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Abstract

Hydrodynamics of liquid imbibition in porous media

Jungchul Kim

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

Liquid imbibition in a porous structure is mundanely observed

in our daily lives, including such phenomena as water absorp-

tion into a sponge, ink imbibition in fibrous paper, a water

cleaning process by towel or tissue, etc. In this thesis, we com-

bine experimental observation and theoretical analysis to under-

stand the hydrodynamics of liquid imbibition in porous media.

We start with relatively simple two-dimensional (2-D) flows on

rough porous surfaces, and then increase the complexity of the

structure to eventually understand flows in three-dimensional

(3-D) multiscale porous media.

We first consider one of the most representative 2-D wicking

flows, ink writing, i.e. liquid spreading into porous plates from

moving point source. We use hydrophilic microtextured silicon

wafers (superhydrophilic substrate) as model paper, capillary

tubes as model pens, and various liquids as model inks. We start

by focusing on liquid spreading when the source is stationary.



Balancing surface tension force and viscous shear force, scaling

law of blot spreading with time is derived. We then concentrate

on the behaviors of the liquid when the source moves in a con-

stant speed. Employing a simplified schematics delineating the

frontal liquid flow from the moving source, geometrical analysis

is coupled with aforementioned force balance. The front profile

predicted by the scaling analysis shows good agreement with ex-

perimental results. Also, considering volume conservation, the

line thickness is quantified by parametric analysis and verified

by experiments.

Next, we focus on the role of pore structure in the dynamics

of liquid wicking on 2-D substrate. In experiments, we pre-

pare arrays of pillars of varying height, pitches, diameter, and

skewness. Through the macroscopic model, deducing average

capillary force and resisting shear force, we derive a scaling law

of the liquid propagation, which applies for wide range of struc-

tural conditions. Through the microscopic model, we approach

the dynamics more rigorously by considering the local pressure

drop between consecutive pillars. Separating the microscopic

propagation by climbing and sweeping, we derive scaling laws

of the spreading dynamics. Comparing results of the macro-

scopic model and microscopic model, we derive the validation

limit of the scaling law of macroscopic model.

We then consider flows within the dual sized porous media, the

simplest form of multi-porous media. The employed structure

consists of parallel substrates with micropillar arrays, separated

by a millimetric gap. The flow involves the bulk flow at the mil-

limetric gap and the film flow in the micrometric pores above

the bulk. The bulk flow between the superhydrophilic surfaces



shows identical behavior to what is observed on smooth sub-

strates, meaning that the bulk flow is independent of the mi-

crostructures. The flow of the film emanating from the bulk

is affected by the bulk in the beginning, but becomes indepen-

dent of the bulk flow in the late stages. The entire flow regimes

are investigated by scaling analysis and verified by experiments.

Also, the moment of the film emanating from the bulk is quan-

titatively estimated by comparing the rising speeds of bulk and

film.

Finally, we investigate the flows in porous material of practi-

cal importance, cellulose sponge, containing various sized pores.

We construct a simple model, delineating unit structure of sponge

pores by introducing large void and wall pores of the sponge.

We first study the horizontal flow in sponge to understand the

flow without gravitational effects. The horizontal liquid propa-

gation distance is found to obey the Washburn’s rule. We turn

to the vertical flow, which shows different flow behaviors de-

pending on the rise height. When the rise height is small so

that the large void can be completely saturated, liquid flow be-

havior is identical to the horizontal flow. Whereas, when the rise

height is so large that the large void is saturated but partially.

The rise height grows like t1/4 with t being time. This unusual

phenomenon is caused by the non-uniformity of permeability,

which is inversely proportional to the square of rise height. The

scaling laws for the entire flow dynamics show good agreement

with experimental results.

Keywords : Surface tension, Porous media, Capillary

imbibition, Superhydrophilic surface

Student Number : 2009 - 20672
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Chapter 1

Introduction

Most of the materials in earth consists of plenty of various sized pores,

such as igneous rocks, sap of trees, or cellulose sponges. When these ma-

terials contact with chemically intimated liquids, the liquids infiltrate into

the materials, which is referred to as Capillary imbibition into porous me-

dia. The flow is due to the surface tension, mutual interaction between

liquid molecules at the interface. The molecular tension at the surface

tends to minimize the total surface area for minimizing surface free energy,

which generates negative pressure beneath the liquid surface. The negative

pressure drives spontaneous capillary flows.

Natural and industrial processes associated with capillary impregnation

abound, including an ink in paper, a dye in fabric, oil in a porous rock,

water in soil, sap in xylem or a biofluid in cartilage. Capillary phenomena

also play an important role in various fields of nano- and bio-technology.

Nanoscale patterns on semiconductor wafers may stick together due to the

surface tension of an evaporating rinsing solution, which is one of major

problems deteriorating production yield. Many lab-on-a-chip systems rely

on capillary forces to pump liquid into channels. For optimization, highly

sophisticated prediction and systematic fluid mechanical approaches of the

flow are required.

1



Fluid I

Fluid II

Figure 1.1: Schematic molecular structure of a fluid I - fluid II interface.

To understand the physics of the capillary flow, the fundamental charac-

teristics of the liquid surface should be understood. When a fluid molecule

is in the midst of the fluid, the molecule interacts with all other neighboring

molecules, which is energetically favorable. However, when a fluid molecule

is located at the interface, the molecule loses the interaction energy due to

the part facing with the other fluid, which is energetically unfavorable. (See

Fig. 1.1) The molecules tend to become the energy state of being perfectly

neighbored with molecules of same fluid; thus, all of the fluid molecules

minimize the exposed area, of which the force is characterized by inter-

facial tension coefficient. (N/m) The interfacial tension when the fluid is

liquid faced with air is usually called by surface tension. (Butt et al., 2006)

For this reason, when a liquid drop is in the air, the drop tends to form a

spherical shape.

Due to the surface tension, pressure difference between inside and out-

side of the surface arises. The magnitude of the pressure difference is es-

timated by the static force relation with the schematics in Fig. 1.2, which

is equal to κσ with κ and σ being principal curvature and surface tension

coefficient, respectively. When the liquid is faced with different material,

the attraction between the liquid and the material significantly affects the

2



Figure 1.2: Normal pressure balance on an interface between gas and liquid.

(Kovacevic, 20125)

shape of the surface. When the material is positively attractive to the liq-

uid,(hydrophilic) liquid tends to face with the material more, which makes

the contact angle smaller. In contrast, when the material is negatively at-

tractive,(hydrophobic) the contact angle becomes larger. According to the

contact angle, the local surface curvature is determined which eventually

decides the magnitude of the pressure difference, which drives the capillary

flows.

For understanding the fundamental physics of the capillary imbibition,

the simplest form, capillary imbibition in two parallel plates or capillary

tube has been intensively studied. (Duarte et al., 1996; Popescu et al.,

2008; Washburn, 1921; Xiao et al., 2006) As shown in Fig. 1.3, liquid spon-

taneously rises up though the cylindrical tube when the plate ends touch

the liquid surface. In this case, surface tension of the liquid drives the flow,

whereas gravity and the viscous shear force resist the flow. At the very

beginning, inertial effect is dominant since the flow speed is quite high. In

this case, the driving force, surface tension is balanced with the inertial

force, which gives the speed, ≈ (2σ/(ρr)1/2), with σ and r being surface
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Figure 1.3: Schematic drawing of liquid rising along the capillary tube of

radius r vertically inserted in the liquid bath. (Popescu et al., 2008)

tension coefficient and tube radius, respectively. (Quéré, 1997) Due to the

constant speed independent of the rise height, the flow dynamics shows

linearity. However, for the common narrow long tube, the linear region is

not largely formed. The size of the region is determined by considering

the inertia and the viscous shear force. For the resisting force, the inertial

force is dominant at the beginning, but the viscous shear force is eventually

dominant at the late time. The boundary of these two regions is evaluated

by balancing the two forces, which is scaled as ∼ ρUr2/µ, with U and µ

being initial rise speed and viscosity, respectively. This length scale (Le) is

the entrance length which means the length required for the imbibed liquid

fully developed. The time scale ρr2/µ means the time necessary for the

viscous boundary layer to diffuse on the order of the radius of tube. (See

Fig. 1.4(a)) However, the size of the entrance length is order of 10−6 10−5

m for the capillary tube, of which the radius is a few hundred microns,

which is usually quite small value comparing with the capillary rise height,

O(10−2)m.

Apart from the entrance region, the velocity profile becomes parabolic,
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(a)

Le

(b)

Lm

Figure 1.4: Schematics of velocity profiles (a) at the entrance region and

(b) at the interface.(Zhmud et al., 2000) Liquid split occurs beneath the

meniscus.

which is significantly associated the shear stress. Considering the laminar

flow for parallel plates and the Poiseuille flow for tube, the shear stress

is written in the form of kµU/r where k is a constant when we assume

the no slip boundary condition. If the entrance region is relatively large,

oscillation can occur.(Zhmud et al., 2000) If the viscosity can be ignored,

the overshoot trajectory points show parabolic shape where the oscillation

is non-linear due to the variable mass. Quéré (1997).

Near the contact line, the parabolic velocity profile can not be sustained.

(See Fig. 1.4(b)) The mechanism of the flow behavior near contact line has

been studied mathematically. (Levine et al., 1979) Moreover, flow field

beneath the contact line has been observed by PIV technique, as shown

in Fig. 1.5(a) and (b). (Fuentes & Cerro, 2005) However, theoretical ap-

proaches based on experiments are required for better understanding. The

size of the region where the liquid split occurs is known to be a few radii,

Lm ∼ O(r). Therefore, when the rise height is as much as H, the resisting

force, shear stress times exerted area, is written as µU(H − Le − Lm)/r.

In most of cases of the capillary imbibition, the flow distance of the entire

subjects is quite larger than the entrance length or the size of tube. So, the
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(a)

(b)

Figure 1.5: (a) Sketch of streamline patterns near the moving contact line

during immersion of a solid surface into a pool of liquid. (b) View of flow

field near moving contact line. (Fuentes & Cerro, 2005)

resisting shear force can be simply written as µUH/r.

Based on this fundamental studies of capillary imbibition, more practi-

cal researches for the more complicated flow in porous structures are per-

formed for last decades. Uniformly arranged porous structures were used

to alleviate the difficulties of irregularity of the actual porous structures.

For 2-D flow, a plate having uniform micro pillar arrays was used,

which shows the most fundamental liquid flow behavior in porous struc-

ture (Courbin et al., 2007; Ishino et al., 2007; Kim et al., 2011a,b). Due to

the energetically stable state, the liquid flow is reported to show intrigue be-

havior, such as zipping in uniform pillar arrays. For 3-D flow, various sized

glass beads were used to form tiny spaces where liquid flow occurs, espe-

6



cially in soil science (Delker et al., 1996; Lago & Araujo, 2001). And corner

flow within smooth substrate has been studied with introducing different

scaling law, x ∼ t1/3 from the classical Washburn’s dynamics (x ∝ t1/2)

(Ponomarenko et al., 2011; Weislogel, 2012).

However, in spite of the studies above, there remain a number of unan-

swered capillary-imbibition problems that occur in various fields of sci-

ence and engineering. Major difficulties of understanding the dynamics

of wicking come from the incomplete knowledge of formation and motion

of three-phase (solid-liquid-fluid) contact lines. Furthermore, inherently

complex geometry of pore structures in most porous media aggravates the-

oretical understanding and experimental measurements of wicking flows.

As a result, more systematical theoretical approaches are demanded based

on reasonable experimental results.

Here, we introduce four different subjects of capillary imbibition into

porous media. At first, a representative classical example of the subject,

”Physics of ink writing” is rationalized by our own theory. The behavior

of the ink spreading from stationary and moving pen is mathematically

quantified by parameters of properties of liquid and substrate, pen size,

and moving speed. And, as the first step of the stepwise studies of the

subject, we quantify the dynamics of hemiwicking more accurately and

reveal the detailed meaning of the scaling analysis widely performed in

this academic field. And, as the second step, liquid imbibition in dual sized

porous system is studied as the simplest form of the multi porous structures,

where correlation of flows in the two different sized pores is introduced.

And, as the third step, an actual multi porous system, cellulose sponge has

been employed for entire liquid behavior. Capillary rise within the pores of

sponge has been quantified, associated with pores whose sizes are verified

by pore size histogram. The studies above help us to understand overall

liquid behaviors in porous media, experimentally and theoretically. We

conclude with proposing a mundane but important problems, liquid flow

7



within a corner of porous plates and other flows associated with additional

chemical effects such as swelling, which remain unanswered.
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Chapter 2

Hydrodynamics of writing

with ink

2.1 Introduction

For millenia, writing has been the preferred way to convey information

and knowledge from one generation to another. We first developed the

ability to write on clay tablets with a point, and then settled on a reed

pen, as preserved from 3000 BC in Egypt when it was used with papyrus

(Fischer, 2005). This device consisted of a hollow straw that served as

an ink reservoir and allowed ink to flow to its tip by capillary action. A

quill pen using a similar mechanism served as the instrument of choice for

scholars in medieval times, while modern times have seen the evolution of

variants of these early writing instruments to a nib pen, a ballpoint pen,

and a roller ball pen. However, the fundamental action of the pen, to

deliver liquid ink to an absorbent surface has remained unchanged for five

thousand years.
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2.2 Experimental setup

2.2 Experimental setup

Although capillary imbibition on porous substrates has been studied for

decades (Conrath et al., 2010; Courbin et al., 2007; Davis & Hocking, 2000;

Ishino et al., 2007; Washburn, 1921), how liquids spreads on a rough sub-

strate (paper) from a moving source (pen), a basic process underlying ink

writing, seems to not have been treated thus far. Writing with a given pen

leaves a marked trail whose character is determined by the ink, the paper

and the speed and style with which one moves the pen, and an example

is shown in Fig. 2.1. To understand the characteristic hydrodynamics of

this process, we employ a minimal system consisting of a straight capillary

tube, our pen that is held in close proximity of a hydrophilic micropil-

lar array, our porous paper (see Fig. 2.2), and moves parallel to it. The

shape and size of the liquid trail that results is what we call writing, and

arises as a consequence the quasi-two-dimensional hydrodynamic problem

of capillary-induced spreading from a moving source.

The model pen is an open glass capillary tube (inner radiusR ∈ [0.25 1.00]

mm, wall thickness 0.1 mm) filled with a liquid that is translated by a linear

stage at a speed u0, which varies in the range [0 3.0] mm/s while maintained

constant in each experiment. The inner surface of the tube is cleaned with

a piranha solution to have a nearly zero contact angle with all the liquids

used here, while the outer surface is coated with PTFE (polytetrafluo-

roethylene), which is hydrophobic, to prevent the liquid from climbing onto

the outside. Our model inks were aqueous glycerine solutions with different

concentrations: 63 (liquid A), 73 (B) and 78.5 (C) wt% and ethylene glycol

99 wt% (D), whose physical properties are listed in Table 5.1. The model

paper was a silicon wafer decorated with cylindrical micropillar arrays which

are formed by the DRIE (deep reactive ion etching) process, and then ad-

ditionally plasma-etched by O2 to make them superhydrophilic (Yi et al.,

2010). The individual pillars are cylindrical (Fig. 2.2b) with height h and

diameter d, and arranged in a square array with pitch s: {h, d, s} ∈ [10 20]
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2.3 Stationary pen

µm. The liquid from the tube starts to wick into the forest of pillars as

the tube bottom gently touches the substrate, and a CCD (charge coupled

device) camera (frame rate 30 s−1) is used to image the spreading front.

