

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Design Methodology of Adaptable Hybrid

Adders

적응가능한이종가산기설계방법론

BY

YONGHWAN KIM

FEBRUARY 2012

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Design Methodology of Adaptable Hybrid

Adders

적응가능한이종가산기설계방법론

BY

YONGHWAN KIM

FEBRUARY 2012

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Design Methodology of Adaptable Hybrid Adders

적응가능한이종가산기설계방법론

지도교수김태환

이논문을공학박사학위논문으로제출함

2011년 11월

서울대학교대학원

전기컴퓨터공학부

김용환

김용환의공학박사학위논문을인준함

2011년 12월

위 원 장:

부위원장:

위 원:

위 원:

위 원:

Abstract

As the CMOS processing technology scales down, saytisfiying timing constraints

is becoming more important in the integrated circuit design, and most critical timing

paths in a circuit involve one or more arithmetic components such as adder, subtractor,

and multiplier. Subtractor and multiplier can be implemented with adder, there have

been many researches regarding the enhancement of the speed of the adder.

This dissertation provides the method of redesigning the addition logic on a critical

timing path to meet the timing constraint while minimally allocating the area of adders

using hybrid structure bf AHA(adaptable hybrid adder). The previous hybrid adder

structures assumed uniform or specific patterns of input arrival times to the adder or

used very simplified method to estimate the delay. But, the proposed method extracts

the required time as well as the input arrival time from the real circuit implementation.

With these timing constraints, the proposed method uses a systematic approach of

hybrid adder design exploration, based on dynamic programming with well-controlled

pruning techniques. The proposed method can cope with various timing constraints

which were extracted from real circuits by satisfying given timing constraints with

minimal area. Various experimental data are provided to show the applicability of the

proposed method.

keywords: Hybrid adder, RTL resynthesis, arithmetic optimization, timing optimiza-

tion

student number: 2007-30216

i

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1

1.1 Pure adders . 1

1.2 Parallel prefix adders . 3

1.3 Hybrid adders . 5

1.4 Hybrid adders with timing constraints 6

1.5 Contribution of this dissertation . 8

2 Motivational Examples 11

3 Definitions and Design Flow 19

3.1 Notations and Definitions . 19

4 Synthesis of Adaptable Hybrid Adders 23

4.1 Synthesizing Single Adaptable Hybrid Adder 25

ii

4.2 Synthesizing Multiple Adaptable Hybrid Adders 33

5 Experimental Results 40

5.1 Generating a Single Adder with Non-uniform Input Arrival Times . . 41

5.2 Generating a Single Adder Considering Non-uniform Output Required

Time Constraint . 45

5.3 Generating a Single Adder Considering Both Non-uniform Input Ar-

rival and Output Required Times . 45

5.4 Generating Multiple (Super) Adders 50

5.5 Comparison with Commercial Synthesis Tool 50

5.6 AHA Synthesis Combined with Cell Sizing 53

5.7 Synthesis for power minimization 55

5.8 Design Quality and Running time. 61

6 Conclusion 65

Abstract in Korean 70

iii

List of Figures

1.1 The ripple-carry adder(RCA). 2

1.2 The carry look-ahead adder(CLA). 2

1.3 Comparison of area, maximum sum output time and maximum carry

output time of the adders with respect to bit width of the adders. . . . 4

1.4 Input arrival timing to the final adder and adder allocation of [1] . . . 7

1.5 The prefix graph example. 8

2.0 Synthesizing a hybrid adder in the context of designing a∗b+ c where

the arrival times of input bits to the additions are not even (due to

the multiplication) while the required times of the output bits of the

additions are all equal, setting to 2.25ns. (In extracting the timing of

logical and physical implementations, Synopsys Design Compiler and

Prime Time with TSMC 40nm standard cell library are used.) 13

2.1 Synthesizing a hybrid adder in the context of both non-uniform output

bit required and input bit arrival times. It is observed that when the

output required times are not uniform a highly sophisticated hybrid

adder design is expected in order to make the timing constraint be met. 16

2.1 Synthesizing multiple hybrid adders. 18

iv

3.1 Visual description of the notations in Table 3.1 for an AHA(0,15) and

its internal structure. 22

4.1 The flow of design methodology using our AHA synthesis. Both of the

first and second passes of synthesis use the initial HDL design code as

input, but the second pass will preserve the hybrid adder structure(s)

produced by the AHA synthesis. The selection of addition(s) to be

optimized will be controlled by designer. 24

4.1 Examples of (a) 4-attachable AHA pure adder to an AHA and (b) 4-

extendable pure adder from an AHA. 27

4.2 The iteration flow of synthesizing an n-bit single AHA. 28

4.3 Exponential growth of serach space. 29

4.4 An example of pruning dominated AHAs. The AHA A1 dominates

the AHA A4 since A1 has earlier timing of carry out indicated by red

dotted arrow and smaller area indicated by the black dotted arrow, thus

A4 can be removed safely. 30

4.5 The sweet spots of CSA-tree (or FA-tree) and multiple AHA imple-

mentations. (a) Case where CSA-tree implementation is effective. (b),

(c), (d) Cases where simultaneous multiple AHA implementation is

effective. 35

4.6 Four possible combinations of extending a (partial) super AHA. (a)

Combination 1: ∆d-attach for both top and bottom AHAs. (b) Com-

bination 2: ∆d-extend for top AHA and ∆d-attach for bottom AHA.

(c) Combination 3: ∆d-attach for top AHA and ∆d-extend for bottom

AHA. (d) Combination 4: ∆d-extend for both top and bottom AHAs. 38

4.7 The iteration flow of synthesizing an n-bit super AHA. 39

v

5.1 Cout time, maximum sum out time and Area of the adders with respect

to bit width . 56

5.2 Area and power relation of the optimal solution targeting power mini-

mization. 59

5.3 Comparison of implementation area produced by using various libraries

of pure adders. 62

5.3 Run times of AHA scheme for various values of parameter d, library

L, and bit-width of addends. 64

vi

List of Tables

3.1 Description of notations. 21

5.1 Comparison of AHA scheme with pure adder schemes under uneven

input arrival times. 42

5.2 Comparison of AHA scheme with [2] under uneven input arrival times. 44

5.3 Comparison of AHA scheme with pure adder schemes under the con-

straint of uneven required output times. 46

5.4 Comparison of AHA scheme with [2] under the constraint of uneven

required output times. 47

5.5 Comparison of AHA scheme with pure adder schemes under both un-

even input arrival and required output times. 48

5.6 Comparison of AHA scheme with [2] under both uneven input arrival

and required output times. 49

5.7 Comparison of AHA scheme with pure adders for synthesizing two

chained additions. 51

5.8 Comparison of AHA scheme with [2] for two chained additions. . . . 52

5.9 Comparison of AHA scheme with Synopsys Design Compiler [3] for

simple arithmetic expressions. 53

vii

5.10 Comparison of AHA scheme with Synopsys Design Compiler [3] for

complex arithmetic expressions. 54

5.11 Comparison of AHA scheme using multiply cell sized pure adder im-

plementations under uneven input arrival times. 57

5.12 Comparison of AHA scheme using multiply cell sized pure adder im-

plementations under the constraint of uneven required output times. . 58

5.13 Comparison of AHA scheme using multiply cell sized pure adder im-

plementations under both uneven input arrival and required output times. 59

5.14 Comparison of AHA scheme with [2] under both uneven input arrival

and required output times. 60

viii

Chapter 1

Introduction

Modern VLSI designs including that of digital signal processing applications perform

very intensive arithmetic operations repeatedly under tight timing requirements. Con-

sequently, synthesizing fast arithmetic circuits for the operations under area and/or

power constraints has been an important research topic.

Among the arithmetic operations, addition is the most common operation compo-

nent and thus, a considerable work has been devoted to designing fast adders or area

efficient adders under a tight timing constraint. The adders can be classified into two

groups: pure adders and hybrid adders.

1.1 Pure adders

The pure adders are the ones generated by applying a specific addition scheme to

groups of bit addends uniformly, such that different pure adders have different char-

acteristics of performance, power, and area. Ripple-carry adder (RCA) is a typical

example of pure adder with small area but long carry generation time. Fig. 1.1 shows

32bit structure of RCA

1

=

= + (+)

1-bit full

adder

A[31] B[31]

carry

out

SUM[31]

1-bit full

adder

A[30] B[30]

carry

out

SUM[30]

1-bit full

adder

A[1] B[1]

carry

out

SUM[1]

1-bit full

adder

A[0] B[0]

carry

in

carry

out

SUM[0]

Figure 1.1: The ripple-carry adder(RCA).

On the other hand, carry look-ahead adder (CLA), can reduce critical delay caused

by carry propagation of the RCA by fast carry calculation. We divide the addition in

groups and each group does carry lookahead addition as shown in Fig. 1.2 because of

limited faninout of the gate.

= + + + +

= + + +

=

Carry Look-ahead Generator

A15-12 B15-12

S15-12

A11-8 B11-8

S11-8

A7-4 B7-4

S7-4

Group 3 Group 2 Group 1 Group 0

A3-0 B3-0

c0

S3-0

c12 c8 c4

Figure 1.2: The carry look-ahead adder(CLA).

carry-skip adder (CSKA) [4], and carry-select adder (CSLA) [5] are another ex-

amples of pure adder designed for fast carry generation which utilize fast carry propa-

gation or carry computation as carry look-ahead adder.

2

1.2 Parallel prefix adders

Parallel prefix adders, as the name implies, segmented addition is done in a parallel

manner. So, faster addition can be achieved. In particular, various styles of parallel

prefix adder scheme are a class of widely used fast pure adders; Brent-Kung adder

(BKA) [6] is the simplest prefix adder, having a minimum number of prefix nodes

but a maximum number of prefix depth in its prefix graph; Ladner-Fischer adder [7]

has a low depth but a high fanout; Kogge-Stone adder (KSA) [8] has a low fanout

but a large number of prefix nodes; Ling adder [9] is a variant of CLA, but can also

be translated into prefix adder. (Refer to [10] for the details on the properties of the

various styles of prefix adders.)

Fig 1.3 shows area, maximum sum output time and maximum carry output time

of the adders with respect to bit width of the adders which are synthesized with TSMC

40nm standard cell library using Synopsys Design Compiler.

Some of adder design techniques placed their primary importance on minimiz-

ing power consumption rather than timing. For example, Mathew et al. [11] pro-

posed a technique of synthesizing a low power adder to be used for address generation

unit (AGU) in cores by utilizing sparse-tree adder structure. Contrary to Kogge-Stone

adder [8], they divided the carry-merge tree into the critical and noncritical sections

to reduce the size of node fanout and the length of inter-stage interconnect. Then, they

allocated single-rail dynamic logic and high-VT logic on the critical section, and static

logic and low-VT on the noncritical section to save power. Zlatanovici et al. [12]

explored the energy and delay trade-off in carry look-ahead tree structure with 90nm

technology. Zeydel et al. [13] also explored the energy and delay trade-off by taking

into account adder topology, addition algorithm, gate sizing, and CMOS logic styles.

3

0

100

200

300

400

500

600

[1] [3] [5] [7] [9] [11] [13] [15] [17] [19] [21] [23] [25] [27] [29] [31]

A
re

a
 (

u
m

^
2
)

Bit Width

rca

cla

BKA

CSELA

(a) Area of the adders with respect to bit width.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

[1] [3] [5] [7] [9] [11] [13] [15] [17] [19] [21] [23] [25] [27] [29] [31]

M
a
x
 S

u
m

 T
im

e
 (

n
s)

Bit Width

rca

cla

BKA

CSELA

(b) Maximum sum output time of the adders with respect to bit width.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

[1] [3] [5] [7] [9] [11] [13] [15] [17] [19] [21] [23] [25] [27] [29] [31]

C
o
u

t
ti

m
e
 (

n
s)

Bit Width

rca

cla

BKA

CSELA

(c) Maximum carry output time of the adders with respect to bit width.

Figure 1.3: Comparison of area, maximum sum output time and maximum carry out-

put time of the adders with respect to bit width of the adders.

4

1.3 Hybrid adders

On the other hand, the hybrid adders are those generated by applying more than one

addition scheme used in the pure adder generations to the bit addends. The hybrid

adders are mostly designed for adding the bit addends of non-uniform arrival times

while the pure adders are designed assuming uniform arrival times of addends. Thus,

for designs in which the inputs to an addition operation come from the result of a

combinational logic computation rather than directly from the primary inputs or the

outputs of flip-flops (FFs), a hybrid adder implementation could be more efficient than

pure adders. This work also focuses on the problem of designing a (single or multiple)

hybrid adders of minimal area under timing constraint, but it is unique and suitable for

special applications that most of the previous works have never been addressed.

