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ABSTRACT

The term, liquid crystal polymer (LCP), broadly refers to a hybrid structure where 

short and rigid liquid crystal molecules are incorporated within long and flexible 

polymeric chain networks. Interestingly, the combination of these two classical 

components has been proven to generate the coupled behaviors that render the LCP as 

a novel, smart material; the stimuli-responsive phase change (e.g., thermotropic) of 

the chromophores is reflected to the conformation of the polymer and changes the 

macroscopic shape of the LCP. It was recently revealed that the LCP can also be 

reversely actuated by light, given that the chromophores contain light-sensitive 

structures such as azo-benzenes. In this way, many applications are envisaged and 

realized, including light-driven mechanical mechanisms such as actuators, sensors, 

propellers, and even tweezers. 

However, much of our knowledge regarding these anomalous spontaneous 

mechanisms is largely driven by experiments and simple analytic models because of 

the complex interplays between distinctive physics: light-LC, phase change-polymeric 

conformation, and microstate-to-macroscopic deformation. Therefore, there is a dire 

need for a framework that considers these distinctive physics, as well as the 

interdisciplinary interactions that emerge at the vicinity. To this end, this dissertation 

proposes a multiscale analysis framework for the photomechanical behavior of LCP. 

This consists of nonlinear finite element analysis and in-silico experiments to advance 

our understanding of the microscopic nature of LCPs.

In the first part of the dissertation, the theoretical bases found in the proposed 

multiscale analysis are described in depth. The present work employs finite element 

analysis as the solution of the photomechanical system that is equivalent to finding 

stress-free configurations of the LCP structures under various internal stresses that are 

induced by light. Herein, uniaxial liquid crystal (LC) configurations are assumed; this 

encompasses rotational symmetry (i.e., nematic) as well as translational symmetry 

(i.e., smectic). Hence, a variationally consistent constitutive equation that couples the 
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stimuli to the stress-strain relation is described. Furthermore, in contrast to existing 

finite element analysis on LCP, which assumes a global linearity to simplify the 

problem, two sources of the nonlinearity—geometric nonlinearity and nonlinear 

thermomechanical behaviors—are considered. First, geometric nonlinearity is 

included in the model because many of the observed light-induced deflections 

undergo a large displacement, yet their local strains remain in the infinitesimal range. 

An element independent corotational formulation is utilized to consider such 

nonlinearity, which is saliently beneficial for both the computation and further 

sensitivity analysis. A molecular dynamics simulation is also undertaken in order to 

reveal the unprecedented nonlinearity accompanied by phase change found in the 

crosslinked mesogens. The fidelity of the present multiscale solutions is examined 

with available experiments. 

In the second part of the dissertation, the possible extension of the multiscale 

framework to the design of LCP photo actuations is exemplified by facilitating the 

multi-scale nature of the material, which is the combination of microscale properties, 

such as the local alignment of LC, and macroscopic properties, such as the shape of 

the LCP or the distributions of the stimuli. The proposed results are categorized into 

modifications of the extrinsic (post-crosslinking) variables and the intrinsic (pre-

crosslinking) variables. The influence that each variable has on the deformation is 

described and discussed for the first time by examining the sensitivity towards the 

stimuli. With regards to the extrinsic variables, the various directions of the uniaxial 

orientation of the LCP are studied for the first time, and the resulting change in the 

light-induced principal curvature direction is shown. Envisaged by the possible high-

fidelity light control, a light-patterning schematic is also proposed to achieve the 

desired shape change. A topology optimization method, which was originally devised 

to compute lightweight and load-sustaining structures, is employed to compute the 

discrete light patterns that drive the LCP to become a desired shape specified a priori. 

In view of the intrinsic variables, the distorted textures of nematic LC are examined, 

which are possibly obtained using novel alignment techniques. An LCP with twisted 
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nematic configuration is studied and compared to existing works based on either 

analytic calculations or experiments. The arbitrary textures prescribed to the LCP 

surface are also simulated to show the exotic shape change that consists of many hills-

and-valley configurations and to determine their ability to induce photo-generated 

instability. 

In this regard, the proposed model could possibly provide an efficient and 

consistent framework in which to analyze LCP behavior with complex internal 

structures and combined stimuli. Hence, the design of novel mechanical elements 

driven by light is facilitated whenever large, complex, and precise manipulation is 

valued over load-carrying capability.

Keywords: liquid crystal polymer, finite element analysis, multiscale analysis, 

sensitivity analysis, mechanical instability, optimization

Student number: 2010-24073
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Chapter 1. Introduction

1.1. Liquid crystal polymer (LCP)

A liquid crystal polymer (LCP) broadly refers the polymeric system composed of 

long, flexible chains and short, rigid, rod-like liquid crystal mesogenic units, by which 

a crystallinity states are “memorized” into the polymeric systems as liquid crystal 

molecules impose crystalline order to the molecular chains via crosslinking, as first 

postulated by de Gennes at al. [1,2]. This material has been categorized as “smart 

materials” that responds to environmental changes (e.g., changes in heat for shape 

memory alloys), and thereby has been envisaged to yield interesting phenomena, for 

example, increased (or decreased) polymer anisotropy in order to accommodate the 

increased (or decreased) orientational order of the mesogens [1]. For nematic 

polymers whose liquid crystalline order possesses only a rotational symmetry, for 

instance, experimental studies have revealed that the material shrinks/expands up to 

few hundred percent upon heating/cooling, which renders the material an attractive 

candidate for artificial muscles [3-4]. Therefore, understanding the liquid crystal 

phases and corresponding polymeric conformations (i.e., the geometries of 

representative polymeric backbone structures) is essential to comprehend the self-

deforming nature of such materials.

Recently, the diverse stimuli-responsive actuations are reported, of which 

actuation sources vary greatly depending on the type of the liquid crystal. When 

photochromic agents (e.g., azobenzene and azotolane) are embedded into an LCN, 

their reversible isomerization, which is induced by light, perturbs the original 

symmetry of the microstate and thereby affects the behavior of the overall structure. 

Due to the benefits of optical stimuli, such as their abilities to be transmitted over long 

ranges and to be controlled precisely, the characteristics of photo-responsive LCNs 

have been widely studied both numerically [5-9] and experimentally [10,11], and it 

has been found that the photomechanics, for instance, change significantly if the 

material properties (e.g., backbone connectivity and crosslinking density) are 
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modified. Various photo-responsive micro-scale systems have also been realized; 

these systems range from homogeneous strips that produce primitive deformations 

(i.e., bending and twisting) to composite robotics that actuate rapidly [12-18]. In 

overall, it is quite imperative to clarify the relations between diverse agents involved 

within the phenomena: stimuli-responsive liquid crystal, microstates polymeric chain, 

and macroscopic structure subject to internal loadings. 

1.1.1. A self-organizing characteristic of LC

A self-organizing phenomena is one branch of the complex physics studies, which 

entices many researchers as it reveals the nature’s aesthetic, representative, and 

practicable characters. The understanding of the configuration of a mass exhibited by 

its components (e.g. birds in the flock, individual molecules in the compound) is of 

interest in the study. Liquid crystals, which form a distinguished patterns due to the 

anisotropic interactions between individual molecules, are therefore representative 

self-organizing materials. As implied by the terminology of itself, LC refers an 

intermediate state between a solidified crystal, whose molecular arrangement is fixed, 

and a liquid, whose individual molecule retains fluidity respect to each other. It is 

therefore often referred as a 4th state matter, as it flows like a liquid, while it maintains 

symmetrical order depending on the inherent geometric characters of the constituting 

molecules. Such behavior is analogous to the characteristic 1-D stacking of TMV 

(tobacco mosaic virus), whose molecular shape is high-aspect ratio cylinder. Due to 

its intermediate nature, LC phase also has two distinctive characteristics as their self-

organizing characteristics are not fixated. 

First of all, the directionality can be alternated within the domain of interest.

When the LC molecules are not treated to be aligned by force, for example, the 

inhomogeneous distributions of the local alignment (i.e. Schlierene texture) is 

observed as the hot, untreated liquid LC molecules naturally condense into 

polydomain structures composed of multiple uniaxial domains with different 

directionalities [1,19]. In such case, a continuity of director is often violated at some 
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points, termed by disclination defect. Inversely, the aligned texture of LC is possibly 

distorted in order to accommodate the change of the environment. One of the 

pronounced effect is found in Freederickz transition [1,2], where the directors of 

molecules change as a response to the strong electric, or magnetic field as the external 

field imposes the rotational moments to the weakly polarized LC. The alternation of 

the directors within the domain is often interpreted in terms of the elasticity of the LC, 

which indicates a competition between the externally applied energy and energy 

penalty of the directional distortion. Note that such means of alternating alignment 

leads to one of the contemporary marvel in these era: a liquid crystal display (LCD).  

On the other hand, the phase of LC can also be alternated. Following classical 

Ehrenfest classification, the ensemble-averaged order of the molecules dramatically 

changes whenever phase transition occurs. For example, the symmetric order of the 

thermotropic molecules are totally disturbed and thus the system becomes isotropic 

when temperature increases up to threshold order-clearing temperature. Figure 1.1.1 

illustrates a phase change constituted of crystal (K), smectic (Sm), nematic (N) and 

isotropic (I), which emerges as ambient temperature increases [20]. Obviously, the 

smectic phase exhibits both translational and orientational symmetry, which are 

sequentially removed as temperature increases. 

It is worth to remark that these two possibilities of the geometric change of LC 

structures, are similarly transcribed onto the LCP structure, thereby changes the 

phase-driven behaviors. Moreover, as these geometric changes are also a function of 

the internal molecular characteristics, such as the elongated Kuhn segment of the 

chromophore, and the functional part of the rigid molecules, the studies of the stimuli-

responsive behaviors of LCP requires information that ranges from LCP’s molecular 

constituents to their phase distortions. 

1.1.2. LC-driven properties of LCP

As remarked, the characteristic behaviors of LCP are largely derived from its 

combination of LC molecules and polymeric chains. Although physical properties of 
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LC are maintained in general, chemical crosslinking distinguishes the LCP from its 

uncrosslinked counterpart as well. First of all, the transition of the mechanical 

property occurs during the polymerization; unlike LC, whose molecules are contained 

within the glass cell, consolidated LCP is a self-standing material that deforms by 

external loadings, let alone shearing. In addition, the LC phases and its alignments 

upon polymerization are fixated to the polymer, by which the polymer exhibit not 

only anisotropy but also preserved optical traits. Interestingly, such fixation produces 

the optical-mechanical coupling because the deformation of the LCP yields the 

relative displacement of the crosslinked point, which produces reorientation of the 

mesogenic constituents. 

The LC phase transition, on the other hand, can also influence the structural 

behavior. For instance, aforementioned temperature-dependent behavior of 

thermotropic LC, of which phase undergoes transition as a response to the thermal 

stimuli, can be transferred to the LCP through crosslinking, in a way that optical 

properties are onto the structure. The first successful realization of macroscopic order-

mechanical coupling is done by Finkelmann and his colleagues [12], who synthesized 

uniaxially aligned (i.e. nematic) liquid crystal elastomer. The elastomer sheet is 

proven to exhibit up to few hundreds % of reversible successive shrinkage and 

elongation, as an interplay between initial stretch that induces and fixes the alignment 

of the rigid molecules and the phase transition between nematic and isotropic states, 

whose chain configurations are uniaxial ellipse and direction-invariant sphere, 

respectively. Due to the reversibility of the transitions between LC phases, the 

transition-induced mechanical behaviors is hysteresis-free, likewise. The LCP-based 

applications, therefore, can be treated as the mechanical element that reacts to given 

stimuli, rather than the structure. Throughout this dissertation, the term order-

mechanical coupling is used to refer such coupled, interdisciplinary behavior since the 

phase of LC is frequently parameterized by order to the symmetry.

Some recent studies have further explored the possibility of the photo-actuator, 

which is a light-driven variant of the coupled behavior Provided that incorporated 
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mesogens exhibit photochromism, such as azobenzene chromophore that reversely 

changes its form to cis- (boat shape) out of an initially trans- (chair shape) state upon 

exposure to photons with adequate frequency, the polymeric conformation similarly 

changes with light. Given that actinic light is bombarded onto the surface of photo-

responsive LCP, the energy of the photon is continuously absorbed into the matrix 

while it travels through the materials and isomerizes the photochromic molecules. An 

increased number of kinked molecules reduce the phase transition temperatures as 

these molecules lose their rigidity and cannot contribute to the order, thereby renders 

the state of the liquid crystal inhomogeneous in the depth-wise direction. As a result, 

differential photo-induced strain is generated in out-of-plane directions that 

simultaneously bends and elongates the specimen. Moreover, reversibility of such 

mechanism has been proven to generate no plastic deformation, thereby rendering the 

photo-bending mechanism an attractive means for the remotely controlled smart 

actuation [15,16,21-24], of which the behaviors are possibly alternated whenever we 

change the backbone, domain, and even the type of liquid crystallinity.

1.1.3. Synthesis: from LC alignment to Polymer Crosslinking 

A synthesis of LCP is briefly described in the present chapter, as a preparation of 

the material and its characterization are crucial in order to understand the behaviors of 

the material, and the possibility of its manipulation on design, by which its 

mechanical behaviors are modified. For instance, a homogeneous directionality of the 

liquid crystalline alignment is possibly distorted into diverse configurations, given 

that mechanical/electrical loading is given during the synthesis.

The synthesis procedure is composed of the multiple steps as a liquid mixture of 

the compound turns into solid, a self-standing structure. In general, there are several 

types of LCP present to this day, distinguished by a density of the crosslinking: gel, 

elastomer, and densely crosslinked polymer. Although their mechanical properties (e.g. 

modulus) are greatly differ from one to another, their phase behaviors that bridges a 

light-induced dilution to mechanical shape changes are same in general; hence, the 
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present description does not cover all the procedures applied for every types of LCP, 

and it is worth to remark that the densely crosslinked polymer is preferred and used 

throughout this study as such choice eases computational problem such as a 

nonconvex (i.e. micropolar) behavior present in the low-crosslinking cases. In this 

respect, the reader may find a simplified description about a synthesis of heavily-

crosslinked LCP, in which each step is remarked along with possible modifications 

and their prospective effect to the phase behavior. 

A synthesis step, of course, starts with the material selection, which is composed 

of diverse mesogenic compounds, including light-responsive ones. This step is crucial 

as it largely determines the mechanical behavior; a length of hydrocarbon found 

within the mesogen, for instance, determines flexibility and strength of the LCP. A Fig. 

1.1.2 illustrates an example of chemical formulas of molecular compounds found in 

the literatures [13,15,26-28]. 

Note that rigid part, often referred as a Kuhn segment, is always present in the 

liquid crystal molecules, while an azodye (-N=N-) exists only in photo-reactive 

chromophore (see Fig. 1.1.2. (a) and (b)). The properties associated with the light 

absorption are determined by location and number of azodye, as demonstrated by 

green-light driven photo-actuator incorporating azotolane [29]. Aside of this molecule, 

auxiliary components such as Ingacure, a photocrosslinker, and chiral-dopant is also 

shown. It is worth noting that a chiral-dopant is only used to induce a twisted nematic 

(TN) configuration within the cell; without the dopant, the random chirality is 

imposed onto the structure, hence a consistent spin direction is not observed. The 

homogeneous mixture is then prepared through a heating and stirring.

Another important step is a glass cell fabrication, which determines a 

directionality of the LCP structure. Note that this process is analogous to the 

preparation of uncrosslinked liquid crystal cell as the alignment is similarly 

determined by the microgroove structure formed on the glass cell: the arrays of the 

groove align the mesogenic direction, in a way that the longitudinal axes of the 

ellipsoidal molecules are anchored by parallel to the groove direction. On the other 
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hand, such properties are not exploited in elastomer-based LCP synthesis [2,4,10,12], 

of which mesogenic directionality is imposed by a mechanical loading between two 

steps of crosslink. Following a customary step of LC, the microgrooves are created by 

a rubbing process taken place after the glass cell is firmly coated. The microgrooves 

are generated in parallel to the rubbing direction. Therefore the attachment of the 

glass cell determines the surface configuration of the liquid crystal molecules; the 

nematic LCP is generated when  two identical glass cells are attached, while twisted 

nematic LCP is made in case of these glass cells are attached perpendicularly. It is 

worth noting that the recent reports on LCP deformation often exhibits diverse 

alignment technique other than rubbing-based ones; a photo-alignment or a doping 

techniques, for example, possibly create quite exotic textures on the LCP surface that 

possibly induces inhomogeneous strain fields [30-33]. 

Lastly, a micro-spaced glass cell is prepared wherein melted LC mixture is poured 

into, driven by capillary forces. A UV-crosslinking is then taken place that generates a 

LCP. A thermal crosslinking is also possible, given that temperature range of 

dissociation of thermal crosslinker must agree with the nematic range of the liquid 

crystal. The mesogenic configuration of LCP’s stress-free state (e.g. smectic solid) is 

determined during this process, as the LC state are fixated during the polymerization.

1.2. Theoretic Background

As described in chapter 1.1., LCP has been vigorously investigated in the 

attractive envisions of a novel material with anomalous phase-behaviors, which 

originated from the combination of polymeric elasticity and self-organizing traits of 

the LCs. Predominantly, such coupled behavior has three distinguished traits. (1) The 

actuation source may vary depending on the constituting chromophores’ sensitivity to 

the certain stimuli (e.g. temperature if they are thermotropic LCs). (2) The actuation is 

basically integrated within the structure itself, by which some hurdles for the future

actuation system can be circumvented. (3) Various exotic deformations are possibly 

generated out of seemingly equivalent models; when liquid crystalline textures are 
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tuned either via rubbing, photo-alignment, or doping functionalized inhomogeneity 

[1-3, 34-37], they show unevenly distributed principal directions of local deformation. 

To understand the light-driven actuation of LCP, the physics that broadly accounts 

a photochromic behavior of azodye, phase change of LC, and polymeric structure 

change is pivotal: a photomechanics. It is a combination of distinctive physics that 

ranges from photo-isomerization, phase behavior, to structural mechanics. In this 

section, the theoretical backgrounds of these fields of study and their overlapping area 

are described. 

After describing the convoluted behavior of LCP and its possible deforming 

modes, a thermotropic phase transition and is concomitant mesoscopic change is 

described in terms of phase behaviors. For LCP material, phase behavior generally 

indicates the shape change of the material upon configuration change of the molecules, 

which requires the modeling of the interplay between polymer chains and geometric 

configuration inherited by liquid crystalline molecular status. The Landau model of 

the LC molecules is described as well as its effect to the molecular conformation. 

Secondly, I present an inherent multiscale nature of photomechanics, which is 

associated with constructing comprehensive finite element model of LCP. The 

bridging of the micro and macro scale, reflected onto the formulation of the LCP 

structure, is also discussed in brief. 

1.2.1. Thermo-opto-mechanical coupling

The order-mechanical coupling has many variants; the LCP becomes responsive to 

the light irradiation, provided that incorporated LC molecules are reactive to the light. 

The chromophore that includes azodye, is a notable example to such light-sensitive 

molecules. E-Z isomerization of the molecule, where the geometric shape change is 

induced while its chemical stoichiometry of the structure is conserved, is the example 

of reversible light-induced isomerization shown in the azobenzene chromophore [2]. 

The irradiation of different wavelength of light determines the shape between 

chair-shaped (trans-) and boat-shaped (cis-) molecules, which are geometric isomers 
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with different light transmittance. When the ultraviolet (UV) light is given, for 

example, trans- molecules, a low-energy state, absorbs the photons and becomes cis-

molecules, a high-energy state. An initially ordered configuration is hence perturbed 

due to the shape change of the rod: from uniaxial ellipsoid to kinked rod. Such 

influence is described by reduction of the order parameter, which is an indicator of 

phase transition. The LCP system with more kinked molecule therefore becomes more 

susceptible to the given thermal energy and threshold order-clearing temperature 

decreases as a function of the number of generated cis- molecules. Subsequently, the 

induced phase transition results in microscopic shape change, which is often referred 

to a phase behavior, as the shape of a polymeric chain entanglements changes with 

regards to the organization of LC molecules. In short, the thermo-opto-mechanical 

coupling to the mechanical behavior arises when two conditions are met: (1) LC 

molecules are reactive monomers (i.e. polymerizable functional group attached to the 

rigid part), (2) the rigid part of the chromophore is sensitive to the light irradiation. 

In terms of macroscopic deformation of the LCP structure, the interesting 

mechanical phenomena are found based on the multiphysical coupling. The light-

induced bending is the representative example, in which 2D thin strip changes their 

shape into 3D structure when the light is irradiated. Such out-of-plane deformation is 

a novel characteristic when compared to classical shape-memory active material such 

as shape memory polymer (SMP) or shape memory alloy (SMA), whose deformation 

mode remains in-plane elongation/shrinkage. A gradient of light-induced strain, 

generated by decay of the light while it penetrates through the medium, is behind the 

deflection.  

The remote and precise controllability is another advantage of photo-responsive 

behavior, thanks to the advanced optical technologies. Compared with the slow and 

long-range diffusion of a phonon from thermal stimuli, a photon bombarded from the 

laser source can be concentrated as demonstrated well in semiconducting industries.

The need of contact heat source, of electric wirings accompanying traditional active 

material is therefore not required in this novel material. 
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1.2.2. Liquid crystalline phase behavior and the microstate change

In terms of energy principle, a phase transition from one state to another involves 

a non-convex energy functional which has multiple wells with local convex profiles. 

In nematic LC, for instance, there are two wells that accounts for uniaxial nematic 

order and isotropic random distribution. 

Throughout present dissertation, a Landau model of LC phase transition is 

adopted [1]. The model is constituted of polynomial expansions with order parameters 

and constants, which are temperature-varying properties when molecules are 

thermotropic. Equation (1.2.1) shows a typical Landau model of nematic-isotropic 

transition, where the tensorial nematic order parameter Q is penalized by its 2nd, 3rd, 

and 4th power terms with parameter A,B,C.

[ ] ( ) ( ) ( )
22 3 21 1 1

,
2 3 4

f T Atr Btr Ctr= + +Q Q Q Q (1.2.1)

The minimizer of the energy functional shown in Eq. (1) is dependent to the 

constituting constant A, B, and C, where only A is a temperature-dependent constant 

in typical analysis. By setting ( )0 cA A T T= - , where Tc is a critical temperature 

similar, but not equal to, nematic-isotropic clearing temperature TNI. The 1st order 

phase transition is hence well-reproduced, as often shown in short rigid molecules 

such as 5CB. Although the Landau model is often criticized as it overestimates the 

order parameters in low-temperature regime, it is acceptable in photomechanical 

analysis in general as the regime of interest involves the phase behavior that occurs 

around phase transition temperature.

Note that many variants of Landau model are possible, that is, by increasing the 

order of the polynomial or including more internal order parameters (e.g. translational 

order parameters in smectic-A LC). The comprehensive review [38] on the Landau 

model demonstrates that fine tuning of the constitutive parameters is associated with 

the nature of the LC molecules such as Kuhn length, sensitivity to temperature, and 

even geometric shape of the molecules. 
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1.2.2.1. Order parameter description of uniaxial phases 

There are many types of LC, as a molecular geometry and an interaction energy 

involve the stable configuration (i.e. shape) and phase-change characteristic (i.e. 

temperature). In this thesis, the LC phases that retain uniaxial geometry are 

considered. A nematic LC stands for the molecules with orientational symmetry only, 

as indicated by term “nema” derived from “thread” in Greek. It is the simplest phase 

when we decrease the temperature from isotropic, and the molecular configuration is 

mostly ellipsoidal shape. A scalar orientational order S is widely used to parameterize 

the degree of alignment of the chromophores with respect to their averaged direction 

(i.e. director), computed through ensemble average of the angle deviation. Provided 

that biaxiality is not provoked, the tensorial format of orientational order 

( )/ 2, / 2,Q diag s s s= - -
%

is also frequently used. 

The smectic LC, on the other hand, the translational symmetries, which require a 

periodic function that accounts for the spacing between each layer and the layer 

normal, are commonly described by the complex scalar order parameter: 

( )expo oiq ny r= ×
r r

. An order parameter y is defined by an amplitude of density 

modulation or , and a real density wave phase oq
r

, of which the gradient indicates 

the layer normal. 

