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Abstract 

 

 

In this thesis, we study the effect of multiscale topographies with various 

density, size, spring constant, and slanted angle on the cellular behaviors. For this 

purpose, the multiscale polymeric patterns were fabricated by UV-assisted 

capillary force lithography (CFL) technique. Through the coating with 

extracellular matrix (ECM) proteins such as fibronectin and collagen, the 

multiscale topography can present physically bio-mimetic microenvironment to 

the cells. 

 

First, we report on the effect of synthetic extracellular matrix (ECM) scaffold in 

the form of uniformly-spaced nanogrooved surfaces in dermal wound healing. The 

rate of wound coverage was measured on various nanotopographical densities 

with vertical or parallel orientation using nanogrooves of 550-nm width with three 

different gaps of 550, 1100, and 2750 nm (spacing ratio: 1:1, 1:2 and 1:5). Guided 

by the nanotopographical cues in the absence of growth factors in wound healing 

process, the cultured NIH-3T3 cells demonstrated distinctly different migration 

speed, cell division, and ECM production as dictated by the topographical density 

and orientation, whereas the proliferation rate turned out to be nearly the same. 

Based on our experimental results, the nanopattern of 1:2 spacing ratio yielded the 
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best would healing performance in terms of migration speed, which seems similar 

to the natural organization of collagen fibers. 

 

Next, we report the effect of feature size and orientation of multiscale 

topography on the migration of cancer cells. It is well known that tumor migration 

occurs in vivo following the basement membrane, microtracks, and lymphatic 

vasculature, showing predominant guidance by physical cues. Inspired by the 

nanoscale and microscale topographic guidance, we prepared flat, nano groove, 

and micro groove patterns. Furthermore, to emulate the reorganization of ECM by 

cancer cells and subsequent guided migration through reorganized ECM, the 

topographical orientation was also considered, by preparing groove, concentric, 

and radial patterns. When comparing the spreading of cell island, both collectively 

and individually migrating cells showed guided spreading in response to 

topographical orientation. However, the sensitivity to topography was more 

sensitive in the case of individually migrating cells. Microscopically, the 

topography not only induced polarization of intracellular elements such as f-actin 

and vinculin, but also modulated protein levels such as E-cadherin, ROCK2, and 

vinculin in response to the topographical size and orientation. 

  

Finally, we study how sensitively cells can recognize underlying surface 

topography in the case of varying spring constants and varying slanted angles. To 
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this end, nanopost arrays (diameter of 400 nm) having various stiffness (spring 

constant: 9.33, 345.58, and 5585.05) were fabricated with various height (2000 

and 600 nm) and mechanical properties (19.8 and 320 MPa). On the vertical 

nanopillars with various spring constants, NIH-3T3 cells showed bi-axial 

alignment following the array, but the degree of alignment was decreased as the 

spring constant increases, demonstrating correlation with the bending of 

nanopillars. Furthermore, to understand underlying mechanism of 

mechanosensing in the case of nanopillars, slanted nanopillars with various angles 

(90, 75, 60, 45 and 30˚) with same diameter (400 nm) were prepared. On the 

relatively vertical nanopillars (such as 90 and 75˚), cells showed bi-axial 

alignment, but as the leaning angle increases (such as 30 and 45˚) cells showed 

uni-directional alignment along to the slanted orientation. According to the 

signaling inhibition, the alignment on the relatively vertical pillars was affected by 

Rac signaling pathways. However, the effect of Rac signaling inhibition decreases 

as the leaning angle increases. 

 

Key Words : Multiscale surface pattern, extracellular matrix, biomimetic, 

wound healing, cancer invasion, anisotropy, cell migration  

Student Number: 2010-30186 
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Figure 1-1. Various multiscale structures in the human body. The tissues 
are classified into four categories including protective, 
mechano-sensitive, electro-active and shear stress-sensitive 
tissues with respect to the tissue specific environment and 
functions. 
 

Figure 2-1 (A) A graphical illustration of dermis in skin. (B) SEM image 
of aligned collagen fiber bundles observed in the dermis of 
neonatal rat skin. The orientation of bundles agrees with the 
tension line in skin. (C) SEM image of aligned dermal 
fibroblasts in the same tissue. (D) Skin-inspired synthetic 
nanotopography with various densities along with flat control. 
(E) SEM image of various nanopatterns used in this study. The 
spacing ratio represents the ratio of the width to the spacing of 
nanogrooves. 
 

Figure 2-2. Experimental procedure of in vitro wound healing study with 
nanopatterns. (A) A thin PDMS sheet with a controlled width 
of 500 μm and thickness of 200 μm was placed onto the 
nanopatterned surface to be used as a barrier for cell migration. 
After ECM coating, NIH-3T3 fibroblasts were seeded and 
cultured until reaching confluency. The removal of PDMS 
sheet allows migration and proliferation of the fibroblasts to 
fill the cell-free area (B). The cell-free area is continuously 
covered by the fibroblasts with time for the two different 
orientations of nanogroove pattern (C).  
 

