

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

ıY�¨Y⌅|8

An Approach to Motion Planning and

Behavior Coordination for Multi-Robot Systems

‰⌘ \⌥ ‹§\X tŸ ƒç ✏

âŸ p�D ⌅\ ⌘¸ï– �\ l

2014D 8‘

⌧∏�YP �Y–

0ƒmııYÄ

˝ Ÿ �

An Approach to Motion Planning and

Behavior Coordination for Multi-Robot Systems

A Dissertation

by

DONG JUN KWAK

Presented to the Faculty of the Graduate School of

Seoul National University

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical and Aerospace Engineering

Seoul National University

Supervisor : Professor H. Jin Kim

AUGUST 2014

to my

MOTHER, FATHER, and BROTHER

with love

v

Abstract

An Approach to Motion Planning and

Behavior Coordination for Multi-Robot Systems

Dong Jun Kwak

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

This thesis suggests a cooperative control architecture and algorithms for mission plan-

ning, path planning, and learning for behavior coordination in heterogeneous multi-robot

systems. We apply our proposed algorithms to unmanned combat systems. To achieve inte-

grated group objectives of unmanned combat systems consisting of heterogeneous multiple

robots in ever-changing battlefield situations, each robot has to make a decision properly

by considering characteristics of the predefined mission and real situations. To this end, we

first design a cooperative control architecture of a command and control vehicle, unmanned

ground vehicles, and unmanned aerial vehicles.

We assign the mission points (the threats’ location) to the ground robots by employing a

decentralized task assignment called consensus-based bundle algorithm (CBBA). Here, we

use a scoring matrix reflecting heterogeneity when the robots plan the mission because the

di↵erent types of ground robots and threats have di↵erent capabilities for performing the

mission according to their types. In addition, we suggest an episodic parameter optimization

method using reinforcement learning (RL) and particle swarm optimization (PSO). This

method is applied to optimize the scoring matrix, and we finally establish the optimal

engagement strategy to maximize the team survivability of the ground robots.

To solve a path planning problem between the robot and the target, we propose a

decentralized trajectory optimization method using virtual motion camouflage (VMC) and

PSO. VMC is inspired from biology, in which an insect actively camouflages its motion

vi

while tracking a prey. By using VMC a typical nonlinear constrained trajectory optimization

problem can be transformed to an optimization problem of path control parameters (PCPs),

so it reduces the dimension of the original problem. We employ PSO to optimize PCPs. The

proposed algorithm called decentralized VMCPSO is applied to solve rendezvous problems

considering terminal time and angle constraints in an unban-like environment, and it is

validated with simulations and an experiment. By utilizing the algorithms proposed above,

we can easily implement behaviors of the robots in complex combat situations.

Lastly, we propose a distributed multi-agent reinforcement learning algorithm in a semi-

Markov Decision Process framework to solve a behavior coordination problem for making

each robot select the most proper behavior in given situations. In order to address com-

plexity issues, linear function approximation and di↵usion adaptation have been employed.

As a result, we can achieve the group objectives of the heterogeneous multi-robot systems

in combat situations involving many uncertainties by using the proposed approaches.

keywords: multi-robot systems, cooperative control architecture, mission planning,

path planning, behavior learning

Student Number: 2011-30196

vii

Table of Contents

Page

Abstract . vi

Table of Contents . viii

List of Tables . xi

List of Figures . xii

Chapter

1 Introduction . 1

1.1 Literature Survey . 3

1.1.1 Multi-robot mission planning . 3

1.1.2 Multi-robot path planning . 4

1.1.3 Multi-robot learning . 5

1.2 Research Objectives and Contributions . 6

1.3 Thesis Organization . 8

2 Cooperative Mission of Multi-Robot Systems . 9

2.1 Probabilistic Engagement Scenario . 10

2.2 Multi-Robot Systems Architecture . 11

2.2.1 Command and control vehicle . 12

2.2.2 Unmanned aerial vehicle . 12

2.2.3 Unmanned ground vehicle . 13

2.3 Threat Map . 19

2.4 Visibility Map . 20

3 Multi-Robot Mission Planning . 24

3.1 Mission Assignment . 25

3.2 Optimization for Mission Assignment . 28

viii

3.2.1 Reinforcement learning . 28

3.2.2 Particle swarm optimization . 30

3.3 Optimization Results . 33

3.4 Analysis and Discussion . 35

4 Multi-Robot Path Planning . 37

4.1 Virtual Motion Camouflage . 38

4.1.1 Nonlinear constrained trajectory optimization problem 38

4.1.2 VMC formulation . 39

4.1.3 The proposed approach . 42

4.2 Extension to Multi-Robot Path Planning 46

4.3 Simulation Results . 50

4.3.1 Stationary target . 50

4.3.2 Moving target . 59

4.4 Experimental Results . 63

4.5 Analysis and Discussion . 66

5 Behavior Coordination . 67

5.1 Design of Behaviors . 68

5.2 Learning Framework . 69

5.2.1 MDP vs. SMDP . 69

5.2.2 Linear approximation of value functions 71

5.2.3 Learning value function approximations 73

5.3 Distributed Multi-Agent Reinforcement Learning 76

5.3.1 Di↵usion adaptation method for distributed optimization 76

5.3.2 Cooperative GQ-learning . 77

5.4 Distributed MARL Applied to Multi-Robot Systems 81

5.4.1 State space S . 81

5.4.2 Option space O . 82

5.4.3 Reward R . 83

ix

5.4.4 Event conditions E . 84

5.5 Empirical Results . 85

5.6 Analysis and Discussion . 90

6 Conclusions . 96

Abstract (in Korean) . 106

x

List of Tables

2.1 Choices of µk
i

,k
j

(UGV side) . 16

2.2 Choices of µk
i

,k
j

(Threat side) . 16

2.3 Choices of tac depending on the type . 17

3.1 Inputs of the EPO algorithm . 29

4.1 Simulation conditions . 51

4.2 Terminal time and angle errors and costs with respect to td and �d 56

4.3 Computation time with respect to S . 56

4.4 Computation time of decentralized VMCPSO for the moving target 59

5.1 Features considered for function approximation 82

xi

List of Figures

2.1 Engagement scenario . 10

2.2 Multi-robot systems architecture . 11

2.3 UAV model . 13

2.4 State-tracking error transformation . 14

2.5 Attack capabilities of the ground robots 18

2.6 Attack capabilities of the threats . 19

2.7 Results for the visibility map (black: invisible, white: visible) 23

3.1 Flow chart of the EPO algorithm . 32

3.2 Optimization result . 34

3.3 Task allocation results with respect to the di↵erent value of Sp

i

i (red: ki, kj =

1, green: ki, kj = 2, blue: ki, kj = 3) . 36

4.1 Relationship between the reference point, the prey motion, and the aggressor

motion. 39

4.2 Example of local and global path planning 47

4.3 Multi-robot operation in an urban-like environment (a) A snapshot of a

rendezvous experiment in which multiple UGVs try to arrive at the target

point simultaneously with the specific heading (b) Ground display 50

4.4 VMCPSO results of the minimum-time problem 52

4.5 (a,b) The case in which path information of robot j is not considered in the

planning of robot i, (c,d) The case in which path information of robot j is

considered in the planning of robot i . 54

4.6 VMCPSO results of the terminal angle and time constrained problem (a,b)

td = 20 sec, (c,d) td = 25 sec, (e,f) td = 30 sec 58

xii

4.7 Tangential and angular velocities . 60

4.8 Snapshots of global and local path planning 62

4.9 Experimental environment . 63

4.10 Experimental results of decentralized VMCPSO for the stationary target . 64

4.11 Snapshots of the rendezvous experiment in which three robots try to arrive

at the stationary target point simultaneously with the specific heading . . 65

5.1 Change in values of performance measures as the number of episodes increases 87

5.2 Change in values of weights for each robot as the SMDP time step k increases 89

5.3 Integrated simulation results at the SMDP time step k = 0 91

5.4 Integrated simulation results at the SMDP time step k = 100 92

5.5 Integrated simulation results at the SMDP time step k = 205 92

5.6 Integrated simulation results at the SMDP time step k = 300 93

5.7 Integrated simulation results at the SMDP time step k = 400 93

5.8 Integrated simulation results at the SMDP time step k = 500 94

5.9 Integrated simulation results at the SMDP time step k = 560 94

5.10 Change in options for each robot as the SMDP time step k increases 95

xiii

1
Introduction

Recent advances in intelligent robotic systems have allowed exploitation of autonomous

vehicles in various fields. Currently, centered around the United States, utilization of un-

manned robots in the actual battle is on the rise. For example, in Afghanistan, unmanned

aerial vehicles (UAVs) called MQ-9 Reaper have performed reconnaissance and attack mis-

sions to suppress Taliban and Al-Qaeda. In addition to the unmanned aircraft, in 2001 the

United States Congress said that one third of all ground combat vehicles should be un-

manned until 2015. Subsequently, Defense Advanced Research Projects Agency (DARPA)

defined the unmanned vehicle’s autonomy as the core technology, and the DARPA Grand

Challenge was held to secure key technologies that can be used in the city as well as

the desert. As a result, autonomy’s core technologies such as recognition of external envi-

ronments, path planning, and vehicle control were acquired. Moreover, Google has nearly

completed road tests of the autonomous car in urban areas, aiming to commercialize in

2017.

Thus, many key technologies have been secured for a single unmanned robot, but when

we consider multiple robots, the other issues are occurred. To operate multiple robots,

1

a team of robots should collaborate to achieve group objectives. So, there are additional

challenging problems. Typically, there are two required technologies: one is multi-robot

mission planning for assigning the multiple tasks to the multiple robots, and the other

is multi-robot path planning for generating paths without interference among the robots.

These technologies have been applied to many multi-robot problems such as coordination,

mission assignment, search optimization, rendezvous, etc [4, 14, 25, 67]. From another point

of view, we can consider semi-autonomous systems including multiple robots and operators

as a key technology to deal with more complex missions.

In this regard, Grand Challenge1 sponsored by Ministry of Defense in the United King-

dom was held in 2008. Grand Challenge focused on producing an autonomous or semi-

autonomous system designed to detect, identify, monitor, and report a comprehensive range

of physical threats in a complex urban environment. The competitors were already aware

of the danger points where the enemy may lie in ambush. Thus, they should gather the

detailed information of the enemies from satellite and manned/unmanned ground/aerial ve-

hicles. Many participating teams suggested innovative ideas and technology to solve some

or all the challenges faced in a hostile urban environment.

The United States and Australian militaries held Multi-Autonomous Ground-robotic

International Challenge (MAGIC)2 in 2010 [43]. When multiple robots execute reconnais-

sance and surveillance missions in a hostile urban environment, each participating team

tries to ensure maximum autonomy for multiple robots while minimizing operator’s in-

tervention. In this process, there basically needed the operational interface to observe the

state of the robots and to steer the robot. In addition, there were interesting challenges in

global state estimation, multi-robot cooperation, and robot perception.

The main goal of this thesis is to develop, implement, and test methodologies that can

be used in real-world applications, particularly heterogeneous multi-robot combat systems

in the ever-changing battlefield. To enhance the autonomy of the robots, we focus on solving

1http://www.challenge.mod.uk
2http://www.dsto.defence.gov.au/MAGIC2010

2

decision-making problems: multi-robot mission planning, multi-robot path planning, and

multi-robot learning.

1.1 Literature Survey

This section provides a literature survey for key issues in multi-robot systems, for example,

multi-robot mission planning, multi-robot path planning, and multi-robot learning. The

overview of significant literature published on these topics is as follows.

1.1.1 Multi-robot mission planning

Centralized methods were traditionally used to solve a task assignment problem [5]. In [49],

a task assignment problem was formulated as mixed integer linear programming (MILP).

MILP provided the optimal task allocation results involving timing and task order con-

straints between the robots and the tasks. Game-theoretic approaches were also used to

solve a vehicle-target assignment problem [3, 38]. In this centralized approach, a specific

robot performs the role as a leader and plans its missions as well as the others. Then, the

leader robot sends the information of the planned tasks to others through communication

channels. This approach results in a simpler communication structure, in which the robots

do not have to communicate among themselves, but a heavy computational load is placed

on the leader robot. Moreover, in this structure the loss or malfunction of the leader robot

can result in a total breakdown of the system.

The other approach is decentralized task assignment, in which each robot makes a deci-

sion for itself [1]. This approach is robust to malfunctions of the robots. Decentralized task

assignment assumes exact situational awareness to make consensus among the robots. If the

communication is not smooth, conflicts can occur among the mission plans of the robots. To

overcome this weakness, consensus-based bundle algorithm (CBBA) was suggested in [12].

In CBBA, the robots make consensus within certain predefined rules to avoid task conflicts

among the robots, and it is advantageous in situations involving various constraints. In [6],

3

for example, CBBA was extended to handle complications in realistic multi-UAV opera-

tions by considering obstacle regions in order to avoid collisions and reducing sensitivity

due to sensor measurement noise. CBBA was also used to allocate heterogeneous tasks to

robots that have di↵erent capabilities in a cooperative track and strike mission [13].

1.1.2 Multi-robot path planning

There have been variety of studies to build a real-time decentralized path planning algo-

rithm in the multi-robot coordination problems. In [46, 28, 9, 2], decentralized model pre-

dictive control (MPC) or receding horizon control (RHC) was investigated by reformulating

the original MPC problem as subproblems of each robot in a decentralized control prob-

lem. In [48, 33], a receding horizon strategy based on MILP was used to obtain the optimal

trajectories of UAVs. In [17], authors proposed decentralized multi-agent rapidly-exploring

random tree (DMA-RRT) and cooperative DMA-RRT which extend closed-loop RRT [34]

by using merit-based token passing. RRT tree is used to quickly identify and compare the

cost of paths for each robot, and a cooperation strategy improves team performance and

prevents deadlock situations.

Traditionally, many researchers have studied nonlinear constrained trajectory optimiza-

tion problems. There are many numerical techniques for solving this problem, and it is

helpful to categorize them into two parts: indirect or direct [53, 7]. Indirect methods are

based on the calculus of variation or the maximum principle and analytically seek a solution

of the necessary conditions for optimality. There is no requirement for discretization. Direct

methods do not require analytical expression unlike the indirect methods. Instead, direct

methods discretize the original problem, then apply nonlinear programming techniques to

the resulting finite-dimensional optimization problem [8, 16]. In [26], authors compared

both analytical and numerical results of trajectory optimization problems for satisfying the

global strike mission of a common aero vehicle in 2-D and 3-D environments . Recently,

a virtual motion camouflage (VMC) subspace method was suggested in [63, 64, 65, 66].

VMC method is used to reformulate the typical nonlinear constrained trajectory optimiza-

4

tion problem by using path control parameters (PCPs). Then, the original problem with

infinite dimension changes into the finite dimensional problem with PCPs. We can ob-

tain arbitrary paths by changing PCPs, and the optimization problem can be solved by

optimizing PCPs.

1.1.3 Multi-robot learning

In [45], an intelligent cooperative control architecture (iCCA) was introduced for learning

and adapting cooperative control strategies in real-time stochastic environments. iCCA has

two modules: one is a CBBA planner, and the other is an actor-critic learner with a risk ana-

lyzer. When CBBA generates a feasible plan for the mission, the actor-critic reinforcement

learner incrementally adapts its policy to maximize the cumulative rewards. Afterward,

iCCA was extended to AM-iCCA by adding the model estimation routine [23, 22]. In the

mission, in which fuel-limited UAVs sequentially visit targets, empirical results showed that

their proposed methods have advantage compared to pure learning and planning methods.

In addition, an integrated learning-planning algorithm was suggested in [60], and the pro-

posed algorithm was validated with experiments in a persistent search and track scenario.

To address prohibitively large learning spaces, reinforcement learning (RL) based on

behaviors has been widely used in many multi-robot applications such as object trans-

portation [32, 61, 24], multi-target observation [57, 35], and robot soccer [52, 62, 19, 47],

etc. The use of behaviors provides a encoding, and it is useful to lend robustness to con-

trol and allow abstraction for handling large-scale learning [40]. In [39], a group of mobile

robots learn a policy by finding a mapping from certain conditions to behaviors in a foraging

task. Especially, robot soccer is the most popular test-bed for multi-robot learning. In [52],

authors suggested episodic SARSA(�) with linear tile-coding function approximation in a

semi-Markov Decision Process (SMDP) framework to learn a keepaway task of RoboCup

soccer, in which one team tries to keep possession of the ball while another team tries to

steal the ball. In [62], empirical studies performed for the keepaway task by combining

temporal di↵erence methods with evolutionary techniques such as NEAT. RL based on

5

fuzzy neural network and a batch RL method called neural fitted Q-iteration were applied

to learn crucial skills for soccer-playing robots [19, 47].

1.2 Research Objectives and Contributions

In this study, we focus on solving decision-making problems of multi-robot systems in order

to achieve group objectives such as maximizing the team survivability of the ground combat

robots in probabilistic engagement scenarios. The main contributions can be summarized

as below.

• Design of a cooperative control architecture for multi-robot systems

We design autonomous combat systems that consist of a command and control vehicle,

multiple ground combat robots, and multiple surveillance flying robots. Concrete

control modules and communication structure are proposed for each component of

autonomous combat systems.

• Optimization for mission planning

We suggest a combat strategy by employing CBBA and a scoring matrix reflecting

heterogeneity between robots and threats in probabilistic engagement scenarios. For

better performance such as the team survivability, an episodic parameter optimization

(EPO) algorithm is proposed to find the optimal combat strategy by optimizing

the scoring matrix. The EPO algorithm is performed during the numerous repeated

simulation runs of the engagement and the reward of each episode is updated using

RL. The optimal scoring matrix is selected by particle swarm optimization (PSO).

The optimization results show that the team survivability of the ground robots is

increased after performing the EPO algorithm and the values of the scoring matrix

are also optimally selected.

• Development of real-time distributed path planning algorithms

A decentralized trajectory optimization method to solve a nonlinear constrained tra-

6

jectory optimization problem is proposed by employing virtual motion camouflage

(VMC) and PSO, and it is called decentralized VMCPSO (Dec-VMCPSO). We ap-

ply Dec-VMCPSO to a path planning problem constrained on the terminal time and

angle in a multi-robot application. VMC changes a typical full space optimal prob-

lem to a subspace optimal problem, so it can reduce the dimension of the original

problem by using path control parameters (PCPs). If PCPs are optimized, then the

optimal path can be obtained. In this work, PSO is used to optimize these PCPs.

In the multi-robot path planning, each robot sequentially generates its own optimal

path by using VMC and PSO, and sends the optimized PCPs to the other robots.

Then the other robots use these optimized PCPs when planning their paths. The nu-

merical simulation and experimental results show that the optimal paths considering

the terminal time and angle are e↵ectively generated.