Liquid γ (N/m) µ (Pa·s)

A Water 0.073 0.0013

B Silicone oil 0.020 1.050

C Glycerine 90 wt% 0.065 0.125

D Ethylene Glycol 99 wt% 0.048 0.018

Table 2.1: Liquid properties at about 23◦C.

2.3 Stationary pen

Placing a pen on paper before knowing what to write leads to a spread-

ing stain that all of us have had some experience with. To understand the

dynamics of the formation of this blot, we hold the pen fixed, and see a cir-

cular front emanating from it, as shown in Figs. 2.1(a) and 2.2(a). On these

scales, fluid inertia is unimportant (Reynolds number based on the pillar

height ∈ [10−4−10−7]). The flow is driven by capillary forces at the spread-

ing rim distant by r from the source, Fd,s, which can be obtained by consid-

ering the change of surface energy associated with the increase of a disk ra-

dius from r to r+dr: dE = 2πr[γ(1−π
4d

2/s2)+(f−π
4d

2/s2)(γSL−γSG)]dr =
−2πγ(f − 1)rdr, where γ, γSL and γSG is the interfacial tension between

liquid-gas, solid-liquid and solid-gas, respectively, and f is the roughness

defined as the ratio of the actual solid surface area to the projected area.

Here we used Young’s equation, γ cosψ = γSG − γSL, where the contact

angle ψ ≈ 0.We note that the precursor film of the aqueous solutions may

be present on the superhydrophilic surface, but the energy change asso-

ciated with replacing solid-gas interface by solid-liquid interface and that
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2.3 Stationary pen

with covering the precursor liquid are the same, thus our scaling law does

not change. The driving force Fd,s = −dE/dr = 2πγ(f − 1)r.

The resisting force is viscous shear force exerted on the substrate be-

neath the deposited film. Observing the side view of the liquid spreading

through a forest of micropillars, we found that the pillar tops are hardly wet

during the initial propagation of the wet front. The top surfaces get wet

after the gaps between the pillars are filled with liquid, thus we only con-

sider velocity profiles of the liquid between the pillars. Then the shear force

exerted by the side of the pillars is scaled as Fr,1 ∼ µU(f − 1)(r2 −R2)/ds,

where ds = (s− π
4d)/2 is a half the average distance between the adjacent

pillars. The shear force by the base is scaled as Fr,2 ∼ µU(1−ft)(r2−R2)/h.

The total resisting force Fr,s = Fr,1 + Fr,2 can be shown to have the

form Fr,s ∼ µU(r2 − R2)(f/h + c). We note that c/(f/h) is typically

smaller than 0.1 in our experimental conditions, thus we may write Fr,s ∼
µU(r2 − R2)f/h. In this estimation, we neglected the Oseen-type resist-

ing force around a cylindrical pillar Fo, which scales as h. For h < s,

Fr,s ∼ h−1 is known to dominate over Fo ∼ h, which is consistent with our

measurements.

As a liquid emits from a tube onto a hydrophilic surface, the viscous

resistance occurs due to the interior wall of the tube as well as the substrate.

The resisting force due to the tube wall is scaled as Fr,t ∼ 2πµRhtUt/R,

where Ut is the flow speed inside the tube and ht is the liquid column height

in the tube. Ut can be related to U via volume conservation: πR2dht =

2πrh(1− f)dr, so that Ut = 2rh(1− ft)U/R
2. Because the resisting force

due to the substrate is given by Fr,s ∼ µUr2f/h for r2 ≫ R2, the ratio

Fr,t/Fr,s ∼ 4h2ht(1 − f)/(R2rf), which is typically less than 0.05 for the

substrates and the pens used in this work. Therefore, the friction at the

tube wall can be neglected in evaluating the resisting force of the liquid

flow.
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2.3 Stationary pen

The viscous resistance occurs due to the interior wall of the tube as well

as the substrate, as a liquid emits from a tube onto a hydrophilic surface.

The resisting force due to the tube wall is scaled as Fr,t ∼ 2πµRhtUt/R,

where Ut is the flow speed inside the tube and ht is the liquid column height

in the tube. Ut can be related to U via volume conservation: πR2dht =

2πrh(1− f)dr, so that Ut = 2rh(1− ft)U/R
2. Because the resisting force

due to the substrate is given by Fr,s ∼ µUr2f/h for r2 ≫ R2, the ratio

Fr,t/Fr,s ∼ 4h2ht(1 − f)/(R2rf), which is typically less than 0.05 for the

substrates and the pens used in this work. Therefore, the friction at the

tube wall can be neglected in evaluating the resisting force of the liquid

flow.

Balancing this with the resisting force due to viscous shear stress which

scales as Fr,s ∼ µU(r2 − R2)f/h gives U = dr/dt ∼ ϕγrh/[µ(r2 − R2)],

where ϕ = (f−1)/f . Integrating U yields r̂2− ln r̂2−1 ∼ τ , where r̂ = r/R

and τ = 2ϕγht/(µR2). For narrow tubes and late times, corresponding to

r2 ≫ R2, this result simplifies to yield

r ∼
(
ϕ
γ

µ
h

)1/2

t1/2. (2.1)

We see that an ink blot emerging from a pen spreads onto a stationary

superhydrophilic surface with diffusive dynamics (Marmur, 1988), where

in addition to the classically known prefactor (de Gennes et al., 2004),

(γh/µ)1/2, the spreading rate depends on ϕ(f), the surface roughness. On

real paper, the blot spreading is eventually limited by both contact line

pinning at surface heterogenieties and evaporation. The spreading radii

measured for different liquids and substrates collapse onto a single line

with a slope of 0.51, consistent with our scaling law (2.1) (Fig. 2.2c).

We rearrange U = dr/dt ∼ ϕγrh/[µ(r2 − R2)] and integrate as the

following: ∫ r

R

r2 −R2

r
dr ∼

∫ t

0

ϕγh

µ
dt
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2.3 Stationary pen

For the purpose of comparison, we take the coefficient of proportionality to

be unity and get ( r
R

)2
− ln

( r
R

)2
− 1 = τ (2.2)

where the dimensionless time τ = 2ϕγht/(µR2). Figure 2.3 compares this

result with the relationship approximating (r2 −R2)/r ≈ r, i.e.

r

R
= τ1/2

We see that the the error associated with approximating (r2 − R2)/r ≈ r

in the integration vanishes as τ increases. For example, when r/R = 10,

the relative error is less than 3%.

As a large area is wet due to wicking liquid, the evaporation may limit

further spreading of the liquid in addition to the surface heterogenieties

causing contact line pinning. Here we estimate the radius of a liquid blot,

re, at which the evaporative loss of the liquid (over the entire blot area) be-

comes comparable to the liquid flux supplied by the tube. The evaporative

mass flux of water vapor per unit area, J(r), can be scaled as J ∼ D∆c/δ,

where D and c, respectively, is the diffusivity and the concentration of va-

por. δ(r) is the boundary layer thickness of the vapor concentration at the

distance r from the center of the pen, scaled as δ ∼
√
D(t− τ), where t and

τ is the time taken for the liquid film to extend by re and r, respectively,

from the moment of initial pen touch. Using U(r) ∼ ϕγh/(µr) by virtue

of Eq. (2.1), t ∼ µr2e/(ϕγh) and τ ∼ µr2/(ϕγh). Balancing the mass flux

from the tube and the evaporative flux leads to

ρUreh ∼
∫
Jrdr

where ρ is the density of the liquid. Then we get

re ∼
ρ

∆c

(
γϕh3

µD

)1/2

For the purpose of simple estimation, we adopt typical transport proper-

ties of water vapor D ≈ 2.6 × 10−5 m2/s and ∆c ≈ 7 × 10−3 kg/m3 [F.P.
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2.3 Stationary pen

Incropera et al. Fundamentals of Heat and Mass Transfer, 6th ed. (2007)].

Then we get re ∼ 0.1 − 1 m for water, which is much greater than typical

size of the writing, providing justification for neglecting the effect of evap-

oration in the dynamics of liquid spreading considered here assuming that

the evaporation properties of glycerine do not differ much from those of

water. However, for real inks that are formulated to allow quick drying, D

can be much greater than that of water thus it is possible that re is reduced

to an order comparable to the ordinary ink writing.

Here we note that the spreading rate of an ink blot from a tube is differ-

ent from that of a drop deposited on a hydrophilic surface. In drop spread-

ing on micropatterned surfaces, a fringe film diffusively extends beneath

the bulk part of the drop in a similar manner to (2.1), but the collapse of

the bulk dominates the initial stages thus the entire drop footprint grows

like t1/4 (Kim et al., 2011b). On smooth surfaces, a small drop spreads

to become a thin lens with the radius growing like t1/10 (Tanner, 1979).

The ink blot from a tube spreads rapidly and diffusively on rough surfaces

(f > 1, ϕ > 0), while it does not spread on smooth surfaces (f = 1, ϕ = 0).

As shown in Fig. 2.4, a hydrophilic pen develops a capillary suction pressure

∆pt = p0− pt = 2γ/R− ρgH, where g is the gravitational acceleration and

H is the liquid column height smaller than the equilibrium capillary rise

height 2l2c/R with the capillary length lc = (γ/ρg)1/2, which competes with

the driving pressure ∆pd = p0 − pe for spreading. Here p0, pt, pe are the

pressure beneath the tube, at the top of the liquid column in the tube, and

at the outer edge of the blot, respectively. For a blot to spread beyond R on

a rough surface, we should have ∆pd|r=R ≈ Fd,s|r=R/(2πRh) > ∆pt, which

gives a minimal roughness fmin ≈ 1+ 2h/R−Hh/l2c ∈ (1.04− 1.07) in our

experimental conditions. On a smooth substrate, the maximum radius of

a blot r0 is given by ∆pt = ∆pd, where ∆pd = γ(R−1
0 − r−1

0 ) with R0 being

the radius of curvature of a meniscus between the substrate and the tube
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2.4 Moving pen

end that are separated by hg. We numerically find that r0/R ∈ (1.05−1.5),

which is indeed small, for hg/R ∈ (0− 0.1) and RH/l2c ∈ (1− 2).

2.4 Moving pen

2.4.1 Frontal shape

When writing, our interest is in predicting the frontal shape and the

final width of the liquid film as a pen moves on the substrate with a con-

stant velocity u0, Fig. 2.5(a). We consider the coordinate system as shown

in Fig. 2.5(b), where the liquid front moving with the pen intersects with a

vertical line AB that is fixed to the substrate. The distance of the intersec-

tion P from the x-axis is denoted by w. We see that Ũ = ẇ sin θ corresponds

to the radial velocity of the liquid front relative to the substrate. For a fan

angled θ from the x-axis, the driving force of spreading in radial direction

is given by Fd,m = γ(f − 1)r∆θ. The resisting force Fr,m due to the ra-

dial velocity of a liquid film, Ũ , is given by Fr,m ∼ µŨ(r2 − R2)∆θf/h.

Balancing Fd,m and Fr,m gives Ũ ∼ ϕγh/(µr). Because sin θ = w/r and

ẇ = L̇dw/dL with L̇ = u0, we get the equation of the liquid front:

w ∼ η(hL)1/2, (2.3)

where η = (ϕ/Ca)1/2 with the capillary number Ca defined as Ca = µu0/γ.

Fig. 2.5(c) shows that the dimensionless liquid front profiles, w/R versus

η(hL)1/2/R, measured for different liquids and substrates indeed collapse

onto a straight line with a slope 0.42. We emphasize that the parabolic

front profile of (2.3) is different from that of the Rankine half body which

is constructed by superposing a radially axisymmetric fluid source with a

uniform flow. It is because the source strength is not axisymmetric in our

case where the rate of liquid emission from the pen is governed by the front

profile which is a function of θ. Also, the translation of the substrate with

respect to the pen does not carry the entire liquid at the uniform velocity

16



2.4 Moving pen

but only drags the liquid touching the solid surface at u0 while exerting

shear stress over the liquid film of the thickness h.

The Rankine half body is constructed by the superposition of a point

source and a uniform stream [G.K. Batchelor, An Introduction to Fluid

Dynamics (1967) p. 461]. This process shows fundamental difference from

ink writing. Uniform flow like effect in ink writing process is the bottom

substrate movement under the this radial ink spreading. However, the

substrate moving in specific speed only provides viscous shear force, but not

the liquid moving in same speed, which gives obvious difference between

the two.

When we superpose a diffusive point source producing a radial flow of

magnitude vr = m/(2r), where m corresponds to the source strength, and

a uniform flow u0 in the horizontal direction, the stagnation streamline

is given by y = m(π − θ)/(2πu0). To see whether this matches the ob-

served liquid front profile drawn by a moving pen, we take the two different

source strengths. First, if we take the source strength of the stationary

pen, m ≈ 0.13ϕγh/µ (0.13 = 0.512/2 is an empirical constant obtained

via Fig. 2.2(c). Second, if we take the source strength to match the final

line thickness wf , m = 2u0wf . Fig. 2.7(a) shows that the superposition

of an axisymmetric source with a uniform stream predicts the line shapes

(I and II) significantly different from the actually observed front profile.

Even when we arbitrarily adjusted the location of the sources to match the

stagnation point with the experiments, Fig. 2.7(b), the difference persists.

The fundamental difference between the ink writing system and rankine

half body lies on the process of computation.

2.4.2 Final width

Fig. 3.7 shows the (a) experimental image and (b) schematic side view

of the edge of the liquid film laid out by a moving pen which is bounded by

the outermost pillars of the wet area. The meniscus pinned at the pillars
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2.4 Moving pen

of the boundary of wet area must overcome the energy barrier associated

with contact line pinning in order to advance to the next row, which is

unlikely due to the absence of liquid supply. Although the free energy

of the system can be lowered to an extent by wetting another row, the

pinning effect appears to dominate over this free energy reduction process

as experimentally observed. The spreading of a liquid drop on hydrophilic

micropillar array is investigated. And it is observed that the drop volume

controls the size of the wetted area.

