creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Design Methodology of Adaptable Hybrid
Adders

H-g 7bsdt o] F 7Aky] AA g E

BY

YONGHWAN KIM

FEBRUARY 2012

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

H E 1'_” 1T

I

Ph.D. DISSERTATION

Design Methodology of Adaptable Hybrid
Adders

H-g 7bsdt o] F 7Aky] AA g E

BY

YONGHWAN KIM

FEBRUARY 2012

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

H E 1'_” 1T

I

Design Methodology of Adaptable Hybrid Adders

o)

—

~A
{+

E
P

20119 11

Tor

2011 124

=
l

fm— e

)

2 1_'_]'

i
1

.H -

o 0) o o

o o oF oF

Abstract

As the CMOS processing technology scales down, saytisfiying timing constraints
is becoming more important in the integrated circuit design, and most critical timing
paths in a circuit involve one or more arithmetic components such as adder, subtractor,
and multiplier. Subtractor and multiplier can be implemented with adder, there have
been many researches regarding the enhancement of the speed of the adder.

This dissertation provides the method of redesigning the addition logic on a critical
timing path to meet the timing constraint while minimally allocating the area of adders
using hybrid structure bf AHA(adaptable hybrid adder). The previous hybrid adder
structures assumed uniform or specific patterns of input arrival times to the adder or
used very simplified method to estimate the delay. But, the proposed method extracts
the required time as well as the input arrival time from the real circuit implementation.
With these timing constraints, the proposed method uses a systematic approach of
hybrid adder design exploration, based on dynamic programming with well-controlled
pruning techniques. The proposed method can cope with various timing constraints
which were extracted from real circuits by satisfying given timing constraints with
minimal area. Various experimental data are provided to show the applicability of the

proposed method.

keywords: Hybrid adder, RTL resynthesis, arithmetic optimization, timing optimiza-
tion

student number: 2007-30216

i s - w k)

Contents

Abstract
Contents

List of Figures
List of Tables

1 Introduction

1.1 Pureadders
1.2 Parallel prefix adders
1.3 Hybridadders
1.4 Hybrid adders with timing constraints

1.5 Contribution of this dissertation

2 Motivational Examples

3 Definitions and Design Flow

3.1 Notations and Definitions

4 Synthesis of Adaptable Hybrid Adders
4.1 Synthesizing Single Adaptable Hybrid Adder

il

ii

iv

vii

4.2 Synthesizing Multiple Adaptable Hybrid Adders 33

5 Experimental Results 40
5.1 Generating a Single Adder with Non-uniform Input Arrival Times . . 41
5.2 Generating a Single Adder Considering Non-uniform Output Required

Time Constraint o 45

5.3 Generating a Single Adder Considering Both Non-uniform Input Ar-

rival and Output Required Times 45

5.4 Generating Multiple (Super) Adders 50

5.5 Comparison with Commercial Synthesis Tool 50
5.6 AHA Synthesis Combined with Cell Sizing 53

5.7 Synthesis for power minimization 55

5.8 Design Quality and Running time. 61

6 Conclusion 65
Abstract in Korean 70

i ; ,H *._“T 1_'.]'| '-:ﬂr T

1.1
1.2
1.3

1.4
1.5

2.0

2.1

2.1

List of Figures

The ripple-carry adder(RCA).
The carry look-ahead adder(CLA).
Comparison of area, maximum sum output time and maximum carry
output time of the adders with respect to bit width of the adders.

Input arrival timing to the final adder and adder allocation of [1] . . .

The prefix graph example.

Synthesizing a hybrid adder in the context of designing a * b+ ¢ where
the arrival times of input bits to the additions are not even (due to
the multiplication) while the required times of the output bits of the
additions are all equal, setting to 2.25ns. (In extracting the timing of
logical and physical implementations, Synopsys Design Compiler and
Prime Time with TSMC 40nm standard cell library are used.)

Synthesizing a hybrid adder in the context of both non-uniform output
bit required and input bit arrival times. It is observed that when the

output required times are not uniform a highly sophisticated hybrid

adder design is expected in order to make the timing constraint be met.

Synthesizing multiple hybrid adders.