• Learning for behavior coordination

Behaviors of the ground robots are implemented by using the mission and path plan-

ning modules of the ground robots. To solve a behavior coordination problem, we

propose a distributed multi-agent reinforcement learning (MARL) algorithm using

linear function approximation and di↵usion adaptation in a semi-Markov Decision

Process (SMDP) framework. The function approximation technique combined with

the SMDP framework is used to solve high-dimensionality problems, and the di↵usion

adaptation method is used for making the robots learn their option-value functions

by sharing their experiences. In a distributed MARL process, empirical results show

that the most probable behavior of the robots is selected in a direction to maximize

the performance even the completely di↵erent combat scenarios as the number of

episodes increases.

7

1.3 Thesis Organization

This thesis consists of four main parts: systems architecture, mission planning, path plan-

ning, and learning. A brief overview of each technical component for multi-robot combat

systems is presented as below.

Chapter 2 describes group objectives of multi-robot systems in engagement scenarios.

Then, we design a multi-robot systems architecture and explain the role of each part for

multi-robot systems.

In chapter 3, details of a mission planning algorithm called consensus-based bundle

algorithm (CBBA) are presented, and a scoring matrix for reflecting heterogeneity among

ground robots is introduced. For better mission performance such as the team survivability

of the robots, an episodic parameter optimization (EPO) method is suggested to find the

optimal combat strategy depending on CBBA and the scoring matrix. After applying the

EPO algorithm to probabilistic combat scenarios, optimization results will be investigated.

Chapter 4 describes a basic nonlinear constrained trajectory optimization problem, and

a basic concept of virtual motion camouflage (VMC) is presented. Then, we propose a

numerical method called VMCPSO to find the optimal point-to-point path. Afterward,

we show how VMCPSO is applied to trajectory optimization problems constrained on the

terminal time and angle. Simulation and experimental results also will be discussed.

In chapter 5, we first design appropriate behaviors for dealing with our engagement sce-

narios by employing the proposed methods discussed in Chapters 2–4. To solve a behavior

coordination problem, a distributed multi-agent reinforcement learning algorithm is pro-

posed in a semi-Markov Decision Process framework. The proposed algorithm is validated

with many repeated numerical simulations.

Chapter 6 summarizes the issues and its solutions considered in this thesis.

8

2
Cooperative Mission of Multi-Robot Systems

In multi-robot systems, many researchers mainly focus on solving how to make coopera-

tive behaviors of the robots while satisfying group objectives. We can categorize required

technical details according to the organization of multi-robot systems and the group objec-

tives such as formation keeping, rendezvous, surveillance and reconnaissance. Typically, the

main issues of multi-robot systems can be a cooperative control architecture, communica-

tion, task assignment, path planning, swarm robots, learning, and so on. In this thesis, our

multi-robot combat systems consist of a command and control vehicle, unmanned ground

vehicles (UGVs), and unmanned aerial vehicles (UAVs), and we consider probabilistic en-

gagement scenarios. In a combat environment, there are many uncertainties such as the

malfunction or destruction of robots, pop-up obstacles, and threats, so decision-making

problems should be reasonably solved given situations. To this end, we focus on the design

of multi-robot systems architecture and multi-robot problems for task assignment, path

planning, and behavioral learning. All the considering algorithms will be designed in a dis-

tributed manner to ensure robustness, sustainability, and reliability. In this chapter, we first

introduce group objectives of multi-robot systems in our considering engagement scenarios.

9

UAVs

UGVs

Threats

Figure 2.1: Engagement scenario

Then, details of multi-robot systems architecture will be presented. Furthermore, we will

explain how to build a threat map and visibility maps.

2.1 Probabilistic Engagement Scenario

We consider engagement scenarios in a three-dimensional environment. There are a team of

Nu heterogeneous UGVs and two UAVs for surveillance and reconnaissance, and Nt threats

as shown in Fig. 2.1. The goal of ground robots is to overwhelm stationary threats while

they move to the target location considering the team safety. The three types of ground

robots i 2 {1, . . . , Nu} compose one ground team. We denote ki as the type of the robot i.

The threats j 2 {1, . . . , Nt} also consist of three types. kj denotes the type of the threat j.

Both the robots i and the threats j have di↵erent attack capabilities which are described

by the attack probability, the attack range, and the attack cycle depending on the type ki

and kj. We assume that each robot receives the information that contains the locations and

10

Communication Network

Threat map

Geographic
information

Visibility mapTask
assignment

Conflict
Resolution

Operation mode
planning

Real-time distributed path
planning

Trajectory tracking controller

Visibility mapTask
assignment

Conflict
Resolution

Operation mode
planning

Real-time distributed path
planning

Trajectory tracking controller

Visibility mapTask
assignment

Conflict
Resolution

Operation mode
planning

Real-time distributed path
planning

Trajectory tracking controller

Visibility mapTask
assignment

Conflict
Resolution

Operation mode
planning

Real-time distributed path
planning

Trajectory tracking controller

Visibility mapTask
assignment

Conflict
Resolution

Operation mode
planning

Real-time distributed path
planning

Trajectory tracking controller

Visibility mapTask
assignment

Conflict
Resolution

Operational planning

Real-time distributed
path planning

Trajectory tracking controller

SurveillanceSurveillance

Figure 2.2: Multi-robot systems architecture

the types of the threats from a command and control vehicle. To maximize attainability of

the mission objectives, the robots have to select the proper targets while they pass over or

overwhelm the threats.

2.2 Multi-Robot Systems Architecture

Multi-robot systems consist of a command and control vehicle, ground combat robots,

and flying surveillance robots as shown in Fig. 2.2. Each part of multi-robot systems can

communicate with each other. In this thesis, we assume that they are fully connected in a

communication network.

11

2.2.1 Command and control vehicle

In the command and control vehicle, an operator tries to reflect a mission came from a high-

level commander according to the actual situation. So, the operator is allowed to access and

control the ground robots from a high-level mission planning to a low-level vehicle control.

Here, the role of the operator is restricted because we consider autonomous combat systems.

Furthermore, the support map related to visibility and threats is created, and the ground

robots utilize it to plan their trajectories. The threat map and the visibility map for the

threats are updated at every second by using the information of threats given by UAVs.

Details for generating these maps will be described in the end of this chapter.

2.2.2 Unmanned aerial vehicle

UAVs observe the position and type of threats scattered in the battlefield, flying along the

predefined waypoints. Then, the collected information of the threats is transmitted to the

command and control vehicle, and it is used to update the threat map and the visibility

map.

We use the kinematic model as shown in Fig. 2.3. The UAV dynamics and control logic

are applied by using the study of [30], and the trajectory generator is considered by the

following:

ẋd = vd cos d (2.1)

ẏd = vd sin d

 ̇d = u

v̇d = 0

ḣd = 0

where (xd, yd, hd) is the desired inertial position of UAV, d is the desired heading, vd is

the desired velocity, hd is the desired altitude. The desired altitude is always positive, and

12

�

v

i

j

k

i

ẋ = V cos cos � ẏ = V sin cos �

V cos �

�ż = V sin �

p
2h

Figure 2.3: UAV model

the desired heading rate input u is designed by a limit cycle navigation [29]. The details

related to the low-level control are omitted because this thesis is mainly focused on control

of UGVs.

2.2.3 Unmanned ground vehicle

The internal control structure of the ground combat robot is divided into three kinds

of modules. The mission planning module assigns mission points to the ground robots

depending on mission objectives, and it is designed in a decentralized manner. As shown

in Fig. 2.2, the mission planning module allows to communicate with the other robots for

resolving conflicts between tasks assigned to each robot. In addition, anytime the operator

can modify the already planned tasks when necessary although not considered in this

thesis. Next, the support map applied to global/local path planning is built by using the

information obtained from the command and control vehicle, and this map is regarded

13

Figure 2.4: State-tracking error transformation

as the cost or performance index when the robot plans its trajectory. This path planning

module should be designed in a distributed/real-time manner, and the trajectory tracking

controller is also needed to perfectly follow the preplanned path. Furthermore, if we design

behaviors well suited for the mission, it is advantageous to reduce the operator’s fatigue in

the situation required the manual control of the operator. To improve the robots’ autonomy,

a learning process for selecting the most proper behavior in arbitrary combat situations is

required. This will be discussed in Chapter 5.

The kinematic model of the ground robot is considered as the following unicycle robot:

2

6664

ẋ

ẏ

✓̇

3

7775
=

2

6664

cos ✓ 0

sin ✓ 0

0 1

3

7775

2

4v

w

3

5 (2.2)

where (x, y, ✓) denote the position and heading angle of the robot, and (v, w) are the

tangential and angular velocities. In this paper u = [v, w]> is treated as the velocity input

vector to the robot dynamics. Let a feasible and smooth desired trajectory (xd, yd) be given

14

in a time interval t 2 [t0, tf]. The generation of the desired trajectory (xd, yd) for each robot

will be described in Chapter 4. Then, the desired tangential velocity vd is defined as

vd = ±
q
ẋ2
d + ẏ2d (2.3)

and the desired heading angle ✓d is calculated as

✓d = atan

✓
ẏd
ẋd

◆
. (2.4)

Di↵erentiating (2.4), the desired angular velocity wd is obtained as follows:

wd =
ẋdÿd � ẏdẍd

ẋ2
d + ẏ2d

. (2.5)

To design the trajectory tracking controller for the robot, the state-tracking error e is

defined as shown in Fig. 2.4. Then, the trajectory tracking controller can be obtained from

[36].

As mentioned in Sect. 2.1, the ground robots and the threats have di↵erent attack

capabilities according to their types. The attack status ⌅i of the robot i consists of the set

4-tuples as follows:

⌅i = hWi,Ai,Si,Vii (2.6)

where (Wi,Ai,Si,Vi) indicate weapon cooldown, possibility of attack, viability, and vis-

ibility, respectively. Each component of the attack status has the value 0 or 1. When the

weapon cooldown state Wi has 0, this means that the weapon is ready to attack. For the

other case the weapon has to be cooldown (Wi = 1). The possibility of attack state Ai is

closely related to the attack range as shown in Fig. 2.5. When one of the threats is located

inside of the attack range, Ai becomes 1. Otherwise, Ai has 0. When the robot is alive,

the viability state Si has 1. The visibility state Vi becomes 1 when the robot i is located

15

Table 2.1: Choices of µk
i

,k
j

(UGV side)

T1 (kj = 1) T2 (kj = 2) T3 (kj = 3)
U1 (ki = 1) 0.8 0 0
U2 (ki = 2) 0.8 0.8 0
U3 (ki = 3) 0.8 0.8 – 0 0.8 – 0

Table 2.2: Choices of µk
i

,k
j

(Threat side)

U1 (ki = 1) U2 (ki = 2) U3 (ki = 3)
T1 (kj = 1) 0.5 0 0
T2 (kj = 2) 0.5 0.5 0
T3 (kj = 3) 0 0.5 0.5

in the threats’ field of vision. Similarly, the threat j also has the information of its own

status ⌅j = hWj,Aj,Sj,Vji. For the visibility state Vj of the threat j, when the threat j

is located in the robots’ field of vision, Vj becomes 1.

The probability for the robot i to kill the threat j is defined by the following:

P (Sj = 0|Sj = 1,Vj = 1,Wi = 0,Ai = 1,Si = 1) = Bern
�
Sj = 0|µk

i

,k
j

�
(2.7)

where Bern(x|µ) = (1 � µ)xµ(1�x) is known as the Bernoulli distribution, and µk
i

,k
j

is

defined as shown in Table 2.1. Eq. (2.7) shows that when both the robot i and the threat

j are alive (Si = 1, Sj = 1), when the robot i is ready to attack (Wi = 0), when the threat

j is visible (Vj = 1) and located inside of the attack range (Ai = 1), then the probability

of kill is given by the Bernoulli distribution. As shown in Table 2.1, U1 (ki = 1) can only

contribute to eliminate T1 (kj = 1), so µk
i

,k
j

is set to 0.8 for T1 and 0 for T2/T3. In the

case of U2 (ki = 2), it can exert influence on both T1 (kj = 1) and T2 (kj = 2), so µk
i

,k
j

is

set to 0.8 for T1/T2. The U3 can deal with all the threats.

16

Table 2.3: Choices of tac depending on the type

Type 1 Type 2 Type 3
UGV 5 s 3 s 8 s

Threat 5 s 3 s 8 s

Similar to the ground robot, the threat j can attack the robot i with the probability of

kill which is defined by the following:

P (Si = 0|Si = 1,Vi = 1,Wj = 0,Aj = 1,Sj = 1) = Bern
�
Si = 0|µk

i

,k
j

�
. (2.8)

As shown in Table 2.2, T1 (kj = 1) can only attack U1 (ki = 1), and T2 can strike both

U1 and U2. T3 can deal with both U2 and U3. If the robot is destroyed by the attack of

threat (Si = 0), the robot cannot regenerate and move anywhere. In addition, the weapon

cooldown state W is determined by the following:

W =

8
<

:
0 if |t� ta| > tac

1 otherwise
(2.9)

where ta denotes a time to attack and is updated when the attack is begun at time t

(ta t). Here, the attack cycle tac is defined by Table 2.3 depending on the type.

17

1

0.6 km

80%

1

1

2

0.6 km

80%

21.2 km

80%

3

1

2

3

1.5 km

0.6 km

80%

0%

80%

2.5 km

1 1

2 2

3 3

ki, kj = 1 (type 1)

ki, kj = 2 (type 2)

ki, kj = 3 (type 3)

Figure 2.5: Attack capabilities of the ground robots

18

1 1

2 2

3 3

ki, kj = 1 (type 1)

ki, kj = 2 (type 2)

ki, kj = 3 (type 3)

1

1

0.5 km

50%

1 2

2

50%

0.8 km

32

3

1.0 km

50%

Figure 2.6: Attack capabilities of the threats

2.3 Threat Map

Each UAV uses a gimbaled camera with top-down perspective to estimate the threat level

while it makes a flight to predetermined paths and shares the vision sensing information

to build a grid-based threat map over NROW ⇥NCOL cells xc 2 T . Let Yt be the history of

the UAVs’ sensing data collected up to time t. Yt consists of the coordinates of observed

cells and the threat level information. Then the conditional probability for the threat level

in cell xc at time ⌧ given the measurements Yt is denoted by pe(xc, ⌧ |Yt).

Here, we describe the threat map building steps:

Step 1 Initially, we assume that the cells xc 2 T have a uniform probability for the

threat level. Afterwards, the probability distribution is updated according to the

vision sensing information.

19

Step 2 The threat level at the previous time t��t, i.e. pe(xc, t��t|Yt��t), is modified

by the measurement Yt at current time t as follows:

pe(xc, t��t|Yt) =

8
<

:

P
j2Y

j

exp
⇣
�
⇣

(x
c

�x
j

)2

2�2

j

+ (y
c

�y
j

)2

2�2

j

⌘⌘
if xc is observed

pe(xc, t��t|Yt��t) otherwise

(2.10)

where Yj means a set of all the detected threats, and �j is related with the attack

range of the threat j.

Step 3 The probability of the threat level in cell xc at time t given the measurement Yt

is defined as follows:

pe(xc, t|Yt) =
pe(xc, t��t|Yt)P

x

c

2T pe(xc, t��t|Yt)
. (2.11)

Step 4 Go to Step 2 and repeat

2.4 Visibility Map

As shown in Fig. 2.2, UGV uses two visibility maps, one about UGVs, the other about

threats, when it makes decision in any given situation. The visibility map about UGVs is

used for discriminating whether the threat is occluded by the obstacle or not, i.e., possibility

of attack. In the case of the visibility map about threats, UGV uses it for escaping from

range of vision for threats. To build these visibility maps, we use an implicit ray casting

algorithm introduced in [58].

In [58], the visibility problem is formulated as a boundary value problem of a first-order

partial di↵erential equation (PDE). The visibility information ⇢(x;xo), i.e, the minimum

value of % along the line segment between any given point x and the vantage point xo, can

20

Algorithm 1 Basic visibility sweeping algorithm [58]

1: procedure Basic visibility sweeping
2: Set ⇢(xo) = %(xo)
3: Do a star-shaped updating sequence on the grid
4: For each grid point xv, choose x

0
v depending on the grid geometry

5: Compute the value of ⇢h(xv) via (2.14)
6: end procedure

be defined as follows:

⇢(x;xo) := min
t2[0,1]

%(xo + t(x� xo)). (2.12)

When we think of obstacles as a level set function %(x), this function is negative if a point

x inside the obstacles is occluded, and vice versa. Then, ⇢(x) can be computed by solving

the first-order PDE:

8
<

:
r⇢ · x�x

o

|x�x

o

| = min{H(⇢� %)r% · x�x

o

|x�x

o

| , 0}
⇢(xo) = %(xo)

(2.13)

where H(x) denotes the Heaviside function:

H(x) =

8
<

:
1 x � 0

0 x < 0
.

To build a grid-based visibility map over NVROW ⇥NVCOL cells xv 2 V , the value of ⇢(x)

is approximated as ⇢h(xv) on 2-D space:

⇢h(xv) = min(⇢h(x0
v), %(xv)) (2.14)

where x

0
v is a point immediately before xv in the ray direction. From this, we can apply

a visibility sweeping method given in Algorithm 1. For a complete presentation of the

visibility sweeping algorithm see [58].

21

By using the sweeping method, we can obtain visible regions for each vantage point as

shown in Figs. 2.7(a)-(c). When the robot i considers possibility of attack, it is su�cient

to use the visibility map ⇢hi based on its own view. However, when UGV wants to find the

safe locations that are invisible areas from the viewpoint of the threats, a common visibility

map incorporating all the threats’ view should be considered. To this end, we define the

common visibility map about the threats by the following:

⇢he (xv) =

8
<

:
0 ⇢hj (xv) < 0 ^ Sj = 1, 8j 2 J
1 otherwise

. (2.15)

Then, the resulting visibility map is obtained as shown in Fig. 2.7(d).

22

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(a) First view

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(b) Second view

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(c) Third view

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(d) Total view

Figure 2.7: Results for the visibility map (black: invisible, white: visible)

23

3
Multi-Robot Mission Planning

From our discussion in Chapter 2, mission planning plays an important role in multi-robot

systems, and we especially consider the heterogeneous robots and threats in the proba-

bilistic combat situations. Therefore, the robots should be allocated to the most proper

target depending on their mission capabilities. Here, we consider the multiple robots, so

if the mission planning module is designed in a decentralized manner, it can be robust to

malfunctions of the robots unlike the centralized approaches resulting in a total breakdown

of the system when the central system is out of control. Decentralized task assignment

assumes exact situational awareness to make consensus among the robots. If the commu-

nication is not smooth, conflicts can occur among the mission plans of the robots. To

overcome this weakness, we employ consensus-based bundle algorithm (CBBA). In CBBA,

the robots make consensus within certain predefined rules to avoid task conflicts among the

robots, and it is advantageous in a situation involving various constraints. We also use a

scoring matrix to deal with heterogeneity of the robots and threats. Consequently, we can

establish a combat strategy as a combination of CBBA and the scoring matrix. If we select

the scoring matrix optimally, the reliability of the combat strategy increases. To optimize

24

the scoring matrix, we suggest an episodic parameter optimization (EPO) method using

reinforcement learning (RL) and particle swarm optimization (PSO). We will show how the

proposed method works in engagement scenarios to maximize the team survivability of the

ground robots.