There have been proposed several schemes of designing fast hybrid adders. Han

and Carlson [14] improved the parallel prefix scheme by combining the Brent-Kung

and Kogge-Stone structures into a hybrid structure. Lynch and Swartzlander [15]

proposed a new hybrid carry look-ahead - carry-select adder structure to reduce the

number of carries that are to be derived in the carry look-ahead tree, in which they

used (4,3) manchester carry chain (Mcc) carry look-ahead modules. Kantabutra [16]

improved the hybrid adder in [15] by using Manchester carry chains of various lengths

instead of chains of all the same length to speed up the addition. Wang, Pai, and

Song [17] proposed a generalized architecture of hybrid carry look-ahead - carry-

select adder in which their idea was to implement the group carry propagates and carry

generators without individual carry propagate/generator signals and complement the

group carry propagate/generator signals to gain speed. In addition, Dimitrakopoulos

and Nikolos [18] proposed a hybrid structure composed of Kogge-Stone parallel prefix

structure for carry generation and carry-select structure for sum calculation to further

reduce timing over the pure parallel prefix adders. Lee et al. [19] also proposed a

5

method of synthesizing hybrid adders composed of two (RCA, CLA) or three (RCA,

CSKA, CLA) pure sub-adders with the objective of minimizing timing under area

constraint. They formulated the problem into an integer linear programming (ILP) and

solved it optimally. All of the previously mentioned works [15–19] assumed that the

arrival times of input bits are all identical (i.e., all zeros). Thus, it is unsure that such

a hybrid adder can fully contribute to synthesizing arithmetic intensive circuits with

tight timing budget if it were mapped to an addition operation on the timing critical

path with severely uneven input arrival times.

1.4 Hybrid adders with timing constraints

A number of works have addressed the problem of designing hybrid adders with un-

even input bit arrival times. Oklobdzija and Velleger [1] attempted to improve the

timing of parallel multiplier [20] by proposing a critical path based column compres-

sion tree generation followed by creating a hybrid adder by analyzing the profile of

bit arrival times of the two output vectors of compression tree to produce the final

sum. They divided the arrival times into three regions from the least significant bit to

the most significant bit, and attempted the first, second, and third regions of the bit

intervals to implement with a ripple carry adder, a carry-select adder, and a carry look-

ahead adder, respectively, so that the timings of all output bits are to be almost even.

Fig. 1.4 shows input arrival timing to the final adder and adder allocation.

Stelling and Oklobdzija [21] generalized the work of hybrid adder design in [1]

under the cases where the bit arrival times are convex such that the times gradually

increases and then decreases from the least significant input bit to the most. In [22]

they extended the hybrid adder design in [21], so that it can be used in the addition of

the structure of Multiply-Accumulate operation (i.e., A×B +C). On the other hand,

Zimmermann [23] (also in [24]) proposed a parallel-prefix structure based synthesis

6

D
e
la

y
 (

n
s)

Bit position

Input arrival time to carry propagate adder

Region 1 Region 2 Region 3

Ripple
Carry
Adder

Carry
Select
Adder

Carry
Lookahead

Adder

Figure 1.4: Input arrival timing to the final adder and adder allocation of [1]

flow of hybrid adder that consists of the following steps:

(1) translating timing constraints into prefix graph constraints

(2) generating a serial-prefix graph (3) compressing prefix graph

(4) performing depth-controlled prefix graph expansion

(5) mapping the prefix graph to prefix adder logic, using either

carry look-ahead or carry-select scheme. In summary, the approach generates a hybrid

adder (in step 5) according to the pattern of prefix level structure of sub-ranges of bit

addends. Here, the approach estimated timing by counting the structure depth in the

prefix graph as shown in 1.5. So, it’s not exact in timing estimation because the prefix

graph can’t represent the timing exactly.

Finally, Das and Khatri [2] proposed an approach to partitioning the input bits of the fi-

nal addition in the parallel multiplier into three disjoint bit intervals, like the work done

in [1], so that the first interval is implemented with a ripple carry adder, the second

a Brent-Kung, and the third a carry-select adder. The two common limitations of the

previous works [1,2,21,22] are that (limitation-1) the hybrid adder design is dedicated

to the adders associated with special architecture: parallel multiplier and Multiply-

Accumulator, and (limitation-2) the bit-level output required times are not considered

7

Bit Position

32-bit Adder

P
refix

 L
ev

els (tim
e)

MSB LSB

Figure 1.5: The prefix graph example.

at all. Limitation-1 inhibits a wide application of hybrid adders to arithmetic circuits

and limitation-2 reduces the suitability of re-optimizing adder in a circuit to further

improve the overall circuit timing.

1.5 Contribution of this dissertation

This dissertation overcomes previous limitations. The contributions of this dissertation

are summarized as:

• This dissertation propose a hybrid adder design scheme that takes into account

the required time of output bits of the addition as well as the input bit arrival

time. This means that the synthesized hybrid adder will be the one that satisfies

the output required timing while minimizing the implementation area. For some

design stages at which the entire system has been almost implemented and the

critical timing is on a path containing arithmetic logic with addition, resynthe-

sizing solely the adder in the logic using our scheme would be greatly useful.

8

• Proposed adder design method is not confined to specific architectures. Pro-

posed design scheme covers all the applications in which an addition operation

is involved. In addition, proposed strategy of synthesizing a hybrid adder is the-

oretically optimal (under a certain timing property of pure adders), as formally

described in Theorem 4.5, in that the selection and usage of various pure adders

are exhaustively explored. In practice, the quality is well-controlled with reason-

ably acceptable running time through the invention of a systematic exploration

of design alternatives and pruning techniques.

• The proposed method also propose an extended adder design scheme that si-

multaneously synthesizes two hybrid adders of parent-child dependency rela-

tion where the conventional addend compression techniques such as CSA-tree

(carry-save adder tree) and FA-tree (full-adder tree) constructions are not ad-

equately applicable, to fully exploit the combined benefit of hybrid adders on

minimizing area under tight timing constraint.

• Synthesis results on diverse arithmetic expressions are given in experiments to

show the usefulness and feasibility of our proposed scheme, confirming that the

previous pure adder and hybrid adder schemes never meet the timing constraint

or meet timing constraint with substantially large addition logic whereas our

scheme creates hybrid adders that are well customized to the whole designs,

satisfying the timing constraint with much smaller addition logic.

The two main tasks that are performed in the RTL/logic synthesis of arithmetic

circuits are the implementation (or adder structure) selection and cell (or gate) sizing,

in which due to the run time problem the two tasks are practically performed sequen-

tially, the implementation selection first, then cell sizing. We target our hybrid adder

scheme to enhancing the task of implementation selection where we assumed to use a

single implementation with moderate timing/area for each pure adder scheme that is

9

used to form a hybrid adder. However, it should be noted that our scheme can also par-

tially consider the task of cell sizing by including in our pure adder (implementation)

library multiple (cell sized) implementations for each pure adder scheme. Throughout

our presentation, we simply use a single implementation of moderate timing/area for

each pure adder scheme, but we also use one more differently cell sized (fast timing

but large area) implementation for each pure adder scheme.1 Note that theoretically

our adder scheme can perfectly perform the two tasks simultaneously by considering

all possible cell sized implementations, but practically our scheme rather focuses on

the implementation selection using typical (or representative) timing/area numbers for

each pure adder, and a fine-grained cell sizing will resort to a subsequent step under

the selected implementation.

1The differently cell sized implementations were obtained by using Synopsys Design Compiler with

the use of set max delay 0 all outputs() command.

10

Chapter 2

Motivational Examples

This section illustrates, using examples, the usefulness of hybrid adders and the limi-

tations.

• Synthesizing an adder with non-uniform input bit arrival times but uniform output

bit required times: Fig. 2.0(a) shows the dataflow graph (DFG) of a simple arithmetic

expression a ∗ b + c and its architectural implementation diagram. The diagram (and

DFG) shows a chained multiplication-and-addition where the lower 32-bit of the 64-bit

output of multiplication is fed to addition op1 and the upper 32-bit is fed to addition

op2. The op1 and op2 are bound to adders ADD 1 and ADD 2, respectively. Sup-

pose that the arithmetic expression has the required timing constraint of 2.25ns. The

four curves labeled design 1, design 2, design 3, and design 4 in Fig. 2.0(b) show

the output timing profiles of the data path in Fig. 2.0(a) when (ADD 1, ADD 2) is

implemented by adders (RCA, RCA), (RCA, CLA), (CLA, RCA), and (CLA, CLA),

respectively. (To extract timing of the logical and physical implementations we used

Synopsys Design Compiler and Prime Time with TSMC 40 nm standard cell library.)

The dotted green curve in Fig. 2.0(b) represents the arrival times to the input ports

of ADD 1 and ADD 2 with respect to the bit positions, and the red line indicates the

11

REGsADD_1
A

B

CI

SUM

CO

REGs

*

32 32

32

3232

32 32

op1op2

2.25

ns

2.25 ns

32

32

32
64

32

32

1

32

32

1

32

32

1

arrival time required time

+ +
ADD_2

A

B

CI

SUM

CO

MULT

A

B
Product

(a) A DFG representation for a ∗ b+ c and its architectural block diagram.

ADD_1 ADD_2

design_1
(RCA,RCA)

design_2
(RCA,CLA)

design_3
(CLA,RCA)

design_4
(CLA,CLA)

Arrival Time

Required Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

[0
]

[3
]

[6
]

[9
]

[1
2

]

[1
5

]

[1
8

]

[2
1

]

[2
4

]

[2
7

]

[3
0

]

[3
3

]

[3
6

]

[3
9

]

[4
2

]

[4
5

]

[4
8

]

[5
1

]

[5
4

]

[5
7

]

[6
0

]

[6
3

]

D
e
la

y
 (

n
s)

Bit Position

(b) Output timing profiles of four possible adder implementations. Only design 4 satisfies the

timing requirement of 2.25ns.

12

ADD_1 ADD_2

Required Time
design_4

Area = 605.7

design_existing

Area = 568.5

Arrival Time

0.0

0.5

1.0

1.5

2.0

2.5

[0
]

[3
]

[6
]

[9
]

[1
2

]

[1
5

]

[1
8

]

[2
1

]

[2
4

]

[2
7

]

[3
0

]

[3
3

]

[3
6

]

[3
9

]

[4
2

]

[4
5

]

[4
8

]

[5
1

]

[5
4

]

[5
7

]

[6
0

]

[6
3

]

D
el

a
y

 (
n

s)

Bit Position

(c) Output timing profiles of the reimplemented design (design existing by replacing the CLAs

for ADD 1 and ADD 2 of design 4 in (b) with hybrid adders created by the hybrid adder scheme

in [2].

RCA

CLA

REGsMULT

A

B
Product

CLA

REGs

ADD_1

ADD_2

Area(

RCA:3bitCLA:23bitCSKA:

6bit, CLA:26bitCSKA:6bit)

= 568.5

CSKA

CSKA

(d) Architectural block diagram of the reimplemented design design existing in (c). It is seen

that the two adders are customized into hybrid adders, reducing area under the timing constraint.

Figure 2.0: Synthesizing a hybrid adder in the context of designing a ∗ b+ c where the

arrival times of input bits to the additions are not even (due to the multiplication) while

the required times of the output bits of the additions are all equal, setting to 2.25ns.

(In extracting the timing of logical and physical implementations, Synopsys Design

Compiler and Prime Time with TSMC 40nm standard cell library are used.)

13

output required timing of ADD 1 and ADD 2 to meet the timing constraint of design.

Since only design 4 meets the timing constraint, both of ADD 1 and ADD 2 should

be implemented with CLAs, resulting in the area of 605.7µm2. Let us now consider

to reimplement ADD 1 and ADD 2, which were mapped to CLAs, with hybrid adders

produced by applying the scheme in [2]. The dark blue curve labeled design existing

in Fig. 2.0(c) shows the output timing profile of the data path in Fig. 2.0(a) when the

addends of bit positions 0 to 2 are added by RCA, the addends of bit positions 3 to

25 are added by CLA, and the addends of bit positions 26 to 31 are added by carry-

skip adder(CSKA) for ADD 1. For ADD 2, the addends of bit positions 0 to 25 are

added by CLA, and the addends of bit positions 26 to 31 are added by CSKA. (The

reason why we replaced Brent-Kung adder (BKA) with CLA and carry-select adder

(CSLA) with CSKA was that BKA and CSLA needed much bigger area cost for the

implementation in our experiments.) Fig. 2.0(d) shows the resulting implementation,

which still satisfies the timing constraint, but reduces the logic area from 605.7µm2

to 568.5µm2, which is about 18.2% reduction. This example shows that a proper use

of a hybrid adder scheme can reduce the circuit timing or area further. However, all

the existing hybrid adder schemes always assume uniform required times of all output

bits, as shown the straight red lines in Fig. 2.0.

• Synthesizing an adder with both non-uniform output required and input arrival times:

Let us consider another data path in Fig. 2.1(a) with timing constraint of 1.72ns, the

structure of which is slightly different from that in Fig. 2.0(a); besides some logic f1

connected to the inputs of ADD 1, there is another, possibly irregular structure of com-

binational logic f2 connected to the outputs of ADD 1. Thus, the required times of the

output bits of ADD 1 will not be the same, as indicated by the red curve in Fig. 2.1(b).