1.2.2.2. Phase behavior: a crosslinking-medicated conformation

Upon phase transition, the symmetries of LC alternates greatly; such geometric 

shift induces the change of statistical distribution of the crosslinked point, which 

determines the conformation of the polymer. Such microscopic changes are largely 

investigated by prominent Verwey-Terentjev-Warner elasticity (see Eq. 1.2.2), a 

statistical model of the ensemble-averaged polymeric chain distribution with respect 

to the directionality of the LC molecules. 

( ) ( )1 log det / detTf trm -é ù= +ë ûo oL λL λ L L             (1.2.2)

Where the Lo and L indicate deformed, and initial shape tensors of the polymeric 
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conformation. The deformation gradients of the LCP are also presented with λ and λo. 

For nematic polymer, where the microstates are approximated by a uniaxially 

elongated ellipsoid. Note that if the shape tensors become a tensor identity, the VTW 

model is degenerated to the classical neo-Hookean energy, which is a primitive form 

that describes the hyperelastic behaviors. The phase change from nematic to isotropic 

case, for instance, the initially anisotropic polymeric conformation (i.e. anisotropy 

radii of gyration tensor) becomes isotropic; hence, the polymer chains shrink in the 

principal direction of the gyration tensor that reduces the principal eigenvalue of L. 

The modeling of L with respect to the external stimuli and molecular change is 

significant in terms of the interdisciplinary coupling; in some cases, the overall 

procedures are captured by the critical exponent based modeling , where nematic-

isotropic transition temperature (TNI), which differentiates two distinct phases, along 

with the scalar shape parameter r, which represents the polymeric conformations [2, 

6,8,939] are utilized as internal parameters. 

1.2.3. Multiscale / Multiphysics coupled nature

Concerning deconvoluted photomechanics, the existing theoretical approaches 

have been successful in describing each photomechanical behavior from the 

perspective of different physical regimes of interest. For example, a polymeric 

description of such micropolar materials based on continuum mechanics has 

succeeded in reproducing certain details concerning the anomalous behavior of 

nematic solids: e.g. the non-convexity of the energy landscape, the dynamics of stress 

evolution and diverse stress-accommodating shape change (such as bent elastica), etc. 

At the other side of the analysis, small-scale simulations have demonstrated that 

thermomechanical phase phenomena are related to the light-induced effects, and that 

they correlate well with the observed light-induced motions. Although a few recent 

studies have suggested connections between changes in nematic order and large-scale 

behavior, these works still resort to classical modeling by relying on Landau-de 

Gennes coupling along with the linear dilute model. Accordingly, such approaches fail 
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to take into account crucial molecular details regarding light irradiation. 

From this point of view, it is salient that there is a dire need to reducing the 

knowledge gap between the two levels (micro and macro) in order to simulate the 

large-scale photo-responsiveness in terms of cis-trans isomerization. More specifically, 

there are three mechanisms to be taken into account. Firstly, the physics of the light-

sensitive molecules, which is referred as a photochromism, must be taken account to 

quantitatively investigate light-related parameters such as intensity, settle time for 

irradiation. The mesoscopic polymeric conformation also needs to be considered, to 

bridge between the number of stimulated molecule and the microscopic state change. 

In this step, the polymeric description not only in terms of isotropic, random-walk but 

non-overlapping flexible chains but the relative movement of the crosslinking points 

should be analyzed with respect to perturbed variables. As this is a molecular level of 

change, the microscopic characterization is underwent through molecular dynamics 

simulation (MD), of which atomic structures are penalized by spring constants. Lastly, 

the analysis of the deflection of the structure requires continuum mechanics, as 

internally generated stress by light irradiation must comply with governing equations 

and constitutive model. It is worth to remark that even though these three regimes of 

study are well-established with the advances of computational mechanics, their 

interplay are still in question; for instance, whether light-induced kinked molecule 

(cis-) influences the structural properties, that is, nonexisting phenomenon in liquid 

crystal physics. 

In this dissertation, we examine the azobenzene-based acrylate side-chain LCPs, 

the backbones of which are composed of acrylate monomers and crosslinkers. Such 

glassy networks exhibit various light-induced bending behaviors, which result from 

the modulation of certain physical properties (e.g. Kuhn length, crosslinking density). 

Their in-plane shrinkage is overshadowed by out-of-plane deflection or bending, 

because the trans-to-cis isomerization processes are likely to induce in-plane 

mechanical strain caused by the high modulus of the structure. 
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1.3. Motivations 

In recent years, there has been a surge of experimental reports focusing on the 

versatility of the LCP based photo-responsive systems as a building block to the 

mechanism. 

Figure 1.3.1 exemplifies the diverse photo-responsive behaviors which ranges 

from uniaxial elongation to complex deformations; firstly it shows demonstrations of 

elementary motions generated by light: it can walk, swim, and rotates just as classical 

actuator does, while scaled-up to mechanisms demonstrates a precise and remote-

controlled micro robotics and fast actuating system. These various deforming modes 

are obvious advantages of the LCP-based photoactuation, where structure and 

actuating material are integrated. 

The improvement of the behavior of the materials is also a branch of recent 

investigations. The increase of the mechanical stiffness and modulus, and the shift of 

the operating wavelength of light [40-44] are the examples of this investigations, 

which narrows the gap between real operating condition with laboratory environment. 

Note that actuation source is possibly controlled, depending on desired deforming 

mode; increasing ambient temperature leads homogeneous uniaxial length change, 

and varying wavelength of light determines the mode of bending. Microstate of the 

material is possibly controlled as well; the directionality of the LC molecules 

incorporated within the material not only inherits the anisotropy of the LCP-based 

system, in a way that fiber does to laminated composites, but also determines the 

principal directions of induced photo-strain. Such convolution of different mechanism 

of actuation characterizes the photomechanics, which leads to the possibility of 

multiscale view of the material design.

Nevertheless, there is less interest in the field of mechanical design and its 

multiscale framework. In 2015, White and Broer remarked that “One significant 

challenge is the extension of the basic understanding of the chemistry and physics of 

these materials, and their responses to stimuli, to what and how these can enable 
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distinctive performance when in the hands of a mechanical designer” in the 

prospecting the programmability of LCP [45]. Following the same view, the design 

framework is proposed in the present dissertation. Inspired by mechanical design 

protocol in computer-aided-engineering (CAE), the schematic design protocol that 

seamlessly incorporates the analysis and design are proposed. It is worth to remark 

that novel multi-scale computational analysis technique is employed in both analysis 

and design order to account the interdisciplinary nature of the photomechanics dealt in 

the chapter 1.3. In this regards, a finite-element-based multiscale approach with the 

following constraints are proposed herein: 1) apropos of the discussion of LCN 

heating, microscopic observables must be included with regard to optical stimuli; 2) 

the method should be able to simulate large deformations, especially those related to 

bending, twisting, and geometric instability; 3) the method must provide the user with 

modeling capabilities in both micro- (e.g. backbone order Qb-to-optical order Q 

relation, spatially distributed mesogen n) and macro- (e.g. 3D domain shape, polarity 

of incident light) design parameters.

1.4. Organization of the present dissertation
The present dissertation is comprised of the two chapters, which sequentially 

describe the multiscale modeling, and the design of the photo-responsive actuations 

based on the proposed modeling framework. In chapter 2, the multiscale framework 

where several physical disciplines are convoluted, are proposed. The photo-induced 

isomerization, a subsequent change of the microstates, and the up-scaled mechanical 

phenomena are incorporated to the framework. First of all, the geometric nonlinearity 

considered within the finite element is discussed in terms of the kinematic 

decomposition of the deformed configuration. The constitutive equations of 

photomechanics, derived by incorporating light-induced changes into the variationally 

derived tensorial equations, are presented. In addition, an in-silico modeling of the

molecular unit cell is presented for the microscopic characterization, which provides 

nontrivial phase behaviors inherent to the LCP modeling. To widen the simulation 
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capability, smectic solid, a phase-variant of the nematic LCP, and the twisted nematic 

(TN) configurations are also discussed in terms of its characteristic bending 

phenomenon. Later sections of chapter 2 are devoted to the characterizing a fidelity of 

the proposed model; the nonlinearities of the light-induced deformation are discussed 

in terms of the geometric nonlinearity, and the nonlinear phase behaviors found by the 

molecular modeling of the crosslinked LC. 

In chapter 3, a capability of the multiscale modeling is demonstrated as the 

modulation of the LCP actuation, which paves the way towards the design of the 

light-responsive systems. The design parameters are divided into extrinsic and 

intrinsic part, inspired by the LC directors are fixated during the crosslinking. First of 

all, parametric studies of the shape of the LCP solid and the uniform rotation of the 

director are conducted in order to reveal the effect of extrinsic (post-crosslinking) 

conditions to the structures; the uniaxiality of the director remains intact throughout 

the study. As the light intensity is somewhat proportional to the induced strain, the 

search of the optimal light irradiation pattern is also presented by take advantage of 

the numeric optimization. Lastly, the intrinsic design parameters are also investigated; 

the directionalities of the LC are significantly distorted. 2D textures with defects are 

examined, as they frequently emerges in the experiments [17]. The exotic deformed 

shapes are expected in this inhomogeneous distribution of the directors, as the light-

induced strains are applied parallel to the director of the mesogens; hence the 

nonlinearity gets severe due to the mechanical frustration. It is worth to remark that 

such large shape change and the relaxed configuration under the external stimuli and 

mechanical frustration demonstrates the newly gained insight in terms of both physics 

and mechanical design. Although most of the results are presented parametrically in 

search of sensitivity analysis, some of them are compared with experimental results 

reported by either available literatures, or in-house experiments. 
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FIG. 1.1.1. Illustration for the phase change of thermotropic liquid crystal 

(ellipse): a temperature-induced phase transition is comprised of crystal (K), smectic 

(Sm), nematic (N), and isotropic (I)

FIG. 1.1.2. A chemical compounds that constitutes the LCP (a) azotolane (b) 

A6AB6, a light-responsive monoacrylate, (c) RM82, a reactive mesogen (d) S-811 

chiral-dopant (e) Ingacure 819
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FIG. 1.3.1 The examples of light-responsive manipulation. The figures at the 2nd

row are adapted from the references (D. Corbett and M. Warner Liquid Crystals 

(2009), M. Shankar et al. Proceedings of the National Academy of Science (2013), H. 

Jiang et al. Nanoscale (2013))



19

Chapter 2. Multiscale photomechanical analysis of LCP

In the present section, the computational framework of the photomechanics in the 

multiscale viewpoint is presented, distinguished by an incorporation of lower-scale 

information into the continuum-based description to the photo-responsive material. 

Such an interdisciplinary work is motivated by a strong interplay that envisions an 

inevitability of the interdisciplinary understandings, which is often neglected in the 

existing computational frameworks.

2.1. Overview of multiscale analysis of LCP

A sequential multiscale framework refers a type of simulation wherein 

information found at the microscopic level are reflected to the continuum level as a 

change of the internal variables at the constitutive equation, provided that length 

scales are clearly separated (i.e. each of the microscopic states is homogeneous, 

regardless of the macroscopic changes). In the present framework, I adopted such 

sequential schematics based on the following reasons: firstly, my focus lies on the 

bridging between optical stimuli to the macroscopic shape modulation, which requires 

no, or negligible amount of stress-induced phenomena because the phase behavior is 

basically stress-free. In short, the phase behavior dealt herein is basically molecular-

scale property. Also, the sequential assumption is advantageous in the design of the 

material, an inverse problem, as the assumption does not require special treatment to 

the spurious physical properties such as reflecting waves that are frequently found in 

the concurrent multiscale schematics. 

The success of the modeling is highly dependent to the selection of the up-scaling, 

or bridging parameter that exists both in a macro- and a micro- scaled physics, which 

in the same line of multiphysical understanding of the material. In the present work, a 

shape of the polymer for up-scaling parameter is employed, as the change of the shape 

is a basis of the phase behavior and change of stress-strain constitutive relation. The 

shape of the polymer is frequently approximated by a uniaxial ellipsoid elongated to 
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the nematic director, whenever a rotational symmetry is found in the liquid crystal 

system. A shape parameter r, the square of the ratio between the backbone radius of 

gyration tensor calculated parallel RP and perpendicular R̂ to the director, is 

introduced to represent the degree of anisotropy. On the other hand, a bridging 

between quantum to molecular level is also modeled by cis-populations ( cisn ) of the 

given instance, which are determined by operation conditions such as light and 

temperature. 

The information flow and computations involved are described in Fig. 2.1.1 and 

Table 2.1.1. The multiscale framework is adopted in order to upscale the microstate 

changes found in MD simulations; these are then used to simulate macro-scale 

deformation subjected to a specified molecular composition (here, the acrylate side-

chain LCP), temperature T, and intensity of the light source oI . 

First, /cisdn dt is determined as a function of I , the absorption coefficient h , 

and T with thermal relaxation ratio ct , as shown in Eq. (2.1.1) [10,12,36,46]. 

Unlike the temperature, which takes on a homogeneous value throughout the LCP 

strip, the light distribution is computed locally for each element according to the 

formula ( )2cosoI I f= , where the incident angle f is the defined as the angle 

between each incident ray and the normal vector, which constantly changes owing to 

deformation. According to this formula, incident angles other than 90º decrease the 

absorbed number of photons [41]. I assume that the penetration depth d and profile of 

light are instantaneously equilibrated [48] (relative to the speed of the cisn

evolution). The implicit Euler method with a time-step of /60dt t¥= is used for 

numerical time integration, in which t ¥ indicates the approximate settling time 

computed by Eq. (2.1.2). A ct is computed in Eq. (2.1.3), assuming that the thermal-

induced trans-to-cis isomerization follows Arrhenius-like behavior for given

activation energyD .
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( ) 11cis cis c cisn I n nh t -= - -&         (2.1.1)

( )1exp( log(0.01)) / ct Ih t¥ -= - +            (2.1.2)

( )exp /c o kTt t= D       (2.1.3)

( )expo o
ef f L eff eI W I I z dé ù= -ë û

(2.1.4)

The last equation (Eq. (2.1.4)) describes the profile of light intensity based on the 

Lambert W function ( LW ), which lacks a closed-form solution. The light intensity 

decays non-exponentially as the light travels through the polymeric domain, and its 

decay profile is affected by the maximal intensity of incident light o
effI on the 

surface of the film, the out-of-plane position from midplane z, and the penetration 

depth d. d characterizes the saturation depth of light, possibly determined by the 

interplay between polymer characteristics and the crosslinking ratio of the chain. It 

approximates the nonlinear optical absorption and concomitant nonlinear light 

penetration; a photo-bleaching effect [4, 49-51] that changes both the temporal and 

spatial distributions of cis- concentration is thereby considered. 

Given that a light intensity and cisn is specified at the thickness integration point, 

a shape parameter r (which is equal to 3l ) [5,6] is computed by point-wise to 

describe the microstate, as shown in Fig. 2.1.1(b). I assume that metric shape tensors 

of the polymer are degenerated to a single parameter r, as polymeric conformation

remains uniaxial before and during photomechanical deformation [52]. That is 

because the MD simulation [53] results show that neither biaxiality nor 

compressibility is provoked during the spontaneous deformation of MD unit cells. 

The correlation between a light irradiation and a shape parameter is also pivotal, 

but, unfortunately no closed formula has been proposed to elucidate the influence of 

the existing polymeric backbone to the liquid crystalline phase and the effect this has 

upon the increase of geometrically kinked (cis-) molecules. In this study, an 

experimentally determined format is used on account of its simplicity, and its 2nd-

order phase transition behavior. According to the experimental results [39,54], the 
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shape parameter r is: 

( )( ) ( ) ( )
3
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1 otherwise
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,

(2.1.5)

with a (optical-mechanical-order coupling) and z (effective critical exponent)

representing material-specific parameters. A shift of TNI resulting from light 

illumination is modeled as a linear dependence on the ratio of photoisomerized cis-

molecules ncis (with proportionality coefficient β), as shown. In classical point of view, 

β remains constant throughout actuation and depends only on the interaction between 

rigid molecules; the cis- molecules are thereby treated as an inhomogeneity that 

‘dilutes’ the order. It is worth noting that other theories, such as those regarding linear 

proportionality to light intensity or heat [55-57], experimental fitting [7], and 

molecular theories [58], can possibly be applied as an alternative to this light-

temperature-parameter coupling. 

A macroscopic bending deformation for a given microstructural distribution is 

computed quasi-statically for given time step t, in which phase behavior is coupled to 

a geometric nonlinear shell in order to compute large-scale deformation. The incident 

angle f for every element is computed consecutively for a given deformation and 

rotation, which in turn changes the light intensity and thus the cisn distribution on 

the surface. The loop continues until t reaches t µ . The simulation parameters are 

summarized in Table 2.1.2.

The present upscaling scheme, which uses shape parameter r as a bridging value, 

is therefore understood as a sequential method that is suitable for obtaining a quasi-

static solution, as well as distinguishing the timescales of separate physical domains. 

These assumptions, however, are often violated if the question is related to dynamics 

such as rapid vibration [14], wherein mechanical energy transfer is strongly coupled 

to microstate evolution.
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It is also worth to remark that a steady-state cis-population density cisn¥ is also 

employed whenever required, following Eq. (2.1.6). To simplify the relationship 

between cisn¥ and a given light intensity I, an effective measure effI is introduced 

by multiplying the intensity by the cis state lifetime 1t - and absorption rate G : 

ˆ
1 1

eff

cis

eff

II
n

I I

t

t
¥ G
= =

+G +
(2.1.6)

Although time-dependent solutions where computed ncis parameter per each 

timestep is then discouraged and incident angles of the material that significantly 

alternate the behavior cannot be analyzed, the steady-state solution is still beneficial 

to analyze the deformation as it elucidates the effect from geometric nonlinearity, 

apart from the other effects Herein, steady-state solutions are therefore composed of 

cisn¥ , computed directly from amount of incident light, and r, a derivative of ncis and T. 

Note that the present light-temperature-order model is a legacy from various fields 

such as polymer physics (the freely jointed model), phase transition theory, light 

decay, etc. The basic formula, therefore, offers much room for improvement because 

there are superior methods available for tailoring [25,59] and measuring [53,60] r

directly.  

2.2. Geometric nonlinear shell formulation

Behind the shape-change phenomena of the light-responsive LCP is an energy 

bombardment originated from light irradiation onto the surface of the material. Part of 

the photonic energy is absorbed by trans- molecules and used to photo-isomerization; 

the reduction of the density of photonic energy generates a gradient in the transverse 

direction, which in turn result in out-of-plane motion. A geometric nonlinearity is 

essential to analyze such finite-strain behavior, as the rigid-body motion is dominant 

mode in 3D deflection such as bending. In this work, therefore, corotational 

formulation by which strain is decomposed into linear part and rigid-body part, is 

employed herein.



24

2.2.1. Kinematics-based corotational formulation

It is worth noting that the kinematic separation of rigid-body motions and pure 

deformations from element displacements distinguishes element-independent 

corotational (EICR) formulation from other geometric nonlinear formulations that are 

based on polar decompositions of deformation gradients. Thus, EICR formulation has 

computational advantages, since the external filtration of rigid-body motion facilitates 

the calculation of higher-order terms without shear/membrane-locking phenomena 

and enhances the accuracy of solutions that are shape-independent. The conventional 

polar decomposition approach, on the other hand, may hinder both computational 

efficiency and programing procedure due to complex gradient of higher order 

elements. Aside from that, the EICR is also beneficial to stimulate future works in 

terms of mechanical design of actuators as an analytic sensitivity has been reported in 

terms of geometric nonlinearity.

To analyze the deformation of 2D LCP sheets into 3D deformed shapes through 

bending and twisting, geometric nonlinearity that arises from significant change of 

slender LCP geometry is considered in the present work. 

Herein, the nonlinear formulation model is based on the co-rotational formulation 

approach. The most salient feature of the co-rotational formulation is the procedure 

for separating the pure deformation and the rigid body motion from the displacement 

of elements. In EICR [61], the separation is based purely on kinematics and thus 

distinguishable from basic polar decomposition of the deformation gradient; as an 

external filter, EICR considerations are applied externally to the local elements and 

thus strain-displacement relation is completely detached from nonlinear 

considerations (i.e. element independence). Therefore, I efficiently implement the 

higher order element, and thus enhances not only the accuracy of the solution but also 

reduces the need of reduced integration. Therefore, EICR is the essential tool for the 

geometric nonlinear solution under consideration. The matrix notation used herein 

follows that of Ref. [61].
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To enable kinematic tracking of rigid body motions over the element, co-rotational 

formulation requires three configurations, as shown in Fig. 2.2.1. These are the non-

deformed ( oW ), deformed ( DW ), and co-rotational ( RW ) configurations. The latter is 

a theoretical concept introduced to mediate between two natural coordinates, based on 

the premise that the rigid body part of the total displacement is executed first, before 

the element is deformed.

The local frame ie and the local-to-global translation matrix T are calculated 

element-wise during each time step. Located at the centroid of each element, the local 

axis of 1e is oriented parallel to side 1-2, whereas e3 remains perpendicular to the 

element. ΩR and ΩD are stated upon the same local frame, as shown in Fig. 2.2, 

because the local frame translates and rotates as its base element does. Pure 

deformation is obtained by comparing the deformed shape with the co-rotational one, 

expressed by the pure deformation du and the rotation dθ , where an overbar and a 

subscript d each indicate that the properties refer to the local frame and pure 

deformation, respectively. A tensorial description for separating the rigid body motion 

from the global shape change is given below in Eq. (2.2.1): 

d

d

d

d d d
d

df dfd

ì ü ì ü ì ü
= = =í ý í ý í ý

î þ î þî þ

u u u
d HPT Λ

θ
, (2.2.1)

where φ is a pseudo-vector of the node-wise rotator R, and H, P, and T are 

auxiliary matrices of EICR formulation. Equation (2.2.1) demonstrates the sequence 

of the kinematics-based procedures that define EICR. After the nodal displacement is 

transformed to the global frame via T, the deforming part is extracted through the 

projection matrix P, which extracts the pure deformation part. Matrix H eliminates the 

gap between the two pseudo-vectors θ andf . 

The consistent tangent stiffness matrix K and the local residual force R are 

calculated, as shown in Eq. (2.2.2). A conventional Newton-Raphson algorithm is 

used to solve the FE equations. An adaptive step size control scheme [62] is used, and 

step size is either increased or decreased depending on the stiffness matrix conditions. 
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( )

i e T T T e T T ph

T T T e T T ph
d

D = - = -

= -

f f f T P H f T H f

T P H K d T H f
. (2.2.2)

In Eq. (2.2.2), e e
d=f K d is the local force and phf is the photo-stress force. 

The projection matrix is removed for the light-induced force term because the rigid 

body part of the external load should not be subtracted out, as in the case of the 

following force: 

( ) ( )i e i i i i e e
GR GP GM M GR GM= - = + + + - +K K K K K K K K K , (2.2.3)

with

T T T e T
M GR nm

T T T T
GM GP n

e T e e T e
GM GR nm

= = -

= = -

= = -

K T P H K HPT K T F GT

K T P LPT K T G F PT

K T L PT K T F GT

(2.2.4)

As shown in Eq. (2.2.4), the stiffness matrices are categorized according to the 

source of nonlinearity; the subscripts M, GR, GM, and GP stand for the variations of 

matrices f, T, H, and P respectively. Terms with the superscript e denote 

illumination-induced geometric stiffness, and are calculated consistently with phf .

