equation is given by [27]

x(t) =
ẋ0
n

sinnt−
(

3x0 +
2ẏ0
n

)
cosnt+ 4x0 +

2ẏ0
n

(2.26)

y(t) =
2ẋ0
n

cosnt+

(
6x0 +

4ẏ0
n

)
sinnt

− (6nx0 + 3ẏ0) t−
2ẋ0
n

+ y0 (2.27)

z(t) =
ż0
n

sinnt+ z0 cosnt (2.28)

where the subscript ‘0’ is used to denote initial conditions at t = 0.

2.4.2 Tschauner-Hempel Equation

If the leader spacecraft has an elliptic reference orbit, the HCW equation

cannot describe the relative motion because of the eccentricity of the refer-

ence orbit. To analyze the nonlinear relative motion equations in the elliptic

reference orbit, Eq. (2.22) can be rewritten using the true anomaly ν as an

independent variable, considering that ν of the reference orbit monotonically

increases and describes the angular velocity with the radius presenting the

orbital motion. The following transformation is considered:

˙(·) = (·)′θ̇

(̈·) = (·)′′θ̇2 + θ̇θ̇′(·)′
(2.29)

where (·)′ and (·)′′ denote the first and second derivatives with respect to ν,

and

θ̇ = ν̇ =

√
µp

R2
=

√
µ

p3
(1 + e cos ν)2 (2.30)
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Using Eq. (2.29) with the assumption that ||ρ|| � ||R||, the relative motion

equation can be expressed as

x′′ =
2e sin ν

1 + e cos ν
x′ + 2y′ +

3 + e cos ν

1 + e cos ν
x− 2e sin ν

1 + e cos ν
y

y′′ = −2x′ +
2e sin ν

1 + e cos ν
y′ +

2e sin ν

1 + e cos ν
x+

e sin ν

1 + e cos ν
y (2.31)

z′′ =
2e sin ν

1 + e cos ν
z′ − 1

1 + e cos ν
z

Note that the radial and along-track components are coupled, but the cross-

track component is decoupled from in-plane motion.

The analytical solution of the relative motion in an elliptic orbit is ex-

pressed as [29, 37]

x(ν) = c1e sin ν + c2e

(
2eH(ν) sin ν − cos ν

(1 + e cos ν)2

)
− c3 cos ν

y(ν) = (c1 + 2c2eH(ν)) (1 + e cos ν)

+ c3

(
1 +

1

1 + e cos ν

)
sin ν +

c4
1 + e cos ν

(2.32)

z(ν) =
1

1 + e cos ν
(c5 sin ν + c6 cos ν)

where ci, i = 1, · · · , 6 are integration constants, and H(ν) is an integration

function with the expression of

H(ν) =

∫ ν

ν0

cos ν

(1 + e cos ν)3
dν (2.33)

The relative velocity can be obtained by

x′(ν) = c1e cos ν + c2e

(
2eH(ν) cos ν +

2e sin ν cos ν

(1 + e cos ν)3
+

sin ν(1− e cos ν)

(1 + e cos ν)3

)
+ c3 sin ν

y′(ν) = −c1e sin ν + 2c2e

{
cos ν

(1 + e cos ν)2
− e sin νH(ν)

}
(2.34)

+ c3

{
(2 + e cos ν) cos ν

1 + e cos ν
+

e sin2 ν

(1 + e cos ν)2

}
+

c4e sin ν

(1 + e cos ν)2

z′(ν) =
1

(1 + e cos ν)2
{c5(1 + e cos ν)− c6 sin ν}
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2.5 Concluding Remarks

In this chapter, the relative motion dynamics are presented for the spacecraft

formation flying. In Section 2.2, the ECI, ECEF, and LVLH frames are illus-

trated to describe the relative motion between two spacecraft. In addition, the

orbital elements are described to express the motion of a spacecraft around

the Earth, and they provide the position and velocity vectors of a spacecraft

in Section 2.3. From the two-body problem, the relative motion dynamics be-

tween two spacecraft are expressed in Section 2.4, and the HCW equation

is presented for the circular reference orbit. Moreover, the TH equation is

presented to consider the eccentricity of the reference orbit. The analytics so-

lutions of the HCW equation and the TH equation are also presented. Through

these relative motion dynamics and analytic solutions, the periodic relative

motion and formation geometry will be derived for the spacecraft formation.
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Chapter 3

General Periodicity Condition

3.1 Introduction

For the spacecraft formation flying, all spacecraft in a formation have an

identical period. When the leader spacecraft has a circular reference orbit,

the HCW equation can describe the relative motion of the follower spacecraft

as expressed in Eq. (2.25). As shown in the analytic solution of the HCW

equation, y(t) in Eq. (2.27) contains a secular term which grows large as

time goes by. To avoid the secular drift in y(t), the periodic condition can be

obtained as

ẏ0 = −2nx0 (3.1)

With Eq. (3.1), the analytic solutions in Eqs. (2.26)–(2.28) are expressed as

follows:

x(t) =
ẋ0
n

sinnt+ x0 cosnt

y(t) =
2ẋ0
n

cosnt− 2x0 sinnt− 2ẋ0
n

+ y0 (3.2)

z(t) =
ż0
n

sinnt+ z0 cosnt

These resulting analytic solutions are used to analyze and design the space-

craft formation in circular reference orbits [30]. However, the HCW equation
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and analytic solution in Eq. (3.2) cannot present the relative motion in elliptic

reference orbits, since the HCW equation and analytic solution do not contain

the eccentricity effect of the reference orbit. To make the spacecraft maintain

a periodic relative motion in Keplerian elliptic orbits, a general periodicity

condition for the elliptic reference orbit is required. In this chapter, the pe-

riodic condition is derived by investigating an analytic solution given in Eq.

(2.32). To obtain the periodic condition, a state transition matrix and an en-

ergy matching condition approaches are used; the state transition matrix can

express the state propagation of the given initial conditions, and the energy

matching condition can describe the periods of Kelperian orbits. Then, the

two resulting conditions are compared to each other.

The state transition matrix approach for the periodic relative motion is

discussed and the general periodicity condition is derived in Section 3.2. More-

over, the periodic condition is obtained by the energy matching condition in

Section 3.3. In Section 3.4, the analytic periodic solution in the elliptic refer-

ence orbit is described through the resulting periodicity condition. In Section

3.5, numerical simulations are performed to verify the periodicity condition,

and the results with the periodic condition are compared with the results us-

ing the solution of the HCW equation and using the condition of previous

studies.

3.2 State Transition Matrix Approach

The general periodic condition is derived using a state transition matrix with

the analytic solution of the relative motion in an elliptic reference orbit.
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Theorem 1 The general periodicity condition, Eq. (3.3), from the state tran-

sition matrix approach makes the relative motion of two spacecraft have a

bounded periodic motion in an arbitrary elliptical reference orbit.

(2 + e cos ν0)x(ν0)− e sin ν0y(ν0)

+ e sin ν0x
′(ν0) + (1 + e cos ν0)y

′(ν0) = 0 (3.3)

Proof: Let us define the state vector X(ν) ∈ <6×1 and the integration constant

vector C ∈ <6×1 as

X(ν) =
[
x(ν) x′(ν) y(ν) y′(ν) z(ν) z′(ν)

]T
(3.4)

C =
[
c1 c2 c3 c4 c5 c6

]T
(3.5)

With the state and integration constant vectors, Eqs. (2.32) and (2.34) can

be written as

X(ν) = Φ(ν)C (3.6)

where Φ(ν) ∈ <6×6 is a fundamental matrix solution as given by

Φ(ν) =



p11 p12 p13 p14 0 0

p21 p22 p23 p24 0 0

p31 p32 p33 p34 0 0

p41 p42 p43 p44 0 0

0 0 0 0 p55 p56

0 0 0 0 p65 p66


(3.7)
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with the corresponding values of the matrix elements:

p11 = e sin ν

p12 = e

(
2eH(ν) sin ν − cos ν

(1 + e cos ν)2

)
p13 = − cos ν

p14 = 0

p21 = e cos ν

p22 = e

(
2eH(ν) cos ν +

sin ν

(1 + e cos ν)2

)
p24 = 0

p13 = − cos ν

p31 = 1 + e cos ν

p32 = 2e(1 + e cos ν)H(ν),

p33 =
2 + e cos ν

1 + e cos ν
sin ν

p34 =
1

1 + e cos ν

p41 = −e sin ν

p42 = 2e

(
cos ν

(1 + e cos ν)2
− eH(ν) sin ν

)
p43 = cos ν +

e+ cos ν

(1 + e cos ν)2

p44 =
e sin ν

(1 + e cos ν)2

p55 =
sin ν

1 + e cos ν

p56 =
cos ν

1 + e cos ν

p65 =
e+ cos ν

(1 + e cos ν)2

p66 =
− sin ν

(1 + e cos ν)2
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Using Eq. (3.6), the initial state vector at ν = ν0 can be expressed as

follows:

X(ν0) = Φ(ν0)C (3.8)

where X(ν0) = [x(ν0) x
′(ν0) y(ν0) y

′(ν0) z(ν0) z
′(ν0)]

T . Because the funda-

mental matrix is invertible, the integration constant vector C in Eq. (3.8) can

be obtained as

C = Φ−1(ν0)X(ν0) (3.9)

Substituting Eq. (3.9) into Eq. (3.6) gives

X(ν) = Φ(ν)Φ−1(ν0)X(ν0)

= T (ν, ν0)X(ν0) (3.10)

In this equation, the matrix T (ν, ν0) = Φ(ν)Φ−1(ν0) is a state transition

matrix. Using H(ν0) = 0 in Eq. (3.7), the inverse of Φ(ν0) can be obtained as

Φ−1(ν0) =



q11 q12 q13 q14 0 0

q21 q22 q23 q24 0 0

q31 q32 q33 q34 0 0

q41 q42 q43 q44 0 0

0 0 0 0 q55 q56

0 0 0 0 q65 q66


(3.11)
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with the corresponding values of the matrix elements:

q11 =
sin ν0
e

q12 =
cos ν0
e

q13 = 0

q14 = 0

q21 =
(2 + e cos ν0)(1 + e cos ν0)

2

e2

q22 =
sin ν0(1 + e cos ν0)

2

e
,

q23 = −sin ν0(1 + e cos ν0)
2

e

q24 =
(1 + e cos ν0)

3

e2

q31 = −2(1 + e cos ν0)

e

q32 = 0

q33 = sin ν0

q34 = −1 + e cos ν0
e

q41 =
sin ν0(3 + e cos ν0)(1 + e cos ν0)

e

q42 = −cos ν0(1 + e cos ν0)
2

e

q43 = 1− 2 sin2 ν0 + e cos3 ν0

q44 =
sin ν0(2 + e cos ν0)(1 + e cos ν0)

e

q55 = sin ν0

q56 = cos ν0(1 + e cos ν0)

q65 = e+ cos ν0

q66 = − sin ν0(1 + e cos ν0)
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Substituting Eqs. (3.7) and (3.11) into the definition of the state transition

matrix, we have

T (ν, ν0) = Φ(ν)Φ−1(ν0) =



T11 T12 T13 T14 0 0

T21 T22 T23 T24 0 0

T31 T32 T33 T34 0 0

T41 T42 T43 T44 0 0

0 0 0 0 T55 T56

0 0 0 0 T65 T66


(3.12)

with the corresponding values of the matrix elements:

T11 = p11q11 + p12q21 + p13q31

T12 = p11q12 + p12q22 + p13q32

T13 = p12q23 + p13q34

T14 = p12q24 + p13q34

T21 = p21q11 + p22q21 + p23q31

T22 = p21q12 + p22q22 + p23q32

T23 = p22q23 + p23q33

T24 = p22q24 + p23q34

T31 = p31q11 + p32q21 + p33q31 + p34q41

T32 = p31q12 + p32q22 + p33q32 + p34q42

T33 = p32q23 + p33q33 + p34q43

T34 = p32q24 + p33q34 + p34q44

T41 = p41q11 + p42q21 + p43q31 + p44q41

T42 = p41q12 + p42q22 + p43q32 + p44q42

T43 = p42q23 + p43q33 + p44q43

37



T44 = p42q24 + p43q34 + p44q44

T55 = p55q55 + p56q65

T56 = p55q56 + p56q66

T65 = p65q55 + p66q65

T66 = p65q56 + p66q66

At this point, to deal with the periodic relative motion, a state transition

matrix mapping between ν = ν0 and ν = 2π + ν0 is considered. Using Eq.

(3.12), the state transition matrix T (2π + ν0, ν0) is given by

T (2π + ν0, ν0) =



T̄11 T̄12 T̄13 T̄14 0 0

T̄21 T̄22 T̄23 T̄24 0 0

T̄31 T̄32 T̄33 T̄34 0 0

T̄41 T̄42 T̄43 T̄44 0 0

0 0 0 0 T̄55 T̄56

0 0 0 0 T̄65 T̄66


(3.13)

with the corresponding values of the matrix elements:

T̄11 = 1 + 2H(2π + ν0) sin ν0(2 + e cos ν0)(1 + e cos ν0)
2

T̄12 = 2eH(2π + ν0) sin2 ν0(1 + e cos ν0)
2

T̄13 = −2eH(2π + ν0) sin2 ν0(1 + e cos ν0)
2

T̄14 = 2H(2π + ν0) sin ν0(1 + e cos ν0)
3

T̄21 = 2H(2π + ν0) cos ν0(2 + e cos ν0)(1 + e cos ν0)
2

T̄22 = 1 + 2eH(2π + ν0) sin ν0 cos ν0(1 + e cos ν0)
2

T̄23 = −2eH(2π + ν0) sin ν0 cos ν0(1 + e cos ν0)
2

T̄24 = 2H(2π + ν0) cos ν0(1 + e cos ν0)
3
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T̄31 =
2H(2π + ν0)

e
(2 + e cos ν0)(1 + e cos ν0)

3

T̄32 = 2H(2π + ν0) sin ν0(1 + e cos ν0)
3

T̄33 = 1− 2H(2π + ν0) sin ν0(1 + e cos ν0)
3

T̄34 =
2H(2π + ν0)

e
(1 + e cos ν0)

4

T̄41 = −2H(2π + ν0) sin ν0(2 + e cos ν0)(1 + e cos ν0)
2

T̄42 = −2eH(2π + ν0) sin2 ν0(1 + e cos ν0)
2

T̄43 = 2eH(2π + ν0) sin2 ν0(1 + e cos ν0)
2

T̄44 = 1− 2H(2π + ν0) sin ν0(1 + e cos ν0)
3

T̄55 = 1

T̄56 = 0

T̄65 = 0

T̄66 = 1

To ensure that the relative motion is closed periodic motion, the following

condition should be satisfied by Eq. (3.13):

x(2π + ν0) =
{

1 + 2H(2π + ν0) sin ν0(2 + e cos ν0)(1 + e cos ν0)
2
}
x(ν0)

+
{

2eH(2π + ν0) sin2 ν0(1 + e cos ν0)
2
}
x′(ν0)

+
{
−2eH(2π + ν0) sin2 ν0(1 + e cos ν0)

2
}
y(ν0)

+
{

2H(2π + ν0) sin ν0(1 + e cos ν0)
3
}
y′(ν0) (3.14)

x′(2π + ν0) =
{

2H(2π + ν0) cos ν0(2 + e cos ν0)(1 + e cos ν0)
2
}
x(ν0)

+
{

1 + 2eH(2π + ν0) sin ν0 cos ν0(1 + e cos ν0)
2
}
x′(ν0)

+
{
−2eH(2π + ν0) sin ν0 cos ν0(1 + e cos ν0)

2
}
y(ν0)

+
{

2H(2π + ν0) cos ν0(1 + e cos ν0)
3
}
y′(ν0) (3.15)
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y(2π + ν0) =

{
2H(2π + ν0)

e
(2 + e cos ν0)(1 + e cos ν0)

3

}
x(ν0)

+
{

2H(2π + ν0) sin ν0(1 + e cos ν0)
3
}
x′(ν0)

+
{

1− 2H(2π + ν0) sin ν0(1 + e cos ν0)
3
}
y(ν0)

+

{
2H(2π + ν0)

e
(1 + e cos ν0)

4

}
y′(ν0) (3.16)

y′(2π + ν0) =
{
−2H(2π + ν0) sin ν0(2 + e cos ν0)(1 + e cos ν0)

2
}
x(ν0)

+
{
−2eH(2π + ν0) sin2 ν0(1 + e cos ν0)

2
}
x′(ν0)

+
{

2eH(2π + ν0) sin2 ν0(1 + e cos ν0)
2
}
y(ν0)

+
{

1− 2H(2π + ν0) sin ν0(1 + e cos ν0)
3
}
y′(ν0) (3.17)

z(2π + ν0) = z(ν0) (3.18)

z′(2π + ν0) = z′(ν0) (3.19)

Because H(ν) in Eqs. (3.14)–(3.19) is nonzero and increased with respect

to the eccentricity of the reference orbit as shown in Fig. 3.1, the general

periodicity condition is derived to satisfy X(2π + ν0) = X(ν0) as follows:

(2 + e cos ν0)x(ν0)− e sin ν0y(ν0)

+ e sin ν0x
′(ν0) + (1 + e cos ν0)y

′(ν0) = 0 (3.20)

Consequently, with the general periodicity condition in Eq. (3.3), X(2π+ν0) =

X(ν0) is satisfied which means that the relative motion between spacecraft is

periodic in elliptic reference orbits. �
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Figure 3.1: H(ν) with respect to eccentricity

Specifically, previous works show special cases of the general periodicity

condition, Eq. (3.3). When the reference orbit is circular (e = 0), the period-

icity condition is obtained as

y′(ν0) = −2x(ν0) (3.21)

Equation (3.21) is identical to the initial condition of the HCW equations in

the true anomaly domain [27, 30, 31]. In addition, when the eccentric reference

orbit starts at the perigee (e 6= 0 and ν0 = 0), the periodicity condition is

presented as

y′(ν0) = −2 + e

1 + e
x(ν0) (3.22)

Also, the periodicity condition in the eccentric reference orbit starting at the

apogee (e 6= 0 and ν0 = π) is given by

y′(ν0) = −2− e
1− e

x(ν0) (3.23)

Equations (3.22) and (3.23) are equal to the initial conditions in an earlier

study in Ref. [29].
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3.3 Energy Matching Condition Approach

In this section, the periodicity condition is derived using an energy matching

condition for the periodic relative motion in arbitrary elliptic orbits. Then,

the resulting condition is compared with the result from the state transition

matrix approach described in previous section.