3.1 Mission Assignment

This section briefly describes CBBA which is used for our mission [12]. Here, we name the

ground robot and the threat as an agent and a task, respectively.

CBBA is one of the decentralized task assignment methods based on the market auction

algorithm. Especially, CBBA considers agents’ paths that are decided by their sequential

task lists to solve a multi-assignment problem. The multi-agent and multi-task assignment

problem can be formulated as follows:

max
N

uX

i=1

N

tX

j=1

cij (xi,pi) xij

!
(3.1)

subject to
N

tX

j=1

xij  Lt, 8i 2 I (I = {1, . . . , Nu}) (3.2)

N
uX

i=1

xij  1, 8j 2 J (J = {1, . . . , Nt}) (3.3)

N
uX

i=1

N
tX

j=1

xij = min {NuLt, Nt} (3.4)

xij 2 {0, 1} , 8 (i, j) 2 I ⇥ J

where xij is set to 1 when an agent i is assigned to a task j. Otherwise, xij = 0. The perfor-

mance index (3.1) is defined by a sum of local reward values, and it should be maximized

under the constraints. The first inequality constraint (3.2) limits the number of tasks which

the agent i can have. Here, Lt denotes the maximum number of the tasks for each agent.

The second inequality constraint (3.3) indicates that each task j should be assigned by at

25

most one agent. If the equality constraint (3.4) is satisfied, the assignment is said to be

completed. CBBA consists of two phases in each iteration. The first is bundle construction

and the second is conflict resolution by local communication. Details of the algorithm are

given in Algorithms 2 and 3.

In the first phase, each agent continuously adds tasks to its bundle in the order of

decreasing reward of the task until it is incapable of adding any others. Each agent carries

four vectors: a bundle bi 2 NL
t , the corresponding path pi 2 NL

t , a winning bid list

yi 2 RN
t , and a winning agent list zi 2 NN

t . Tasks in the bundle bi are ordered based

on which ones were added first, while in the path pi they are ordered based on their

locations in the assignment. yi and zi are the agent i’s knowledge vectors which contain

the knowledge about which agent takes each task (winning agent) and the successful bidding

values (winning bid), respectively. In line 5 of Algorithm 2, a�end b denotes the operation

that inserts the list b after the last element of the list a. Every time the agent includes a

new task to its bundle and path, it saves the knowledge about yi and zi (line 7 of Algorithm

2). In line 4 of Algorithm 2, when agent i takes the task j, the marginal score improvement

ci,j according to the current path pi is given as follows.

cij =

8
<

:
maxn|p

i

|+1 S
p

i

�
n

{J
i

}
i � Sp

i

i if j /2 pi

0 if j 2 pi

(3.5)

where | · | denotes the cardinality of the list, and a�n b denotes the operation that inserts

the list b right after the n-th element of the list a. Let Sp

i

i be defined as the total reward

value for agent i performing the task along the path pi. In this paper the value of Sp

i

i is

inversely proportional to the distance of the path as in example below.

S
[1,2,3]
i =

mk
i

,k
1

di,1
+

mk
i

,k
2

di,1 + d1,2
+

mk
i

,k
3

di,1 + d1,2 + d2,3
(3.6)

where mk
i

,k
j

denotes a element of the scoring matrix M 2 R3⇥3 varying with the type

ki and kj of the robot i and the threat j. The scoring matrix M is used to reflect the

26

Algorithm 2 CBBA Phase 1: for agent i at iteration t

1: procedure Build bundle (zi(t� 1),yi(t� 1), bi(t� 1))
2: zi(t) zi(t� 1), yi(t) yi(t� 1), bi(t) bi(t� 1)
3: while |bi(t)| < Lt do
4: Find task Ji which gives the most marginal score improvement ci,J

i

for given
bi(t) and pi(t)

5: bi(t) bi(t)�end {Ji}
6: pi(t) pi(t)�n

i,J

i

{Ji}
7: yi,J

i

(t) ci,J
i

, zi,J
i

(t) i
8: end while
9: end procedure

Algorithm 3 CBBA Phase 2: agent i’s action for task j

1: Local communication exchanging (y, z, s) with agent k
2: Decide action by update rules shown in [12]
3: 1) update : yij ykj, zij zkj
4: 2) reset : yij 0, zij 0
5: 3) leave : yij yij, zij zij

hostile relationship between the robots and the threats with mk
i

,k
j

representing the relative

strength of the agent i when confronting target j. da,b denotes the distance from robot a to

threat b or threat a to threat b. For better performance related to the increase in the team

survivability, the scoring matrix M has to be selected optimally.

In the conflict resolution phase, three vectors are communicated for consensus. Two

are the winning bid list yi and the winning agent list zi, and the third vector si 2 RN
u

represents the time stamp of the last information updated from each of the other agents.

When agent i receives a message from agent k, zi and si are used to determine which

agent’s information contains the most recent data for each task. There are three possible

actions agent i can do on task j as shown in lines 3–5 of Algorithm 3. Detailed action rules

during communication are given in [12].

CBBA process with a synchronized conflict resolution phase over a static communication

network with diameter D guarantees at least 50% optimality in performance with in NminD

convergence time, where Nmin = min{LtNu, Nt}. As mentioned in Sect. 2.2, all the robots

27

are fully connected in communication. However, if some robots are destroyed, then they lose

connections and the remaining robots acquire new mission points after performing CBBA

except the robots that lost mission capability.

3.2 Optimization for Mission Assignment

The scoring matrix presented in Sect. 3.1 requires the proper selection of each element.

This section describes reinforcement learning and particle swarm optimization to learn the

best values for the elements of the scoring matrix.

3.2.1 Reinforcement learning

Reinforcement learning can provide solutions in the situation involing the probabilistic

model for the attack [54]. For a specific set of the scoring matrices, the performance of

each scoring matrix is evaluated by the expected return. Then their suboptimal values of

elements of the scoring matrix will be determined using episodic optimization.

The target assignment depends on the scoring matrix M can be considered a function

of M , so the assignment policy is denoted by ⇡(M). In the considering scenario, the main

purpose of the robots is to maximize the team survivability during the engagement by using

the policy ⇡(M). Given initial conditions of an engagement, the expected return V ⇡(M) is

assigned to ⇡(M):

V ⇡(M) = E[R|⇡(M)] (3.7)

where the random variable R denotes the return and is defined by the ratio of the survived

robots:

R =
Ns

Nu

(3.8)

where Ns is the number of the survived robots.

Because the exact evaluation of (3.7) is intractable [54], instead the average total reward

28

Table 3.1: Inputs of the EPO algorithm

Parameter Explanation Value
S total number of particles (1 < s < S) 10
lb lower bound of mk

i

,k
j

0
ub upper bound of mk

i

,k
j

10
Nep total number of episodes (1 < nep < Nep) 100
itermax maximum iteration (1  iter  itermax) 50

over the Nep repeated runs is used by the following:

R̄ =
1

Nep

N
epX

n
ep

=1

R(n
ep

). (3.9)

Here, Nep is the total number of monte-carlo type simulations called episodes. At the

end of each nep-th episode, the return R(n
ep

) is obtained. This process is repeated nep =

1, . . . , Nep times, then the average R̄ is computed according to (3.9) as shown in lines 7–13 of

Algorithm 4. This R̄ will give an estimated performance for the particular values of elements

of scoring matrix M . The performance estimates R̄0 for a di↵erent scoring matrix M

0 can

be computed using the same process, and this process is repeated until convergence to the

best values of M . To guarantee the sub-optimal property of the resulting solution, the

total number of episodes Nep should be large enough (roughly speaking, some polynomial

of the complexity of the problem described in [42]), and the same set of random elements

should be used to evaluate the estimated performance of a scoring matrix. In the considered

problem, the average total reward (3.9), i.e., the team survivability, should be maximized

for a candidate scoring matrix.

29

3.2.2 Particle swarm optimization

To solve the parameter optimization problem, particle swarm optimization (PSO) is em-

ployed. PSO is a population-based stochastic optimization technique [27]. Every particle in

the population travels in the search space looking for the global minimum (or maximum)

similar to the behavior of bird flocking. Each particle adjusts its velocity according to its

own experience and its swarm’s experience while particles search for the global solution.

To determine the optimal scoring matrixM ⇤, the particles are regarded as the candidate

scoring matrices. All the particles in the population which begin with a random position

Ms and random velocity ⌫s 2 R3⇥3, s = 1, . . . , S where S is the swarm size, are candidate

solutions and iteratively move in the problem space. The best previous position of the

particle s is remembered and represented as pBests 2 R3⇥3. The position of the best

particle among all the particles is represented as gBest 2 R3⇥3. At each iteration, the

velocity ⌫s and position Ms of each particle s can be updated by the following:

⌫s = K[⌫s + c1r1(pBests �Ms) + c2r2(gBest�Ms)]

Ms = Ms + ⌫s

(3.10)

where c1 and c2 are the acceleration constants, and r1 and r2 are chosen as uniform random

values in the range [0, 1], K is the constriction factor to ensure the convergence of PSO

[15], and it is determined by

K =
2

|2� '�p
'2 � 4'| (3.11)

where ' = c1 + c2,' > 4. Typically, ' is set to 4.1. Then, the value function V ⇡(M
s

)

determined by the scoring matrix Ms for each particle s can be evaluated in each PSO

iteration iter. The details of this optimization process are shown in Algorithm 4 and Fig.

3.1, and the inputs of the EPO algorithm are set as shown in Table 3.1.

30

Algorithm 4 Episodic Parameter Optimization (EPO) algorithm

1: procedure Episodic Parameter Optimization
2: Setup Nep initial conditions of the engagement
3: Initialize particles (Ms, s = 1, . . . , S) with random position and velocity matrices
4: Initialize the pBests and the value function for each particle s, i.e., pBests Ms

and R̄
(0)
s �1

5: for iter = 1 to itermax do
6: for each s = 1, . . . , S do
7: for nep  Nep do
8: Start from the nep-th initial conditions
9: Run episode nep of the engagement

10: Update the rewards R(n
ep

)
s

11: nep nep + 1
12: end for
13: Compute R̄

(iter)
s using (3.9)

14: if R̄
(iter)
s > R̄

(iter�1)
s then

15: pBests Ms

16: else
17: R̄

(iter)
s R̄

(iter�1)
s

18: end if
19: V ⇡(M

s

) R̄
(iter)
s

20: end for
21: Set the best of pBests as gBest, i.e., gBest argmax

M

s

V ⇡(M
s

), s = 1, . . . , S

22: Update each particle’s velocity and position by (3.10)
23: end for
24: return M

⇤ gBest

25: end procedure

31

Nep

#1 ~ #S

pBest #1 pBest #2 pBest #S

#1 #2 #S

Nep

pBests gBest

gBest

1

Figure 3.1: Flow chart of the EPO algorithm

32

3.3 Optimization Results

In this section, the EPO algorithm is applied to optimize the scoring matrix M which is

involved in CBBA, and the performance of the proposed algorithm is analyzed.

For a 30 km⇥ 30 km environment, total number of ground robots Nu is fixed at 5, and

the combination of the robots is set as one robot of type 1, two robots of type 2, and

two robots of type 3. The number of threats Nt is set to 20. Before the start of the EPO

algorithm, Nep samples of initial conditions about the locations and types of threats are

uniformly randomly selected, and these initial conditions are applied for each episode.

Figure 3.2 shows change in the team survivability as the number of iterations increases.

At each EPO iteration, ten candidate scoring matrices are selected and the team surviv-

ability for each candidate is evaluated as shown in Fig. 3.2. The result shows tendency

in which the survivability improves after a few iterations. After ten iterations of the EPO

algorithm, the average of the team survivability for the entire candidate scoring matrices

increases from 20% to 70% compared to the first iteration. The optimized scoring matrix

is determined after all the number of iterations as follows:

M

⇤ =

2

6664

3.48517 0 0

0.464493 4.23875 0

3.15284 4.93702 9.29547

3

7775
.

As a result, the EPO algorithm presents the positive e↵ect to enhance the team surviv-

ability by optimizing the scoring matrix. The optimal scoring matrix M

⇤ tells the validity

of this conclusion. As mentioned in Sect. 3.1, the rows of the scoring matrix M are related

to the type of robots and the columns are for the type of threats. From the optimized

scoring matrix M

⇤, m1,2 and m1,3 are close to 0. This result means that the robot of type

1 will not choose the threat of type 2 or type 3 and satisfies our assumption in which the

robot of type 1 can only handle the threat of type 1. The other example is that the value

of m3,3 is greater than the other elements because the robot of type 3 can only deal with

33

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Iterations

S
u

rv
iv

a
b

il
it

y
 [

%
]

mean
max
min

Figure 3.2: Optimization result

the threat of type 3. m3,1 and m3,2 also have the big values due to the excellent attack

capabilities for the robot of type 3. Therefore, we can conclude that the EPO algorithm

properly optimizes the scoring matrix.

34

3.4 Analysis and Discussion

In the previous section, we obatined the optimal scoring matrix by using the EPO algorithm.

Here, we will observe the influence of the optimal scoring matrix in mission planning.

Figure 3.3 shows task allocation results with respect to the di↵erent value of Sp

i

i in (3.5).

When Sp

i

i is determined by considering both distance and the optimal scoring matrix, each

robot selects the threats which are near and favorable to attack depending on its type

without task conflict as shown in Fig. 3.3(a). Especially, the robot of type 3 prefers to

select the threat of type 3 because the element m3,3 of the optimal scoring matrix has

the high value. On the other hand, when the reward for distance is only considered in

CBBA, we can observe that the assigned threats are close to each relevant robot but three

robots select improper target as shown in Fig. 3.3(b). So, we cannot ensure its survivability.

Thus, we can grasp the fact that CBBA with the optimized scoring matrix can allocate

the heterogeneous targets to the robots by considering the robots’ attack capabilities. We

expect that the proposed EPO algorithm can be utilized to handle other probabilistic

situations where it is di�cult to quantify performance metrics.

35

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a) Distance and scoring matrix M

⇤

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(b) Only distance

Figure 3.3: Task allocation results with respect to the di↵erent value of Sp

i

i (red: ki, kj = 1,
green: ki, kj = 2, blue: ki, kj = 3)

36

4
Multi-Robot Path Planning

In the previous chapter, we obtained the optimal engagement strategy in the mission plan-

ning domain, but there was no consideration of path planning. To handle this problem,

we propose a decentralized trajectory optimization algorithm called decentralized VM-

CPSO. We especially focus on solving the nonlinear constrained trajectory optimization

problem with the terminal time and angle constraints in the multi-robot domain. The idea

of VMCPSO comes from virtual motion camouflage (VMC) and particle swarm optimiza-

tion (PSO). VMC transforms a typical full space optimal problem to a subspace optimal

problem, and this reduces the dimension of the problem by using path control parameters

(PCPs). If PCPs are optimized, then the optimal path is generated. In this work, we employ

PSO to optimize these PCPs. In PSO, the candidate PCPs find the optimal solution during

local and global interactions with the other candidates. In multi-robot path planning, each

robot generates its own optimal path by using VMCPSO and sends the path information

to the other robots. Then, the other robots use this path information when planning their

own paths. The proposed algorithms will be validated with simulations and an experiment.

37

4.1 Virtual Motion Camouflage

In this section, a standard optimal trajectory generation problem with nonlinear constraints

is considered, and a bio-inspired method is described to solve this problem. In addition,

the proposed approach will be discussed.

4.1.1 Nonlinear constrained trajectory optimization problem

The general nonlinear constrained trajectory optimization problem is defined by the fol-

lowing:

J = �[x(t0),x(tf), t0, tf] +

Z t
f

t
0

L[x(t),u(t), t]dt (4.1)

subject to the inequality constraints

g(x(t),u(t), t)  0, g 2 Rp⇥1 (4.2)

and the equality constraints

h(x(t),u(t), t) = 0,h 2 Rq⇥1. (4.3)

Here, (x(t),u(t), t, t0, tf) are the state, control, current time, initial time, and final time,

respectively. The equality constraints (4.3) include the terminal constraints

 [x(t0),x(tf), t0, tf] = 0, 2 Rl⇥1 (4.4)

and the first-order dynamic constraints

ẋ(t) = f(x(t),u(t), t),x 2 Rn⇥1,u 2 Rm⇥1. (4.5)

The optimal trajectory will be found by maximizing (or minimizing) the performance index

J . The solution of this optimal problem might be locally or globally optimal depending on

38

Figure 4.1: Relationship between the reference point, the prey motion, and the aggressor
motion.

optimization methods.

4.1.2 VMC formulation

Srinivasan and Davey introducedMotion Camouflage (MC) for describing whether an agent

can actively camouflage its motion while tracking a target, and developed algorithms to

determine the agent’s trajectories for a stationary or moving target [51]. In [63, 64, 65], two

moving agents, an aggressor and a prey, are considered, and the idea of MC is applied to

the nonlinear constrained optimal control problem. As shown in Fig. 4.1, the path of the

aggressor xa(t) related to the motion of the prey xp(t) and the reference point xr can be

controlled by the path control parameter (PCP) �(t) as follows:

xa(t) = xr + �(t)(xp(t)� xr) (4.6)

39

and the derivatives of xa(t) can be simply defined by the following:

ẋa(t) = ẋr + �̇(t)(xp(t)� xr) + �(t)(ẋp(t)� ẋr) (4.7)

ẍa(t) = ẍr + �̈(t)(xp(t)� xr) + �(t)(ẍp(t)� ẍr) + 2�̇(t)(ẋp(t)� ẋr). (4.8)

Before the VMC formulation, the following two assumptions are made as in [66].

Assumption 1 ([66]). The state vector x(t) 2 Rn⇥1 can be rearranged into two parts:

the position state xa(t) 2 Rn
a

⇥1 and the state rate xsr(t) 2 R(n�n
a

)⇥1. Correspondingly,

the equations of motion ẋ(t) = f(x(t),u(t), t) can be rewritten into two parts: ẋa(t) =

fa(x(t), t) and ẋsr(t) = fsr(x(t),u(t), t).