The finite element formulation of the linear element is constructed by using the 

variational principal; its derivation is given in Eq. (2.2.5): 

( ), , j ,i ij j i ij i ij i i i j ijV V S V
W u dV u u dV ut dS u dVd d s d s d s d d s= = Ñ - = -ò ò ò ò (2.2.5)

The first term on the right-hand side accounts for boundary conditions; thus our 

focus lies with the second term. As shown in Eq. (2.2.6), stress is divided into 

symmetric (strain-related: ij
es ) and skew-symmetric (rotation-related: ij

ws ) parts:  

( ), ,i j ij i j ij ij ij ij ij ijV V V
u dV u dV dVe w e wd s d s s de s dw s= + = +ò ò ò ò . (2.2.6)

with ( ), , / 2ij i j j iu uw = - . Due to the skew-symmetry of element rotation tensor 

and corresponding rotation term, ij ij
w ws s= - strain-rotation coupling is removed 

from the equations. Therefore, the formulation for each shell element is:
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( ) ( )
To o ph e ph

d dW z dVd d d d
W

= - - = × × - ×ò ε κ σ σ d K d d Σ , (2.2.7)

with 
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(2.2.8c)

The series of B matrices in Eq. (2.2.8) are strain-displacement matrices unique to 

the linear element formulation. The superscripts e , k , and f are related to strain, 

curvature, and rotation, respectively. The optimal triangular (OPT) element suggested 

by Felippa [63] is used to compute the membrane part of the shell behavior, which is 

denoted by the superscript m. It is based on the assumed natural deviatoric strain 

formulation, especially optimized for in-plane bending and free from the aspect-ratio 

locking problem. The OPT elements are used to calculate the B matrices of the 

membrane strain and rotation ( , ,z x yu uq ). On the other hand, discrete Kirchhoff 

triangular (DKT) elements by Batoz [64] are utilized to describe the bending behavior 

of the shell, which is the strain-curvature relation ( , ,x y zuq q ). The bending part of the 

motion is denoted by the superscript b, and it describes the curvature-related part of 

nodal rotation and displacement. From Kirchhoff-Love plate theory, it follows that the 

DKT elements are free from the shear-locking issue. The construction of 3D 

triangular elements with 18 degrees of freedom (DOF) is assumed to be a process of 

unification of two different sets of DOFs, as illustrated in Fig. 2.2.2. Throughout the 

computations, I assume that the angle between the local frame axis 1 and nematic 

orientation a is maintained, in analogy to the direction of the fiber embedded in the 

composite structure. 

Constitutive matrices and eigenstresses are integrated through the LCP sheet 

thickness to generate a membrane, bending stiffness matrices, and in-plane resultants, 
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all of which are marked with hat symbols. Simpson’s numerical integration scheme is 

used because the properties are affected by the decay of light intensity described by 

the non-analytic, high-order Lambert W function. As illustrated in inset of Fig. 2.2.3, 

the profile of light varies from linear to exponential as light intensity and decay depth 

change. Figure 2.2.3 shows the effect of changing the number of integration points on 

the integrated values in the nematic solid cases, demonstrating that 150 points along 

the thickness dimension are sufficient for generating stabilized mid-plane properties 

in all cases. Although not illustrated in the present dissertation, the integration point 

of more than 240 is proven to be sufficient to yield non-dependency to a number of 

the points. However, the increase of the computational load is not significant since the 

material integration is only taken for each increment, which are at most 40 when we 

implement adaptive step length control [5].

2.3. Thermo-mechanical characterization

Constitutive relations of the material are explained in this section. A shape 

parameter, which interrelates with a micro- and macro-scaled phase behavior, is found 

within the tensorial description of the equation. These relations are presented

separately in nematic and smectic cases, as the phase behaviors of these two polymers 

show significant differences. Furthermore, the numerical models about the smectic 

solids are less investigated when compared with nematic cases due to relative 

complex geometry of the smectic to the nematic. 

In nematic solid, the constitutive equations are firstly discussed by briefly 

introducing the tensorial expression of quasi-soft coupled equation suggested by Y 

Lin et al. [8], which is the basis of the present constitutive relation. Polymeric 

conformations and directional anisotropy are parameterized according to the shape 

parameter r, from which stiffness change and photo-stress evolutions are determined. 

The molecular dynamics studies are also employed to reveal the microscopic changes 

driven by a light irradiation. Such molecular-scaled descriptions are compared to the 

available experiments, especially about the limit of the linear dilute model, by which 



29

proposes a significant behavioral difference between liquid crystals and its polymeric 

variant. 

For smectic solids, on the other hand, a constitutive relations are formulated from 

scratch; the analysis model has not been proposed by recent literatures. The 

variational principles and a few physical assumptions are employed herein to deduce 

the relation, which leave rooms for improvement by the further experiments or in-

silico investigations. 

2.3.1. Nematic LCP

2.3.1.1. Constitutive relation of nematic-LCP

For nematic LCPs, photomechanical behavior refers to the spontaneous 

deformation induced by optical or thermal stimuli, and originates from strong 

connections between various areas of physical study: for example, polymeric 

backbone conformation, and the transition between liquid crystalline phases (nematic 

vs. isotropic). As demonstrated in the Verwey-Warner-Terentjev (VWT) model 

( ( ) ( )1 log det / detTf trm -é ù= +ë ûo oL λL λ L L ), of which derivation is a consequence of 

statistical descriptions regarding entropic chains and their mesogenic constituents, the 

shape tensor L and deformation gradient λ exhibit strong coupling. Much of the 

experimental results about intrinsic phenomena of LCP, for example, soft-elasticity (L 

being changed by λ) and spontaneous deformation (λ being changed by L), [21,65,66] 

have been widely discussed with regards to the coupling. 

Recently, a full tensorial description for the constitutive model has been devised 

by adopting the VWT model and complementing it with a Landau-de Gennes 

expansion, and by further considering the first and second laws of thermodynamics

with additional kinematic constraints (see Ref. [P25] for a detailed derivation). It is 

worth to remark that an introduction of polymeric conformation tensor g, which 

coincides with scaled shape tensor (i.e. g = L/detL) is crucial during the derivation, as 

it relates incompressible change between nematic to isotropic configuration, and 
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provoke coaxiality while retaining physical features of polymeric conformation. 

( ) mp p-1 T -1
oσ = I g λg λ I g Bm m- + = - + . (2.3.1)

As shown in Eq. (2.3.1), the Cauchy stress σ is presented as a function of the shear 

modulus μ, hydrostatic pressure p, effective left Cauchy-Green tensor T
m o=B λg λ

and the current metric g; coaxiality between the two parameters is found at 

equilibrium, and hence forms a basis of soft-elasticity, which explains the stress-free 

rotation of mesogenic average orientation upon perpendicular stretching. 

A tensorial description is directly incorporated into the classical finite element 

formulation, once it is linearized via the assumption of infinitesimal strain. Although 

it discourages large stretching and accompanying stiffness change, the assumption is 

valid as long as spontaneous deformation with relatively small rotation and strain is 

considered. The linearized model is hence beneficial to simplifying the 

photomechanical behavior of LCPs and implementing to the finite element; in 

addition, linearized approach used in this study [8] prevent complex non-convexity 

that requires additional assumptions or solving techniques [9,67-69].

An observable shape parameter r, the square of the ratio between the backbone 

radius of gyration tensor calculated parallel ( RP) and perpendicular ( R̂ ) to n, is 

introduced to represent the degree of anisotropy of the metric tensor:

( )1/3 2 /3 1/3r r r- -= + -g I nn , ( )
2

/r R R^= P
. (2.3.2)

As a result, the following linearized constitutive relation is thus derived as Eq. 

(2.3.3a); a detailed derivation can be found in Ref. [5,8]. Strong mechanical-order 

coupling is presented as reported by both theory and experiment [12]; that is, stress 

becomes a function of not only strain e but also rotation w and shape parameter r. 

Along with the constitutive equations, the infinitesimal effective strain gε and the 

director rotation δn are also presented. It is worthwhile to mention that director 

rotation is determined not only by strain but also by the rotation of the elements, and 

is perpendicular to the initial director n. As depicted in Eq. (2.3.3b), biaxiality and 
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inner coupling are exempted from the equation since they are not invoked by light-

induced deformation that is parallel to the director [9]:
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Equation (2.3.4) explains additional assumptions made to model the thin LCP 

sheets (reported in the experiments of Refs. [13,15,29,70]) whose length-to-thickness 

ratio was smaller than 1:20. The assumptions express (a) plane stress, (b) how the 

initially homogeneous directors remain homogeneous after the light-induced order 

change, and (c) incompressibility:

3 0is = (2.3.4a)

3 3 0on n= = (2.3.4b)

( )tr 0=ε (2.3.4c)

The 2D constitutive equation is thus expressed by Eq. (2.3.5) for plane stress 

conditions (the Greek letter indices are 1 or 2), which can be readily implemented into 

a 3D shell model.
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(2.3.5)

As shown, the effects of external stimuli must be expressed in relation to the shape 

parameter; most discernible changes from previous models [7,56] and the 
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phenomenological continuum model [2] lay in the form of photo-induced stress ph
abs

as an eigenstress form, where arbitrary numerical values are not required. 

2.3.1.2. In-silico simulation of light-induced microstate anomaly

The multiscale framework presented in this work, which consists of micro-scale 

simulations and a scale-bridging method, incorporates information on microstate 

evolution and macro-scale deformation. Below I present a detailed description of the 

framework, although I omit certain equations and simulation conditions that can be 

found in the references [5,53].

I model the molecular unit cell of the acrylate-based LCP, a polymeric structure 

with many mesogenic constituents, following the cell construction scheme suggested 

by Choi et al.[53], which incorporates energetic relaxation and multi-step crosslinking. 

The molar crosslinking ratio is set to 7:1[26], and energetic interactions and 

equilibrated polymeric conformations are computed via a photoactive potential 

[53,71,72]. The dihedral parameters of the azodye, as well as the potential coefficients 

of peripheral atoms, surrogate those of the conventional polymer consistent force field 

(PCFF). The simulations are performed with the program Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS; heating-up simulations 

for photomechanical effect evaluation) and are complemented by Material Studios 

(crosslinking and cell synthesis) from Accelrys. 

A unit cell of a partially isomerized LCP system with a temperature of 300 K is 

shown in Fig. 2.3.1, wherein dihedral angles of azodye molecules (-C-N=N-C-)

indicate the transition between trans- (180º) and cis- (0º) states. The initial alignments 

of the chromophores are indicated by the director vector n
r

. I observed that azodye 

molecules reorient vibrantly upon isomerization and heating-up simulations, which 

possibly changes the molecular configuration and of their networks; this is reflected in 

the thermodynamic behavior of LCPs parameterized by an orientational order 

parameter ( S ) and a cell shrinkage parameter (l ), which vary with increasing 

temperature. The orientational order parameter characterizes the long-range symmetry 
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of mesogenic alignment; it ranges from 0 (no directionality) to 1 (perfect alignment), 

and is computed as an ensemble-averaged parameter (see Eq. (2.3.6)) that is a 

function of the mesogen-director deviation angle q . 

23cos 1

2
S

q -
= (2.3.6)

The shrinkage parameter l is defined as the fractional change in length from the 

beginning of the simulation (300 K) to the point at which the order-clearing 

temperature cT is reached. Even though cT is defined as the point at which S

becomes zero, I neglect the data after S is reduced to 0.05; it highly fluctuates 

around 0 (i.e. the moving average of S settles to 0) as each mesogen is free to 

vibrate as the mesogenic symmetry is completely lost. Parametric fitting for the 

thermotropic phase transition parameters ,a z is carried out in the temperature 

range of 0.8 c cT T- in order to elucidate the phase behavior near this transition. 

The accurate estimation of the order parameters and the shrinkage determines the 

overall results of this work. MD simulations are therefore executed many times by 

changing the initial setup, such as the position of the cis- isomers, the temperature 

ramping-up speed, etc. As these changes significantly burden the computational load, 

I store and reuse the results of the thermotropic parameters by fitting in a piecewise 

manner in order to consider locally varying the cisn value distributed on the LCP 

structure. Although not shown here, changing the fitting scheme to a 3rd-order 

polynomial does not change the results, insofar as they continue to vary 

monotonically. 

Figure 2.3.2 illustrates the MD simulation results of microscopic changes induced 

by light irradiation, as well as thermal stimuli. The mesogenic portions and 

orientations of each LCP unit cell are parameterized by the orientational order S and 

cell shrinkage parameter l . S is the ensemble average of the orientation, whereas 
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l indicates the fractional change in the unit cell’s length L along the direction of 

initial alignment. 

Above all, I observe a salient linearity between S and l [39], which 

demonstrates a strong interaction between the optical order and backbone 

conformation. The relationship between these two parameters is summarized in Eq. 

(2.3.7), wherein a nematic order-polymeric backbone coupling parameter a

describes the sensitivity of the polymeric structure to the perturbed rotational 

symmetry. The phase change of the mesogenic molecules is also of interest. In 

contrast to the behavior associated with the ideal Maier-Saupe phase transition model 

of liquid crystals [1], the LCP cell exhibits a roughly 2nd-order phase transition 

[39,54], as shown in Eq. (2.3.8). The orientational order-temperature ( S T- ) curves 

are parameterized by the order-clearing temperature cT and the critical exponent 

z , as shown in Eq. (2.3.8). 

/ 1isoL L Sl a= = + (2.3.7)

1 / cS T T
z

= - (2.3.8)

Table 2.3.1 lists the MD-derived parameters with different populations of cis-

molecules. In contrast to the classical dilute model, wherein all parameters but cT

remain constant with light irradiation, all the listed thermotropic parameters (i.e. 

, ,cT z a ) vary monotonically upon the introduction of kinked molecules. 

These trends clearly demonstrate two possible effects that may result from a 

change in the interactions between mesogens as the concentration of cis- molecules 

increases. Figure 2.3.2 (b) illustrates the change in the shape parameter r of a LCP 

as a function of the cis- population and the temperature. The shape parameter 

indicates the length ratio between the longitudinal and transverse directions of the 

polymeric shape in the nematic case; the fact that it decreases as the cis- population 

increases suggests that the anisotropy of the polymeric structure decreases. As 

assumed in the classical dilute model, wherein photoisomerization decreases the 
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number of molecules involved in uniaxial order, the increased number of cis- isomers 

lowers the thermal barrier required to clear the uniaxial distribution of mesogens. 

Additional effects that stem from the polymer conformation characteristics can 

also be found in the present acrylate-based model. For instance, crosslinked 

mesogenic molecules are densely packed, and thus their long-range interactions are 

easily perturbed by geometrical changes in the constituents. Newly introduced kinked 

molecules perturb the relaxed orientation of neighboring rigid molecules, causing 

them to deviate from their initial alignment. As a result, this loosens the stacking of 

the rigid mesogens (i.e. the distance between them is lengthened and their orientations 

deviate from one from another), and the strength of the interaction between rigid rods 

therefore decreases. This modification of long-range interactions not only reduces the 

orientational order, but also renders the polymeric structures less responsive to the 

decreasing order (lowera ). As a result, their phase transition behavior becomes less 

abrupt near the clearing temperature (higher z ). This represents a further deviation 

from the ideal 1st-order phase transition as the stacking effect becomes diminished. 

Additionally, comparing the thermotropic parameters ( ,a z ) with those of elastomer-

based LCPs [53] demonstrates the aforementioned differences that result from 

stacking characteristics. 

This line of thought, however, is not a complete description of the observed 

phenomena. The retained thermomechanical phase behavior when cisn = 1, for 

example, also contradicts the basis of the dilute model that expects fully photo-

isomerized cells lose their long-range interactions. Such inconsistency in the classical 

viewpoint may be due to auxiliary effects that possibly stem from various and 

unaccounted origins, not to mention the aforementioned dense stacking effect. For 

instance, the change of the molecular architecture from side- to main-chain [3, 10, 36] 

that drives the change of the photomechanical properties exemplifies such an effect; 

the kinked dyes (i.e., cis-chromophore) contribute differently to the mesogenic order. 

Furthermore, the MD simulation results have shown that local voids and intrinsic 
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stresses often evolve near the area where trans-to-cis isomerization occurs as the 

atomic positions are translated. These auxiliary effects and their influence on the 

phase behaviors are to be discussed in future work. 

2.3.2. Smectic-A LCP 

In the contrary to the nematic solid associated with a nematic-isotropic clearing 

temperature TNI and a scalar orientational order parameter S, smectic solid requires 

more variables to consider due to the translational symmetry of the LC layers: a 

smectic-A-nematic transition temperature TNA and a complex order parameter 

( )o iq ry r= ×
r r

. Recent works have demonstrated that the addition of such symmetry 

yields unprecedented elasticity, as the layer undulation becomes another mode of soft, 

unstable mechanical responses: The opacity of the material changes when uniaxial 

loading exceeds the threshold value [12, 20, 73]. Concerning phase behaviors, the 

projection of the translational symmetry on the onset of nematic-to-smectic transition 

significantly influences the conformation of the polymer; it flattens the overall shape 

in the longitudinal direction and hence induces a pre-transitional effect [2, 42, 74]; 

thus, the phase behavior becomes non-monotonic. To date, works on the smectic 

solids and their characterizations are largely indebted to experimental studies such as 

small-angle X-ray scattering (SAXS) based observation, and supplemented only by a 

few physical and numerical simulation results. For example, the mechanical 

instability upon mechanical loading is investigated with respect to mechanical 

property [20], and implemented to the numerical model via quasi-convexation [73]. 

Nevertheless, studies on phase behaviors and especially on light-driven behaviors are 

largely unfound, thereby rendering both the understanding and design of smectic-solid 

based systems imperative. In the present section, I present a constitutive equation for 

finite element model that considers Sm-N-I transition by meeting the following 

considerations: (i) as in the studies on nematic solids [5-9], a direct relation between 

stimuli and mechanical responses must be established by multiphysical stimuli-order 
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constitutive coupling; (ii) bending is a dominant deformation model upon irradiation, 

the method should be capable to simulate large deformation along with rigid body 

motion to consider bending, twisting, etc; and (iii) in addition to stimuli-

responsiveness, the method should provide users with sufficient space to design the 

material, both macroscopically and microscopically (e.g. spatially distributed 

mesogen).

2.3.2.1. Light-induced Phase behavior of smectic solid

In smectic-A liquid crystal, there is no tilting between layer normal and mesogenic 

alignment n
r ; we therefore reduce the dot product oq n×

r r
to the scalar layer spacing 

oq . Equation (2.3.9) describes the values of order parameters for each given phase. 

0, 0, 0 : isotropic (I)

0, 0, 0 : nematic (N)

0, 0, 0 :  smectic (SmA)

o o

o o

o o
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In order to comprehend the 1st order phase transition between each state, various 

models have been proposed since McMillan et al.’s [65] work, which utilizes the 

modified Maier-Saupe nematic model (see Ref. [38] for a comprehensive review on a 

theoretical model for the multi-phase model). In the present work, we employ the 

simple polynomial Landau model; it is not only theoretically practical due to the 

energetic convexity given that the parameters abide by the numerical constraints, but 

it can also be extended to reflect the variants of the liquid crystal composition such as 

molecular flexibility and external field. An adapted form of the recent work on unified 

phase transition [66] is presented in Eq. (2.3.10) as a Landau model; it models the 

comprehensive transitions between smectic (Sm), nematic (N), and isotropic (I), and 

even their tricritical points. 
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Where LdGs , ,smels , sms , and ,n sms refer to the Landau-de Gennes energy in 

the nematic state, elastic-smectic coupling, smectic, and nematic-smectic coupling 
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energy. These penalize a nematic phase transition, a layer dilatation, an onset of 

smectic phase, and a nematic-smectic transition, respectively. Note that liquid crystal 

distortion energy (i.e. Frank elasticity) is not considered and ρo, qo, and s are presented 

as the variables of functional F in polynomial form because the phase behavior, in 

which directional distortions of LC are assumed to be negligible, is the primary 

consideration of the present work; hence the director distortion within the layer or the 

self-organizing effect of the directors are not an objective of the present work.  

However, it is worth to noting that such LC elasticity must be taken account whenever 

the alignment is distorted significantly, such as the inner coupling between 

mechanical load and mesogen distribution or Schlieren texture, because the present 

assumptions are violated due to the nonzero nÑ
r

that affects yÑ .. Moreover, by 

ruling out the Sm-C consideration, the numerical non-convexity (e.g. chevron 

distribution) that stems from energy invariance regardless of the tilting direction is not 

considered herein. Considering the aforementioned assumptions and schematics, the 

present phase transition free energy is easily computed with either numerical 

optimization or analytic approaches. Following Ref. [66], the constitutive parameters 

are assumed to consider (1) the existence of solutions and (2) thermotropic Sm-A – N 

– I transition upon critical temperatures, NAT (N - Sm-A transition) and NIT (N-I 

transition).
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Figure 2.3.3 exemplifies the evolution of the order parameters during temperature 

change; a detailed description of the parameters is given in Table 2.3.2.

However, two aspects of the evaluation of the order parameter need to be 

improved. Firstly, even though the constitutive parameters presented in Table 2.3 are 

carefully selected in order to retain the order parameters within the acceptable range 

found in the experiment [65], the parameters still need to be evaluated by either fitting 
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from the experiment or low-scale in-silico simulation in order to improve their 

physical accuracy. Additionally, the transitions between Sm-A - N and N - I are both 

1st-order, marked by the C0 continuity in the graphs, which differ from the 

experimental results on polymerized mesogens [75], where the formation of the 

symmetries is attenuated by the presence of the vicinal polymeric chains. 

Concerning the light-induced effect, we employ aformentioned classical dilution 

model (Eq. (2.3.12)), by which the characteristic temperatures for phase transition 

(TNI and TNA) are assumed to decrease in linear proportionality by the ratio of cis-

molecules based on the reduction of the rigidity of the chromophores due to trans-to-

cis isomerization [1, 2, 54]. 

( ) ( ) ( ) ( )0 0,NI NI cis NA NA cisT I T n I T I T n Ib b= - × = - × (2.3.12)

In the present work, the normal layer of the liquid crystal’s lamellar form and 

nematic director remains coaxial since the smectic-A solid is considered; a uniaxial 

shape conformation (i.e. shape parameter r) that is defined by the square of the ratio 

between the principal radii of gyration is therefore similarly used. Following the 

nematic description, the conformation matrices are described by r and nematic 

description n
r

. However, determining the shape parameter found in the smectic solid is 

non-trivial. The statistically based shape parameter, as in the nematic case, is not 

obtained due to the translational symmetry; in the nematic case, mesogenic 

distribution is parameterized by a unit ballS3, whereas the smectic case requires an 

additional two variables for amplitude and wavelength. Therefore, in the present work, 

the shape parameter of the nematic case, rn = 1+3s 1 3nr s= + , is modified by 

considering additional constraints found in the experiment [42] and by definition of 

order parameters [66]. First, the sign invariance of ρo is required, as a sign of the ρo is 

trivial as shown in Eq. (1.2.1). Also, the pre-transitional effect between Sm-A and N, 

which flattens the uniaxial anisotropy, must be reflected, although it should increase 

as the temperature decreases in either the deep smectic-A or the nematic regime. 

Lastly, the right-handed limit of the orientational order parameter of lim
NIT T

s s
+

+

®
= must 
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be included in the model, in order to build a shape parameter that comprehensively 

explains both the Sm-A – N – I transition and the Sm-A – I transition. The resulting 

shape parameter is described in Eq. (2.3.13),

( )
( ){ }

* * * *

* *

1
, , ; , , 1 3 0.5

1 exp
o o

o o

r s q s s
q

r a b g a b
g r

+

é ù
ê ú= + - -
ê ú+ -ê úë û

(2.3.13)

Here, the asterisk indicates the minimizers of smectic phase free energy, and the 

parameters with Roman letters (α, β, γ) are tunable variables where α is 1 when a 

freely jointed chain is assumed. It is worth noting that shape parameters can be 

obtained either by experiment or full-atomistic multiscale simulation. For the sake of 

brief simulation, we assume α=β=γ=1. Note that the pre-transitional flattening effect 

is considered to be caused by the shifting of the sigmoid function by -0.5, which is 

zero in either the nematic or isotropic case (i.e. * * 0o oqr = = ) and rapidly settles to 

sb +
. In contrast to the Heaviside step function, the present term retains C1 continuity 

for all real domains. This is not only beneficial to the continuity of the shape function, 

but also mitigates the abruptness of the 1st-order phase transition, thereby removing 

unphysical “jumps” during the photomechanical analysis. It is also worth noting that 

such a trait is also favored in analytic differentiation in gradient-based analysis such 

as optimization [55-56]. 

2.3.2.2. Constitutive relation of smectic-LCP

Concerning the constitutive equation, the elastic energy of the smectic-A solid fel

is considered as well as the incompressibility condition. The total potential energy 

functional is constructed as in Eq. (2.3.14).