The energy matching condition describes the periods of Keplerian elliptical

orbits [113]. The period of the spacecraft in the Earth’s orbit is defined by

p = 2π

√
a3

µ
(3.24)

Note that two satellites satisfy the energy matching condition when their

semi-major axes are equal.

From the dot product of Eq. (2.11) with the velocity vector v, the law of

conservation of energy can be obtained as follows:

1

2
v · v − µ

r
= ε = constant (3.25)

According to the eccentricity and orbital energy of the spacecraft orbit, an

orbital motion can be classified as

circle: e = 0, ε < 0

ellipse: 0 < e < 1, ε < 0

parabola: e = 0, ε = 0

hyperbola: e > 0, ε > 0

(3.26)

In addition, for the elliptic reference orbit, the total specific energy is defined

as follows:

ε = − µ

2a
(3.27)

From Eqs. (3.25) and (3.27), the total specific energy of the leader space-

craft comprising the kinematic and potential energies is written as

εl =
1

2
v · v − µ

R
= − µ

2a
(3.28)
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where v ∈ <3 is velocity vector and a is semi-major axis of the leader space-

craft. The total specific energy of the follower spacecraft is expressed as

εf =
1

2
vf · vf −

µ

Rf
= − µ

2af
(3.29)

where vf ∈ <3 is velocity vector and af is the semi-major axis of the follower

spacecraft. The energy difference between the leader and follower spacecraft

can be written as

∆ε = εf − εl =
µ

2a
− µ

2af
(3.30)

Substituting Eqs. (3.28) and (3.29) into Eq. (3.30) yields

∆ε =
1

2
vf · vf −

µ

Rf
−
(

1

2
v · v − µ

R

)
(3.31)

To guarantee one-to-one relative motion, the energy matching condition can

be expressed as follows:

∆ε = 0 (3.32)

Note that Eqs. (3.30) and (3.32) show that the semi-major axes of the leader

and follower spacecraft are equal, and then two spacecraft have same period.

Consequently, a specific condition for the periodic relative motion can be

obtained using Eqs. (3.31) and (3.32).

The velocities of the leader and follower spacecraft in the LVLH frame are

defined as

v =
[
Ṙ
]
L

+ ω ×R

=


Ṙ

0

0

+


0

0

θ̇

×

R

0

0

 =


Ṙ

Rθ̇

0

 (3.33)
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vf =
[
Ṙf

]
L

+ ω ×Rf

=


Ṙ+ ẋ

ẏ

ż

+


0

0

θ̇

×

R+ x

y

z

 =


Ṙ+ ẋ− yθ̇

ẏ + (R+ x)θ̇

ż

 (3.34)

Substitution of Eqs. (3.33) and (3.34) into Eq. (3.31) gives

∆ε =
1

2

{
(Ṙ+ ẋ− yθ̇)2 + (ẏ + (R+ x)θ̇)2 + ż2 − Ṙ2 −R2θ̇2

}
+

{
µ

R
− µ√

(R+ x)2 + y2 + z2

}
(3.35)

Equation (3.35) can be expressed using the Taylor series expansion around

the leader’s relative motion as

∆ε =
1

2

{
(ẋ− yθ̇)2 + (ẏ + xθ̇)2 + ż2

}
+ (Ṙẋ− Ṙyθ̇ +Rxθ̇2 +Rẏθ̇)

+
µ

R3

{
Rx− x2 +

1

2
y2 +

1

2
z2 + · · ·

}
(3.36)

In addition, Eq. (3.36) can be written in the true anomaly domain using Eq.

(2.29) as follows:

∆ε =
1

2
ν̇2
{

(x′ − y)2 + (y′ + x)2 + z′2
}

+ ν̇2
(

e sin ν

1 + e cos ν
R(x′ − y) +R(x+ y′)

)
(3.37)

+
ν̇2

1 + e cos ν

{
Rx− x2 +

1

2
y2 +

1

2
z2 + · · ·

}
The initial condition at ν = ν0 for the periodic relative motion can be de-

scribed by Eq. (3.37) as

∆ε =
1

2
ν̇0

2
{

(x′(ν0)− y(ν0))
2 + (y′(ν0) + x(ν0))

2 + z′(ν0)
2
}

+ ν̇0
2

(
e sin ν0

1 + e cos ν0
R(x′(ν0)− y(ν0)) +R(x(ν0) + y′(ν0))

)
(3.38)

+
ν̇0

2

1 + e cos ν0

{
Rx(ν0)− x(ν0)

2 +
1

2
y(ν0)

2 +
1

2
z(ν0)

2 + · · ·
}
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With the same assumption of the TH equation (||ρ|| � ||R||), the initial

condition for the periodic relative motions which satisfies the energy matching

condition in Eq. (3.32) is obtained as

e sin ν0
1 + e cos ν0

(
x′(ν0)− y(ν0)

)
+
(
x(ν0) + y′(ν0)

)
+

1

1 + e cos ν0
x(ν0) = 0 (3.39)

Consequently, Eq. (3.39) can be rewritten as follows:

(2 + e cos ν0)x(ν0)− e sin ν0y(ν0)

+ e sin ν0x
′(ν0) + (1 + e cos ν0)y

′(ν0) = 0 (3.40)

Equation (3.40) is identical to Eq. (3.3), the general periodicity condition

derived via the state transition matrix approach. As a result, it can be stated

that the general periodicity condition guarantees the bounded periodic relative

motion in arbitrary elliptical orbits.

Remark 1 The periodicity condition in Eq. (3.40) through the energy match-

ing condition approach is equivalent to the periodicity condition in Eq. (3.3)

derived through the state transition matrix approach, which means that the

resulting periodicity condition provides the bounded periodic relative motion

between spacecraft in elliptic orbits.

3.4 Analytic Periodic Solution

With the general periodicity condition, Eq. (3.3), the analytic periodic solution

of the relative motion in elliptical orbits can be expressed from Eq. (2.32), as

follows:

x(ν) = c1e sin ν − c3 cos ν

y(ν) = c1 (1 + e cos ν) + c3

(
2 + e cos ν

1 + e cos ν

)
sin ν +

c4
1 + e cos ν

(3.41)

z(ν) =
1

1 + e cos ν
(c5 sin ν + c6 cos ν)
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The relative velocity can be written as follows:

x′(ν) = c1e cos ν + c3 sin ν

y′(ν) = −c1e sin ν + c3

{
(2 + e cos ν) cos ν

1 + e cos ν
+

e sin2 ν

(1 + e cos ν)2

}
+

c4e sin ν

(1 + e cos ν)2
(3.42)

z′(ν) =
1

(1 + e cos ν)2
{c5(1 + e cos ν)− c6 sin ν}

Using Eq. (3.9) with Eqs. (3.3) and (3.11), the coefficients can be obtained

via

c1 =
sin ν0
e

x(ν0) +
cos ν0
e

x′(ν0)

c2 = 0

c3 = − cos ν0x(ν0) + sin ν0x
′(ν0)

c4 =
sin ν0(1 + e cos ν0)

e
x(ν0)−

(1 + e cos ν0)(e+ cos ν0)

e
x′(ν0) (3.43)

+ cos ν0(e+ cos ν0)y(ν0) +
sin ν0(1 + e cos ν0)

e
y′(ν0)

c5 = sin ν0z(ν0) + cos ν0(1 + e cos ν0)z
′(ν0)

c6 = (e+ cos ν0)z(ν0)− sin ν0(1 + e cos ν0)z
′(ν0)

3.5 Numerical Simulation

Numerical simulations are performed to verify the periodicity condition pre-

sented in Section 3.2. For the numerical simulation, the elliptic orbit of the

leader spacecraft is considered, and orbital elements of the leader spacecraft

are summarized in Table 3.1. All simulations are performed by integrating the

complete nonlinear model of Eq. (2.22).

The numerical simulation results with the general periodic condition are

shown and compared to those with the initial conditions of the HCW equa-

tion and of the perturbation method of previous studies. For the numerical

46



Table 3.1: Orbital elements of leader spacecraft

Parameter Value

a (m) 6.8781× 106

i (deg) 66.01

Ω (deg) 277

ω (deg) 45

simulation, the radial/along-track (x − y) plane formation and the along-

track/cross-track (y − z) plane formation are considered.

3.5.1 Radial/Along-Track Plane Formation

In this simulation, the eccentricity of the reference orbit is considered as

e = 0.001, and initial conditions are selected at the perigee (ν0 = 0). The

initial conditions of three cases are summarized in Tables 3.2. The numerical

simulation results with the initial condition of the HCW equation are shown

in Fig. 3.2. As shown in Fig. 3.2, the initial position of the follower spacecraft

at t = t0 is marked by a circle, and the position of the leader spacecraft is

indicated by a star. Figure 3.2 shows the formation trajectory, the in-plane

motion, and the out-of-plane motion of the follower spacecraft in the LVLH

frame. Clearly, the given initial condition of the HCW equation cannot guar-

antee the bounded relative motion in the elliptic reference orbit. Figure 3.3

shows the formation trajectory with the corrected initial condition from the

perturbation method. As shown in Fig. 3.3, the secular drift of the relative

motion is much smaller than that in Fig. 3.2; however, it can be seen that the

secular drift remains in the radial/along-track motion. The numerical simu-

lation results with the general periodicity conditions are shown in Fig. 3.4.

As shown in the results, the follower spacecraft goes around the leader space-
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craft, and the formation trajectory with the proposed initial conditions has

the periodic in-plane and out-plane motion. Compared with Figs. 3.2 and 3.3,

the secular drift in Fig. 3.4 is significantly reduced by the general periodicity

condition.

Table 3.2: Initial conditions for radial/along-track plane formation

HCW solution Corrected solution Proposed Solution

position (m) [−5000, 0, 0] [−5000, 0, 0] [−5000, 0, 0]

velocity (m/s) [0, 11.0440, 0, 0] [0, 11.0640, 0] [0, 11.0685, 0]

Figure 3.2: Radial/along-track plane formation with the HCW solution
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Figure 3.3: Radial/along-track plane formation with the corrected solution

Figure 3.4: Radial/along-track plane formation with the proposed solution
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3.5.2 Along-Track/Cross-Track Plane Formation

In this simulation, the eccentricity of the reference orbit is considered as e =

0.05, and initial conditions are selected at the perigee (ν0 = 0). The obtained

initial conditions of three cases are summarized in Tables 3.3. The numerical

simulation results with the initial condition of the HCW equation for the

along-track/cross-track plane formation are shown in Fig. 3.5. Similar to Fig.

3.2, the follower spacecraft with the initial condition of the HCW equation

does not have a bounded trajectory in the elliptic orbit. Figure 3.6 shows the

trajectory of follower spacecraft with the corrected initial conditions from the

perturbation method. As shown in Fig. 3.6, the secular drift of the relative

motion is significantly reduced compared with that in Fig. 3.5. The numerical

simulation results with the general periodicity conditions are shown in Fig.

3.7. As shown in Fig. 3.7, the formation trajectory with the general periodic

condition has periodic in-plane and out-plane motion, and the secular drift

is remarkably reduced compared with Figs. 3.5 and 3.6. Consequently, the

general periodicity condition guarantees the bounded periodic relative motion

in elliptic reference orbits.

Table 3.3: Initial conditions for along-track/cross-track plane formation

HCW solution Corrected solution Proposed solution

position (m) [25, 0, 50] [25, 0, 50] [25, 0, 50]

velocity (m/s) [0,−0.0441, 0] [0,−0.04770, 0] [0.− 0.047662, 0]
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Figure 3.5: Along-track/cross-track plane formation with the HCW solution

Figure 3.6: Along-track/cross-track plane formation with the corrected solu-

tion
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Figure 3.7: Along-track/cross-track plane formation with the proposed solu-

tion
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3.6 Concluding Remarks

In this chapter, the general periodicity condition is derived via two approaches.

One approach is based on the state transition matrix in Section 3.2. Using the

property of the state transition matrix, the periodicity condition is obtained to

provide a bounded periodic analytic solution of the relative motion. Another

approach is presented by the energy matching condition in Section 3.3. The

energy matching condition is related to the semi-major axis and period of the

spacecraft, and therefore the condition to keep the periodic relative motion

is expressed. The resulting condition is compared with the periodic condition

from the state transition matrix, and these two results are concluded to be

identical.

Furthermore, the resulting periodic condition satisfies the condition of zero

secular drift in the HCW equation for the circular reference orbit, and the

periodic conditions at the perigee and apogee in the elliptic reference orbit

are identical to the the previous studies. Finally, the analytic periodic solution

is expressed with the periodicity condition, and this solution will be used to

design the spacecraft formation in next chapter.

Numerical simulation is performed to verify the presented periodic con-

dition. With the initial conditions of the HCW equation in Ref. [30], the

numerical simulation results show that the follower spacecraft does not keep

the periodic relative motion with respect to the leader spacecraft. In contrast,

the simulation results with the general periodicity condition proposed in this

dissertation show that the follower spacecraft maintains the periodic relative

motion in the elliptic reference orbit.
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Chapter 4

Formation Pattern Analysis

and Design

4.1 Introduction

For the spacecraft formation flying, the relative motion between spacecraft is

generally described in the local frame instead of the inertial frame, and then

the formation pattern is analyzed in the local frame. In the circular reference

orbit, the relative motion can be easily illustrated, and initial conditions for

the HCW equation can be selected according to desired formation type. As

shown in Eq. (3.2), the radial/along-track motion and the cross-track motion

are separated, and the radial/along-track motion forms an ellipse of a fixed

eccentricity in the local frame. It means that the major axis in the along-

track direction is always twice the minor axis in the radial direction. In order

to choose the initial conditions, Sabol et al. presented the satellite formation

flying design for a circular orbit, and they considered four formation types:

in-plane formation, in-track formation, circular formation, and projected cir-

cular formation [30]. However, this formation flying design cannot be directly

applied to an elliptic orbit, since the described initial conditions from HCW
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equation do not contain the eccentricity information of the reference orbit.

For the elliptic reference orbit, from the analytic periodic solution as ex-

pressed in Eq. (3.41), it is expected that the relative motion in elliptical orbits

will not be a circle or an ellipse in any plane of the local frame due to the ec-

centricity of the reference orbit. Because the motion of the follower spacecraft

is influenced by the eccentricity of the leader spacecraft, the relative motion

becomes complicated, and the analysis of the formation in the elliptic orbits

has not been completely investigated yet. In this dissertation, the spacecraft

formation in arbitrary elliptic orbits is analyzed; specifically, the radial/along-

track (x − y) plane and the along-track/cross-track (y − z) plane formations

are considered. According to formation type, corresponding initial conditions

are introduced for spacecraft formation flying in the elliptic reference orbit.

Also, the variation between the maximum and minimum formation radius and

the eccentricity of the relative motion are discussed according to the reference

eccentricity in all designed formation types. The obtained results will provide

constraints on the formation design process in general elliptic orbits.

The periodic relative motion is represented in Section 4.2, which has zero

secular drift and zero offset in the along-track direction. Using this periodic

solution, two formation geometries are designed, and each formation is an-

alyzed according to the eccentricity and the true anomaly of the reference

orbit; the radial/along-track plane formation is discussed in Section 4.3, and

the along-track/cross-track plane formation is analyzed in Section 4.4. The nu-

merical simulation results of the two formation types are illustrated in Section

4.5. Through the simulation results, the formation patterns of each formation

are analyzed in Sections 4.5.1 and 4.5.2, respectively. Moreover, two follower

spacecraft are considered to increase the number of spacecraft in formation,

and then the angle difference between two followers is shown in Section 4.5.3.

In Section 4.5.4, the simulation results are summarized and analyzed.
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4.2 Periodic Relative Motion

To simplify the expression, Eq. (3.41) can be rewritten as follows:

x(ν) = a1(1 + e cos ν) sin ν − a3(1 + e cos ν) cos ν

y(ν) = a1(2 + e cos ν) cos ν + a3(2 + e cos ν) sin ν +
a1
e

+ a4 (4.1)

z(ν) = a5 sin ν + a6 cos ν

where

a1 =
c1e

1 + e cos ν
, a3 =

c3
1 + e cos ν

, a4 =
c4

1 + e cos ν

a5 =
c5

1 + e cos ν
, a6 =

c6
1 + e cos ν

(4.2)

Equation (4.1) can also be expressed as

x(ν) = ξ1 sin(ν + ψ1)(1 + e cos ν)

y(ν) = ξ1 cos(ν + ψ1)(2 + e cos ν) +
a1
e

+ a4 (4.3)

z(ν) = ξ2 sin(ν + ψ2)

where

ξ1 =
√
a21 + a23, sin(ψ1) =

−a3
ξ1

, cos(ψ1) =
a1
ξ1

(4.4)

ξ2 =
√
a25 + a26, sin(ψ2) =

a6
ξ2
, cos(ψ2) =

a5
ξ2

(4.5)

In Eq. (4.3), the last two terms in the along-track component are the offset

in the radial/along-track plane. To remove this offset term, which means that

the center of relative motion locates at the position of leader spacecraft, the

following initial condition can be chosen.

a1
e

+ a4 = 0 (4.6)

Substituting Eq. (4.2) into Eq. (4.6), the initial condition y(ν0) is obtained as

follows:

y(ν0) =
2 + e cos ν0
1 + e cos ν0

x′(ν0) (4.7)
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Equation (4.7) is the general condition for the zero offset in the along-track

direction.

Remark 2 The zero offset condition in Eq. (4.7) makes the position of the

leader spacecraft locate at the geometry center of the relative motion in elliptic

reference orbits.