[
2 AL

13

3.1

4.1

4.1

4.2
43
4.4

4.5

4.6

4.7

Visual description of the notations in Table 3.1 for an AHA(0,15) and

its internal structure.

The flow of design methodology using our AHA synthesis. Both of the
first and second passes of synthesis use the initial HDL design code as
input, but the second pass will preserve the hybrid adder structure(s)

produced by the AHA synthesis. The selection of addition(s) to be
optimized will be controlled by designer.
Examples of (a) 4-attachable AHA pure adder to an AHA and (b) 4-
extendable pure adder froman AHA.
The iteration flow of synthesizing an n-bit single AHA.
Exponential growth of serach space.
An example of pruning dominated AHAs. The AHA A; dominates
the AHA Ay since A; has earlier timing of carry out indicated by red
dotted arrow and smaller area indicated by the black dotted arrow, thus
Ajcanberemovedsafely.
The sweet spots of CSA-tree (or FA-tree) and multiple AHA imple-
mentations. (a) Case where CSA-tree implementation is effective. (b),
(c), (d) Cases where simultaneous multiple AHA implementation is
effective.
Four possible combinations of extending a (partial) super AHA. (a)
Combination 1: Ad-attach for both top and bottom AHAs. (b) Com-
bination 2: Ad-extend for top AHA and Ad-attach for bottom AHA.
(c) Combination 3: Ad-attach for top AHA and Ad-extend for bottom
AHA. (d) Combination 4: Ad-extend for both top and bottom AHAs.

The iteration flow of synthesizing an n-bit super AHA.

24

38
39

5.1

5.2

53

53

Cout time, maximum sum out time and Area of the adders with respect
tobitwidth 56
Area and power relation of the optimal solution targeting power mini-
MIZAtioN.o 59
Comparison of implementation area produced by using various libraries

of pure adders. L 62
Run times of AHA scheme for various values of parameter d, library

L, and bit-width of addends. 64

vi s M EEw

3.1

5.1

52
53

54

5.5

5.6

5.7

5.8
59

List of Tables

Description of notations.

Comparison of AHA scheme with pure adder schemes under uneven

input arrival times. L. Lo

Comparison of AHA scheme with [2] under uneven input arrival times.

Comparison of AHA scheme with pure adder schemes under the con-
straint of uneven required output times.
Comparison of AHA scheme with [2] under the constraint of uneven
required output times.
Comparison of AHA scheme with pure adder schemes under both un-
even input arrival and required output times.
Comparison of AHA scheme with [2] under both uneven input arrival
and required output times. oL
Comparison of AHA scheme with pure adders for synthesizing two
chained additions. o000
Comparison of AHA scheme with [2] for two chained additions. . . .
Comparison of AHA scheme with Synopsys Design Compiler [3] for

simple arithmetic expressions.

[R |
vii ’ ,,H = L

21

42
44

46

47

48

49

51
52

5.10 Comparison of AHA scheme with Synopsys Design Compiler [3] for
complex arithmetic expressions. 54
5.11 Comparison of AHA scheme using multiply cell sized pure adder im-
plementations under uneven input arrival times. 57
5.12 Comparison of AHA scheme using multiply cell sized pure adder im-
plementations under the constraint of uneven required output times. . 58
5.13 Comparison of AHA scheme using multiply cell sized pure adder im-
plementations under both uneven input arrival and required output times. 59
5.14 Comparison of AHA scheme with [2] under both uneven input arrival

and required output times. L. 60

viii ; ,H *._’T 1_'.]'| '-:ﬂr T

Chapter 1

Introduction

Modern VLSI designs including that of digital signal processing applications perform
very intensive arithmetic operations repeatedly under tight timing requirements. Con-
sequently, synthesizing fast arithmetic circuits for the operations under area and/or
power constraints has been an important research topic.

Among the arithmetic operations, addition is the most common operation compo-
nent and thus, a considerable work has been devoted to designing fast adders or area
efficient adders under a tight timing constraint. The adders can be classified into two

groups: pure adders and hybrid adders.