Since existing schemes of hybrid adder design including that used in design existing

in Fig. 2.0(d) simply assume uniform required times of all output bits, it is hard to

find a best (area-minimal) implementation that meets the timing constraint, in most

14

cases failing in meeting the timing constraint. The curve labeled design existing in

Fig. 2.1(b) shows the output timing profile. On the other hand, the curve labeled de-

sign new in Fig. 2.1(b) shows the output timing profile of ADD 1, where ADD 1 is

reimplemented with a hybrid adder consisting of RCA for bits 0 to 12, CLA for bits

13 to 16, CLA for bits 17 to 20, CLA for bits 21 to 24, CLA for bits 25 to 27 and RCA

for 28 to 31. As a result, the area is reduced from 276.6µm2 to 203.4µm2, which

is about 26.5% reduction while satisfying the timing requirement of all output bits.

This example clearly shows that in order to produce an optimal hybrid adder, it is very

important to take into account the bit-level output required times as well as the input

arrival times.

• Synthesizing multiple adders with both non-uniform output bit required and input

bit arrival times: Fig. 2.1(a) shows two chained additions op1 and op2 surrounded

by another logic components f1, f2 and f3, and the corresponding architectural block

diagram. Thus, for both ADD 1 and ADD 2, their output required times are not even.

The four curves in Fig. 2.1(b) show the output timing profiles of the implementa-

tions of (ADD 1, ADD 2) with (RCA, RCA), (RCA, CLA), (CLA, RCA), and (CLA,

CLA). We can see that only the (CLA, CLA) implementation satisfies the required

timing, resulting in the area of 605.7µm2. Now, we reimplement the (CLA, CLA) in

Fig. 2.1(b) by using the hybrid adder scheme in [2], where ADD 1 is reimplemented

first and ADD 2 is implemented later using the input arrival times from the sum output

bits of ADD 1. The output timing profile of the resulting implementation is shown in

the curve labeled design existing in Fig. 2.1(c). It does not meet the required timing

constraint. On the other hand, the curve labeled design new shows the output timing

profile of another optimized hybrid implementation, generated while considering the

timing inter-dependency between the two hybrid adders. Note that the implementation

satisfies the output required time and even reduces the area by 42.4% further compared

to (CLA, CLA). This comparison illustrates that simultaneously synthesizing multiple

15

arrival time required time

ADD_1
A

B SUM

Logic 2

1.72

ns

1.72 ns

Logic 1

A

B
Product

f
1

f
2

(a) Addition operation in between two logic clusters f1, f2, and the architectural block diagram.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

[0] [2] [4] [6] [8] [10] [12] [14] [16] [18] [20] [22] [24] [26] [28] [30]

D
e
la

y
 (

n
s)

Bit Position

Required Time

design_

exsiting

(R3C23CS6)

Area = 276.6

design_new

(R13C4C4C4

C3R4)

Area = 203.4

Arrival Time

R: RCA

C:CLA

CS:Carry-

Skip

(b) Output timing of design existing produced by the hybrid adder scheme in [2] and design new

produced by a further elaborated hybrid adder design method.

Figure 2.1: Synthesizing a hybrid adder in the context of both non-uniform output bit

required and input bit arrival times. It is observed that when the output required times

are not uniform a highly sophisticated hybrid adder design is expected in order to make

the timing constraint be met.

16

arrival time required time

f
2

op1

op2

2.11

ns

2.11 ns

ADD_2

SUM

Logic1

f
1

Logic2ADD_1

SUM

f
3

(a) Arithmetic expression for a + b + c surrounded by logic clusters f1, f2, f3 and the archi-

tectural block diagram.

0.0

0.5

1.0

1.5

2.0

2.5

[0] [2] [4] [6] [8] [10] [12] [14] [16] [18] [20] [22] [24] [26] [28] [30]

S
u

m
 O

u
tp

u
t

T
im

e
 (

n
s)

Bit Position

rca-rca

chained

rca-cla

chained

cla-rca

chained

cla-cla

chained

Arrival Time

Required Time Area = 282.2

Area = 444

Area = 444

Area = 605.7

(b) Output timing of four possible adder implementations. Only CLA-CLA chained satisfies the

timing requirement.

17

0.0

0.5

1.0

1.5

2.0

2.5

[0] [2] [4] [6] [8] [10] [12] [14] [16] [18] [20] [22] [24] [26] [28] [30]

S
u

m
 O

u
tp

u
t

T
im

e
 (

n
s)

Bit Position

cla-cla

chained

design_exis

ting

design_new

Area = 348.6

Area = 605.7

Area = 592
Arrival Time

Required Time

(c) Output timing of design 4 when ADD 1 followed by ADD 2 are reimplemented by the

adder scheme in [2] and ADD 1 and ADD 2 are simultaneously reimplemented by proposed

scheme.

Figure 2.1: Synthesizing multiple hybrid adders.

hybrid adders is essential to fully exploit the benefit of hybrid adders on optimizing

timing or minimizing area under tight timing constraint.

18

Chapter 3

Definitions and Design Flow

3.1 Notations and Definitions

Our hybrid design scheme is to partition the bit addends, so that each partitioned bit

addends are added by a pure adder. That is, an n-bit hybrid adder, which we call

adaptable hybrid adder (AHA), produced by our scheme is a concatenation of sub-

adders and each sub-adder is implemented by an adder scheme in L, where L is the

set of pure adder implementation schemes. (A pure adder scheme can have multiple

implementations with different cell sizing. In our presentation we simply assume to

use a single implementation of moderate timing/area for each pure adder scheme, but

in the experiments we include not only the results produced by using the single imple-

mentations only but also the results by using multiple implementations for each adder

scheme. The details will be explained in the experimentation section.)

Adaptable hybrid adder is recursively defined as:

Definition 3.1.1 (Adaptable hybrid adder AHA) For a set L of pure adder imple-

mentation schemes, an n-bit adder A is called adaptable hybrid adder AHA(0, n−

19

1) if one of the following two conditions is satisfied.

1. A is a pure adder PAλi
implemented by some scheme λi ∈ L;

2. A is decomposable into two sub-adders A1(0, k− 1) and A2(k, n− 1) such that

the carry out of A1 is connected to the carry in of A2, and A1(0, k−1) is a k-bit

adaptable hybrid adder (which is recursively defined) and A2 is a pure adder that

is implementable by a scheme λi ∈ L, for some k, 1 ≤ k ≤ n− 1.

We call the AHA A1 in Definition 3.1.1 head of AHA A and the pure adder A2 tail

of A. In addition, we use notations Ahead and Atail to indicate the head and tail sub-

adders of AHA A, respectively, and Ahead ‖ Atail to indicate A. Ahead is empty if A

is a pure adder.

Table 3.1 lists the notations to be used in our presentation. The visual description of

the notations is shown in Fig. 3.1, where a 16-bit addition of X and Y is implemented

with a hybrid adder AHA(0, 15) that is composed of a hybrid adder AHA(0, 11)

which is the head of AHA(0, 15) and a pure adder PAλ1
(12, 15) which is the tail

of AHA(0, 15). AHA(0, 11) is further decomposed into head AHA(0, 8) and tail

PAλ2
(9, 11) of AHA(0, 11).

The problem we want to solve can be described as:

Problem 3.1.2 [Generating an adaptable hybrid adder] Given a library L of pure

adder schemes, two n-bit operands X[0 : n − 1] and Y [0 : n − 1] to be added with

their arrival times a(·)s, and the required timing constraint Γ[0 : n−1] of sum outputs,

find a structure of AHA(0, n − 1) that minimizes the value of Cost(·)1 of the AHA

while satisfying the timing constraint Γ.

1Cost(·) is the total area of the implemented AHA in this work, but can be any design parameters

such as power consumption.

20

Table 3.1: Description of notations.

Notation Description

L = {λ1, λ2, · · · , λM}
The set of pure adder schemes

(e.g., λ1 = RCA, λ2 = CLA, . . .)

PAλi
An adder implemented by a pure adder scheme λi.

X[i : j] = [xi, xi+1, · · · , xj] Input operand X of addition.

Y [i : j] = [yi, yi+1, · · · , yj] Input operand Y of addition.

S[i : j] = [si, si+1, · · · , sj] Sum output S of X[i : j] + Y [i : j].

cin(i) carry in to be added at bit position i.

cout(j) carry out generated from bit position j.

a(e)
Arrival time of signal e.

(e is cin, cout, or a signal in X, Y , S.)

Γ[i : j] =
Required times of sum output bits.

[r(si), r(si+1), · · · , r(sj)]

AHA(i, j)
An AHA for X[i : j] + Y [i : j],

under a(·), Γ[i : j], and L.

Cost(A) The implementation cost of adder A.

Ahead The head sub-adder of AHA A.

Atail The tail sub-adder of AHA A.

|A| The bit-width of an addend of adder A.a

a We assume that the two input addends in an adder have the same bit widths.

21

PA (9,11) 2

AHA(0,15)
AHA(0,11)

cin(0) co(8)

PA (12,15) 1

cin(9) co(11) cin(12) co(15)

AHA(0,8)

()
0

(y)
0

(s)0 (s)15

(y)
15

()
15

(cin) (cout)

input arrival

times

output arrival

times

[]
][

= (Y)

= (X)

= (S)][

a

a
a

a
a
a

a a

a a a

(s)0 (s)15
required times = (S)][r r

:

:

:

…

…

…

…

Figure 3.1: Visual description of the notations in Table 3.1 for an AHA(0,15) and its

internal structure.

Definition 3.1.3 (Feasible AHA) Given a library L of adder schemes and required

timing Γ[0 : n − 1], an adder that performs X[0 : n − 1] + Y [0 : n − 1] + cin

with the bit-level arrival times a(X[0 : n − 1]), a(Y [0 : n − 1]), and a(cin)2 of

carry in cin is a feasible AHA if it is an AHA implementation using L and satisfies

a(S[0 : n − 1]) ≤ Γ[0 : n − 1] where a(S[0 : n − 1]) is the bit-level arrival times of

sum output vector S[0 : n− 1] of the adder.

Then, Problem 3.1.2 is to find a minimum-cost feasible AHA under L, the input arrival

times a(·)s, and the output required times Γ.

2For adding X + Y , we can assume cin = 0 and a(cin) = 0.

22

Chapter 4

Synthesis of Adaptable Hybrid Adders

The basic idea of generating an n-bit AHA of minimum cost is, starting from a set of

feasible AHAs of smallest bit-width, to incrementally update a set of current candi-

dates of AHAs until the bit-width of the updated AHAs reaches n.1 Our AHA synthe-

sis is targeted to two scopes of addition: (case 1) resynthesizing an isolated (single)

adder on the critical timing path of circuit; (case 2) resynthesizing chained (multiple)

adders together on the critical timing path. Our AHA synthesis approach to case 1 is

a special case of case 2. Fig. 4.1 shows the flow of design methodology which utilizes

our AHA synthesis.

The first pass of synthesis for the initial HDL code returns the timing information

on the input arrival times and the output required times of an adder(s). Then, our

adder scheme produces an area-optimized hybrid adder structure(s) that satisfies the

timing constraint extracted in the first pass of synthesis. The second pass of synthesis

is then performed for the initial HDL code again while preserving the hybrid adder

structure(s) obtained by our AHA scheme.

1A discussion about theoretical background on our AHA synthesis approach is given at the end of

subsection 4.1.

23

Arithmetic intensive

initial HDL design

AHA Synthesis

Synthesis: first pass

Extract timing

Synthesis:

Optimized netlist

second pass

Figure 4.1: The flow of design methodology using our AHA synthesis. Both of the first

and second passes of synthesis use the initial HDL design code as input, but the second

pass will preserve the hybrid adder structure(s) produced by the AHA synthesis. The

selection of addition(s) to be optimized will be controlled by designer.

24

In the following two subsections, we proposes our AHA synthesis schemes for the

two scopes of addition.

4.1 Synthesizing Single Adaptable Hybrid Adder

Our AHA synthesis scheme is an incremental approach. At each iteration, with a

set of all feasible AHA implementations of a certain size k of input bits, we want to

generate a set of all feasible AHA implementations of an input size greater than k. The

generation is based on the notions of ∆d-attachable and ∆d-extendable.

Definition 4.1.1 (∆d-attachable AHA) Let A(0, k − 1) be a feasible AHA under the

required timing of the first k bits in Γ[0 : n] (k + ∆d ≤ n) and B(0,∆d − 1) be

a ∆d-bit (∆d > 0) pure adder. Then, it is said that B is ∆d-attachable to A if the

(k+∆d)-bit AHA(0, k+∆d−1) constructed by connecting the carry out of A to the

carry in of B is feasible under the required timing of the first (k +∆d)-bit in Γ[0 : n].

Definition 4.1.2 (∆d-extendable AHA) Let A(0, k+ s− 1) be a (k+ s)-bit feasible

AHA under the required timing of the first (k + s)-bit in Γ[0 : n] (k + s < n) and

B(k, k + s − 1) be the tail sub-adder of A(0, k + s − 1) implemented by scheme λi.