With Eq. (4.7), Eq. (4.3) can be written as

x(ν) = ξ1 sin(ν + ψ1)(1 + e cos ν)

y(ν) = ξ1 cos(ν + ψ1)(2 + e cos ν) (4.8)

z(ν) = ξ2 sin(ν + ψ2)

Equation (4.8) can be rewritten to simplify the expression as follows:

x(ν) = D1 sin(ν + ψ1)

y(ν) = γD1 cos(ν + ψ1) (4.9)

z(ν) = γ0D2 sin(ν + ψ2)

where

D1 = ξ1(1 + e cos ν) (4.10)

D2 = ξ2(1 + e cos ν) (4.11)

γ =
2 + e cos ν

1 + e cos ν
(4.12)

γ0 =
1

1 + e cos ν
(4.13)

Equation (4.9) presents the periodic relative motion with the zero secular

drift and offset. Using Eqs. (3.3) and (4.7), the coefficients in Eq. (3.43) can

be simplified as follows:
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c1 =
sin ν0
e

x(ν0) +
cos ν0
e

x′(ν0)

c3 = − cos ν0x(ν0) + sin ν0x
′(ν0)

c4 = −sin ν0
e

x(ν0)−
cos ν0
e

x′(ν0) (4.14)

c5 = sin ν0z(ν0) + cos ν0(1 + e cos ν0)z
′(ν0)

c6 = (e+ cos ν0)z(ν0)− sin ν0(1 + e cos ν0)z
′(ν0)

In general, the relative motions in the radial/along-track plane and the

along-track/cross-track plane are not a circle or an ellipse with a constant

level of eccentricity, due to the eccentricity of the reference orbit e and the

time-varying true anomaly ν, as shown in Eq. (4.9). Consequently, it is neces-

sary to analyze these formation motions with respect to the eccentricity and

the true anomaly of the reference orbit in the local frame. Using Eq. (4.9),

the radial/along-track plane formation and along-track/cross-track plane for-

mation are investigated in the consideration of the eccentricity and the true

anomaly in the following sections.

4.3 Radial/Along-Track Plane Formation

To understand the radial/along-track plane formation, let us consider the

radial/along-track plane formation with the following equation from Eq. (4.9).

x2(ν)

D2
1

+
y2(ν)

γ2D2
1

= 1 (4.15)

In the circular reference orbit (e = 0), γ equals 2 in Eq. (4.12), and then the

radial/along-track motion of the follower spacecraft is an ellipse with constant

eccentricity of ef =
√

3/2, where ef denotes the eccentricity of the follower

spacecraft in the LVLH frame.

In the elliptic reference orbit, however, γ ≥ 1 is not constant and changes

with respect to ν as shown in Eq. (4.12). Thus, the relative motion of the

58



follower spacecraft in the radial/along-track plane is an ellipse which has semi-

major axis γD1 and semi-minor axis D1. In addition, the eccentricity of the

follower spacecraft in the radial/along-track plane formation varies as

ef =

√
1−

(
D1

γD1

)2

=

√
1− 1

γ2
=

√
3 + 2e cos ν

2 + e cos ν
(4.16)

This indicates that the major axis in the along-track direction is γ times the

minor axis in the radial direction. Figure 4.1 shows the eccentricity change

of the follower spacecraft according to the true anomaly in the local frame.

As shown in Fig. 4.1, when the leader spacecraft has a small eccentricity,

e = 0.001 and e = 0.01, ef has a value near
√

3/2. However, the variation of

ef increases as e becomes large, and ef has maximum value at ν = π, and has

minimum value at ν = 0, 2π. From Eq. (4.16), the eccentricity of the follower

spacecraft in the local frame has the following boundary.
√

3 + 2e

2 + e
≤ ef ≤

√
3− 2e

2− e
(4.17)

In addition, the ratio between the minimum and maximum eccentricities of

the follower spacecraft can be obtained as

∆(e) =
minimum ef
maximum ef

=
(2− e)

√
3 + 2e

(2 + e)
√

3− 2e
(4.18)

It should be noted that the ratio ∆(e) in Eq. (4.18) only depends on e, which

is the eccentricity of the leader spacecraft. Table 4.1 summarizes the eccentric-

ity of the follower spacecraft in the local frame according to e. The difference

between the minimum and the maximum eccentricities of the follower space-

craft becomes large as e increases, as shown in Table 4.1. It means that the

variation between the maximum and the minimum formation radii grows, as

the reference eccentricity increases. Using the analytic results as shown in Fig.

4.1 and Table 4.1 as a constraint, the designer can select an eccentricity of the

reference orbit, and formation radius between two spacecraft with respect to

requirements of the space mission.
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Remark 3 The radial/along-track plane formation has a varying eccentricity

in the local frame, ef , and the variation of ef becomes large as e is increased.

Therefore, the follower spacecraft cannot maintain a constant relative distance

with respect to the leader spacecraft in elliptic orbits.

In the radial/along-track plane formation, the follower spacecraft cannot

maintain a constant distance from the leader spacecraft as explained above.

However, the initial conditions can be selected to make the relative distance

between two spacecraft keep constant value at specific true anomaly. For ex-

ample, if a mission is required to keep constant distance rd at perigee (ν = 0)

in the radial/along-track plane, the following constraint can be considered.

x2(0) + y2(0) = r2d (4.19)

z(0) = 0, z′(0) = 0 (4.20)

When ν = 0, Eq. (4.15) can be expressed as

x2(0) +
y2(0)

γ2(0)
= D2

1(0) (4.21)

where

γ(0) =
2 + e

1 + e
, D2

1(0) = x(ν0)
2 + x′(ν0)

2 (4.22)

Thus, the initial conditions at ν0 = 0 can be selected as follows:

x(ν0) = 0, y(ν0) = rd, z(ν0) = 0 (4.23)

x′(ν0) =
1 + e

2 + e
rd, y′(ν0) = 0, z′(ν0) = 0 (4.24)

With these initial conditions, the coefficients in Eq. (4.14) are defined, and the

analytic solutions for the radial/along-track plane formation can be obtained.
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Figure 4.1: The eccentricity of follower satellite in the radial/along-track mo-

tion

Table 4.1: The eccentricity ratio of the radial/along-track motion

e 0 0.001 0.01 0.1 0.3 0.5

Minimum ef 0.8660 0.8659 0.8646 0.8518 0.8249 0.8000

Maximum ef 0.8660 0.8662 0.8675 0.8807 0.9113 0.9428

∆(e) 1 0.9997 0.9967 0.9672 0.9052 0.8485
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4.4 Along-Track/Cross-Track Plane Formation

Let us consider the along-track/cross-track plane formation with the following

equation from Eq. (4.9).

y2(ν) + z2(ν) = γ2D2
1 cos2(ν + ψ1) + γ20D

2
2 sin2(ν + ψ2) (4.25)

As shown in Eq. (4.25), the along-track/cross-track plane formation can be

defined by selecting D1 and D2 which are related with ξ1 and ξ2 as shown in

Eqs. (4.10) and (4.11), that is ψ1 and ψ2 from Eqs. (4.4) and (4.5). To analyze

the along-track/cross-track plane formation, two cases are considered in this

study; D2
1 = D2

2 and 4D2
1 = D2

2. In addition, it will be described how the

along-track/cross-track plane formation is changed for these two cases.

4.4.1 Along-Track/Cross-Track Plane Formation under D2
1 =

D2
2

When D2
1 = D2

2, Eq. (4.25) can be written as

y2(ν)

γ2D2
1

+
z2(ν)

γ20D
2
1

= 1 (4.26)

In the circular reference orbit (e = 0), γ is 2 and γ0 is 1 as shown in

Eqs. (4.12) and (4.13), and then the along-track/cross-track motion is an

ellipse with constant eccentricity of ef =
√

3/2, where ef is the eccentricity of

follower spacecraft in the local frame.

However, in the elliptic reference orbit, γ > 0 and γ0 ≥ 1 are not constant

and change with respect to ν; the relative motion in the along-track/cross-

track plane formation has an ellipse with semi-major axis γD1 and semi-

minor axis γ0D1. Thus, the eccentricity of the follower spacecraft in the along-

track/cross-track motion changes as follows:
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ef =

√
1−

(
γ0D1

γD1

)2

=

√
1−

(
1

2 + e cos ν

)2

=

√
(3 + e cos ν)(1 + e cos ν)

2 + e cos ν
(4.27)

Note that the major axis in the along-track direction is (2 + e cos ν) times

the minor axis in the cross-track direction. Figure 4.2 shows the eccentricity

change of the follower according to the true anomaly. As shown in Fig. 4.2,

the follower spacecraft has an eccentricity near
√

3/2 when e = 0.001 and

e = 0.01; however, the variation of ef increases as e becomes large to 0.5.

Moreover, the maximum value of ef is at ν = 0, 2π and the minimum value

is at ν = π. Thus, the eccentricity of the follower spacecraft in Eq. (4.27) has

the following boundary.√
(3− e)(1− e)

2− e
≤ ef ≤

√
(3 + e)(1 + e)

2 + e
(4.28)

In addition, the ratio between the minimum and maximum eccentricities of

the follower spacecraft can be obtained as

∆(e) =
minimum eccentricity

maximum eccentricity
=

(2 + e)
√

(3− e)(1− e)
(2− e)

√
(3 + e)(1 + e)

(4.29)

It should be noted that the ratio ∆(e) in Eq. (4.29) only depends on e, which is

the eccentricity of the leader spacecraft. The difference between the minimum

and the maximum eccentricities of the follower spacecraft becomes large as e

increases, as shown in Table 4.2. The variation between the maximum and the

minimum formation radii is increased when the leader spacecraft has a high

eccentricity. Compared with the results in previous section, the variation of

the formation radius in the along-track/cross-track plane formation is greater

than that of the radial/along-track plane formation as e becomes large. Figure

4.2 and Table 4.2 give the guideline and constraints to design the spacecraft
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formation in the along-track/cross-track plane formation, and therefore a ref-

erence eccentricity and formation radius can be chosen according to the space

missions.

Remark 4 The along-track/cross-track plane formation has a varying eccen-

tricity in the local frame, and this eccentricity only depends on the eccentricity

of the reference orbit. Thus, the relative distance between the leader and fol-

lower spacecraft becomes large, as e is increased.

Similar to the radial/along-track plane formation, the follower spacecraft

cannot maintain a constant distance from the leader spacecraft in along-

track/cross-track plane formation under D2
1 = D2

2. Instead, the initial con-

ditions can be selected to make the relative distance between two spacecraft

keep constant value at given true anomaly. In order to keep constant distance

rd at perigee (ν = 0) in the along-track/cross-track plane, for example, the

following constraint is considered.

y2(0) + z2(0) = r2d (4.30)

If ν = 0, Eq. (4.26) can be written as

y2(0)

γ2(0)
+
z2(0)

γ20(0)
= D2

1(0) (4.31)

where

γ0(0) =
1

1 + e
, γ(0) =

2 + e

1 + e
, D2

1(0) = D2
2(0) (4.32)

Thus, the initial conditions at ν0 = 0 can be selected as follows:

x(ν0) = 0, y(ν0) = rd, z(ν0) = 0 (4.33)

x′(ν0) =
1 + e

2 + e
rd, y′(ν0) = 0, z′(ν0) =

1

2 + e
rd (4.34)

With these initial conditions, the coefficients in Eq. (4.14) are obtained, and

the analytic solutions for the along-track/cross-track plane formation under

D2
1 = D2

2 can be determined.
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Figure 4.2: The eccentricity of follower satellite in the along-track/cross-track

motion (D2
1 = D2

2)

Table 4.2: The eccentricity ratio of the along-track/cross-track motion (D2
1 =

D2
2)

e 0 0.001 0.01 0.1 0.3 0.5

Minimum ef 0.8660 0.8659 0.8646 0.8503 0.8087 0.7454

Maximum ef 0.8660 0.8662 0.8675 0.8793 0.9005 0.9165

∆(e) 1 0.9997 0.9967 0.9670 0.8980 0.8133
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4.4.2 Along-Track/Cross-Track Plane Formation under 4D2
1 =

D2
2

Let us consider the along-track/cross-track plane formation under 4D2
1 = D2

2,

that is 2ξ1 = ξ2. Equation (4.25) can be written as

y2(ν)

γ2D2
1

+
z2(ν)

4γ20D
2
1

= 1 (4.35)

In the circular reference orbit (e = 0), the along-track/cross-track motion

is a circle (ef = 0), which is the projected circular formation in the circular

reference orbit [30].

In the elliptic reference orbit, however, γ and γ0 are not constant and

change with respect to ν; as described in Eq. (4.35), the relative motion in

the along-track/cross-track plane has varying semi-major axis and semi-minor

axis with respect to ν. The eccentricity of the follower spacecraft in the along-

track/cross-track motion changes as follows:

ef =
√

1−
(

γD1

2γ0D1

)2
=

√
1−

(
2+e cos ν

2

)2
=

√
−e cos ν(4+e cos ν)

2 , if π
2 ≤ ν ≤

3π
2√

1−
(
2γ0D1

γD1

)2
=

√
1−

(
2

2+e cos ν

)2
=

√
e cos ν(4+e cos ν)

2+e cos ν , else

(4.36)

Note that the major axis in the cross-track direction is 2/(2 + e cos ν) times

the minor axis in the along-track direction when π
2 ≤ ν ≤ 3π

2 ; however, the

major axis in the along-track direction is (2 + e cos ν)/2 times the minor axis

in the cross-track direction when 0 ≤ ν < π
2 and 3π

2 < ν ≤ 2π. It means

that the direction of major axis varies with respect to ν. Figure 4.3 shows the

eccentricity change of the follower spacecraft in the local frame according to

the true anomaly. As shown in Fig. 4.3, the along-track/cross-track plane has

similar formation pattern to projected circular formation when eccentricity is

small, and it can be seen that ef has maximum value at ν = π and minimum
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value at ν = π
2 ,

3π
2 . The eccentricity of the follower spacecraft in the along-

track/cross-track plane has the following boundary.

0 ≤ ef ≤
√
e(4− e)

2
(4.37)

The maximum eccentricity of the follower spacecraft in the local frame be-

comes large as e increases, as shown in Table 4.3. It means that the variation

between the maximum and the minimum formation radii is extended as the

reference eccentricity becomes large.

Remark 5 In the along-track/cross-track plane formation with condition 4D2
1 =

D2
2, the eccentricity of the follower spacecraft, ef , in the local frame is depen-

dent on e. The variations of both ef and the relative distance between spacecraft

are increased as e becomes large in elliptic orbits.

In the along-track/cross-track plane formation under 4D2
1 = D2

2, the fol-

lower spacecraft cannot keep the invariant distance from the leader spacecraft

such as the projected circular formation for the circular orbit. Instead, the

initial conditions can be chosen for constant relative distance between the

leader and follower spacecraft at specific true anomaly. In order to maintain

constant distance rd at perigee (ν = 0) in the along-track/cross-track plane,

the following constraint is considered.

y2(0) + z2(0) = r2d (4.38)

If ν = 0, Eq. (4.35) can be written as

y2(0)

γ2(0)
+

z2(0)

4γ20(0)
= D2

1(0) (4.39)

where

γ0(0) =
1

1 + e
, γ(0) =

2 + e

1 + e
, 4D2

1(0) = D2
2(0) (4.40)

Thus, the initial conditions at ν0 = 0 can be selected as follows:

x(ν0) = 0, y(ν0) = rd, z(ν0) = 0 (4.41)
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x′(ν0) =
1 + e

2 + e
rd, y′(ν0) = 0, z′(ν0) =

2

2 + e
rd (4.42)

With these initial conditions, the coefficients in Eq. (4.14) are given, and

the analytic solutions for the along-track/cross-track plane formation under

4D2
1 = D2

2 can be obtained.

68



Figure 4.3: The eccentricity of follower satellite in the along-track/cross-track

motion (4D2
1 = D2

2)

Table 4.3: The maximum eccentricity of the along-track/cross-track motion

(4D2
1 = D2

2)

e 0 0.001 0.01 0.1 0.3 0.5

Minimum ef 0 0 0 0 0 0

Maximum ef 0 0.0316 0.0999 0.3122 0.5268 0.6614
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4.5 Numerical Simulation

Numerical simulations are performed to verify the two formation types as

investigated in the previous sections. The numerical simulation results of

the radial/along-track plane and the along-track/cross-track plane formations

with one follower spacecraft at ν0 = 0 are shown for several different eccen-

tricities of the reference orbit, e = 0.001, 0.01, 0.1, 0.3, and 0.5. Other orbit

elements are same as Table 3.1. In order to investigate the relative motion

of the multiple spacecraft formation, moreover, the numerical simulation re-

sults applying another follower spacecraft are illustrated according to various

eccentricities of the reference orbit. Then, these results are analyzed in the

viewpoint of the angle difference between two follower spacecraft with respect

to the formation radius and the eccentricity.

All numerical simulation results are shown in the LVLH frame instead

of the ECI frame to describe the relative motion of the follower spacecraft

with respect to the leader spacecraft, since it is difficult to denote the rela-

Figure 4.4: Trajectories of leader and follower spacecraft in the ECI frame
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tive motion in the inertial frame, as shown in Fig. 4.4. Figure 4.4 illustrates

the trajectory of the leader and follower spacecraft for the radial/along-track

plane formation in the ECI frame when the eccentricity is 0.01; the solid line

denotes the trajectory of the leader spacecraft and the dotted line shows the

trajectory of the follower spacecraft. As shown in Fig. 4.4, the trajectories of

spacecraft around the Earth can be realized, but the formation pattern of the

follower spacecraft is hard to recognize with respect to the leader spacecraft.

Therefore, the results are shown in the LVLH frame to investigate and verify

the formation pattern of the follower spacecraft with respect to the leader

spacecraft.

4.5.1 Radial/Along-Track Plane Formation

Figures 4.5–4.9 show the results for the radial/along-track plane formation.