1.1 Pure adders

The pure adders are the ones generated by applying a specific addition scheme to
groups of bit addends uniformly, such that different pure adders have different char-
acteristics of performance, power, and area. Ripple-carry adder (RCA) is a typical
example of pure adder with small area but long carry generation time. Fig. 1.1 shows

32bit structure of RCA

| s - w k)

A[0] B[O] A[1] B[1] - . « A[30] B[30] A[31] B[31]

o o o o o (] o o
1-bi full 1-bit full .. 1-bit full 1-bit full

aduer ou auuci ou auucl ot auucer
0 0

SuM[o] SUM[1] -+ - - SUM[30] SUM[31]

Figure 1.1: The ripple-carry adder(RCA).

On the other hand, carry look-ahead adder (CLA), can reduce critical delay caused
by carry propagation of the RCA by fast carry calculation. We divide the addition in
groups and each group does carry lookahead addition as shown in Fig. 1.2 because of

limited faninout of the gate.

A3-0 B3-0 A7-4 B7-4 Al11-8 B11-8 A15-12 B15-12

,515-12

Carry Look-ahead Generator

Figure 1.2: The carry look-ahead adder(CLA).

carry-skip adder (CSKA) [4], and carry-select adder (CSLA) [5] are another ex-
amples of pure adder designed for fast carry generation which utilize fast carry propa-

gation or carry computation as carry look-ahead adder.

1.2 Parallel prefix adders

Parallel prefix adders, as the name implies, segmented addition is done in a parallel
manner. So, faster addition can be achieved. In particular, various styles of parallel
prefix adder scheme are a class of widely used fast pure adders; Brent-Kung adder
(BKA) [6] is the simplest prefix adder, having a minimum number of prefix nodes
but a maximum number of prefix depth in its prefix graph; Ladner-Fischer adder [7]
has a low depth but a high fanout; Kogge-Stone adder (KSA) [8] has a low fanout
but a large number of prefix nodes; Ling adder [9] is a variant of CLA, but can also
be translated into prefix adder. (Refer to [10] for the details on the properties of the
various styles of prefix adders.)

Fig 1.3 shows area, maximum sum output time and maximum carry output time
of the adders with respect to bit width of the adders which are synthesized with TSMC
40nm standard cell library using Synopsys Design Compiler.

Some of adder design techniques placed their primary importance on minimiz-
ing power consumption rather than timing. For example, Mathew ef al. [11] pro-
posed a technique of synthesizing a low power adder to be used for address generation
unit (AGU) in cores by utilizing sparse-tree adder structure. Contrary to Kogge-Stone
adder [8], they divided the carry-merge tree into the critical and noncritical sections
to reduce the size of node fanout and the length of inter-stage interconnect. Then, they
allocated single-rail dynamic logic and high-V logic on the critical section, and static
logic and low-V7 on the noncritical section to save power. Zlatanovici et al. [12]
explored the energy and delay trade-off in carry look-ahead tree structure with 90nm
technology. Zeydel et al. [13] also explored the energy and delay trade-off by taking

into account adder topology, addition algorithm, gate sizing, and CMOS logic styles.

3 s - w k)

600
500
& 400 /f
<
S 300 M —-rca
s W -=cla
2200 -~BKA
~<CSELA
100 -
0
(11 131 51 [71 (91 [11] [13] [15] [17] [19] [21] [23] [25] [27] [29] [31]
Bit Width
(a) Area of the adders with respect to bit width.
1.60
il
1.40
Z 120 /
g 1.00 /
'i 0.80 / —-rca
=l
& 0.60 / M cla
P ool <L -<BKA
o il
S 040 - —-~CSELA
0.20 -
0.00
(11 131 [SI 171 [9] [11] [13] [15] [17] [19] [21] [23] [25] [27] [29] [31]
Bit Width

(b) Maximum sum output time of the adders with respect to bit width.

1.60

1.40 et

~ 1.20 /

ns

—*rca

< 1.00
£ 0.80 /

/" WM -#-cla

Cout ti

0.00

0.60 -<BKA
0.40 - —=CSELA
0.20 -

(11 31 5] 171 [9] (1] (A3 (1S] [171[19] [21][23] [25] [27] [29] [31]
Bit Width

(c) Maximum carry output time of the adders with respect to bit width.