In a liquid trail where no more liquid is supplied as a pen moves away,

the remaining film that has filled the gaps of the forest of micropillars stops

advancing to the next row due to the contact line pinning at the boundary

of the wet array as observed in experiment, so that the line width remains

bounded. To obtain the scaling law of the line width wf , we consider

the volume of liquid that wets a shaded area in Fig. 2.8(a) in a given

duration ∆τ . The volume, ∆Ω = 2wfu0h∆τ , is the sum of the amount of

liquid that spreads outward on the surface, ∆Ω1, and the volume of liquid

that comes in direct contact with the substrate beneath the tube, ∆Ω2,

with ∆Ω1 ∼ rŨh∆τ , where rŨ ∼ ϕhγ/µ, and ∆Ω2 = 2Ru0h∆τ . Letting

∆Ω = ∆Ω1 +∆Ω2, we find

wf

R
= α

η2h

R
+ β. (2.4)

Fig. 2.8(b) shows that the experimentally measured line thickness scaled

by R is indeed linearly proportional to η2h/R with the slope (α) and the

intersection with the y-axis (β) being 0.16 and 5.55, respectively.

Having quantified the dynamics of spreading of a simple liquid onto

a periodically structured micropillar array, we turn to the mechanics of

writing on paper, which is isotropic in plane but has strong variations in

pore structure and tortuosity through the thickness. The square array

used here is not perfectly isotropic but the anisotropy of flow on it was

almost indiscernible as can be verified by the circular wet area of Fig. 2.2(a).
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2.5 Conclusions

The fibers in paper guide two-dimensional liquid spreading, similar to that

investigated here, thus simply modifying ϕ(θ, z) will allow us to account

for anisotropy and inhomogeneity of real paper. To make a quantitative

comparison between our scaling law and the size of the ink blot and line

on real paper as shown in Fig. 2.1, we estimate the liquid film thickness

(or pore size) h ≈ 5 µm and ϕ ≈ 0.2 based on the SEM image. The nib

opening 2R = 0.1 mm, and the ink has the surface tension γ = 0.063

N/m and viscosity µ ≈ 3.8 mPa·s (Drechsler et al., 2010). When the

pen is held for ∼ 2 s, the radius of the blot is predicted to follow r =

0.51(ϕγht/µ)1/2 + 1.71R ≈ 3.0 mm and the line width with u0 ≈ 5 mm/s

is to follow rf = 0.16η2h + 5.55R ≈ 0.82 mm, estimates which compare

reasonably with the actual radius 1.3 mm and the width 0.7 mm. However,

we note that the theory overestimates the blot radius more than it does for

the line width, which is probably due to paper swelling.

2.5 Conclusions

In this chapter, we have constructed the scaling laws to describe the

size and shape of an ink dot and line drawn by a pen on a superhydrophilic

surface, and corroborated the results using experiments. Our experiments

and scaling laws capture the basic hydrodynamics of ink writing associated

with the spreading of a newtonian liquid on a porous substrate. Real inks

are not newtonian and furthermore dry quickly; in addition modern pens

are more sophisticated than the simple quill nibs of yore. In ballpoint pens,

for example, the line width is set by the dimension of the ball and its mode

of contact with paper, as a relatively viscous shear thinning ink that dries

very quickly is spread out by a rolling ball. Understanding how to combine

the dynamics of swelling and imbibition in soft porous media with the rate

of deposition will allow us to extend the process of writing to the creation

of functional porous surfaces on ever smaller scales.

19



2.5 Conclusions

Although our study focused on the spreading of ink supplied from a

capillary tube, the end mechanisms of modern pens may complicate the

physics. Also the study of ink spreading on three-dimensional fiber net-

work, i.e. real paper, is naturally in order, where hemispherically driven

capillary flows are resisted by viscous shear forces that follow Darcy’s law.

The scientific approach on the ink-spreading (or writing) process can help

to develop better writing instruments and surfaces and to understand the-

oretically transport processes relevant to paper-based microfluidics.(Mar-

tinez et al., 2008) Furthermore, the process of liquid front profile can be

theoretically applied in other diffusion problems involving moving source.
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(b)(a)

Figure 2.1: Images of ink trail and paper. (a) A blot (generated by holding

the pen at a fixed position for about 2 s, top view) and the end of the line

(tilted view) that is drawn with a modern fountain pen on rice paper. Scale

bars, 1 mm. (b) Scanning electron microscopy (SEM) images of rice paper

surface. Scale bar in the main panel and the inset, 150 µm and 10 µm,

respectively.
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Figure 2.2: Blot formation on supherhydrophilic surfaces. (a) Top view of

a liquid film emerging from a tube (which is out of focus) on a superhy-

drophilic surface. Scale bar, 1 mm. (b) SEM images of the superhydrophilic

micropillar array. Scale bar in the main panel and the inset, 80 µm and

15 µm, respectively. (c) The scaled blot radius (r/R) plotted according

to the scaling law (2.1). The slope of the best fitting straight line is 0.51,

and the corresponding root mean square of deviation (RMSD) is 0.59. A

characteristic error bar is shown in the lower right corner.
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Figure 2.3: Comparison of the radial evolution models of a blot with (broken

line) and without (solid line) including the tube radius R.
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Figure 2.4: Schematic of a small blot emitting from a tube on a smooth

surface which is limited by the competition of the capillary suction pressure

inside the tube and the Laplace pressure at the outer rim of the blot.
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Figure 2.5: Lines drawn by a moving pen. (a) A snapshot of the liquid film

spreading on a substrate as emitting from a moving pen. Scale bar, 1 mm.

(b) The coordinate system to describe the shape of the liquid front. (c) The

scaled film profile (w/L) plotted according to the scaling law (2.3). The

slope of the best fitting straight line is 0.42 with RMSD=0.16. The exper-

imental conditions for each symbol are listed in Fig. 2.6. A characteristic

error bar is shown.
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Figure 2.7: Comparison of the Rankine-half bodies and the actual front

profile of the line (liquid B) drawn by a pen of R = 0.5 mm moving with

u0 = 0.3 mm on the substrate with [h, d, s] = [18.3, 10, 40] µm. Lines I

and II are the predictions of the Rankine half body model which match the

source strength of the stationary pen and the final line width, respectively.

Line III is the parabolic profile of this work with the empirical parameters

obtained via Fig. 2.5(c). Diamonds are the experimental measurements.

(a) The locations of the actual pen and the sources of the Rankine half

body model coincide. (b) The source locations (a square for line I and a

star for line II) have been adjusted to match the stagnation point at the

origin. The filled circles in (a) and (b) correspond to the location of the

pen.
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Figure 2.8: (a) The shaded area wet by ink for a duration ∆τ , equals to

2rfu0∆τ . (b) The dimensionless line thickness wf/R scales linearly with

η2h/R regardless of liquid, pen speed, tube radius, and pillar array dimen-

sions. The slope of the best fitting straight line is 0.16 and its extension

meets the y-axis at 5.55 with RMSD=0.95. The experimental conditions

for each symbol are listed in Fig. 2.6. A characteristic error bar is shown.
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Figure 2.9: (a) Top view of the edge of the film of liquid C on the micropillar

array with [h, d, s] = [13.5, 15, 30] µm. (b) Schematic of the side view of

the edge of the liquid film.
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Chapter 3

Dynamics of hemiwicking

3.1 Introduction

Recent development in micro- and nanoscale surface patterning tech-

nology has made it possible to obtain tailored topography of solid surfaces

as well as wide range of wettability. This allows us to investigate novel

liquid-solid interaction behavior, which is qualitatively different from the

dynamics of liquids on smooth solid surfaces. On microtextured hydropho-

bic surfaces, drops roll (Mahadevan & Pomeau, 1999; ?) rather than slide.

Drops bounce (Bird et al., 2013; Richard & Quéré, 1999) or fragmentize

(Tsai et al., 2009) upon collision with the super-water-repellent surfaces

depending on impact conditions. When a drop is deposited on microdeco-

rated hydrophilic surfaces, the liquid wicks into the gaps of protrusions, a

behavior termed hemiwicking (Bico et al., 2002). Hemiwicking on the su-

perhydrophilic surfaces leads to a variety of intriguing flow characteristics,

such as polygonal spreading (Courbin et al., 2007), zippering wetting front

(Kim et al., 2011b), and enormously promoted rise of liquid film against

gravity (Xiao et al., 2010).

Here we consider the rate of liquid film climbing a rough hydrophilic

substrate that touches a liquid bath. Since the flow speed and film thick-

ness are so small that the inertia and gravity can be neglected compared to
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3.1 Introduction

the viscous resistance, the rate of hemiwicking is determined by the balance

between the driving capillary forces and the resisting viscous forces. Thus,

the fundamental physics does not differ from a capillarity-driven tube imbi-

bition problem (Washburn, 1921), and a simple scaling law can be readily

constructed as Ishino et al. (2007) explained as the following (Ishino et al.,

2007). As the capillary force is scaled as γa, where γ is the liquid-gas

surface tension and a is the lengthscale that generates the capillary effect,

and the viscous force is scaled as µLL̇, where µ is the liquid viscosity, L is

the imbibition distance from the source, and overdot is the time derivative,

the force balance leads to a diffusive rule for L: L ∼ (Dt)1/2, where the

effective diffusivity D ∼ γa/µ. A number of studies on the hemiwicking on

superhydrophilic substrates found that the imbibition length indeed grows

like (Dt)1/2.

However, rough substrates cannot be described by a single geometric

parameter like a tube with a constant radius a. For example, a square

array of circular micropillars should be described by the following three pa-

rameters: height, diameter, and spacing of the pillars. As a result, different

forms of effective diffusivity were suggested by different authors for regular

micropillar arrays, which were shown to be valid for the specific experimen-

tal conditions employed in each work. Below we find that those suggested

diffusivities hold in limited conditions only, implying that the most general

understanding on the hydrodynamics of hemiwicking has not been achieved

yet. Goals of the current study are three-folded. First, we aim to construct

a universally valid scaling law for hemiwicking and experimentally corrob-

orate the model. Second, we discuss the effects of pillar arrangements, or

the skewness of pillar lattice, on the hemiwicking flows. Finally, we find

the maximum pillar spacing up to which the current assumption of densely

spaced pillars is valid.
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3.2 Experiments

Liquid γ (N/m) µ (Pa·s)

A Water 0.073 0.0013

B Silicone oil 0.020 1.050

C Ethylene Glycol 99 wt% 0.048 0.018

Table 3.1: Liquid properties at about 23◦C.

3.2 Experiments

To fabricate rough hydrophilic substrates, we etch an Si wafer using

the deep reactive ion etching process, which results in pillar arrays of vari-

ous geometric parameters depending on designs of photomasks and etching

durations. The pillar arrays are coated with the Si-incorporated diamond-

like carbon film using the gas mixture of benzene and silane in a radio

frequency chemical vapour deposition chamber. Then the surfaces are

plasma-etched by oxygen to turn superhydrophilic owing to hydrophilic

Si-O bonds and nanoscale roughness. For more detailed process conditions,

see Yi et al. (2010) (Yi et al., 2010). As shown in Fig. 3.1(a), the indi-

vidual pillars are cylindrical with height h and diameter d, and arranged

with transverse and longitudinal pitches s1 and s2, respectively.(s1 > d and

s2 > d) The skewness of array is determined by α which can vary from 0

to tan−1(s1/s2). In our experiments, h and d range from 2.9 to 20 µm, s1

and s2 from 15 to 225 µm, and α from 0 to 60◦. As reservoir liquids, we use

water, silicone oil(1000 cst), and Ethylene Glycol 99 wt%, which are listed

in table.5.1 All the liquids completely wet the micropillar arrays, so that

the equilibrium contact angle of the liquids with the surfaces is nearly zero.

As the substrate, whose area measures approximately 4× 50 mm2, touches

the reservoir liquid, the liquid film climbs the surface, which is recorded by

a CCD (charge coupled device) camera at a frame rate up to 500 s−1.

While the front edge of the rising liquid film appears fairly straight

when viewed from a distance as in Fig. 3.3(a), close observations reveal
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Figure 3.1: (a) Geometric parameters of a cylindrical pillar array. (b) SEM

(scanning electron microscopy) image of a microwall array of Si. (c) Side

view of the microarray before (upper image) and after (lower image) being

impregnated by a liquid.
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Figure 3.2: Schematic diagram of micropillar arrays. Even the same struc-

tures can bring different results as flow directions.

complicated advancing dynamics originated from the presence of pillars.

On rectangular arrays with α = 0, the lateral propagation of a protruding

step, or zipping, must occur before the contact line advances to the next

row of pillars (Courbin et al., 2007; Kim et al., 2011a) as shown in Fig.

3.3(b). On skewed arrays as displayed in Fig. 3.3(c), liquid film apparently

radiated from each pillar drives the advance of contact line against gravity.

In the following, we construct a scaling law to predict the advancing speed of

the seemingly straight interface edge, and then investigate the microscopic

dynamics of liquid meniscus determined by the pillar arrangement.

3.3 Macroscopic model of hemiwicking dynamics

We consider the advancing rate of a liquid film on a superhydrophilic

textured substrate that touches a reservoir liquid. The film thickness is

defined by the pillar height, and the Reynolds number is given by Re =

ρUh/µ, where U is the rise speed. Re is typically O(10−10 − 10−2) in our
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3.3 Macroscopic model of hemiwicking dynamics
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Figure 3.3: (a) Macroscopic view of liquid rise due to wicking within an

array of micropillars. (b) Magnified view of liquid rise on a rectangu-

lar pillar array with α = 0 and {h, d, s1, s2} = {7.2, 10, 40, 40} µm. (c)

Magnified view of liquid rise on a skewed pillar array with α = 60◦ and

{h, d, s1, s2} = {20, 20, 216.5, 62.5} µm
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3.3 Macroscopic model of hemiwicking dynamics

experiments, allowing us to ignore the effects of inertia as compared to

viscosity. The Bond number, defined by Bo = ρh2g/σ, with g being the

gravitational acceleration, is O(10−7 − 10−4), implying negligible effects of

gravity. The flow is driven by capillary forces at the rising front. The change

in the surface energy associated with the advance of the liquid front by dL

is given by: dE = {γ[1 − π
4d

2/(s1s2)] + (γSL − γSG)[f − π
4d

2/(s1s2)]}dL,
where f is the roughness defined as the ratio of the actual solid surface

area to the projected area, γSL is the interfacial tension between solid and

liquid, and γSG is that between solid and gas. Upon the basis of Young’s

equation, γ cos θ = γSG − γSL, we get dE = −γ(f − 1)dL. The driving

force can be estimated as Fd = −dE/dL assuming that the pillar diameter

and pitches are negligibly small compared to the rise height, so that we get

Fd = (f − 1)γ.