The trajectory, the in-plane motion, and the out-of-plane motion are shown

in Fig. 4.5. Figures 4.6, 4.7, and 4.8 illustrate the time history of velocity, the

magnitude of velocity, and the radial/along-track motions according to the

eccentricity of the reference orbit, respectively. Figure 4.9 shows the history

of the formation radius with respect to e. As shown in Fig. 4.5, the in-plane

motion is periodic and bounded for all e; however, the eccentricity and the

formation radius of the follower spacecraft are changed with respect to the

e, as summarized in Table 4.1. In Figs. 4.6 and 4.7, the speed variation of

the follower spacecraft becomes extended as the eccentricity of the reference

orbit goes from 0.001 to 0.5, and the follower spacecraft has large velocity

near perigee (ν = 0). This velocity change can also be shown in Fig. 4.8. In

Fig. 4.8, the origin denotes the position of the leader spacecraft, the initial

position of the follower spacecraft is marked by a triangle, and the follower

spacecraft is marked with the same time interval. Figure 4.8 shows that the

follower spacecraft has almost the same speed when the eccentricity is small,
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e = 0.01; however, the speed increases near the perigee when the eccentricity

of the reference orbit is increased. Moreover, as shown in Fig. 4.9, the follower

spacecraft has the minimum formation radius at the perigee and apogee. The

difference between the maximum and minimum radii increases as the eccen-

tricity of the reference orbit becomes large.
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Figure 4.5: In-plane and out-of-plane motion: RAPF

Figure 4.6: Time history of the velocity: RAPF
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Figure 4.7: Time history of the velocity norm: RAPF

Figure 4.8: Radial/along-track motion: RAPF

Figure 4.9: Time history of the formation radius: RAPF
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4.5.2 Along-Track/Cross-Track Plane Formation

In this simulation, the along-track/cross-track plane formation under 4D2
1 =

D2
2 is considered, because the condition D2

1 = D2
2 provides the similar results

of the radial/along-track plane formation. Figures 4.10–4.14 illustrate the re-

sults for the along-track/cross-track plane formation according to the different

eccentricities under 4D2
1 = D2

2. The trajectory, the in-plane and out-of-plane

motions with the proposed initial conditions are shown in Fig. 4.10. Figures

4.11 and 4.12 describe the time history of velocity and the magnitude of veloc-

ity according to the eccentricity of reference orbit, respectively, and Fig. 4.13

illustrates the along-track/cross-track motions for the various eccentricities.

Fig. 4.14 shows the time history of the formation radius with respect to the

reference eccentricity. Figure 4.10 shows that the in-plane and out-of-plane

motions are periodic and bounded. Similar to Fig. 4.5, the follower spacecraft

has different formation shape with respect to the eccentricity of the leader

spacecraft; the eccentricity of the follower spacecraft and the formation radius

are extended as e is increased. As shown in Figs. 4.11 and 4.12, the velocity

of the follower spacecraft changes as the leader spacecraft has different eccen-

tricities, and the speed increases at the perigee and slows down at the apogee.

It is shown in Fig. 4.13, the speed of follower spacecraft is almost equal, when

e = 0.01; however, the speed is significantly increased near perigee when the

the eccentricity of the reference orbit goes to 0.5. In Fig. 4.14, the difference

between the maximum and minimum formation radii increases as e increases

to 0.5, which was already shown in Table 4.3. As shown in Fig. 4.14, the min-

imum radius appears at the perigee while the maximum radius shows at the

apogee.
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Figure 4.10: In-plane and out-of-plane motion: ACPF

Figure 4.11: Time history of the velocity: ACPF
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Figure 4.12: Time history of the velocity norm: ACPF

Figure 4.13: Along-track/cross-track motion: ACPF

Figure 4.14: Time history of the formation radius: ACPF
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4.5.3 Angle Difference between Two Follower Spacecraft

In accordance with the mission requirements, the number of followers can be

increased. For the multiple followers, the distance information between fol-

lower spacecraft is important to handle the measured data from each space-

craft. From this aspect, numerical simulation is performed using two follower

spacecraft, and the angle difference defined in Fig. 4.15 is analyzed according

to the change of the formation radius and eccentricity of the reference orbit

for the formation type described in previous sections. The initial conditions

of the follower 1 and the follower 2 are selected at ν0 = 0◦ and ν0 = 180◦,

respectively, in order to make the angle difference between two followers keep

180◦.

The simulation results of the radial/along-track plane formation using two

follower spacecraft are shown in Figs. 4.16–4.19. Figure 4.16 shows the tra-

jectory of two followers according to various formation radii with the same

Figure 4.15: Definition of the angle difference
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eccentricity of the reference orbit, e = 0.1. In Fig. 4.16, the origin denotes the

leader spacecraft, the initial position of the follower 1 is marked by a circle,

and the initial position of the follower 2 is marked by a triangle. Figure 4.17

shows the time history of the angle difference between the follower 1 and fol-

lower 2. As shown in Fig. 4.17, the angle difference between two followers is

changed within the range of 165◦ to 195◦, although the initial angle difference

is 180◦; however, the bound of the angle difference does not change as the for-

mation radius is increased. It means that the angle difference is not influenced

by the formation radius.

Figure 4.18 shows the trajectory of two followers according to various

reference eccentricities with the desired formation radius r = 500m; the origin

denotes the position of the leader spacecraft, the initial position of the follower

1 is marked by a circle, and the initial position of the follower 2 is marked by a

triangle. Figure 4.19 shows the time history of the angle difference between the

follower 1 and the follower 2. As compared with Fig. 4.17, Fig. 4.19 shows that

the range of the angle difference varies as e is changed; the maximum of the

angle difference is extended as the eccentricity increases. When the eccentricity

has a small value, two follower spacecraft keep the angle difference near 180◦;

however, they cannot maintain the constant angle difference as the eccentricity

is increased. For example, although the initial angle difference is 180◦, the

range of the angle difference is between 130◦ and 230◦ when e = 0.5. This is

because the speed of the follower spacecraft is increased near the perigee and

decreased near the apogee when the leader spacecraft has a highly elliptical

orbit, as shown in Fig. 4.8.
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Figure 4.16: Relative trajectory with respect to r: RAPF, e = 0.1

Figure 4.17: Time history of angle difference with respect to r: RAPF, e = 0.1
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Figure 4.18: Relative trajectory with respect to e: RAPF, r = 500m

Figure 4.19: Time history of angle difference with respect to e: RAPF, r =

500m
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The simulation results of the along-track/cross-track plane formation using

two follower spacecraft under 4D2
1 = D2

2 are shown in Figs. 4.20–4.23. Figure

4.20 shows the trajectory of two followers according to various formation radii

with the eccentricity of the leader spacecraft, e = 0.1; the origin denotes the

leader spacecraft, the initial position of the follower 1 is marked by a circle,

and the initial position of the follower 2 is marked by a triangle. Figure 4.21

shows the time history of the angle difference between the follower 1 and

follower 2. As shown in Fig. 4.21, the angle difference varies within the range

of 150◦ to 210◦, but the bound of the angle difference does not increase as the

formation radius becomes large similar to Fig. 4.17.

Figure 4.22 shows the trajectory of two followers according to various

reference eccentricities with the desired formation radius r = 500m; the origin

denotes the leader spacecraft, the initial position of the follower 1 is marked

by a circle, and the initial position of the follower 2 is marked by a triangle.

Figure 4.23 shows the time history of the angle difference between the follower

1 and 2. As compared with Fig. 4.21, Fig. 4.23 describes that two followers

do not keep 180◦, and the amplitude of the angle difference is extended as

e is increased. Thus, the bound of the angle difference is influenced by the

eccentricity of the leader spacecraft.
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Figure 4.20: Relative trajectory with respect to r: ACPF, e = 0.1

Figure 4.21: Time history of angle difference with respect to r: ACPF, e = 0.1
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Figure 4.22: Relative trajectory with respect to e: ACPF, r = 500m

Figure 4.23: Time history of angle difference with respect to e: ACPF, r =

500m
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4.5.4 Pattern Analysis of the Spacecraft Formation

Tables 4.4 and 4.5 summarize the formation radius according to the eccen-

tricity of the reference orbit as shown in Figs. 4.9 and 4.14. The results show

the tendency of the formation radius as a function of different eccentricities.

As shown in Tables 4.4 and 4.5, the larger the eccentricity, the larger the

maximum formation radius in both formation types, the radial/along-track

plane and the along-track/cross-track plane formations. Furthermore, the ra-

tio between the minimum and the maximum formation radii decreases as

the eccentricity increases, as explained in Sections 4.3 and 4.4. The variation

of the formation radius in the along-track/cross-track plane formation is re-

duced more significantly than that in the radial/along-track plane formation;

the ratio between the minimum and maximum formation radii changes from

99.60 % to 33.32 % in the along-track/cross-track plane formation as shown

in Table 4.5, while the range of the ratio is from 49.97 % to 47.18 % in the

Table 4.4: The maximum and minimum formation radius and ratio: RAPF

e 0.001 0.01 0.1 0.3 0.5

Maximum (m) 500.5910 502.8526 525.2467 575.8436 635.8959

Minimum (m) 250.1249 251.2437 261.9047 282.6082 300.0000

Min/Max (%) 49.97 49.96 49.86 49.08 47.18

Table 4.5: The maximum and minimum formation radius and ratio: ACPF

e 0.001 0.01 0.1 0.3 0.5

Maximum (m) 501.2318 510.0911 611.0675 928.4897 1499.8289

Minimum (m) 499.2380 499.8871 499.9788 499.9637 499.8053

Min/Max (%) 99.60 98.00 81.82 53.85 33.32
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radial/along-track plane formation as shown in Table 4.4.

Tables 4.6 and 4.7 summarize the angle difference between two follower

spacecraft according to the eccentricity of the reference orbit as shown in

Figs. 4.19 and 4.23. As shown in Tables 4.6 and 4.7, when the reference ec-

centricity is small, the angle difference between two followers is near 180◦.

In contrast, two follower spacecraft cannot keep the constant angle difference

as the reference eccentricity is increased, and the variation of the angle dif-

ference in the along-track/cross-track plane formation is severer than that in

the radial/along-track plane formation. In the radial/along-track plane forma-

tion, the variation of the angle difference from 180◦ is 54.3901◦ for e = 0.5, but

0.1728◦ for e = 0.0001; however, in the along-track/cross-track plane forma-

tion, the angle difference has variation of 100.3352◦ for e = 0.1, and of 0.2292◦

for e = 0.001. Through these results, it is noted that the eccentricity of the

reference orbit should be selected near zero to keep the same angle difference

between two follower spacecraft during the formation mission. Moreover, if the

Table 4.6: The maximum and minimum angle difference: RAPF

e 0.001 0.01 0.1 0.3 0.5

Maximum (deg) 180.1728 181.1705 191.4309 213.5507 234.3901

Minimum (deg) 179.8406 178.8343 168.5721 146.4483 125.6110

Variation (deg) 0.1728 1.1705 11.4309 33.5507 54.3901

Table 4.7: The maximum and minimum angle difference: ACPF

e 0.001 0.01 0.1 0.3 0.5

Maximum (deg) 180.2292 182.2917 202.7676 245.0862 280.3552

Minimum (deg) 179.7708 177.7083 157.2324 114.9138 79.6448

Variation (deg) 0.2292 2.2917 22.7676 65.0862 100.3552
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leader spacecraft is in an elliptic orbit, it is necessary to use the information

of the angle difference between two followers for the utilization of the mea-

sured data from the spacecraft in a formation. On the other hand, when the

formation mission requires the elliptical reference orbit and the constant an-

gle difference between two followers, the follower spacecraft requires the orbit

control to adjust the position.

The simulation results and analysis of this study provide a guideline when

selecting the desired formation pattern in the elliptical reference orbits. In

addition, the variations between the minimum and maximum formation radii

and the range of the angle difference provide the constraints to be satisfied in

the process of the formation design.
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4.6 Concluding Remarks

In this chapter, the periodic relative motion and the formation geometry are

developed. The periodic relative motion is derived to eliminate the secular drift

and the offset in the along-track direction in Section 4.2. Two formation types

are considered to analyze the formation pattern and to develop the formation

geometry. The radial/along-track plane formation is analyzed with respect to

the eccentricity and true anomaly of the reference orbit in Section 4.3. More-

over, the initial condition to maintain the formation in the radial/along-track

plane formation is presented. In Section 4.4, the formation pattern analysis of

the along-track/cross-track plane formation is presented and the initial con-

dition of the along-track/cross-track plane formation is developed. For the

along-track/cross-track plane formation, two cases are studied: D2
1 = D2

2 and

4D2
1 = D2

2. In Section 4.5, the numerical simulation results are illustrated

to analyze the formation pattern of the follower spacecraft according to the

eccentricity and true anomaly of the leader spacecraft in two formation ge-

ometries. In addition, the angle difference is shown to consider the multiple

follower spacecraft.

Through the analysis of the formation pattern, the eccentricity of the

follower spacecraft in the local frame is not a constant value, and therefore

the relative distance between two spacecraft varies according to e. When the

leader spacecraft has a small eccentricity, the formation radius does not change

a lot; however, as the eccentricity of the leader spacecraft is increased, the

variation of the formation radius becomes significantly large in all formation

geometries. These analytic results provide the guideline or constraint to design

the formation in the elliptic reference orbit.
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Chapter 5

Maneuver for Formation

Reconfiguration

5.1 Introduction

In this chapter, the maneuver problem for the spacecraft formation recon-

figuration is considered. The maneuver problem between two orbits in the

inertial frame has been widely studied [70, 96]. For the spacecraft formation,

the maneuver can change the formation radius and configuration between two

spacecraft. However, a follower spacecraft from one orbit to another with re-

spect to the leader spacecraft in the LVLH frame, where the initial and final

positions, velocities, transfer time, and the orbit elements of the leader space-

craft are specified, has not been sufficiently investigated.

The maneuver problem can be formulated according to the control input

type: continuous control input and impulsive control input. For the contin-

uous control input case, the optimization theory can be applied, where the

position and velocity vectors at the initial and final time are specified. The

trajectory optimization using the continuous control input can be classified

into two categories: indirect method and direct method [69, 70, 114]. In the
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indirect method, the optimal trajectory is obtained by deriving and solving

the first-order necessary conditions for the optimality via the calculus of varia-

tions and Pontryagin’s minimum principle. This method has advantages that

accurate solution is obtained by satisfying the first-order optimality condi-

tions; however, the appropriate initial guess of the state/costate values for the

unknown boundary conditions is required to obtain the converged solution. In

the direct method, on the other hand, the continuous optimization problem

can be solved by direct applying a nonlinear programming. The state and con-

trol variables are updated to minimize the cost function, while the boundary

conditions and several constraints are satisfied. The advantage of the direct

method lies in the larger radii of convergence than that of the indirect method,

and therefore the convergence is not sensitive to the initial guess of the state

trajectory and input history. In contrast, the direct method provides less ac-

curate solution than the indirect method. In this study, the optimal trajectory

is obtained by using the nonlinear programming and collocation method.

For the impulsive control input case, the transfer orbit between two orbits

can be determined by the specified position vectors at the initial and final time

[96]. The maneuver usually leads to change of the orbital plane, and therefore

several orbital elements are varied; (i) in the coplanar maneuver, semi-major

axis a, eccentricity e, and augment of perigee ω change, (ii) in the non-coplanar

maneuver, inclination i and longitude of ascending node Ω change, and (iii) in

the combined maneuver, all orbital elements change. The Hohmann transfer is

known as a global optimum two-impulsive transfer between circular coplanar

orbits, and a transfer orbit is an ellipse cotangential to the circles at its apses

[31, 96]. The most general transfer uses two nontangential burns, which can

apply to any orbit type. This transfer problem in the two-body problem can

be usually solved by the Lambert’s problem [31]. Lambert’s problem provides

the transfer orbit between fixed two position vectors with given transfer time.
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Various methods dealing with the Lambert’s problem have been discussed by

many researchers [99, 100, 101, 102, 103, 104].

The maneuver problem for the spacecraft formation is described in Section

5.2. In Section 5.3, the transfer problem using the continuous control input is

solved by the optimal control theory with the Gauss pseudospectral method.

The maneuver problem in the relative motion using the impulsive control

input is treated and discussed by modifying the classical Lambert’s problem

in Section 5.4.

5.2 Maneuver for Spacecraft Formation

One objective of the maneuver for the spacecraft formation is to change the

formation configuration between the leader and follower spacecraft in the

LVLH frame, as shown in Fig. 5.1. To do this, minimization of the control

fuel during the maneuver is important, since the remaining fuel is critical for

life of the spacecraft. Therefore, in this study, to transfer from given position

and velocity vectors on the initial configuration to desired position and veloc-

ity vectors on the final configuration, two types of control input are considered:

continuous control input and impulsive control input. Table 5.1 summarizes

the characteristics of two control inputs [115, 116, 117, 118].

For the continuous control input, the trajectory optimization problem for

the formation reconfiguration is formulated by the parameter optimization,

Table 5.1: Characteristics of thruster

Impulsive control input Continuous control input

Propulsion Chemical thruster Ion thruster

Isp (s) 100− 500 ∼ 5, 000

Force (N) 0.1− 103 10−3 − 10
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given two position and velocity vectors at the initial and final time. Generally,

the parameter optimization methods are categorized according to the variables

to be parameterized and the method to satisfy dynamic equation. The most

common method is control parameterization technique [119]; the only control

history is expressed as a finite parameter representation, and the differential

dynamic equations are solved by numerical integration. Another type is state

and control parameterization technique [85]; the state and control variables

are parameterized, and the differential dynamic equations are changed to al-

gebraic constraints so that the numerical integration can be satisfied at each

node. Pseudospectral or orthogonal collocation method is widely used in this

technique [120]. In a pseudospectral method, the state and control variables

are approximated using a finite basis of global interpolating polynomials at a

set of discretization nodes, and the differentiation of state in dynamic equa-

tion is approximated by the derivative of interpolating polynomial, which is

Figure 5.1: Geometry of maneuver
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converted to constraints at the collocation nodes. In addition, the colloca-

tion points are selected to be roots of an orthogonal polynomial. The pri-

mary advantage of the pseudospectral method is fast convergence rate, and

therefore various problems have been solved using the pseudospectral method

[94, 121, 122, 123, 124].