Assumption 2 ([66]). The mappings from (xa(t), ẋa(t), t) to xsr(t) and from (x(t), ẋ(t), t)

to u(t) are assumed to be injective, which means the control variables u(t) and the state

rate xsr(t) can be solved by xsr(t) = f

�1
a (xa(t), ẋa(t), t) and u(t) = f

�1
sr (x(t), ẋsr(t), t)

either explicitly or implicitly using an iterative fashion.

The nonlinear constrained trajectory optimization problem stated in Sect. 4.1.1 can be

reformulated by considering Assumptions 1 and 2, and (4.6)-(4.8). Given xr and xp(t), the

variables �(t), �̇(t), �̈(t), . . ., and tf will be designed to minimize the performance index

J = �[�(t), �̇(t), �̈(t), . . . , tf] +

Z t
f

t
0

L[�(t), �̇(t), �̈(t), . . . , t]dt (4.9)

subject to the state and control inequality constraints

g(�(t), �̇(t), �̈(t), . . . , t)  0, g 2 Rp⇥1 (4.10)

and the equality constraints

h(�(t), �̇(t), �̈(t), . . . , t) = 0,h 2 Rl⇥1 (4.11)

40

In the VMC formula, the first-order dynamics constraints (4.5) are already taken into ac-

count when calculating xsr(t) and u(t) based on Assumption 2, so the boundary conditions

are only considered as the equality constraints.

To obtain the numerical solution, the VMC-based nonlinear constrained trajectory op-

timization problem is directly formulated as a nonlinear programming via a collocation

method based on the pseudo-spectral scheme. The Legendre-Gauss-Lobatto (LGL) pseudo-

spectral scheme is used to discretize the PCP �(t) into the PCP nodes �k, k = 0, . . . , N , and

� = [�0, . . . ,�N]> is the vector of the PCP nodes. Therefore, the discretized performance

index can be described as follows:

J = �[�N] +

✓
tf � t0

2

◆ NX

k=0

L[�, �̇, �̈, . . .]!k (4.12)

where !k is the weight for the k-th LGL node. The state/control inequality and equality

constraints can be written as

gk(�, �̇, �̈, . . .)  0 (4.13)

hk(�, �̇, �̈, . . .) = 0 (4.14)

where the derivatives of the PCP vector are

dk�

dtk
=

✓
2

tf � t0

◆k

D

k
� (4.15)

where the di↵erentiation matrix D can be found in [20]. Then, (4.6)–(4.8) are rewritten by

the following:

xa(k) = xr + �k(xp(k)� xr) (4.16)

ẋa(k) = ẋr + �̇k(xp(k)� xr) + �k(ẋp(k)� ẋr) (4.17)

ẍa(k) = ẍr + �̈k(xp(k)� xr) + �k(ẍp(k)� ẍr) + 2�̇k(ẋp(k)� ẋr). (4.18)

41

The reference point xr will remain fixed, so (4.17) and (4.18) can be simply rewritten as

follows:

ẋa(k) = �̇k(xp(k)� xr) + �kẋp(k) (4.19)

ẍa(k) = �̈k(xp(k)� xr) + �kẍp(k) + 2�̇kẋp(k). (4.20)

Here, the selection of the reference point xr is very important because it is closely related

to the problem space. For example, if we consider the minimum-time problem as described

in Fig. 4.4(a), a prey motion can be determined by a straight line. Then, if we select a

reference point on the same line as the prey motion, the aggressor motion xa is constrained

on the line of the prey motion no matter how we change the PCP vector �. In the planar

motion, the most appropriate reference point of this problem can be selected on the line

which is perpendicular to the center point of the prey motion.

In [66], the sequential VMC method involving two steps in an iteration process is pro-

posed to solve this problem. In the first step, an optimal solution can be found within

subspace constructed by the PCP nodes, and then a linear programming and a line search

algorithm are used in the second step to improve the PCP nodes. The detailed algorithms

and results can be found in [66].

4.1.3 The proposed approach

In our approach, the constrained optimization problem should be changed into an uncon-

strained optimization problem as follows:

minimize(�) J =

✓
tf � t0

2

◆ NX

k=0

L[�, �̇, �̈, . . .]!k + C

NX

k=0

max
k

⇣
0, gk(�, �̇, �̈, . . .)

⌘
(4.21)

where the second term of (4.21) is the penalty function to satisfy the inequality constraints,

and C is the weighting parameter. Here, the boundary conditions such as the initial and

final position can be included in (4.21) by setting �0 = 1 and �N = 1. As stated in Sect.

42

4.1.2, the most important task to find the optimal trajectory is how to determine the PCP

nodes optimally. Thus, to deal with this parameter optimization problem, particle swarm

optimization (PSO) mentioned in Sect. 3.2.2 is employed again.

Let the particles be the candidate PCP vectors, then each particle begins with randomly

selected position �s 2 R(N+1)⇥1 and zero velocity ⌫s 2 R(N+1)⇥1(s = 1, 2 . . . , S), where S is

the swarm size, and iteratively moves in the problem space. To generate reliable candidate

particles, i.e., the PCP vector �s, each candidate PCP node �k,s is computed with the

combination of M harmonic functions as follows:

�k,s = 1 + r0

MX

m=0

A sin

✓
m⇡

✓
!h0:ki
!h0:Ni

◆◆
(4.22)

where !ha:bi denotes
Pb

i=a !i, and A is constant to handle the range of the candidate paths.

r0 is chosen as uniform random variables in the range [�1, 1]. If we can properly generate

a set of candidate paths according to the problem domain, the reliability of optimization

results can be increased. The best previous position of the particle s is remembered and

represented as pBests 2 R(N+1)⇥1. The position of the best particle among all the particles

is represented as gBest 2 R(N+1)⇥1. Similar to (3.10), at each iteration the velocity ⌫s and

position �s of each particle s can be updated by the following:

⌫s = K[⌫s + c1r1(pBests � �s) + c2r2(gBest� �s)]

�s = �s + ⌫s.
(4.23)

The proposed algorithm using VMC and PSO (VMCPSO) is detailed in Algorithm 5.

In order to make the robot follow the optimal trajectory, we can obtain the path con-

ditions (vd, wd, xd, yd, ✓d) as described in lines 11–33 of Algorithm 6. Here, test(k) is the

estimated time of arrival at k-th PCP node and �t denotes the time step. The PCP node

number k and path index p are initially set to 0 (line 4 of Algorithm 6). Then, we can

compute the velocity input vector u(t) = [v(t), w(t)]>.

43

Algorithm 5 Virtual Motion Camouflage and Particle Swarm Optimization (VMCPSO)
algorithm

1: procedure VMCPSO(N, itermax, S)
2: Create the (N + 1) LGL nodes with the weight vector !
3: Create the di↵erentiation matrix D

4: Set the virtual prey motion xp and the reference point xr

5: Initialize particles (�s, s = 1, . . . , S) with random position (4.22) and zero velocity
6: Initialize the pBests and the cost Js for each particle s, i.e., pBests �s and

J
(0)
s 1

7: for iter = 1 to itermax do
8: for each s = 1, . . . , S do
9: Compute (�̇s, �̈s) and (xa, ẋa, ẍa) using (4.15)-(4.20)

10: Compute J
(iter)
s using (4.21)

11: if J
(iter)
s < J

(iter�1)
s then

12: pBests �s

13: else
14: J

(iter)
s J

(iter�1)
s

15: end if
16: J (�s) J

(iter)
s

17: end for
18: Set the best of pBests as gBest, i.e., gBest argmin

�

s

J (�s) , s = 1, . . . , S

19: Update each particle’s velocity and position by (4.23)
20: end for
21: return �

⇤ gBest

22: end procedure

44

Algorithm 6 Overall path planning and tracking algorithm

1: procedure VMCPSO & Path tracking
2: �

⇤ VMCPSO(N, itermax, S)

3: Compute (x⇤
a(k), v

⇤(k), w⇤(k)) by using
⇣
�

⇤, �̇⇤, �̈⇤,xp(k),xr, tf

⌘
, 8k = 0, . . . , N

4: k 0, p 0
5: for every time step t = 0,�t, . . . do
6: n b(test(k + 1)� test(k)) /�tc
7: (vd(t), wd(t), xd(t), yd(t), ✓d(t), k, p) Set desired path conditions (n, k, p)
8: Compute (v(t), w(t)) and update robot’s position/orientation
9: end for

10: end procedure
11: procedure Set desired path conditions(n, k, p)
12: if n 6= 0 then
13: if p � n then
14: k k + 1, p 0
15: (vd, wd) (v⇤(k), w⇤(k))
16: else
17: p p+ 1
18: (vd, wd) (v⇤(k), 0)
19: end if
20: xd x⇤

a(k) + (x⇤
a(k + 1)� x⇤

a(k))p/n
21: yd y⇤a(k) + (y⇤a(k + 1)� y⇤a(k))p/n
22: ✓d atan2(y⇤a(k + 1)� y⇤a(k), x

⇤
a(k + 1)� x⇤

a(k))
23: else
24: k0 0, p 0
25: while n = 0 do
26: k k + 1, k0 k0 + 1
27: n b(test(k + 1)� test(k)) /�tc
28: end while
29: (vd, wd, xd, yd) (v⇤(k � k0), w⇤(k � k0), x⇤

a(k), y
⇤
a(k))

30: ✓d atan2(y⇤a(k)� y⇤a(k � k0), x⇤
a(k)� x⇤

a(k � k0))
31: end if
32: return (vd, wd, xd, yd, ✓d, k, p)
33: end procedure

45

4.2 Extension to Multi-Robot Path Planning

Here, we suggest two types of algorithms for applying the VMCPSO algorithm to multi-

robot path planning. The first type of the multi-robot path planning algorithms is developed

for stationary targets, and the other type is for moving targets. Basically, we assume that

the robots use a round-robin approach, cycling through a fixed planning order when there

is no dynamically changing environment. For a dynamically changing environment, we can

also consider the di↵erent planning order for the robots. Assume that there are several

robots and they are fully connected in a communition network. If the path information Pj

for the neighbors j 2 Ni of the robot i is updated in the planning module of the robot i in

real time, the robot i only needs to use it while planning its path. In other words, if there

is no problem in collecting the path information of neighbors and each robot can make a

decision fast enough, the di↵erent planning order does not matter too much because the

VMCPSO method is good at finding the optimal path fast enough for given situations.

To handle the multi-robot path optimization problem for stationary targets, we extend

the VMCPSO algorithm as decentralized VMCPSO (Dec-VMCPSO). Dec-VMCPSO in-

cludes the broadcast and receiving steps as shown in lines 3 and 5 of Algorithm 8. The

robot i plans the optimal trajectory with the fixed planning order the same as the robot’s

index i 2 {1, . . . , Nu}. When the performance index is computed, the optimal path infor-

mation of the other robots j 2 Ni where Ni = {j 2 {1, . . . , Nu} : j < i} is used to generate

the path for cooperation or avoiding collisions between the robots. After all the robots plan

their own paths (lines 2–8 of Algorithm 8), each robot moves along the preplanned optimal

path (lines 9–13 of Algorithm 8). From the merits of VMCPSO, the robot i can easily

reconstruct its path information Pi or its neighbors’ path information Pj by manipulating
⇣
�

⇤, �̇⇤, �̈⇤,xp(k),xr, tf

⌘
, k = 0, . . . , N , and it only requires a small amount of communi-

cation because the path information to be sent consists of (�⇤,xp(k),xr, tf) , k = 0, . . . , N .

In this paper, we consider the reconstructed path information as the preplanned path

points, i.e, aggressor motions xa(k), and the estimated time of arrival test(k), k = 0, . . . , N .

46

Target

UGV

Local path
Global path

ObstacleReachable set

Figure 4.2: Example of local and global path planning

Therefore, we can obtain the optimal trajectories for all the robots according to given per-

formance index without communication and computational load by using Dec-VMCPSO.

Results to support this statement will be discussed in the next section.

To achieve the robots reach the moving target for given the terminal time and angles,

each robot has to make a decision as soon as possible. The computation time of the VM-

CPSO algorithm is important and closely related with the number of the PCP nodes and

the candidate PCPs, and there is tradeo↵ between the computation time and reliability of

the optimal path. If the number of the PCP nodes is reduced, the computation time can

be decreased, but the gap between the PCP nodes will be widened. So, the PCP nodes will

be sparsely located for the faraway target as shown in Fig. 4.2. Therefore, we adopt the

concepts of global and local path planning. Global path planning (GPP) is mainly used

to achieve the main objectives such as making cooperative behavior among robots. The

terminal location of GPP is given by the target’s position, and as the distance to the target

is increased GPP cannot consider the small obstacle as shown in Fig. 4.2. So, local path

planning (LPP) is employed to solve this problem. LPP plans the optimal path in the neigh-

borhood of the robot’s location to follow the global plan and to avoid collisions. In LPP,

the terminal state is not specified. So, we define a reachable set R, which is related to the

47

robot’s position and orientation. Then, the terminal state (xf , yf) 2 R can be obtained as

described in Algorithm 7. At line 8 of Algorithm 7, the cost Jh for each candidate terminal

state is computed by considering the planned global path and collision avoidance. When

the most proper terminal state is decided, the optimal path for LPP is obtained by using

the basic VMCPSO algorithm. In addition, if the target is located inside the reachable set,

the terminal state of LPP is set the same as the location of the target, and the objective

of LPP is changed to the same as the objective of GPP. As a result, GPP performs to find

the optimal long-term path, which mainly satisfies the terminal time and angle constraints.

LPP is used to find the optimal short-term path to follow the global path as soon as possi-

ble and to avoid collisions. Each robot generates the global/local path at every time step,

and it only moves to the desired position on the local path at the next time step t + �t

by using Dec-VMCPSO and the path tracking algorithm as described in lines 15—30 of

Algorithm 8. Whenever its teammates change their positions or plans, if this information

becomes available, GPP/LPP can reflect the new information immediately. Therefore, we

can use the proposed algorithm as a reactive path planner.

Algorithm 7 Algorithm for setting a boundary point

1: procedure Set boundary point(x, y, ✓)
2: Jmin 1
3: for m = 1 to (mh + 1) do
4: ↵ ↵min + (↵max � ↵min) · (m� 1)/mh

5: for n = 1 to (nh + 1) do
6: xh x+ wh · n · cos(↵ + ✓)
7: yh y + wh · n · sin(↵ + ✓)
8: Compute cost Jh of point (xh, yh)
9: if Jh < Jmin then
10: Jmin Jh
11: (xf , yf) (xh, yh)
12: end if
13: end for
14: end for
15: return (xf , yf)
16: end procedure

48

Algorithm 8 Overall multi-robot path planning and tracking algorithm for the stationary
and moving target

1: procedure Dec-VMCPSO & Path tracking for stationary target
2: for each robot i do
3: Receive the path information Pj of prior robot j 2 Ni

4: �

⇤
i VMCPSO(N, itermax, S) by considering Pj

5: Broadcast the path information Pi of robot i

6: Compute
�
x

⇤
a,i(k), v

⇤
i (k), w

⇤
i (k)

�
by using

⇣
�

⇤
i , �̇

⇤
i , �̈

⇤
i ,xp,i(k),xr,i, tf,i

⌘
, 8k =

0, . . . , N
7: ki 0, pi 0
8: end for
9: for each robot i, every time step t = 0,�t, . . . do

10: ni b(test,i(ki + 1)� test,i(ki)) /�tc
11: (vd,i(t), wd,i(t), xd,i(t), yd,i(t), ✓d,i(t), ki, pi) Set desired path conditions (ni, ki, pi)
12: Compute (vi(t), wi(t)) and update robot i’s position/orientation
13: end for
14: end procedure
15: procedure Dec-VMCPSO & Path tracking for moving target
16: for each robot i, every time step t = 0,�t, . . . do
17: Receive the path information

�Pg
j ,P l

j

�
of robot j 2 Ni

18: // Global Path Planning (GPP)
19: �

g
i VMCPSO(N, itermax, S) by considering Pg

j

20: // Local Path Planning (LPP)
21: (xf,i(t), yf,i(t)) Set boundary point (xi(t), yi(t), ✓i(t))
22: �

l
i VMCPSO(N, itermax, S) by considering

�Pg
i ,P l

j

�

23: Broadcast the path information
�Pg

i ,P l
i

�
of robot i

24: Compute
�
x

⇤
a,i(k), v

⇤
i (k), w

⇤
i (k)

�
by using

⇣
�

l
i, �̇

l
i, �̈

l
i,xp,i(k),xr,i, tf,i

⌘
, 8k =

0, . . . , N
25: ki 0, pi 0
26: ni b(test,i(ki + 1)� test,i(ki)) /�tc
27: (vd,i(t), wd,i(t), xd,i(t), yd,i(t), ✓d,i(t), ·, ·) Set desired path conditions (ni, ki, pi)
28: Compute (vi(t), wi(t)) and update robot i’s position/orientation
29: end for
30: end procedure

49

UGV

Target

(a)

GCS

(b)

Figure 4.3: Multi-robot operation in an urban-like environment (a) A snapshot of a ren-
dezvous experiment in which multiple UGVs try to arrive at the target point simultaneously
with the specific heading (b) Ground display

4.3 Simulation Results

This section describes simulation results when VMCPSO and Dec-VMCPSO are applied

to the nonlinear constrained trajectory optimization problem with the terminal time and

angle constraints for the stationary and moving target. Simulations are carried out under

the same environment as described in Fig. 4.3(a).

4.3.1 Stationary target

As shown in Fig. 4.4(a), we first consider collision-free trajectory planning using the

minimum-time criterion in an urban-like environment. In this problem, tf is free and re-

50

Table 4.1: Simulation conditions

Parameter Value Parameter Value
A 1 Robs 16 cm
M 4 C1 ⇠ C3 100
Nobs 13 t0 0
N 24 �t 0.1 sec
S 200 wh 10

itermax 150 mh 10
vmax 13 cm/s nh 20
wmax 135 deg/s (↵min,↵max) (�⇡

4
, ⇡
4
)

garded as cost to be optimized in VMCPSO.

minimize J =

✓
tf � t0

2

◆ NX

k=0

!k (4.24)

subject to |v(k)|  vmax

|w(k)|  wmax

(x(k)� xobs,i)
2 + (y(k)� yobs,i)

2 � R2
obs, i = 1, . . . , Nobs

(x(0), y(0)) = (�80,�80)
(x(N), y(N)) = (90, 90)

where Robs is the safe radius of the square obstacle and Nobs is the number of obstacles.

Given (2.2), the position state xa and state rate xsr are set as xa = [x, y]> and xsr = ✓,

respectively. Basically, the reference point is set as xr = [1000,�950]> and the prey motion

xp is given by the straight line shown in Fig. 4.4(a). From xr, xp and �, ẋa = [ẋ, ẏ]>

and ẍa = [ẍ, ÿ]> are directly computed by (4.15)–(4.20) for each k-th LGL node, so the

following results can be obtained.