( ) ( )( ), , , det 1el o of n r r pl lP = - -
r

% %
(2.3.14)

l
%

is a deformation gradient and p is a Lagrange multiplier for constraint

( )det 1Jl = =
%

. By statistical modeling of the crosslinking points of polymer strands 

lying on the liquid crystalline lamellar layer, a neo-classical form of the smectic-A 

free energy is presented in Eq. (2.3.15).
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( ) ( )
211 1

2 2
T T

el o o

B
f tr l l n

m
l l l

-- -= + × -
r

% % % % %
(2.3.15)

where m and B are the shear and layer modulus, respectively,  × indicates 

an L2 norm. The first term corresponds to a trace formula found in Verwey-Terentjev-

Warner (VTW) energy, whereby anisotropic Neo-Hookean material is analyzed. 

Without biaxiality, the shape tensor l
%

and ol
%

are uniaxial and serve as metric tensors 

and thus are positive definite. Equation (2.3.16) describes such a metric, comprised of 

a shape parameter r and a layer normal n
r

, where subscript o indicates that they are 

reference properties.

( )1/3 ( 1)o o o o o ol g r I r n n-= = + - Ä
r r

%% %
(2.3.16a)

( ) ( )( )21 1 1/3 1 1/3 1 1( 1) ( 1) T T
o o ol g r I r n n r I r n n nl l l
-- - - - - - -= = + - Ä = + - × Ä

r r r r r

% %% %%
(2.3.16b)

Note that an affine transformation from the reference to the deformed coordinate 

is assumed in the layer normal vector; the rotated layer normal is /T T
o on n nl l- -=

r r r

% %
, 

while 1 / T
onl - r

%
  is the layer-to-layer distance dilatation. It is worth to remark that 

the present hypothesis is valid as long as the phase behavior of the material is the 

regime of interest, where the noncovexity of the energy is not evoked due to 

mechanical loading; otherwise, the layer rotation must be penalized by LC distortion 

energy (i.e. Frank-Oseen elasticity), such as the inner coupling that induces free soft-

modes of LC rotation.

Differentiation by l
%

of elastic energy is therefore

( )
( ) ( )1/3 1

1 1
1

2 2
T T

o o o

r r n n
tr l l l l l

mm
l l m l l l

l l

-

- -
- ¶ Ä¶ ì ü

= +í ý
¶ ¶î þ

r r

% % % % % % % % % %
% %

(2.3.17)

,while several equalities are required as described as Eq. (2.3.18) (where x
r

denotes 

T
onl - r

%
)

1 1

1 1 1 1

T
ij ij ji

ip qj jp qi

pq pq pq

l l l
l l l l

l l l

- - -

- - - -
¶ ¶ ¶

= - ® = = -
¶ ¶ ¶

(2.3.18a)
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In short, the 1st order derivative of elastic energy as shown in Eq. (2.3.19).

( ) ( )( ) ( )( )1 1/3 1 1 T Tel
o eff eff

f
g g r r n B n n n n n Bm l m l l

l
- - - -¶

= + - × × Ä - Ä
¶

r r r r r r

% %% % %% %
%

(2.3.19)

where effB
%

indicates an effective strain measure T
oll l

% % %
found in the literature on 

nematics [5, 6, 8]. The 2nd term of RHS of Eq. (2.31) is also derived, by employing 

aforementioned equalities (Eq. (2.3.18)).
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(2.3.20) 

The Cauchy-stress ( )/ detTPs l l=
%% % %

is therefore 
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(2.3.21)

Note that Eq. (2.3.21) is reduced to 
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( )

( )( )

( ) ( )( )

1/3 1

1

4

4 3 1

1
1

oT T T
o o o o o

T
o

o

T T T
o o o o

r rr
r n n n n

r n

D n n n n pI

s m ll l l l l
l

l l l l

-

- -

-

- -- - - -

é ù-æ ö ê ú= + - Ä + Äç ÷
ê úè ø ë û

+ - Ä -

r r r r
r% % % % % % %

%
r r r r

%% % % %

(2.3.21)

that is a function of initial parameters and deformation gradient. Frame invariance is 

guaranteed as ( )ˆ ˆ ˆTR R Rs l s=
% % %% % %

where R̂
%

is rotation matrix. A governing equation of 

mechanical equilibrium is derived as in Eq. (2.3.22), where P
%

and s
%

are the 1st P-

K and Cauchy stresses, respectively. 
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As can be seen, the derived constitutive equations incorporate initial and current 

shape parameters, an initial director, and a deformation gradient, demonstrating the 

opto-mechanical coupling considering that the shape parameter is a derivative of the 

optical order parameters. Note that symmetries are found in the Cauchy stress tensor, 

which is analogous to the nematic case wherein a coaxiality between g
%

and T
ogl l

% %%

is given by a rotational equilibrium. In the present case, the strong constraints on the 

affine deformation of the layer normal generate such inexistence of inner coupling, 

thereby concluding that the material is non-Cosserat. Objectivity is then satisfied in 

both stress measures. It is worth noting that the present findings on the inner coupling 

do not necessarily indicate the uniqueness of the solution; the nonlinear model of the 

stretching-induced buckling instability [20,73] that avoids the layer undulation is 

equivalent to the zero-shear stress condition of the 1st P-K stress in Eq. (2.3.22). . Let 

layer normal is parallel to y, and in-plane condition is employed within x-z plane. 

Following undulation instability condition found in reference [73], the layer spacing 

and the shape parameter are assumed to be maintained throughout deformation.

Assuming incompressibility, deformation gradient becomes Eq. (2.3.23) without 

losing generality.
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Cauchy-stress is therefore expressed as
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Plane stress condition is satisfied when ( )
2

/ xx zzp m l l= . Onset of the instability 

is computed by letting { } { }, / , 0xx zx c zzl l l l= . The onset condition of the critical 

stretch ( zz cl l= ) is obtained through shear-free condition ( 31 0s = ), which is reduced 

to 

( )
( ) ( )( )2 31 1 1

0
c c

c

c

B c r
g

l l m l
l

l

- - + + + - +
= = (2.3.25) 

Equivalent condition is also found in the Ref. [20], where analytic solution is 

evaluated. 

In recent works, the aforementioned non-uniqueness of the solution was 

investigated in view of the evolution of the microstructure. Such complexity stems 

from the non-quasiconvex governing potential; several methods have been proposed 

to circumvent the issue, such as quasi-convexation [76] and numerical relaxation [57].

The linearization scheme [5,8], although ruling out the unconstrained microstructure 

evolution (e.g. stress-free rotation of the mesogen), is proven to be sufficient 

whenever phase-behavior is of interest. In contrast to the soft-modes, for example, 

which consider mechanically induced mesogenic rotation, light-induced bending or 
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heat-induced shrinkage does not provoke large-scale microscopic changes, possibly 

because they are similar to stress-free configuration for given eigenstress.

In this work, we therefore linearize the present nonlinear constitutive equation by 

the given assumptions: (1) due to substantially higher layer modulus than shear one, 

the layer dilatation remains near 1; (2) elongation tensor I Hl- =
% %%

is infinitesimal. 

The first and second assumptions are reflected by the assumed equalities presented in 

Eq. (2.3.26a) and (2.3.26b), respectively.
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By introducing scaled layer modulus ( )
1/3ˆ / /ˆ ob B r rm= , the linearized constitutive 

equation is obtained as in Eq. (2.3.27).
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In contrast to the conventional stress-strain equation, the present constitutive 

equation contains both infinitesimal strain e
%

and rotation w
%

. A fourth term 

indicates an eigenstress induced by phase behavior, which is a function of the 

initial/current shape parameters and initial director. 

In order to maintain flexibility with comprehensive smart actuation, liquid crystal 

polymer is frequently fabricated in the form of a thin strip; a flat faceted shell is 
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therefore formulated herein. We assume that plane stress condition is applied in the z 

direction by assuming that both the nematic director and the layer normal found in the 

smectic liquid crystal are located within the x-y plane. The present assumed directions 

correspond to the alignment methods, by which director remains in-plane, as well as 

the principal modes of actuation such as uniaxial elongation and bending, driven by a 

gradient generated in the transverse (z) direction. Equation (2.3.28) shows the plane 

stress condition, whereby the Lagrange multiplier p is determined on the basis of 

incompressibility (i.e. ( ) 0Tr e =
%

).
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In conclusion, the constitutive equation of plane stress is derived as Eq. (2.3.29). 

The elastic term ( e
abs ) and eigenstress term ( ph

abs ) are found, where the Roman 

indices range between integer 1 and integer 2. 

( ) ( )

( ) ( )

{ } { }

1/3 11 22

, , , , , ,

ˆ2 2 4

2 1 1

ph
o o o o

o o o o o
o

o o o o o o o o oo o
o

ph

o

r r n r r n

r
n n n n r b

rr

r r r
n n n n r n n n n

r r

r

r

e
ab ab ab

ab ab g gh h a b

e
ab

ag g b a h hb ag g b g a gb

ab

s s e w s

e e d e e

s m

e e w w

s m

= +

é ùì üæ ö
+ + + - +í ýê úç ÷

æ ö è øî þê ú= ç ÷ ê úæ ö æ öè ø
+ + - - + - -ê úç ÷ ç ÷

è ø è øë û

æ ö
= ç

è

r r

% %

( )
1/3

1o o orn n
r

a b

æ ö
-÷ ç ÷

è øø

(2.3.29)

In contrast to the nematic cases, shear modulus does not converge to 0 regardless 

of the ratio of the shape parameters. Such effect arises due to the rigid constraint on 

the layer normal, and indicates that shear-induced softness is significantly alleviated 

in the smectic case. 

2.4. Light-induced deflection of nematic solid

In this chapter, out-of-plane displacements induced by prescribed light and 

thermal stimuli are discussed. A primary finding includes the amount of the induced 

curvature and the deflection of that material where a geometric nonlinearity and a 
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non-monotonicity are demonstrated. An anomalous phase behavior observed in the 

photon-bombarded material is also found to be correlated with experiments. 

Light-induced bending behaviors observed in both nematic and smectic solids are 

firstly presented in terms of curvatures in the longitudinal direction. By examining 

steady-state solutions of light-induced shape change, nonlinearities either stem from 

the photobleaching effect or from large geometric deformations are found to be 

significant; the deflections and curvatures are both overestimated if linear solution is 

assumed. Such nonlinearities are found and discussed via comparison to linear 

solutions. I compare the light conditions and temperature stimuli that lead to two 

solutions. 

To further demonstrate the capability of the present work, radially-distributed 

director with circular domain is examined next with parametric changes of incident 

light. This is in the same line of the experiment [33], which generates either conic 

(radial expansion) or sombrero (radial shrinkage) shape upon different stimuli 

conditions. 

Lastly, the effects of the anomalous phase behavior with respect to photo-bending 

are investigated. This is compared to the results based on linear assumptions: (1) the 

dilute model that assumes the cis- molecule as a dormant inhomogeneity hence 

linearly reduces clearing temperature, and (2) negligible effect from chemical 

crosslinking, which indicates rotation and kinking of the trans- azobenzene is stress-

free mode.

Figure 2.4.1 shows an LCP sheet model investigated throughout this work. Lx and 

Ly denote the length in the x and y directions, respectively; h represents the thickness 

of the model, whereas ( )zf represents the angle between the director n and the 

polarization angle of linearly polarized light (LPL), which varies with thickness. 

Material parameters were set to their experimentally fitted values whenever not 

specified otherwise ( o
NIT =340 K, a =0.22, z =0.195, and b =11.8), which 

correspond to polymeric compositions comprised of pendent- and crosslinked-type 
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molecules (BMAzo, PBB, DiUB; full names of these materials can be found in Ref. 

[54]). A shear modulus m is set to 104 [Pa], following experimental reports [39,54] 

on elastomeric LCPs. 

2.4.1. Geometric nonlinearity and non-monotonicity of photobending

Upon cis- to trans- isomerization, clearing temperatures of the order, by which 

nematic-to-isotropic and nematic-to-smectic is divided, decreases. A decaying energy 

of the traveling photons inevitably generates a local gradient of such temperatures, 

thereby induces out-of-plane curved shape. In this section, curvatures and deflections 

found in the deformed shape is parameterized by amount of the stimuli and discussed 

in terms of nonlinearity and non-monotonocity.

Due to the spatially graded strain generated in the out-of-plane direction, the LCP 

strip bends when it is exposed to UV illumination. If the nematic orientation is 

aligned parallel to the direction of length (n//x), which generates surface-dominant 

longitudinal contraction, the LCP strip bends towards the light source. The effects of 

light intensity and penetration depth on the bending behavior are investigated (Fig. 

2.4.2). The bending behavior is characterized by the bending curvature κ evaluated 

through 3rd-order polynomial fitting (Eq. (2.4.1)) of the x-z profile of the deformed 

shape in order to alleviate the complexity of comparing surface curvatures. 
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2 1
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0 0 1 0 2 1
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z i
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Z
          (2.4.1)

In Fig. 2.4.2(a), the penetration depth d is varied while the temperature T is fixed 

at 298 K, for which liquid crystals are deeply within the nematic phase. As previous 

works have asserted [5, 8, 9], I also found that the bending behaviors are highly 

nonlinear for increased intensities of light, as they are dependent upon the spatial 

gradient through the thickness [see inset of Fig. 2.4.2(a)]. The influence of geometric 

nonlinearity on the solution is also demonstrated by comparing the curvatures 

computed from linear and nonlinear finite element solutions. Despite the small 
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curvatures, Fig. 2.4.2(b) exhibits the salient gaps between linear (dotted line) and 

nonlinear (solid line with marks) solutions for increased temperature. In general, 

nonlinearity trends follow the profile of deflection as this indicates a higher bending 

moment; the gap between linear and nonlinear models is profound when the 

penetration-depth-to-thickness ratio (d/h) is 0.4, where a maximal gap (44%) is found 

at the apex of the profile. On the other hand, for d at both extremes (0.01 and 10) 

compared to the thickness, the deformation is in-plane dominant; therefore, geometric 

nonlinearity and bending deflection are both restricted. Although not discussed herein, 

geometric nonlinearity of the LCP cantilever with uniform mesogenic orientation, 

thickness has no influence as long as the ratio of light penetration over thickness d/h

remains constant.

Concerning the temperature, for an elevated temperature (310 K) smaller than the 

transition temperature NIT (=340 K), both curvature discrepancy and displacement 

increase due to the significant uniform decrease of the shape parameter. These results 

assert not only the nonlinear sensitivity of intensity to external stimuli, but also to the 

LCP sheet design criteria, because light-order parameters such as penetration depth d

and the phase-and-light connecting parameter α are determined during the synthesis 

process [2]. Therefore, more extensive experimental and theoretical studies on the 

synthesis are required, because they may enhance the capability of the proposed 

framework. Incidentally, it is also found that the light intensity at the curvature peak 

and overall shape do not coincide. This is another indication of nonlinearity because it 

demonstrates that, contrary to the linear case, larger bending does not necessarily 

yield larger curvature. 

To dramatically demonstrate the nonlinear behavior of the anisotropic solid with 

light irradiations, the disclination defect imprinted on the LCP directors is also studied. 

Radially distributed mesogens, for instance, induce contractile photostrain in the 

radial direction, as well as positive photostrain in the azimuthal direction. Accordingly, 

geometric instability inevitably occurs and drives an initially 2D plate to become a 3D 



50

structure. Here, I investigated a radial topology defect with a strength of +1, and with 

a missing row in the center, in order to demonstrate two aspects: (1) the extent of 

external stimulation required for the instability onset, and (2) the reproduction of the 

experimentally reported topological changes. 

In Fig. 2.4.3, the disclination-driven instability produced by imprinted radially 

distributed mesogens and actuation due to the light irradiation and elevated 

temperature are illustrated respectively. A quarter of the model (Rx=Ry=20mm, with 

thickness 0.4) is simulated, and clamped conditions are applied at the center node. 

The dramatic effect of nonlinearity is illustrated in Fig. 2.4.3(a). The two LCP sheets 

under different conditions are significantly different, even though they have similar 

geometric properties (i.e., thickness and radius) and are subject to the same 

stimulation conditions (i.e., temperature and light intensity). The difference stems 

from the geometric instability that arises from the radial distribution of light-induced 

strain and its Poisson effect. In the linear solution, the LCP behavior is bending-

dominated, yielding the Mexican hat shape. On the other hand, the LCP sheet 

becomes unstable following irradiation by light, and exhibits buckling-like behavior 

at the bifurcation point. The observed shape of anticlastic curvature with an apex at 

the center agrees well with recently reported experimental results [17,18,33]. Ground 

states from other mechanically frustrated cases, such as s = -1, s = -2 can also be 

solved via same numerical method. 

To quantify the bifurcation point, after which the nontrivial deformation solution 

can be obtained, a scaled standard deviation of out-of-plane displacement shown at 

the boundary nodes (W) is proposed. The onset of instability is clearly illustrated in 

Fig. 2.4.3(b), where the threshold is set to 0.1. A Mexican hat shape is shown for the 

pre-bifurcation linear regime, whereas a saddle shape is observed elsewhere. The 

present study also discloses the dependence of the critical light intensity on 

temperature and d/h. According to this study, the critical intensity is smaller for 

increased depth of light penetration, and continuously decreases even when d/h is 

much larger than unity. It is worth to remark that such a snap-through instability in 
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deep-nematic condition is provoked by a membrane compression, which increases 

continuously with respect to light. These phenomena are well explained by an analogy 

to an analytic solution of radial FGM sheet instability [77], which suggests that only 

the ratio of membrane resultant to bending rigidity, , contributes to the 

critical amount of external loading. 

2.4.2. Nonlinearity from the microscale origin

Aforementioned nonlinear behaviors are originated from either the finite strain 

measure, or the distribution of the light-induced moment. On the other hand, the 

material-related nonlinearity is discussed in this subsection; networked rigid 

molecules, in the contrary to the un-functionalized liquid crystal molecules, show an 

distinguished phase behavior as they are affected not only by neighboring molecules 

but also polymeric hydrocarbon networks. 

With the aid of the multiscale-based framework, I investigate the bending 

behaviors by which a light-responsive LCP deforms under actinic light. As shown in 

Fig. 2.4.4(a), a cantilevered thin LCP strip is bombarded with light (intensity: Io) that 

travels in the −z direction, as well as a separate stimulus for elevating the temperature 

T; these external stimuli drive the trans-to-cis isomerization and the thermal-induced 

cis-to-trans isomerization, respectively. Herein the deformations related to light and 

temperature are discussed in a scaled manner by introducing the reference light 

intensity Iref and time constant ct . The initial director ( n
r

) is aligned along the x-axis, 

so the LCP’s deflections and rotations are each defined by the nodal displacement in 

the z direction and rotation of the normal vector along the y-axis, as the significant 

bending curvature change is observed in the x-z plane. A deep nematic phase is 

assumed to exist prior to and during crosslinking. I refer to the initial temperature as 

To, which is lower than the clearing temperature o
cT ( 0.7 322.35 Ko

o cT T= = ) under 

non-irradiated conditions; the initial polymer structure is therefore highly anisotropic 

(i.e. shape parameter 1r > ).

/ph
rr rrN D
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The results presented in Fig. 2.4.4 illustrate the deformation of the strip (color 

indicates the value of r) as well as the varying shape parameter along the transverse z 

direction found at points A, B, C, and D, which are plotted along the x-axis; in this 

context, h represents the thickness of the strip. These results indicate that the bending 

behavior is strongly affected by varying the stimuli. Typical bending occurs where the 

surface-dominant shape parameter change is observed under weak light conditions, 

which follow Beer’s law. For intense light conditions (Io / Iref
= 8), on the other hand, 

light penetrates deeply into the material, which is known as the photo-bleaching effect, 

and thus the gradient of the shape parameter is reduced; r converges to unity (i.e. 

the polymeric shape becomes isotropic and thus shrinks in the longitudinal direction) 

near the base of the LCP cantilever as a large number of cis- molecules are stacked, 

which reduces cT closer to the operating temperature. In this way, in-plane 

shrinkage overshadows the bending moment. Elevating the temperature ( / 0 .9o
o cT T = ) 

significantly enhances the backward reaction of isomerization and provides polymeric 

flexibility, thereby reducing deformation. 

The overall behavior of the LCP is summarized in Fig. 2.4.5. Figure 2.4.5(a) 

illustrates the tip deflection (z-position) with respect to time; here we can clearly 

observe non-monotonic deflection. The saturated value of the final deflection 

increases with intensity for low-intensity light conditions (i.e. / 4refI I £ ), though it 

decreases as the intensity increases beyond this threshold, as the shape parameter 

profile suggests. Furthermore, as shown for / 6r e f
oI I ³ , the reduced deformations do 

not settle and continue to decrease even beyond the time constant t
µ

. 

At a point near the base (i.e. point A in Fig. 2.4.4(a)), the accumulated high cis-

population significantly dilutes the mesogenic order, and hence renders the local 

polymeric structure isotropic. The tip of the LCP is subsequently lowered because of 

the flattened base, which decreases the incident angle f , and hence the local 

equilibrium is attained again. At this stage, the deflection is then further decreased 
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until the LCP becomes totally flat [42]. The time required to obtain a specific tip 

deflection (h* = 16 h or 20 h) is examined in Fig. 2.4.5(b). A decaying profile can be 

observed as the characteristic time becomes more sensitive to light for lower 

intensities. The relaxation of the polymeric segment due to increased temperature is 

also reflected in the shift of the curves for different values of T. This behavior 

provides insight into the LCP’s experimentally observed characteristic bending 

phenomena [40,42], which could not be explained solely based on a priori estimations 

based on photo-strain [56].

In order to exemplify the benefits of the methodology presented in this work, we 

also compare the results obtained by the present framework to those from the classical 

dilute model, as shown in Fig. 2.4.6. All classical results present hereafter (marked as 

“Dilute”) are obtained using the previous finite element study with constant 

thermotropic parameters ( a =1.4, z =0.33, and 462.52o
cT = ) through MD 

simulations under non-irradiation conditions ( cisn =0). Additionally, the order-clearing 

temperature is assumed to decrease linearly according to the following formula:

o
c c cisT T nb= - × , where 88.8b = . In both computations, / 4o refI I = , / 0.4d h = , and 

rotations and displacements are obtained at the tip at time t µ . 

First, a rotation is computed across a wide range of LCP thicknesses (Fig. 

2.4.6(a)). A deflection of 90º for the tip is expected for thin sheets; such a 

configuration is widely observed in experiments (see Figs. 2.13(d) and (e)) 

concerning side-chain acrylate LCPs. As Fig. 2.4.6 (a) illustrates, the multiscale 

framework provides a better estimation of the shape change over the other solution. In 

particular, the deflection of the tip computed by the classical dilute model is 

significantly underestimated; the deflection remains far below 90º even when the 

bending stiffness is significantly reduced owing to the high length-to-thickness ratio 

(>70). Furthermore, the results of tip displacement (Fig. 2.4.6(b)) similarly indicate 

that the classical solution underestimates the shape change. 

Such deviation can be attributed to the slope of the reduced anisotropy r/ro curve, 
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as illustrated in Fig. 2.4.6(c). The two models are utilized for the case of identical 

geometry, light intensity, and temperature; accordingly, they yield the same ncis

distributions. A stronger gradient of r in the multiscale model is therefore induced by a 

decrease/increase in /a z , as reflected in Fig. 2.3.2(b). It encompasses an additional 

effect from trans-to-cis isomerization that affects the order itself; the classical results, 

insofar as they do not account for the stacking characteristic, therefore underestimate 

the deformations. 

It is worth mentioning that such effects from polymeric architecture can also be 

found in the silicon-based side-chain liquid crystal elastomer when it incorporates 

crosslinked-type azobenzene (aside from the pendant variety). More specifically, it 

undergoes order change with an increasing number of cis- isomers. This similarity 

clearly demonstrates that the multiscale simulation and concomitant lower-scale in 

silico experiment are capable of accounting for the molecular conformation in general 

opto-mechanical structures. However, the effects of changes in the polymeric 

structure upon the mechanical properties, such as the optimum actuation temperature 

and light-induced stress, cannot be validated in the present work, as we only provide 

preliminary considerations of the effects on bending and nonlinear photomechanics. It 

is therefore necessary to consider temperature-induced molecular flexibility 

(considered separately from order-induced change) in future studies.

2.5. Light-induced deflection of smectic solid 

In this section, we present various aspects of the phase behaviors of smectic solids. 