For the impulsive control input, the transfer orbit between two orbits can

be generally defined by the Lambert’s problem, where two position vectors are

known at the initial and final time [97, 98]. The classical Lambert’s problem

deals with the transfer problem of a single spacecraft in the inertial frame. In

this study, the classical Lambert’s problem is modified to change the forma-

tion radius or formation geometry between the leader and follower spacecraft

in the LVLH frame using two-impulses. By solving the two-point boundary

value problem in the relative motion, the formation reconfiguration and orbit

transfer of the spacecraft formation can be obtained. The desired transfer orbit

can be characterized by the initial position and final position of the follower

spacecraft in the LVLH frame. In this study, the periodic analytic solutions are

used to find the initial and final positions of the follower spacecraft. Although

the leader spacecraft moves on elliptic reference orbits, which is Keplerian mo-

tion, the relative motion including the relative position and velocity vectors

does not have the characteristics of Keplerian motion. However, the follower

spacecraft with respect to the Earth is also Keplerian motion, because the fol-

lower spacecraft maintaining a desired formation type moves on the Earth’s

orbit, too. As a result, the maneuver problem of the follower spacecraft in the

relative motion can be solved by utilizing the classical Lambert’s problem.

The difference between this approach and the classical Lambert’s problem lies

on the point of transfer time. In the classical Lambert’s problem, the transfer

orbit is determined using the flight time which can be selected for the one

single spacecraft in the orbit. On the other hand, in the relative motion of
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the spacecraft formation, it is assumed that the relative distance between the

leader and follower spacecraft is very small, and then the transfer orbit of the

follower spacecraft is obtained using the transfer time depending on the flight

time of the leader spacecraft [105, 112]. By dealing with this maneuver prob-

lem, the transfer orbit and the velocity vector for the maneuver between two

orbits can be obtained, and thereby the total required ∆V can be computed.

5.3 Continuous Control Input

5.3.1 Dynamic Model

In Chapter 2, the relative motion is presented without the external force act-

ing on the spacecraft. Sometimes, the spacecraft uses the control forces to

maintain the desired position or transfer the orbit. The equation of relative

motion can be written considering the external forces as follows:

ẍ = 2θ̇ẏ + θ̈y + θ̇2x− µ(R+ x)

{(R+ x)2 + y2 + z2}3/2
+

µ

R2
+ ux

ÿ = −2θ̇ẋ− θ̈x+ θ̇2y − µy

{(R+ x)2 + y2 + z2}3/2
+ uy (5.1)

z̈ = − µz

{(R+ x)2 + y2 + z2}3/2
+ uz

where ux, uy, and uz are the control inputs in radial, along-track, and cross-

track direction, respectively. Equation (5.1) can be rewritten in the true-

anomaly domain as

x′′ =
2e sin ν

1 + e cos ν
x′ + 2y′ +

3 + e cos ν

1 + e cos ν
x− 2e sin ν

1 + e cos ν
y +

(1− e2)3

n2(1 + e cos ν)4
ux

y′′ = −2x′ +
2e sin ν

1 + e cos ν
y′ +

2e sin ν

1 + e cos ν
x+

e sin ν

1 + e cos ν
y +

(1− e2)3

n2(1 + e cos ν)4
uy

z′′ =
2e sin ν

1 + e cos ν
z′ − 1

1 + e cos ν
z +

(1− e2)3

n2(1 + e cos ν)4
uz (5.2)

Equation (5.2) is considered as the dynamic constraint in the trajectory opti-

mization problem.
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5.3.2 Problem Formulation

The objective of an optimal control problem is to determine the control inputs

minimizing the performance index while satisfying various constraints. Let

us consider the following cost function J1 for minimum energy and J2 for

minimum fuel.

J1 =

∫ ν2

ν1

UTΞUdν (5.3)

J2 =

∫ ν2

ν1

3∑
i=1

|ui|dν (5.4)

where U = [ux, uy, uz]
T ∈ <3 is a control input vector, and Ξ ∈ <3×3 is a

weighting matrix. The control input vector has specified limits as boundary

condition as follows:

|U | ≤ UB (5.5)

Equation (5.2) is the dynamic constraint, and the boundary conditions at

ν1 and ν2 should be determined considering the situation that (i) the follower

spacecraft moves in the LVLH frame with respect to the leader spacecraft, and

(ii) transfers from formation radius r1 to r2. The initial position and velocity

are selected according to the desired formation type with r1 as described in

Chapter 4.

x(ν1) = x0, y(ν1) = y0, z(ν1) = z0 (5.6)

x′(ν1) = x′0, y′(ν1) = y′0, z′(ν1) = z′0 (5.7)

The final position and velocity are chosen according to the desired formation

type with r2.

x(ν2) = xf , y(ν2) = yf , z(ν2) = zf (5.8)

x′(ν2) = x′f , y′(ν2) = y′f , z′(ν2) = z′f (5.9)

The relative motion is expressed in the true anomaly domain, and the transfer

angle can be defined as ∆ν = ν2 − ν1.
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5.3.3 Gauss Pseudospectral Method

In the direct method solving the trajectory optimization problem, the state

and control variables are parametrized. Gauss pseudospectral method uses

global interpolating polynomials to approximate the state and control pa-

rameters on the time interval τ ∈ [−1 1] [94]. In the Gauss pseudospec-

tral method, the dynamics are collocated at the N Legendre-Gauss points

τk (k = 1, · · · , N), and the state and control parameters are approximated

using Lagrange interpolating polynomials as the basis functions. The state is

approximated using a basis of N + 1 Lagrange interpolating polynomials L,

and the control is approximated using a basis of N Lagrange interpolating

polynomials L′ as

X(τ) =

N∑
i=0

X(τi)Li(τ) (5.10)

U(τ) =
N∑
i=1

U(τi)L
′
i(τ) (5.11)

where

Li(τ) =

N∏
j=0,j 6=i

τ − τj
τi − τj

, L′i(τ) =

N∏
j=1,j 6=i

τ − τj
τi − τj

(5.12)

Now, the variables used in Gauss pseudospectral method are

NLP variables corresponding to state: (X0,X1, · · · ,XN )

NLP variables corresponding to control: (U1, · · · ,UN )
(5.13)

Differentiating Eq. (5.10) yields

Ẋ(τ) =

N∑
i=0

X(τi)L̇i(τ) (5.14)

where

L̇i(τk) =


(1+τk)ṖK(τk)+PK(τk)

(τk−τi)[(1+τi)ṖK(τi)+PK(τi)]
i 6= k

(1+τi)P̈K(τi)+2ṖK(τi)

2[(1+τi)ṖK(τi)+PK(τi)]
i = k

(5.15)
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where k = 1, 2, · · · , N , and i = 0, 1, · · · , N . The dynamic equations at the

collocation points are obtained as

K∑
i=0

L̇i(τk)X(τi)−
tf − t0

2
f(X(τk),U(τk), τk) = 0, k = 1, 2, · · · , N (5.16)

The boundary conditions can also be discretized at the Legendre-Gauss points.

5.4 Impulsive Control Input

5.4.1 Lambert’s Problem

Lambert’s theorem states that the flight time from one point to another de-

pends on the semi-major axis of transfer orbit, the distance of the initial and

final points of the arc from the center of force, and the length of the chord

joining the points. The chord length, c, between two position vectors ~r1 and

~r2, as shown in Fig. 5.2, is defined by the cosine law as follows:

c =
√
r21 + r22 − 2r1r2 cos(θT ) (5.17)

In Fig. 5.2, F is the primary focus which is the location of the Earth, ~r1 and

~r2 are the position vectors at the initial time t1 and the final time t2, and θT

is the transfer angle between two position vectors defined by

cos(θT ) =
~r1 · ~r2
r1r2

(5.18)

The direction of flight can be defined by the transfer angle; the spacecraft

moves along the short way when θT ≤ π, and it moves along the long way

when θT > π.

To determine the transfer orbit between two position vectors, two foci

and semi-major axis should be found. From the definition of the ellipse, the

location of the vacant focus and semi-major axis a of the transfer orbit can

be determined. As shown in Fig. 5.2, two circles can be drawn having 2a− r1
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and 2a − r2 as radii and points P1 and P2 as centers, respectively, since the

sum of the distance from the foci to any point on the ellipse equals twice the

semi-major axis as 2a = r1 + (2a − r1) = r2 + (2a − r2). As a result, two

intersected points, F ′ and F ′′, are determined as shown in Fig. 5.2, which

are the candidate locations of other focus of the transfer orbit. Using two

vacant foci, two elliptic orbits can be obtained as shown in Fig. 5.3. Note from

Fig. 5.3 that two ellipses have different eccentricities; the ellipse with vacant

focus F ′ has the smaller eccentricity, and the ellipse with F ′′ has the larger

eccentricity. The location of vacant focus depends on the semi-major axis of

the transfer orbit, and therefore the semi-major axis should be determined

carefully through iterative calculation for the minimum energy.

Figure 5.2: Geometry for the Lambert’s problem
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When the transfer orbit is determined, the velocity vectors of the transfer

orbit at the initial and final time, ~vt,1 and ~vt,2, as shown in Fig. 5.4, can be

calculated by the Kepler’s equation. Consequently, the velocity changes ∆v1

and ∆v2 at t1 and t2 can be obtained as

∆v1 = ~vt,1 − ~v1 (5.19)

∆v2 = ~v2 − ~vt,2 (5.20)

where ~v1 and ~v2 are velocity vectors of the spacecraft around a planet at the

initial and final time. Figure 5.4 shows the velocity changes using two impulse

inputs. The total velocity change can defined as follows:

∆v = |∆v1|+ |∆v2| (5.21)

Figure 5.3: Geometry of transfer orbit for the Lambert’s problem
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Figure 5.4: Orbit transfer using two impulsive inputs

5.4.2 Lambert’s Problem for Follower Spacecraft

The transfer orbit for the follower spacecraft connecting two relative position

vectors can be solved using the Lambert’s problem, when the orbital elements

of the leader spacecraft and the flight time are known. The geometry of the

transfer orbit for the follower spacecraft is illustrated in Fig. 5.5.

The relative position vectors of the follower spacecraft with respect to the

leader spacecraft, ~ρ1 ∈ <3 and ~ρ2 ∈ <3 at the initial time t1 and the final time

t2 in the LVLH frame, respectively, can be expressed as follows:

~ρ1 = [x1, y1, z1]
T

~ρ2 = [x2, y2, z2]
T

(5.22)

The position vectors of the follower spacecraft with respect to the Earth at t1
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and t2 in the ECI frame can be written as

~R1 = ~r1 + ~ρ1

~R2 = ~r2 + ~ρ2
(5.23)

where ~r1 ∈ <3 and ~r2 ∈ <3 are the position vectors of the leader spacecraft in

the ECI frame at t1 and t2, respectively.

Let us define the velocity vectors of the follower spacecraft at t1 and t2

in the ECI frame as ~V1 ∈ <3 and ~V2 ∈ <3, respectively. Given two position

vectors, ~R1 and ~R2, the transfer orbit for the follower spacecraft can be deter-

mined through the Lambert’s problem as explained in the previous section.

The transfer angle can be defined by

cos(θT ) =
~R1 · ~R2

R1R2
(5.24)

Figure 5.5: Orbit transfer for follower spacecraft
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The chord length is determined as

c =
√
R2

1 +R2
2 − 2R1R2 cos(θT ) (5.25)

Using θT and c, the Lambert’s problem can provide the velocities of the trans-

fer orbit, ~Vt,1 ∈ <3 and ~Vt,2 ∈ <3, as shown in Fig. 5.5. The transfer time for

the elliptic orbit is defined from the Kepler’s equation as follows [23, 31]:

∆t =

√
a3

µ
[2πk + (E2 − e sinE2)− (E1 − e sinE1)] (5.26)

where ∆t = t2 − t1, and E1 and E2 are eccentric anomalies at t1 and t2. In

this study, multiple revolutions are not considered, and then 2πk term in Eq.

(5.26) can be ignored. Equation (5.26) can be rewritten as

√
µ∆t =

√
a3 [∆E + e(sinE1 − sinE2)] (5.27)

where ∆E = E2 − E1. To solve the Kepler’s equation, the universal variable,

χ, is adopted in this study, which relates energy and angular momentum [31].

The universal variable, χ is defined as follows:

χ =
√
a∆E (5.28)

In addition, parameters s2 and s3 are defined as

s2 =
1− cos ∆E

∆E2
, s3 =

∆E − sin ∆E

∆E3
(5.29)

Using Eqs. (5.28) and (5.29), Eq. (5.27) can be expressed as

√
µ∆t = χ3s3 +

√
a3 sin ∆E +

√
a3 e (sinE1 − sinE2) (5.30)

With trigonometric identity, sin(a1 − a2) = sin a1 cos a2 − cos a1 sin a2, Eq.

(5.30) can be rewritten as

√
µ∆t = χ3s3 +

√
a3 {sinE1(e− cosE2)− sinE2(e− cosE1)} (5.31)
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The relation between eccentric anomaly E and true anomaly ν is defined by

[23, 31]

cos ν =
e− cosE

e cosE − 1
(5.32)

After some manipulation with Eq. (5.32), Eq. (5.31) can be expressed as fol-

lows:

√
µ∆t = χ3s3+

√
a3 (sin ν2 cos ν1 − sin ν1 cos ν2)

[
(1− e cosE1)(1− e cosE2)√

1− e2

]
(5.33)

With the trigonometric identity, Eq. (5.33) is presented as

√
µ∆t = χ3s3 +

√
a3 sin θT

(1− e cosE1)(1− e cosE2)√
1− e2

(5.34)

The radius is defined as r = a(1− e cosE) in the orbital mechanics, and then

Eq. (5.34) can be rewritten as

√
µ∆t = χ3s3 +A

√
Y (5.35)

where

A =

√
R1R2 sin θT√
1− cos θT

, Y =

√
R1R2(1− cos θT )√

a(1− e2)
(5.36)

The resulting A and Y give the velocity vectors of the transfer orbit at t1 and

t2 as follows:

~Vt,1 =
~R2 − f ~R1

g
(5.37)

~Vt,2 =
ġ ~R2 − ~R1

g
(5.38)

where

f = 1− Y

R1
(5.39)

g = A

√
Y

µ
, ġ = 1− Y

R2
(5.40)

Finally, the velocity changes ∆V1 and ∆V2 for the follower spacecraft at t1

and t2 can be obtained as follows:
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∆V1 = ~Vt,1 − ~V1 (5.41)

∆V2 = ~V2 − ~Vt,2 (5.42)

Consequently, the total velocity change can be calculated as

∆V = |∆V1|+ |∆V2| (5.43)

Note that ~Vt,1 and ~Vt,2 are velocities with respect to the Earth and ex-

pressed in the ECI frame. Thus, the relative velocity vectors of the follower

spacecraft with respect to the leader spacecraft can be expressed as follows:

~̇ρ1 = ~Vt,1 − ~v1 − ω × ~ρ1

~̇ρ2 = ~Vt,2 − ~v2 − ω × ~ρ2
(5.44)

where ~v1 ∈ <3 and ~v2 ∈ <3 are velocity vectors of the leader spacecraft

at t1 and t2, respectively, and ω is the angular velocity vector of the leader

spacecraft as defined by

ω = ν̇~k, ~k =
r1 × r2
||r1 × r2||

(5.45)

Finally, the relative velocity vectors in the LVLH frame and the orbital ele-

ments of the transfer orbit can be found.
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5.5 Concluding Remarks

In this chapter, the maneuver problem for the formation reconfiguration is

developed. To transfer between two position vectors, two control input types

are considered: continuous control input and impulsive control input. For the

continuous control input, the optimal control problem is presented for the

formation reconfiguration, and the Gauss pseudospectral method is described

specifically, in Section 5.3. On the other hand, for the impulsive control input,

the Lambert’s problem is presented in Section 5.4. Furthermore, to deal with

the relative motion of multiple spacecraft, the classical Lambert’s problem is

modified to solve the maneuver problem for the follower spacecraft with re-

spect to the leader spacecraft. Therefore, the transfer trajectory of the follower

spacecraft can be determined according to the thrust system.
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Chapter 6

Numerical Simulation:

Formation Reconfiguration

6.1 Introduction

In this chapter, numerical simulations are performed for the maneuver problem

of the formation reconfiguration. Using two control input types, i.e., contin-

uous control input type and impulsive control input type, three maneuvering

cases are considered to verify the formation reconfiguration in the relative

motion: (i) change of the formation radius in the radial/along-track plane for-

mation, (ii) change of the formation radius in the along-track/cross-track plane

formation, and (iii) change of the formation geometry from the radial/along-

track plane to the along-track/cross-track plane formations.

In Section 6.2, the simulation configuration is described for the formation

reconfiguration. In Section 6.3, the numerical simulation results for changing

the formation radius are illustrated in the radial/along-track plane forma-

tion using two control input types. The results of the formation reconfigu-

ration in the along-track/cross-track plane formation are shown in Section

6.4. In Section 6.5, the results for changing the formation geometry from the
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radial/along-track plane to the along-track/cross-track plane formations are

described.

6.2 Simulation Configuration

The configuration of the numerical simulation is described in Fig. 6.1. First,

the objective of the maneuver for the formation reconfiguration is defined ac-

cording to the formation type considering the formation pattern analysis pre-

sented in Chapter 4. Moreover, the control input type is considered according

to the spacecraft thrust system. After the consideration of the formation re-

configuration, the relative position vectors and velocity vectors at the initial

and final time are obtained through the periodic relative motion as discussed

in Chapters 3 and 4. Then, the optimal trajectories are provided by solving

the Gauss pseudospectral method of the optimal control problem for the con-

tinuous control input (Section 5.3), and by solving the modified Lambert’s

problem for the impulsive control input (Section 5.4).