Negligibly small effects of inertia imply that the driving force is bal-

anced by the resisting viscous force. Observing the side view of the liq-

uid spreading through a forest of micropillars, Fig. 3.1(c), we find that

the tops of the pillars are hardly wetted as the wet front propagates. Al-

though we do not preclude the possibilities that the top surfaces become

wet slowly as the liquid meniscus climbs the pillars over a long time, it

would hardly affect the rate of wetting that occurs at the propagation

front. To evaluate the shear force exerted by the substrate base, Fr,1, we

simply assume the average flow speed of U in region I and U ′ in region

II of Fig. 3.1(b). Continuity allows us to write U ′ = 2Us1/ds, where

the average distance between the adjacent pillars ds = s1 − π
4d. Then

Fr,1 ≈ µ[Us1(s2 − d)/h+ U ′dds/(2h)](L/(s1s2)) ∼ µUL/h, where ∼ signi-

fies ”is scaled as” and L is the rise height of the liquid film. The shear force

exerted by the pillar side, Fr,2 ≈ 2µU ′dhL/(s21s2) ∼ µUL(h(f −1)/s+ c)/h

with s = s1 − d. We note that c/[1 + h(f − 1)/s] is typically smaller

than 0.1, thus we may write the total resisting force as Fr = Fr,1 + Fr,2 ∼
µUL[1 + h(f − 1)/s]/h. Additional resisting forces arise in the vicinity of
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3.3 Macroscopic model of hemiwicking dynamics

the contact line where the shear force tends to infinity if a classical no-slip

boundary is applied (Huh & Scriven). Using a cutoff length λ ∼ 1 nm to

avoid the contact line singularity, the shear force near the contact line is

scaled as Fc ∼ µU ln(s/λ)/θ, where the advancing contact angle θ ≈ 5◦.

As Fc/Fr < O(0.1) for L > 5 mm, we neglect the effects of the wedge

dissipation near the contact line.

Balancing Fd and Fr gives the speed of the hemiwicking front U as

U = dL/dt ∼ ηγh/(µL), where the dimensionless coefficient η is specified

solely by the pillar structure: η = (f − 1)/[1 + h(f − 1)/s]. Integrating the

preceding relation for L yields

L ∼
(
η
γ

µ
h

)1/2

t1/2. (3.1)

While a similar scaling relation that reveals the diffusive dynamics of a

hemiwicking front on micropillar arrays was reported earlier (Kim et al.,

2011a,b), here we suggest a generalized coefficient η, which is not restricted

to a case where h ≈ s as in the previous works. We compare this theoretical

prediction with the experimental results obtained with various pillar arrays

and different liquids in the following.

Fig. 3.4(a) shows that the propagation distance of wetting front in-

creases linearly with
√
t for various pillar arrays and liquids, but with dif-

ferent slopes. In particular, the diffusive dynamics is observed to hold even

for skewed lattices. The schematic diagrams of the lattice configuration are

demonstrated in Fig. 3.2. We see in Fig. 3.4(b) that the current scaling

law (3.1) makes all the data collapse onto a single straight line. In the plot,

we scaled the distance L with the capillary length lc = [γ/(ρg)]1/2, which

corresponds to the characteristic height of the meniscus touching a smooth

hydrophilic vertical wall. Our scaling law is seen to be valid regardless of

skewness of the pillar lattices despite obvious differences in microscopic flow

characteristics as demonstrated in Fig. 3.3. Fundamentally, the flows of

this study are classified as an inertia free flow. Mathematically, there is no
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3.4 Microscopic model of hemiwicking dynamics

term of flow speed gradient in flow direction, meaning that the dynamics is

only determined by the instant state itself, not by the previous movement.

Accordingly, the total number of pillars with uniform longitudinal distance

is important for both of the driving force and resiting force, while the rela-

tive location of the pillars from the previous row is not a dominant factor.

(See inset of Fig. 3.4(b)) Thus, the skewness which determines the location

does not seriously affect the flow dynamics.

Our scaling law with the structure coefficient is compatible with other

theories, by considering ranges of aspect ratio of the gap (s) and pillar

height(h). When the gap is much larger than pillar height, η is approxi-

mately equal to f − 1. Then, our theory is identical to another theory of

Quéré for the same condition (Ishino et al., 2007). If the pillar as high as

the gap, η ≈ 1 − 1/f (Kim et al., 2011a). As the pillar height is much

larger than the gap, dominant resisting force takes place on pillar walls,

which leads the η ∼ s/h. According to the Quéré’s theory, the imbibition

coefficient is similar to Dqu ∼ (γ/µ)d(ln (d/s+ 1) − 1.31), and the coef-

ficient based on our theory is Dth ∼ (γ/µ)s. For wide range of ratio of

d and s, (4 < s/d < 100), Dth/Dqu ∼ O(1), where the equal condition

(Dth = Dqu) is established when ln (d/s+ 1)− 1.31 ≈ πs/d.

3.4 Microscopic model of hemiwicking dynamics

A major assumption underpinning the foregoing scaling law, (3.1), is

that the wetting flow is continuously driven by surface roughness. Due to

the continuity of the assumption, given an infinitesimal length scale ϵ≪ L,

speeds of L + ϵ and L − ϵ are identically estimated as ∼ ηγh/(µL), by

the scaling law (3.1). However, by the microscopical experiments of wide

longitudinal gap, s2−d, the interfacial speeds passing a pillar instantly and

sweeping the substrate base sufficiently far from the pillar are obviously

different, as shown in Fig. 3.3(b) and (c). For solving the inequality of the

macroscopic law and the microscopic experimental result, we aim to analyze
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Figure 3.4: (a) Propagation distance of the liquid-air interface versus
√
t.

(b) The scale wetting distance (L/lc) plotted according to the scaling law

(3.1). The slope of the best fitting straight line is 0.49. (c)Experimental

conditions for the symbols
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3.4 Microscopic model of hemiwicking dynamics

the microscopical propagation to approach the scaling law (3.1) in different

manner and examine the assumptions implicitly used in the macroscopic

scaling model. Additionally, using the comparison analysis of macro and

micro scaled models, we aim estimate the validation limit of the scaling law

(3.1), as well, in this section.

For the microscopic point of view, we start from employing the lubrica-

tion theory since the flow forms thin wide film. Here, the theory is slightly

modified, by using an adjustment parameter, (f − 1)/η, because the flow is

resisted by pillar side as well as substrate base. The adjustment parame-

ter, ratio between the shear stress of actual surface and the shear stress of

ideally smooth substrate with film thickness being h, is already derived in

macroscopic model. So and denoting the local flow speed, Ulo(x) for local

propagation distance x, (See Fig. 3.5(a)) the modified lubrication relation

is written as

dp(x)

dx
∼ µ

f − 1

η

Ulo(x)

h2
. (3.2)

Using the linear assumption of the pressure gradient, dp(x)/dx ∼ (p(0) −
p(x))/x ∼ (p0 − p(x))/(L + x) and mean force relation h(p0 − p(x)) ∼
−dE(x)/dx (Srivastava et al., 2010), the pressure gradient term is scaled

as

dp(x)

dx
∼ −dE(x)

dx

1

Lh
, (3.3)

since L≫ x. These approximations are reasonable because the film thick-

ness is uniform and approximately equal to the pillar height, as shown in

the side view images of Fig. 3.1(c).

In case of the macroscopic model, varying local driving force is not

addressed but mean driving force is employed, which gives

Fd = (1/s2)

∫ s2

0

dE(x)

dx
dx =

E(s2)− E(0)

s2
= γ(f − 1). (3.4)
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3.4 Microscopic model of hemiwicking dynamics

Furthermore, varying local speed cased by the varying local driving force

is not addressed, either, but mean flow speed is employed as

U = (1/s2)

∫ s2

0
Ulo(x)dx. (3.5)

Considering the scaled pressure gradient term (3.3) and integrating the

modified lubrication relation yields,

∫ s2

0
−dE(x)

dx

1

Lh
dx ∼

∫ s2

0
µ
f − 1

η

Ulo(x)

h2
dx. (3.6)

Substituting the corresponding terms for the mean driving force and mean

speed, the scaling law of flow speed in the macroscopic model is derived

as U ∼ (γh)/(µL), which is identical to the macroscopic model. For the

microscopic analysis, the mean value relations (3.4) and (3.5) are not used

but varying driving force and speed are addressed. Thus, the microscopic

movement for the interface is mainly focused.

When liquid interface reaches the bottom of a pillar, the liquid starts

to wet the pillar since wet state is energetically more stable than dry state.

At the beginning of the wetting, the liquid climbs up the pillar and spreads

on the substrate simultaneously, as shown in Fig. 3.5(b), which is referred

to as climbing. When the liquid perfectly wets the pillar, climbing stops

but the spreading keeps preceding by the next pillar, which is referred to

as sweeping, as shown in Fig. 3.5(b). The starting point of sweeping is

indicated as x = x0 in Fig. 3.5(b). While climbing, capillary force arises

at the interface by wetting pillar side, which drives the liquid flow. The

driving force per unit width derived by the energy change rate is −dE/dx =

−dE/dy(dy/dx) = Fc(dy/dx) by the chain rule, where Fc means climbing

force. Considering Fc ≈ πdγ/s1 and dy/dx ∼ h/s2, the driving force is

scaled as ∼ γπd/(s1s2) = γ(f − 1). Combining this relation with the form

(3.3), the pressure gradient term of the modified lubrication relation (3.2) is

written as γ(f − 1)/(Lh); thus, the local propagation speed of the climbing

is as follows,
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3.4 Microscopic model of hemiwicking dynamics

Ulo(x) ∼ η
γh

µL
, 0 < x ≤ x0. (3.7)

As shown in the scaling law above, the speed of microscopic model of

climbing is identical to that of the microscopic model. (See the section

3) However, when the liquid trace rises up the pillar completely, sweep-

ing starts and the frontal speed slows down, since pillar effect on driving

force becomes smaller than that of the climbing. The liquid front end

keeps spreading the substrate base fixing the other end at the pillar top

edge. The pressure drop is roughly evaluated by geometrical model of front

meniscus in Fig. 3.5(b). The radius of curvature of the meniscus is roughly

R(x) ≈ (h2 + x2)/(2h) and is inversely proportional to the instant pres-

sure drop, γ/R(x). Considering that the pressure drop take places at the

vicinity of the pillar, the mean pressure gradient for unit width is scaled

as ∼ γ/(LR(x))(d/s1) ≈ hγ/(L(x2+h2))(d/s1). Substituting this form for

the pressure gradient term in the modified lubrication relation (3.2), the

scaling law of sweeping speed yields,

Ulo(x) ∼ η
γh

µL

s2h

x2 + h2
, x0 < x. (3.8)

In contrast to the climbing, the scaling law (3.8) shows obvious difference

from the macroscopic model. The relations (??) and (??) give two asymp-

totic lines, x ∼ {(γ/µ)ηh/L}t for 0 < x ≤ x0 and x ∼ {(γ/µ)ηdh3/s1/(f −
1)/L}1/3t1/3 for x0 ≪ x, respectively, which show good agreement with

experimental data points in Fig. 3.5(c)and (d) for a rectangular array and

a hexagonal array, respectively. Insets of Fig. 3.5 (c) and (d) show the

power laws of the two regimes.

To predict the validation limit of the scaling law (3.1) quantitatively, it

is necessary to investigate microscopic behavior of liquid spreading. When

liquid reaches pillar bottom, liquid starts to spread radially. Due to the

isotropy, the liquid trace moves toward any of dry pillars at the front and
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3.5 Conclusions

the pillar that the liquid touches becomes next foothold for the succes-

sive spreading. If only climbing takes place before it reaches the next

pillar, the speeds of the macroscopic model (3.1) and microscopic model

(3.7) are identical, implying that our scaling law (3.1) is valid. However,

if both of climbing and sweeping occur, as sweeping starts, the local speed

of microscopic model (3.8) begins to deviate from that of the macroscopic

model implying that the scaling law (3.1) is invalid. Thus, comparison of

x0 and the distance for reaching the next pillar, the minimum distance

(pmin), is important to determine the validity. The minimum distance

is pmin = min(s2/ cosα,
√

(s2/ cosα− s1 sinα)2 − s21 cos
2 α) given by geo-

metrical analysis. Letting w = pmin − d and using dimensionless compo-

nents ζ = h/w and λ = d/w, topographic assumption, x0 ∼ h, gives the

propagation distance ratio, Π = x0/pmin as

Π ∼ ζ

1 + λ
(3.9)

Fig. 3.6 shows a map describing the experiments using dimensionless

parameters w/d and h/w with the boundary line of (3.9) and the exper-

imental data points. As shown in this figure, the valid data points and

the invalid data points are well separated by the boundary theory. Given

the pillar properties h and d, sparser pillar array (larger w) results in a

longer sweeping distance, whereas denser array (smaller w) reduces the dis-

tance. Pillar diameter also slightly affects the validity. If the diameter is

remarkably large, it also enlarges the sweeping distance.

3.5 Conclusions

In this chapter, we have experimentally and theoretically studied capil-

lary rise of a liquid deposited on a single substrate with micro pillar arrays.

We prepared dozens of different substrates with cylindrical pillar arrays and

observed the macroscopic and microscopic behavior of the capillary rise of
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Figure 3.5: (a) Simplified model of liquid sweeping process between pil-

lars. (b) Schematic diagrams of microscopic advancing process, which in-

clude climbing a pillar and sweeping on the bottom. (c) and (d) Plots

of advancing distance between pillars with (c) L = 5mm, α = 60◦, and

{h, d, s1, s2} = {20, 20, 216.5, 62.5} µm and (d) L = 20mm, α = 0◦, and

{h, d, s1, s2} = {7.2, 10, 40, 40} µm. Insets show logarithmic plots of the

two cases where the arithmetic average of the slopes of the best-fitted lines

are 0.997 and 0.368 for (c) and 1.000 and 0.308 for (d), respectively.
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Figure 3.6: Scope of experiments of this study with the propagation dis-

tance ratio curve, Π ≈ 0.07 (Inset) Separation of experimental data by the

ratio. Circle and triangle marks indicate valid and invalid points of scaling

law (3.9), respectively.

a few liquids. The macroscopical liquid movement seems to be smoothly

deposited, but it involves intrigue microscopical liquid spreading according

to the pillar arrays. Scaling analysis has been performed for the dynamics

of interfacial propagation distance by using surface tension force and resist-

ing shear force and it is shown that the macroscopic propagation follows

Washburn’s law (L ∝ t1/2). Inertial force is neglected due to small film

thickness (micro-scale) and low flow speed and the gravitational force is

also neglected in the range of our interfacial height interest (smaller than

5cm) of this scaling analysis. In this study, we focused on the structural

dependency as a function of the unit pillar height, diameter, and pitch, as

well as the pillar configuration, which is quantified by the structure coef-

ficient η = (f − 1)/[1 + h(f − 1)/s1] in our scaling law (3.1). Skewness of

the pillar rows has been also investigated, but cases with different skewness

do not show any significant difference for same longitudinal and transverse

pitches (s1 and s2). Also, separating the microscopic propagation by climb-

ing and sweeping, we derive scaling laws of the spreading dynamics, which

are verified by experiments. Comparing results of the macroscopic model
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Figure 3.7: Rise height is limited by gravity. The pillar configuration of the

substrate is rectangular where s1, s2, d, h and f are 75 µm, 75 µm, 10 µm,

2.9 µm and 1.016, respectively. The line slope is 0.49, which is the same

straight line in the figure 3.4

and microscopic model, we derive a scaling law of the validation limit of

the scaling law (3.1) deduced through the macroscopic model.

In experiments, we observed that the gravity is negligible at the be-

ginning, whereas it is no longer negligible when the liquid reaches high.