Materials deform to accommodate the internally generated stress owing to the change 

of the order of the parameters (i.e. degree of symmetries and anisotropy of the 

microscopic conformation). Equation (2.5.1) is a paraphrased relation that computes 

deformation u (midplane displacement) and q   (midplane rotation) for given 

shape parameter r; being a stress-free configuration, the solution of the equation is 

essentially equivalent to the eigenstrain problem frequently found in numerous 

multiphysical studies. 
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( ) ( ), ; , , 0el ph
o ou r r r rab ab abs s q s= + = (2.5.1)

It is worth noting that the constitutive relationship does not converge to the 

nematic case [8] when neither the reference nor the current states are in the smectic-A 

phase, due to the violations of the assumptions imposed on the smectic layer: affine 

deformation of the normal vector, and nonzero layer modulus. Therefore, the phase 

behavior analysis of the non-smectic-A solid, of which the crosslinked and reference 

traction-free state are nematic or isotropic is not carried out herein. Accordingly, a 

deep smectic phase is assumed to be created upon crosslinking in all simulations (i.e. 

To = TNA – 30K = 320K), while the operating temperature T Î [320, 360] and 

effective intensity of incident light effI Î[0,2] vary. The temperature-induced effects 

other than phase behavior are ignored herein, as the behavior of the LCP is 

dominantly governed by polymeric conformation change when compared to thermal 

expansion [2]. 

2.5.1. Pre-transitional phase behavior 

Without light, the temperature increment uniformly changes the shape parameters, 

as in the order parameters (
* * *, ,s qr ) found in all material points. The thin strip 

thereby undergoes uniaxial shrinkage as shown in Fig. 2.5.1.

Upon heating, the length of the specimen shows a non-monotonic decrease as 

found in the experiment [42], wherein pre-transitional anomalies are found between 

the smectic-A and nematic phase; such behavior is already depicted in the shape 

parameter, of which the relation to deformation is illustrated in the inset of Fig. 

2.5.1(b). The uniaxial change also agrees well with the one-dimensional (1-D) 

material behaviors (marked by dots) based on the nonlinear equation directly 

originating from / 0f l¶ ¶ = , combined with the uniaxial deformation gradient 

( )1/2 1/2, ,diagl l l l- -=
%

, where l is a scalar valued extension. This demonstrated 

that the effect from assumptions made during formulation and linearization are found 
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to be virtually negligible when layer modulus B is higher than 20, so that dilatation 

does not significantly deviate from unity. It is also worth noting that mechanically 

induced layer undulation (i.e. CMHH instability [78] is not provoked as the phase 

behavior is stress-free behavior, and the elongation mode thus does not compete with 

the shear modes.

2.5.2. Light-induced bending of smectic solids

As a primary objective of the present work, light-induced deformation is also 

investigated via numerical simulations. A combination of multiphysical consideration 

and FEA is shown in Fig. 2.5.2., which is similar to that in the previous study on the 

steady-state light-responsive behavior of nematic solids; modifications have been 

made in the phase transition computations, conformations, and constitutive equations. 

Provided that two temperatures (crosslinking oT and operation T ) and the 

intensity of light irradiation effI are specified, the spatial distribution of the order 

parameters can be computed via a dilute model and light decay profile, which in turn 

computes the shape of the polymer conformation. Figure 4 shows the normalized light 

intensity and light-affected change of the internal properties; the gradients in the 

transverse direction, which originated from light decay, are essential to compute the 

light-induced curvature of the specimen.

Note that light decay follows the classical Beer’s law, which is often substituted 

by the nonlinear Lambert-W function that describes the photobleaching effect [49-51] 

as there is no experimental evidence of such phenomena in smectic solids. 

Nevertheless, the derivatives of light, such as cisn and r , possess nonlinear 

thickness-varying profiles. In addition, a sigmoid term found in the shape parameter 

in the pre-transitional regime generates a non-monotonic form. 

The dimensions of the smectic-A strip are 20 mm x 1 mm x 500 um by Length (L) 

x Width (W) x Thickness (h), respectively, in which the length-to-thickness ratio is 

higher than 20 to retain the validity of the thin-plate assumption. 1280 mesh is used, 
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the size of which is assumed to be uniform. We assume that the left boundary ( 0x = ) 

is clamped, while the director vector is { }1,0,0
T

, which is in the longitudinal 

direction. We also set m = 1.5 Gpa, /B m = 20, and d/h = 0.4; these material 

properties are fixed hereafter, unless otherwise specified. 

2.5.2.1. Temperature-alternating bending direction

Due to the gradients generated in the out-of-plane direction, the thickness-varying 

modulus and the eigenstress are present, which are analogous to the functionally 

graded material (FGM). Consequently, an out-of-plane deflection in agreement with 

the boundary conditions is generated. Figure 2.5.4 illustrates the light-induced 

bending in terms of the curvature with various temperatures and penetration depths. A 

deflection curve evaluated at the middle of the width ( / 0.5y W = ) is well-fitted using 

the quadratic polynomial function (||Goodness of fit|| ~ 0.99), Eq. (2.5.2) computes the 

principal curvature at the center of the specimen.

( ) ( ) ( )( )
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As shown in Fig. 2.5.4(a) and 2.5.4(b), the profiles of bending curvature with light 

increment exhibit salient nonlinearity and non-monotonicity. In terms of the operating 

temperature T that ranges from TNA - 30K, to TNA + 10K, three different regimes are 

found as we increase the temperature: smectic-dominant, pre-translational, and 

nematic-dominant. If the diluted transition temperature remains higher than the 

operating temperature T (T < 330 K), the curvature is proportional to the irradiation; 

an increase of the degree of symmetry is directly reflected in the shape parameter. 

Upon an increase of the temperature below NAT , the curvature profile reverses: it first 

bends away from the incident direction at low intensity, and bends towards the light at 

a higher intensity. Such phenomenon originates from the assumption of the shape 

parameter that bears the sigmoid term which reflects the pre-transitional state: As long 

as the initial state resides in deep smectic phase, the materials undergo a subsequent 

transition from smectic, nematic, and isotropic as temperature increases. Hence the 
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eigenvalue to the principal direction of the metric tensor first increases as soon as the 

effective temperature at the material point exceeds TNA, and later decreases when its 

state becomes nematic and isotropic. The alternating bending direction, therefore,

distinguishes the smectic solids from nematic ones, which exhibit monotonic bending 

behaviors. Finally, the photomechanical behavior of the smectic solids operating 

above the NAT exhibits a consistent bending direction. Such temperature dependent 

bending phenomenon agrees well with the experimental reports on smectic-A liquid 

crystal polymer [74] that undergoes sequential phase transition from smectic-A, to 

nematic, and then to isotropic. The transition points of the slope also agree, whereby 

the T at the material points partially becomes higher than NIT (i.e. isotropic) due 

to the dilution of the NIT temperature. The curvature slope obtained thereafter is 

analogous to that of the nematic-isotropic photomechanical behaviors reported in 

previous work [5]. 

The penetration depth of the light is also investigated parametrically by fixing the 

operating temperature at 330 K, which shows the aforementioned alternating bending 

direction as it is within the intermediate regime. Upon an increase in the penetration 

depth, by which light travels further into the material, a stronger gradient of the 

conformation is developed, as demonstrated by the large deviation between the two 

bending curvatures at the maximal bending-away-from and bending-toward the light. 

For each photomechanical computation, the local rotation of the layer normal (f ) 

as an auxiliary parameter is also investigated. It is not only an important observation 

in optics (e.g. polarized microscopy), but also serves well in demonstrating the quasi-

softness of the material. Obtained from Eq. (2.48), the profile of f with respect to 

the light intensity and spatial locations (A, B, and C) are plotted in Fig. 2.5.5. Note 

that the local rotation possibly changes the elasticity of the LC layers and alignments, 

as is often considered in terms of Frank elasticity, which is assumed to be negligible 

in the present work due to the infinitesimal rotation induced by phase transition and 
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the nonconvex nature of the energy. If such elasticity is included within the model, we 

presume that the rotation is further restrained due to penalization. Hence the rotation 

presented in the present study must be considered as the upper bound, given that only 

a phase behavior is provoked by either thermal or optical stimuli.

{ } ( ) ( )cos ,sin / 1 / 1
T T T

o o o on n n n nf f l l e e- -= = = - -
r r r r r

%
% % % %

(2.5.3)

As shown in Fig. 2.5.5(a), the rotation is found to be distributed inhomogeneously 

in the bent solid, where larger rotations (both positive and negative) are found near the 

clamped boundary. Such distribution accords with the shear strain distribution found 

in the bent plate that is subject to the clamped boundary, since f is strongly 

dependent on the shear strain; such effects are therefore possibly analyzed only by 

considering the boundary conditions and not by the 1-D beam model [8 ,79]. To 

further discuss the influence from the boundary condition, the three different locations 

(A: at the clamped base (x/L = 0.1), B: at the middle (x/L = 0.5), and C: at the tip (x/L 

= 1) are investigated. Upon the increase of light intensity, the rotation found at each

position evolves. However, the gradient and signs of the rotation profile with respect 

to the y position (i.e. width direction) differ from each other. Especially, the profile 

found in position A has an inverse slope, and a magnitude that is one order higher than 

the others; such behavior demonstrates the boundary effect, which is analogous to the 

Saint-Venant boundary layer. It is worth again noting that such distribution of the 

rotation is one of the pivotal properties in optics, as it changes the amount of opacity 

of the material. Even though no experimental proof has been provided to date, the 

authors believe that: (1) the opacity of the specimen is not evenly distributed after 

bombardment of the UV light and (2) such distributions are strongly correlated with 

the boundary conditions, both of which are easily validated through a polarized 

microscope. 

2.5.2.2. Effect of geometric nonlinearity

The influence of geometric nonlinearity on the solution is also demonstrated in 
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Fig. 2.5.6, wherein the curvatures computed from linear (dot) and nonlinear (line) 

finite element solutions are presented respectively. 

Even though the curvature itself is within 0.1 /mm for all explored ranges of light 

intensity and temperature, its deviation in percentile is proven to be substantial, which 

means we might severely underestimate the curvature of the light-responsive smectic 

solid if linear solution is employed. As in nematic solids, nonlinearity is generally 

proven to be substantial when the magnitude of curvature increases. The use of 

nonlinear finite element solution is therefore recommended, regardless of the 

operating condition, as the direction and the magnitude are strongly non-monotonic 

and thus, estimating their pick values is non-trivial. Otherwise, we might produce an 

incorrect estimation to the point where the sign of curvature changes. Moreover, such 

overestimation can produce error in the internal parameters as shown in the inset in 

Fig. 2.5.6, wherein the linear case shows a more dramatic contrast of the rotation as 

shear strain near the tip is strongly influenced by the rigid body rotation. Considering 

that rotation f is pivotal in the optical characterization of solids, the linear solution 

might cause severe degradation of the computation. Although not shown herein, this 

finding is in the same line with that of the curvature evaluated at the clamped end, and 

the maximal deflections are overestimated in the linear case. Moreover, these 

deviations are alleviated when simply-supported boundary conditions are imposed. 

2.6. Light-induced deflection of solids with distorted nematic

The liquid crystal molecules confined within a planar cell forms an optical texture. 

With no aligning treatment, for example, the molecules are organized around the 

disclination defect (i.e. a point where director vectors exhibit discontinuity) that is 

often referred as “Schlieren texture”. Such distribution is contrary to the texture 

obtained after the rubbing process, on the other hand, where the molecules are aligned 

uniformly. The term ‘intrinsic variable’ that imposes the modulation in pre-

crosslinking steps is inspired by the fact that such inhomogeneous distribution of 
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nematic vectors induce similar strain field, which generates nontrivial shape change; 

in the contrary to extrinsic ones, small-scale design parameters indicates a changes of 

local liquid crystallinity, which can be determined before crosslinking. The potentials 

and challenges of such design schematics are well documented in the recent review 

[45]. In this subsection, the thickness-wise variation of the nematic distortion, and the 

in-plane texture of the LCP is discussed along with their potential usage.

2.6.1. Curvature evolution due to distorted nematics

Figure 2.6.1 shows a configuration of the thickness-wise alignment of liquid 

crystal underwent twisted nematics (TN) distortion. Assuming that pitch of the twist is 

irrelevant to the phase transition, a negative strain of which principal direction 

linearly changes with thickness. Through the experiment [17], LCP with TN 

configuration exhibits saddle shape whenever thermally-induced phase change is 

executed.

A change of principal direction due to the change of mesogen director imprinted 

on the LCP film is the mechanism underlying the deformation. The twist 

configuration of mesogens, one of the Fredericks transitions that evolves within the 

material thickness is examined in this subsection. In addition to temperature-induced 

deformation, the shape of which can be determined analytically [80], light intensity 

and decaying profile dependent deformation are analyzed.

During crosslinking, when liquid crystal molecules retain their orientational 

mobility, external conditions (such as mechanical loading) produce depth-dependent 

mesogenic orientations. In the twist configuration shown in Fig. 3.3.1(a), directors 

remain in-plane while direction gradually changes from top to bottom. This generates 

eigenstress (or eigenstrain) as a function of depth z, yields maximal anticlastic

curvature (κxx= κyy) when heated [80], and twists when irradiated [81]. In addition, 

angles with respect to LPL are also inspected; when the angle of the Poynting vector 

does not coincide with the axis of the chromophore, the effective intensity of the 

chromophore extracted from photonic vibrations decreases. The simplest model for 
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such phenomena is given by Eq. (2.6.1). 

( ) ( )2coso
eff effI If f= (2.6.1)

Figure 2.6.1(a) exhibits the modeling of the twist configuration and its effect on 

the shape parameter r that evolves in the out-of-plane direction. The midplane angle 

( )0o zf f= = is assumed to be π/4, while the span of surface to bottom rotation is 

fixed at π/2. When the LPL is incident on the surface, minimal energy is transmitted 

to the molecules at the top, which smoothly increases as f grows smaller and 

decreases as the decay of light overwhelms the phenomena. Increased intensity 

generates deeper and more isotropic-like behavior, while retaining the general shape 

parameter profile. On the other hand, the penetration depth d strongly affects the 

behavior in terms of both value and depth of shape parameter profile. Increased 

temperature simply shifts the profile, as decaying influence is extracted from the 

model. Such a profile of shape parameter, by which the depth-varying principal 

direction of the eigenstress model is induced, emphasizes the modeling capability of 

the present work for two main reasons. First, additional aspects of shape parameters 

that change in the vertical direction can also be simulated, such as in the case of 

doped nanoparticles [59] and the positional modulations of azobenzene chromophores 

[25]. Second, a dependence of optical stimulus can be investigated with respect to the 

decaying profile and polarization.

Figure 2.6.1(b) shows the ratio of curvature of the LCP sheets. For all 

computations, the absorbance rate model was assumed to be equal to the planar 

mesogen alignment. The clamped condition was imposed only at the center of the 

squared sheet. Lx and Ly were set to 10 mm, and h to 0.5 mm. Distinctive trends are 

found depending on the irradiation condition. For LPL irradiation, where the order at 

the midsurface is mainly diluted due to the increased number of cis- molecules, the 

ratio of curvatures converges around 2; roughly, such a value emerges when the 

bending momentum Mxx is about half of Myy due incompressibility, and likewise for 

non-polarized light with planar distribution (n0=(1,0,0)T). The convergence profiles, 
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however, vary extremely as penetration depth changes; as shown in Fig. 2.6.1(a), the 

photoisomerization mainly occurs at the midplane for light penetration depth, while 

uniaxial contractions were evoked near the bottom for deeper penetration. Similar 

remarks apply to non-polarized light (NPL) irradiation, wherein the photomechanical 

behaviors are governed only by light decay, and the ratio converges around 0.5 for 

light penetration; uniaxial contraction dominates in this case. For higher penetration, 

on the other hand, the ratio converges to unity as light increases and mesogens 

isomerize uniformly, regardless of the thickness, which is analogous to the heated 

condition; although not reported herein, the heated condition produces exactly the 

same eigenstrain (κxx=κyy) as reported in Ref. [80]. It is worth to remark that thickness 

h is of critical importance in twisted configuration, in contrast to uniformly distributed 

mesogen, as Kirchhoff assumption is often violated in the LCP structure due to 

transverse shear resulting from strain compatibility [80].

2.6.2. Experiments on TN-LCP 
As shown in the previous section, a LCP with twisted nematic configuration 

deforms into a non-conforming surface, while its curvature ratio between x- (lower 

surface alignment) and y- (upper surface alignment) curvatures differs depending on 

the temperature and light irradiation. Note that the saddle shape is apparently similar 

to the nematic case, although their origins are significantly differ; the transversely 

changing principal direction induces the saddle shape in TN, while Poisson effect is 

salient in the uniaxial nematic cases. 

Such adaptivity to the stimuli has been underwent thorough investigations 

[13,21,28], as they are closely tied to the smart actuations. Moreover, the TN 

configuration is known to produce maximal saddle shape in which the weak 

spontaneous strain is induced onto the base [80], by which a TN solid is preferred 

over nematic as the amount of deformation is a prevailing issue in LCP-based 

applications. 

Nevertheless, such anticlasticity is suppressed frequently, as the irregularities such 
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as initial curvatures and the suppression of the curvature are imposed to the material 

[80]. The densely crosslinked LCPs (e.g. acrylate system [13, 26]), for instance, 

demonstrate a spring-like behavior regardless of the stimuli;  the platelet upon 

synthesis, is initially curved and becomes upon strip (planar) or spring (twisted) 

depending on their orientational axis and the light stimuli. The imposed stimuli 

determine the pitch of a spiral and the spin axis: the material that sustains the load of 

ferromagnet therefore transports the magnet, possibly tune the magnetic field upon 

light bombardment [28]. Note that such finding suggests the one of bases of the 

present photomechanical consideration are violated: the equal distribution of the 

mesogen and its concomitant properties (e.g. mechanical stiffness). 

In this regards, the present study investigate the effect of such violation to the 

photomechanics. The author firstly execute the experiment about light-induced 

motions of TN-LCPs, as there is no available literature that examine photomechanical 

behaviors with scrutiny. The results are then compared with the simulation results, by 

which an unknown parameter of photomechanics is extracted out. It is worth to 

remark that the present experiment emphasize the importance of interdisciplinary 

understanding to the light-responsive material. 

2.6.2.1. Experimental setup

According to the definition, π/2-twisted nematic LCP indicates that the 

directionality is distorted locally in a way that directors found in the upper surface of 

the LCP is perpendicular to those found in the lower surface. Such distortion is 

induced by a strong surface anchoring between liquid crystal molecules and the 

rubbed polymer bonded onto the surface of the glass; the microgroove generated by 

the rubbing process forces the LC molecules aligned in the specific directions. The 

glass cell with microgrooves, as a mold, is generated through subsequent steps: 

cleaning, spin coating with Elvamide (Dupont), rubbing. The slides with 

perpendicular direction are evenly spaced by 20um, and fixated via photocuring in 

365nm.

The constituents and their mixing ratio of the chemical compound is found in the 
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Table 2.6.1. RM82 and A3ZA3 are mesogenic material, where the latter one is light-

sensitive; note that the large amount of the LCP is composed of light-inactive 

materials. The chiral-dopant [28] is incorporated herein, in order to impose consistent 

spin direction; without it, the linear gradient of the directors with random order in 

transverse direction are expected, as the perpendicular anchoring microgrooves 

generated onto the glass face are the only constraint imposed to the mesogens. The 

catalytic amount of Ingacure, a photocrosslinker, is also mixed. 

The mixture is firstly heated to the melting temperature (110oC) and cooled down 

to the vicinal of nematic-isotropic temperature T_NI (80oC), in which the compound 

is injected to the glass cell. The photocrosslinking is then taken place Hg lamp (maker) 

for 2 hours to ensure that the material is fully crosslinked (see Fig. 2.6.2 (a)). The LCP 

is then peeled-off and cut in square shaped as shown in Fig. 2.6.2(b). It is worth 

noting that the initial curvature is not considered herein, as its effect is not severe 

when characteristic length of each nematic directions are similar, and when it is 

heated. The optical characterizations are also executed as shown in Fig. 2.6.2 (c-e), 

which ensures a nematicity the material is constructed as desired. 

Linearly polarized light (LPL) is irradiated onto the heated (85oC) specimen with 

minimal ambient light (see Fig 2.6.3(a) for apparatus setup). Throughout the 

experiment, bending deformations with suppressed anticlasticity are observed, 

wherein the principal direction is determined by given polarized direction. An 

irradiation is persisted for 10 seconds and off for the thermal-induced restoration to 

flat geometry, before next irradiation with different polarized direction. The restoring 

duration is 30 sec when with fluorescent ambient light, or 2 minutes in dark condition. 

Throughout the experiment, the temperature is maintained. Since the image taken is 

inevitably skewed due to the UV laser location, a primitive image processing 

technique is utilized to extract a non-distorted image of the bending direction. Figure 

2.6.3 (b) contains steps for the process, composed of capture, masking into binary 

image, and projective transform. The checkerboard pattern shown in the inset of the 

figure is employed as it is useful to extract out the projective transformation tensor 
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with the aid of image processing toolbox™ implemented within the MATLAB. 

The light irradiation intensity are vary in order to clarify the bending directions; 

the irradiated face during crosslinking (side A) demonstrates smaller curvature than 

the another face (side B), where the latter case often demonstrates the geometry-

induced suppression of the curvature and thereby generates rolled geometry regardless 

of LPL, which renders the principal axis indiscernible. It is worth to note that the 

principal bending axis ψ is a valuable parameter throughout the present study, as they 

are invariant to the size of the photostrain and Poisson ratio that may ranges from 0 

(i.e. suppression of perpendicular curvature) to 0.5 (i.e. incompressibility of the 

polymer)

2.6.2.2. Results and Discussions

Aforementioned violation of the equal distribution of the mesogens, which is 

driven by the mesogenic mass flux during photo-crosslinking, is presumed reason 

behind the initial curvature; unequal distribution of the molecule induces the gradient 

of the stiffness and strain, which in turn generates an initial curvature.  In this respect, 

it is desired to elucidate its possible effect to the photomechanics, which can be 

summarized into two exclusive possibilities in terms of light absorption: 1. a different 

in-plane strain gradient evolves in transverse directions; 2. only the amounts of 

photostrain are differ, while the gradients are retained. The latter postulation is closely 

related to the order-coupled constitutive relation (Eq. 2.3.3), where the modulus 

change and stress is only dependent to the change of r; hence the gradient of the strain 

within the material is largely untouched, and mostly governed by the penetration 

profile of the light. Note that the number of light-sensitive molecules herein is 

relatively small, so it is natural to assume their effect to the light profile is negligible.

Firstly, we compute the characteristic depth for light penetration, by given 

principal bending direction for each LPL condition. We assume a simple Beer’s light 

decay model as shown in Eq. 2.6.2, where a z is a transverse coordinate, h is a 

thickness of the material, and d is a penetration depth. Note that the decaying property 

is derived by scaled value d/h, regardless of the light-intensity in contrary to Lambert-
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W model. Nematic configuration in transverse direction is assumed to be linear π/2-

twisted. The absorption of the light by mesogens at each layer is modeled by simple 

Beer’s law.

Figure 2.6.4 illustrates principal bending axis ψ with respect to LPL direction, 

which are compared with the calculated axes with various penetration conditions. ψ. A 

large map of ψ with given LPL direction and logarithmic scaled penetration depth is 

illustrated by Fig. 2.6.4(a), where the non-monotonicity are found with increasing d. 

The side A’s experimental data about ψ is used for comparison, where the min-max 

gap of ψ is utilized as a scalar criterion. As shown in Fig. 2.6.4(b), two values of d1

and d2 are found to be coinciding with the given gap, while a calculation based on d1 

reproduces consistent profile as shown in the inset. 

In summary, the changes of ψ for given LPL, and the penetration depths are 

tabulated within the Table 6.2.2. Although the mesogenic densities of each face are 

greatly differ as demonstrated by face-dependent bending behavior, their penetration 

depth remains largely unchanged; hence the light profile is proven to be similar. 

Through the finding, it is possible to suggest that the photomechanical behavior of TN 

is attained, given that the weight percent of light-reactive mesogen remains small 

compared to the inactive constituents.
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FIG. 2.1.1. Multiscale schematics. A photoisomerization ratio at time t is computed 

for a given light intensity Io and temperature T; it is then used for molecular dynamics 

(MD) simulations, which provide microscopic information to the nonlinear finite 

element analysis (FEA).
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FIG. 2.2.1. Kinematics of EICR.