Then, it is said that B is ∆d-extendable from A if the (k + s+∆d)-bit AHA(0, k +

s+∆d−1) (k+ s+∆d ≤ n) constructed by replacing the s-bit B(k, k+ s−1) with

the (s+∆d)-bit adder implemented by λi is feasible under the required timing of the

first (k + s+∆d)-bit in Γ[0 : n].

Figs. 4.1(a) and (b) show examples of 4-attachable and 4-extendable pure adders to

and from AHA(0,11), respectively. As seen from the examples, for ∆d-attachment

any pure scheme of sub-adder can be considered whereas for ∆d-extension the scheme

of sub-adder should be the matched with the scheme of tail adder. Note that each of

25

 !!"-#$%&!!!!!!!'%%'()*+

,-!!!!./011232

-4-!!.50162

-4-.50112

cout(8)

,-!!!!.17016231

cin(9) cout(11) cin(12)
-4-.5082

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

'()s
i

 ()s
i

0.18 0.36 0.54 0.72 0.96 1.16 1.30 1.40 1.63 1.81 1.99 2.17 2.30 2.55 2.71 2.80

2.10 1.78 1.95 2.01 2.08 2.00 1.95 1.78 2.17 2.20 2.20 2.18 2.51 2.83 2.83 2.95

,-!!!!./011232

-4-!!.50162

-4-.50112

cout(8)

,-!!!!.17016232

cin(9) cout(11) cin(12)
-4-.5082

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

'()s
i

 ()s
i

0.18 0.36 0.54 0.72 0.96 1.16 1.30 1.40 1.63 1.81 1.99 2.17 2.35 2.53 2.71 2.89

2.10 1.78 1.95 2.01 2.08 2.00 1.95 1.78 2.17 2.20 2.20 2.18 2.51 2.83 2.83 2.95

1

2

"-#$%&!'%%'()*+

"-#$%&!'%%'()*+

31

 !!"-#$%&!!!!!!!'%%'()*+32

(a) Feasible AHA(0,15)s which are formed by connecting the carry out of the tail (i.e.,

PAλ2(9, 11) of a feasible AHA(0,11) to carry in of a 4-bit pure adder.

26

PA (9,15)2

AHA (0,15)

AHA(0,11)

cout(8) cin(9)
AHA(0,8)

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

a()s
i

()s
i

0.18 0.36 0.54 0.72 0.96 1.16 1.30 1.40 1.63 1.81 1.99 2.17 2.34 2.51 2.69 2.86

2.10 1.78 1.95 2.01 2.08 2.00 1.95 1.78 2.17 2.20 2.20 2.18 2.51 2.83 2.83 2.95

1

4-bits extended

(b) A feasible AHA(0,15) which is formed by extending the bit-width of the tail (i.e.,

PAλ2(9, 11)) of AHA(0,11) 4-bit more to become PAλ2(9, 15).

Figure 4.1: Examples of (a) 4-attachable AHA pure adder to an AHA and (b) 4-

extendable pure adder from an AHA.

the resulting AHA(0,15)s is feasible, which means that its output bits all satisfy the

required timing constraint.

Fig. 4.2 shows the iteration flow of synthesizing an n-bit AHA, starting from a set

of all feasible l0-bit (pure) adders. At each iteration, from a set of all feasible l-bit

AHA adders, a set of (l + ∆d)-bit feasible AHAs is derived by applying all possible

∆d-attachments and ∆d-extensions to/from each of the l-bit AHAs.

(Note that the pure adder library L contains implementation netlist for every imple-

mentation, and the netlist is attempted to be attached and extended for every iteration

of the AHA synthesis to extract the resulting bit-level output timing.)

Let Si be the set of feasible AHAs produced in the ith iteration. Then, in the

iteration since every adder in Si is tested one time for the extension, but tested for

attachment on all types of pure adder in L, we have |Si+1| = O(|Si| · (|L| + ∞)).

Thus, the total number of AHA adders considered for attachment and extension dur-

27

d - extend d - attach

l l
0

l = n ?
N

return n-bit AHA with

minimum cost

Y

pruning by checking

required time constraints

pruning by

dominance relation

l l + d

Figure 4.2: The iteration flow of synthesizing an n-bit single AHA.

28

ing iterations is exponentially bounded as shown in Fig. 4.3 . The following notion

of dominating/dominated AHA helps drastically prune the unnecessary partial AHAs

generated during the iterations while retaining the quality of final (n-bit) AHA.
 Exponentially bounded

attach extend
Initial AHA

n-bit AHAs

Figure 4.3: Exponential growth of serach space.

Definition 4.1.3 (Dominating/dominated AHA) Let A and B be two feasible AHAs

such that |A| = |B| under L, Γ, and input arrival times a(·). Then, it is said that A is

dominating B (or B is dominated by A) if (1) Cost(A) ≤ Cost(B), (2) |A| = |B|,

and (3) a(coutAtail
) ≤ a(coutBtail

).

The three conditions (1-3) ensure that the dominated AHAs can be removed from the

set Si of partial AHAs before performing the next iteration. For example, Fig. 4.4

shows the generation of set Si+1 of partial AHAs by attachment and extension from/to

the partial AHAs in Si and the process of removing the dominated AHAs in Si+1.

In this example, there are four 12-bit intermediate AHAs A1, A2, A3 and A4. A1

dominates A2 and A4 in terms of area cost. A1 also dominates A3 and A4 in terms of

a(coutAtail
) time; Thus, A4 is removed from the consideration of the attachment and

extension on the next iteration.

29

s
8

s
9

s
10

s
11

C :AHA(0,7) PA (8,11)1

cout(7) cin(8)

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

a()s
i

1.63 1.81 1.99 2.170.18 0.36 0.54 0.72 0.96 1.16 1.30 1.40

A1

1

Cost()

= 125

A1

s
8

s
9

s
10

s
11

C :AHA(0,7) PA (8,11)2

cout(7) cin(8)

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

a()s
i

1.63 1.81 1.97 2.150.31 0.50 0.68 0.85 1.00 1.15 1.28 1.40

A2

2

Cost()

= 132

A2

s
8

s
9

s
10

s
11

C :AHA(0,7) PA (8,11)2

cout(7) cin(8)

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

a()s
i

1.63 1.81 1.99 2.170.37 0.52 0.60 0.80 1.01 1.16 1.30 1.48

A3

3

Cost()

= 123

A3

a()s
i

1.50 1.70 1.89 2.180.15 0.31 0.48 0.60 0.79 0.97 1.15 1.31

A4 Cost()

= 133

A4

a(cout(11))

= 2.15

a(cout(11))

= 2.13

a(cout(11))

= 2.17

a(cout(11))

= 2.19

dominating condition (1)

cost

dominating condition (3)

cout time

s
8

s
9

s
10

s
11

C :AHA(0,7)

cout(6) cin(8)

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

4 2PA (8,11)

cout(11)

cout(11)

cout(11)

cout(11)

Figure 4.4: An example of pruning dominated AHAs. The AHA A1 dominates the

AHA A4 since A1 has earlier timing of carry out indicated by red dotted arrow and

smaller area indicated by the black dotted arrow, thus A4 can be removed safely.

30

The number of iterations is ⌈ n
∆d

⌉. The value of ∆d (usually 3 ∼ 6) is given by

designer. The smaller the value of ∆d is, the more likely the resulting n-bit AHA sat-

isfies the timing constraint. Note that the final AHA generated is the one of minimum

cost among all implementations of hybrid adders which have the form of the concate-

nations of any number of pure adders of any bit-width of multiple ∆d, and satisfy the

required (possibly non-uniform) output times.

Discussion about theoretical background: Theoretically, problem 3.1.2, which is to

generate an optimal structure of adaptable hybrid adder for given input arrival times

and output required times, can be formulated into dynamic programming, by which

the optimal structures of various smaller bit-widths are examined and used to con-

struct an optimal structure of a bigger bit-width. Thus, apparently, the total number

of computation is O(n2). (Basically, our AHA scheme can also accomplish this by

performing only the tail attachment for every value of ∆d (i.e., ∆d = 1, 2, · · · , n).

However, such a simple construction cannot measure the change of output bit times

due to the unknown output load capacitance of the carry out signal when performing

the attachments. It can only be measured accurately by really resynthesizing the cor-

responding addition logic. Since each resynthesis is computationally expensive, our

AHA scheme devises a number of simplification and pruning techniques. Those are

using a fixed value of parameter ∆d for attachment, introducing ∆d-extension in ad-

dition to the ∆d-attachment, and utilizing dominance relation. The optimality of our

AHA synthesis is stated below.

Definition 4.1.4 (Excess-O(n) property) Let A(i, j) and A(i, k), and B′(k + 1, j),

i ≤ k < j be three pure adders implemented by the same scheme in L which use the

same input addends and carry in, except that B′(k + 1, j) uses, as carry in, a cin′

with a(cin′) ≤ a(coutA(i,k)). Then, it is called that L satisfies Excess-O(n) perperty

if for every scheme in L, the corresponding three adders can satisfy the inequali-

31

ties of Cost(B′(k + 1, j) ≤ Cost(A(i, j) − Cost(A(i, k) and a(coutB′(k+1,j)) ≤

a(coutA(i,j)).

The area cost inequality of Excess-O(n) property holds for nearly all adder schemes

since RCA, which is known to be the most area efficient adder scheme for all values

of bit-width n, follows a consistent linear curve on area. On the other hand, the timing

inequality of Excess-O(n) does not hold if the carry propagation delay curve is below

a linear line, for example, logbn curve for large values of bit-width n for CLA where

b is the blocking factor. However, since the size of partial pure adders used to form

a hybrid adder is quite small, which is usually less than 8 bits in practice, the timing

property will be satisfied for most of adder schemes. In particular, RCA satisfies the

property for all sizes.

Theorem 4.1.5 If the pure adder set L satisfies Excess-O(n) property, the proposed

AHA generation scheme in Fig. 4.2 using ∆d = 1 will always find, if there exists, an

optimal AHA.

Proof. Let A(0, n) be an optimal AHA. Then, it suffices to show: every sub-AHA

A(0, k), k = 0, · · · , n of A(0, A) will never be pruned by the dominating/dominated

relation.

Suppose B(0, k) is not a partial AHA of an optimal AHA(0, n) and dominates

A(0, k). (It means Cost(B(0, k)) ≤ Cost(A(0, k)) and a(coutB(0,k)) ≤ a(coutA(0,k)).)

Then, A(0, k + 1) of optimal A(0, n) belongs to one of the two cases: (case 1)

A(0, k + 1) has 1 − attachment relation with A(0, k); (case 2) A(0, k + 1) has

1− extension relation with A(0, k).

For case 1, we replace A(0, k) in A(0, n) with B(0, k) to form a new AHA

B(0, k)||A(k + 1, n). Since a(coutB(0,k)) ≤ a(coutA(0,k)), A(k + 1, n) which uses

coutB(0,k) as carry in is still feasible. But, since Cost(B(0, k)) ≤ Cost(A(0, k)),

32

Cost(B(0, k)||A(k + 1, n)) ≤ Cost(A(0, n)), which contradicts the assumption that

B(0, k) is not a partial AHA of an optimal AHA(0, n).

For case 2, let A(i, j) be the pure adder in A(0, n) such that i ≤ k < j. We create

a pure adder B′(k + 1, j) by using coutB(0,k) as its carry in. Then, by the Excess-

O(n) property of the adder schemes in L, Cost(B′(k + 1, j)) ≤ Cost(A(i, j)) −

Cost(A(i, k)) since a(cinB′(k+1,j)) ≤ a(coutA(i,k)). Thus, if we replace A(k + 1, j)

in A(0, n) with B′(k+1, j), the resulting AHA A(0, k)||B′(k+1, j)||A(j+1, n) is still

feasible because a(coutB′(k+1,j)) ≤ a(coutA(i,j)), and satisfies Cost(A(0, k)||B′(k+

1, j)||A(j+1, n)) ≤Cost(A(0, k))+(Cost(A(i, j))−Cost(A(i, k)))+Cost(A(j+

1, n)) = (Cost(A(0, i − 1)) + Cost(A(i, k)) + Cost(A(i, j)) − Cost(A(i, k)) +

Cost(A(j + 1, n)) = Cost(A(0, i − 1)) + Cost(A(i, j)) + Cost(A(j + 1, n)) =

Cost(A(0, n)), which contradicts the assumption that B(0, k) is not a partial AHA of

an optimal AHA(0, n).