At this moment, the propagation stops, as shown in Fig. 3.7. The height

limit is simply derived by considering the meniscus propagation between

pillars. The negative pressure that the meniscus generates gets smaller un-

til it reaches the next pillar and the minimum pressure drop is estimated

as ∼ γh/(h2+w2). When it cannot overcome the hydrostatic pressure, the

propagation stops and the critical height (Hcri) is predicted by balancing

the two pressures, which is Hcri ∼ γh/(ρg(h2 + w2)).

Although the flow along the rectangular pillar arrays regularly has been

studied intensively, the flow in different direction such as diagonal direc-

tional flow has not been investigated yet, but proposed theories using rough-

ness term with pillar dimensions that are independent of the direction.

However, the longitudinal pillar gap s, perpendicular to the flow direction,
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Figure 3.8: Schematic diagrams of different directional flows when the sub-

strates are (a) rectangular (UI and UII) and (b) hexagonal pillar arrays

(UIII and UIV ). sI < sII and sIII < sIV result UI < UII and UIII < UIV ,

respectively because larger gap causes resisting force smaller in spite of

same roughness and pillar dimensions.

is a critical factor to determine the flow resistance, inversely proportional

to the distance between pillars. The dependency of s is enhanced when the

pillar height is relatively large. Different gap sizes make an obvious dif-

ference in speed despite of same roughness. For example, the flow parallel

to a rectangular array is slower than diagonal directional flow due to the

different the gap sizes, as shown in Fig. 3.8(a). Likewise, the hexagonal

arrays show different flow speed between longitudinal and transverse im-

bibition.(Fig. 3.8(b)) Given the pillar dimensions and roughness (h, d, f),

maximum gap, smax ∼ πh/(f − 1), allows the flow speed maximized where

the structure coefficient ηmax ≈ f−1
1+(f−1)2/(π−d(f−1)/h)

. Consequently, by

controlling s, the flow speed can be optimized when the number of pillars

are limited on a specific areal substrate.

Our study offers a more accurate but simple theory that is applicable to

a wide range of structural properties. Thus, it can provide a reasonable the-

oretical basis for related fields such as lab-on-a-chip, humidifier, heat pipe

or other industries using porous media as a liquid channel. For instance,
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3.5 Conclusions

this study will provide theoretical basis on analysis of liquid flow in wicks

of micro heat pipe, in heat pipe industries and control of the film spreading

on porous plates in dehumidifier industries. Furthermore, our scaling laws

can contribute toward future studies of liquid imbibition in porous media

owing to the simplicity and high accuracy. Multi-porous flow or imbibition

within highly complicated structures can benefit from our scaling laws.
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Chapter 4

Capillary rise between

superhydrophilic substrates

4.1 Introduction

When we vertically place a towel on water surface, water rises up along

and inside the towel. And in case of a brick on water puddle, water imbibes

up through the tiny gaps between the granules of the brick. These com-

mon phenomena are caused by capillary force of water which overwhelms

the gravity. The vertical capillary imbibition against gravity is called by

capillary rise, which is widely studied for decades. In the studies, vari-

ous types of channels are employed, such as a cylindrical tube, two parallel

rigid smooth surfaces, or single sized micro porous substrates (Dreyer et al.,

1994; Levine et al., 1979; Xiao et al., 2010). Unfortunately, most of the phe-

nomena involved in nature and laboratory are not the flow of single sized

porous media or along the smooth channel but the flow within multi-porous

structures, where considerably complicated analysis to understand the dy-

namics is demanded. Nevertheless, the detailed analysis of multi-porous

media flow at a time is still difficult since substantial amount of stepwise

studies are further required for perfect understanding in current level. In

this study, as a part of the stepwise studies, we propose one of the simplest
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Figure 4.1: Experimental setup for understanding capillary rise of dual

porous structures. Two superhydrophilic substrates are used for parallel

porous plates on which micro pillar arrays are rectangularly arranged. The

scanning electronic microscopy(SEM) image shows the micro structures.

Bulk flow occurs at the gap between the walls and film flow occurs above

the bulk part.

form of the flow in multi-porous system, capillary rise within parallel super-

hydrophilic substrates, a dual porous system that involves a millimetric gap

between the substrates and ten micrometric pillars of the substrate. We

aim to construct scaling laws elucidating the flow within the gap, another

flow through the micro structures forming a thin film and the correlation

of the two flows and experimentally verify the laws.

4.2 Experiments

The capillary rise within parallel porous substrates was once introduced

in 2002 (Bico et al., 2002). But, they proposed the idea without performing

further theoretical or experimental approaches. In this work, we prepared

an experimental setup, as shown in Fig. 4.1, and performed experiments
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4.2 Experiments

Liquid γ (N/m) µ(Pa·s) ρ(kg/m3)

A Glycerine 90 wt% 0.063 0.125 1225

B Glycerine 85 wt% 0.063 0.086 1213

C Ethylene glycol solution 0.052 0.062 1168

D Silicone oil 350 cst 0.020 0.35 970

E Silicone oil 1000 cst 0.020 1.00 970

Table 4.1: Liquid properties at about 23◦C.

in various conditions depending on the porous substrate properties, liquid

properties(surface tension and viscosity) and a gap between the substrates.

For the porous substrates, we use two parallel superhydrophilic substrates,

silicon wafers that are decorated with cylindrical micro pillar arrays that

are fabricated by DRIE process, as already used before in other studies

(Courbin et al., 2007; Kim et al., 2011a,b). The entire substrate is, addi-

tionally, coated with the Si-incorporated diamond-like carbon film to en-

hance the wettability and the substrate is plasma-etched by air to make

the substrate superhydrophilic (Yi et al., 2010).

The pillars are squarely arranged and individually cylindrical with di-

ameter d, height h and pitch (pillar center to center distance) s: h, d, s∈[5
40]µm. (See Fig. 4.1) Aqueous glycerine solutions with different concen-

trations 85 wt% and 90 wt%, ethylene glycol solution with glycerine in the

mixing ratio, 60 wt% and 40 wt%, and silicone oils (350cst and 1000cst)

are used for deriving the dependency of surface tension and viscosity, which

are listed in Table 5.1. And the gap between the parallel plates are in range

of [450 1200]µm. The images are taken by a CCD (charge coupled device)

and magnification lens with frame rate, [30 60] s−1.

When the end of the substrates gently touch liquid surface, the liquid

immediately inflows into the gap between the two substrates. The flow

involves two different scales of flow, bulk flow and film flow. The bulk

flow means the flow between the substrates with bulk meniscus as large as
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Figure 4.2: (a) Additional experimental setup for clear visualization of

the film flow. A transparent smooth glass plate is used for observing film

propagation impregnating the micro pillar arrays of the substrate. (b) At

the beginning, only bulk flow is observed. (c) Whereas, as the bulk speed

decreases, film emanates above the bulk.
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4.3 Bulk flow dynamics

the gap size. And the film flow means the flow through the micro pillar

arrays on the substrates, forming a thin film of which the thickness is

approximately the pillar height, h. For the clear visualization of the film

flow, we prepare additional experimental setup, in which a transparent glass

plate is used with the superhydrophilic substrate, delineated in Fig. 4.2(a).

The transparent glass sheet plate is pre-wetted to sufficiently reduce the

contact line singularity. Initially, only bulk flow occurs, whereas, later,

film flow starts to emerge from the bulk on the substrates as the bulk flow

slows down, hence, both flows eventually occur at the same time. (See

Fig. 4.2(b) and (c)) Both of the flows arise due to minimize the surface

energy, the capillarity. It is necessary to analyze the kinetics of the flows

to construct scaling laws delineating the liquid movements.

4.3 Bulk flow dynamics

In case of the bulk flow, the flow is driven by pressure difference between

the bulk meniscus and the entrance due to the capillary pressure drop of

the bulk meniscus. The pressure drop, laplace pressure, is approximately

evaluated as σ/r with σ and r being surface tension coefficient and half of

the gap size, respectively.

Even though the wall substrates have pillars which contribute to in-

crease the pressure drop, the scale of the pressure drop is too small to

significantly affect the bulk flow due to the small size of the pillars,(r ≫ h)

which gives that the bulk meniscus dominantly drives the bulk flow. So,

the driving force, product of pressure and exerted area, is then given by

Fb,d ∼ σ in the form of force per unit width. The flow is resisted by grav-

ity and viscous shear force. The gravitational force by the liquid weight

is roughly estimated by Fb,g ∼ ρgHbr, with Hb being the bulk height as

delineated in Fig. 4.1. The viscous shear force is evaluated in a product

of shear stress and the area of the walls. Considering the pillar height is

too small to resist the bulk flow, the shear stress is approximately scaled
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4.3 Bulk flow dynamics

as ∼ µUb/r with Ub = dHb/dt and the exerted area is estimated as the

projected area of the micro textured wall, not the actual area (Lee & Kim,

2014). Accordingly, the force is scaled as Fb,τ ∼ µUbHb/r. The flow is in-

dependent of the inertial force, because Reynolds number is much smaller

than 1, Re ∼ O(10−4). So, the total resisting force, sum of the gravitational

force and the viscous shear force (Fb,g + Fb,τ ) is balanced with the driving

force (Fb,d ∼ σ) which gives the governing equation as,

σ

r
∼ µ

UbHb

r2
+ ρgHb. (4.1)

As shown in the law (4.1) of bulk flow, there does not exist any term

about the micro pillar structure. For verification, we focus on experiments

of bulk rise within substrates of different roughnesses, including ideally

smooth substrates for comparison. To prevent the contact line singularity,

the smooth substrates are pre-wetted before the experiments. Fig. 4.3

represents the experimental results of rough substrate less rough substrate

and smooth substrate with a curve using the scaling law (4.1), which shows

good agreement between the data points and the theory. The gravitational

effect, not significant at the beginning, gradually increases at late time and

eventually stops the flow. The final height is expressed as ≈ σ/(ρgr), which

is the Jurin’s height, HJ (Jurin, 1717-1719), which is also consistence with

the experimental results in Fig. 4.3. The scaling law (4.1) is identical to

the well-known theory, capillary rise between smooth surfaces (Washburn,

1921). Consequently, in spite of existence of the hydrophilic micro pillar

arrays on the substrate, the bulk rise of any rough substrates shows almost

identical flow behavior as that of smooth pre-wetted substrates with equal

gap size.(= 2r) In other words, the bulk rise is independent of micro pillar

configurations only when the pillar is relatively quite small. This result

is similar to another study about capillary rise within rectangular tube,

combination of bulk rise and interior corner rise in comparatively small
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Figure 4.3: Dimensionless form of bulk heights (Hb/HJ) of different sub-

strates, plotted according to the relation (4.1) for same liquid Glycerine

90wt%. Substrate 1 and substrate 2 are a rough substrate and less rough

substrate, of which the scale of the micro pillar arrays are [s=40, d=20,

h=35]µm and [s=40, d=10, h=2.7]µm, respectively. Substrate 3 is ideally

flat substrate pre-wetted by the liquid. As shown in the plot, independent

of the micro pillar arrays, the bulk flows show almost identical behavior to

that of the smooth pre-wetted substrates. The horizontal line shows the

final height, which is almost identical to the Jurin’s height for the gap size,

r. (Hb/HJ ≈ 1.0)

scale, where the bulk rise occurs independent of the interior corner rise

(Weislogel, 2012).

4.4 Bifurcation point

Before it reaches the Jurin’s height, as the bulk flow speed decreases,

film starts to deviate from the bulk at a specific point and be shown up

on the substrate above the bulk. The point when the liquid becomes to

bifurcate is referred to as bifurcation point.

The bifurcation occurs at the height where the bulk rise speed (Ub)
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Figure 4.4: (a) Non-dimensional form of bifurcation point using capillary

length,
√
σ/ρg, plotted according to the scaling law (4.2). The best fit-

ting line of the data points is approximately Hi/Lc ≈ 0.814(HJ/(1 +

αϕHJ/r))
1.02. The experimental conditions, including micro pillar sizes,

for each symbol are listed in (b).
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4.4 Bifurcation point

becomes to be lower than the initial speed of film rise (Uf ). The bulk

speed is estimated as Ub ∼ r(σ − ρgHr)/(µH), derived from the equation

(4.1). Unlike the bulk flow, the dynamics of film flow is directly affected

by the micro pillar arrays. When considering film flow initiation, we have

to concentrate on the precursor film propagation at the front, since the

film flow begins by extremely thin film propagation toward dry substrate

above. Given the roughness (f), equal to the ratio of the actual solid area

and the projected area, the mean pressure drop due to the micro pillar

array at the wet front is scaled as ∼ σ(f − 1)/h, which is derived by mean

surface energy change rate (Srivastava et al., 2010). The pressure difference

between the wet front and bulk meniscus is roughly ∼ σ((f − 1)− h/r)/h,

which is typically ∼ σ(f − 1)/h, since r ≪ h. So, the driving force is

scaled as Fdf,i ∼ σ(f − 1). At the moment when the film starts to emanate

from the bulk, there is no liquid film on the substrates above the bulk,

thereby dominant shear stress occurs only at the vicinity of the contact line,

meaning that the viscous dissipation arises to resist the flow. When the flow

is resisted at the precursor film at the front end, contact line singularity

take places. To derive the initial film rise speed, Uf , gravitational and

inertial forces are neglected, because the scale of the film thickness and

imbibition speed are quite small. The shear stress at the precursor film

is scaled as τf,i ∼ µUf,i/(xθ), considering precursor thickness is hf,i ≈ xθ

where x is the distance from contact line and θ is the intrinsic contact angle

of the substrate, approximately 5◦. The exerted area is the entire surface

including pillar side area and base area, which roughly gives the area, fdx

in average. So, the resisting force at the precursor film is roughly estimated

as Frf,i ∼
∫ Λ
λ µUf,if/(xθ)dx ∼ µUf,if ln (Λ/λ)/θ, where Λ ∼ O(10−6) and

λ ∼ O(10−9) are the characteristic extension of the wedge and the cut-off

length (order of a molecular size), respectively (de Gennes et al., 2004).

Balancing the driving force and dominant resisting force, Fdf,i ∼ Frf,i,
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4.5 Film flow dynamics

the film emerging speed can be derived as Uf,i ∼ σϕθ/(µ ln(Λ/λ)), with

ϕ = 1− 1/f .

By Uf,i ∼ Ub, the bifurcation point can be quantitatively derived. Using

a constant α = θ/ ln(Λ/λ) ≈ 0.0126, Jurin’s height, and capillary length

(Lc =
√
σ/(ρg)), the bifurcation height, Hi, is approximately written in

dimensionless form as the following,

Hi

Lc
∼ HJ/Lc

1 + αϕHJ/r
. (4.2)

Fig. 4.4(a) shows that the experimental data points collapse onto a single

line. The bifurcation point is directly associated with Jurin’s height, which

is verified by the scaling law (4.2). For the same Jurin’s height, the larger

gap size is and the smaller roughness of the porous substrate is, the lower

bifurcation point is located. Thus, if the film propagation speed is relatively

high, the bifurcation occurs at low height, whereas, if the bulk speed is

relatively high, the bifurcation is postponed until the bulk speed becomes

to be sufficiently low for the film initiation speed to overwhelm the bulk

speed.