Figure 6.1: Configuration of numerical simulation
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6.3 Radial/Along-Track Plane Formation

In this section, the maneuver for the formation reconfiguration in the radial/

along-track plane formation (RAPF) is performed using two control input

types: continuous and impulsive control inputs. The orbital elements of the

leader spacecraft are summarized in Table 3.1. To change the formation radius

in the radial/along-track plane formation, we consider a situation that the

follower spacecraft moves from the initial formation radius of 500 m to the

final formation radius of 1,000 m. The initial and final conditions are given

by the formation geometry as described in Chapter 4.

In Section 6.3.1, the optimal trajectory using the continuous control input

is illustrated using the Gauss pseudospectral method with the relative posi-

tion and velocity vectors at the initial and final configuration, which method

is described in Section 5.3. In Section 6.3.2, the transfer orbit trajectory using

the impulsive control input is shown based on the modified Lambert’s prob-

lem presented in Section 5.4, where the initial and final position vectors and

the flight time are specified. In Section 6.3.3, moreover, the global minimum

velocity is described and corresponding transfer orbit is presented to minimize

the control effort for the impulsive control input. The simulation results for

resizing the formation radius in the radial/along-track plane formation are

analyzed in Section 6.3.4.
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6.3.1 Continuous Control Input

The initial and final conditions of the follower spacecraft in the LVLH frame

are summarized in Table 6.1. For the continuous control input type, two cost

functions, J1 and J2, are considered as described in Eqs. (5.3) and (5.4).

Figures 6.2–6.4 show the simulation results with the cost function J1 for

minimum energy. Figure 6.2 shows the transfer trajectory of the follower space-

craft with respect to the leader spacecraft in the LVLH frame; the solid line

denotes the trajectory of the follower spacecraft with different formation radii,

rd = 500m and rd = 1, 000m, respectively, and the line with square shows

the transfer trajectory of the follower spacecraft between two orbits. Figure

6.3 shows the velocity history of the follower spacecraft in the true anomaly

domain during the maneuver. In Fig. 6.3, the triangle denotes specified rela-

tive velocities at the initial and final time in the LVLH frame, as presented in

Table 6.1. Figure 6.4 shows the control input history of the follower spacecraft

in the true anomaly domain during the maneuver. As shown in Fig. 6.2, the

transfer trajectory is placed on the x−y plane where satisfying the conditions

for the initial and final relative positions. In addition, the boundary conditions

of the initial and final relative velocities are also satisfied as shown in Fig. 6.3

by the continuous control input presented in Fig. 6.4.

Table 6.1: Initial and final conditions: RAPF

Initial condition Final condition

rd (m) 500 1,000

ν (deg) 98 262

Position (m) [250.3559, -73.4146, 0] [-518.7118, -146.8293, 0]

Velocity [-36.4501, 0, 0] [-72.9002, 0, 0]
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Figure 6.2: Trajectory of follower spacecraft in LVLH frame (J1): RAPF

Figure 6.3: Relative velocity history of follower spacecraft (J1): RAPF
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Figure 6.4: Control input history of follower spacecraft (J1): RAPF

Figures 6.5–6.7 show the simulation results with the cost function J2 for

minimum fuel. Figure 6.5 shows the transfer trajectory of the follower space-

craft with respect to the leader spacecraft in the LVLH frame; the solid line

denotes the trajectory of the follower spacecraft with different formation radii,

rd = 500m and rd = 1, 000m, respectively, and the line with square shows

the transfer trajectory of the follower spacecraft between two orbits. Figure

6.6 shows the velocity history of the follower spacecraft in the true anomaly

domain during the maneuver. In Fig. 6.6, the triangle denotes specified rela-

tive velocities at the initial and final time in the LVLH frame, as presented in

Table 6.1. Figure 6.7 shows the control input history of the follower spacecraft

in the true anomaly domain. The transfer trajectory is placed on the x − y

plane as shown in Fig. 6.5, where satisfying the conditions for the initial and

final relative positions given in Table 6.1. Moreover, the boundary conditions

of the initial and final relative velocities are also satisfied as shown in Fig. 6.6.

These results in Figs. 6.5 and 6.6 are similar to Figs. 6.2 and 6.3; however the

control input history is different according to the cost function.
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Figure 6.5: Trajectory of follower spacecraft in LVLH frame (J2): RAPF

Figure 6.6: Relative velocity history of follower spacecraft (J2): RAPF
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Figure 6.7: Control input history of follower spacecraft (J2): RAPF

6.3.2 Impulsive Control Input

For the numerical simulation using the impulsive control input in the radial/

along-track plane formation, the simulation conditions are same as in Sec-

tion 6.3.1. Figures 6.8–6.10 show the simulation results for maneuvering in

the radial/along-track plane formation. Figure 6.8 shows the trajectories of

the leader and follower spacecraft in the ECI frame; the normal line denotes

the trajectory of the leader spacecraft and the thick line shows the transfer

trajectory of the follower spacecraft. As shown in Fig. 6.8, it is difficult to

understand the relative motion of the follower spacecraft with respect to the

leader spacecraft in the ECI frame. Instead, Fig. 6.9 shows the transfer trajec-

tory of the follower spacecraft in the LVLH frame. As shown in Fig. 6.9, the

follower spacecraft moves from the initial position to the final position on the

x−y plane in the LVLH frame. Figure 6.10 describes the relative velocity his-

tory of the follower spacecraft during the maneuver. In Fig. 6.10, the triangle

denotes specified relative velocities at the initial and final time in the LVLH

frame given in Table 6.1. As a result, the difference between the resulting ve-

locity from the modified Lambert’s problem and the specified velocity is equal

to the required velocity change for the orbit transfer. Table 6.2 summarizes
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the relative velocities of the follower spacecraft and the velocity change, ∆V ,

for the reconfiguration maneuver in the radial/along-track plane formation.

Compared with the results in Section 6.3.1, the obtained transfer trajec-

tory using the two impulse control inputs is similar to the transfer trajectory

using the continuous control input; however, the velocity history is different

according to the control input type. In the continuous control input case, the

resulting velocities at the initial and final time are same as the specified veloc-

ities as shown in Table 6.1. On the other hand, in the impulsive control input

case, the velocity obtained from the modified Lambert’s problem is different

from the velocity determined by the periodicity condition. These differences

at the initial and final time are compensated using the impulse input.

Figure 6.8: Trajectory of two spacecraft in ECI frame: RAPF
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Figure 6.9: Trajectory of follower spacecraft in LVLH frame: RAPF

Figure 6.10: Velocity history of follower spacecraft: RAPF
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Table 6.2: Solution of Lambert’s problem: RAPF

Initial value Final value

Velocity (m/s) [-0.0398, 0, 0] [-0.0797, 0, 0]

Vt (m/s) [0.1328, -0.6606, 0] [-0.2523, 1.0638, 0]

∆V [0.1726, -0.6606, 0] [0.1726, -1.0638, 0]

Total ∆V [0.3453, 1.7244, 0] norm: 1.7587

6.3.3 Global Minimum Velocity: Impulsive Control Input

To reduce the control effort for the impulsive control input type, it is necessary

to find the transfer orbit minimizing the velocity change at the initial and final

time. A set of the initial and final position vectors having minimum ∆V in

the relative motion is studied to investigate the reduced energy input of the

formation reconfiguration. The initial and final positions can be obtained for

the global minimum velocity (GMV) in the radial/along-track plane formation

through the grid search.

To search the global minimum velocity, the orbital elements of the leader

spacecraft summarized in Table 3.1 are used. Figure 6.11 shows the results

of the minimum velocity change with respect to the initial and final position

vectors in the LVLH frame; the solid square denotes a set of initial and final

positions having the minimum velocity at a given initial true anomaly. Figure

6.12 shows the location of the global minimum velocity; Fig. 6.12 (a) shows the

final true anomaly which has the minimum velocity change according to the

initial true anomaly, and Fig. 6.12 (b) shows the norm of minimum velocity,

||∆V ||, with respect to the initial true anomaly. The points containing global

minimum velocity change can be found by the grid search described in Figs.

6.11 and 6.12. Table 6.3 summarizes the initial and final conditions with global

minimum change in velocity.
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Figure 6.11: Velocity change according to initial and final positions: RAPF

(a) (b)

Figure 6.12: Location of global minimum velocity: RAPF
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Table 6.3: Initial and final conditions: RAPF-GMV

Initial condition Final condition

rd (m) 500 1000

ν (deg) 0 180

Position (m) [0, -500, 0] [0, -1105.8, 0]

Figures 6.13 and 6.14 show the simulation results for maneuvering in the

radial/along-track plane formation using the initial and final conditions given

in Table 6.3. Figure 6.13 shows the transfer trajectory of the follower space-

craft with respect to the leader spacecraft in the LVLH frame. As shown in

Fig. 6.13, the follower spacecraft moves on the x − y plane for resizing the

formation. Figure 6.14 shows the velocity history of the follower spacecraft

during the maneuver. In Fig. 6.14, the triangle denotes specified velocities at

the initial and final time in the LVLH frame, which are obtained from the peri-

odicity condition in Chapter 4. As a result, the desired velocity change can be

achieved by the impulse control input to compensate the difference between

the resulting velocity from the modified Lambert’s problem and the specified

velocity. Table 6.4 summarizes the velocities of the follower spacecraft and

∆V for the maneuver in the radial/along-track plane formation, and Table

6.5 summarizes the orbital elements of the transfer orbit between two orbits.

As shown in Tables 6.2 and 6.4, the total velocity change is reduced from

1.7587 to 0.2943 for resizing the formation radius in the radial/along-track

plane formation by the global minimum velocity approach.
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Figure 6.13: Trajectory of follower spacecraft in LVLH frame: RAPF-GMV

Figure 6.14: Velocity history of follower spacecraft: RAPF-GMV
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Table 6.4: Solution of Lambert’s problem: RAPF-GMV

Initial value Final value

Velocity (m/s) [0.3561, 0, 0] [-0.4768, 0, 0]

Vt (m/s) [0.5252, 0, 0] [-0.3516, -0.0001, 0]

∆V [0.1691, 0, 0] [-0.1252, 0.0001, 0]

Total ∆V [0.2943, 0.0001, 0] norm: 0.2943

Table 6.5: Orbital elements of transfer orbit: RAPF-GMV

Parameter Value

a (m) 6.8781× 106

e 0.1

i (deg) 66.0100

Ω (deg) 277

ω (deg) 44.9653
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6.3.4 Analysis of Numerical Simulation Results

In this section, the simulation results to change the formation radius in the

radial/along-track plane formation are analyzed with respect to the control

input type. The simulation results are investigated in terms of (i) velocity

change, ∆V , and mass change, ∆m according to the control input type, (ii)

difference of the orbital elements between the transfer orbit and the refer-

ence orbit, and (iii) the global minimum velocity change with respect to the

eccentricity of the reference orbit.

First, let us compare the simulation results in terms of ∆V and ∆m of two

control input types presented in Sections 6.3.1 and 6.3.2. In the numerical sim-

ulation, the specific impulse, Isp, is considered according to the control input

type: for the continuous control input, Isp = 3, 000 (s), and for the impulsive

control input, Isp = 300 (s) [115, 116, 117, 118]. Table 6.6 summarizes ∆V

and ∆m with respect to the control input type for changing the formation

radius in the radial/along-track plane formation. As shown in Table 6.6, ∆V

Table 6.6: ∆V and ∆m for formation reconfiguration: RAPF

∆V (m/s) ∆m (kg)

Continuous control (J1) 3.5828 0.0061

Continuous control (J2) 3.9901 0.0068

Impulsive control 1.7587 0.0299

Table 6.7: ∆V and ∆m for formation reconfiguration: RAPF-GMV

∆V (m/s) ∆m (kg)

Continuous control (J1) 0.3723 0.0006

Continuous control (J2) 0.4022 0.0007

Impulsive control 0.2943 0.0050
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of the impulsive control input is smaller than that of the continuous control

input for changing the formation radius; however, the continuous control input

consumes less fuel than the impulsive control input.

Table 6.7 summarizes ∆V and ∆m according to control input type with

the initial and final conditions given in Table 6.3, which has minimum velocity

change for changing the formation radius using the impulsive control input.

As shown in Table 6.7, ∆V of the continuous control input as well as the

impulsive control input is much smaller compared with ∆V given in Table

6.6. Moreover, the continuous control input has less fuel consumption, ∆m,

than the impulsive control input, while the impulsive control input has less

∆V compared with the result of the continuous control input.

Next, let us compare the results of the impulsive control input presented

in Sections 6.3.2 and 6.3.3; the transfer orbit is generated where the initial

and final positions are arbitrarily chosen in Section 6.3.2, and the transfer

orbit is designed with a set of the initial and final positions having the global

minimum velocity in Section 6.3.3. By comparing with the orbital elements

of the leader spacecraft in Table 3.1, it is seen that the transfer orbits of two

approaches have almost same orbital elements; however, some orbital elements

are different. Table 6.8 summarizes the the differences of the orbital elements:

Table 6.8: Difference of orbital elements: RAPF

Parameter RAPF RAPF-GMV

∆a (m) 122.6358 −0.0163

∆e −2.4367× 10−5 −1.8473× 10−8

∆i (deg) 0 0

∆Ω (deg) 0 0

∆ω (deg) 0.0330 0.0347
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(i) between the reference orbit and the transfer orbit of the radial/along-track

plane formation as described in Sections 6.3.2, and (ii) between the reference

orbit and the transfer orbit with global minimum velocity of the radial/along-

track plane formation in Section 6.3.3. These results show the characteristic

of the maneuver problem of the relative motion in the radial/along-tack plane

formation. As shown in Table 6.8, the transfer between two orbits in the

radial/along-track plane formation produces the difference in the orbital ele-

ments including a semi-major a, an eccentricity e, and an augment of perigee

ω, which means that the orbit transfer in the radial/along-track plane forma-

tion belongs to the coplanar maneuver.

On the other hand, as shown in Table 6.8, the orbital transfer with the

initial and final positions containing global minimum velocity has smaller dif-

ference in the orbital elements than one with arbitrary initial and final posi-

tions; specifically, the semi-major axis is a critical factor that relates to the

orbital energy. Compared with the results of Section 6.3.2, ∆a reduces from

122.6358 to 0.0163 m, when the initial and final positions are selected to have

the global minimum velocity. This leads to the reduction of the total velocity

change for the formation reconfiguration in the radial/along-track plane for-

mation. In addition, the difference of the eccentricity in the global minimum

velocity case is smaller than that in arbitrary case. Therefore, it can be stated

that the smaller difference of the orbital elements between the reference orbit

and transfer orbit generates the minimum velocity change for the formation

reconfiguration.

Figure 6.15 shows the minimum velocity change according to the initial and

final points with respect to the eccentricity of reference orbit; the solid square

denotes a set of initial and final positions having the global minimum velocity

change. As shown in Fig. 6.15, when the transfer angle is less than 180◦, the

follower spacecraft requires less ∆V ; however, the velocity change for resizing
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the formation radius is significantly increased when the transfer angle is larger

than 180◦. Therefore, the follower spacecraft should have the transfer angle

less than 180◦ to save the fuel consumption for the formation reconfiguration

in the radial/along-track plane formation. Table 6.9 summarize two sets of the

initial and final true anomalies having the minimum velocity change according

to the eccentricity of the reference orbit. As show in Table 6.9, the minimum

∆V is increased from 0.2769 to 0.5112 as the eccentricity becomes from 0.001

to 0.5. It means that the follower spacecraft spends more fuel for changing the

formation radius in the radial/along-track plane formation as the eccentricity

of the reference orbit is increased. Moreover, it is observed that the initial and

final true anomalies having the global minimum velocity change are identical,

ν0 = 0◦ (perigee) and νf = 180◦ (apogee), regardless of the eccentricity of the

reference orbit. In addition, the initial and final true anomalies are ν0 = 190◦

and νf = 360◦ which have the second smallest velocity change with respect

to the eccentricity. These results show that the maneuver, which begins near

perigee or apogee and has the transfer angle of 170 ∼ 180◦, can reduce the

velocity change in elliptic orbits for changing the formation radius in the

radial/along-track plane formation.

Table 6.9: Initial and final points having minimum velocity change: RAPF

e 0.001 0.01 0.1 0.3 0.5

ν0 (deg) 0 0 0 0 0

Set 1 νf (deg) 180 180 180 180 180

∆V (m/s) 0.2769 0.2781 0.2943 0.3603 0.5112

ν0 (deg) 190 190 190 190 190

Set 2 νf (deg) 360 360 360 360 360

∆V (m/s) 0.2978 0.2988 0.3127 0.3756 0.5262
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(a) e = 0.001 (b) e = 0.01

(c) e = 0.1 (d) e = 0.3

(e) e = 0.5

Figure 6.15: Velocity change with respect to eccentricity: RAPF
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6.4 Along-Track/Cross-Track Plane Formation

In this section, the maneuver for the formation reconfiguration in the along-

track/cross-track plane formation (ACPF) is performed using two control in-

put types: continuous and impulsive control inputs. The considered orbital

elements of the leader spacecraft are summarized in Table 6.10. Similar to the

simulation in Section 6.3, the follower spacecraft changes the formation radius

from 500 m to 1,000 m in the along-track/cross-track plane formation. The

initial and final conditions are given by the formation geometry as described

in Chapter 4.

In Section 6.4.1, the optimal trajectory using the continuous control input

is illustrated using the Gauss pseudospectral method with the relative position

and velocity vectors at the initial and final configuration, which method is

described in Section 5.3. In Section 6.4.2, the transfer orbit trajectory using

the impulsive control input is shown based on the modified Lambert’s problem

presented in Section 5.4, where the initial and final position vectors and the

flight time are specified. In addition, in Section 6.4.3, a set of initial and final

positions is described, which contains the global minimum velocity change for

the impulsive control input in the along-track/cross-track plane formation.

The simulation results are analyzed in Section 6.4.4.

Table 6.10: Orbital elements of leader spacecraft: ACPF

Parameter Value

a (m) 6.8781× 106

e 0.01

i (deg) 66.01

Ω (deg) 277

ω (deg) 45
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6.4.1 Continuous Control Input

The initial and final conditions of the follower spacecraft in the LVLH frame

are summarized in Table 6.11. For the continuous control input type, two cost

functions as J1 and J2 in Eqs. (5.3) and (5.4) are considered.