4.2 Synthesizing Multiple Adaptable Hybrid Adders

This section describes a scheme of (simultaneously) synthesizing AHAs for multiple

additions that are directly cascaded through the critical path of circuit. Obviously, ap-

plying the single AHA synthesis scheme proposed in the previous section to the adders

sequentially one by one would not be sufficiently effective because resynthesizing an

adder on the critical path will be greatly affected by the timing result of the previously

resynthesized adders on the critical path. To be more effective, we propose a technique

of simultaneous synthesis of two AHAs for two connected additions. For more than

two additions, we can use a repeated application of the proposed technique to the ad-

ditions. First, we suggest a set of structures of addition expression that are suitable for

the multiple AHA synthesis application. Then, we propose an efficient procedure of

33

synthesizing (simultaneous) multiple AHAs.

Identifying addition expressions for multiple AHAs: It is traditionally known that gen-

erating a CSA-tree (carry-save adder tree)2 (e.g., [25,26]) or FA-tree (full-adder tree)3

(e.g., [27,28]) followed by a final adder implementation is the most effective approach

to the synthesis of fast arithmetic circuit for a cluster of addition operations. For ex-

ample, Fig. 4.5(a) shows the CSA-tree consisting of one CSA and a carry propagating

(final) adder for implementing F = X+Y +Z . Note that the final adder can be imple-

mented with a single AHA if we want to reduce area while meeting the same timing

requirement as before. Since there is no carry propagation in the CSA-tree or FA-tree,

the timing of the transformed circuit will be the fastest. (See the internal structure of

a CSA in Fig.4.5(a).) However, there are a number of cases where such a CSA-tree or

FA-tree transformation is not adequate or causes a high design penalty if applied, but

our multiple AHA synthesis scheme can be applied safely and effectively. The cases

are illustrated in Figs. 4.5(b), (c), and (d) which explain addition with multiple fanout,

multiplexor between additions, and additions across design boundary, respectively.

(Note that our AHA scheme can also be applied to every addition expression with any

mixture of the three cases in Figs. 4.5(b), (c), and (d).)

• Case 1 (addition with multiple fanout): When the output of an addition is used

as input to another logic, as shown in in Fig. 4.5(b) where the outcome of the

upper addition is used as input to logic f3 as well as the lower addition. In this

case, CSA-tree (or FA-tree) implementation is not possible because there is no

way to produce the output of the upper addition, if operation duplication is not

allowed due to area limitation.

• Case 2 (multiplexor between additions): Similar to case 1, when there is a multi-

2It corresponds to the word-level compression tree for additions.
3It corresponds to the bit-level compression tree for additions.

34

f
2

f
1

CSA Tree

Carry

Propagation

Adder

CSA Tree

FA FA FA

(a) The conventional CSA-tree transformation is shown on the left side. The internal structure of a CSA is

shown on the right side.

f
2

f
1

3
f

(b) Case 1: addi-

tion with multiple

fanout.

f
1

(c) Case 2: multiplexer be-

tween additions.

f
2

f
1

design A

design B

Carry

Propagation

Adder

CSA Tree

design A

design B

(d) Case 3: additions across design boundary

Figure 4.5: The sweet spots of CSA-tree (or FA-tree) and multiple AHA implementa-

tions. (a) Case where CSA-tree implementation is effective. (b), (c), (d) Cases where

simultaneous multiple AHA implementation is effective.

35

plexor between two addition operations as shown in Fig. 4.5(c), the simultaneous

AHA implementation can be used for optimizing timing through the additions,

which otherwise an expensive operation duplication over the multiplexor shall

be required to enable CSA-tree or FA-tree transformation.

• Case 3 (additions across design boundary): When two additions are placed

across a design boundary in the hierarchical design, applying CAS-tree (or FA-

tree) transformation to the additions will change the number of input/output

ports on the design boundary. This means that the meaning of some of the

original ports is no longer valid. For example, the right side in Fig. 4.5(d) shows

the transformed CSA-tree with final adder, in which new ports Pnew and Qnew

are created with the additional checking of port constraints v(Pnew) = v(Qnew)

in addition to the original checking of v(P0) = v(Q0) where v(·) represents the

data value that passes on the port. Furthermore, the original meaning of the data

on ports P0 and Q0 is lost. To reduce the burden on checking design validation

environment, it is desirable to avoid such a port change. For this reason, in a

safe hierarchical design testing AHA implementation can be another alternative

for timing optimization across design boundary.

Simultaneous synthesis of multiple AHAs: The idea of simultaneously synthesizing

two chained additions into AHAs is considering the AHAs collectively as one super

AHA. Thus, a super AHA consists of two AHAs where one is called top AHA and

the other is called bottom AHA, and there is data connection from the top AHA to the

bottom AHA. The generation procedure of a super AHA is basically the same as that

of the generation of a single AHA described in the previous section. At each iteration,

four possible combinations of ∆d-attachment and ∆d-extension are applied to the

tail of the partial (super) AHA, as shown in Fig. 4.6, where the partial super AHA

is composed of top partial AHA and bottom partial AHA. For example, Fig. 4.6(b)

36

shows the expansion of super AHA by applying ∆d-extension to the top AHA and

∆d-attachment to the bottom AHA, and Fig. 4.6(d) shows the expansion by applying

∆d-extension to both of the top and bottom AHAs. Note that the pruning based on

dominance relation is also applied to the set of expanded partial supper AHAs.

In addition, at each iteration we perform the following input refining technique to

optimize timing further. Input reordering: This technique makes use of the uneven

input bit arrival times of three vector addends. This input refining technique is very

effective when there is a high variation on the bit-level arrival times of inputs. For

example, as shown on the left side in Fig. 4.6(b), the initial input bit segments to be

added are rearranged according to the ir arrival times, and the late inputs are connected

to the upper AHA, as indicated in the right side in Fig. 4.6(b). Furthermore, the two

carry outs of the (partial) super AHA are also involved in the input reordering together

with the three input bits, as shown the example of Fig. 4.6(c), where carry out cout2 is

now used as input to the upper AHA.

The iteration flow of synthesizing a super AHA is summarized in Fig. 4.7. Since

the four combinations of ∆d-attachment and ∆d-extension are considered at each iter-

ation, the total number of partial AHAs generated will be substantially large. However,

due to the limited size of bit-width, which is no more than 64 in practice and the help

of pruning by dominance relation and a proper control of ∆d value for attachment and

extension, an exhaustive exploration of design space is possible within a reasonably

small run time (≤ 15 minutes) as verified from our experiments.

37

AHA

AHA

AHA

AHA

AHA

AHA AHA

AHA

(a) ∆d-attach for both top and bottom AHAs.

AHA

AHAAHA

AHA

AHA AHA

AHA

(b) ∆d-extend for top AHA and ∆d-attach for bottom AHA.

AHA AHA

AHA

AHA

AHA

AHA

AHA

(c) ∆d-attach for top AHA and ∆d-extend for bottom AHA.

AHA

AHA

AHA

AHA AHA

AHA

(d) ∆d-extend for both top and bottom AHAs.

Figure 4.6: Four possible combinations of extending a (partial) super AHA. (a) Com-

bination 1: ∆d-attach for both top and bottom AHAs. (b) Combination 2: ∆d-extend

for top AHA and ∆d-attach for bottom AHA. (c) Combination 3: ∆d-attach for top

AHA and ∆d-extend for bottom AHA. (d) Combination 4: ∆d-extend for both top

and bottom AHAs.

38

l l
0

e a

l = n ?
N

return n-bit AHA with

minimum cost

Y

pruning by checking

required time constraints

pruning by

dominance relation

l l + d

top: d - extend

bottom: d - extend

top: d - extend

bottom: d - attach

top: d - attach

bottom: d - extend

top: d - attach

bottom: d - attach

Figure 4.7: The iteration flow of synthesizing an n-bit super AHA.

39

Chapter 5

Experimental Results

We implemented our proposed AHA generation scheme with TCL (Tool Command

Language) script to link to Synopsys synthesis tools on a linux server with octa-core

2.0GHz Intel zeon processor and 6GB RAM. We used Synopsys Design Compiler

and Prime Time with TSMC 40 nm library for the logic optimization and timing es-

timation, respectively. We evaluate our proposed synthesis scheme on a set of typical

arithmetic expressions with additions that are commonly appeared in DSP applica-

tions. We compare the results produced by our scheme with that produced by the

adder optimization scheme proposed in [2] as well as several pure adders under the

following settings of AHA generation mode and input and output timings: (1) gener-

ating a single adder with non-uniform input arrival times; (2) generating a single adder

considering non-uniform output required time constraint; (3) generating a single adder

considering both non-uniform input arrival and output required times; (4) generating

multiple (super) adders; In addition, (5) we compare our results with that produced by

the commercial synthesis tool; (6) we provide a set of comparisons of results to show

how much our AHA scheme is effective when more than one differently cell sized

implementation for each pure adder scheme are used in the AHA synthesis. Finally,

40

(7) we also provide data that shows how well our AHA scheme controls the synthesis

quality and running time.

5.1 Generating a Single Adder with Non-uniform Input Ar-

rival Times

The previous works in [1, 2, 21, 22] also proposed schemes of synthesizing single

hybrid adders considering uneven input arrival times. Unfortunately, however, the

schemes are a sort of ‘specialized’ hybrid adder schemes in that they utilize (fixed)

patterns or trend of arrival times of input bits in designing a hybrid adder of the final

addition on the partial products reduction tree (PPRT) in the multiplier design; they

observed that as input bits are close to the least significant bit (LSB) the bit operands

(or signals) tend to arrive early, validating the use of a slow adder for a segment of

input operands near LSB, and as they are close to the middle bit, the signals arrive

late, validating the use of a fast adder for a segment of input operands near the middle

bit or the most significant bit (MSB). On the other hand, our hybrid adder scheme is

‘general’ in that it accepts any arbitrary arrival times of input bits. That is, our scheme

explores, for a particular segment of input bits, all possible implementations of pure

adder being used as adding the input segment. We compare our AHA synthesis results

with that produced by the most recent hybrid adder synthesis work in [2]. We also

compare our results with the several pure adder implementations that meet the output

required timing constraint.

Table 5.1 shows the comparison of the performance of our AHA synthesis with

that of pure adder implementations: RCA (ripple carry adder), CLA (carry look-ahead

adder), BKA (brent-kung adder), and CSLA (carry-select adder). The first column

shows the tested arithmetic expressions where the additions marked with red color are

the target additions and the second column shows the implementation area of AHA for

41

Table 5.1: Comparison of AHA scheme with pure adder schemes under uneven input

arrival times.

Expression

Timing (ns) Area (µm2) Area

RCA CLA BKA CSLA AHA AHA
red.

(req. timing)

(A+1B)+C 1.58 1.60 1.65 1.62 1.58 141.1 0% (1.58)

(A+2B)+C 1.60 0.82 0.86 0.92 0.81 240.6 21% (0.82)

(A+3B)+C 1.60 0.88 0.95 0.95 0.85 236.6 22% (0.88)

(A+4B)+C 1.62 0.99 1.09 1.09 0.96 224.0 26% (0.99)

(A∗LB)+C 2.11 1.63 1.68 1.67 1.61 207.4 32% (1.63)

(A/B)+C 30.25 29.20 29.31 29.50 29.16 291.9 11% (29.20)

(A≪B)+C 1.77 0.78 0.86 1.02 0.70 268.8 11% (0.78)

A2+B 1.54 1.55 1.61 1.58 1.54 141.1 0% (1.54)

(A-B)+C 1.61 0.83 0.95 0.93 0.82 240.6 21% (0.83)

Average 16%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits

of 64-bit output.

* AHA: { RCA, CLA, CSKA }

* Area (32-bit addition): RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,

CSLA:479.8.

42

the target additions when AHA scheme uses pure adder set L = {RCA,CLA,CSKA}.

The third thru seventh columns show the latest output times of the corresponding adder

implementations. For the AHA synthesis results in the second and seventh columns,

we assume a uniform required output timing constraint (shown in the parentheses of

the last column) that is set to the fastest output time of the pure adders, as indicated

by the blue colored numbers in the third thru sixth columns. (The area of pure adder

implementations is specified at the bottom of the table.)

Note that for some designs, which is usually a monotonically increasing input

arrival times, a pure RCA implementation will suffice to produce a minimal area while

meeting the required timing. (See the results for test cases (A+1B)+C and A2+B in

Table 5.1.).

The last column summarizes the area reduction by our AHA implementation over

the least-area pure adder implementation that meets the same output timing constraint.

Overall, under uneven input arrival times our scheme is able to adaptably generate

hybrid adders with 16% reduced area.

Table 5.2 shows the comparison of our AHA synthesis results with that of the

scheme in [2] which uses RCA, CLA, and CSKA adders for low-, middle-, and upper-

bit input operands, respectively. We used L = {RCA, CLA, CSKA} for the AHA

implementation. We set the required output timing, specified in the second column, to

the output time of the hybrid adder produced by the scheme in [2]. From the table, we

can see that our AHA scheme reduces the area by 27% under the same output timing

constraint, revealing that our scheme performs very well in optimizing area over the

conventional hybrid adder design scheme as well as pure adder schemes without any

timing increase. The fifth and sixth columns show how the pure adders are combined

in the hybrid adder implementation, together with their bit-width information.