Figure 1.3: Comparison of area, maximum sum output time and maximum carry out-

put time of the adders with respect to bit width of the adders.

1.3 Hybrid adders

On the other hand, the hybrid adders are those generated by applying more than one
addition scheme used in the pure adder generations to the bit addends. The hybrid
adders are mostly designed for adding the bit addends of non-uniform arrival times
while the pure adders are designed assuming uniform arrival times of addends. Thus,
for designs in which the inputs to an addition operation come from the result of a
combinational logic computation rather than directly from the primary inputs or the
outputs of flip-flops (FFs), a hybrid adder implementation could be more efficient than
pure adders. This work also focuses on the problem of designing a (single or multiple)
hybrid adders of minimal area under timing constraint, but it is unique and suitable for
special applications that most of the previous works have never been addressed.
There have been proposed several schemes of designing fast hybrid adders. Han
and Carlson [14] improved the parallel prefix scheme by combining the Brent-Kung
and Kogge-Stone structures into a hybrid structure. Lynch and Swartzlander [15]
proposed a new hybrid carry look-ahead - carry-select adder structure to reduce the
number of carries that are to be derived in the carry look-ahead tree, in which they
used (4,3) manchester carry chain (Mcc) carry look-ahead modules. Kantabutra [16]
improved the hybrid adder in [15] by using Manchester carry chains of various lengths
instead of chains of all the same length to speed up the addition. Wang, Pai, and
Song [17] proposed a generalized architecture of hybrid carry look-ahead - carry-
select adder in which their idea was to implement the group carry propagates and carry
generators without individual carry propagate/generator signals and complement the
group carry propagate/generator signals to gain speed. In addition, Dimitrakopoulos
and Nikolos [18] proposed a hybrid structure composed of Kogge-Stone parallel prefix
structure for carry generation and carry-select structure for sum calculation to further

reduce timing over the pure parallel prefix adders. Lee ef al. [19] also proposed a

s s - w k)

method of synthesizing hybrid adders composed of two (RCA, CLA) or three (RCA,
CSKA, CLA) pure sub-adders with the objective of minimizing timing under area
constraint. They formulated the problem into an integer linear programming (ILP) and
solved it optimally. All of the previously mentioned works [15-19] assumed that the
arrival times of input bits are all identical (i.e., all zeros). Thus, it is unsure that such
a hybrid adder can fully contribute to synthesizing arithmetic intensive circuits with
tight timing budget if it were mapped to an addition operation on the timing critical

path with severely uneven input arrival times.

1.4 Hpybrid adders with timing constraints

A number of works have addressed the problem of designing hybrid adders with un-
even input bit arrival times. Oklobdzija and Velleger [1] attempted to improve the
timing of parallel multiplier [20] by proposing a critical path based column compres-
sion tree generation followed by creating a hybrid adder by analyzing the profile of
bit arrival times of the two output vectors of compression tree to produce the final
sum. They divided the arrival times into three regions from the least significant bit to
the most significant bit, and attempted the first, second, and third regions of the bit
intervals to implement with a ripple carry adder, a carry-select adder, and a carry look-
ahead adder, respectively, so that the timings of all output bits are to be almost even.
Fig. 1.4 shows input arrival timing to the final adder and adder allocation.

Stelling and Oklobdzija [21] generalized the work of hybrid adder design in [1]
under the cases where the bit arrival times are convex such that the times gradually
increases and then decreases from the least significant input bit to the most. In [22]
they extended the hybrid adder design in [21], so that it can be used in the addition of
the structure of Multiply-Accumulate operation (i.e., A x B + (). On the other hand,

Zimmermann [23] (also in [24]) proposed a parallel-prefix structure based synthesis

6 s - w k)

- "-—‘\

—_ L \\‘x\
wv N
£ RipP(e Carry Carry
> Carry Select Lookahead
© Adder Adder Adder *,
(=] Y2 N\

/I \\

4 \,

e \s\
//' Region 1 Region 2 Region 3 Y
Bit position

Figure 1.4: Input arrival timing to the final adder and adder allocation of [1]

flow of hybrid adder that consists of the following steps:

(1) translating timing constraints into prefix graph constraints

(2) generating a serial-prefix graph (3) compressing prefix graph

(4) performing depth-controlled prefix graph expansion

(5) mapping the prefix graph to prefix adder logic, using either

carry look-ahead or carry-select scheme. In summary, the approach generates a hybrid
adder (in step 5) according to the pattern of prefix level structure of sub-ranges of bit
addends. Here, the approach estimated timing by counting the structure depth in the
prefix graph as shown in 1.5. So, it’s not exact in timing estimation because the prefix
graph can’t represent the timing exactly.