Figure 2-3. The effects of topographic orientation and pattern density in 
covering cell-free area. (A-C) Representative parallel and 
vertical patterns together with the flat control (no pattern on 
PUA surface). (D-F) Time-lapse microscopic images of in vitro 
wound healing with respect to the orientation and densities of 
nanogrooves. (G) Quantification of covered area by fibroblasts 
for each orientation and density. As shown, the vertical patterns 
demonstrated much faster covering rates compared to the flat 
control and parallel patterns.  
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Figure 2-4. (A) Plot of migration speeds depending on the topographical 
orientation and density (*p<0.0001). (B-D) Schematics of cell 
migration behaviors with respect to the orientation of 
nanogrooves. Depending on the orientation, each cell 
migration may be termed “limited”, “random” and “guided cell 
migration.” 
 

Figure 2-5. (A-C) Analysis of focal adhesions at 24h culture. (A) 
Immunostaining images of focal adhesions (green: vinculin). 
(B) The polarization graph of focal adhesions on various 
nanotopographic densities. (C) The number of focal adhesions 
on various nanopatterns. (D) The cross-sectional SEM images 
of fibroblasts on various nanopatterns at 24h culture. White-
dotted lines denote the surface topography of nanopatterns. (E) 
A proposed model for the cell migration on nanopatterns with 
respect to the polarization of focal adhesions. 
 

Figure 2-6. Change of the cell spreading area over the full width (500 μm) 
of in vitro wound site at 48h culture. Due to symmetry, half (0-
250 or 250-500 μm) of the area were displayed for each 
parallel and vertical pattern. As shown the parallel cases (left 
column of B-D, denoted as P) show increasing trends of cell 
spreading area from the wound edge to wound center due to 
limited migration and continuous proliferation. However, such 
trends were hardly seen in the vertical cases only except 
around the wound border (right column of B-D, denoted as V). 
 

Figure 2-7. Proliferation assay on each nanotopographic orientation and 
density. (A) EdU analysis of fibroblasts after 4 h incubation. 
Only flat, 1:2 parallel and 1:2 vertical patterns were shown. (B) 
Quantification of EdU incorporation (EdU/nucleus ratio). No 
significant difference was observed even in triplicates.  
 

Figure 2-8. Orientation of cell division with respect to the orientation and 
densities of nanotopography at 24h culture. (A) 
Immunostaining images of α-tubulin (green) and f-actin (red). 
The orientation of cell division was denoted with yellow 
arrows in both cell-filled area and wound site. (B) Schematic 
illustration of cell division in wound site. (C) Graphs of cell 
division axis on various nanopatterns. 
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Figure 2-9. Organization of produced fibronectin (FN) fibers in response 
to nanotopography (vertical patterns) at 48h culture. (A) 
Immunostaining images of fibroblasts and produced FN fibers. 
F-actin (red), FN (green) and nucleus (blue). (B) Orientation of 
FN fiber bundles. (C) Length of FN fiber bundles. (D) Axial 
ratio of the fibroblasts on various nanopattern densities. 
 

Figure 3-1. (A) Schematic illustration of stencil-induced cell patterning 
technique used for generation of cell colony. The collagen type 
I coated multiscale topography presents biomimetic two 
dimensional microenvironment for cell migration. (B) 
Representative SEM images of multiscale patterns. The effect 
of feature size can be analyzed by comparing flat, nano groove, 
and micro groove, whereas that of orientation by comparing 
micro groove, micro concentric, and micro radial. 
 

Figure 3-2. Representative microscopic images of cell spreading after 96h. 
Yellow dotted line: 0h, red dotted line: 96h. (A) A 431, a 
human epidermoid carcinoma cell which migrate in a 
collective manner. (B) U87, a human glioblastoma cell line 
which migrate individually. 
 

Figure 3-3. Immunofluorescence images of migrating cells at 48h. Red: F-
actin, blue: nucleus. (A) Madin-Darby canine kidney epithelial 
cell line (MDCK), a model cell used for collective cell 
migration. (B) MDA MB-231, a human breast cancer cell line, 
a individually migrating cell.  
 

Figure 3-4. Quantified collective migration speed of advancing front 
(major axis) and lateral side (minor axis), and aspect ratio of 
major and minor axis. (A, C, and E) A 431 cell. (B, D, and F) 
MDCK. 
 

Figure 3-5. Quantified individual migration speed of advancing front 
(major axis) and lateral side (minor axis), and the aspect ratio 
of major and minor axis. (A, C, and E) U87. (B, D, and F) 
MDA MB-231. 
 

Figure 3-6. Alignment of F-actin and vinculin with respect to the 
underlying multiscale topography in collective migrating cells. 
Red: F-actin, green: vinculin, and blue: nucleus. (A) MDCK, 
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(B) A 431. Yellow arrow: topographical orientation, white 
arrow: focal adhesions. 
 