Note that the scheme in [2] does not work well on test cases (A+1B)+C and A2+B.

This is because the input arrival times of the two test cases follow a monotonically

43

Table 5.2: Comparison of AHA scheme with [2] under uneven input arrival times.

Expression

Req. Adder composition (bit-widths) Area (µm2)

output
DAS AHA DAS AHA

Area

time red.

(A+1B)+C 1.59 (0 20 12)
[r]

272.4 141.1 48%
(32)

(A+2B)+C 0.91 (0 26 6)
[r||c||c||c||c||c||r]

291.9 224.0 23%
(9 4 4 4 4 4 3)

(A+3B)+C 1.03 (0 26 6)
[r||c||c||c||c||r]

291.9 215.7 26%
(12 4 4 4 5 3)

(A+4B)+C 1.16 (0 26 6)
[r||c||c||c||c||r]

291.9 203.4 30%
(16 4 4 4 3 1)

(A∗LB)+C 1.65 (3 23 6)
[r||c||c||c||c||r]

276.6 203.4 26%
(16 4 4 4 3 1)

(A/B)+C 29.39 (0 26 6)
[r||c||c||c||r]

291.9 248.2 15%
(1 16 4 3 8)

(A≪B)+C 0.89 (0 26 6)
[r||c||c||c||r]

291.9 248.2 15%
(2 4 15 4 7)

A2+B 1.54 (0 20 12)
[r]

272.4 141.1 48%
(32)

(A-B)+C 1.01 (0 26 6)
[r||c||c||c||c||c||r]

291.9 220.0 25%
(12 4 4 4 4 3 1)

Average 27%

* DAS indicates the implementation scheme in [2], with [RCA||CLA||CSKA]

* AHA: { RCA, CLA, CSKA }

* ‘r’ indicates RCA; ‘c’ indicates CLA.

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32

bits 64-bit output.

44

increasing curve, but the scheme in [2] mainly targets U-shape pattern of input arrival

times.

5.2 Generating a Single Adder Considering Non-uniform Out-

put Required Time Constraint

To facilitate the optimization of adders under uneven output required times, we change

the target addition to be optimized in the expressions in Table 5.1, as shown in the first

column in Table 5.3. Except the change of target operation, all other conventions in

Table 5.3 are exactly the same as that in Table 5.1. As indicated by the last column in

Table 5.3, our AHA synthesis is able to use 20% less area compared to the pure adder

of least-area while meeting the output timing constraint. In addition, Table 5.4 shows

the comparison of our synthesis results with that of the scheme in [2]. We can see

that our AHA finds more fine-grained combination of pure adders to adapt the uneven

output required timing while the work in [2] dose not, which is even worse than the

pure implementations in Table 5.3 in some test cases.

5.3 Generating a Single Adder Considering Both Non-uniform

Input Arrival and Output Required Times

Unlike the tested data in Tables 5.1 through 5.4, we update the expressions, so that

each target addition has uneven input arrival times as well as uneven required output

times. Tables 5.5 and 5.6 show the comparisons of the results by AHA scheme with

pure adder schemes and the scheme in [2], respectively. It is seen that the area saving

by AHA is consistent in the range of 9% ∼ 31%, which implies that AHA can be

useful in customizing adders with both uneven bit-level input arrival times and output

required times.

45

Table 5.3: Comparison of AHA scheme with pure adder schemes under the constraint

of uneven required output times.

Expression

Timing (ns) Area (µm2) Area

RCA CLA BKA CSLA AHA AHA
red.

(req. timing)

(A+B)+1C 1.58 1.60 1.60 1.62 1.58 141.1 0% (1.58)

(A+B)+2C 1.60 0.82 0.88 0.99 0.82 248.2 18% (0.82)

(A+B)+3C 1.65 0.86 0.95 1.09 0.86 269.0 11% (0.86)

(A+B)+4C 1.62 0.92 0.95 1.09 0.91 231.6 24% (0.92)

(A+B)∗LC 2.75 1.76 1.84 2.03 1.72 268.8 11% (1.76)

(A+B)/C 29.44 28.82 28.75 28.75 28.75 224.0 43% (28.75)

(A+B)≪C 1.78 0.78 0.87 1.02 0.71 268.8 11% (0.78)

(A+B)2 3.61 3.20 3.22 3.26 3.19 196.7 35% (3.20)

(A+B)-C 1.61 0.92 0.94 1.00 0.91 224.0 26% (0.92)

Average 20%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits

of 64-bit output.

* AHA: { RCA, CLA, CSKA }

* Area (32-bit addition): RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,

CSLA:479.8.

46

Table 5.4: Comparison of AHA scheme with [2] under the constraint of uneven

required output times.

Expression

Req. Adder composition (bit-widths) Area (µm2)

output
DAS AHA DAS AHA

Area

time red.

(A+B)+1C 1.60

(0 26 6)

[r]

291.9

141.1 52%
(32)

(A+B)+2C 0.82
[r||c||c||c||r]

248.2 15%
(2 4 4 15 7)

(A+B)+3C 0.86
[r||c||c||r]

231.6 21%
(2 4 15 11)

(A+B)+4C 0.92
[r||c||r]

157.7 46%
(2 4 26)

(A+B)∗LC 1.86
[r||c||c||c||r]

252.3 14%
(2 4 16 4 6)

(A+B)/C 28.75
[r||c||c||c||c||c||r]

224.0 23%
(2 4 4 4 4 4 10)

(A+B)≪C 0.88
[r||c||c||c||r]

252.3 14%
(2 4 16 4 6)

(A+B)2 3.20
[r||c||c||r]

196.7 33%
(2 4 8 18)

(A+B)-C 0.92
[r||c||c||c||c||c||r]

224.0 23%
(2 4 4 4 4 4 10)

Average 27%

* DAS indicates the implementation scheme in [2], with [RCA||CLA|| CSKA]

* AHA: { RCA, CLA, CSKA }

* ‘r’ indicates RCA; ‘c’ indicates CLA.

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32

bits 64-bit output.

47

Table 5.5: Comparison of AHA scheme with pure adder schemes under both uneven input

arrival and required output times.

Expression

Timing (ns) Area (µm2) Area

RCA CLA BKA CSLA AHA AHA
red.

(req. timing)

((A∗LB)+C)-D 2.22 1.85 1.88 1.85 1.84 190.9 37% (1.85)

((A-B)+C)∗LD 2.87 2.09 2.20 2.22 2.07 253.7 16% (2.09)

((A/B)+C)≪D 30.53 29.47 29.59 29.77 29.44 268.8 11% (29.47)

((A≪B)+C)/D 29.64 28.75 28.75 28.89 28.75 264.8 13% (28.75)

((A≪B)+C)-D 1.88 1.19 1.21 1.28 1.19 224.0 26% (1.19)

((A-B)+C)≪D 1.89 1.11 1.22 1.21 1.07 240.6 21% (1.11)

Average 21%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits of

64-bit output.

* AHA: { RCA, CLA, CSKA }

* Area (32-bit addition): RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,

CSLA:479.8.

48

Table 5.6: Comparison of AHA scheme with [2] under both uneven input arrival and

required output times.

Expression

Req. Adder composition (bit-widths) Area (µm2)

output
DAS AHA DAS AHA

Area

time red.

((A∗LB)+C)-D 1.91 (3 23 6)
[r||c||c||c||r]

272.4 186.8 31%
(16 4 4 3 5)

((A-B)+C)∗LD 2.24 (0 26 6)
[r||c||c||c||c||c||r]

291.9 224.0 23%
(9 4 4 4 4 4 3)

((A/B)+C)≪D 29.51 (0 26 6)
[r||c||c||c||r||c||r]

291.9 268.8 8%
(1 16 4 4 1 4 2)

((A≪B)+C)/D 28.75 (0 26 6)
[r||c||c||c||c||r]

291.9 264.8 9%
(2 4 16 4 3 3)

((A≪B)+C)-D 1.19 (0 26 6)
[r||c||c||c||c||c||r]

291.9 224.0 23%
(2 4 4 4 4 4 10)

((A-B)+C)≪D 1.24 (0 26 6)
[r||c||c||c||c||c||r]

291.9 224.0 23%
(9 4 4 4 4 4 3)

Average 20%

* DAS indicates the implementation scheme in [2], with [RCA||CLA|| CSKA]

* AHA: { RCA, CLA, CSKA }

* ‘r’ indicates RCA; ‘c’ indicates CLA.

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits

64-bit output.

49

5.4 Generating Multiple (Super) Adders

If two or more addition operations are chained, implementing the adders with FA-tree

or CSA-tree might reduce the overall delay. However, as stated in subsection 4.2 there

are cases where FA-tree or CSA-tree implementation is not appropriate. We assume

those cases in the experiments. We test our AHA scheme with the implementation

of RCA-RCA (two chained RCAs), CLA-CLA (two chained CLA), BKA-BKA (two

chained BKA) and CSLA-CSLA (two chained CSLA). Table 5.7 shows the results of

AHA and those combinations of pure adders. The results indicate that the multiple

AHA synthesis outperforms the pure adder implementations, but in some design there

is no improvement by AHA at all. Table 5.8 shows the comparison of AHA synthesis

results with that in [2]. The area improvement is 18% ∼ 31%, which clearly indicates

that our proposed multiple AHA synthesis scheme works well.

5.5 Comparison with Commercial Synthesis Tool

It might be interesting to see how well a commercial synthesis tool selects pure adders

to optimize area under a given timing constraint. We compare our AHA synthesis

results with that produced by Synopsys Design Compiler [3]. Tables 5.9 and 5.10

show the comparison of results for various arithmetic expressions. In this experiments

the output timing constraints are set to the earliest times used in the experiments in

Tables 5.1, 5.3, 5.5 and 5.7. Our design methodology reoptimizes, in the second pass

of synthesis in the design flow shown in Fig. 4.1, the entire arithmetic logic by using

Design Compiler while retaining the implementation structure of AHA we obtained.

We have observed that Design Compiler initially uses CLA in most of designs to meet

the tight timing constraint and then gradually reduces area at the expense of increas-

ing timing [3]. For some test cases, Design Compiler uses smaller implementation

area, but for most of test cases our hybrid design scheme is able to find more efficient

50

Table 5.7: Comparison of AHA scheme with pure adders for synthesizing two chained

additions.

Expression

Timing (ns) Area (µm2) Area

RCA CLA BKA CSLA AHA AHA
red.

(req. timing)

(((A∗LB)
2.31 2.07 2.17 2.15 2.07 381.7 37% (2.07)

+C)+D)-E

(((A-B)
2.96 2.35 2.49 2.56 2.35 464.6 23% (2.35)

+C)+D)∗LE

(((A/B)
30.61 29.80 29.94 30.12 29.80 514.4 15% (29.80)

+C)+D)≪E

(((A≪B)
29.73 28.97 29.96 29.23 28.97 605.8 0% (28.97)

+C)+D)/E

(((A≪B)
1.97 1.44 1.47 1.59 1.43 443.1 27% (1.44)

+C)+D)-E

(((A-B)
1.98 1.37 1.52 1.55 1.34 464.6 23% (1.37)

+C)+D)≪E

Average 21%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits

of 64-bit output.

* AHA: { RCA, CLA, CSKA }

* Area (32-bit addition): RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,

CSLA:479.8.

51

Table 5.8: Comparison of AHA scheme with [2] for two chained additions.

Expression

Req. Adder composition (bit-widths) Area (µm2)

output
DAS AHA DAS AHA

Area

time red.

2.09

[r||c||c||c||r||r]

553.2 381.7 31%
(((A∗LB) (3 23 6) (13 4 4 4 4 3)

+C)+D)-E (3 23 6) [r||r||c||c||c||r]

(13 4 4 4 4 3)

2.52

[r||c||c||c||c||r||r]

583.9 414.9 29%
(((A-B) (0 26 6) (9 4 4 4 4 4 3)

+C)+D)∗LE (0 26 6) [r||r||c||c||c||c||r]

(9 4 4 4 4 4 3)

29.92

[r||c||c||c||c||c||c||r||r]

583.9 481.2 18%
(((A/B) (0 26 6) (3 4 4 4 4 4 4 4 1)

+C)+D)≪E (0 26 6) [r||r||c||c||c||c||c||c||r]

(3 4 4 4 4 4 4 4 1)

29.09

[r||c||c||c||c||c||c||r||r]

583.9 481.2 18%
(((A≪B) (0 26 6) (3 4 4 4 4 4 4 4 1)

+C)+D)/E (0 26 6) [r||r||c||c||c||c||c||c||r]

(3 4 4 4 4 4 4 4 1)

1.44

[r||c||c||c||c||r||r]

583.9 443.1 24%
(((A≪B) (0 26 6) (3 4 6 4 4 4 7)

+C)+D)-E (0 26 6) [r||r||c||c||c||c||r]

(3 4 6 4 4 4 7)

1.54

[r||c||c||c||c||r||r]

583.9 414.9 29%
(((A-B) (0 26 6) (9 4 4 4 4 4 3)

+C)+D)≪E (0 26 6) [r||r||c||c||c||c||r]

(9 4 4 4 4 4 3)

Average 25%

* DAS indicates the implementation scheme in [2], with [RCA||CLA|| CSKA]

* AHA: { RCA, CLA, CSKA }

* ‘r’ indicates RCA; ‘c’ indicates CLA.