Finally, Das and Khatri [2] proposed an approach to partitioning the input bits of the fi-
nal addition in the parallel multiplier into three disjoint bit intervals, like the work done
in [1], so that the first interval is implemented with a ripple carry adder, the second
a Brent-Kung, and the third a carry-select adder. The two common limitations of the
previous works [1,2,21,22] are that (limitation-1) the hybrid adder design is dedicated
to the adders associated with special architecture: parallel multiplier and Multiply-

Accumulator, and (limitation-2) the bit-level output required times are not considered

7 Rl ke T

SB Bit Position LSB

32-bit Adder .

(Auny) SPAYT Xyaag

Figure 1.5: The prefix graph example.

at all. Limitation-1 inhibits a wide application of hybrid adders to arithmetic circuits
and limitation-2 reduces the suitability of re-optimizing adder in a circuit to further

improve the overall circuit timing.

1.5 Contribution of this dissertation

This dissertation overcomes previous limitations. The contributions of this dissertation

are summarized as:

e This dissertation propose a hybrid adder design scheme that takes into account
the required time of output bits of the addition as well as the input bit arrival
time. This means that the synthesized hybrid adder will be the one that satisfies
the output required timing while minimizing the implementation area. For some
design stages at which the entire system has been almost implemented and the
critical timing is on a path containing arithmetic logic with addition, resynthe-

sizing solely the adder in the logic using our scheme would be greatly useful.

8 R s 1T

& -

e Proposed adder design method is not confined to specific architectures. Pro-
posed design scheme covers all the applications in which an addition operation
is involved. In addition, proposed strategy of synthesizing a hybrid adder is the-
oretically optimal (under a certain timing property of pure adders), as formally
described in Theorem 4.5, in that the selection and usage of various pure adders
are exhaustively explored. In practice, the quality is well-controlled with reason-
ably acceptable running time through the invention of a systematic exploration

of design alternatives and pruning techniques.

e The proposed method also propose an extended adder design scheme that si-
multaneously synthesizes two hybrid adders of parent-child dependency rela-
tion where the conventional addend compression techniques such as CSA-tree
(carry-save adder tree) and FA-tree (full-adder tree) constructions are not ad-
equately applicable, to fully exploit the combined benefit of hybrid adders on

minimizing area under tight timing constraint.

e Synthesis results on diverse arithmetic expressions are given in experiments to
show the usefulness and feasibility of our proposed scheme, confirming that the
previous pure adder and hybrid adder schemes never meet the timing constraint
or meet timing constraint with substantially large addition logic whereas our
scheme creates hybrid adders that are well customized to the whole designs,

satisfying the timing constraint with much smaller addition logic.

The two main tasks that are performed in the RTL/logic synthesis of arithmetic
circuits are the implementation (or adder structure) selection and cell (or gate) sizing,
in which due to the run time problem the two tasks are practically performed sequen-
tially, the implementation selection first, then cell sizing. We target our hybrid adder
scheme to enhancing the task of implementation selection where we assumed to use a

single implementation with moderate timing/area for each pure adder scheme that is

o s - w k)

e

used to form a hybrid adder. However, it should be noted that our scheme can also par-
tially consider the task of cell sizing by including in our pure adder (implementation)
library multiple (cell sized) implementations for each pure adder scheme. Throughout
our presentation, we simply use a single implementation of moderate timing/area for
each pure adder scheme, but we also use one more differently cell sized (fast timing
but large area) implementation for each pure adder scheme.! Note that theoretically
our adder scheme can perfectly perform the two tasks simultaneously by considering
all possible cell sized implementations, but practically our scheme rather focuses on
the implementation selection using typical (or representative) timing/area numbers for
each pure adder, and a fine-grained cell sizing will resort to a subsequent step under

the selected implementation.