Figure 3-7. Westernblot analysis of E-cadherin, ROCK2, and Vinculin. (A) 
MDCK, (B) MDA MB-231, (C) A 431, and (D) U87. 
 

Figure 3-8. Quantification of westernblot band in terms of topographical 
size and orientation. (A, C, E, and G) Effect of topographical 
size. (B, D, F, and H) Effect of topographical orientation. 
 

Figure 4-1. Cellular alignment with respect to the spring constant. (A) 
Spring constant of nanopillars used in this study. For the 
control of spring constant, height of nanopillars (2000  and 
600 nm) and elastic modulus of materials (19.8 for soft PUA, 
and 320 MPa for hard PUA) were controlled. AR: aspect ratio. 
(B) Schematic illustration of rectangular nanopillar array. (C) 
Scanning electron microscope images of used nanopillar arrays 
and cellular alignment (NIH-3T3 fibroblast) in response to the 
spring constants. 
 

Figure 4-2. Alignment of cells in response to the hexagonal nanopillar 
array. (A) Cellular alignment and representative SEM image. 
(B) Schematic illustration of hexagonal array. 
 

Figure 4-3. Comparison of density of nanopillars and its effect on cellular 
alignment (A) Schematic illustration of rectangular nanopillar 
array. (B) Relative inter-pillar length versus cellular alignment. 
The relative inter-pillar length was determined by letting L1 as 
unity 
 

Figure 4-4. Traction-induced deflection of underlying nanopillars with 
filophodia in the leading edge and in lateral side of cell body. 
(A, C) Representative SEM images of bent nanopillars in 
leading edge (A) and lateral side of cell body (C). (B, D) 
Quantified deflection of nanopillars with respect to the spring 
constants. The displacement of nanopillars was normalized 
with the ratio of lateral displacement of nanopillars to pillar 
height. The average values were displayed at the top of graphs. 
 

Figure 4-5.  Treatment of Y 27632 (a ROCK inhibitor) and NSC 23766 (a 
Rac inhibitor) at time point of 0 h and 24 h after seeding. 
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Alignment was quantified from the obtained microscopic 
images at 24 h after treatment. (A) Y 27632 treatment at 0 h 
and 24 h. (B) NSC 23766 treatment at 0 h and 24 h. 
 

Figure 4-6. Apparent cellular morphologies with respect to the spring 
constants. (A) projected area, (B) perimeter, (C) major axis, 
(D) minor axis, (E) circularity and (F) aspect ratio. 
 

Figure 4-7. Effect of slanted angle on the alignment of cells. (A) 
Representative SEM images of slanted nanopillars. (B) 
Cellular alignment with respect to the slanted angle. As shown, 
cells showed bi-directional to uni-directional transition as the 
angle decreases from 90˚ to 30˚. (C) Schematic illustration of 
two effects; array and angle effects. Cells aligned bi-
directionally in response to the array effect, predominantly 
observed in relatively vertical pillars (such as 90˚). On the 
other hand, cells aligned uni-directionally following the slanted 
orientation, which can be termed angle effect, predominantly 
observed in relatively slanted pillars (such as 30˚). 
 

Figure 4-8. Representative SEM images of cells cultured on the slanted 
nanopillars. (A) Flat, (B) 30˚, (C) 45˚, (D) 60˚, (E) 75˚ and (F) 
90˚. The first column shows overall morphologies of cells, and 
second, third and forth columns show magnified views of 
white dotted boxes in first column.  
 

Figure 4-9. Finite Element Method (FEM) simulation of spring constant in 
vertical and slanted nanopillars using ABAQUS. (A) Simulated 
spring constant showed different stiffness when pulled forward 
and backward orientation of slanted angle. (B and C) 
Schematic illustration of mechanical sensing on vertical (B) 
and slanted (C) nanopillars. 
 

Figure 4-10. Treatment of Y 27632 (a ROCK inhibitor) and NSC 23766 (a 
Rac inhibitor) at time point 0h and 24h after seeding. 
Alignment was quantified 24h after the treatment. (A) Y 27632 
treated at 0h, (B) Y 27632 treated at 24h, (C) NSC 23766 
treated at 0h, and (D) NSC 23766 treated at 24h. 
 

Figure 4-11. Relative gene expression related to adhesion and polarity. 
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Figure 4-12. Apparent cellular morphologies with respect to the slanted 
angle. (A) projected area, (B) perimeter, (C) major axis, (D) 
minor axis, (E) circularity, and (F) aspect ratio. 
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Nomenclature 

                          

k bend Spring constant 

F Traction force 

D Diameter 

H Height 

W Width 

S Spacing 

q Slanted angle 

E Elastic modulus 

  

  

Subscripts  

  

x x component 

y y component 

  

  

  

  

  

  

 

 

 