4.5 Film flow dynamics

As the bulk height passes the bifurcation point, thin film emerges on

the substrate to start to advance ahead of the bulk. During the film flow,

gravity does not significantly affect the flow in the range of our interest. ([0

0.07]m) The film spreading, where the distance is measured by the height

difference of bulk and film, is separated by two distinct regimes, where the

distance is linear to the elapsed time (early stage) and where the distance

is proportional to the time to the one-half,(late stage) as shown in Fig. 4.5.

In energetic point of view, as the bulk and the film advance, total surface

energy decreases. Simultaneously, gravity and friction due to shear stresses

at bulk and film increase the energy of the system meaning that these act
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Figure 4.5: The film rise shows mainly two different flow tendencies ac-

cording to the power law of the film flow dynamics. At moment the film

emerges from the bulk, the propagation distance (Ht − Hb) is linearly re-

lated to the time duration. However, as the film sufficiently propagates,

the propagation distance is eventually proportional to the square root of

the time, which represents the classical diffusive behavior.
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4.5 Film flow dynamics

as energy loss for the flow. Inertia is negligible, since flow speed everywhere

is generally not sufficiently fast. The surface energy change rate is written

as sum of ∼ −σdHb for the bulk and ∼ −σ(f − 1)dHt for the film, where

Ht means the total height and is film height when film exists. The rate for

gravity is ∼ ρgHbrdHb. The friction loss occurs at both of the bulk and the

thin film, meaning that as the liquid is supplied through the bulk for the

film flow, viscous shear force is generated at the bulk as well as the film.

The shear forces of the both flows are evaluated as products of shear force

and the exerted area in bulk and film parts.

To derive the dominant shear force, viscous dissipation should also be

considered to be estimated and compared with other shear forces. Given the

wedge speed, Uw, the shear force at the wedge is scaled as∼ µUwf ln (Λ/λ)/θ,

as already derived. When film flow exists unlike the initiation, we assume

the speed of the wedge of which height is hw is roughly estimated as the

flow speed at the same height (hw) in the film, Uw ∼ Ut(hw/h), with Ut

being film advance speed. So, the viscous shear force due to the viscous

dissipation at the wedge is scaled as Fr,w ∼ µUthwln(Λ/λ)/(hθ). The shear

force generated at the film is roughly ∼ µUt(Ht −Hb)/h which is typically

greater than the Fr,w, because the shear force ratio of contact line singular-

ity(viscous dissipation) and the film is less than 10−1 for Ht−Hb > 10−4m.

Thus, the flow is not significantly affected by the viscous dissipation any

longer except the initiation.

Using the dimensionless parameter, ζ = 1+h(f − 1)/w with w = s− d,

the surface energy change rates above are estimated as ∼ µUHbdHb/r

and ∼ ζµUt(Ht − Hb)d(Ht − Hb)/h , where U and Ut = dHt/dt are the

average speeds of the bulk and the film propagation speed, respectively

(Kim et al., 2015). Thus, the energy change rate for the whole system is

roughly estimated as,
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4.5 Film flow dynamics

σ(1+(f−1)
Ut

Ub
) ∼ ρgHbr+ρg(Ht−Hb)h+µ

UHb

r
+µζ

Ht −Hb

h
(Ut−Ub)

Ut

Ub
.

(4.3)

The scaling law (4.3) is a universal relation describing the dynamics of

bulk and film rise. The volume conservation, 2U(r+h) ≈ 2rUb+hUt gives

U ≈ Ub+h(Ut−Ub)/r, because r ≫ h. Moreover, in this height range Ht ∈
[0 70] mm, the gravity term, ρg(Ht −Hb)h is neglected for r ≫ h. Before

the film emanates, Ht is equal to Hb, which gives the relation (4.3) being

the bulk relation (4.1). Using the volume conservation and subtracting the

bulk relation (4.1)from the scaling law (4.3), the film propagation dynamics

is written in the following form,

σ(f − 1)
Ut

Ub
∼ µ

(Ut − Ub)Hbh

r2
+ µζ

Ht −Hb

h
(Ut − Ub)

Ut

Ub
. (4.4)

4.5.1 Early stages

At the very beginning of the film emergence, the film propagation dis-

tance, less than O(100)µm, is so small that the shear force exerted on the

film is also small. At this time, the shear stress at the bulk for providing

liquid to the film rise is larger than the film shear stress. Thus, considering

Hb ∼ Hi with (Ut − Ub)/Ut ≪ 1, the relative film speed, Ut − Ub from the

scaling law (4.4) is scaled as Ut −Ub ∼ σ(f − 1)r2/(µHih), which gives the

relation of Ht −Hb,

Ht −Hb ∼
σ

µ
(f − 1)

r2

Hih
t (4.5)

where t means the elapsed time from when the film begins to emerge from

the bulk. Fig.4.4 shows the experimental results with the line indicating

scaling law (4.5). The experimental data points are collapsed on the line

but gradually diverge from the line, as the film further propagates, since

the scaling law is valid only when it is very early stage. In this point of
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4.5 Film flow dynamics

view, this law in the plot (4.6) can be considered an asymptotic relation.

The linear region is so early that the contact line singularity enables to

significantly affect the overall resisting force. For the data points of Fig.

4.6, the shear force ratios of viscous dissipation at the contact line and bulk

are typically less than 0.1;hence, the viscous dissipation is considered to be

neglected.

If the bifurcation point is located at a higher position, the region where

bulk shear force is larger than the film shear force becomes larger, which

gives the linear regime larger. And in spite of the same bifurcation point,

if the gap is smaller, linear regime is larger, too. This law shows the dif-

ferent power law response from the diffusive power law, L ∝ t1/2, classical

Washburn’s law, with L and t being wicking distance and time duration,

respectively. For the liquid flow through a cylindrical channel with constant

width or single sized porous media, such as uniformly arranged micro pillar

array substrate or glass bead pack, the liquid flows inevitably follow the

Washburn’s law, since the mean laplace pressure and mean shear stress are

entirely constant. Whereas, for the multi-sized porous media, variation of

the channel size changes the dominant laplace pressure and shear stress,

which enables to show unusual power laws and the linearity of the law (4.5)

is one of the cases.

4.5.2 Late stages

In the late stage when the film propagates more than before, (Ht −
Hb > O(10−3)m) the area where film spans becomes large. Accordingly,

the shear force at the film becomes large so that the film shear force is

the dominant shear force. Compared with the shear force of film, viscous

friction for providing liquid to film rise is negligibly small. In this case,

the bulk part acts as a liquid reservoir. Neglecting the viscous term of

the bulk, the modified scaling law from the preceding relation (4.4) gives

the relative speed of film flow as Ut − Ub ∼ σηh/(µ(Ht − Hb)), with η =
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Figure 4.6: Evolution of scaled film advancing distance as a function of the

time based on the scaling law (4.5). The linear relation of the law (4.5)

is an asymptotic line for the beginning, which shows good agreement with

the experimental results, at first, whereas the data points gradually diverge

from the line (index=1) toward the direction of diminishing the index, as

the time elapses. The slope for best fitting line is 1.01 with the standard

deviation of 0.059 when the initiation. The experimental conditions for

symbols are listed in Fig. 4.4(b).
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Figure 4.7: Scaled film advancing distance plotted according to the scaling

law (4.6). Unlike the early stage, the dominant friction occurs at the film,

which gives the distance proportional to square root of the time. In the

plot, the slope for best fitting line is 1.05 with the standard deviation of

0.031 for the late stages. The experimental conditions for symbols are listed

in Fig. 4.4(b).
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4.5 Film flow dynamics

(f − 1)/[1+h(f − 1)/w]. Integrating this equation, the relation of the thin

film length Ht −Hb is derived as follows,

Ht −Hb ∼ (η
σ

µ
h)1/2t1/2. (4.6)

The line from this law (4.6) is another asymptotic line and the data

points converge to the line as the film propagates. Fig. 4.7 shows good

agreement between the experimental results for the late stage and the equa-

tion (4.6). The film rise of late stage that shows the Washburn’s dynamics

is not significantly different from the hemi-wicking rise on a single super-

hydrophilic wall(Kim et al., 2015). As shown in the scaling law (4.6) and

the plot in Fig. 4.7, substrate gap does not seriously affect the film flow,

eventually.

4.5.3 Conclusions

In conclusion, we have experimentally and theoretically studied the dy-

namics of the liquid imbibition into parallel micro porous substrates. The

flow involves the bulk flow at the millimetric gap and the film flow in the

micrometric pores above the bulk. We have presented scaling laws for the

bulk flow within the gap between the substrates and film flow through the

micro pillar arrays partially associated with the bulk flow. The bulk flow

shows identical behavior to what is observed on smooth substrates, imply-

ing that the bulk flow is independent of the microstructures. The film flow

is affected by the bulk in the beginning, whereas the film flow becomes in-

dependent of the bulk flow in the late stages. Moreover, the film emanating

height ahead of the bulk part has been investigated by comparing the ris-

ing speeds of bulk and film. Consequently, the current work quantitatively

clarifies the mechanism of the flow into dual porous media by accounting

for the individual flows into large pore and small pore including the correla-

tions. Thus, we found out some information of fundamental characteristics
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4.5 Film flow dynamics

of the flow in porous media, i.e. which pores play important role to drive

a specific flow or magnitude of dominant resisting forces.

Considering most of the porous structures are characterized by com-

bination of different length scales, this study can be a starting point to

understand the flow in multi-porous media, where complicated analysis is

required. In various industrial fields, such as lab-on-a-chip or HVAC (heat-

ing, ventilation and air-conditioning) industries, our work will provide the-

oretical basis to approach a number of the porous media flow problems

awaiting reasonable modeling and quantitative experiments. Also, it can

experimentally and theoretically support to fundamental analysis of bio-

logical phenomena and additional studies addressing other effects such as

swelling or elastocapillarity, in academic fields.
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Chapter 5

Hydrodynamics of capillary

imbibition in cellulose

sponges

5.1 Introduction

A number of materials in the earth have plenty of various pores, such

as xylem of trees, skin of animals, or some igneous rocks. When these ma-

terials are faced with chemically attractive liquid, the liquid spontaneously

immediately moves into the pores, driven by surface tension, mutual in-

teraction of molecules at the interface, what is called capillarity. Physics

of the capillary flow has been applied in numerous jobs of our daily lives

for more than thousands of years, for example, historical drawings or writ-

ings by absorbing ink into pores formed by fibers of papers, oil dampened

paper as windows in traditional Korean construction, oil infiltration into

wooden instrument to prevent deformation, and cleaning process by ab-

sorbing aqueous liquid in fabrics of towel or tissue. Recently, owing to

microminiaturization of machines and development of fabrication technolo-

gies, capillarity has involved more widely in many fields of industries such as

heat pipe, dehumidifier or lab-on-a-chip industries related to micro, nano-

65



5.1 Introduction

and bio-technology. Thus, highly sophisticated prediction and control of

flow are required for optimization, hence the capillary imbibition in porous

media has been intensively studied for last decades.

To understand the physics of capillary imbibition, uniformly arranged

porous structures were used to alleviate the difficulties for an accurate anal-

ysis of the flow in inherently complex and irregular porous structures. For

2-D flow, a plate with micro pillar arrays is used as a simplified porous

structure for observing particular liquid wetting behavior (Courbin et al.,

2007) and constructing scaling laws (Ishino et al., 2007; Kim et al., 2011a,b).

Numerical analysis also has been performed to describe the flow more ex-

actly (Srivastava et al., 2010; Xiao et al., 2010). For 3-D flow, various sized

glass beads were used to form tiny spaces where liquid flow occurs, espe-

cially in soil science (Delker et al., 1996; Lago & Araujo, 2001). Also, water

absorption into floating objects was studied by experimental and numerical

analysis (Vella & Huppert, 2007). Most of the studies are characterized

in classical Washburn’s dynamics (x ∝ t1/2), whereas different scaling law,

x ∼ t1/3, has been proposed by introducing corner flow dynamics (Pono-

marenko et al., 2011; Weislogel, 2012).

However, in spite of the studies above, further studies addressing multi-

sized porous media is still required to analyze liquid imbibition in various

cases of nature and industries. Here, using cellulose sponges, typically

thought as multi-porous media, we have performed experimental and the-

oretical studies of capillary rise into 3-D porous media. For understanding

flow dynamics in sponge more accurately, we first start with the horizontal

imbibition to quantify the liquid spreading dynamics without gravity. And

we address the vertical imbibition to elucidate the dynamics under gravita-

tional effect using the results of horizontal imbibition. Through the entire

works, we aim to construct scaling laws for the horizontal and vertical im-

bibition dynamics and experimentally corroborate the simplified model to

rationalize the physics of liquid imbibition in multi-sized porous structures.
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Figure 5.1: : (a) Image of liquid imbibition with wet-dry interface in cellu-

lose sponge. (b) Scanning electron microscopy (SEM) image of large void

in which many holes are existed on the wall as channels toward the next

large void. (c) Cross sectional image of the porous wall.

5.2 Sponge model and experimental setup

To elucidate the liquid behavior infiltrating into sponges, structural

analysis of pores in sponge should be preceded. As shown in magnified

images in Fig. 5.1(a), there are plenty of various sized pores where liquid

can flow inside or stay statically leaning on pore walls. The characteristics

of pores are highly associated the manufacturing process of sponge. Sponge

is made from mixture of shredded cellulose sheets and sodium sulphate

crystals. The mixture, which is referred to as viscose, is heated to melt
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Figure 5.2: : Characteristics of pores in sponge and simplified model of

a unit pore. (a) Bar chart of large void distribution plotted with pore

size(mm) and volumetric portion of each pore. The portion is derived as

the average portion of the length occupied by each pore, given randomly

selected lines. Most of the pores are distributed around 1 millimeter. (b)

Bar chart of wall pores plotted with pore size(µm) and volumetric portion

of each pore. The inset shows detailed distribution of the wall pore size of

the first bar, (0 - 6 µm), where majority of the wall pores are distributed

in the size of approximately 1 micro meter. (c) A unit simplified model

of sponge pore structure. Sponge consists of millimetric large voids and

micrometric wall pores.
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5.2 Sponge model and experimental setup

the crystals and drain the molten liquid away, which eventually forms the

ellipsoidal millimetric hole with cellulose wall structures in sponge.

Accordingly, there exist two important different sized pores in sponge,

one is the millimetric pore and another one is the micrometric pore inside

of the wall, surrounding the large pore. The pores are referred to as large

void and wall pore, respectively (Märtson et al., 1999), which are shown in

Fig. 5.1(b) and (c). Bar charts in Fig. 5.2(a) and (b), which show the pore

size distributions of large void and wall pore, delineate that the pore sizes

are approximately order of 1 millimeter and 1 micro meter, respectively.