Figures 6.16–6.18 show the simulation results with the cost function J1

for minimum energy. Figure 6.16 shows the transfer trajectory of the follower

spacecraft with respect to the leader spacecraft in the LVLH frame; the solid

line denotes the trajectory of the follower spacecraft with different formation

radii, rd = 500m and rd = 1, 000m, and the line with square shows the

transfer trajectory of the follower spacecraft between two orbits. Figure 6.17

shows the velocity history of the follower spacecraft during the maneuver.

In Fig. 6.17, the triangle denotes specified relative velocities at the initial

and final time in the LVLH frame, as presented in Table 6.11. Figure 6.18

shows the control input history of the follower spacecraft in the true anomaly

domain during the maneuver. As shown in Figs. 6.16 and 6.17, the boundary

conditions at the initial and final time are satisfied, and the transfer trajectory

is placed near the y − z plane by the continuous control input presented in

Fig. 6.18.

Table 6.11: Initial and final conditions: ACPF

Initial condition Final condition

rd (m) 500 1,000

ν (deg) 95 265

Position (m) [250.2877,-43.8138,501.0121] [-500.5754, -87.6276, -1002.0]

Velocity [-21.8973, 0, -38.8375] [-43.7947, 0, -77.6749]
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Figure 6.16: Trajectory of follower spacecraft in LVLH frame (J1): ACPF

Figure 6.17: Relative velocity history of follower spacecraft (J1): ACPF
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Figure 6.18: Control input history of follower spacecraft (J1): ACPF

Figures 6.19–6.21 show the simulation results with the cost function J2

for minimum fuel. Figure 6.19 shows the transfer trajectory of the follower

spacecraft with respect to the leader spacecraft in the LVLH frame; the solid

line denotes the trajectory of the follower spacecraft with different formation

radii, rd = 500m and rd = 1, 000m, and the line with square shows the

transfer trajectory of the follower spacecraft between two orbits. Figure 6.20

shows the velocity history of the follower spacecraft during the maneuver. In

Fig. 6.20, the triangle denotes specified relative velocities at the initial and

final time in the LVLH frame, as presented in Table 6.11. Figure 6.21 shows

the control input history of the follower spacecraft in the true anomaly domain

during the maneuver. The boundary conditions of the positions and relative

velocities are satisfied at initial and final time, as shown in Figs. 6.19, and

6.20. Moreover, it can be observed in Figs. 6.16 and 6.19 that the transfer

trajectory of J1 is similar with the result of J2; however, the control input

history is different according to the cost function.
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Figure 6.19: Trajectory of follower spacecraft in LVLH frame (J2): ACPF

Figure 6.20: Relative velocity history of follower spacecraft (J2): ACPF
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Figure 6.21: Control input history of follower spacecraft (J2): ACPF

6.4.2 Impulsive Control Input

For the formation reconfiguration in the along-track/cross-track plane forma-

tion using the impulsive control input, the simulation conditions are same as

in Section 6.4.1. Figures 6.22–6.24 show the simulation results for formation

reconfiguration using the impulsive control input in the along-track/cross-

track plane formation. Figure 6.22 shows trajectories of the leader and fol-

lower spacecraft in the ECI frame; the normal line denotes the trajectory of

the leader spacecraft and the thick line shows the transfer trajectory of the

follower spacecraft. Figure 6.23 shows the transfer trajectory of the follower

spacecraft with respect to the leader spacecraft in the LVLH frame. Figure

6.24 shows the velocity history of the follower spacecraft during the maneuver.

In Fig. 6.24, the triangle denotes specified velocities at the initial and final

time in the LVLH frame given in Table 6.11. Therefore, the required velocity

change can be obtained by computing the difference between the resulting

velocity from the modified Lambert’s problem and the specified velocity. Ta-

ble 6.12 summarizes the velocities of the follower spacecraft and ∆V for the

maneuver in the along-track/cross-track plane formation.
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Compared with the results in Section 6.4.1, the obtained transfer trajec-

tory in Fig. 6.23 strays away from the formation plane, while the trajectories

in Figs. 6.16 and 6.19 almost place on near formation plane. Moreover, the

resulting velocities at the initial and final time as shown in Figs. 6.17 and 6.20

are same as the specified velocities as shown in Table 6.11; however, the ve-

locity obtained from the modified Lambert’s problem as shown in Fig. 6.24 is

different from the velocity determined by the periodicity condition. Therefore,

these differences are compensated using the impulse input at the initial and

final time.

Figure 6.22: Trajectory of two spacecraft in ECI frame: ACPF
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Figure 6.23: Trajectory of follower spacecraft in LVLH frame: ACPF

Figure 6.24: Velocity history of follower spacecraft: ACPF
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Table 6.12: Solution of Lambert’s problem: ACPF

Initial value Final value

Velocity (m/s) [-0.0242, 0, -0.0429] [-0.0484, 0, -0.0858]

Vt (m/s) [0.1468, -0.6316, -3.2316] [-0.2187, 1.0294, 3.1032]

∆V [0.1710, -0.6316, -3.1887] [0.1703, -1.0294, -3.1891]

Total ∆V [0.3412, 1.6610, 6.3778] norm: 6.5994

6.4.3 Global Minimum Velocity: Impulsive Control Input

To reduce the control effort for the impulsive control input, it is necessary

to find the transfer orbit minimizing the velocity changes at the initial and

final time. A set of initial and final position vectors having minimum ∆V for

transfer in the relative motion is studied to investigate the reduced energy

input for the formation reconfiguration. The initial and final positions can be

obtained through the grid search, which have the global minimum velocity in

the along-track/cross plane formation.

The orbital elements of the leader spacecraft described in Table. 6.10 are

used, and the follower spacecraft moves from 500 m radius to 1,000 m radius

in the along-track/cross-track plane formation. Figure 6.25 shows the results

of the minimum velocity change with respect to the initial and final position

vectors in the LVLH frame; the solid square denotes the final true anomaly

having the minimum velocity at a given initial true anomaly. Figure 6.26

shows the location of global minimum velocity; Fig. 6.26 (a) shows the final

true anomaly which has minimum change in velocity according to the initial

true anomaly, and Fig. 6.26 (b) shows the norm of minimum velocity, ||∆V ||,

with respect to the initial true anomaly. Table 6.13 summarizes the initial and

final conditions with global minimum change in velocity for maneuvering in

the along-track/cross-track plane formation.
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Figure 6.25: Velocity change according to initial and final positions: ACPF

(a) (b)

Figure 6.26: Location of global minimum velocity: ACPF
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Table 6.13: Initial and final conditions: ACPF-GMV

Initial condition Final condition

rd (m) 500 1000

ν (deg) 10 180

Position (m) [43.6280, 492.4407, 86.4051] [0, -1010.1, 0]

Figures 6.27 and 6.28 show the simulation results for maneuvering in the

along-track/cross-track plane formation using the initial and final conditions

given in Table 6.13. Figure 6.27 shows the transfer trajectory of the follower

spacecraft with respect to the leader spacecraft in the LVLH frame. As shown

in Fig. 6.27, the follower spacecraft moves on near formation plane for resiz-

ing the formation, while the transfer trajectory deviates from the formation

plane as shown in Fig. 6.23. Figure 6.28 shows the velocity history of the

follower spacecraft during the maneuver. In Fig. 6.28, the triangle denotes

specified velocities at the initial and final time in the LVLH frame, which are

obtained from the periodicity condition in Chapter 4. Therefore, the differ-

ence between resulting velocity from the modified Lambert’s problem and the

specified velocity is equal to the required velocity change. Table 6.14 summa-

rizes the velocities of the follower spacecraft and ∆V for the maneuver in the

along-track/cross-track plane formation, and Table 6.15 summarizes the or-

bital elements of the transfer orbit between two orbits in the relative motion.

As shown in Tables 6.12 and 6.14, the total velocity change is reduced from

6.5994 to 0.6281 for resizing the formation radius in the along-track/cross-

track plane formation by the global minimum velocity approach.
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Figure 6.27: Trajectory of follower spacecraft in LVLH frame: ACPF-GMV

Figure 6.28: Velocity history of follower spacecraft: ACPF-GMV
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Table 6.14: Solution of Lambert’s problem: ACPF-GMV

Initial value Final value

Velocity (m/s) [0.2793, 0, 0.5534] [-0.5452, 0, -1.1014]

Vt (m/s) [0.4353, -0.1045, 0.5527] [-0.4231, -0.0069, -0.5500]

∆V [0.1560, -0.1045, -0.0007] [-0.1221, 0.0069, -0.5514]

Total ∆V [0.2781, 0.1113, 0.5521] norm: 0.6281

Table 6.15: Orbital elements of transfer orbit: ACPF-GMV

Parameter Value

a (m) 6.8781× 106

e 0.01

i (deg) 66.0130

Ω (deg) 277.0032

ω (deg) 44.6720
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6.4.4 Analysis of Numerical Simulation Results

In this section, the simulation results for the formation reconfiguration in the

along-track/cross-track plane formation are analyzed. The simulation results

are investigated in terms of (i) velocity change, ∆V , and mass change, ∆m

according to the control input type, (ii) difference of the orbital elements be-

tween the transfer orbit and the reference orbit, and (iii) the global minimum

velocity change with respect to the eccentricity of the reference orbit.

At first, let us compare the simulation results in terms of ∆V and ∆m

of two control input types presented in Sections 6.4.1 and 6.4.2. Table 6.16

summarizes ∆V and ∆m according to control input type. As shown in Table

6.16, for changing the formation radius in the along-track/cross-track plane

formation, ∆V of the continuous control input is smaller than that of the

impulsive control input. Also, the continuous control input consumes less fuel

than the impulsive control input.

Table 6.16: ∆V and ∆m for formation reconfiguration: ACPF

∆V (m/s) ∆m (kg)

Continuous control (J1) 4.5366 0.0077

Continuous control (J2) 4.8624 0.0083

Impulsive control 6.5994 0.1122

Table 6.17: ∆V and ∆m for formation reconfiguration: ACPF-GMV

∆V (m/s) ∆m (kg)

Continuous control (J1) 0.8595 0.0015

Continuous control (J2) 1.1043 0.0019

Impulsive control 0.6281 0.0107
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Table 6.17 summarizes ∆V and ∆m according to control input type with

the initial and final conditions given in Table 6.13, which has the minimum

velocity change for changing the formation radius using the impulsive control

input. As shown in Table 6.17, ∆V of the continuous control input as well as

the impulsive control input is much smaller compared with ∆V given in Table

6.16. In addition, the impulsive control input has less ∆V compared with the

result of the continuous control input; however, the continuous control input

has less fuel consumption, ∆m, than the impulsive control input.

Next, let us compare the results of the impulsive control input presented

in Sections 6.4.2 and 6.4.3; the transfer orbit is generated where the initial

and final positions are arbitrarily chosen in Section 6.4.2, and the transfer

orbit is designed with a set of the initial and final positions having the global

minimum velocity in Section 6.4.3. By comparing with the orbital elements

of the leader spacecraft in Table 6.10, the transfer orbits of two approaches

have almost same orbital elements; however, some orbital elements are differ-

ent. Table 6.18 summarizes the difference of the orbital elements: (i) between

the reference orbit and the transfer orbit of the along-track/cross-track plane

formation as described in Section 6.4.2, and (ii) between the reference orbit

and the transfer orbit with global minimum velocity of the along-track/cross-

Table 6.18: Difference of orbital elements: ACPF

Parameter ACPF ACPF: GMV

∆a (m) 136.3179 12.0619

∆e −2.4157× 10−5 −1.9394× 10−6

∆i (deg) −0.0214 −0.0030

∆Ω (deg) 0.0137 −0.0032

∆ω (deg) 0.3076 0.3280
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track plane formation in Section 6.4.3. These results show the characteristic

of the maneuver problem of the relative motion in the along-track/cross-track

plane formation. As shown in Table 6.18, in the along-track/cross-track plane

formation, not only a, e, and ω, but also inclination i and longitude of the

ascending node Ω are changed during the maneuver. Note that only a, e, and

ω are changed in the radial/along-track plane formation. It means that the

orbit transfer in the along-track/cross-track plane formation is related to the

combined maneuver of coplanar and non-coplanar maneuver.

On the other hand, as shown in Table 6.18, the orbital transfer with the ini-

tial and final positions containing global minimum velocity has smaller differ-

ence in the orbital elements than one with arbitrary initial and final positions;

specifically, the semi-major axis is a critical factor that relates to the orbital

energy. Compared with the results of Section 6.4.2, ∆a reduces from 136.3179

to 12.0619 m, when the initial and final positions are chosen to have the global

minimum velocity. This result produces the reduction of the total velocity

change for the formation reconfiguration in the along-track/cross-track plane

formation. Moreover, the difference of the eccentricity in the global minimum

velocity case is smaller than that in arbitrary case, and ∆i and ∆Ω decrease

from 0.0214◦ to 0.0030◦, and from 0.0137◦ to 0.0032◦, respectively. Therefore,

it can be stated that the results of global minimum velocity by the grid search

provide the small difference of the orbital elements, and it reduces the control

effort during the maneuver in the along-track/cross-track plane formation.

Figure 6.29 shows the minimum velocity change according to the initial

and final points with respect to the eccentricity of the reference orbit; the

solid square denotes a set of initial and final positions having the global min-

imum velocity change. Similar to the radial/along-track plane formation, the

follower spacecraft requires less ∆V when the transfer angle is less than 180◦,

as shown in Fig. 6.29; the velocity change for resizing the formation radius
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is significantly increased when the transfer angle is larger than 180◦. There-

fore, the follower spacecraft should have the transfer angle less than 180◦ to

reduce the fuel consumption for the formation reconfiguration in the along-

track/cross-track plane formation. Table 6.19 summarize two sets of the initial

and final true anomalies having the minimum velocity change according to the

eccentricity of the reference orbit. As show in Table 6.19, the minimum ∆V

is increased as the eccentricity become large to 0.5. It means that the follower

spacecraft consumes more fuel for changing the formation radius in the along-

track/cross-track plane formation as the eccentricity of the reference orbit is

increased. Moreover, it is observed that the initial and final true anomalies hav-

ing the global minimum velocity change are equal to ν0 = 10◦ and νf = 180◦,

and the initial true anomaly is near apogee and the final true anomaly is near

perigee in the set having the second smallest velocity change, when the eccen-

tricity is larger than 0.001. Therefore, when the follower spacecraft starts near

perigee or apogee and has the transfer angle of 170◦, the velocity change can

be reduced for changing the formation radius in the along-track/cross-track

plane formation.

Table 6.19: Initial and final points having minimum velocity change: ACPF

e 0.001 0.01 0.1 0.3 0.5

ν0 (deg) 190 10 10 10 10

Set 1 νf (deg) 360 180 180 180 180

∆V (m/s) 0.6292 0.6281 0.6207 0.6501 0.7935

ν0 (deg) 10 190 180 180 180

Set 2 νf (deg) 180 360 350 350 350

∆V (m/s) 0.6294 0.6363 0.6485 0.7044 0.9148
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(a) e = 0.001 (b) e = 0.01

(c) e = 0.1 (d) e = 0.3

(e) e = 0.5

Figure 6.29: Velocity change with respect to eccentricity: ACPF
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6.5 Radial/Along-Track Plane to

Along-Track/Cross-Track Plane Formation

In this section, the maneuver problem is considered for changing the for-

mation geometry from the radial/along-track plane to the along-track/cross-

track plane. The orbital elements of the leader spacecraft are summarized in

Table 3.1. The follower spacecraft flying in the radial/along-track plane forma-

tion with the formation radius of 500 m is considered to change its formation

geometry to the along-track/cross-track plane formation with the same for-

mation radius.

In Section 6.5.1, the optimal trajectory using the continuous control input

is shown using the Gauss pseudospectral method with the relative position

and velocity vectors at the initial and final configuration, which method is

presented in Section 5.3. In Section 6.5.2, the transfer orbit trajectory using

the impulsive control input is shown based on the modified Lambert’s problem

described in Section 5.4, where the initial and final position vectors and flight

time are specified. The simulation results are analyzed in Section 6.5.3.

6.5.1 Continuous Control Input

For the maneuver problem using the continuous control input, the initial and

final conditions of the follower spacecraft in the LVLH frame are summarized

in Table 6.20. Two cost functions, J1 and J2 as presented in Eqs. (5.3) and

(5.4), are considered for the optimal control problem.

Figures 6.30–6.32 show the simulation results with the cost function J1

for minimum energy. Figure 6.30 shows the transfer trajectory of the follower

spacecraft with respect to the leader spacecraft in the LVLH frame; the solid

line denotes the trajectory of the follower spacecraft with different formation

types, and the line with square shows the transfer trajectory of the follower
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spacecraft between two orbits. Figure 6.31 shows the velocity history of the

follower spacecraft during the formation reconfiguration. In Fig. 6.31, the tri-

angle denotes specified relative velocities at the initial and final time in the

LVLH frame, as presented in Table 6.20. Figure 6.32 shows the control input

history of the follower spacecraft in the true anomaly domain during the ma-

neuver. The boundary conditions of the relative positions at the initial and

final time are satisfied as shown in Fig. 6.30. Also, the relative velocities are

equal to the boundary condition at the initial and final time as described in

Table 6.20 using the continuous control input presented in Fig. 6.32.