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32

bits 64-bit output.

52

implementations.

Table 5.9: Comparison of AHA scheme with Synopsys Design Compiler [3] for

simple arithmetic expressions.

Expression

Area (µm2)

Area

AHA DC red.

(A+1B)+C 141.1 261.2 46%

(A+2B)+C 216.6 260.9 17%

(A+3B)+C 214.5 261.8 18%

(A+4B)+C 224.0 260.9 14%

(A∗LB)+C 199.0 260.9 24%

(A/B)+C 236.4 260.9 9%

(A≪B)+C 236.4 260.9 9%

A2+B 141.1 260.9 46%

(A-B)+C 216.6 260.9 17%

Average 22%

Expression

Area (µm2)

Area

AHA DC red.

(A+B)+1C 141.1 263.7 46%

(A+B)+2C 225.4 260.9 14%

(A+B)+3C 269.0 260.9 -3%

(A+B)+4C 231.6 260.9 11%

(A+B)∗LC 236.4 260.9 9%

(A+B)/C 268.8 260.9 -3%

(A+B)≪C 236.4 260.9 9%

(A+B)2 196.7 260.9 25%

(A+B)-C 224.0 260.9 14%

Average 14%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order

32 bits of 64-bit output.

* DC: Synopsys Design Compiler R©

5.6 AHA Synthesis Combined with Cell Sizing

To consider the effect of cell sizing on the AHA synthesis, besides the area-efficient

implementations RCA, CLA, BKA, and CSLA used previously, we have produced

53

Table 5.10: Comparison of AHA scheme with Synopsys Design Compiler [3] for

complex arithmetic expressions.

Expression

Area (µm2)

Area

AHA DC red.

((A∗LB)+C)-D 190.9 260.9 27%

((A-B)+C)∗LD 253.7 260.9 3%

((A/B)+C)≪D 236.4 260.9 9%

((A≪B)+C)/D 234.3 260.9 10%

((A≪B)+C)-D 224.0 260.9 14%

((A-B)+C)≪D 240.6 260.9 8%

Average 12%

Expression

Area (µm2)

Area

AHA DC red.

(((A∗LB)+C)+D)-E 380.3 521.8 27%

(((A-B)+C)+D)∗LE 464.6 523.9 11%

(((A/B)+C)+D)≪E 450.9 522.3 14%

(((A≪B)+C)+D)/E 605.8 527.8 -15%

(((A≪B)+C)+D)-E 443.1 521.8 15%

(((A-B)+C)+D)≪E 424.4 521.8 19%

Average 12%

* DC: Synopsys Design Compiler R©

54

four additional fast implementations labeled RCAm, CLAm, BKAm, and CSLAm by

applying Synopsys Design Compiler [3] with set max delay 0 all outputs()

command. Carry out time, maximum sum out time and area of the adders with respect

to bit width of each adders are depicted 5.1. We set the pure adder library L = {RCA,

RCAm, CLA, CLAm, BKAm} in our AHA synthesis. The comparisons of results are

shown in Tables 5.11, 5.12, and 5.13. As expected, for some test cases, considering the

cell sizing effect on the AHA synthesis is very effective in reducing area while meet-

ing timing, but for some test cases, there is no improvement. This is the case where

due to the tight timing constraint (blue numbers in tables) our scheme was not able to

produce an AHA composed of multiple pure adders and thus used, as the AHA, only

the single (i.e., the whole n-bit) fast pure adder implementation that had been created

by cell sizing.

5.7 Synthesis for power minimization

AHA synthesis can be used for power consumption minimization while satisfying

given timing constraints. Table 5.14 shows optimization results targeting minimiz-

ing power consumption while satisfying given timing constraints. The first column

shows the tested arithmetic expression and addition marked with red color are the ad-

dition to be optimized. Timing constraints are given by using the addition with pure

adders {RCA, RCAm, CLA, CLAm, BKA, BKAm, CSLA, CSLAm }, then selecting

the adders which gives fastest timing. The last column represents power reduction

compared to the pure adders which gives best timing.

Fig. 5.2 shows area and power consumption relationship of the optimal solution

which targets minimizing power consumption. As shown, the adder with larger area

consumes more power and this have almost linear relationship.

55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
o
u

t
T

im
e

(n
s)

Bit Width

rca

rca_mindel

cla

cla_mindel

BKA

BKA_mindel

CSELA

CSELA_mindel

(a) Carry output time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
a

x
 S

u
m

 O
u

t
T

im
e

(n
s)

Bit Width

rca

rca_mindel

cla

cla_mindel

BKA

BKA_mindel

CSELA

CSELA_mindel

(b) Maximum sum output time

0

200

400

600

800

1000

1200

A
re

a
 (

u
m

^
2

)

Bit Width

rca

rca_mindel

cla

cla_mindel

BKA

BKA_mindel

CSELA

CSELA_mindel

(c) Area

Figure 5.1: Cout time, maximum sum out time and Area of the adders with respect to

bit width

56

Table 5.11: Comparison of AHA scheme using multiply cell sized pure adder imple-

mentations under uneven input arrival times.

Exp.

Timing Area Area

(ns) (µm2) red.

RCA RCAm CLA CLAm BKA BKAm CSLA CSLAm AHA

(A+1B)+C 1.58 1.59 1.60 1.69 1.65 1.76 1.62 1.65 141.1 0%

(A+2B)+C 1.60 1.01 0.82 0.72 0.86 0.76 0.92 0.75 489.2 0%

(A+3B)+C 1.60 1.02 0.88 0.78 0.95 0.85 0.95 0.84 389.5 20%

(A+4B)+C 1.62 1.06 0.99 0.96 1.09 1.01 1.09 0.99 281.0 43%

(A∗LB)+C 2.11 1.66 1.63 1.57 1.68 1.61 1.67 1.59 489.2 0%

(A/B)+C 30.25 29.54 29.20 29.08 29.31 29.02 29.50 29.07 753.1 0%

(A≪B)+C 1.77 1.07 0.78 0.62 0.86 0.55 1.02 0.60 753.1 0%

A2+B 1.54 1.54 1.55 1.64 1.61 1.71 1.58 1.60 186.8 57%

(A-B)+C 1.61 1.00 0.83 0.82 0.95 0.88 0.93 0.84 245.4 50%

Average 16%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits of

64-bit output.

* Area (32-bit addition): RCA:141.1, RCAm:438.9, CLA:302.9, CLAm:489.2,

BKA:395.5, BKAm:753.1, CSLA:479.8, CSLAm:917.1.

57

Table 5.12: Comparison of AHA scheme using multiply cell sized pure adder imple-

mentations under the constraint of uneven required output times.

Exp.

Timing Area Area

(ns) (µm2) red.

RCA RCAm CLA CLAm BKA BKAm CSLA CSLAm AHA

(A+B)+1C 1.58 1.61 1.60 1.60 1.60 1.57 1.62 1.64 172.5 77%

(A+B)+2C 1.60 1.06 0.82 0.77 0.88 0.73 0.99 0.78 404.8 46%

(A+B)+3C 1.65 1.10 0.86 0.81 0.95 0.78 1.09 0.83 753.1 0%

(A+B)+4C 1.62 1.09 0.92 0.87 0.95 0.85 1.09 0.92 753.1 0%

(A+B)∗LC 2.75 2.06 1.76 1.62 1.84 1.60 2.03 1.61 264.8 65%

(A+B)/C 29.44 28.82 28.82 28.82 28.75 28.82 28.75 28.82 224.0 76%

(A+B)≪C 1.78 1.07 0.78 0.62 0.87 0.55 1.02 0.60 753.1 0%

(A+B)2 3.61 3.21 3.20 3.15 3.22 3.13 3.26 3.18 248.9 67%

(A+B)-C 1.61 1.08 0.92 0.87 0.94 0.82 1.00 0.87 753.1 0%

Average 37%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits of

64-bit output.

* Area (32-bit addition): RCA:141.1, RCAm:438.9, CLA:302.9, CLAm:489.2,

BKA:395.5, BKAm:753.1, CSLA:479.8, CSLAm:917.1.

58

Table 5.13: Comparison of AHA scheme using multiply cell sized pure adder imple-

mentations under both uneven input arrival and required output times.

Exp.

Timing Area Area

(ns) (µm2) red.

RCA RCAm CLA CLAm BKA BKAm CSLA CSLAm AHA

((A∗LB)+C)-D 2.22 1.95 1.85 1.82 1.88 1.83 1.85 1.84 190.9 0%

((A-B)+C)∗LD 2.87 2.27 2.09 2.07 2.20 2.11 2.22 2.13 253.7 48%

((A/B)+C)≪D 30.53 29.82 29.47 29.36 29.59 29.30 29.77 29.35 268.8 60%

((A≪B)+C)/D 29.64 29.01 28.75 28.82 28.75 28.82 28.89 28.82 264.8 34%

((A≪B)+C)-D 1.88 1.36 1.19 1.14 1.21 1.10 1.28 1.15 224.0 0%

((A-B)+C)≪D 1.89 1.28 1.11 1.07 1.22 1.10 1.21 1.11 240.6 51%

Average 32%

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; ∗L: low order 32 bits of 64-bit

output.

* Area (32-bit addition): RCA:141.1, RCAm:438.9, CLA:302.9, CLAm:489.2,

BKA:395.5, BKAm:753.1, CSLA:479.8, CSLAm:917.1.

75

85

95

105

115

125

135

145

155

165

175

160 210 260 310 360 410 460 510

P
o
w

e
r

(u
w

)

Area (um^2)

Area & Power Relation

Figure 5.2: Area and power relation of the optimal solution targeting power minimiza-

tion.

59

Table 5.14: Comparison of AHA scheme with [2] under both

uneven input arrival and required output times.

Expression Adder composition Power (µw2)
Power

red.

((A-B)+C)∗LD
[r||c||c||c||c||c]

100.0 41%
(7 4 4 4 10 3)

((A/B)+C)≪D
[r||c||c||r]

110.8 51%
(1 26 4 1)

((A≪B)+C)/D
[r||c||c||c||r||c||r]

102.2 27%
(2 4 4 16 2 3 1)

((A-B)+C)≪D
[r||c||c||c||c||c||c||r]

95.1 44%
(7 4 4 4 4 4 4 1)

Average 27%

* AHA: { L = {RCA, RCAm, CLA, CLAm, BKA, BKAm,

CSLA, CSLAm } }

* ‘r’ indicates RCA; ‘c’ indicates CLA.

* Power (32-bit addition): RCA:74.4, RCAm:160.7,

CLA:112.5, CLAm:168.3, BKA:140.8, BKAm:223.9420,

CSLA:180.0, CSLAm:327.0.

60

5.8 Design Quality and Running time.

• Design quality: Fig. 5.3 shows the implementation area of AHAs with respect to

various pure adder library L that AHA scheme uses. The tested 16 circuits are those

arithmetic expressions used in the previous tables. It is shown that L = {RCA,CLA},

{RCA,CLA,CSKA} and {RCA,CLA,CSLA} produce the most efficient adders.

Consequently, we can trim the library to L = {RCA,CLA} to reduce the ANA synthe-

sis complexity while creating area-efficient adders under timing constraint. However,

depending on the technology and pure adder implementation details to be used, the

best library might be different.

• Running time: Fig. 5.3 summarizes the run time of AHA synthesis with respect

to various ∆d values, bit-width of addends, and target library L. We measured av-

erage run time of AHA synthesis for the expressions in Tables 5.1, 5.3, 5.5, and

5.7. The slowest run time is about 15 minutes, which happens when ∆d = 1 and

L = {RCA,CLA,CSKA} for 32-bit addition, as shown in Fig. 5.3(d). If the size of

L is over 4 or the bit-width of addends exceeds 32, the running time can be controlled

by increasing the value of parameter ∆d.

61

0

50

100

150

200

250

300

350

400

450

{RCA,

CLA}

{RCA,

BKA}

{CLA,

CSKA}

{CLA,

BKA}

{CLA,

CSELA}

{CSKA,

BKA}

{CSKA,

CSELA}

{BKA,

CSELA}

{RCA,

CLA,

CSKA}

{RCA,

CLA,

CSELA}

{CLA,

CSKA,

BKA}

A
re

a
 (

u
m

^
2

)

L : Library of pure adders

circuit 1

circuit 2

circuit 3

circuit 4

circuit 5

circuit 6

circuit 7

circuit 8

circuit 9

circuit 10

circuit 11

circuit 12

circuit 13

circuit 14

circuit 15

circuit 16

Figure 5.3: Comparison of implementation area produced by using various libraries of

pure adders.