51

−100 −50 0 50 100

−100

−50

0

50

100

X [cm]

Y
 [

c
m

]

Prey motions

VMCPSO

(a) Optimal trajectory

0 5 10 15 20 25

0.08

0.09

0.1

0.11

0.12

PCP nodes
V

a
lu

e
 o

f
P

C
P

s

(b) Optimal PCP nodes

0 50 100 150
0

1000

2000

3000

4000

Iterations

 J
 p

B
e
s
t

(c) Cost of pBests

0 50 100 150
200

300

400

500

600

Iterations

 J
 g

B
e
s
t

(d) Cost of gBest

Figure 4.4: VMCPSO results of the minimum-time problem

v(k) =
p
ẋ2(k) + ẏ2(k) (4.25)

✓(k) = atan

✓
ẏ(k)

ẋ(k)

◆
(4.26)

w(k) =
ẋ(k)ÿ(k)� ẏ(k)ẍ(k)

ẋ2(k) + ẏ2(k)
, (ẋ2(k) + ẏ2(k) 6= 0). (4.27)

Thus, we can evaluate whether the constraints such as |v|  vmax and |w|  wmax are

violated for each k-th LGL node by only using xa, ẋa and ẍa. To solve (4.24), we change

52

the formula (4.24) into (4.21) as follows:

minimize J =

✓
tf � t0

2

◆ NX

k=0

!k (4.28)

+ C1

NX

k=0

max
k

(0, |v(k)|� vmax)

+ C2

NX

k=0

max
k

(0, |w(k)|� wmax)

+ C3

N
obsX

i=1

NX

k=0

max
k

(0, 1/di(k)� 1/Robs)

where di(k) denotes the distance between the position of i-th square obstacle and xa(k).

Then, we apply VMCPSO to solve (4.28) for the parameters given in Table 4.1. As shown

in Fig. 4.4(a) the minimum-time optimal trajectory is well generated, and the resulting

optimal PCP nodes are shown in Fig. 4.4(b). Figures 4.4(c) and 4.4(d) show a good con-

vergence rate to an optimal solution. Figure 4.4(c) shows J
pBest

s

, the cost defined in (4.28)

computed for each particle, i.e., the change in costs for the candidate paths as the num-

ber of VMCPSO iterations increases. It can be seen that the values of J
pBest

s

do not get

trapped in the local minima until they converge to the minimum values about 10 to 80

iterations, respectively. In addition, the change in the minimum cost among the candidate

paths described in Fig. 4.4(d) converges fast within 50 iterations. So, we can conclude it

e↵ectively prevents from falling into local minima by maintaining randomness.

53

−100 −50 0 50 100
−100

−50

0

50

100

robot i robot j

9.5s

19.0s

9.3s

18.6s

X [cm]

Y
 [

c
m

]

(a) Optimal trajectory

5 10 15 20 25

5

10

15

20

25

Nodes of robot i

N
o

d
e

s
 o

f
ro

b
o

t
 j

0

0.1

0.2

0.3

0.4

0.5

(b) Collision risk

−100 −50 0 50 100
−100

−50

0

50

100

10.4s

20.2s

10.5s

18.6s

X [cm]

Y
 [

c
m

]

(c)

5 10 15 20 25

5

10

15

20

25

Nodes of robot i

N
o

d
e

s
 o

f
ro

b
o

t
 j

0

0.1

0.2

0.3

0.4

0.5

(d)

Figure 4.5: (a,b) The case in which path information of robot j is not considered in the
planning of robot i, (c,d) The case in which path information of robot j is considered in
the planning of robot i

We perform additional simulations to address how the path information of the robots is

taken into account. When the robot i uses the path information Pj collected by its neigh-

bors j 2 Ni, the aggressor motions xa,j(k) and the estimated time of arrival test,j(k), k =

0, . . . , N , are reconstructed from the path information Pj. To prevent collision between the

robot i and the robot j, we can compute the cost of collision risk between the k-th path

point of the robot i and the k0-th path point of the robot j. Figures 4.5(b) and 4.5(d) show

this relation between the k-th path point of the robot i and the k0-th path point of the

54

robot j. Therein, the horizontal axis corresponds to the PCP node k and the vertical axis

corresponds to the PCP node k0 in a two-robot situation. Then, the total cost of collision

risk for the robot j can be defined by the following:

criskj =
NX

k=0

NX

k0=0

exp(�(||xa(k)� xa,j(k
0)||2 + ||test(k)� test,j(k

0)||2)). (4.29)

Then, for the following minimum-time problem, the optimal trajectory of robot i can be

obtained by considering the path information of the robot j.

minimize J =

✓
tf � t0

2

◆ NX

k=0

!k (4.30)

+ C0

X

j2N
i

criskj (Pi,Pj)

+ C1

NX

k=0

max
k

(0, |v(k)|� vmax)

+ C2

NX

k=0

max
k

(0, |w(k)|� wmax)

+ C3

N
obsX

i=1

NX

k=0

max
k

(0, 1/di(k)� 1/Robs)

When the robot i does not consider the path information of the robot j (C0 = 0), the

optimal path is generated as shown in Fig. 4.5(a), and Figure 4.5(b) shows collision risks for

the path points of the robot i and the robot j. When the robot i uses the path information

of the robot j, the resulting optimal path shown in Fig. 4.5(c) takes longer time and also

has low collision risks compared with the case not using the path information of the robot

j as described in Fig. 4.5(d).

Now, our main problem which is the trajectory optimization with the terminal time and

angle constraints is going to be discussed. Here, we consider the same environment, so the

di↵erence of cost functions between the minimum-time problem and the terminal time and

angle constrained problem is just the first term of (4.30). If we denote �(g) as the penalty

55

Table 4.2: Terminal time and angle errors and costs with respect to td and �d

|t
err

|
P

N�1

k=N�5

|�
err

| J

t
d

= 20 25 30 20 25 30 20 25 30
�
d

= 0 3.6780e-05 0.0214 4.8220e-04 3.2250 1.8958 1.3912 3.2251 3.8580 4.6457
45 8.2665e-04 2.1566e-05 1.4634e-04 7.1095 5.5934 5.4237 9.5107 7.5441 10.5731
90 1.2641e-04 8.1267e-04 0.0015 1.7506 1.6789 3.4234 1.7508 2.1583 3.4264

function including all the inequality constraints, our cost function can be defined by the

following:

minimize J = IT |terr|+ IA

N�1X

k=N�5

|�err|+ �(g) (4.31)

where terr = td�test(N) and �err = �d�atan
⇣

y(N)�y(k)
x(N)�x(k)

⌘
. The weighting parameters IT and

IA are set to 1 and 10, respectively. The optimization is performed for td = (20, 25, 30)[sec]

and �d = (0, 45, 90)[deg] by using VMCPSO with Table 4.1. Figure 4.6 and Table 4.2 show

that satisfactory results of the optimal trajectory under the cost function (4.31) and the

PCP nodes for all the cases of td and �d. All the resulting trajectories do not collide with

obstacles. The VMCPSO algorithm is implemented in C/C++, and all optimizations are

performed on the same computer (Core i7-3290M CPU @ 2.90GHz with 8GB random-

access memory) to observe the computation time for each optimal trajectory. The resulting

average computation times for the three di↵erent numbers of particles are shown in Table

4.3, which confirms that the computation is fast enough for real-time applications. The

Table 4.3: Computation time with respect to S

S

100 200 300
Computation time [sec] 0.076 0.107 0.167

56

VMCPSO algorithm is easy to implement, and if we use the parallel algorithm structure

[50, 31], the computation time can be reduced more. As a result, our approach e↵ectively

solve the trajectory optimization problem with the terminal time and angle constraints in

real time.

57

−100 0 100

−150

−100

−50

0

50

100

150

X [cm]

Y
 [

c
m

]

(a) Optimal trajectory

0 5 10 15 20 25

0.08

0.09

0.1

0.11

0.12

PCP nodes
V

a
lu

e
 o

f
P

C
P

s

γ
d
=0°

γ
d
=45°

γ
d
=90°

(b) Optimal PCP nodes

−100 0 100

−150

−100

−50

0

50

100

150

X [cm]

Y
 [

c
m

]

(c)

0 5 10 15 20 25

0.08

0.09

0.1

0.11

0.12

PCP nodes

V
a
lu

e
 o

f
P

C
P

s

γ
d
=0°

γ
d
=45°

γ
d
=90°

(d)

−100 0 100

−150

−100

−50

0

50

100

150

X [cm]

Y
 [

c
m

]

(e)

0 5 10 15 20 25

0.08

0.09

0.1

0.11

0.12

PCP nodes

V
a
lu

e
 o

f
P

C
P

s

γ
d
=0°

γ
d
=45°

γ
d
=90°

(f)

Figure 4.6: VMCPSO results of the terminal angle and time constrained problem
(a,b) td = 20 sec, (c,d) td = 25 sec, (e,f) td = 30 sec

58

4.3.2 Moving target

In Sect. 4.3.1, we obtained the satisfactory results to generate the optimal trajectory for the

stationary target. However, when the target is moving, each robot needs to make a decision

quickly. To make this possible, we utilized the concept of GPP and LPP as stated in Sect.

4.2. When GPP and LPP are performed, the parameter values for VMCPSO are set as

given in Table 4.1 except N , M , S, and itermax related to the computation time. Here, we

set N = 9, M = 2, S = 50, and itermax = 100, especially 50 particles provide good enough

performance. If these four parameters are properly selected according to environments,

we can reduce the computation time to generate the optimal path for one robot, and the

results are shown in Table 4.4. Again, fast enough for robot path planning. Three ground

robots and one target are initially located at (�100,�70), (�110,�90), (�80,�80), and
(100, 100), respectively. The target moves to the west with constant velocity at 4.3 cm/s. In

our terminal angle and time constrained trajectory optimal problem, the desired terminal

angle and time for each robot are fixed as �d = (0, 45, 90)[deg] and td = (20, 20, 20)[sec],

and the terminal time td needs to be changed as time goes on such as td td ��t. The

cost function for GPP is considered as (4.31), and (4.30) is used for LPP.

Table 4.4: Computation time of decentralized VMCPSO for the moving target

GPP LPP Total
Computation time [sec] 0.025 0.025 0.05

59

0 5 10 15 20

0

5

10

15

time [sec]

ta
n

g
e
n

ti
a
l
v
e
lo

c
it

y
 [

c
m

/s
]

UGV #1

UGV #2

UGV #3

(a) v

0 5 10 15

−150

−100

−50

0

50

100

150

time [sec]
a
n

g
u

la
r

v
e
lo

c
it

y
 [

d
e
g

/s
]

(b) w

Figure 4.7: Tangential and angular velocities

Figure 4.8 shows the trajectories of the robots and target over time t, and also the

planned long-term and short-term optimal paths. As shown in Figs. 4.8(a) and 4.8(b), the

robots planned the long-term paths satisfying the terminal constraints by using GPP, and

LPP found the short-term path to follow the long-term path while preventing collision

with obstacles. Although the global paths overlap with the obstacles, LPP can handle this

problem with densely distributed nodes. The resulting trajectories of the robots support

this as shown in Fig. 4.8(c). After t = 11 s, when the target is located inside the reachable

set of the first robot, both GPP and LPP plan the optimal trajectories using the same

criteria on the terminal time and angle constraints. So, the global and local paths of the

first robot are the same as shown in Fig. 4.8(c).

After t = 16 s, all the robots concentrate on approaching the target at the same time

with the predefined heading. Finally, the robots achieved the goal of reaching the target

with the given terminal time and angle constraints as described in Figs. 4.8(e) and 4.8(f).

Figure 4.7 shows the tangential and angular velocities of the robots. About 11 seconds

before, all the robots move fast to follow the short-term paths obtained by solving the

minimum-time problem. After that, the robots move at the proper velocity obtained from

the trajectory optimization to satisfy the terminal constraints. In Fig. 4.7(a), we can observe

that the velocities of the first and second robots are significantly decreased at around 18

60

seconds, because they face the target. As a result, we confirmed our algorithm successfully

solves the trajectory optimization problem constrained on the terminal time and angle for

the moving target.

61

−100 0 100 200
−150

−100

−50

0

50

100

150

X [cm]

Y
 [

c
m

]

 UGV #1, GPP

UGV #1, LPP

UGV #2, GPP

UGV #2, LPP

UGV #3, GPP

UGV #3, LPP

UGV trajectory

Target trajectory

(a) t = 1 s

−100 −50 0 50 100

−100

−50

0

50

100

X [cm]
Y

 [
c
m

]
(b) t = 5 s

−100 −50 0 50 100

−100

−50

0

50

100

X [cm]

Y
 [

c
m

]

(c) t = 11 s

−100 −50 0 50 100

−100

−50

0

50

100

X [cm]

Y
 [

c
m

]

(d) t = 16 s

−100 −50 0 50 100

−100

−50

0

50

100

X [cm]

Y
 [

c
m

]

(e) t = 19 s

5 10 15 20 25 30

90

95

100

105

110

115

X [cm]

Y
 [

c
m

]

−100 −50 0 50 100

−100

−50

0

50

100

X [cm]

Y
 [

c
m

]

(f) t = 19.5 s

5 10 15 20 25 30

90

95

100

105

110

115

X [cm]

Y
 [

c
m

]

Figure 4.8: Snapshots of global and local path planning

62

Figure 4.9: Experimental environment

4.4 Experimental Results

In this section, experimental results of our algorithm are presented for the multi-robot ren-

dezvous problem described previously. Our experimental environment using e-puck ground

robots [41] is set up as shown in Fig. 4.9. Vicon MX camera system measures the position

and orientation of the robots in real time. Parani-MSP1000 is used for communication be-

tween the robots and the host PC. As shown in Fig. 4.11(a), there are three robots and one

stationary target. They are initially located at (29.2,�94.4), (74,�66.4), (11.3,�94.9), and
(�100.5, 91.7), respectively. We set the terminal constraints as td = (19.5, 19.5, 19.5)[sec]

and �d = (180, 135, 90) [deg] for each robot. Dec-VMCPSO was performed in the same

manner as the simulation study described in Sect. 4.3.1, and the cost function (4.31) and

Table 4.1 are used for this experiment.

Figure 4.10(a) shows the optimal trajectories satisfying the terminal constraints in the

complex environment, and PCPs of each robot were optimized as displayed in Fig. 4.10(b).

Each robot planned its optimal path by considering the path information of other robots to

prevent collision with other robots as well as the stationary obstacles. Then, they perfectly

moved along the planned optimal paths by using the tracking controller. Figure 4.11 shows

63

−100 −50 0 50 100

−100

−50

0

50

100

X [cm]

Y
 [

c
m

]

(a) Optimal trajectory

0 5 10 15 20 25

0.08

0.09

0.1

0.11

0.12

PCP nodes
V

a
lu

e
 o

f
P

C
P

s

UGV #1, γ
d
=180°

UGV #2, γ
d
=135°

UGV #3, γ
d
=90°

(b) Optimal PCP nodes

Figure 4.10: Experimental results of decentralized VMCPSO for the stationary target

snapshots of the rendezvous experiment. After 19 seconds, all the robots approached the

target by maintaining the desired terminal angles as shown in Fig. 4.11(e). To summarize,

the proposed Dec-VMCPSO was validated by the experimental results, and it e�ciently

solved the nonlinear constrained trajectory optimization problem in multi-robot systems.

64

(a) t = 0 s (b) t = 5 s

(c) t = 10 s (d) t = 15 s

(e) t = 19 s

Figure 4.11: Snapshots of the rendezvous experiment in which three robots try to arrive at
the stationary target point simultaneously with the specific heading

65

4.5 Analysis and Discussion

In this chapter, we proposed VMCPSO and Dec-VMCPSO to solve a nonlinear constrained

trajectory optimization problem, especially the rendezvous problem considering terminal

time and angle constraints in an unban-like environment. From the simulation and experi-

mental results, we can realize that the optimal trajectories were properly generated while

satisfying the given performance objectives. We can also find that the proposed algorithms

have a small amount of computation time and a good convergence rate to an optimal solu-

tion while not getting trapped in the local minima by inheriting merits of both VMC and

PSO. These advantages suggest a good potential for VMCPSO as a reactive path plan-

ner. For multi-robot path planning, Dec-VMCPSO could handle both static and dynamic

situations because it is irrespective of the planning order. However, in this thesis we only

performed the simulation study for the whole optimization and communication process. So,

onboard implementation of the whole optimization and communication process remains an

ongoing work.

66

5
Behavior Coordination

In this chapter, we create behaviors of the ground robots, and a distributed multi-agent

reinforcement learning algorithm is suggested to solve a behavior coordination problem

in engagement scenarios. We first consider five types of behaviors, and each behavior is

implemented by the proposed algorithms for mission/path planning. The threat map and

the visibility map are also considered to build the behaviors. CBBA and VMCPSO have

advantages to produce the behaviors because they are designed in a distributed manner

and applicable to real-time applications and dynamic situations as mentioned in Chap-

ters 3 and 4. Although we can design the proper behaviors in the engagement scenario,

there is a remaining problem. We should solve the problem of how to choose the most

appropriate behavior for given situations. In order to solve this problem we can consider

dynamic programming (DP) and reinforcement learning (RL). They are widely used to

solve decision-making problems in fields of artificial intelligence. The main concept of DP

and RL is that an agent interacts with environment by means of states and actions, and re-

ceives rewards according to a reward function. DP as a model-based RL requires a model of

Markov Decision Process (MDP) such as the transition dynamics and the reward function.

67

On the contrary, model-free RL techniques are useful when a model is di�cult or costly to

construct. In our considering scenarios, there are many probabilistic situations and robots,

so it is hard to define environmental models. Consequentially, we use model-free RL algo-

rithms to obtain the optimal policy from repeated simulations.

5.1 Design of Behaviors

By using an integrated mission and path planning framework, we can implement five types

of behaviors as follows.

• Engagement

The target location xtarget is determined as the first allocated location of path pi

given by CBBA. The robot i uses Dec-VMCPSO to generate the minimum-time

optimal trajectory in order to move to the given target location xtarget. We assume

that the engagement is not possible during the fast movement, so the original speed

limit constraint is changed into one-tenth of the maximum speed vmax. Then, we can

obtain the optimal trajectory between xi and xtarget by solving (4.30). In addition, if

the robot i is ready to attack (Wi = 0 and Ai = 1), it combats the threat with the

probability of attack depending on its type ki.

• Concealment

The target location xtarget is obtained by using the visibility map about the threats at

time t, i.e., ⇢he (xv, t). The robot i first finds a location having the minimum distance

between its location and an invisible region in ⇢he (xv, t). Then, the robot follows the

optimal path obtained by solving (4.30) to reach that position as soon as possible

with the maximum speed.