FIG. 2.2.2. Three-node shell formulation with 18 DOF and nematic orientation.
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FIG. 2.2.3. The effect of the number of integration points within thickness on the 

numerical integration for mid-plane properties of nematic solids. Inset: properties of 

light decay for various values of penetration depth and intensity.
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FIG. 2.3.1. Unit cell of a photo-responsive polymer network (LCP) with cis-

population cisn = 0.25 (flexible hydrocarbon networks are removed for readability) 

and trans- and cis- state molecules with angular deviation (q ) from the nematic 

director ( n
r

).
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FIG. 2.3.2. Time-dependent bending deformation of photo-responsive polymer 

networks (LCPs). (a) Tip deflections compared with various light intensities I/Iref, 

wherein nonlinearities such as bending-unbending behavior [42] are found. (b) 

Characteristic time required to obtain specific deflections (h*) with different operating 

temperatures, wherein the thermal relaxation effect with the photo-bleaching effect is 

demonstrated. (h represents the thickness of the strip.)
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FIG. 2.3.3. Order parameter * * *
0, ,os qr with increasing temperature; 1st order phase 

transition is observed due to assumed Landau form of free energy.
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FIG. 2.4.1. LCP model configurations. (a) Model geometry with length, thickness, 

and mesogenic director n. (b) Depthwise angle f between LPL and the director. (c) 

Structural formula of molecules used herein (components of Azo18 [54]).
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FIG. 2.4.2. Curvature of the cantilevered LCP (n//x, h = 0.5 mm, Lx = 10 mm, Ly = 1 

mm) for various penetration depths d. Inset: changing profile of normalized shape 

parameter r/ro (y-axis) with weaker (bluish) and stronger (reddish) light.
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FIG. 2.4.3. Shape change of LCP sheet with radial disclination-defect-induced 

instability. (a) Linear vs. nonlinear solution. (b) Instability onset. (c) Trends of critical 

intensity (Icrit) at the bifurcation point.
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FIG. 2.4.4. Photo-responsive LCP bending induced by light travelling in the –z 

direction. Coloring indicates the shape parameter r of the upper surface. For equally 

spaced positions (i.e. A, B, C, and D), the transverse position vs. normalized shape 

parameters of different intensities ( / ref
oI I ) and temperatures ( / o

cT T ) is plotted. (h 

represents the thickness of the strip.)
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FIG. 2.4.5. Time-dependent bending deformation of photo-responsive LCP (a) Tip 

deflections compared with various light intensities I/Iref, wherein nonlinearities such 

as bending-unbending behavior [42] are found. (b) Characteristic time required to 

obtain specific deflections (h*) with different operating temperatures, wherein the 

thermal relaxation effect with the photo-bleaching effect is demonstrated. (h 

represents the thickness of the strip.)
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FIG. 2.4.6. Bending deformation of photo-responsive polymer network (LCP) 

computed via multiscale framework compared to the classical dilute model suggested 

by Hogan et al.39 Substantial differences are found in both (a) tip rotations and (b) tip 

deflections with various values of / o
cT T . (c) With different light intensities, 

thickness gradients of the shape parameter / or r of the multiscale model (lines) are 

compared to those of the classical model (dots) in order to explain these differences. A 

90º tip rotation is commonly observed in experiments of side-chain acrylate LCPs 

whenever irradiated (d) from above or (e) from the left. Figure (d) is adapted with 

permission from Yu et al.11 (DOI: 10.1021/cm035092g). Copyright 2004 American 

Chemical Society. Figure (e) is adapted from White et al.14 (DOI: 10.1039/B805434G) 

with permission of Royal Society of Chemistry.
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FIG. 2.5.1. Uniaxial shrinkage due to phase change of the smectic solids with 

different layer modulus D (a) length change vs. changing shape parameter r (b) length 

change vs. operating temperature. Non-monotonic shrinkage is observed, as shown in 

the experiment [42, 74].

FIG. 2.5.2. Flowchart of the photomechanical analysis on smectic solids, which is a 

combination of microscopic polymeric conformation and finite element analysis 

(marked by deformations).
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FIG. 2.5.3. Profile of light-induced derivatives in out-of-plane direction. (a) Decay of 

the light intensity depending on Beer’s law (b) steady-state cis- population cisn , (c) 

shape parameter r, wherein monotonicity is observed.

FIG. 2.5.4. Temperature dependence of photo-responsive behavior with increasing 

light intensity in terms of curvature. (a) Temperature variation with fixed penetration 

depth (d/h = 0.4) and (b) variation of penetration depth d with fixed temperature (T = 

330K) .
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FIG. 2.5.5. (a) Deformed profile and the local rotation f of the smectic solid with 

given stimuli (T = 360 K, Ieff = 2) and (b) profile of the rotation with increasing light 

intensity and greater nonlinearity.

FIG. 2.5.6. Effect of nonlinearity depending on the temperature and intensity (inset) 

of the bent geometry of the smectic solid, where the rotation f is marked by the 

color on the surface. The overestimation of the curvature and rotation is observed 

when nonlinearity is not taken into account.
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FIG. 2.6.1. (a) Evolution of shape parameter of twisted configuration depending on 

external stimuli (NPL: non-polarized light; LPL: linearly polarized light in the x-

direction). (b) Ratio of principal curvatures with various external stimuli and 

penetration depths.
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FIG. 2.6.2. (a) glass cell with injected compound (b) a TN-LCP after peel-out (c) a 

rotation-induced changing color of polarized optical microscopy (d) raw data of FTIR 

data (e) an alignments of Kuhn segment obtained by FTIR (ATR) data. Dataset of 

upper surface and the lower surface are marked orange and blue, respectively. 
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FIG. 2.6.3. (a) setup for light-exposure to the specimen (b) a sequence of image 

processing with the aid of MATLAB image processing toolbox™ (inset) 

checkerboard pattern to compute projective transformation tensor

FIG. 2.6.4. (a) a principal bending axis ψ with given LPL direction and logarithmic 

penetration depth d (b) a min-max gap of ψ with logarithmic penetration depth; when 

compared with the experiment (ψmax - ψmin = 14.2), two possible penetration depth (d1 , 

d2) is found (inset) polar plots of ψ vs. LPL direction for d1, d2 with experimental 

values.
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TABLE 2.1.1 Pseudocode of the present multiscale schematic

SETUP molecular configuration, mesh (node, elem), I0, T

INITIALIZE t = t0, u = 0, ncis = 0

FOR (t = 0; t < t1; t += dt)

FOR every Element

FOR every Gauss point

COMPUTE ( )0  , ,I I z u I=

COMPUTE ( ){ }11cis cis cis c cisn n dt I n n dth t -= = - -&

IMPORT ( ),cisr n T from molecular dynamics

COMPUTE ( ) ( ), , ,r u C r us from constitutive equation

END FOR

COMPUTE { }, , , ,
ph ph

A B D N Mé ùë û from Simpson’s rule

END FOR

ASSEMBLE ( ) ( ), , ,u I u IK R     from Corotational formulation

UPDATE u u du= +

END FOR

POST-PROCESS ,u s

TABLE 2.1.2 Simulation parameters; m is the shear modulus.

Value [Units] Value [Units]

re fIh , ot 0.01, 25.3 [s−1] Lx × Ly × h 36 × 4 × 0.5 [mm]

D 4 x 10−20 [J] d/h 0.4

m 35
1.5 [GPa] / re fI I 0.1–15

/ c
o oT T 0.70 / o

cT T 0.70, 0.80, 0.90
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TABLE 2.3.1. Molecular dynamics (MD)-based microstate parameters. Standard 

deviation (S.D.) is calculated for cells with different locations of cis- molecules. 

References include thermodynamic properties from the acrylate side-chain [11] and 

elastomer-based nematic polymer [54].

cisn cT [K] (S.D.) a (S.D.) z (S.D.)

0.00 462.50 1.40 0.33

0.25 425.17 (33.32) 1.00 (0.10) 0.37 (0.03)

0.51 392.50 (9.70) 0.92 (0.25) 0.39 (0.06)

0.75 373.70 (7.52) 0.91 (0.33) 0.40 (0.13)

1.00 363.01 0.90 0.40

0 11 443.15 N.A. N.A.

0 54 340.15 0.51 0.19
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TABLE 2.3.2 Constitutive parameters for Landau-formulation for phase transition

Parameter Value Parameter Value

oa 1
2b 100

b 100 c% 3000

c 400 *T 370

ˆâ b= 400
NAT 350

TABLE 2.6.1. A mixing ratio of TN-LCP compound

RM82 (Mesogen) 87.9 wt%

A3ZA3 (azo-derivative) 10 wt%

Photo-initiator (Ingacure) 2 wt%

Chiral-dopant (R1011) 0.1 wt%
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Table 6.2.2. Principal bending axis ψ for each face and LPL: 

significant digits are 2 and 3, for ψ and d/h respectively. 

LPL [deg] ψ (sideA) [deg] ψ (sideB) [deg]

0 75.74 76.5

15 75.4 78.44

30 80.56 79.17

45 83.45 80.32

60 83.45 81.27

75 85.01 82.39

90 84.95 84.05

105 87.34 84.14

120 89.35 87.51

135 88.78 88.8

150 87.29 84.43

165 85.25 81.52

180 75.05 80.74

d/h 0.103 0.137
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Chapter 3. Designs of LCP actuation

Having discussed the onset of bending and the nonlinear considerations in 

preceding chapter, the effects originated from the design parameters to the behavior of 

light-responsive LCP sheets are presented, both of which retains either nematic or 

smectic phase. This is on the same line of idea of the designing LCP-based actuation 

systems invented recently. Unlike other active materials based on a bi-phasic 

transition that exert uniaxial length change (e.g. shape memory alloy), the behavior of 

the light-responsive LCP can be tuned on both pre-synthesis and post-synthesis steps. 

Throughout the present thesis, a pre-synthesis step refers an alternation of the liquid 

crystal alignment before its crosslinking and peeling out from the cell, where induced 

microscale changes can be observed only by microscopic measurements such as 

polarized optical microscopy (POM). On the other hand, a post-synthesis step refers a 

change that can be seen by bare eye: the shape of the specimen, and the way of cutting 

that comes before peeling are the examples of the category.

It is worth to remark that the both results evidence the enhanced simulation 

capability of the present work, showing that it is suitable for photomechanical 

discussions about generic PRP deformation and design of the applications such as 

actuators and self-folding materials. Most of all, it does not require designed 

eigenstrain as in the micromechanics-based study [17, 18, 82], which cannot account 

for the effect of a changing shape parameter that interacts with the decaying profile of 

light, and quasi-rotation of the local order of mesogens. 

3.1. Changes of extrinsic variables: geometry and orientation

Following typical methods, a LCP fabrication involves an alignment technique; by 

attaching two glass plates rubbed in parallel directions, a uniform alignment is 

generated along the prescribed mesogenic director. The extrinsic variable dealt herein 

indicates the variation imposed in post-crosslinking step, where the mono-axiality of 
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the director remains intact. The angular deviation between nematic director and 

longitudinal direction of LCP strip, and the shape of the specimen are investigated in 

this section. A distribution of the light irradiation to obtain desired deviation is also 

computed based on the light-to-photo strain relationship elucidated in the previous 

photomechanical description. 

3.1.1. Directional orientations of nematic LCP

The directed bending driven by in-plane rotation of the globally uniform director 

is shown in Fig. 3.1.1. Such configuration is classically fabricated by cutting the 

specimen out in the non-parallel direction to the monodomain alignment, which alters 

the principal bending direction. The light is assumed to be non-polarized without 

losing generality, and the angle oj is defined as the difference between the x

direction and the local orientation n. It is clearly seen that maximal tip deflection 

monotonically decreases as oj increases from 0° to 90°. 

Three different light penetration depths are displayed, all of which show a similar 

trend as torsional deformation replaces bending while their maximal displacement 

varies. In all cases, the vertical tip deflection becomes zero when the directional 

difference increases to 60°, after which the sheet starts to bend away from the light. 

These results agree well with the experimental results obtained for glassy polymers 

with various director orientations [70]. 

The point at which zero-vertical displacement emerges is another indicator of the 

nonlinearity need of the 3D shell model compared with the 2D confined model. When 

oj is not 0° or 90°, in-plane shear 12
phN and torsion 12

phM resultants become nonzero 

by rotation of the principal direction. As a result, the effects of shear and torsion 

become profound and the tip is moved upward to compensate for the driving 

momentum. Consequently, this in-plane phenomenon attenuates the occurrence of 

zero tip deflection, and this behavior becomes more profound in the co-rotational 

formulation because geometrically driven rigid-body rotation between oW and 
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RW is added to pure element rotation zq . In conclusion, the orientation effect results 

show that on is not only an important design parameter of actuation exhibited by 

LCP materials, but is also an effective measure for demonstrating the need for the 

present framework.

3.1.2. Directional orientations of smectic solids 

Even though smectic solids retain one more symmetry in rubbed direction), their 

uniaxial configuration is assumed to be maintained; hence a directional orientation is 

similarly defined. 

Conversely, the director change specified in the pre-synthesis state also produces 

prominent changes in deflection. As an anisotropic material, the longitudinal axis of 

the specimen may not necessarily be coaxial to the layer normal; such deviation, for 

example, is possibly created by cutting out the specimen that is in a nonparallel 

direction to the rubbing direction (i.e. monodomain direction). The change of 

principal bending behavior is demonstrated in Fig. 3.1.2.

where q indicates the prescribed angle difference between the layer normal on
r

and a longitudinal axis (i.e. { }cos ,sin
T

on q q=
r

). The magnitude of deflection is 

strongly alternated when q   changes from 0 to / 2p , whereby the principal 

bending direction is rotated and thus bending-twisting coupling is generated. As 

discussed in Fig. 3.1.2, a deflection generally increases proportional to d, while the 

direction of deflection is determined by light intensity when the operating temperature 

is selected within a range that provokes the pre-transitional effect. It is worth noting 

that such finding is analogous to the experimental results [74] and steady-state 

solution [5] of nematic solids, although the point where zero-deflection (i.e. purely 

twisting deformation) differs due to the non-monotonic profile of the shape parameter. 

The present findings suggest that the direction of cutting is an efficient design 

parameter to determine the mode of deflection, and the meticulous selection of 

temperature and light intensity is critical.
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3.1.3. Anticlastic behavior of nematic LCP

A nonzero Gaussian curvature developed by the illumination of a non-square LCP 

is shown in Fig. 3.1.3(a). An initially flat, ellipsoidal sheet with Rx,, Ry as its principal 

radii is examined herein. The nematic director is assumed to be aligned in the x

direction without losing generality. I set the thickness h to 0.5 mm and the penetration 

depth d to 0.2 mm, which correspond to maximal deflection in LCP cantilever and are 

significantly smaller than the fixed value of the LCP sheet’s longitudinal radius Rx = 

20 mm. The curvatures on the surface and local principal axes are computed via the 

least-square fitting of the surface composed of local neighboring vertices to a 

quadratic patch. 

The evolution of the saddle shape induced by light irradiation is clearly 

represented by the developing negative Gaussian curvature, whereas the tipping point 

of irradiation and maximum curvature vary according to the aspect ratio. I show that 

shorter length in the direction perpendicular to the nematic direction is preferred for 

severe anticlasticity generation. 

According to the “swimming” LCP sheet experiment [21], which utilizes the 

instantaneous emergence of anticlasticity upon irradiation, induced curvature is 

closely related to the energy transfer that drives the swimming. Equation (3.1.1) 

illustrates a crude estimation of the energy, where Y is the Young modulus, κ is the 

Gaussian curvature, h is the thickness, and A is the domain area: 

3

24
estE A h

Y k
= . (3.1.1)

A response of the strain energy shown in Fig. 3.1.3(b) also exhibits non-

monotonic behavior. However, a more moderate difference is shown between the 

energies corresponding to the different aspect ratios, unlike the Gaussian curvature 

itself. These results assert that the larger aspect ratio is favorable for stronger light 

intensity in order to achieve the maximal efficiency when the length of the nematic 

orientation axis is fixed. These findings indicate that designing optimized and 
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efficient actuators requires the investigation of various parameters because stronger 

light does not necessarily imply more thrusting power, and is strongly affected by 

geometric conditions.

3.2. Optimum extrinsic property: irradiation pattern

It is likely that a carefully designed nontrivial spatial distribution of the 

photostrain will generate more intriguing shapes [83], so the prospect exists for it to 

be realized through the use of modern optical techniques such as filtering [84], 

masking [85], and local irradiation. To obtain a desirable shape change of the PRP 

film that is stimulated by a nonhomogeneous distribution of the light irradiation, an 

eigenstrain-patterning technique that is based on topology optimization is employed 

here. A topology-optimization scheme is originally applied to obtain an optimal layout 

regarding the structural design, whereby the minimum compliance that sustains the 

loading is the main objective for the effective design of the mechanical structure. 

Because the high versatility of the technique has been proven, other scientific fields 

[86-90] utilize the optimization technique through modifications of the objective and 

the constraint function that are physically related to the target materials. For the 

simulation of the PRP film, the eigenstrain that is induced from the light irradiation is 

selected as the design variable. The photomechanical fundamentals regarding the 

light-induced eigenstrain are then investigated, which involves a consideration of the 

relationship between the light irradiation and the strain generation and the resultant 

force and moment that lead to the mechanical deformation that is incorporated into 

the finite element methods [55]. Such design schemes enable the performance of an 

analysis of non-uniform deformations in terms of the complex behavior in the PRP 

structure, as well as regarding the design of the proper eigenstrain distribution. The 

eigenstrain-pattern design for the attainment of a certain predefined deformation is 

obtained through the use of the topology-optimization methodology for which the 

pattern solution of the inverse mechanism is found; moreover, this technique can be 

used to design the eigenstrain distribution of PRP films for the creation of 3D self-
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assembling structures.

But optimization results of a complex shape and non-uniform intensities are not 

feasible when the technological capabilities regarding the fabrication of patterns on a 

material specimen are considered; therefore, to obtain a simplified strain distribution, 

a material-interpolation scheme is adopted for the pattern-design approach. Bendsoø

and Sigmund [91] derived a physically feasible design through a treatment of the 

gray-scale intensity that is according to the interpolation of the intermediate 

intensities. The solid isotropic material with penalization (SIMP) model is used to 

artificially tune the design variable so that the intermediate densities are penalized, 

and this leads to the attainment of a feasible strain pattern. The design variables are 

then interpolated to the pseudo-density, whereby the values are bounded from 0 to 1, 

and these values are directly connected to the light-induced strain.  

3.2.1. Methodology based on topology optimization

The objective function that is a squared value of the distance between the target 

point and the cantilever tip is represented by Eq. (3.2.1), as follows:

2
obj tip target( )= -f u u (3.2.1)

This objective function was originally proposed by Howard, Pajot, and Dunn as an 

inverse-design methodology; however, in this research, a forward-design simulation 

from the flat to the deformed cantilever is performed. An optimized strain pattern is 

the main goal of topology optimization, and the final deformed shape is obtained later. 

Design objectives and geometric constraints can also be applied in consideration of 

the type of strain pattern and the desired geometric functioning. 

The design variable that is exerted on each of the four-node overlaid elements that 

comprise four individual triangular elements is an element-wise eigenstrain; here, the 

eigenstrain can be induced by photo illumination or thermal change. The order 

changes of a polymeric chain are coupled with side effects including light and 

temperature. The reported experimental data shows the complexity of the strain 
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occurrence and the correlation of the external stimuli have not been fully investigated; 

furthermore, the modeling of light-driven shape changes is mostly expressed with 

assumed coefficients that are fitted from experimental or computational simulation 

results [5]. Complicated procedures are omitted from the topology-optimization 

methodology here, and only the subsequently induced strain from the external 

stimulation is considered. The order-change process is a time-variant process because 

the characteristic of the isomerization process is diffusive when such chemical 

changes occur in localized areas; moreover, such time-dependent properties are 

neglected, and it is assumed that they occur instantly, leading to the consideration of a 

static bending problem. In optimization terms, the number of design variables is 

determined in consideration of the computational time and the pattern-making process. 

For an excessive number of elements, a precise control of the gripper is possible, 

but a convergence risk regarding an ill-conditioned local minimum also arises. This 

problem is basically of a non-convex nature, and an infinite quantity of local 

minimums can satisfy the objectives and the constraints; therefore, even for an 

adequately converged objective value, the solution keeps moving over the solution 

space and is shifted to another minimum point nearby, where the values of the design 

variables are almost identical. The proper number of design variables therefore 

prevents the solutions from wandering between multiple local points, and they are 

converged rapidly to save the computational cost; conversely, a too-low number of 

design variables may cause a deficiency of the degree of freedom in terms of the 

design of the strain pattern, and this leads to an imperfect convergence of the 

objective functions. The proper number of design variables should therefore be 

selected. 

The applied geometric constraint is the surface curvature of a specific node. The 

curvature constraint can control the flatness of the cantilever that is related to the 

bending-shape design of the gripping-cantilever shape and the local photo-inactive 

area. The surface curvature is obtained using Chen and Schmitt’s method, which is 

used to calculate the surface curvature of a specific node; here, the positions of the 
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neighbor nodes are used to calculate the surface curvature. Further, triangular meshes 

should be used for the modeling of a finite-element structure. 

For the optimization process, the SIMP method that was suggested by Bendsoø

and Sigmund was applied [91] to solve not only the singularity issue, but also the non-

convergence and non-existence problems regarding the expression of the solid-void

interpolation in isotropic materials. In eigenstrain-based topology optimization, 

however, and unlike the isotropic materials, the light-induced strains can be discrete 

and the intermediate intensities can be expressed through the control of the irradiated 

light intensity. This interpolation scheme is consequently used purely for the 

cancelation of the intermediate intensity strain, leading to clearly identified 

boundaries and admissible black-and-white strain-pattern shapes; furthermore, this 

process provides an admissible strain pattern that can be transformed into a light filter. 

The design variable r is bounded from 0 to 1, and as given by Eq. (3.2.2), its 

intensity is interpolated according to the order of the penalization parameter p, as 

follows:

,max( ) p
ph phe r e r= × (3.2.2)

where ,maxphe is the maximum light-induced strain, which is 0.2, that is referred 

from the experimental reports [12]. The penalization parameters are usually set as 3. 

The total-strain amount, which is a volume fraction in the minimum-compliance 

problem, is calculated according to the mean value of all of the design variables, 

which are limited here to the following two cases: 0.5, and 0.8. The total-optimization 

problem statement can be written as Eq. (3.2.3), as follows:
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where gcurv and gvol are the constraint function for the surface curvature and the 

amount of the induced eigenstrain, respectively. 

The topology optimization process is conducted using the fmincon, a built-in 
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function in MATLAB, for which the interior-point algorithm is selected as a solver. 

The interior-point algorithm is a commonly used gradient-based solver that can be 

applied to a variety of problem conditions. The objective function includes the co-

rotational formulation and the constraint includes the curvature calculation, whereby 

the nonlinearity of both cases regarding the design variables is high, and the gripping 

objective implies non-convexity as well. The treatment of such complications in each 

iteration, which can cause an instability throughout the entire simulation, leads to the 

usage of the interior-point algorithm because of its robustness and efficiency. The 

algorithm moves the solution path through a simultaneous consideration of the 

gradients of the objective function and the constraints, and this can provide a feasible 

solution in every iteration.

The sensitivity analysis is performed in the corotational formulation according to 

the adjoint method that was proposed by Pajot and Maute [92]. For the adjoint method, 

the pre-calculated stiffness matrix, which mitigates the incurred computational time of 

the numerical finite-difference scheme that is provided by the built-in MATLAB 

function, is reused. 
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In Eq. (3.2.4), while partial analytical values can be provided and an objective-

function derivative is directly calculated, the residual derivative is not intuitively 

calculated and should be obtained from the EICR formulation. The partial derivative 

of the residual is expressed using Eq. (3.2.5), as follows:
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For the design variable, the eigenstrain originates from the light illumination, the 
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elemental external force is the only term that is dependent upon the design variable, 

and all of the other terms are functions of the nodal displacements and the rotations. 