'The differently cell sized implementations were obtained by using Synopsys Design Compiler with

the use of set_max_delay 0 all_outputs () command.

10 s M EEw

e

Chapter 2

Motivational Examples

This section illustrates, using examples, the usefulness of hybrid adders and the limi-

tations.

o Synthesizing an adder with non-uniform input bit arrival times but uniform output
bit required times: Fig. 2.0(a) shows the dataflow graph (DFG) of a simple arithmetic
expression a * b 4 ¢ and its architectural implementation diagram. The diagram (and
DFG) shows a chained multiplication-and-addition where the lower 32-bit of the 64-bit
output of multiplication is fed to addition op/ and the upper 32-bit is fed to addition
op2. The opl and op2 are bound to adders ADD_1 and ADD_2, respectively. Sup-
pose that the arithmetic expression has the required timing constraint of 2.25ns. The
four curves labeled design_I, design_2, design_3, and design_4 in Fig. 2.0(b) show
the output timing profiles of the data path in Fig. 2.0(a) when (ADD_1, ADD_2) is
implemented by adders (RCA, RCA), (RCA, CLA), (CLA, RCA), and (CLA, CLA),
respectively. (To extract timing of the logical and physical implementations we used
Synopsys Design Compiler and Prime Time with TSMC 40 nm standard cell library.)
The dotted green curve in Fig. 2.0(b) represents the arrival times to the input ports

of ADD_1 and ADD_2 with respect to the bit positions, and the red line indicates the

1 s M EEw

2.25 ns

arrival time required time

MULT ADD _1 REGs
—F= A 32 A
32 32 32 SUM
A2 Product|+ 32 32
* —B 64 ¢ co
2.25 32 2 _‘
ns| /N T/~ N T ‘ ___?
u op2 + opl < ADD_2 REGs
32 32 32
SUM
| | 1 |] B 32
+’1 CI CcoO ‘
A
LY

(a) A DFG representation for a * b + ¢ and its architectural block diagram.

4.0 design_1
35 ¢ (RCARCA)
: | —design_3
3.0 . - “" (CLA,RCA)
2 25 , Required Time]) —design_2
8 gt ot AT (RCA,CLA)
2.0 . g
g 15 ek _ e design_4
s s oo i e e N - - CLA,CLA
1.0 M kArrival Time ()
05 L
0.0 i[‘ ADD 1 ADD 2
SEe=ITE5I5EE823%7%22558
Bit Position

(b) Output timing profiles of four possible adder implementations. Only design_4 satisfies the

timing requirement of 2.25ns.

. LELE

YL

Delay (ns)
i o — [[
in = tn = tn

S
=

,—Required Time

design_4

Area = 605.7

>
MM
ho”

design_existing
[——
Area =568.5

Arrival Time

ADD 2
Sle -
e ——
s > en N N A)
N NN <+ < = w o o e

Bit Position

(c) Output timing profiles of the reimplemented design (design_existing by replacing the CLAs

for ADD_1 and ADD_2 of design_4 in (b) with hybrid adders created by the hybrid adder scheme

in [2].
MULT
ya
32| A
Product
732 B
32

REGs

REGs

A

Area(
RCA:3bitCLA:23bitCSKA:
6bit, CLA:26bitCSKA:6bit)
=568.5

(d) Architectural block diagram of the reimplemented design design_existing in (c). It is seen

that the two adders are customized into hybrid adders, reducing area under the timing constraint.

Figure 2.0: Synthesizing a hybrid adder in the context of designing a * b+ ¢ where the

arrival times of input bits to the additions are not even (due to the multiplication) while

the required times of the output bits of the additions are all equal, setting to 2.25ns.

(In extracting the timing of logical and physical implementations, Synopsys Design

Compiler and Prime Time with TSMC 40nm standard cell library are used.)