• Move to the allocated target

Similar to Engagement the target location xtarget is obtained from CBBA, but the

robot cannot deal with the threat and shows fast movements.

68

• Move to the goal

The target location is determined as the goal position xgoal. Then, the trajectory

between xi and xgoal is generated by solving (4.30).

• Standby

The robot just stays at its current location and waits for next order.

5.2 Learning Framework

In this section, we first explain di↵erences between Markov Decision Process (MDP) and

semi-Markov Decision Process (SMDP) in reinforcement learning (RL). Then, we introduce

a RL algorithm in a SMDP framework with linear function approximation.

5.2.1 MDP vs. SMDP

We first consider a finite MDP which consists of state and action sets, S,As, for s 2 S, and
its dynamics given by one-step state-transition probabilities, pass0 = Pr {st+1 = s0|st = s, at = a},
and one-step expected rewards, ras = E {rt+1|st = s, at = a}, for all s 2 S, a 2 As, and

s0 2 S+. S+ is the union of regular states and the terminal state in an episodic task. The

agent learns a policy, ⇡ : S ⇥ A ! [0, 1], that maximizes the expected discounted future

reward from each state s:

V ⇡(s) = E
�
rt+1 + �rt+2 + �2rt+3 + · · · |st = s, ⇡

= E {rt+1 + �V ⇡(st+1)|st = s, ⇡}

=
X

a2A(s)

⇡(s, a)

"
ras + �

X

s0

pass0V
⇡(s0)

#
(5.1)

69

where � 2 [0, 1) is the discount factor, and we call the function V ⇡ the state-value function

for ⇡. Then, the optimal state-value function can be obtained under an optimal policy:

V ⇤(s) = max
⇡

V ⇡(s). (5.2)

We can also define an optimal state-action value function Q⇤(s, a) in terms of V ⇤(s) as:

Q⇤(s, a) = E {rt+1 + �V ⇤(st+1)|st = s, at = a} (5.3)

For more background on RL see [54].

In [56], a set of options, macro-actions across longer lengths of time, is included in the

formal framework of MDP. Options consist of a policy µ : S ⇥A(s)! [0, 1], a termination

condition ⇠ : S+ ! [0, 1], and initiation set I ✓ S. So, SMDP can be defined as an

extension of the MDP model, and it consists of a set of states S, a set of options Os, s 2 S,
and expected rewards ros . In SMDP, rewards and state-transition probabilities should be

redefined depending on the option o and its termination time. The reward ros initiated in

state s at time t is defined as follows:

ros = E
�
rt+1 + �rt+2 + · · ·+ �k�1rt+k

��E(o, s, t) (5.4)

where E(o, s, t) is the event of an option o being initiated in state s at time t, and t+ k is

the termination time of o. The state-transition probabilities poss0 is defined as follows:

poss0 =
1X

k=0

p(s0, k)�k (5.5)

where p(s0, k) is the probability that the option terminates in s0 after k steps. From (5.4)

70

and (5.5), we can define the state-value function for µ as follows:

V µ(s) =E{rt+1 + · · ·+ �k�1rt+k + �kV µ(st+k)|E(µ, s, t)}

=
X

o2O
s

µ(s, o)

"
ros +

X

s0

poss0V
µ(s0)

#
. (5.6)

Then, the optimal state-value function is given by the following:

V ⇤
O(s) = max

µ
V µ(s). (5.7)

Similarly, the option-value function and the optimal option-value function can be defined

as follows:

Qµ(s, o) = E{rt+1 + · · ·+ �k�1rt+k + �kV µ(st+k)|E(o, s, t)} (5.8)

Q⇤
O(s, o) =max

µ
Qµ(s, o)

=E{rt+1 + · · ·+ �k�1rt+k + �kV ⇤
O(st+k)|E(o, s, t)}. (5.9)

5.2.2 Linear approximation of value functions

In large or continuous-space problems, it is intractable to obtain the optimal action-value

function exactly due to “curse of dimensionality”. If we consider n-dimensional state space,

the number of states grows exponentially in n when assuming some fixed number of dis-

cretization levels per coordinate. So, such as generalization often called function approx-

imation is promisingly demanded. The function approximation technique combined with

the SMDP framework is very advantageous to solve high-dimensionality problems because

of the benefits of the hierarchical structure [18].

71

The option-value function Q(s, o) can be approximated by the following:

Q̂(s, o) =
nX

i=1

�i(s, o)'i = �(s, o)>' (5.10)

where �(s, o) = [�1(s, o), . . . ,�n(s, o)]
> is the vector of basis functions and ' is an n-

dimensional parameter vector. In the discretized option space, the state-option basis func-

tion vector �(s, oj) can be defined as follows:

�(s, oj) = [0, . . . , 0| {z }
o
1

, . . . , 0, �̄1(s), . . . , �̄N
�

(s)
| {z }

o
j

, 0, . . . , 0, . . . , 0| {z }
o
N

o

]> 2 RN�No . (5.11)

Here, the feature state vector s should be properly selected by a designer in order to reflect

the nature of the problem. Given the feature state vector s = [s1, . . . , sN]
>, the state basis

functions are obtained by employing polynomial basis functions:

�i(s) =
NY

j=1

s
n
i,j

j (5.12)

where each ni,j is integer to determine the order of a polynomial. For example, a second

order polynomial basis defined over two state variables x and y would have feature vector:

� = [1, x, y, xy, x2y, xy2, x2y2]>. If we obtain this kind of a basis function vector �(s) =

[�1(s), . . . ,�N�
(s)]>, it shoud be normalized as follows:

�̄i(s) =
�i(s)PN�

i=1 �i(s)
. (5.13)

Finally, we have the state-option basis function vector (5.11). For more details see [54, 10].

72

5.2.3 Learning value function approximations

In Q-learning using a lookup table representation, the Q-learning algorithm can find the

optimal Q-function iteratively by the following simple update rule:

Qk+1(s, a) =Qk(s, a) + ↵k[rk+1 + �max
ā

Qk(s
0, ā)�Qk(s, a)] (5.14)

where (s0, rk+1,↵k) are the next state, reward, and learning rate, respectively. When we learn

a linear parameter vector ', the learning algorithm aims to minimize the mean-squared

Bellman error:

MSBE(') =
1

2
||V

'

� T V
'

||2D (5.15)

where T is the Bellman operator and the matrix D has the ds on its diagonal, ds =

limt!1 p(st = s), and the norm ||v||2D = v>Dv. Depending on the policy ⇡, ' is optimized

by using a stochastic gradient algorithm:

'k+1 = 'k � ↵kr'

MSBE(') (5.16)

= 'k + ↵k�
⇡(�k � ��0

k)

where the temporal di↵erence �⇡ is given by

�⇡ = rk+1 + �'>
k �

0
k �'

>
k �k. (5.17)

However, there is no convergence guarantees when we use (5.16). It also showed significant

instabilities in counterexamples [54].

To overcome this problem, the mean-squared projected Bellman error is considered as

73

follows [55]:

MSPBE(') =
1

2
||V

'

� ⇧T V
'

||2D (5.18)

where ⇧ is the projection operator. Then, the gradient of the MSPBE is derived as follows:

r
'

MSPBE(') = �E ⇥
(�� ��0)�>⇤E

⇥
��

>⇤�1
E [�⇡�] , (5.19)

and an update algorithm is given by

'k+1 = 'k � ↵kr'

MSPBE(') (5.20)

= 'k + ↵kE
⇥
(�� ��0)�>⇤E

⇥
��

>⇤�1
E [�⇡�] .

Here, we employ a linear predictor vector � ⇡ E
⇥
��

>⇤�1
E [�⇡�], and � can be updated

by the following:

�k+1 = �k + �k
�
�⇡ � �

>
k �k

�
�k. (5.21)

Then, we have the gradient

r
'

MSPBE(') = �E ⇥
(�� ��0)�>⇤E

⇥
��

>⇤�1
E [�⇡�]

⇡ �E ⇥
(�� ��0)�>⇤

� (5.22)

or

⇡ � (E [�⇡�]� �E[�0
�

>]�) . (5.23)

Therefore, we have two algorithms. The first algorithm called generalized temporal di↵er-

ence 2 (GTD2) is obtained by (5.22):

'k+1 = 'k + ↵k (�k � ��0
k)
�
�

>
k �k

�
. (5.24)

74

Algorithm 9 GQ-learning for agent i

1: procedure GQ-learning('i,�i, R̄i, si, oi, s
0
i, o

0
i, Ki,↵n

ep

, �n
ep

)
2: �0i R̄i + �Ki

'

>
i �(s

0
i, o

0
i)�'

>
i �(si, oi)

3: '

0
i 'i + ↵n

ep

�
�0i�(si, oi)� �Ki

�(s0i, o
0
i)(�(si, oi)

>
�i)

�

4: �

0
i �i + �n

ep

�
�0i � �(si, oi)>�i

�
�(si, oi)

5: return ('0
i,�

0
i)

6: end procedure

The second algorithm called temporal di↵erence with gradient corrector (TDC) is given by

(5.23):

'k+1 = 'k + ↵k

�
�⇡�k � ��0

k(�
>
k �k)

�
. (5.25)

According to our learning setup, we now propose the SMDP version of GQ-learning as

described in Algorithm 9. Initially, ('i,�i) are set to 0>. Afterward, each agent i individ-

ually learns its own option-value function Q̂(si, oi) based on TDC as shown in lines 3–4

of Algorithm 9. Here, (si, oi) are the state and option at the beginning of the SMDP time

step, and (s0i, o
0
i) are the state and option at the end of the SMDP time step, where o0i is

some maximizing option of Q̂(s0i, o
0
i). We use the average reward R̄i at the terminal SMDP

time step Ki as follows:

R̄i =
1

Ki

K
iX

k=0

Rk. (5.26)

The learning rate ↵n
ep

for nep-th episode can be selected as follows:

↵n
ep

=
1

(nep)
(5.27)

where  2 (1
2
, 1]. Here, we employ ⌘ =

�
n

ep

↵
n

ep

> 0, the ratio between the learning rates. For

more details see [44].

75

5.3 Distributed Multi-Agent Reinforcement Learning

In this section, we introduce a distributed multi-agent reinforcement learning algorithm in

the SMDP framework by employing a di↵usion adaptation method.

5.3.1 Di↵usion adaptation method for distributed optimization

A global cost function in the distributed optimization problem is defined by the following

[11]:

Jglob(') =
N

aX

i=1

Ji(') (5.28)

where Ji('), i = 1, 2, . . . , Na, are the local cost function for the agent i (or node) over

a communication network. The main objective of the distributed optimization is to find

an optimal vector '⇤ that minimizes Jglob('). We assume that Ji(') is di↵erentiable and

convex, and Jglob(') is strictly convex, so '

⇤ is unique. Then, we can express Jglob(') as

follows:

Jglob(') = J loc
i (') +

N
aX

l 6=i

J loc
l (') (5.29)

where

J loc
i (') =

X

l2N
i

cl,iJl(') (5.30)

N
aX

i=1

cl,i = 1, cl,i = 0 if l /2 Ni, l = 1, 2, . . . , Na.

76

Here, cl,i is a nonnegative coe�cient, and Ni is the neighborhood of node i. On the basis

of [11], (5.29) is redefined by the following:

Jglob0

i (') =
X

l2N
i

cl,iJl(') +
X

l2N
i

\{i}
bl,i||'�'

loc
l ||2 (5.31)

where cl,i and bl,i are nonnegative weight coe�cients used by agent i that control the

importance of information di↵used by its neighbors. Each agent i can minimize (5.31) by

using the steepest-descent method in a distributed manner. There are two types of di↵usion

strategies: Adapt-then-Combine (ATC) and Combine-then-Adapt (CTA).

The ATC di↵usion strategy consists of the following 2-steps iterative algorithm.

Step 1 (Adapt) Each agent i updates an intermediate estimate $

0
i by sharing gradient

information based on its own local estimate 'i with its neighbors.

$

0
i = 'i + ↵i

X

l2N
i

cl,ir'

Jl('i) (5.32)

Here, ↵i is a small step size.

Step 2 (Combine) Each agent i updates its own local estimate '

0
i by combining the

intermediate estimates of its neighbors, $0
l, 8l 2 Ni.

'

0
i =

X

l2N
i

al,i$
0
l (5.33)

Here, al,i is a nonnegative weight coe�cient similar to bl,i.

The CTA di↵usion strategy is defined by reversing the order of steps (5.32) and (5.33).

5.3.2 Cooperative GQ-learning

In [37], a distributed multi-agent reinforcement learning algorithm called cooperative GTD2

(C-GTD2) was proposed, and C-GTD2 showed trustworthy results for the Baird’s coun-

77

terexamples [54], in which TD(0) with linear approximation can diverge. C-GTD2 is based

on GTD2 and di↵usion adaptation, and update rules can be obtained by considering (5.21),

(5.24), (5.32), and (5.33). The complete C-GTD2 algorithm is defined as follows:

�i,k+1 = 'i,k + ↵i,k

X

l2N
i

cl,i
�
�l,k � ��0

l,k

� �
�

>
l,k�i,k

�
(5.34)

'i,k+1 =
X

l2N
i

al,i�l,k+1 (5.35)

&i,k+1 = �i,k + �i,k
X

l2N
i

cl,i
�
�l,k � �

>
l,k�i,k

�
�l,k (5.36)

�i,k+1 =
X

l2N
i

al,i&l,k+1 (5.37)

where �l,k = rl,k + �'>
i,k�

0
l,k �'

>
i,k�l,k.

From the above, we propose the SMDP version of cooperative GQ-learning as shown

in Algorithm 10. As described in lines 4 and 7 of Algorithm 10, each agent i iteratively

updates two intermediate estimates (�i, &i) by reflecting its current local estimates ('i,�i)

and all the information of its neighbors l 2 Ni, i.e., (R̄l, sl, ol, s
0
l, o

0
l, Kl). Here, the state

and option (sl, ol) are determined at the begining of the SMDP time step depending on

the agent l, and the state s

0
l as the terminal state is obtained when the agent i interrupts

the agent l to request the information. Then, the option o0l can be selected based on 'i as

follows:

o0l = argmax
ō

�(s0l, ō)
>
'i. (5.38)

For the terminal SMDP time step Kl, we have the average reward R̄l of the agent l as

follows:

R̄l =
1

Kl

K
lX

k=0

Rk. (5.39)

78

Algorithm 10 Cooperative GQ-learning for agent i and its neighbors l 2 Ni

1: procedure C-GQ-learning('i,�i,�
0
l, &

0
l , R̄l, sl, ol, s

0
l, o

0
l, Kl,↵n

ep

, �n
ep

)
2: �0l R̄l + �Kl

'

>
i �(s

0
l, o

0
l)�'

>
i �(sl, ol)

3: // Locally sampled expected value of the gradient of the MSPBE
4: �

0
i 'i + ↵n

ep

P
l2N

i

cl,i
�
�0l�(sl, ol)� �Kl

�(s0l, o
0
l)(�(sl, ol)

>
�i)

�

5: '

0
i

P
l2N

i

al,i�
0
l

6: // Local long-term estimate of the global LMS solution
7: &

0
i �i + �n

ep

P
l2N

i

cl,i
�
�0l � �(sl, ol)>�i

�
�(sl, ol)

8: �

0
i

P
l2N

i

al,i&
0
l

9: return (�0
i,'

0
i, &

0
i,�

0
i)

10: end procedure

The major parameter vectors ('i,�i) can be learned by combining the intermediate esti-

mates (�0
l, &

0
l) obtained from the neighbors l 2 Ni as shown in lines 5 and 8 of Algorithm

10. As a result, we design the total learning framework as shown in Algorithm 11.

Here, we briefly explain our distributed multi-agent reinforcement learning (MARL)

algorithm in the SMDP framework as shown in Algorithm 11. Firstly, initial conditions

for all the episodes are randomly selected depending on a scenario, and all the learning

parameter vectors are initialized (line 2). Every agent makes a decision based on epsilon-

greedy exploration at the beginning of the SMDP time step across all episodes (lines 6 and

13). The reward Rk for each SMDP time step k is stored until the termination condition

is activated (line 23). When the termination condition is activated, the average reward R̄i

is calculated (line 11), and the terminal feature state s

0
i and next candidate option o0i are

determined (lines 12 and 13). If there is no neighborhood, the agent i individually learns its

learning parameter vectors ('i,�i) by using GQ-learning (line 19). If there exist neighbors,

the agent i collects the information (�l, &l, R̄l, sl, ol, s
0
l, Kl) via local communication, 8l 2 Ni

(line 15). Then, the option o0l for the agent l is selected (line 16). Afterward, the learning

parameter vectors (�i,'i, &i,�i) are updated by using cooperative GQ-learning (line 17).

79

Algorithm 11 Distributed multi-agent reinforcement learning in the SMDP framework

1: procedure Distributed MARL in SMDP framework
2: Setup Nep initial conditions, and (�i,'i, &i,�i) 0>, 8i 2 I
3: for every episode nep = 1, 2, . . . , Nep do
4: Start from the nep-th initial conditions, and k 0, Rk 0
5: Measure initial feature state vector si

6: oi
⇢

o 2 argmaxō �(si, ō)>'i with probability 1� ✏n
ep

(exploit)
a uniform random option 2 O with probability ✏n

ep

(explore)
7: for each agent i, every time step t = 0,�t, . . . , T do
8: Apply oi and update robot’s position/orientation
9: if termination condition is activated then

10: Set SMDP terminal time step Ki k
11: R̄i 1

K
i

PK
i

k=0 Rk

12: Measure terminal feature state vector s0i

13: o0i
⇢

o 2 argmaxō �(s0i, ō)
>
'i with probability 1� ✏n

ep

(exploit)
a uniform random option 2 O with probability ✏n

ep

(explore)
14: if Ni 6= ? then
15: Collect information (�l, &l, R̄l, sl, ol, s

0
l, Kl) via local communication,

8l 2 Ni

16: o0l argmaxō �(s0l, ō)
>
'i

17: (�i,'i, &i,�i) C-GQ-learning('i,�i,�l, &l, R̄l, sl, ol, s
0
l, o

0
l, Kl,↵n

ep

, �n
ep

)
18: else
19: ('i,�i) GQ-learning('i,�i, R̄i, si, oi, s

0
i, o

0
i, Ki,↵n

ep

, �n
ep

)
20: end if
21: Set si s

0
i, oi o0i, and k 0, Rk 0

22: else
23: Update reward Rk+1 rt, and k k + 1, t t+�t
24: end if
25: end for
26: nep nep + 1
27: end for
28: end procedure

80

5.4 Distributed MARL Applied to Multi-Robot Systems

In this section, we design a state space, an option space, rewards, and event conditions

before applying our proposed learning algorithm to the probabilistic engagement scenario.