The partial derivative of the external forces is consequently the only term that is taken 

into consideration, making all of the other derivative terms equal to zero, as given by 

Eq. (3.2.6), as follows:

(e)T T T
int 0

i i i ir r r r

¶¶ ¶ ¶
= = = =

¶ ¶ ¶ ¶

fT P H
(3.2.6)

Equation (3.2.7) can then be expressed in a simplified form. The derivative of the 

elemental external forces are calculated directly from the penalized form of the 

eigenstrain.
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The dimensions of the PRP-cantilever specimen are 80 x 10 x 2 [mm] for the 

length, width, and thickness, respectively, and it is assumed that the left tip is clamped. 

The light that is irradiated on the upper surface causes the specimen to bend upward. 

The nematic orientation is identical regarding the length direction, and the eigenstrain 

in the perpendicular direction is also considered for the volume-conserving condition 

from the Poisson’s effect [93]. A contraction of the length direction induces an 

expansion of the y and z directions for a satisfaction of the incompressible material 

assumption. The Young’s modulus and the Poisson’s ratio are obtained from the 

general LCE properties [70]. The aspect ratio of the modeled specimen is 40, which is 

relatively thick for the adoption of the plate and shell elements for an FEM 

computation; here, it is assumed that stress does not be exist on the thickness direction, 

meaning that it can be considered as a two-dimensional plane structure.

The workflow of the present work is now summarized as shown in Table 3.2.1. After 

parsing of the inputs, problem is setup with dimension, meshes, and the set of the 

stimuli (either light-depth pair or eigenstrain-depth pair). In this step, the pair of the 

stimuli is fitted into the effective parameter of the pair of eigenstrain-depth if needed. 

The Newton-based optimization steps are nested for fmincon (MATLAB built-in 

function) usage, where the internal structural tensors are computed via EICR 
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formalism. When the objective functions and its norm of change for given instances 

are within the given tolerance (TOL), the computation is then terminated, followed by 

post-processing. Note that the two separate kinds of model describe the bending 

behavior of the PRP herein: One is a light-order coupled model described in the 

chapter 2.3.1, and the other is a simplified model that is used in topology optimization. 

Each model accepts different stimuli in this study, which are the light intensity and the 

photo-induced eigenstrain, respectively. A connection between the light and the strain 

should be established to convert the optimized solution into the light intensity that is 

the controllable stimulus in the experimental field. The difference between the two 

models is the order-dependent material property of the light-order coupling model, 

whereby the bending stiffness changes with the nematic-order changes that are caused 

by the external stimuli; furthermore, the bending moment is not proportionally 

increased with the increasing of the light intensity because the light-penetrating 

profile comprises a form of the Lambert-W function. The curvature is tabulated with 

oI and d , while d is fixed to produce a 1-to-1 correspondence between the 

photostrain and the light intensity. It is known that d is related to the polymeric 

conformation and the cross-link ratio, and this enables its use as a fixed value in this 

study. The tabulation of such correspondence is executed a priori to reduce a 

computational time, and used only when specified, which is presented as a 

photomechanics flag.

3.2.2. Numerical examples on light-fueled gripper

Under the contact condition, the displacement of the specimen tip is equal to the 

value of the designated target displacement to ensure that the tip reaches the pinching 

location. The tip displacement is selected at the center point of the cantilever tip, and 

the target displacement is the initial distance between the selected center tip point and 

the designated target point. The objective function is the squared value of the distance 

from the target point to the pinching position in the cantilever tip, as mentioned in Eq. 

(3.2.1); therefore, the convergence of fobj to the minimum is equivalent to the self-

contact that occurs in the pinching position that is located above the clamped root at a 

height of 50.93 [mm] For multiple specimens with optimized bending behaviors, the 
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gripping mechanism is considered to be satisfied. The initial value setting of the 

design variables is homogeneous ( ph
oe = 0.2). By using the interior-point optimizer, 

the decrease of objf that is presented in Fig. 3.2.1(a) occurs; however, the 

convergence trend differs significantly. 

To demonstrate the rapid convergence, the objective-function value is shown in 

the logarithmic scale and settles within approximately hundreds of iterations. The 

pinching mechanism is considered well-satisfied when ( )10log 2objf < - , as it 

demonstrates that a distance between the target point and the gripping tip is within 0.1 

mm. With such criteria, the objective function converged when S = 0.5 and S = 0.8; 

when S = 0.5, the optimization stopped within 60 iterations, while the 0.8 value 

resulted in a repetition of the iterations that is more than a hundred times. Both of the 

simulations are terminated when the change of the design variable is less than 1e-6, 

which is represented as the norm value of the design-variable vector; as shown in the 

insets of the convergence graph, the objective value of the intermediate solutions can 

be similar or even smaller with the optimized solution. When S is constrained to 0.2, 

however, the solution does not converge to an optimal minimum point because of an 

insufficient amount of total strain; the maximum bending moment, which corresponds 

to the analytic bending moment that is computed by the eigenstrains that are 

presumably concentrated near the clamped area, shows such an insufficiency. 

The eigenstrain pattern that is obtained during the iteration is also presented in 

Fig. 3.2.1(b). In the early stage of optimization, the strain is evolved in the root area 

(i.e., near the clamped region), because in the initial state, the movement of the 

cantilever tip to a target point is efficiently accomplished with the use of a long 

bending arm that makes it advantageous to exert a strain in the root position; 

alternatively, when the iteration number is around 30, the pinching point in the 

cantilever tip moves back and forth near a target point, and the strain pattern shows a 

collapsed and distorted shape. Such fluctuations of the convergence graph stem from 

the fact that the suboptimal solutions of the objective function are numerous (i.e., 
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local minimum), whereby a solution point is constantly moving from one local 

minimum to another. When the value of the design variable that is directly related to 

the bending-strain amount is being constrained, an excessive amount of induced strain 

is the risk when numerous solutions are made. The gripping point in the tip may 

overshoot the target location for the determined step size in the optimization 

algorithm; in this case, the tip point moves slightly back and forth near the target point. 

In the final optimized solution, the strain patterns are of a 40 mm length and a form 

that looks like a half-oval/half-rectangle shape. Although the function value is not 

fairly converged to the global minimum position when it is compared to previous 

iterations, the iteration stops according to the criterion whereby the variation of the 

design variable is smaller than the tolerance. 

Additionally, concentrated strain patterns have been performed in the 

experimental research studies regarding localized irradiation. Programmable bending 

or folding mechanisms have also been investigated, whereby they were designed and 

demonstrated using photo-active mechanical applications. This research shows the 

usefulness of a pattern-design methodology that can be widely connected to the actual 

development of a mechanical structure. 

As light eigenstrain-distribution profiles show consistent pattern shapes, they can 

be parametrized from their location and size, and they can also be used for the 

prediction of the pinching point. The constraint of the volume fraction is the total 

strain amount in the eigenstrain optimization. The SIMP method that facilitates 

different forms of the strain pattern that provide a variety of solutions is combined 

into optimization to constrain the penalizing intermediate intensities. While it is 

concentrated or distributed, the specimen shows a distinct bending behavior and 

fabrication for the light filter that is also in accordance with a different process 

regardless of whether its irradiation intensity is of a medium strength or not. The 

controlling of the constraint value with the SIMP method can result in the drawing of 

a realizable pattern shape, and because the solution is prevented from wandering 

around the local minimums, the convergence of the solution is guaranteed. The 
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optimization simulation is performed for the 0.5 and 0.8 volume fractions, and the 

target point is designated to 0.6 D, where  D is defined as the diameter of a circle 

with a half of the arc length as the length of the specimen, while l represents the 

cantilever length, ( 2 /D l p= )

The optimized strain pattern and the deformed shape are presented in Fig. 8, 

where the specimen is modeled with 512 design variables. The number of elements 

are 64 and 8 for each of the horizontal and vertical directions, respectively. For both 

dense and coarse meshes, the consistency of the converged solution remained under 

the same simulation condition. The number of design variables was adjusted to 

prevent an excessive computational-time cost.

Figure 3.2.2(b) shows the strain pattern that was found under different S

conditions, where differences of both the shape and the intensity are shown. For the 

0.8 case, the distinction between the intense and weak areas is not sufficiently clear 

and the intermediate intensity area is marked by the red color as a consequence; 

whereas in the 0.5 case, the boundaries between the two areas are clearly identified 

and are therefore definitely divided. The strain patterns are concentrated in the 

localized area, so the bending behavior occurs in the narrow area with a large 

curvature. The 0.8 case shows the blurry distributed-strain pattern that induces the 

bending strain throughout the whole specimen; therefore, the bending curvature is 

smaller than that of the S = 0.5 case, and this small curvature reduces the risk of 

failure from the wrinkling and the crack generation that are caused by a repeated 

folding process. It is also possible that an abrupt change of the eigenstrain in the 

specimen can initiate structural defects, and this necessitates an ongoing consideration 

of the continuity of the strain intensity. 

In addition, the additional curvature-flatness constraint has been imposed to 

demonstrate the simulation capability of the present work; as shown in Fig. 3.2.3, 

significantly different bending shapes were obtained. The constraint was applied on 

the different specimen locations with the target point that is fixed to D. The number of 

design variables is 128, with 4 for the vertical direction and 32 for the horizontal 
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direction.

Pinching is well-achieved in the three different locations of the curvature 

constraint. The constraint is applied on multiple points near the selected location, as 

follows: 10 mm, 20 mm, and 30 mm. For S = 0.5, the patterns are split into two pieces, 

and the values of the black-and-white patterns are converged to 0 and 1, respectively. 

The numerical fluctuations of the converged values, however, are present within both 

the intensely irradiated area and the vague area. Although the light-intensity-value 

differences do not correspond with the major changes of the deformational behavior, 

they make it difficult to realize and fabricate the light-irradiation pattern. Post-

processing is therefore performed through an averaging of the pattern areas, whereby 

the intensities are equalized while the total strain amount and the deformation profile 

are conserved. The weak-strain values are set as 0, which is ignorable in the total 

strain. According to Eq. (3.2.8), poste , the average value of the cubed design variables 

for which the SIMP method is used, is calculated as follows: 
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where Nw is the number of design variables that is/are greater than 0.5.

For S = 0.8, the intensity does not converge to a consistent value, and it varies 

uniformly between the 0 and 1 boundaries; therefore, the averaged post-process 

intensity value is totally collapsed from the original result data, and it is also very 

difficult to decide the cut-off value for the cancelation of the ignorable intensity 

because of the intermediacy regarding the existence of the value. Intermediate 

intensities appear near the tip areas where the effect of the design variable changes. 

The sensitivity toward the targeting objective is lower when it is close to the tip 

position, while the distance from the element to the target point, which is considered 

as the rotating-arm length, determines the sensitivity toward the objective function. 

The appearance of the enhancement effect of the design variables during each 

iteration is therefore a far distance from the tip position at first. Although it is not 

shown here, the sensitivity distribution also shows a localized shape near the root and 
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the constrained area that is similar to the light-intensity distribution.

In terms of the redistributive strains, the deviation of the post-processing strains 

from the original ones is not conspicuous and the objectives are consequently retained. 

Obviously, a lower volume fraction is shown here to partly resolve the non-

uniqueness problem that is inherent in gripping solutions; that is, a limited total strain-

amount condition contracts the solution space regarding the satisfaction of the 

pinching objective, making the convergence with the optimized solution faster and 

with less iterations. 

The location of the target point is controlled using the versatility of the PRP 

specimen in terms of the strain patterns. The distance from the cantilever root is 

changed with the ratio of D and the results are presented in Fig. 3.2.4:

Each pattern shows elliptical or rectangular shapes with a rounded apex. Similar 

to the previous results, in the 0.8 volume fraction, the intermediate (red) area appears 

between the intense (black) and the weak (white) areas, and a lower volume fraction 

shows clearly defined boundaries. The strain pattern is moving toward the root 

direction through an increasing of the height of the target point, while the shape of the 

elliptical pattern remains. In the 0.5 case, the height of the pattern is longer than the 

higher target-point case because the structure needs more bending moments for the 

targeting of a lower point. In Table 3.2.1 and Table 3.2.2, the patterns are 

parametrized for the location and the intensity profile, and the locations are 

normalized according to the length of the specimen. In S = 0.5, the center position of 

the strain pattern is calculated through a finding of a position where the cumulative 

value of the induced strain is half of the total induced-strain intensity; this is 

performed according to the length and the width, which appear as the x and y 

directions, respectively. For S = 0.8, the strain pattern is fitted to the Gaussian-

distribution function in accordance with Eq. (3.2.9), as follows: 

( )( )2

1 2 3exp ( )w p x p pe = × - - (3.2.9)

where εw is the induced strain that is summed for the width direction, and each of 
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the parameters from p1 to p3 represent the maximum height, mean, and deviation of 

the strain intensity, respectively; namely, p2 determines the location of the strain 

pattern and p3 determines a scattering state for the element-wise eigenstrains. This 

function can be applied to a limited case where intermediate intensities that are 

concentrated in a lumped shape are shown. 

Although the strain distribution in the longitudinal direction is only parametrized 

and therefore lacks the total pattern-shape information, the overall behavior retains 

validity in terms of the following objective functions. 

Table 3.2.1 and Table 3.2.2 show the trend regarding the changes of the 

parameters. For S = 0.5, the Y position remains the same on the center position with 

less than 1 % of error, while the X position decreases as the pinching point moves 

higher; furthermore, a similar trend is shown for p2 in terms of S = 0.8. The value of 

p1 is the largest at 0.6 D and gradually decreases as the pinching point moves upward. 

The deviation value of p3 is the lowest at 0.6 D and increases for the upper pinching 

point. The monotonic change of p1 indicates that the maximum strain that is induced 

is stronger in the lower target point. For the lower target point, the specimen needs to 

bend more than the higher target, and this is verified in both the p1 value and the 

bending deformation of Fig. 3.2.4(a); furthermore, the same trend appears in p2 and 

can be explained in the same manner. 

A parameter change implies the movement of the pattern location. A p3

parameter change means that the strain pattern is concentrated at a lower target point, 

and the explanation for parameter p1 also applies here. The parameter result provides 

information regarding the requirement of the lower target point for a more-localized 

and intense eigenstrain for large bending moments that are intuitively sound. Through 

this parametric analysis, the location and fitting parameters include information 

regarding the pattern shape and an effective distribution. It is worth remarking that

such monotonic increases/decreases of these parameters suggest that the eigenstrain 

pattern is obtained whenever the target pinching point is determined; moreover, the 

present design methodology that incorporates topology optimization into parametric 
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discussions should possibly be extended to the general behavior of the cantilevered 

PRP strip, as its status as a powerful and effective measure has been proved. 

3.3. Changes of intrinsic variables: Texture design for the actuation

A “texture design” refers the alignment that exhibits variation found within in-

plane, while uniform in the thickness direction. A brief explanation about the optical 

textures that minimizes nematic distortion energy (i.e. Frank energy) is firstly given; 

an evaluation of the distortion energy of the liquid crystal and an estimation an optical 

texture of the molecular distribution given by energetic measure that ensures the 

configuration confers with infimum energy to the domain. Numerical solution of 2D 

flat surface is following the explanation, with essential boundary conditions such as 

holes (i.e. non-simply connected domain) or inhomogeneity (i.e. disclination core). It 

is worth to mention that textures of flat surface with intrinsic curvature are computed 

in nontrivial manner, due to the metric changes of the domain; ref. [18, 30, 94] are 

recent reports about the curvature-induced disclinations in simply-connected Riemann 

surface. 

3.3.1. Frank elasticity and nematic texture

The generation of an no distribution across a domain, which is essential to obtain 

programmable LCPs, is explained herein. I adopted the term “optical texture” from 

liquid crystal physics [1], since a liquid crystal deflects a light curve, causing a non-

uniform no to result in a nontrivial schlieren optical texture, as is often observed in 

images obtained through polarized optical microscopy [1, 2, 57]. In this research, two 

distinct types of textures, which have different origins, were examined. 

Firstly, I utilized a well-defined texture, which is characterized by a single 

disclination defect together with its vicinal nematic orientation. The disclination 

strength m, which roughly indicates the order of symmetry around a defect, is 

assumed to be arbitrary in such textures, whereas m = ±1/2, ±1 would emerge 

naturally. This assumption corresponds to the photoalignment technique [32, 33], in 
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which an arbitrary texture is imprinted without considering the stability of the 

nematics. Equation (3.3.1) describes no as a variable field vector that depends on the 

position (x, y): 

{ } ( ) ( ){ }cos sin
T T

x yn n m c m cq q= + + , (3.3.1)

where θ = tan-1(y/x) and c is an angle constant, which is assumed to be uniform 

within the material. Next, the textures induced by inhomogeneities were simulated. 

Unlike in the well-defined texture examples, no explicit description was designated a 

priori; instead, I assumed that the textures were first determined by the liquid 

crystalline distortion in the uncrosslinked state and that they were fixed only after 

crosslinking, thereby becoming constant throughout the material. Here, a Frank 

distortion energy is assumed as an energy that penalize the LC distortion. As shown in 

Eq. (3.3.2), a standard form of Frank elasticity, where three modes constitute the 

general distortion: Splay, twist and bend. 

( ) ( )
2 22

1 2 3nF K n K n n K n n d
W

= Ñ × + × Ñ´ + ´ Ñ´ Wò
r r r r r

(3.3.2)

In the equation, ( )n x
r

is a director field, · is a L2-norm of (·), and W is a 

domain of interest. Frank constants iK (i = 1,2,3) are associated with each distortion 

modes. In this work, we adopt one-constant approximation ( 1 2 3K K K= = ) [1, 2, 31] 

and 2D planar distribution of LC ( ( )0 cos ,sin
T

n q q= ), by which the Eq. (3.3.2) 

degenerates into the Eq. (3.3.3).

  
2

( /2, /2]
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q p p

q q
WÎ -

= Ñò (3.3.3)

Note that a non-convex constraint 1n =
r

is substituted to the domain of q , by 

which complexity of energy minimization is similarly provoked due to its periodicity. 

Many works has been therefore suggested to solve the equation by numerically [31, 

95-97], or analytically [98]. In this work, we follow the literature that utilizes iterative 

relaxation method [96], inspired by the similarity between the Eq. (3.3.3) with a 

Poisson problem associated with Laplace operator. The directionality of a liquid 
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crystal is determined by its inhomogeneities and its vicinity. Two types of 

inhomogeneities, core defects and voids, are discussed herein; these types are 

distinguishable by the domain continuity, since a simply connected domain becomes 

non-simply connected if voids are introduced. The anchoring type was chosen to be 

homeotropic, so that the liquid crystals would be anchored perpendicular to the 

prescribed location (core) or free boundary (voids), as functionalized nanoparticles 

are [31, 37].

The microscopic parameters (no and r) for mesogen and polymeric state 

characterization were defined element-wise. This method of definition is equivalent to 

assuming that each monodomain is allocated to an individual element, which requires 

that the characteristic length of the element be less than or equal to the experimentally 

reported characteristic domain size within a polydomain LCP (~5 μm) [1,2]. However, 

I set the lower bound on the length of each triangular facet to 100 μm due to 

computational limitations; the mesh dependence of the solution was thereby checked 

for each texture, since more complex strain and alignment distributions require finer 

meshes. For the configurations discussed herein, no mesh dependence was observed 

up to the maximum level of complexity that was investigated in this study.

Textures not defined a priori were firstly examined. Compared to special case 

where analytic solutions are attainable, present study involves more complex 

prescribed conditions such as simultaneously applied homeotropic LC interaction and 

arbitrary locations of multiple hedgehog (i.e. m = +1) defects. Throughout the 

computation, homeotropic condition is imposed as a Drichlet boundary condition to 

the problem, while defect is described by radially distributed director n
r

found in the 

vicinity of the center of the defect. The initial configurations are specified by red, and 

computed stable LC are displayed by blue lines. . Figure 3.3.1 illustrates the textures 

(marked by blue lines) that evolved from given anchoring conditions (indicated in 

red): (a) two m = +1 defect cores with central symmetry, (b) two m = +1 defect cores 

with tilted locations, (c) three uniformly distributed m = +1 defect cores, and (d) two 

and (e) three voids with 5 mm radii. In all of these examples, the anchoring conditions 
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were assumed to be homeotropic (i.e., aligned normal to a specified boundary), as in 

functionalized nanoparticles and surface anchoring. Similar textures are described in 

the literature [31]. 

As shown in Fig. 3.3.1(a)-(c), where prescribed hedgehog defects are specified, 

their stable LC configurations exhibit an additional distortion at the centroid of the 

prescribed defects; the centers of an emerged distortion are marked by black dots, 

which are parameterized by strength of defect displayed in the inset of the figures. 

Note that their strengths are determined by the number of prescribed cores. It is worth 

noting that a pair of half-integer defects emerges naturally in lowest energy LC 

configurations in the absence of initial defects, which is possibly computed by 

analytic conformal transformation method. For the prescribed void cases depicted in 

Figs. 3.3.1(d) and 3.3.1(e), lines of disclination were created between the voids. All of 

the disclinations were assumed to be equivalent regardless of their origins, even 

though additional constraints must be taken into account when defect stability is of 

interest. Unlike emergent defects, artificially prescribed defects are often caused by 

inhomogeneities that mechanically anchor one liquid crystal to its neighboring 

crystals. Thus, artificially prescribed defects and their vicinal orientations are 

relatively stable and therefore remain fixed.

The shape changes obtained by applying photo- and thermal stimuli to the textures 

shown in Figs. 3.3.1(a), 3.3.1(b), 3.3.1(c), 3.3.1(d), and 3.3.1(e) are illustrated in Figs. 

3.3.2(a), 3.3.2(b), 3.3.2(c), 3.3.2(d), and 3.3.2(e1) and 3.3.2(e2), respectively. The 

amount of deflection and detailed topography were found to depend significantly 

upon the number and locations of prescribed defect cores. When two disclinations 

were applied symmetrically on the LCP surface, yielding the results shown in Fig. 

3.3.2(a), elliptical light-induced deformations were obtained with a uniform bulge 

whose major axis coincided with the line connecting the disclinations with the central 

m = -1 defect. On the other hand, in the asymmetric case that produced the results 

depicted in Fig. 3.3.2(b), a highly skewed 3D protrusion was obtained, while the 

elliptic axis of the bulge was similarly determined by the location of the dislocation 



111

core. In addition, the increased number of disclinations that produced the results 

shown in Fig. 3.3.2(c) generated a further corrugated surface, indicating that various 

surface configurations could be realized depending on the characteristics of the 

introduced inhomogeneities. Finally, the results obtained for the LCPs with non-

simply connected domains are depicted in Figs. 3.3.2(d), 3.3.2(e1), and 3.3.2(e2), 

where the first two images correspond to different boundary conditions. Even though 

the optical textures are similar to those obtained in the cases in which the central void 

was instead a disclination core (see Figs. 3.3.2(a) and 3.3.2(b)), their deformed shapes 

are remarkably different; the elliptical apex has been replaced by a local W-shape 

(clamped) or a local flat region (simply supported), since bending resultants were 

applied to the void boundaries. Although not shown here due to its 

straightforwardness, the anchoring effect is also important in design. Specifically, 

homogeneous anchoring conditions are beneficial since they yield larger deformations, 

although the textures are topologically equivalent. This difference is attributable to the 

reversal of the bending resultant direction, which increases the amount of deflection. 

Such results are predictable from analytic solutions based on metric changes [17,30]. 

Note that the possibility of the inverse design that bridges the prescription of the 

inhomogeneity (i.e. the location of fixed hedgehog defect) to the evolved exotic 

topography of the LCP sheet is of interest in the present study; hence the sensitivity of 

the stimuli to the configuration is not studied parametrically.

3.3.2. Texture induced exotic shape change

In this section, the photo-responsiveness of the LCP with a well-defined 

disclination whose core was located at the domain center, was firstly simulated. The 

alignment vector no was fixed separately for each element in which the light-induced 

strain was defined naturally. After stimulation, local bulge patterns protruded out from 

the originally flat surface, generated by the interaction between the locally distributed 

photo-induced bending and the stretching resultant on the midplane. Figure 1 shows 

selected illustrations of the topographies that resulted from the disclination topology. 
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When compared with the hill-and-valley surfaces obtained experimentally (Fig. 