62

0

100

200

300

400

500

600

16bit 20bit 24bit 28bit 32bit

R
u

n
 T

im
e

(s
)

Width of Addends

{RCA, CLA}

d = 1

d = 2

d = 4

d = 6

(a) L = {RCA, CLA}

0

50

100

150

200

250

300

350

16bit 20bit 24bit 28bit 32bit

R
u

n
 T

im
e

(s
)

Width of Addends

{CLA, CSKA}

d = 1

d = 2

d = 4

d = 6

(b) L = {CLA, CSKA}

0

100

200

300

400

500

600

700

800

900

16bit 20bit 24bit 28bit 32bit

R
u

n
 T

im
e

(s
)

Width of Addends

{CSKA, BKA}

d = 1

d = 2

d = 4

d = 6

(c) L = {CSKA,BKA}

63

0

100

200

300

400

500

600

700

800

900

16bit 20bit 24bit 28bit 32bit

R
u

n
 T

im
e

(s
)

Width of Addends

{RCA, CLA, CSKA}

d = 1

d = 2

d = 4

d = 6

(d) L = {RCA, CLA, CSKA}

0

100

200

300

400

500

600

700

800

900

16bit 20bit 24bit 28bit 32bit

R
u

n
 T

im
e

(s
)

Width of Addends

{RCA, CLA, CSELA}

d = 1

d = 2

d = 4

d = 6

(e) L = {RCA, CLA, CSLA}

0

50

100

150

200

250

300

350

400

16bit 20bit 24bit 28bit 32bit

R
u

n
 T

im
e

(s
)

Width of Addends

{CLA, CSKA, BKA}

d = 1

d = 2

d = 4

d = 6

(f) L = {CLA, CSKA,BKA}

Figure 5.3: Run times of AHA scheme for various values of parameter d, library L,

and bit-width of addends.

64

Chapter 6

Conclusion

This dissertation proposed a new hybrid adder design scheme. Contrary to the con-

ventional hybrid adder scheme in which the target application was confined to the syn-

thesis of final adder in the fast multiplier design, our scheme targeted re-optimization

strategy where the design was under a stringent timing violation and an addition logic

was on a critical delay path of the design. This dissertation proposed a new systematic

hybrid adder design scheme, called adaptable hybrid adder scheme, to customize the

addition structure by combining pure sub-adders effectively to meet the timing con-

straint. The proposed adder design scheme will be practically very useful in finding

a new adder structure or resynthesizing an existing adder under a tight timing budget,

which otherwise, a complete restructuring or reoptimizing of the entire design shall be

needed.

65

Bibliography

[1] V. Oklobdzija and D. Villeger, “Improving multiplier design by using improved

column compressiontree and optimized final adder in cmos technology,” IEEE

Transactions on VLSI Systems, vol. 3, no. 2, pp. 292–301, 1995.

[2] S. Das and S. P. Khatri, “Generation of the optimal bit-width topology of the fast

hybrid adder in a parallel multiplier,” in Proceedings of the 11th International

Conference on IC Design and Technology (ICICDT’07). Los Alamitos, CA:

IEEE, 2007, pp. 1–6.

[3] “Synopsys timing constraints and optimization user guide,” 2010,

http://www.synopsys.com.

[4] B. Parhami, Computer Arithmetic Algorithms And Hardware Designs. New

York, NY: Oxford University Press, 1999.

[5] O. J. Bedrij, “Carry-select adder,” IRE Transactions on Electron Computers,

no. 3, pp. 340–346, 1962.

[6] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Trans-

actions on Computers, no. 3, pp. 260–264, 1982.

[7] R. Ladner and M. Fischer, “Parallel prefix computation,” Journal of ACM,

vol. 27, pp. 831–838, 1980.

66

[8] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a

general class of recurrence equations,” IEEE Transactions on Computers, no. 8,

pp. 786–793, 1973.

[9] H. Ling, “High-speed binary adder,” IBM Journal of Research and Development,

vol. 5, no. 3, pp. 156–166, 1981.

[10] S. Knowles, “A family of adders,” in Proceedings of 14th IEEE Symp. Computer

Arithmetic, 1999, pp. 14–16.

[11] S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar, “A 4 ghz 130 nm ad-

dress generation unit with 32-bit sparse-tree adder core,” in Symp. VLSI Circuits

Digest of Technical Papers, 2002, pp. 126–127.

[12] R. Zlatanovic, S. Kao, and B. Nikolic, “Energy-delay optimization of 64-bit

carry-lookahead adders with a 240ps 90nm cmos design example,” IEEE Journal

of Solid-State Circuits, vol. 44, no. 2, pp. 569–583, 2009.

[13] B. Zeydel, D. Baran, and V. Oklobdzija, “Energy-efficient design methodologies:

high-performance vlsi adders,” IEEE Journal of Solid-State Circuits, vol. 45,

no. 6, pp. 1220–1233, 2010.

[14] T. Han and D. Carlson, “Fast area-efficient vlsi adders,” in Proceedings of 8th

IEEE Symp. on Computer Arithmetic, 1987, pp. 49–56.

[15] T. Lynch and E. E. Swartzlander, “A spanning tree carry lookahead adder,” IEEE

Transactions on Computers, vol. 41, no. 8, pp. 931–939, 1992.

[16] V. Kantabutra, “A recursive carry lookahead - carry select hybrid adder,” IEEE

Transactions on Computers, vol. 42, no. 12, pp. 1495–1499, 1993.

67

[17] Y. Wang, C. Pai, and X. Song, “The design of hybrid carry lookahead - carry

select sdders,” IEEE Transactions on Circuit and Systems, vol. 49, no. 1, pp.

16–24, 2002.

[18] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix ling adders,”

IEEE Transactions on Computers, vol. 54, no. 2, pp. 225–231, 2005.

[19] J. Lee, J. Lee, B. Lee, and M. Ercegovac, “A design method for heterogeneous

adders,” in Proceedings of the 3rd International Conference on Embedded Soft-

ware and Systems (ICESS’07). Berlin Heidelberg: Springer-Verlag, 2007, pp.

121–132.

[20] I. Koren, Computer arithmetic algorithms. Natick, MA: A. K. Peters, 2001.

[21] P. F. Stelling and V. G. Oklobdzija, “Design strategies for optimal hybrid final

adders in a parallel multiplier,” Journal of VLSI Signal Processing, vol. 14, no. 3,

pp. 321–331, 1996.

[22] P. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate operation

in multiplication time,” in Proceedings of the 13th Symposium on Computer

Arithmetic (ARITH’97). Washington D.C., DC: IEEE Computer Society, 1997,

pp. 99–106.

[23] R. Zimmermann, “Non-heuristic optimization and synthesis of parallel-prefix

adders,” in Proceedings of Int. Workshop on Logic and Architecture Synthesis,

1996, pp. 123–132.

[24] R. Zimmermann and D. Tran, “Optimized synthesis of sum-of-products,” in

Proceedings of 37th Asilomar Conference on Signals, Systems, and Computers,

2003, pp. 9–12.

68

[25] T. Kim, W. Jao, and S. Tjiang, “Circuit optimization using carry-save-adder

cells,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 17, no. 10, pp. 974–984, 1998.

[26] J. Um and T. Kim, “An optimal allocation of carry-save-adders in arithmetic

circuits,” IEEE Transactions on Computers, vol. 50, no. 3, pp. 215–233, 2001.

[27] V. G. Oklobdzija, D. Villeger, and S. S. Lin, “A method for speed optimized

partial product reduction and generation of fast parallel multiplier using an algo-

rithmic approach,” IEEE Transactions on Computers, vol. 45, no. 3, pp. 294–306,

1996.

[28] P. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Design strategies for

optimal multipler circuits,” IEEE Transactions on Computers, vol. 47, no. 3, pp.

273–285, 1998.

69

국문초록

CMOS 반도체 소자의 공정이 미세 공정으로 변화하면서, 회로의 시간제약

을만족시키는것이 집적회로설계에있어서 점점더중요해지고 있으며, 집적

회로에서가장 중요하게 시간에영향을 끼치는 경로에는가산기, 감산기, 그리

고 곰셈기와 같은 연산 요소들이 포함되어 있다. 감산기와 곰셈기는 덧셈기로

구현될수있기때문에,곰셈기에대한동작속도를향상시키기위한많은연구

들이있어왔다. 본논문은가장중요하게시간에영향을끼치는회로의경로상

의덧셈기에대해혼성덧셈기구조를사용하여시간제약을만족시키면서동시

에덧셈기의면적을줄이는방법을제안한다. 이전의혼성덧셈기의구조는균

일하거나 특정한 형태의 입력 시간을 가정하였다. 하지만 본 논문에서 제안되

어지는방법은실재의회로에서입력시간뿐만아니라출력단에서의필요시간

을 추출하여 이를 덧셈기의 최적화에 사요한다. 특히 본 논문에서는 효율적인

혼성덧셈기의제거방법을사용하여,동적프로그래밍에기반한혼성덧셈기의

설계를위한체계적인방법을제시한다. 본논문에서제안되는방법은시간제

약이심한상황에서연산집중적인회로의시간을최적화하는데사용될수있

다는데있어서,실질적이다고할수있다.본논문에서이와관련한여려상황에

대하여본논문에서제안되어지는방법이순수한덧셈기나이전연구에비해얼

만큼시간과면적에대하여효율적으로최적화할수있는지에대한다양한실

험자료들을제공한다.

주요어: Hybrid adder, RTL resynthesis, arithmetic optimization, timing optimization

학번: 2007-30216

70

ACKNOWLEDGMENT

어느덧 7년이라는 시간이 지났습니다. 돌이켜 보면 지난 시간들 동안 많은

일들이있었고그와중에과분할정도로많은사랑을받아왔던것같습니다.

먼저,지난 7년여의대학원생활동안부족한저를이끌어주시고지도해주신

김태환교수님께진심으로감사드립니다. 막상연구실을떠나려하니제가얼

마나든든한그늘밑에있었는지새삼깨닫게됩니다. 연구자로서갖추어야할

덕목과태도뿐만아니라한명의사람으로서갖추어야하는것이무엇인지교수

님을통하여배울수있었습니다. 교수님의가르침을가슴깊이새기며살아가

도록하겠습니다.

더불어대학원생활을하는동안가족처럼의지하고힘이되어준시스템합성

연구실선후배님들께도감사의말씀을전합니다. 여러분들과연구실에서함께

한추억들은평생큰힘이되어줄것같습니다.

또한가까이서 멀리서 저와함께해준 친구들, 동아리 선후배님들, 동문회 선후

배님들과친척분들께도감사드립니다.

마지막으로학위 과정을무사히마칠 수 있도록저를 응원해주시고든든한

버팀목이 되어주신, 세상에서 가장 사랑하고 존경하는 아버지, 어머니와 형님,

그리고형수님. 진심으로...감사드립니다.

71

	1 Introduction
	1.1 Pure adders
	1.2 Parallel prefix adders
	1.3 Hybrid adders
	1.4 Hybrid adders with timing constraints
	1.5 Contribution of this dissertation

	2 Motivational Examples
	3 Definitions and Design Flow
	3.1 Notations and Definitions

	4 Synthesis of Adaptable Hybrid Adders
	4.1 Synthesizing Single Adaptable Hybrid Adder
	4.2 Synthesizing Multiple Adaptable Hybrid Adders

	5 Experimental Results
	5.1 Generating a Single Adder with Non-uniform Input Arrival Times
	5.2 Generating a Single Adder Considering Non-uniform Output Required Time Constraint
	5.3 Generating a Single Adder Considering Both Non-uniform Input Arrival and Output Required Times
	5.4 Generating Multiple (Super) Adders
	5.5 Comparison with Commercial Synthesis Tool
	5.6 AHA Synthesis Combined with Cell Sizing
	5.7 Synthesis for power minimization
	5.8 Design Quality and Running time

	6 Conclusion
	Abstract in Korean

<startpage>13
1 Introduction 1
 1.1 Pure adders 1
 1.2 Parallel prefix adders 3
 1.3 Hybrid adders 5
 1.4 Hybrid adders with timing constraints 6
 1.5 Contribution of this dissertation 8
2 Motivational Examples 11
3 Definitions and Design Flow 19
 3.1 Notations and Definitions 19
4 Synthesis of Adaptable Hybrid Adders 23
 4.1 Synthesizing Single Adaptable Hybrid Adder 25
 4.2 Synthesizing Multiple Adaptable Hybrid Adders 33
5 Experimental Results 40
 5.1 Generating a Single Adder with Non-uniform Input Arrival Times 41
 5.2 Generating a Single Adder Considering Non-uniform Output Required Time Constraint 45
 5.3 Generating a Single Adder Considering Both Non-uniform Input Arrival and Output Required Times 45
 5.4 Generating Multiple (Super) Adders 50
 5.5 Comparison with Commercial Synthesis Tool 50
 5.6 AHA Synthesis Combined with Cell Sizing 53
 5.7 Synthesis for power minimization 55
 5.8 Design Quality and Running time 61
6 Conclusion 65
Abstract in Korean 70
</body>