5.4.1 State space S
In the approximation architecture, feature states, which fully represent the problem, should

be properly selected. Consequently, we adopt the 13 feature states as follows:

s 2 S =
�
“Weapon cooldown”,

“Elapsed mission time”,

“Inside of attack range”,

“Type of the first allocated target”,

“Type of the closest threat”,

“Type of the robot”,

“Distance to the goal”,

“Distance to the first allocated target”,

“Distance to the closest threat”,

“Survival state of the first allocated target”,

“Survival state of the robot”,

“Visibility of threats”,

“The number of enemy units in range”

.

The specifics of the feature states are described in Table 5.1. Here, we fix the number and

kind of the feature states, but these feature states can be adaptively changed by employing

the model learning scheme called incremental feature dependency discovery (iFDD) [21, 59].

81

Table 5.1: Features considered for function approximation

Feature Description Value
Wi Weapon cooldown {0, 1}
Tm Elapsed mission time R
Ai Inside of attack range {0, 1}
kj

1

Type of the first allocated target {0 or 1, 2, 3}
kj� Type of the closest threat {0 or 1, 2, 3}
ki Type of the robot {1, 2, 3}
Dg Distance to the goal R
Dj

1

Distance to the first allocated target R
Dj� Distance to the closest threat R
Sj

1

Survival state of the first allocated target {0, 1}
Si Survival state of the robot {0, 1}
Vj Visibility of threats {0, 1}
Ne The number of enemy units in range {0, 1, . . . , Nt}

From the selected feature state vector s, we obtain a second order polynomial basis function

vector �(s) by (5.12).

5.4.2 Option space O
The five types of behaviors introduced in Sect. 5.1 are directly defined as options:

o 2 O =
�
“Engagment”,

“Concealment”,

“Move to the allocated target”,

“Move to the goal”,

“Standby”

.

82

5.4.3 Reward R

The reward R is designed by considering the feature states. We focus on five factors: the

threat level, the possibility of attack, the destruction of the threat, survivability, and the

mission time.

• The threat level

The robot i has the penalty depending on the type of the robot i and the type of the

target j�. Here, j� denotes the target j which has the minimum distance from the

robot i. Then, we have the reward r1 as follows:

r1 = pk
i

,k
j

� exp

� ||xi � xj� ||

vk
j

�

!
(5.40)

where P =
h �2 �2 �1
�1 �2 �2
�1 �1 �2

i
and v = [0.5 0.8 1.0]>. So, the robot i has a high penalty

when the robot is close to the di�cult threat j�.

• The possibility of attack

The robot i has a high reward when the robot i can attack the first allocated threat

j1 (Wi = 0 and Ai = 1), and the distance between the target point xtarget given by

the behavior module and the threat j1 is increased. If the robot i cannot attack the

threat j1 due to the weapon cooldown time (Wi = 1), the robot i has a high reward

when the distance between the robot i and the threat j1 is increased.

r2 =

8
>>><

>>>:

2 exp
⇣�||x

target

�x

j

1

||
v
j

1

⌘
if Wi = 0 ^Ai = 1

exp
⇣�||x

target

�x

j

1

||
v
j

1

⌘
if Wi = 0 ^Ai = 0

1� exp
⇣�||x

i

�x

j

1

||
v
j

1

⌘
if Wi = 1

(5.41)

• The destruction of the threat

When the first allocated target j1 is killed by the robot i (Sj
1

= 0), a reward is given

83

by the following:

r3 =

8
<

:
10 if Sj

1

= 1! Sj
1

= 0

0 otherwise
(5.42)

• Survivability

When the survival state of the robot i is changed (Si = 1 ! Si = 0), a penalty is

given. Here, Si = 1 means that the robot i is alive, and when the robot i is dead,

then Si = 0.

r4 =

8
<

:
�10 if Si = 1! Si = 0

0 otherwise
(5.43)

• The mission time

The reward is designed for preventing the robot i moves to the goal point within the

mission time.

r5 =

8
<

:
�5 exp (�||xtarget � xgoal||) if Tm > t

5 exp (�||xtarget � xgoal||) otherwise
(5.44)

where Tm denotes the mission time.

Finally, we have the total reward R = r1 + r2 + r3 + r4 + r5.

5.4.4 Event conditions E
As mentioned in Sect. 5.2, we should consider the event when an option is initiated or

terminated. To this end, we select the termination conditions related with the SMDP time

step k and the feature states (Wi,Ai,Dj� ,Sj
1

,Si). So, we define the termination conditions

84

by the following:

⇠1 =

8
<

:
1 if k > 20

0 otherwise
(5.45)

⇠2 =

8
<

:
1 if (Wi = 0!Wi = 1) _ (Wi = 1!Wi = 0)

0 otherwise
(5.46)

⇠3 =

8
<

:
1 if (Ai = 0! Ai = 1) _ (Ai = 1! Ai = 0)

0 otherwise
(5.47)

⇠4 =

8
<

:
1 if Dj� > 2vk

j

� ! Dj�  2vk
j

�

0 otherwise
(5.48)

⇠5 =

8
<

:
1 if Sj

1

= 1! Sj
1

= 0

0 otherwise
(5.49)

⇠6 =

8
<

:
1 if Si = 1! Si = 0

0 otherwise
. (5.50)

If at least one of the termination conditions, ⇠i, i = 1, . . . , 6, become 1, then the SMDP

learning routine is performed (lines 10–21 of Algorithm 11).

5.5 Empirical Results

In this section, we apply the proposed MARL algorithm to the probabilistic engagement

scenario and discuss the main learning results.

Before starting distributed MARL, we set up the parameters for each component of

the heterogeneous multi-robot systems. For CBBA, the maximum number of tasks for each

robot is set to 3 (Lt = 3), and we use the optimal scoring matrix obtained by from Sect.

3.3. CBBA is periodically performed every 0.5 seconds (�t = 0.5). Dec-VMCPSO also runs

every 0.5 seconds for path planning. To speed up the integrated simulation, the number

of LGL nodes and candidate PCP vectors is set to 10, and we set the maximum number

85

of VMCPSO iterations as 150. In each episode, two flying robots perform surveillance

and reconnaissance missions and send the threat information to the command and control

vehicle building the threat map and the visibility map. A total of six ground robots mainly

perform infiltration operations while overwhelming the threats and maximizing the team

survivability during the mission time Tm. The type of the first and second robots is set to 1

(k1, k2 = 1), and we determine the type of the third and forth robots as 2 (k3, k4 = 2). For

the rest of the robots, we set the type as 3 (k5, k6 = 3) . As mentioned in Sect. 2.2, the third

type of robot has powerful capabilities such as the longest striking distance, and the first

type of robot is weak compared to the other types of robot. To select the most appropriate

behavior of each the robots for the given situation, we apply distributed MARL with total

5000 episodes and consider completely di↵erent situations in the battlefield for each episode.

To this end, we fix the number of the ground robots and the threats (Nu = 6, Nt = 20), but

the position of the ground robots and the position and type of the threats are randomly

selected in each episode. The battlefield contains total 20 obstacles (Nobs = 20), and the

obstacles’ positions are also randomly selected for each episode. In the learning process, we

assume that each robot utilizes experience of the other robots which have the same type,

and the reliability of information among the robots is guaranteed. Therefore, we have the

following two matrices:

A = C =

2

6666666666664

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

3

7777777777775

(5.51)

where (ai,j, ci,j) represent the reliability of information between the robot i and the robot j.

When a robot is not available due to malfunction or destruction, the corresponding element

of A and C is set to 0.

86

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode n
ep

P
e
rf

o
rm

a
n

c
e

(a) Survival rate

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode n
ep

P
e
rf

o
rm

a
n

c
e

(b) Destruction rate

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Episode n
ep

P
e
rf

o
rm

a
n

c
e

(c) Survival rate + destruction rate

Figure 5.1: Change in values of performance measures as the number of episodes increases

To observe the e↵ect of learning, we select three performance measures, such as the sur-

vival rate (Ns/N
u

), the destruction rate (Nd/N
t

), and the sum of the survival and destruction

rate. Figure 5.1 shows the change in values of the performance measures as the number

of episodes increases. Figure 5.1(a) shows that the survival rate of the ground robots is

increased as the number of episodes increases. The trend of survival rate is generally lower

than the trend of destruction rate because two robots of type 1 are not good enough to

confront new scenarios due to weak attack capabilities and viability compared to the other

types. The destruction rate of the threats is also increased as shown in Fig. 5.1(b). Although

87

sometimes the destruction rate is low because we consider random scenarios throughout

all episodes, the robots suppress almost all threats after about 2000 episodes. As a result,

overall performance graphs show noisy inclinations due to the randomness of the scenarios,

but the proposed learning algorithm makes the performance index increase and converge

to the threshold value as the number of episodes increases.

Figure 5.2 shows that the change in values of weights for each robot as the SMDP

time step increases. Here, we select five weights ('6–'10) among weights of the learning

parameter vector 'i for the robot i to observe variations of weights for the robot i which

communicates with another robot. The robots in the same communication network have

almost the same weight values throughout every SMDP time step. In other words, the

distributed MARL algorithm based on di↵usion adaptation makes the robots have almost

the same option-value function by sharing their experiences. In conclusion, the proposed

algorithm worked well to achieve behavior coordination of the robots by sharing their

experiences for the combat situations in the SMDP framework.

88

0 2 4 6 8 10 12

x 10
4

−5

0

5

10

SMDP time step k

W
e
ig

h
t

ϕ6
ϕ7
ϕ8
ϕ9
ϕ10

(a) First robot

0 2 4 6 8 10 12

x 10
4

−5

0

5

10

SMDP time step k
W

e
ig

h
t

(b) Second robot

0 2 4 6 8 10 12 14

x 10
4

−5

0

5

10

SMDP time step k

W
e
ig

h
t

ϕ6
ϕ7
ϕ8
ϕ9
ϕ10

(c) Third robot

0 2 4 6 8 10 12 14

x 10
4

−5

0

5

10

SMDP time step k

W
e
ig

h
t

(d) Forth robot

0 0.5 1 1.5 2 2.5

x 10
5

−5

0

5

10

SMDP time step k

W
e
ig

h
t

ϕ6
ϕ7
ϕ8
ϕ9
ϕ10

(e) Fifth robot

0 0.5 1 1.5 2 2.5

x 10
5

−5

0

5

10

SMDP time step k

W
e
ig

h
t

(f) Sixth robot

Figure 5.2: Change in values of weights for each robot as the SMDP time step k increases

89

5.6 Analysis and Discussion

In the previous section, we found the optimal policy to select a behavior of each robot for

the given environmental feature information. In this section, we will analyze the behavior

trend of the robots with the optimal policy given by distributed MARL.

For the given feature vector si, the optimal policy of the robot i is obtained by the

following:

o⇤i = argmax
ō

�(si, ō)
>
'

⇤
i . (5.52)

In order to observe whether the optimal policy works well or not in an arbitrary scenario, we

consider one scenario as shown in Fig. 5.3. The integrated simulation is performed similar

to the previous learning setup in a randomly generated scenario, but one di↵erent thing is

that the robots make a decision at each time step by using (5.52).

Figures 5.3–5.9 show the integrated simulation results obtained from CBBA, GPP/LPP

of Dec-VMCPSO, and the visibility/threat map. Initially, each ground combat robot selects

the maximum three threats to be easily destroyed depending on its type by using the opti-

mal engagement strategy, i.e, the combination of CBBA and the optimal scoring matrix. At

the same time, the visibility map and the threat map are built by utilizing the information

of the threats and environment gathered from two flying robots and a command and control

vehicle. At time step k, when the robot i selects an option o⇤i (k) by using (5.52), the target

point is determined with respect to the selected option. Then, the global and local paths

to reach the target point are generated by Dec-VMCPSO. As shown in Figs. 5.3–5.9, all

the robots sequentially destroy the target while dynamically assigning tasks and avoiding

the obstacles. Consequently, the threat level and the visible regions of the threat dwindle

away over time.

Figure 5.10 shows change in options for each robot as the SMDP time step k increases.

All the robots adaptively switch their options depending on situations they are facing. When

90

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a)

20 40 60 80 100

20

40

60

80

100

Visibility map

10 20 30 40 50

10

20

30

40

50

Threat map

(b)

Figure 5.3: Integrated simulation results at the SMDP time step k = 0

the robot is far away from the target, it quickly moves to the target by selecting the third

option. After that, when the robot is close enough to approach the target, the Engagement

option is activated. In addition, if the robot does not have any tasks to be handled, its

option is set to Move to the goal. The other options such as Concealment and Standby

do not appear in this scenario. We expect that the di↵erent results can be obtained when

both the robots and the threats learn their combat policies competitively. For example,

when the robot or threat is unfavorable to attack, they can try to move behind an obstacle

for achieving concealment. As a result, we obtained the proper behavior patterns by using

the proposed learning algorithm, and it showed the promising performance in our combat

scenario.

91

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a)

20 40 60 80 100

20

40

60

80

100

Visibility map

10 20 30 40 50

10

20

30

40

50

Threat map

(b)

Figure 5.4: Integrated simulation results at the SMDP time step k = 100

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a)

20 40 60 80 100

20

40

60

80

100

Visibility map

10 20 30 40 50

10

20

30

40

50

Threat map

(b)

Figure 5.5: Integrated simulation results at the SMDP time step k = 205

92

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a)

20 40 60 80 100

20

40

60

80

100

Visibility map

10 20 30 40 50

10

20

30

40

50

Threat map

(b)

Figure 5.6: Integrated simulation results at the SMDP time step k = 300

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a)

20 40 60 80 100

20

40

60

80

100

Visibility map

10 20 30 40 50

10

20

30

40

50

Threat map

(b)

Figure 5.7: Integrated simulation results at the SMDP time step k = 400

93

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a)

20 40 60 80 100

20

40

60

80

100

Visibility map

10 20 30 40 50

10

20

30

40

50

Threat map

(b)

Figure 5.8: Integrated simulation results at the SMDP time step k = 500

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15 Goal

X [km]

Y
 [

k
m

]

(a)

20 40 60 80 100

20

40

60

80

100

Visibility map

10 20 30 40 50

10

20

30

40

50

Threat map

(b)

Figure 5.9: Integrated simulation results at the SMDP time step k = 560

94

0 100 200 300 400 500 600

0

1

2

3

4

5

Time step

O
p

ti
o

n

Die

Engagement

Concealment

MoveTarget

MoveGoal

Standby

(a) First robot

0 100 200 300 400 500 600

0

1

2

3

4

5

Time step
O

p
ti

o
n

(b) Second robot

0 100 200 300 400 500 600

0

1

2

3

4

5

Time step

O
p

ti
o

n

Die

Engagement

Concealment

MoveTarget

MoveGoal

Standby

(c) Third robot

0 100 200 300 400 500 600

0

1

2

3

4

5

Time step

O
p

ti
o

n

(d) Forth robot

0 100 200 300 400 500 600

0

1

2

3

4

5

Time step

O
p

ti
o

n

Die

Engagement

Concealment

MoveTarget

MoveGoal

Standby

(e) Fifth robot

0 100 200 300 400 500 600

0

1

2

3

4

5

Time step

O
p

ti
o

n

(f) Sixth robot

Figure 5.10: Change in options for each robot as the SMDP time step k increases

95

6
Conclusions

This thesis presents the development and implementation of decision-making methods con-

sisting of mission planning, path planning, and behavior learning. The proposed methods

were used to control multi-robot systems in probabilistic and ever-changing battlefield sit-

uations.

We first designed the cooperative control architecture of autonomous combat systems

including the command and control vehicle, the multiple ground combat robots, and the

multiple surveillance aerial robots. We specified the relationship between components of

combat systems and defined the important factor technologies such as mission planning,

path planning, and learning for behavior coordination.

In multi-robot mission planning, we proposed the episodic parameter optimization

(EPO) method that utilizes reinforcement learning (RL) and particle swarm optimization

(PSO) to improve the performance of existing consensus-based bundle algorithm (CBBA)

in probabilistic engagement scenarios by optimizing the scoring matrix reflecting the het-

erogeneity between the ground robots and targets. Because both the robots and targets

have di↵erent attack capabilities depending on the types, each of them has to choose the

96

most suitable targets. Therefore, the scoring matrix linked to the performance of CBBA

should be optimized. The performance measure considered here was the team survivability

of the ground robots. After several iterations of EPO elapsed, the optimal scoring matrix

was obtained for enhancing the performance of CBBA.

To deal with multi-robot path planning, we proposed the numerical trajectory opti-

mization method called VMCPSO: VMC transforms a typical full space optimal problem

to a subspace optimal problem and the original problem is changed into finding the optimal

PCPs, and PSO is used to optimize PCPs. Before applying the VMCPSO algorithm, the

constrained trajectory optimization problem is converted into the unconstrained trajectory

optimization problem by using penalty functions. Then, the candidate PCPs converge to

the optimal solution through local and global interactions with the other candidates as the

number of iterations increases. We also extended the VMCPSO algorithm by decentraliza-

tion in order to achieve cooperative missions of multiple robots e�ciently. The numerical

simulation and experimental results showed that the optimal paths considering the terminal

time and angle are e↵ectively generated by decentralized VMCPSO.

The distributed multi-agent reinforcement learning (MARL) algorithm in the semi-

Markov Decision Process framework was proposed to solve the behavior coordination prob-

lem for the ground combat robots in engagement scenarios. We designed five types of

behaviors, and each behavior was implemented by using the mission and path planning

algorithms developed in Chapters 3 and 4. The threat map and the visibility map were

also considered to build the behaviors. The mission performances were maximized while

increasing the number of episodes for distributed MARL in completely di↵erent engage-

ment scenarios, and we found that the most probable behavior of the robots was properly

selected in combat situations after learning the optimal policy.

In conclusion, we could reach the goal of the multi-robot group such as maximizing the

team survivability in probabilistic combat situations by synthesizing each ingredient of the

proposed techniques. The proposed decision-making algorithms designed in a distributed

manner and can be applied to the robots having di↵erent characteristics.

97

References

[1] M. Alighanbari and J. P. How. Decentralized task assignment for unmanned aerial ve-

hicles. In Proceedings of the 44th IEEE Conference on Decision and Control-European

Control Conference, pages 5668–5673, Dec. 2005.

[2] David Anisi, John Robinson, and Petter Ögren. On-line trajectory planning for aerial

vehicles: A safe approach with guaranteed task completion. In Proceedings of the AIAA

Guidance, Navigation and Control Conference and Exhibit, 2006.

[3] G. Arslan, J. R. Marden, and J. S. Shamma. Autonomous vehicle-target assignment: A

game-theoretical formulation. Journal of Dynamic Systems, Measurement, and Con-

trol, 129(5):584–596, 2007.