The Jurin’s height of the wall pore is much larger than our experimental

range, 10 cm (Jurin, 1717-1719); thus, we assume that the liquid saturates

whole wall pores while the imbibition occurs within our interest. Beside of

the large voids and wall pores, a partially saturated space encircled by a

group of small pores and liquid - air interface can be another type of pore in

multi-scale porous system. So, the pores in sponge are widely ranged in size,

from order of hundred nanometers to order of millimeters. In this study, by

employing a simplified conceptual model of sponge in Fig. 5.2(c), we mainly

deal with large voids, wall pores, and additional pores combined with the

meniscus hanging against gravity at the edge and a group of adjacent small

pores of walls, referred to as hanging meniscus.

We used Ethylene glycol 99 wt%, turpentine, and four different kinds

of silicone oils (10, 100, 350, and 1000 cst) for parametric analysis of liquid

properties listed in the table of supplemental material 5.1. In rheology,

all liquids are Newtonian fluids so that we can estimate the exerted shear

stress as a product of the viscosity and shear rate. The imbibitions are

assumed to be incompressible flow and no slip boundary condition is used

for theoretical approaches.
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5.3 Horizontal imbibition
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Figure 5.3: : Experimental images of capillary imbibition into sponges.

Images of horizontal spreading (a) and vertical spreading (b) of silicone oil

with wet-dry interfaces. In case of vertical imbibition, differently pressed

sponges are used to deduce the gravitational dependency.

5.3 Horizontal imbibition

We, first, perform experiments for horizontal flow by using sponge bars

cut in about 5 mm high, 5 mm thick(perpendicular direction to the paper),

and more than 10 cm long as shown in Fig. 5.3(a) which is captured by

high speed camera and magnified lens. One end of the bar is protruding

downward in approximately 2 mm so that it can absorb and provide liquid

horizontally from the reservoir. The protruding part has to be immersed

rapidly to reduce the time for liquid to rise up until it reaches to horizon-

tal bar. The lower part of the bar where the liquid has first reached is

focused on for measuring time duration and the horizontal distance from

the reservoir to wet-dry interface.

Wetting state is more stable energetically than dry state since cellulosic

material of sponge is hydrophilic and, moreover, a number of grooves in

sponge intensify the hydrophilicity by enlarging the substrate area (Kim

et al., 2011a). Thus, at the moment the sponge contacts with liquid in

the vessel, the liquid is spontaneously infiltrated by the densely arranged
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5.3 Horizontal imbibition

structures due to affinity of liquid and substrate, which generates capillary

pressure drop due to the laplace pressure (Young, 1805). The pressure drop

is proportional to principal curvature of liquid surface, which is roughly in-

versely proportional to the pore size since the contact angle is assumed to

be zero. Gravity is assumed to be negligible since the pressure drop over-

whelms hydrostatic pressure in horizontal flow, and thereby liquid moves

saturating each of the whole sized pores individually.

The flow dynamics is evaluated by considering driving pressure and

dominant shear stress that resists the flow. However, the flow resistance

in sponge cannot be exactly estimated, due to the structural complexity.

So, employing permeability, the transmission ability of fluid by which the

resistance is deduced, Darcy’s law is used as follows (Darcy, 1961),

Uh = −k
µ

dp

dz
(5.1)

where Uh, k, and µ stand for horizontal flow velocity, permeability, and

viscosity of liquid, respectively. In porous media, the permeability is pro-

portional to square of pore size,(Millington & Quirk, 1961). This law is

established upon the assumption of Newtonian flow.

While small pores surrounding a large pore are consecutively being

filled, the larger pore is also being filled. We remark that the flow domi-

nantly occurs through the large pore rather than through the small pores

to minimize the exerted shear stress, inversely proportional to cubic of the

pore size for the same flow rate. Accordingly, the flow occurs through large

possible pores, the large voids, which leads the permeability k ∼ D2
0. As a

result, how fast the liquid flows through large voids determines the entire

interface propagation speed. Wall pores instantly absorbs liquid from the

large voids, which we measure as the wet-dry interface. Thus, the driving

pressure in horizontal imbibition is roughly estimated as ∼ σ/D0, driving

pressure of filling a large void.
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Figure 5.4: : Experimentally measured data points with lines of scaling

laws. (a) The scaled horizontal distance (Lh/HJ) plotted according to the

scaling law (5.2) (b) Plot of scaling law (5.3) which describes dynamics of

the vertical liquid imbibition in early stage. The experimental conditions

for each symbol are listed in Fig. 5.5. The flow shows almost same char-

acteristics as the horizontal flow, which results the experimental data of

both cases are consistent onto a single line by using the same scaling law

(5.2).(inset)

Considering the pressure drop, the pressure term is scaled as dp/dz ∼
(σ/D0)/Lh, with Lh being the horizontal imbibition distance from the start-

ing point. Using the permeability and the pressure term, the flow velocity,

Uh = dLh/dt, is derived by Darcy’s law (5.1), Uh ∼ D0σ/µ/Lh. Integrating

this relation and using Jurin’s height, HJ ∼ σ/(ρgD0), we derive a dimen-

sionless form of the relation between horizontal propagation distance and

time as

Lh/HJ ∼ (D0
σ

µ
)1/2t1/2/HJ . (5.2)

As shown in Fig. 5.4, the experimental data collapse onto one line of

the scaling law (5.2). We thus see that liquid propagates with Washburn’s

law (Washburn, 1921), where the spreading rate depends on the dominant

flow channel sizes, D0 in addition to the classically known prefactor σ/µ.

If the large pore is far away from the group of small pores, liquid does not
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5.4 Vertical imbibition

flow dominantly through the large voids. But, the large voids are usually

adjacent to the wall pores as we observe in the Fig. 5.1(a).

5.4 Vertical imbibition

5.4.1 Early stages

Now, we consider how liquids vertically rise along the sponge against

gravity. We use pressed sponges whose height and thickness are commonly

about 10 cm and 5 mm, respectively, but width ranges 2.5 mm to 21.0

mm as shown in Fig. 5.3(b). To make pressed sponges in different level,

sponges are fully wetted by water first so that the shape can be flexibly

changed. The sponges are then perfectly dried in the frames of different

widths, left at oven of 60◦C more than 2 hours. The sponge of 2.5 mm

width is a maximally pressed one and 21.0 mm wide sponge is unpressed

one. When a sponge is pressed, deformation of large voids occurs more

dominantly than that of wall pores due to the pore scale difference. As-

suming a pore being stack of thin band typed rings, we know pore width

change of large void is remarkably easier than wall pores under same ex-

erted pressure (Yang & Kim, 2012). By considering that large voids oc-

cupy entire volume of the sponge, the eventual pore size change pore size

is roughly linearized by the sponge width change. Unlike the horizontal

case, the size of large void (D0) in vertical case can be varied as the width

change. Using linear approximation, the large void size of pressed width is

written as D0 ≈ Dmin + (Dmax −Dmin)(w − wmin)/(wmax − wmin) where

Dmin, Dmax, wmin, and wmax stand for maximally pressed large void size

(Dmin ≈ 20mum), unpressed large void size (Dmax ≈ 1 mm), maximally

pressed width (wmin ≈ 2.5 mm), and unpressed width (wmax ≈ 21 mm),

respectively.

At the moment vertically erected sponge block comes to the liquid sur-

face, the liquid immediately infiltrates through the pores likewise, but, the
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5.4 Vertical imbibition

entire liquid movement shows quite different tendency. The rise speed of

the initial stage is relatively high, however, at the late stage the speed

dramatically lowers down. At the beginning, flow shows same dynamics

as the horizontal imbibition. Whole pores are also fully saturated because

the liquid position is still low so that the laplace pressure dominates the

hydrostatic pressure even at the large voids. Liquid also moves through

the large voids, which leads the permeability, k ∼ D2
0. Likewise, the pres-

sure gradient is the same, dp/dz ∼ (σ/D0)/Hv, with Hv being the vertical

height. Thus, by using Jurin’s height, the dynamics of vertical rise of early

stage is written in dimensionless form as,

Hv/HJ ∼ (D0
σ

µ
)1/2t1/2/HJ . (5.3)

The experimental data are entirely consistent onto the scaling law (5.3)

as shown in Fig. 5.4(b). The inset of the Fig. 5.4(b) demonstrates that

the dynamics of the horizontal flow and the early stage of the vertical

flow are almost identical. In both of the cases, all pores are completely

saturated by the liquid, which is referred to as complete filling that is

shown in Fig. 5.6(a). When complete filling occurs, even though the wet-

dry interface propagates, macroscopic surface energy change rate at the

front part is approximately constant as well as dominant shear stress is

constant along the liquid path. So, the driving force is independent of the

spreading distance and the resisting force is proportional to the distance,

which leads to a diffusive rule for the distance L ∝ t1/2. Considering the

proportional factor forms aσ/µ, with a being length scale, we remark that

the complete filling yields to Washburn’s law (Washburn, 1921).

5.4.2 Late stages

As the height increases more, gravitational force does not allow whole

sized pores to be saturated, since the capillary forces generated at whole

sized pores do not always overwhelm the gravitational force. Considering
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gravity, the pressure gradient that drives the flow is estimated approxi-

mately as ∼ σ/(rHv) − ρg with r being a pore radius. The gravity at

the pore cannot be neglected unless the pore radius is sufficient small so

that σ/(rHv) ≫ ρg. The maximum size of saturated pore is derived as

rs ∼ σ/(ρgHv) at a specific height, Hv (Obara & Okumura, 2012), which

means every pore smaller than rs is absolutely filled. Moreover, if some of

the small saturated pores are adjacent, the space surrounded by the plural

small pores can have additional liquid bulk with the liquid-air surface of rs,

as illustrated in Fig. 5.2(c), for minimizing surface area to form a menis-

cus at the edges (hanging meniscus). Consequently, large voids cannot be

completely filled due to gravity but partially filled; thus, this is referred to

as partial filling. Imbibition characteristic of the partial filling is simply

described in Fig. 5.6.

When partial filling occurs, the pressure drop of the meniscus hanging

at edge of the vicinity of the wet-dry interface cannot additionally drive

the flow. This is because the radius of surface curvature is invariably rs,

irrespective of size of the pore at the hanging meniscus, and the pressure

drop is invariably balanced with hydrostatic pressure. Thus, the driving

pressure of partial filling is generated by wall pores and is independent of

hydrostatic pressure, since Bond number which is ratio of gravitational force

and capillary force is much smaller than 1, ρg(Hvrp)/σ ∼ O(10−2) ≪ 1.

Consequently, the pressure gradient of partial filling of the Darcy’s law is

scaled as dp/dz ∼ (σ/rp)/Hv, while that of complete filling is∼ (σ/D0)/Hv,

associated with large void.

To evaluate the driving pressure of partial filling, (σ/rp), the wall pore

size is necessary to be examined. An additional experiment of pressed

sponge is performed for liquid infiltration into pure wall pore structure

without large voids. To make the pressed sponge, a sponge between parallel

blocks is perfectly wetted by water for softening the dry cellulose structure.

The sponge is then pressed by the blocks in approximately 3.7× 105N/m2
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and dried in the oven (60 ◦C more than 24 hours). The sponge was orig-

inally 25 mm thick before being wet, but the eventual thickness is 2.75

mm. As shown in Fig. 5.7(a), when the sponge binding with the blocks

touches liquid surface,(Silicone oil 10cst) the liquid rises saturating the en-

tire pores, which is classified in complete filling.(See Fig. 5.7(b)) This is

because the pore size (much smaller than O(100µm)) is so small that the

laplace pressure is large enough to ignore gravity. So, the distance is scaled

as H(p) ∼ ((σ/µ)rpressedt)
1/2, with rpressed being an effective pore size. By

the experiments, the effective pore size can be derived empirically, which

is approximately scaled as O(1µm). While the sponge is pressed suffi-

ciently, the space between walls is almost eliminated, for which we assume

that the pressed sponge is pure bulk of porous wall structures only; thus,

rp ∼ rpressed. Hence, the wall pore size (rp) is estimated as rp ≈ O(1µm),

which is also verified by the pore size distribution in Fig. 5.2(b).

In case of partial filling, permeability is associated with the size of the

hanging meniscus, which decreases as the height increases. The pore size

beneath the hanging meniscus (rg) about height is approximately propor-

tional to the radius of surface curvature, rg ∝ rs. Furthermore, when the

sponge block is pressed, rg is also changed.

As a sponge block is compressed, large voids are dominantly deformed,

which determines the channel size of hanging meniscus. The channel size

is inversely proportional to the shear stress when the liquid flows; thus,

the channel size change rate, ζ = D0/Dmax should be investigated. Ac-

cording to the schematic model in Fig. 5.8, the deformed width (D0) is

roughly scaled as ∼ Dmax tanα2/ tanα1. The wetted lengths by bulk liq-

uid of the two cases are lw1 = rs/ tanα1 and lw2 = rs/ tanα2, respec-

tively. The channel size change rate is roughly scaled as ζ ∼ lw2/lw1,

which leads ζ ∼ Dmax/D0. In the same principle, the hanging meniscus

is approximately rg ∼ (Dmax/D0)rs. The cross sectional area beneath

the hanging meniscus is usually larger than the wall pores; thus, the flow
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5.4 Vertical imbibition

occurs through the consecutive pores of hanging meniscus. So, the perme-

ability is scaled as, k ∼ ((Dmax/D0)rs)
2 (Dong & Chatzis, 1995), which

gives k ∼ ζ2σ2/(ρgHv)
2, with ζ = Dmax/D0. Substituting the permeabil-

ity into the Darcy’s law (5.1), we derive a relation of the flow speed as

Uv ∼ ζ2(σ3/µ)/(rp(ρg)
2)/H3

v . Integrating the velocity relation about the

elapsed time, we find a scaling law of late time imbibition dynamics in

dimensionless form as follows,

Hv/HJ ∼ (
(ρg)2

σµ

D2
0D

2
max

rp
)1/4t1/4. (5.4)

The scaling law (5.4) is an asymptotic line, since it is established when

H4
cri ≪ H4

v is assumed with Hcri being the boundary height of complete

filling and partial filling. So, the dispersed data points for different widths

are gradually closer to the line of scaling law and finally entirely consistent

onto our scaling law (5.4) in Fig. 5.9. Moreover, the Fig. 5.9 shows the

boundary height of complete filling and partial filling by the scaling law,

Hcri ∼ σ/(ρgD0), which also shows good agreement with the experimental

data point. This result indicates that complete filling and partial filling are

determined by whether large void is completely saturated or not.

As we mentioned above, the wall pore size rp is approximately 1 µm,

which means that the size of the large possible pore neglecting gravity is

similar to 1 µm. This is same principle that the driving pressure of complete

filling is approximately σ/D0. Due to the shear stress minimization, the

maximum pore is leading pore of the infiltration. As the height extremely

increases, more than 10 m, the wall pore will be partially saturated as

the large voids do in this experiments. Then, smaller pore, nano-metric

pores, will also take the same role as the wall pore do and it will again be

partially saturated in higher location. This regulation is similar to structure

of fractal in mathematics, which is one of the rules in nature.
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5.4 Vertical imbibition

5.4.3 Conclusions

In summary, we have constructed the scaling laws to describe the dy-

namics of the horizontal and the vertical imbibition of different liquids into

various cellulosic sponges, and corroborated the results using experiments.