Table 6.20: Initial and final conditions: RAPF to ACPF

Initial condition Final condition

rd (m) 500 500

ν (deg) 0 270

Position (m) [0, 500, 0] [-261.9048, 0, -523.8095]

Velocity [261.9048, 0, 0] [0, 0, 52.3810]
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Figure 6.30: Trajectory of follower spacecraft in LVLH frame (J1): RAPF to

ACPF

Figure 6.31: Relative velocity history of follower spacecraft (J1): RAPF to

ACPF
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Figure 6.32: Control input history of follower spacecraft (J1): RAPF to ACPF

Figures 6.33–6.35 show the simulation results with the cost function J2

for minimum fuel. Figure 6.33 shows the transfer trajectory of the follower

spacecraft with respect to the leader spacecraft in the LVLH frame; the solid

line denotes the trajectory of the follower spacecraft with different formation

types, and the line with square shows the transfer trajectory of the follower

spacecraft between two orbits. Figure 6.34 shows the velocity history of the

follower spacecraft during the formation reconfiguration. In Fig. 6.34, the tri-

angle denotes specified relative velocities at the initial and final time in the

LVLH frame, as presented in Table 6.20. Figure 6.35 shows the control in-

put history of the follower spacecraft in the true anomaly domain during the

maneuver. As shown in Figs. 6.33 and 6.34, the boundary conditions of the

position and velocity are satisfied at the initial and final time by the continu-

ous control input presented in Fig. 6.35. Compared with the results with J1,

the transfer trajectory in Fig. 6.33 is different from the trajectory in Fig. 6.30,

since the different cost function is used for the optimal control problem.
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Figure 6.33: Trajectory of follower spacecraft in LVLH frame (J2): RAPF to

ACPF

Figure 6.34: Relative velocity history of follower spacecraft (J2): RAPF to

ACPF
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Figure 6.35: Control input history of follower spacecraft (J2): RAPF to ACPF

6.5.2 Impulsive Control Input

For the maneuver to change the formation geometry using the impulsive con-

trol input, the simulation conditions are same as in Section 6.5.1. Figure 6.36

shows the transfer trajectory of the follower spacecraft with respect to the

leader spacecraft in the LVLH frame. Figure 6.37 shows the relative velocity

history of the follower spacecraft during the maneuver. In Fig. 6.37, the trian-

gle denotes specified velocities at the initial and final time in the LVLH frame

as described in Table 6.20. The difference between the resulting velocity from

the modified Lambert’s problem and specified velocity is equal to ∆V for the

orbital transfer. Table 6.21 summarizes the velocities of the follower spacecraft

and ∆V for the maneuver to move from the radial/along-track plane to the

along-track/cross-track plane formations.

Compared with results in Section 6.5.1, the trajectory of the follower space-

craft using the impulsive control input in Fig. 6.36 is entirely different from

the trajectory using the continuous control input illustrated in Figs. 6.30 and

6.33. In the continuous control input case, the optimal control problem is

solved to satisfy the boundary conditions including the relative velocity vec-

tors as well as the relative position vectors at the initial and final time, as
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shown in Figs. 6.30, 6.31, 6.33, and 6.34. However, in the impulsive control

input case, the relative positions are only considered to transfer the orbit.

Therefore, the velocity at the initial time is adjusted to transfer the orbit by

the impulsive control input, and then the follower spacecraft moves to the

final position. When the follower spacecraft arrives at the final position, the

velocity is changed to satisfy the periodicity condition by the impulse con-

trol. Therefore, the velocity obtained from the modified Lambert’s problem

presented in Fig. 6.37 is different from the velocity determined by the peri-

odicity condition in Table 6.20. Consequently, these results provide different

trajectories.
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Figure 6.36: Trajectory of follower spacecraft in LVLH frame: RAAC to ACPF

Figure 6.37: Velocity history of follower spacecraft: RAPF to ACPF
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Table 6.21: Solution of Lambert’s problem: RAPF to ACPF

Initial value Final value

Velocity (m/s) [0.3561, 0, 0] [0, 0, 0.0589]

Vt (m/s) [0.3561, -0.001, 0.6475] [0, 0.5886, 0.0588]

∆V [0, -0.0001, 0.6475] [0, -0.5886, 0]

Total ∆V [0, 0.5886, 0.6475] norm: 0.8751

6.5.3 Analysis of Numerical Simulation Results

In this section, the simulation results for changing the formation geometry are

analyzed. Let us compare the simulation results in terms of velocity change,

∆V , and mass change, ∆m, of two control input types presented in Sections

6.5.1 and 6.5.2. Table 6.22 summarizes ∆V and ∆m according to the control

input type. As shown in Table 6.22, for changing the formation geometry, ∆V

of the continuous control input is smaller than that of the impulsive control

input. Furthermore, the continuous control input spends less fuel consumption

than the impulsive control input.

Table 6.22: ∆V and ∆m for formation reconfiguration: RAPF to ACPF

∆V (m/s) ∆m (kg)

Continuous control (J1) 0.9732 0.0017

Continuous control (J2) 0.7150 0.0012

Impulsive control 0.8751 0.0149
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6.6 Concluding Remarks

In this chapter, numerical simulations are performed to solve the maneuver

problem for the formation reconfiguration using two control input types: con-

tinuous control input and impulsive control input. The numerical simulation

results of changing the formation radius in the radial/along-track plane forma-

tion are shown in Section 6.3; the results using the continuous control input

are illustrated in Section 6.3.1, and the results using the impulsive control

input are described in Section 6.3.2. In Section 6.4, the numerical simulation

results of changing the formation radius in the along-track/cross-track plane

formation are illustrated via two control input types; the results using the

continuous control input are shown in Section 6.4.1, and the results using

the impulsive control input are presented in Section 6.4.2. In Section 6.5, to

change the formation geometry from the radial/along-track plane formation

to the along-track/cross-track plane formation, the numerical simulation is

performed and results are shown; the results using the continuous control in-

put are illustrated in Section 6.5.1, and the results using the impulsive control

input are described in Section 6.5.2. These results show the maneuver char-

acteristics of the transfer orbit trajectories with respect to the control input

type.

In the impulsive control input case, a set of the initial and final positions

having minimum ∆V is obtained for the formation reconfiguration by the

grid search in Sections 6.3.3 and 6.4.3. The difference between the orbital

elements of the leader spacecraft and those of the transfer orbit is analyzed.

Through these results, it can be concluded that the transfer orbit with the

global minimum velocity change provides smaller changes in orbital elements,

which reduces the control effort during the maneuver. Furthermore, a set of

the initial and final true anomalies having minimum ∆V is obtained with

respect to the eccentricity of the reference orbit. From this result, it is noted
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that the minimum ∆V is increased as the eccentricity becomes large, and

the follower spacecraft can reduce the fuel consumption by the first burn at

perigee or apogee and the second burn with the transfer angle of 170 ∼ 180◦.
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Chapter 7

Conclusions

7.1 Summary

In this dissertation, the periodic relative motion and the maneuver problem

were treated for the spacecraft formation flying in an elliptical orbit. The

general periodicity condition stems from the state transition matrix and the

energy matching condition using the analytic solution of the relative motion

dynamics in the elliptic reference orbit. Two kinds of formation geometry

were designed and analyzed: radial/along-track plane formation and along-

track/cross-track plane formation. Furthermore, the maneuver problem for

the formation reconfiguration was solved using two control input types: con-

tinuous control input and impulsive control input. The followings summarize

the problem and solutions proposed in this dissertation.

General periodicity condition was presented through not only the state

transition matrix approach, but also the energy matching condition approach.

The general periodicity condition guarantees the natural periodic relative mo-

tion in the elliptic reference orbit as well as in the circular reference orbit.

In addition, this periodic condition can express the bounded relative motion

at an arbitrary position including specific positions, perigee and apogee, in
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the elliptic reference orbit. To construct a bounded formation with the leader

spacecraft as a center in the relative motion, the zero offset condition in the

along-track direction was investigated. As a result, the periodic relative mo-

tion based on the general periodic condition and the zero offset condition was

derived. This periodic relative motion has an advantage that an additional

method such as the perturbation method or optimization method is not re-

quired to determine the initial condition with respect to the position of the

follower spacecraft.

Using the obtained periodic relative motion, two formation types were

designed. One formation type is the radial/along-track plane formation, and

another one is the along-track/cross-track plane formation which becomes

the projected circular formation when the leader spacecraft is in a circular

reference orbit. The formation pattern of each formation type was analyzed

with respect to the eccentricity and the true anomaly of the reference orbit.

Numerical simulations were performed to investigate the formation geometries

and analyze the formation pattern. Both the variation of eccentricity of the

follower spacecraft in the relative motion and the change of the formation

radius increase, as the eccentricity of the leader spacecraft is increased in

all designed formation geometries. These results provide the constraint and

guideline to design the spacecraft formation in the elliptic reference orbit.

The maneuver problem was also presented for the formation reconfigu-

ration. To operate the multiple spacecraft system, it is required to change

the formation radius or the formation geometry according to the mission. For

this reason, the maneuver problem was solved for the formation reconfigura-

tion based on the periodic relative motion and designed formation geometry.

Two control input types were considered depending on the thrust system. For

the continuous control input type, Gauss pseudospectral method was used

to solve the optimal control problem, where two cost functions were defined
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to minimize the energy and fuel, respectively, and dynamic constraints and

boundary conditions were specified through the formation design procedure.

For the impulsive control input type, the classical Lambert’s problem was

modified to find a transfer trajectory between two orbits in the local frame,

where two position vectors at the initial and final time and the flight time are

specified. Numerical simulations were performed to demonstrate the transfer

orbit trajectory for the formation reconfiguration according to the control in-

put type. From the numerical simulation, the reconfiguration of the formation

radius and geometry with respect to the leader spacecraft was illustrated in

the radial/along-track plane formation and the along-track/cross-track plane

formation. Furthermore, the solution of the minimum velocity change was ob-

tained by the grid search for the impulsive control input type. The obtained

set of the initial and final positions provided the transfer orbit, and the orbital

elements of the resulting transfer orbit were similar to those of the reference

orbit. This small difference of the orbital elements leads to the reduced ∆V

for the impulsive control input. Moreover, it is noted that the transfer orbit in

the radial/along-track plane formation belongs to the coplanar maneuver, and

that in the along-track/cross-track plane formation relates to the combined

maneuver of coplanar and non-coplanar maneuver.

7.2 Directions for Future Research

There are several challenges related to the design and control of the spacecraft

formation that are not addressed in this dissertation. As an extension of the

research reported herein, some ongoing and prospective subjects are described

below.

In the analysis of the relative motion, it is necessary to account for the

perturbations of the spacecraft. The largest effect on the spacecraft is a pertur-

bation due to the Earth’s oblateness, which is required to model the long-term
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dynamics as well as the short-term dynamics of the spacecraft in the formation

to maintain the relative motion. Recently, J2 perturbation has been studied for

the spacecraft formation flying. However, not only J2 perturbation but also J3

and high-order terms of geopotential perturbation have effects on the dynam-

ics of the relative motion. Furthermore, the perturbation due to atmospheric

drag and N-body including sun and moon has influence on the spacecraft in

the low Earth orbit, specifically. The relative dynamics including the pertur-

bations has to be developed to precisely describe the relative motion, and then

the resulting dynamics will lead to the reduction of fuel consumption to adjust

the orbit trajectory during the operation.

Nonlinearity in the relative motion should be considered in the relative

dynamics of spacecraft. The HCW equation and TH equation are assumed

that the relative distance between two spacecraft is much smaller than the

distance between the spacecraft and the center of the Earth, ||ρ|| � ||R||.

The dynamic equation under this assumption could not exactly describe the

relative motion between two spacecraft, when the relative distance becomes

large according to the space mission. To deal with this problem, the relative

dynamics has to be analyzed considering the effects of the nonlinearity in the

relative motion between two spacecraft.

The optimal control problem has to be developed to maintain the angle

difference between follower spacecraft for the formation flying in elliptic or-

bits. In this dissertation, the angle difference was analyzed with respect to

the eccentricity of the reference orbit, and it was shown that the the follower

spacecraft cannot maintain a constant angle difference due to the eccentricity

without the control input. In order to consider the various missions including

mapping the target, the angle difference must be controlled by the external

control input, while minimizing the fuel consumption. Thus, the optimal con-

trol is required to keep an angle difference and to reduce the control input for

158



the spacecraft formation flying.

It is also necessary to consider the collision avoidance in the optimal control

problem for the operational spacecraft in the formation. Recently, the growth

in space debris around the Earth has become a concern, which consists of

discarded rocket stages, defunct satellites, and erosion, explosion and collision

fragments. These objects are potential collision risks to the spacecraft, and

therefore the collision avoidance maneuver should be developed for the reliable

spacecraft system. To deal with the space debris, the optimal control problem

can be solved to transfer the spacecraft in formation from the current orbit

to safe orbit, while minimizing the control input. In addition, the formation

reconfiguration should be designed to avoid the collision as well as to change

the formation radius or geometry considering the minimum fuel consumption

during the maneuver.
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초 록

본논문에서는타원궤도에서의다수인공위성의군집비행을위한주기적

상대운동과 군집반경 및 군집형상의 변경을 위한 기동에 대해 다음과 같은

연구를 수행하였다.

타원 기준궤도에서의 주기적 상대운동을 기술하였다. 군집비행을 수행

하는 다수 인공위성의 운동은 인공위성 간의 상대운동으로 기술한다. 인공

위성 간 상대운동은 원 기준궤도에서는 보편적으로 Hill-Clohessy-Wiltshire

(HCW) 방정식으로, 타원 기준궤도에서는 Tschauner-Hempel (TH) 방정식

이나 궤도요소로 나타낸다. 다수의 인공위성이 연료소모를 최소화하며 군집

형상을유지하기위해서는주기조건이매우중요한데,상대운동방정식과그

해석적 해를 통해 구할 수 있다. 원 기준궤도의 경우, HCW 방정식의 해석적

해를통해쉽게주기조건을구할수있다.그러나타원기준궤도의경우,상대

운동방정식과해석적해의복잡성으로인해주기조건을구하기위한해석적

접근이필요하다.본연구에서는타원기준궤도에서의다수인공위성군집비

행을위한주기조건을두가지해석적방법인상태천이행렬(State Transition

Matrix) 기법과 에너지 일치조건(Energy Matching Condition) 기법을 통하

여 구하였다. 수치 시뮬레이션을 수행하여 타원 기준궤도에서의 주기조건을

검증하였으며, 기준 인공위성을 군집형상의 중심으로 하기 위한 오프셋 조

건(offset condition)을 구하여 타원 기준궤도에서 군집비행을 유지하기 위한

주기적 상대운동을 기술하였다.

주기적 상대운동을 바탕으로 자연적 상대운동을 위한 두 가지 군집형상

을 설계하고, 각 군집형상에 따른 인공위성의 상대운동을 분석하였다. 다수

인공위성의 군집비행은 연료소모를 최소화하면서 다양한 임무를 수행하기

위하여특정군집형상을이루어비행한다.본논문에서는타원기준궤도에서

의 주기적 상대운동 방정식을 바탕으로 두 가지 군집형상을 설계하였다. 첫

번째 군집형상은 국지(LVLH) 좌표계 상의 x − y 평면에서 다수 인공위성이
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군집비행을 유지하는 radial/along-track plane formation이고, 두 번째 군집

형상은 y − z 평면에서 군집비행을 유지하는 along-track/cross-track plane

formation 이다. 설계한 두 군집형상을 위한 초기값을 설정하고 수치 시뮬레

이션을 수행하여, 다수 인공위성의 군집비행과 그 형상에 대해 검증하였다.

한편, 원 기준궤도와는 달리 타원 기준궤도에서의 군집비행은 이심률의 영

향으로인해설계한군집반경을일정하게유지하지못하는상대운동을한다.

설계한각군집형상에따른인공위성의상대운동을분석한결과,인공위성의

군집형상은기준궤도의이심률에크게영향을받음을알수있었다.기준궤도

의이심률이작을경우에는설계한군집형상을유지하며군집비행을하지만,

이심률이 점점 커질수록 두 인공위성 간의 상대거리가 변하게 되어 일정한

군집형상을이루지못하고변화율이점점커짐을확인하였다.이러한분석결

과는 다수 인공위성의 군집비행 설계 시 구속조건 및 설계지침으로 활용이

가능하다.

군집반경및군집형상변경하기위한인공위성의기동에대한연구를수행

하였다. 다수 인공위성이 군집비행을 할 경우, 임무에 따라 군집반경을 크게

늘리거나 줄이는 등의 군집반경 변화나 군집형상 변경이 요구된다. 이러한

군집재형상의경우,인공위성의수명에직접적으로영향을주는연료사용을

줄이기위한인공위성의기동이필요하다.본논문에서는인공위성의두가지

제어입력유형을고려하여인공위성기동에대한연구를수행하였다.연속적

제어입력의경우에는주어진두상대위치와상대속도를만족하는최적궤적을

구하기 위해 Gauss pseudospectral method를 이용한 최적제어 문제를 정의

하여해를도출하였다.불연속임펄스제어입력의경우에는지구를중심으로

한 인공위성의 기동을 다루는 고전 Lambert 문제를 수정하여 인공위성의 상

대운동에대한속도변화를구하고,이를통한 LVLH좌표계상에서의기동궤

적을 구하였다. 수치 시뮬레이션을 수행하여 두 가지 제어입력 유형에 따른

인공위성의 기동성능을 검증하였다. 수치 시뮬레이션에서는 앞에서 설계한

두 가지 군집형상에서 군집반경을 증가하거나 군집형상을 변경하는 경우를

고려하였으며, 제어입력유형에 따른 인공위성의 기동궤적을 구하고 속도변
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화와질량변화관점에서기동을비교하였다.이와더불어임펄스제어입력의

경우,전역에서초기조건과말기조건에따른기동궤적과속도변화를구하고,

상대속도 차이를 최소화하는 기동을 구하여 천이궤도를 나타내었다. 결과를

분석하기 위해 수치 시뮬레이션 결과인 천이궤도와 인공위성의 기준궤도의

궤도요소 차이를 구하고, 이를 이용하여 각 군집형상에 따른 기동궤적을 분

석하였다.

인공위성의 군집비행을 위한 본 연구의 결과는 다양한 임무를 위한 군집

비행 설계에 활용될 수 있으며, 항공우주공학 및 로봇공학 분야의 협력제어

및 분산제어 연구에 적용될 수 있을 것이다.

주요어: 인공위성 군집비행, 주기적 상대운동, 군집형상 설계,

군집형상 분석, 군집형상 변경을 위한 기동, 타원 기준궤도

학 번: 2005–23437
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