[4] R. W. Beard, T. W. McLain, M. A. Goodrich, and E. P. Anderson. Coordinated target

assignment and intercept for unmanned air vehicles. IEEE Transactions on Robotics

and Automation, 18(6):911–922, Dec. 2002.

[5] John Bellingham, Michael Tillerson, Arthur Richards, and Jonathan P. How. Multi-

task allocation and path planning for cooperating UAVs. In Sergiy Butenko, Robert

Murphey, and Panos M. Pardalos, editors, Cooperative Control: Models, Applications

and Algorithms, volume 1 of Cooperative Systems, pages 23–41. Springer US, 2003.

[6] Luca F. Bertuccelli, Han-Lim Choi, Peter Cho, and Jonathan P. How. Real-time multi-

uav task assignment in dynamic and uncertain environments. In Proceedings of the

AIAA Guidance, Navigation, and Control Conference, 2009.

[7] John T. Betts. Survey of numerical methods for trajectory optimization. Journal of

Guidance, Control, and Dynamics, 21(2):193–207, 1998.

98

[8] Kevin Bollino and L. Ryan Lewis. Collision-free multi-uav optimal path planning and

cooperative control for tactical applications. In Proceedings of the AIAA Guidance,

Navigation and Control Conference and Exhibit, 2008.

[9] F. Borrelli, T. Keviczky, and G. J. Balas. Collision-free UAV formation flight us-

ing decentralized optimization and invariant sets. In Proceedings of the 43rd IEEE

Conference on Decision and Control, volume 1, pages 1099–1104, 2004.

[10] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement

learning and dynamic programming using function approximators. CRC Press, 2010.

[11] Jianshu Chen, Sheng-Yuan Tu, and Ali H. Sayed. Distributed optimization via di↵usion

adaptation. In Proceedings of the 4th IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing, pages 281–284, 2011.

[12] H. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions for robust

task allocation. IEEE Transactions on Robotics, 25(4):912–926, Aug. 2009.

[13] H. Choi, A. K. Whitten, and J. P. How. Decentralized task allocation for heteroge-

neous teams with cooperation constraints. In Proceedings of the American Control

Conference, pages 3057–3062, July 2010.

[14] T. H. Chung and J. W. Burdick. Analysis of search decision making using probabilistic

search strategies. IEEE Transactions on Robotics, 28(1):132–144, Feb. 2012.

[15] M. Clerc and J. Kennedy. The particle swarm explosion, stability, and convergence in

a multidimensional complex space. IEEE Transactions on Evolutionary Computation,

6(1):58–73, 2002.

[16] Christopher L. Darby, William W. Hager, and Anil V. Rao. Direct trajectory optimiza-

tion using a variable low-order adaptive pseudospectral method. Journal of Spacecraft

and Rockets, 48(3):433–445, 2011.

99

[17] Vishnu R. Desaraju and Jonathan P. How. Decentralized path planning for multi-agent

teams with complex constraints. Autonomous Robots, 32(4):385–403, 2012.

[18] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value

function decomposition. Journal of Artificial Intelligence Research, 13(1):227–303,

2000.

[19] Yong Duan, Qiang Liu, and XinHe Xu. Application of reinforcement learning in robot

soccer. Engineering Applications of Artificial Intelligence, 20(7):936–950, 2007.

[20] Fariba Fahroo and I. Michael Ross. Costate estimation by a legendre pseudospectral

method. Journal of Guidance, Control, and Dynamics, 24(2):270–277, 2001.

[21] Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan P.

How. Online discovery of feature dependencies. In Proceedings of the 28th International

Conference on Machine Learning, pages 881–888, 2011.

[22] Alborz Geramifard, Joshua Redding, and Jonathan P. How. Intelligent cooperative

control architecture: A framework for performance improvement using safe learning.

Journal of Intelligent & Robotic Systems, 72(1):83–103, 2013.

[23] Alborz Geramifard, Joshua D. Redding, Joshua Joseph, Nicholas Roy, and Jonathan P.

How. Model estimation within planning and learning. In Proceedings of the American

Control Conference, pages 793–799, June 2012.

[24] Hongliang Guo and Yan Meng. Distributed reinforcement learning for coordinate

multi-robot foraging. Journal of Intelligent & Robotic Systems, 60(3–4):531–551, 2010.

[25] Yan Jin, A. A. Minai, and M. M. Polycarpou. Cooperative real-time search and task

allocation in uav teams. In Proceedings of the 42nd IEEE Conference on Decision and

Control, volume 1, pages 7–12, Dec. 2003.

100

[26] Timothy R. Jorris and Richard G. Cobb. Three-dimensional trajectory optimization

satisfying waypoint and no-fly zone constraints. Journal of Guidance, Control, and

Dynamics, 32(2):551–572, 2009.

[27] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the

IEEE International Conference on Neural Networks, pages 1942–1948, 1995.

[28] Tamás Keviczky, Francesco Borrelli, and Gary J Balas. A study on decentralized

receding horizon control for decoupled systems. In Proceedings of the American Control

Conference, volume 6, pages 4921–4926, 2004.

[29] D. Kim and J. Kim. A real-time limit-cycle navigation method for fast mobile robots

and its application to robot soccer. Robotics and Autonomous Systems, 42(1):17–30,

2003.

[30] S. Kim and Y. Kim. Optimum design of three-dimensional behavioural decentralized

controller for UAV formation flight. Engineering Optimization, 41(3):199–224, 2009.

[31] Byung-Il Koh, Alan D. George, Raphael T. Haftka, and Benjamin J. Fregly. Paral-

lel asynchronous particle swarm optimization. International Journal for Numerical

Methods in Engineering, 67(4):578–595, 2006.

[32] K. Kovac, I. Zivkovic, and B. D. Basic. Simulation of multi-robot reinforcement learn-

ing for box-pushing problem. In Proceedings of the 12th IEEE Mediterranean Elec-

trotechnical Conference, volume 2, pages 603–606, May 2004.

[33] Y. Kuwata and J. P. How. Cooperative distributed robust trajectory optimization

using receding horizon MILP. IEEE Transactions on Control Systems Technology,

19(2):423–431, 2011.

[34] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How. Real-time

motion planning with applications to autonomous urban driving. IEEE Transactions

on Control Systems Technology, 17(5):1105–1118, 2009.

101

[35] Zheng Liu, V. M. H. Ang, and Winston Khoon-Guan Seah. Reinforcement learning of

cooperative behaviors for multi-robot tracking of multiple moving targets. In Proceed-

ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 1289–1294, Aug 2005.

[36] Alessandro Luca, Giuseppe Oriolo, and Marilena Vendittelli. Control of wheeled mobile

robots: An experimental overview. In Ramsete, volume 270 of Lecture Notes in Control

and Information Sciences, pages 181–226. Springer Berlin Heidelberg, 2001.

[37] S. V. Macua, P. Belanovic, and S. Zazo. Di↵usion gradient temporal di↵erence for

cooperative reinforcement learning with linear function approximation. In Proceedings

of the 3rd International Workshop on Cognitive Information Processing, pages 1–6,

May 2012.

[38] J. R. Marden, G. Arslan, and J. S. Shamma. Joint strategy fictitious play with inertia

for potential games. IEEE Transactions on Automatic Control, 54(2):208–220, Feb

2009.

[39] Maja J. Matarić. Reinforcement learning in the multi-robot domain. In Ronald C.

Arkin and Georgev A. Bekey, editors, Robot Colonies, pages 73–83. Springer US, 1997.

[40] Maja J. Matarić. Learning in behavior-based multi-robot systems: policies, models,

and other agents. Cognitive Systems Research, 2(1):81–93, 2001.

[41] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,

J. Zu↵erey, D. Floreano, and A. Martinoli. The e-puck, a robot designed for education

in engineering. In Proceedings of the 9th Conference on Autonomous Robot Systems

and Competitions, pages 59–65, 2009.

[42] A. Y. Ng and M. I. Jordan. Pegasus: a policy search method for large MDPs and

POMDPs. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelli-

gence, pages 406–415, 2000.

102

[43] Edwin Olson, Johannes Strom, Ryan Morton, Andrew Richardson, Pradeep Ran-

ganathan, Robert Goeddel, Mihai Bulic, Jacob Crossman, and Bob Marinier. Progress

toward multi-robot reconnaissance and the MAGIC 2010 competition. Journal of Field

Robotics, 29(5):762–792, 2012.

[44] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality, (Wiley Series in Probability and Statistics). Wiley, 2011.

[45] Josh Redding, Alborz Geramifard, and Jonathan P. How. Actor-critic policy learning

in cooperative planning. In Proceedings of the AAAI Spring Symposium: Embedded

Reasoning, 2010.

[46] Arthur Richards and Jonathan P. How. A decentralized algorithm for robust con-

strained model predictive control. In Proceedings of the American Control Conference,

volume 5, pages 4261–4266, 2004.

[47] Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange. Reinforcement

learning for robot soccer. Autonomous Robots, 27(1):55–73, 2009.

[48] Tom Schouwenaars, Jonathan How, and Eric Feron. Decentralized cooperative trajec-

tory planning of multiple aircraft with hard safety guarantees. In Proceedings of the

AIAA Guidance, Navigation and Control Conference and Exhibit, 2004.

[49] Corey Schumacher, Phillip Chandler, Meir Pachter, and Lior Pachter. Constrained

optimization for UAV task assignment. In Proceedings of the AIAA Guidance, Navi-

gation, and Control Conference, pages 1–14, 2004.

[50] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D. George. Paral-

lel global optimization with the particle swarm algorithm. International Journal for

Numerical Methods in Engineering, 61(13):2296–2315, 2004.

103

[51] Mandyam V. Srinivasan and Matthew Davey. Strategies for active camouflage of

motion. Proceedings of the Royal Society of London. Series B: Biological Sciences,

259(1354):19–25, 1995.

[52] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learning for

robocup soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[53] O. Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization.

Annals of Operations Research, 37(1):357–373, 1992.

[54] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. MIT Press,

Cambridge, Mass., 1998.

[55] Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver,

Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-

di↵erence learning with linear function approximation. In Proceedings of the 26th

Annual International Conference on Machine Learning, pages 993–1000, 2009.

[56] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, 112(1—2):181–211, 1999.

[57] Claude F. Touzet. Robot awareness in cooperative mobile robot learning. Autonomous

Robots, 8(1):87–97, 2000.

[58] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, P. Burchard, and G. Sapiro. Visibility and

its dynamics in a PDE based implicit framework. Journal of Computational Physics,

199(1):260–290, 2004.

[59] N. Kemal Ure, Girish Chowdhary, Yu Fan Chen, Jonathan P. How, and John Vian. Dis-

tributed learning for planning under uncertainty problems with heterogeneous teams.

Journal of Intelligent & Robotic Systems, 74(1-2):529–544, 2014.

104

[60] N. Kemal Ure, Tuna Toksoz, Girish Chowdhary, Joshua Redding, Jonathan P. How,

Matthew Vavrina, and John Vian. Experimental demonstration of multi-agent learning

and planning under uncertainty for persistent missions with automated battery man-

agement. In Proceedings of the AIAA Guidance, Navigation, and Control Conference,

2012.

[61] Ying Wang and C. W. de Silva. Multi-robot box-pushing: Single-agent

Q-Learning vs. Team Q-Learning. In Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 3694–3699, Oct 2006.

[62] Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Empirical studies in action

selection with reinforcement learning. Adaptive Behavior, 15(1):33–50, 2007.

[63] Yunjun Xu. Virtual motion camouflage and suboptimal trajectory design. In Proceed-

ings of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2007.

[64] Yunjun Xu. Subspace optimal control and motion camouflage. In Proceedings of the

AIAA Guidance, Navigation and Control Conference and Exhibit, 2008.

[65] Yunjun Xu and Gareth Basset. Pre and post optimality checking of the virtual motion

camouflage based nonlinear constrained subspace optimal control. In Proceedings of

the AIAA Guidance, Navigation, and Control Conference, 2009.

[66] Yunjun Xu and Gareth Basset. Sequential virtual motion camouflage method for

nonlinear constrained optimal trajectory control. Automatica, 48(7):1273–1285, 2012.

[67] Chen Yao, Xu Chu Ding, and C. G. Cassandras. Cooperative receding horizon control

for multi-agent rendezvous problems in uncertain environments. In Proceedings of the

49th IEEE Conference on Decision and Control, pages 4511–4516, Dec. 2010.

105

m8�]

¯ �¨Y⌅ |8–⌧î ‰⌘ \⌥ ‹§\X âŸ p�D ⌅\ ⌘≈ D§Mò, Ñ4`˘,

Ω\ƒç, âŸYµ 0ïD ⌧HX‡ 4x ⌅, ‹§\– �©X�‰. ‰⌘ \⌥<\ l1⌧

4x ⌅, ‹§\t ‹‹�� ¿TXî ⌅‹¡i–⌧ Xå �òXÏ µi�x ©\|

Ï1X0 ⌅t⌧î ¯¨ ¿�⌧ Ñ4X π1 ✏ ‰⌧X ¡iƒ\ ��\ X¨∞�D t|

\‰.t|⌅t<�¿⇠µ⌧(…,¿¡⌅,\⌥,⇣‹�0ı⌘\⌥⌅⌘≈D§Mò|

$ƒX�‰.

‰L<\ Ñ∞� Ñ4ƒç 0ïx iX 0⇠ à‰ L‡¨òD ¨©XÏ ¿¡ \⌥‰D

��\ Ñ4¿⇣(\�)<\ `˘Xƒ] X�‰. Ï0⌧ ¿¡ \⌥ ✏ \�‰@ ÖX– 0|

⌧\ ‰x Ñ4⇠â •%D ¿»‡ à0 L8– t‰ ⌅X t»1D ⇠�Xî ⇣⇠â,D

¨©XÏ Ñ4ƒç ‹ ⇠�Xƒ] X�‰. ⇣\, �TYµ¸ Öê p— \�T 0ïD t

©\ –<å‹ ‰⌧¿⇠ \�T 0ïD ⌧HX�‡, t 0ïD ⇣⇠â,D \�TXî p

¨©XÏ ¿¡ \⌥�X ›t �•1D í| ⇠ àî \�X P⌅ ⌅µD ⇠ΩX�‰.

Ñ4¿⇣ ⌅ ‰⌘ \⌥X Ω\ƒç 8⌧| t∞X0 ⌅t �¡X çÑ⇠ 0Ÿ 0ïD

t©\ ‰‹⌅ Ñ∞� Ω\ƒç 0ïD ⌧HX�‰. �¡X çÑ⇠ 0Ÿ 0ï@ ‰©t 9

á⇣D ”D� L çÑ⇠ 0ŸD Xî É<\Ä0 �⇣D ª¥ ⌧H⌧ 0ï<\ |⇠�x

D � lçptD ‡$\ §� \�T 8⌧| Ω\ ⌧¥ ‰⌧¿⇠ÃD \�TXî 8⌧\

¿X‹⌧8⌧X(–D⌅tîÌ`D\‰.Ï0⌧Ω\⌧¥‰⌧¿⇠|\�TX0⌅t

Öê p— \�T 0ïD t©X�‰. ⌧H⌧ Ω\ƒç L‡¨ò@ ƒÏXΩ–⌧X Ö– ‹

⌅ ✏ ƒÖ � lçptD ‡$\ ëpÄ 8⌧| xîp �©⇠»<p ‹¨�tX¸ ‰ÿD

µtÄùX�‰.^⌧⌧H⌧‰⌘\⌥Ñ4ƒç✏Ω\ƒçL‡¨òDt©Xtı°\

⌅•¡i–⌧X \⌥X âŸë›D }å l⌅` ⇠ à‰.

»¿…<\ � \⌥t ¡i– fiå ��\ âŸë›D ›` ⇠ àƒ] Xî âŸ p�

8⌧| Ä0 ⌅t Ñ∞� ‰⌘ –t⌅∏ �TYµ 0ïD ⌧HX�‡ 8⌧X ı°1D t

∞X0 ⌅t h⇠ ¸¨T@ U∞ �Q 0ïD ¨©X�‰. ∞¸�<\ ¯ |8–⌧ ⌧H\

ÄÑƒ îå 0 D t©XÏ àU‰1t t¨Xî ⌅•¡i–⌧ ‰⌘ \⌥ ¯˘X ©\|

Ï1` ⇠ à»‰.

106

¸î¥: ‰⌘ \⌥ ‹§\, ⌘≈ D§Mò, Ñ4`˘, Ω\ƒç, âŸYµ

Y à: 2011-30196

107

	1 Introduction
	1.1 Literature Survey
	1.2 Research Objectives and Contributions
	1.3 Thesis Organization

	2 Cooperative Mission of Multi-Robot Systems
	2.1 Probabilistic Engagement Scenario
	2.2 Multi-Robot Systems Architecture
	2.3 Threat Map
	2.4 Visibility Map

	3 Multi-Robot Mission Planning
	3.1 Mission Assignment
	3.2 Optimization for Mission Assignment
	3.3 Optimization Results
	3.4 Analysis and Discussion

	4 Multi-Robot Path Planning
	4.1 Virtual Motion Camouflage
	4.2 Extension to Multi-Robot Path Planning
	4.3 Simulation Results
	4.4 Experimental Results
	4.5 Analysis and Discussion

	5 Behavior Coordination
	5.1 Design of Behaviors
	5.2 Learning Framework
	5.3 Distributed Multi-Agent Reinforcement Learning
	5.4 Distributed MARL Applied to Multi-Robot Systems
	5.5 Empirical Results
	5.6 Analysis and Discussion

	6 Conclusions
	Abstract (in Korean)

<startpage>15
1 Introduction 1
 1.1 Literature Survey 3
 1.2 Research Objectives and Contributions 6
 1.3 Thesis Organization 8
2 Cooperative Mission of Multi-Robot Systems 9
 2.1 Probabilistic Engagement Scenario 10
 2.2 Multi-Robot Systems Architecture 11
 2.3 Threat Map 19
 2.4 Visibility Map 20
3 Multi-Robot Mission Planning 24
 3.1 Mission Assignment 25
 3.2 Optimization for Mission Assignment 28
 3.3 Optimization Results 33
 3.4 Analysis and Discussion 35
4 Multi-Robot Path Planning 37
 4.1 Virtual Motion Camouflage 38
 4.2 Extension to Multi-Robot Path Planning 46
 4.3 Simulation Results 50
 4.4 Experimental Results 63
 4.5 Analysis and Discussion 66
5 Behavior Coordination 67
 5.1 Design of Behaviors 68
 5.2 Learning Framework 69
 5.3 Distributed Multi-Agent Reinforcement Learning 76
 5.4 Distributed MARL Applied to Multi-Robot Systems 81
 5.5 Empirical Results 85
 5.6 Analysis and Discussion 90
6 Conclusions 96
Abstract (in Korean) 106
</body>