Unlike single sized porous media, multi-sized porous media, sponge, shows

different flow mechanics when against gravity, since the pores are selectively

saturated by gravity, which gives the unusual result, Hv ∝ t1/4, different

from the classical Washburn’s rule, L ∝ t1/2. The imbibition is classified in

two different flow types by whether entire pores are completely saturated

or not. Through the entire process of the works of this chapter, we found

out some information of fundamental characteristics of the flow in multi

sized porous media, i.e. which pores dominantly drives the flows when

complete filling and partial filling, magnitude of dominant resisting forces,

or uniformity of the permeability.

Although our study focused on capillary spreading on cellulosic sponges

with various liquids, not all liquids are predictable, but water or diluted

aqueous solutions are excluded. Water spreading on cellulose structure in-

volves chemical adhesion between water and cellulose molecules and swelling

effects as well. Those phenomena complicate the physics, thus, this sub-

ject should be further pursued in the future. The current work can be a

starting point to more accurately understand the flow dynamics inside of

the complicated porous structures. Introducing the correlation of bulk flow

and film flow, our theories will provide theoretical basis to applications of

studies of paper-based microfluidics and micro nano bio-fluidics or other

studies to understand natural absorptions (Martinez et al., 2008; Wheeler

& Stroock, 2008).
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5.4 Vertical imbibition

Liquid γ (N/m) µ(Pa·s) ρ(kg/m3)

A Turpentine 0.027 0.0014 870

B Ethylene Glycol 99 wt% 0.048 0.018 1112

C Silicone oil 1000 cst 0.020 1.00 970

D Silicone oil 350 cst 0.020 0.35 970

E Silicone oil 100 cst 0.020 0.10 970

F Silicone oil 10 cst 0.020 0.01 970

Table 5.1: Liquid properties at about 23◦C.

Symbol Liquid
wmax

w

A

B

C

E

F

F

F

F

F

1

1

1

1

1

0.71

0.48

0.33

0.12

Symbol Liquid
wmax

w

A

B

C

E

F

F

F

F

1

1

1

1

1

0.71

0.48

0.33

Partial fillingComplete filling

Figure 5.5: : Experimental conditions for the symbols of vertical imbibition.

The experiments have been performed for different liquids into sponges

of differently compressed widths. The degree of compression is directly

associated with the width of large voids in sponge.
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(a)

(b)

4 mm
dry

wet

2 mm

dry

wet

Figure 5.6: : Experimental images and conceptual models. (a) When com-

plete filling occurs, wet part is entirely saturated with liquids. In this case,

gravity is negligible due to large laplace pressure even in the large voids. (b)

When Partial filling. occurs, large voids cannot be completely saturated

due to large gravitational effect, but part of the large voids and wall pores

are saturated.

80



5.4 Vertical imbibition

(a)
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Figure 5.7: : Additional experiments for deduction of wall pore size. (a)

Experimental image of liquid imbibition in a pressed sponge. The liquid

flow occurs through pores of the pressed sponge between the binding blocks.

(b) Plot of scaling law (3) in dimensionless form by using Jurin’s height,

H(p)J = σ/(ρgrpressed). The effective pore size (rpressed) is approximately

0.7µm under the assumption of complete filling regime, since the pore size

is considerably small to be filled, irrespective of gravity.

~D
max

α
1

r
s

l
w1

~D
0

r
s

α
2

l
w2

Figure 5.8: : Size change of the channel under hanging meniscus caused

by the external pressure. Given the same radius of the surface curvature,

rs, two corners of different widths make different sized channels, which is

directly associated with the local permeability.
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Figure 5.9: : Results of partial filling regime and boundary of the two

regimes, complete filling and partial filling. (a) Plot of raw data points of

vertical imbibition in early stage and late stage. (b) By employing the scal-

ing analysis (5.4), the data points of vertical rise in late stage are coalesced

onto one single line (Hv ∝ t1/4). Also, complete filling (early stage) and

partial filling (late stage) are well separated by the Jurin’s height of large

voids.
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Chapter 6

Concluding remarks

6.1 Conclusions

In this thesis, we have presented four different subjects, hydrodynamics

of writing with ink, dynamics of hemiwicking, capillary rise between super-

hydrophilic substrates, and hydrodynamics of liquid imbibition in sponge.

In all cases, parametric analysis and mathematical modeling have been per-

formed to demonstrate the fundamental physics of each phenomena. For

systematic approaches toward our final goal, hydrodynamics of capillary

imbibition in porous media, stepwise researches have been performed in

consecutive order.

In chapter 2, we introduced one of the most representative examples

of capillary imbibition, ink absorbtion into paper. The study is performed

by scaling analysis about the fundamental dynamics, associated with the

spreading of a newtonian liquid on a porous substrate. Liquid spread-

ing from stationary pen is addressed first, so that the basic dynamics of

capillary spreading into fabric networks of the paper can be verified, by

employing simplified model. After that the moving source rather than the

stationary source has been addressed for analyzing the front profile and

final thickness of the writing trace. We have considered geometric model
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6.1 Conclusions

about moving source and volume conservation combining with the results

from the stationary case.

In chapter 3, the superhydrophilic substrate employed as a model paper

in chapter 2 is again used for more accurate theory. We have experimen-

tally and theoretically studied capillary rise of a liquid deposited on a single

substrate with micro pillar arrays. We have performed parametric analysis

about especially characteristic of the pillar specification, such as diameter,

height, and pitch. The theoretical approaches are performed with macro-

scopic and microscopic models in parallel. By the macroscopic model, we

have constructed a scaling law showing excellent agreement with various

pillar arrays. And by the microscopic model, we have found the validation

limit of the scaling law derived from macroscopic model, starting from more

fundamental level about the same phenomena. Meanwhile, the macroscopic

scaling analysis that is widely used currently has been analyzed by the mi-

croscopic point of view.

In chapter 4, we introduced capillary imbibition in dual sized porous

system, capillary rise within parallel superhydrophilic substrates. We have

presented scaling laws for the bulk flow within the gap between the sub-

strates and film flow through the micro pillar arrays partially associated

with the bulk flow. Meanwhile, we have introduced general law of capil-

lary rise between plates describing bulk rise and film rise simultaneously.

Moreover, the film emanating height ahead of the bulk part has been inves-

tigated by comparing the bulk speed and the film initiating speed. Thus,

the current work has quantitatively clarified the mechanism of the flow in

dual porous media by accounting for the individual flows in large pore and

small pore including the correlations.

In chapter 5, we have constructed the scaling laws to describe the dy-

namics of the horizontal and the vertical imbibition of different liquids into

various cellulosic sponges, and corroborated the results using experiments.

Unlike single sized porous media, multi-sized porous media, sponge, shows
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6.2 Future work

different flow mechanics when against gravity, since the pores are selectively

saturated by gravity, which gives an unusual result, Hv ∝ t1/4, different

from the classical Washburn’s rule, L ∝ t1/2. The imbibition is classified in

two different flow types by whether entire pores are completely saturated

or not, complete filling and partial filling.

Performing the researches above, we have mathematically formulated

the fundamental physics of capillary phenomena. Our scaling laws are

applicable for providing theoretical basis to related industrial fields, such as

lab-on-a-chip, humidifier, heat pipe or other industries using porous media

as a liquid channel. Furthermore, our experimental results and the scaling

laws will contribute to future studies of liquid imbibition in porous media

owing to the simplicity and high accuracy.

6.2 Future work

In this thesis, we have focused on systematical researches about capillary

flow in porous media. In spite of our stepwise studies, there still remain

many problems unanswered. Dynamics of corner flow between the porous

plates is not yet been clarified. The phenomena involves imbibition in

porous plate as well as normal flow within a corner of smooth sheets. The

combination of the two phenomena is mundanely observed in nature and

laboratory, but, at the same time, quite important to further delineate the

dynamics of complex flow in general porous media. Moreover, swelling,

elastocapillary effect, or chemical adhesion between liquids and substrates

have not yet been studied. Those effects complicate the physics, thus, this

subject should be further pursued in the future.
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국 문 초 록

다공성 물질에서의 액체 흡수 역학

서울대학교 대학원

기계항공공학부

김 정 철

요 약

지구상의 대부분의 물질은 매끈한 표면 보다는 주로 작은 기공으

로 이루어져 있다. 이 물질들이 특정 액체와 화학적으로 친밀한 성

질을 가질 때, 해당 액체와 만나면 기공으로의 액체의 흡수 내지는

흡착이 이루어지게 된다. 액체의 표면 장력에 의해 일어나게 되는

이 액체의 흐름을 모세관 현상이라고 하는데, 우리 주위에서 매우

잘 관찰할 수 있다. 잉크가 종이에 퍼지는 것이나, 수건에 물이 흡

수되는 현상 등이 대표적인 예이다. 이 현상은 산업계에서도 많이

응용되어 제습기, 가습기 산업 및 Lab on a chip 산업 등에서 직,

간접적으로 그 원리가 활용되고 있다. 그러나 이와 같은 다공성 물

질에의 액체 흡수 메커니즘은 구조의 복잡성으로 인하여 매우 다양

한 모세관 현상을 복합적으로 수반하고 있어 유동 해석이 난해하다.

본 연구에서는 다공성 물질에서의 액체 흡수 메커니즘 이해를 위하

여 여러 단계적인 연구를 수행하였다.

우선 다공성 물질에의 액체 흡수 현상의 대표적인 현상인 글씨쓰
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기의 물리학을 다루었다. 마이크로 스케일의 필라 어레이 및 유리관

을 사용하여, 펜이 정지된 상태에서의 액체 퍼짐 원리를 실험적, 이

론적으로 탐구하였고, 이 결과를 이용하여 펜이 일정한 속도로 이동

할 때 액체 퍼짐에 대한 연구를 수행하였다. 우선 정지 상태에서의

액체 퍼짐에 대한 연구를 수행하였다. 퍼짐을 일으키는 표면장력과

이를 저지하는 전단응력을 비교하여 퍼짐의 속도 관계식을 도출하

였다. 펜이 이동할 때에는 기하학적 분석을 추가로 수행하여 펜으로

선을 그을 때, 앞 부분의 퍼짐 형태를 예측하는 이론식을 도출하고,

이를 실험적으로 분석하였다. 뿐만 아니라 부피 보존식을 추가적으

로 적용하여 퍼짐 두께를 예측하는 이론식을 도출, 검증하였다.

다음으로 앞선 연구에 사용된 마이크로 필라 어레이에의 액체 흡

수에 대한 보다 심도 있는 연구를 수행하였다. 보다 다양한 마이크

로 필라 표면에 적용할 수 있는 정확한 이론식을 도출하고, 실험으

로 검증하였다. 본 연구를 통하여 표면 거칠기 뿐만 아니라 필라 간

의 간격도 추가적으로 영향을 줄 수 있음을 보였다. 매크로 및 마이

크로 스케일의 접근을 통하여 본 이론식의 적용 한계에 대한 분석

을 수행하였고, 이 연구 분야에 널리 활용되고 있는 이론 분석에 대

한 의미를 보다 세부적으로 알아 보았다.

본 연구에서는 앞서 언급한 단계 연구의 일환으로서 단일 스케일

의 기공 구조가 아닌 다양한 크기의 기공 구조에 대한 연구도 수행

하였다. 그 첫 번째 단계로 두 가지 크기의 기공구조에 대한 연구를

계획하고, 두 개의 평행하게 놓인, 마이크로 필라 어레이 표면 사이

에서의 모세관 오름 현상에 대한 연구를 수행하였다. 밀리미터 간격

의 두 판 사이의 bulk 유동과 마이크로 필라에서의 film 유동이 존
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재한다. Bulk 유동이 우선 일어나고, 그 위에서 film 유동이 일어나

는데, 두 가지 유동의 역학에 대해서 각각 이론식을 정립하고, 실험

검증을 수행하였다. Bulk 유동이 일어날 때에는 주변의 마이크로 구

조에 영향을 받지 않음을 확인할 수 있었다. Film 유동이 일어날 때

에는 초기에는 bulk 에 영향을 받지만 나중에는 이와는 독립적인 유

동이 일어나게 됨을 알 수 있었다. 뿐만 아니라 film 유동이 시작되

는 시점 분석이나 그 직후의 유동 역학에 대한 연구를 수행하여 두

유동이 서로에게 미치는 영향도 분석하였다.

마지막으로 보다 실제적인 다공성 구조인 스폰지를 이용하여 액체

흡수 메커니즘을 분석하였다. 스폰지에는 매우 다양한 크기의 기공

이 존재하는데, 이러한 구조에의 액체 유동을 이해하기 위해서 스폰

지 구조에 대한 모델링을 수행하였다. 우선 중력의 영향을 배제시킨

수평 방향의 유동에 대한 연구를 수행하였고, 이 결과를 이용하여

수직 방향의 유동 연구를 수행하였다. 수직 방향 유동의 경우 밀리

미터 사이즈의 큰 기공으로 인하여 초기 유동과 후기 유동이 서로

다른 메커니즘을 보임을 확인하였다. 모든 기공을 액체로 채우는

complete filling 과 부분적으로 채우는 partial filling 으로 나누어

설명하여 수평 및 수직 방향의 유동을 이론적 실험적으로 분석하였

고, 퍼짐 거리가 시간의 1/2승에 비례하는 Washburn 법칙에서 벗어

나 새로운 퍼짐 경향성인 시간의 1/4 승에 비례하는 법칙을 도출하

였다. 시간의 1/2 승에 비례하는 유동은 complete filling 이 일어나

서 유동을 일으키는 주된 기공의 사이즈와 유동을 저지하는 기공의

사이즈가 일정할 때 일어난다. 하지만 1/4 승에 비례하는 유동은

partial filling 이 일어나서 유동을 일으키는 포어의 크기는 매우 작

아서 중력에 영향을 받지 않지만 유동을 저지시키는 포어의 크기는
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중력에 의해 큰 포어에 부분적으로 채워진 액체 채널이 되로 때 일

어 난다. 즉, 중력에 의하여 높이에 따라서 permeability 가 변하게

되어 이와 같은 결과가 일어나게 된다.

본 연구에서는 여러 다공성 표면에서의 액체 퍼짐에 대한 수학적,

실험적 연구를 수행하였다. 모든 연구에서 각 현상에 영향을 미치는

인자들에 대한 분석을 수행하였고, 이들을 수학적 모델링을 통하여

이론식에 반영하여 각 영향력을 구체화하였다. 따라서 본 연구 결과

는 향후 학계나 산업계에서 해당 현상을 응용하고자 할 때, 이론적

으로나 실험적 문제 해결에 큰 도움을 줄 것으로 예상한다.

주요어 : 표면장력, 다공성 구조, 모세관 현상, 초친수성 표면

학 번 : 2009 - 20672
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