3.3.3(a)), these simulated surfaces are phenomenologically fairly consistent. I 

considered two extreme boundary conditions, whose results are shown in Figs. 3.3.3(b) 

(clamped) and 3.3.3(c) (simply supported). However, it should be noted that 

experiments are conducted in fluid contact conditions wherein the number of DOFs is 

constrained by penalization, so experimental environments are equivalent to neither 

the clamped nor the simply supported boundary conditions. 

It is essential to consider geometric nonlinearities to achieve accurate solutions, 

since many-pole configurations require correct strain measurements. Deformed 

shapes with simply supported boundary conditions are shown in Figs. 3.3.3(c) and 

3.3.4, demonstrating significant nonlinearity. The solution obtained without 

considering geometric nonlinearities exhibits a shape that is overly simplified 

compared to those of many-pole confirmations found in solutions obtained by 

considering geometric nonlinearities.

As shown in the previous literature [5] that compares linear and nonlinear solution 

for the given amount of stimuli, linear solutions overestimate nodal displacements 

resulting in energy overestimation, as exhibited by the E/μ versus Ieff profile in Fig. 

3.3.4(b). Monotonic increases in energy are observable in both the linear and 

nonlinear cases. The magnitudes of the energy increases, however, differ by four 

orders of magnitude since rigid-body motion is not considered in the linear solution; 

such energy-free deformation becomes significant as the symmetry of the texture 

increases, and thus its consideration is essential when performing computations 

related to exotic LCP surface formation. In general, a deviation between these two 

solutions would be diminished in case of moderate deflections (i.e. low optical and 

thermal stimuli). In the Fig. 3.3.4(a) with m = -1 disclination positioned at the center, 

however, exemplifies the case when nonlinearity becomes severe even at the low light 

intensity; linear solution dramatically distorts the original mesh because non-

consistent tangent stiffness is computed from undeformed configuration, and used 

consistently. Although not shown here because the linear and nonlinear solutions had 
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the same topographical feature locations and were thus not phenomenologically 

distinguishable, the energies found in the simply supported cases also differed by four 

orders of magnitude. 

3.3.3. Snap-through instability of LCP with Hedgehog defect

In this section, the photo-triggered instability of a nematic solid is discussed. 

When imprinted with an m = +1 hedgehog defect, an LCP system experiences a 

radially inwards eigenstrain and deforms following a negative Gaussian curve, as 

predicted by metric theory [18,30,67] and verified experimentally [33]. Therefore, the 

LCP shell under light irradiation suffers from geometric instability, similar to a 

bifurcated thermomechanical shell. In other words, the system alleviates the strain 

incompatibility by changing into a distinct deformed shape. 

In the preceding chapter 2, a capability of the analysis framework concerning 

primary snap-through behavior is demonstrated. Light and heat stimuli switch the 

deformation from a sombrero (i.e., Mexican hat) shape to a saddle shape, by 

considering geometric nonlinearities; a linear solution would fail to capture the 

transition of the deforming mode and therefore would yield an inconsistent shape. I 

perform further stability analyses related to the critical light intensity in various 

conditions. It is the first study where the origin of photo-induced instability has been 

investigated in an energetic manner; the results demonstrate that simulations can be 

employed in the design process and reveals the effects of stimuli upon material 

properties.

As shown in Fig. 3.3.5(a), the abrupt shape change that accompanies the snap-

through transition is parameterized by two separate measures. The displacement-

based parameter stdW/meanW, [5] utilizes the vertical deflection W of the perimeter 

nodes. Obtained by scaling the standard deviation of W by the mean of W, a shape 

transition can be visualized easily and clearly. On the other hand, the energetic 

criterion 
2 2/el effd E dI , which is the second derivative of the energy Eel with respect to 
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Ieff, should be a constant if the strain energy increases quadratically. Interestingly, the 

critical point, which is defined to be the point at which stdW/meanW first exceeds 

210- , coincides with the point at which 
2 2/el effd E dI exhibits a strong discontinuity. 

This consistency validates the use of stdW/meanW as a snap-through criterion. Thus, I 

anticipate that stdW/meanW can be employed as a design parameter. The accuracy of 

W relative to the stress measure that is applied in FEA is also advantageous.

Figure 3.3.5(b) illustrates the variation of crit
effI with d for each wrinkling mode, 

indicating the symmetry of the deformed shapes. For instance, the principal transition 

mode is that in which a change from a sombrero shape to a saddle shape occurs. 

Buckled configurations with higher degrees of symmetry were observed whenever Ieff

was increased beyond crit
effI , which caused greater stress to be induced on the 

perimeter. An LCP with increased light penetration, by which more significant in-

plane membrane shrinkage is induced, also requires less irradiation. The light profiles 

were found to follow the power series shown in Eq. (3.3.4) strictly, with the 

parameters that are listed in Table 3.3.1.

( )/crit
eff effI d h I

b
a ¥= + (3.3.4)

The present crit
effI results elucidate some of the characteristics of the LCP buckling 

that is induced by disclination. First of all, they imply that the saddle-shaped mode is 

the mode that primarily emerges following stimulation [33]. Additionally, d, which is 

pivotal in determining crit
effI , does not reduce crit

effI to 0 for the higher modes. In other 

words, crit
effI has a limiting value of effI¥ , which depends upon the buckling mode. 

Although not shown herein, it has been demonstrated previously [5] that increasing T

also does not influence the buckling mode hierarchy. The mode that exhibits the least 

buckling (i.e., mode 1) is therefore always preferred over the others, provided that the 

material parameters remain constant. 

It should be noted that only even-symmetry wrinkled shapes emerged in this study 

since I modeled only one-quarter of a circular LCP for efficiency. Therefore, other 
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symmetries, such as three-fold ones, which must be considered to obtain 

comprehensive maps of the deformations that occur under actinic light, are not 

discussed herein since the emergence and stability of the different types of buckling 

were the topics of interest in this research. 

In addition to the aforementioned capabilities of the sensitivity analysis, it is 

worth remarking upon the advantages of the present analysis technique in the context 

of design. The method discussed herein is relatively simple and is compatible with 

conventional FEA techniques since it does not requires pre-conditioning, in contrast to 

the conventional methods, such as analytic ones [96]. The advantages of the proposed 

technique result from the fact that the global rank deficiency that may cause 

catastrophic divergence of numerical solutions does not occur in the method presented 

herein since such behavior results in local instabilities rather than global ones. The 

intrinsic bending moment produced by the transverse gradient of the shrinkage also 

prevents divergence, as has been shown previously through pre-defined geometric 

imperfection analysis [97]. The curve of crit
effI versus log10(d/h) (see Fig. 3.3.5(b)) 

again supports this argument, because it is evident that membrane shrinkage is more 

influential than bending. This assertion is valid because a smaller amount of 

irradiation intensity is required when the in-plane shrinkage is greater, regardless of 

the size of the bending moment. LCP configuration with d/h > 100, in which case only 

negligible light decay occurs (i.e., in which the bending moment is negligible), and an 

LCP configuration with a higher temperature in which the thermal shrinkage 

uniformly increases with increasing thickness are two illustrative examples. 

Lastly, the effects of phase property changes were examined. The phase transition 

is a roughly second-order transition near 0
NIT . The transition profile is governed by the 

material-dependent phase parameters α, ζ, and β, which determine the slope of the 

curve, the abruptness of the transition, and the location of the transition, respectively. 

Recent investigations [6,10,11] have revealed that these parameters are influenced by 

the material properties of the LCP, such as the geometric connectivity of its chains to 
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the photochromic dye, and crosslinking condition changes. Figure 3.3.6 depicts the 

values of crit
effI at the onset of the primary transition for various α, ζ, and β. 

Decreases in α, ζ, and β all cause crit
effI to decrease monotonically, which indicates 

that the LCP undergoes snap-through when only slight stimuli are applied. According 

to the results of recent molecular dynamics simulations [6], ζ, which is the most 

influential parameter among the investigated phase parameters, is a function of the 

isomerization and the stacking density. Therefore, I anticipate that reducing the 

isomerization and stacking density would effectively cause LCPs to exhibit snap-

through behavior following only slight stimulation, which would increase the 

actuation efficiency. 

The present report, however, does not completely describe post-buckling 

deformations, since an examination of these deformations is beyond the scope of 

stability analysis and would require precise knowledge of the rank-deficiency of the 

stiffness as well as preconditioned displacements. The transition shapes shown in this 

report should therefore be understood as the deformation modes. More comprehensive 

global, rather than local, instabilities would be considered, for instance, if the 

damping energy were to be included numerically in the formulation in order to 

stabilize an observed C2 energy discontinuity (see Fig. 3.3.5(a)), as is done in the 

commercially applied techniques [99].
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FIG. 3.1.1. Effect of director rotation on the bending direction, and the emergence of 

twist-bend coupling.

FIG.3.1.2. Alternation of the bending curvature depending on the uniformly deviated 

angle q between layer normal n
r

and the longitudinal direction, with fixed 

temperature T = 330 K. The bending direction is found to be strongly dependent on 

intensity and q .
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FIG. 3.1.3. “Swimming” non-square LCP sheet under illumination for different aspect 

ratios Rx/Ry. (a) Gaussian curvature and (b) estimated strain energy scaled by modulus.



119

FIG. 3.2.1. (a) Convergence for iteration number and (b) intermediate pattern shapes. 

Black area indicates no induced strain, white area undergoes maximum light-induced 

strain, and red and yellow areas indicate intermediate intensities.

FIG. 3.2.2. (a) Bending behavior and (b) strain distribution with different S

constraints. (a) Deformed specimen wherein surface color expresses the height of 

each element, which is the Z displacement. (b) Intensity graph wherein relative strain 

intensity is plotted. Blue line indicates S = 0.5, red line indicates S = 0.8.
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FIG. 3.2.3. Curvature-constrained strain pattern for (a) S = 0.4 (strain patterns are 

post-processed by canceling out small strains and averaging the intense-strain area) 

and (b) S = 0.8. Curvature is constrained for 10 mm, 20 mm, and 30 mm.

FIG. 3.2.4. (a) Bending behavior of various pinching locations for 0.6 D, 0.8 D, and 

1.0 D (from left to right), and strain pattern for: (b) S = 0.5 and (c) S = 0.8. In (b) and 

(c), the target location is 0.6 D, 0.8 D, and 1.0 D (from up to down). In deformed 

specimen of (a), the surface color expresses the height of each element that is the Z-

displacement.
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FIG. 3.3.1. Optical textures naturally arising in relaxed state of liquid crystal 

distortion. Locations at which homeotropic boundary conditions were applied are

specified in red, and newly formed disclinations are marked in black. Three 

prescribed hedgehog defect cases are depicted: (a) two axisymmetric defects, (b) two 

non-axisymmetric defects, and (c) three axisymmetric defects, and two prescribed 

void cases are shown: (d) two axisymmetric voids and (e) three axisymmetric voids, 

each with 5 mm radius.

FIG. 3.3.2. Illustration of light-induced deformations whose topographies are 

indicated by the same alphabetic indicators as in Fig. 3.3.1. Clamped boundary 

conditions were employed to obtain all images except that shown in (e1).
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FIG. 3.3.3. Photo-induced textures generated by nematic textures with given 

disclination core with given strength m and anglular constant c = π/2. Experimental 

surface topography results (a) were well reproduced by photo-responsive LCP 

simulations performed using (b) clamped boundary conditions and (c) simply 

supported boundary conditions. Significant deviation between the nonlinear and linear 

solutions is observable in (c).



123

FIG. 3.3.4. Effects of geometric nonlinearities on solution accuracy. (a) Configuration 

deformed by disclination with m = -1. Nonlinear solution shows accurate quadrupole 

topography; linear solution exhibits mesh distortion. Elements are colored by strain 

energy. (b) Scaled strain energy (E/μ) induced by light irradiation. Fourth-order 

energy differences and non-quadratic energy evolution are observable in linear 

solution.
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FIG. 3.3.5. Instability-induced shape change of LCP sheet with hedgehog disclination 

defect. (a) Instability onset locations determined using elastic energy Eel- and 

displacement-based criteria. Insets show deformed shapes before and after bifurcation 

point. (b) Logarithmic profiles of crit
effI for various penetration depths d divided by

thickness h, and transition modes.

FIG. 3.3.6. Profile of crit
effI for various α, ζ, and β normalized by their original values. 

Monotonic proportionality is evident, and ζ is the most influential parameter.
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Table 3.2.1. Pseudocode of the present work. Hat indices indicate functions

Setup dimension, mesh (node, elem), stimuli set: ( ,ph de ) or ( ,I d ), targetu   

Initialize the data

|ph
oe , oV , ( )targetˆ , ; ph

objf u u e , ( )targetˆ , ; ph
constf u u e

if photomechanics then

Obtain effective parameter ˆ phe and d̂ for given set of I, T, and d

end if

For objf < TOL (10-8) && objfD < TOL (10-8)

, , ,obj constu f fqé ùë û = fmincon( ( ), , phu xq e )

For every elem

Get ( ) ( ) ( ), ,e e eCR
d dC u w , ( ) ( ) ( )( ) ( ) ( ) ( )( ), , ,e e e e e e

d d d du uw wK R

Get ( ) ( ) ( )( ) ( ) ( ) ( )( ), , ,e e e e e eu uq qK R

Assemble  ( ) ( ), , ,u uq qK R

End for

Get ( ) ( ); , ;ph ph
obj constf u f ue e

Get / , /ph ph
obj constf fe e¶ ¶ ¶ ¶

Update ( ), , phu xq e by either SQP or Interior-point

End for

Post-process the output
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TABLE 3.2.1. Center position of strain pattern in S = 0.5

Target 0.6 D 0.8 D 1.0 D

0.4684 0.4325 0.3597

0.5039 0.5009 0.5006

TABLE 3.2.2. Gaussian-distribution fitting result for S = 0.8

Target 0.6 D 0.8 D 1.0 D

1p 1.0190 0.8333 0.6829

2p 0.5510 0.5009 0.3861

3p 0.3770 0.4146 0.5084

TABLE 3.31. crit
effI fit parameters

Mode a b
effI¥

Mode 1 0.0050 -1.114 0.0441

Mode 2 0.0035 -1.620 0.2126

Mode 3 0.0084 -1.539 0.4676

cx

cy



127

Chapter 4. Concluding remarks

With light-sensitive molecules incorporated, a light-responsive liquid crystal 

polymer exhibits exotic coupling between structure and photothermal stimuli, by 

which the material becomes a hybrid, active material; the mechanical properties are 

strongly correlated to the optical components found in the material. In the recent years, 

where a number of the researchers have pushed forward the possibility of such 

coupling, since they were enticed by the fact that the triggering energy is remotely 

delivered. Many Interesting works are hence reported that ranges from the theoretical 

investigation of the mechanisms to the design of the light-responsive maneuvers. 

However, there is a less paved road in terms of high-fidelity numerical model 

although it is essential to predict the material behavior in high-precision and render 

the material into the product. The model requires the fair account of the 

interdisciplinary nature of the photomechanical behavior, especially its multiscale 

characteristics driven by interplay of distinctive physical regimes.

In this regards, the present work investigate the multiscale framework and its 

extension to the design of such photo-mechanical coupling. The two branches of CAE 

modeling is hence utilized herein: the finite element model of the photo-responsive 

liquid crystal polymer and the parametric studies of their exotic behaviors. 

In the chapter 1, backgrounds of the liquid crystal polymer structures and its light-

responsiveness are introduced, by reviewing references and summarizing them. Firstly, 

the liquid crystal nature is presented in the view of its optical properties and phase 

changes induced by various stimuli. The alternating geometry of the liquid crystal is 

also discussed with respect to the imprinted conformation of the polymeric 

counterpart as it is essential to understand the phase behavior, where the multiscale 

nature of the material is originated from. To introduce the possibility of the design of 

the material, a brief introduction to the synthesis procedures are also illustrated. 

In the chapter 2, the multiscale framework to the material modeling is investigated 

for the first time. A sequential multiscale model of the light-responsiveness is 
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constructed by incorporating coupled constitutive model into the nonlinear shell finite 

element, where the microscopic information is derived either from molecular 

dynamics simulations with the light-active interatomic potential, or classical Landau 

modeling. By combining low-level information into the continuum level of study, the 

understanding to the characteristics of mesogen crosslinking and its effect to the 

mechanical behavior is facilitated. It is worth to remark that the geometric 

nonlinearity is considered as a pivotal constituent for the multiscale modeling to 

obtain high-fidelity solution, because the local meshes subject to light-induced 

motions often undergoes severe distortions. 

Through seamless multiscale modeling, the present model successfully reproduces 

the mechanical behavior reported in the various experiments with various optical 

configurations that ranges from nematic, twisted nematic, and smectic. The 

constitutive models are constructed for each cases, and their shape change are 

investigated in terms of the light and thermal stimuli, and the optical properties of the 

material.

The chapter 3 presents and discusses the prospect of the design of the light-

responsive mechanisms, inspired by the fact that the mesogenic traits are fixated 

during the crosslinking procedure. In this respect, the design parameters are divided 

into the two categories: the extrinsic and the intrinsic. The former indicates the 

parameters determined after crosslinking and fixation of the mesogen to the structure, 

while the latter indicate ones before it. 

First of all, the extrinsic modifications, in which the geometric characteristics of 

the mesogen are fixed, this work present three possibilities: (1) a geometric shape 

change, (2) a mesogenic alignment modulation, (3) a stimuli patterning obtained by 

the concept of topology optimization. Note that the last branch of the study is an 

analogy to the schematic design of the porous material, and it is inspired by the 

accurate light controllability frequently utilized in the industry. 

The intrinsic modification, on the other hand, where the homogeneity of the 

alignment is severely violated on purpose, is also investigated. The diverse origin may 
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contribute the perturbation, such as a photo-alignment and a doped inhomogeneity 

(e.g. functionalized nanoparticle). The concept of Shilerene texture and the Frank 

distortion of the nematic are thoroughly implemented to model the director 

distribution with high fidelity. As the local director varies to accommodate the 

perturbations, the eigenstrain induced by light is similarly directed as well. The exotic 

deformations are hence produced whenever the material is subject to the stimuli, 

which possibly paves the way to forthcoming inverse solutions of the designated 

behavior of the light-driven mechanisms.

In summary, these 3 chapters present both the analysis and design of photo-

responsive liquid crystal polymers, employing its multiscale and mulitphysical natures 

that ranges from atomistic van der walls interactions, phase transitions, and 

continuum modeling. As finite-element models, and variational methods are 

continuously utilized, the present dissertations possibly provides an efficient and 

consistent framework to analyze the LCP behavior with the complex internal 

structures and combined stimuli; hence the design of the novel mechanical elements 

driven by light is facilitated, whenever large, complex and precise manipulation is a 

virtue, rather than load-carrying capability. For example, a shutters and controllers of 

microfluidic systems, microrobotics, and environment –adapting gadgets. 

Nevertheless, in spite of the large number of publications –including this 

dissertation-, it is worth to remark that that the investigations of the numerical 

modeling and analysis of the LCP-based material is not a closed book; to name a few, 

a quantum-mechanics coupled to the polymer system wherein mechanical load may 

enhances or disturbs the geometric kinking induced by isomerization, and robust 

light-responsive actuators with high load-sustaining capability, which is another 

branch of the LCP usage. To such aims, many interdisciplinary physical regimes must 

be considered in depth, including investigations towards a degrees of coupling (e.g. 

weak vs. strong) between light and structures. For instance, the soft elasticity of the 

material, of which user may encounter frequently whenever the LCP is subjected to 

mechanical loading (i.e. not a stress-free condition), has not been integrated within the 
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photomechanical framework. Upon stretch (mechanical loading), the uniaxiality of 

nematic orientation is violated, and micro-scaled textures evolve. The imposed elastic 

energy is therefore dissipated through the change of the internal parameter (i.e. 

director). Such non-convex behavior cannot be attained in the present scheme, as I’ve 

presumed infinitesimal rotation of the local director, which is admissible only in 

stress-free configurations. Both analytic and numeric approaches have been widely 

investigated, such as quasi-convexation of the total functional or relaxation. However, 

the seamless integration that is required for complex cases, say mechanical-optical 

coupled load, is not presented up to present. On the other hand, the present multiscale 

schematic lacks quantum mechanical consideration attributed to the 

photoisomerization of an azobenzene chromophore, as noted in the analysis section 

(Chapter II). Although the light-induced stimulation of the single molecule has been 

thoroughly investigated in analogy to the Arrhenius model with the aid of energetic 

barrier between each state, the time gap between molecular transition (~ns) to 

mechanical behavior (~s) inhibits the integration between quantum mechanics and the 

present model. To overcome such issue, a large scale quantum mechanical simulation 

with the many-molecule condition is strongly required, as well as a sequential 

multiscale framework that bridges the molecular transition and the photon interaction 

with the atoms.
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국문 요약

액정 고분자 (liquid crystal polymer)란 액정의 특성을 갖는 단분자

(monomer)가 화학적인 과정을 통하여 고분자화 된 것으로, 액정의 광학

적, 기계적 특성이 고분자 내에서 잔존하는 특성을 갖는다. 이 중 하나가

상전이 현상과 관련된 지능재료적 성질로, 외부 자극으로 인해 변형되는

액정의 상이 고분자 내 사슬의 기하학 구조 (conformation)에 영향을 미

침에 따라 전체 구조체의 거시적 변형을 유발하는 현상을 의미한다.

본 논문에서는 그 중 자외선 파장 대역의 빛과 열원의 조합으로 인해

발생하는 광반응 액정 고분자의 기계적 특성에 집중하여, 광-상전이-기계

거동 간의 연성현상이 고려된 멀티스케일 유한요소 모델을 제시하고자 하

였다. 이는 기존의 단독 스케일에서의 해석을 통합한 것으로, 낮은 스케일

에서 발생하는 분자 구조의 변화 및 액정상의 변화에 대한 정보를 거시 스

케일에서 적용함으로써 촉발되는 기계적 거동을 해석하는 모델이다. 

Corotation formulation 기반 3차원 비선형 쉘 유한요소 해석을 이용하

여 변형과정에서 유발되는 기하비선형성을 고려하였으며, 이와 더불어 분

자스케일에서 발생하는 상전이 비선형이 동시에 구성 방정식 내의 변수로

도입되었다. 다수의 수치적 결과를 통하여 이와 같은 멀티스케일 모델은

기존 단독 스케일, 선형 모델에서는 해석이 불가하거나, 과소평가된 결과

를 바로잡는 해를 제시하는 것을 확인할 수 있었다.

설계 과정에서는 구축된 모델과 실제 실험 및 설계 간의 관계를 확인하

고자 구조체의 변인에 따른 파라메트릭 연구를 수행하였다. 액정 고분자의
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제작 과정에 착안, 액정상의 변형에 영향을 미칠 수 있는 변인을 내부 변

인 (intrinsic parameter), 액정상이 고정된 뒤의 변인을 외부 변인

(extrinsic parameter)로 분류하였으며, 이와 같은 분류에 따라 해석된

해를 제시하였다. 외부 변인으로는 구조체의 기하학적 형태와 광량의 변화

등을 선정하였으며, 특히 후자의 경우 위상최적화 기법에 근거하여 원하는

변형 형상에 대한 최적화된 광량의 패턴을 도출하였다. 내부 변인으로는

내부 액정상의 배향을 선정하고, 변인의 변화가 수반하는 변형 양상을 확

인하였다. 이는 광학적 특성이 액정 고분자의 설계 시 회위 결함

(disclination defect)이나, 삽입된 나노 입자 (nanoparticle) 등을 이

용하여 개질 가능하다는 것을 상기해 볼 때 의미가 있다 하겠다.

본 논문에서 제안하는 멀티스케일 해석과 이를 이용한 설계 모델은

액정고분자의 특이 거동을 해석하는 데에 있어 해석과정의 수월성은 물론

다양한 비선형 거동을 수월하게 해석할 수 있는 장점이 있다. 특히 광반응

액정 고분자가 마이크로 로보틱스나 유동 제어와 같이 고립, 미소계의

원거리, 대변형이 필요한 환경에서 매력적인 재료로 손꼽히고 있는 것을

상기할 때 향후 이에 대한 해석과 설계를 수행하는데 이바지를 할 것으로

기대된다.

주요어: 액정 고분자, 유한 요소 해석, 멀티스케일 해석, 민감도 해석, 

기계적 불안정성, 최적화
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