13

-

7% M & 8

e

-

T

output required timing of ADD_1 and ADD_2 to meet the timing constraint of design.
Since only design_4 meets the timing constraint, both of ADD_1 and ADD_2 should
be implemented with CLAs, resulting in the area of 605.7m?. Let us now consider
to reimplement ADD_1 and ADD_2, which were mapped to CLAs, with hybrid adders
produced by applying the scheme in [2]. The dark blue curve labeled design_existing
in Fig. 2.0(c) shows the output timing profile of the data path in Fig. 2.0(a) when the
addends of bit positions 0 to 2 are added by RCA, the addends of bit positions 3 to
25 are added by CLA, and the addends of bit positions 26 to 31 are added by carry-
skip adder(CSKA) for ADD_1. For ADD_2, the addends of bit positions 0 to 25 are
added by CLA, and the addends of bit positions 26 to 31 are added by CSKA. (The
reason why we replaced Brent-Kung adder (BKA) with CLA and carry-select adder
(CSLA) with CSKA was that BKA and CSLA needed much bigger area cost for the
implementation in our experiments.) Fig. 2.0(d) shows the resulting implementation,
which still satisfies the timing constraint, but reduces the logic area from 605.7m?
to 568.5m?, which is about 18.2% reduction. This example shows that a proper use
of a hybrid adder scheme can reduce the circuit timing or area further. However, all
the existing hybrid adder schemes always assume uniform required times of all output

bits, as shown the straight red lines in Fig. 2.0.

o Synthesizing an adder with both non-uniform output required and input arrival times:
Let us consider another data path in Fig. 2.1(a) with timing constraint of 1.72ns, the
structure of which is slightly different from that in Fig. 2.0(a); besides some logic f;
connected to the inputs of ADD_1, there is another, possibly irregular structure of com-
binational logic fo connected to the outputs of ADD_1. Thus, the required times of the
output bits of ADD_1 will not be the same, as indicated by the red curve in Fig. 2.1(b).
Since existing schemes of hybrid adder design including that used in design_existing
in Fig. 2.0(d) simply assume uniform required times of all output bits, it is hard to

find a best (area-minimal) implementation that meets the timing constraint, in most

4 s - w k)

cases failing in meeting the timing constraint. The curve labeled design_existing in
Fig. 2.1(b) shows the output timing profile. On the other hand, the curve labeled de-
sign_new in Fig. 2.1(b) shows the output timing profile of ADD_1, where ADD_1 is
reimplemented with a hybrid adder consisting of RCA for bits 0 to 12, CLA for bits
13 to 16, CLA for bits 17 to 20, CLA for bits 21 to 24, CLA for bits 25 to 27 and RCA
for 28 to 31. As a result, the area is reduced from 276.6m? to 203.4m?, which
is about 26.5% reduction while satisfying the timing requirement of all output bits.
This example clearly shows that in order to produce an optimal hybrid adder, it is very
important to take into account the bit-level output required times as well as the input

arrival times.

o Synthesizing multiple adders with both non-uniform output bit required and input
bit arrival times: Fig. 2.1(a) shows two chained additions op/ and op2 surrounded
by another logic components f;, fo and f3, and the corresponding architectural block
diagram. Thus, for both ADD_1 and ADD_2, their output required times are not even.
The four curves in Fig. 2.1(b) show the output timing profiles of the implementa-
tions of (ADD_1, ADD_2) with (RCA, RCA), (RCA, CLA), (CLA, RCA), and (CLA,
CLA). We can see that only the (CLA, CLA) implementation satisfies the required
timing, resulting in the area of 605.7m?. Now, we reimplement the (CLA, CLA) in
Fig. 2.1(b) by using the hybrid adder scheme in [2], where ADD_1 is reimplemented
first and ADD_2 is implemented later using the input arrival times from the sum output
bits of ADD_1. The output timing profile of the resulting implementation is shown in
the curve labeled design_existing in Fig. 2.1(c). It does not meet the required timing
constraint. On the other hand, the curve labeled design_new shows the output timing
profile of another optimized hybrid implementation, generated while considering the
timing inter-dependency between the two hybrid adders. Note that the implementation
satisfies the output required time and even reduces the area by 42.4% further compared

to (CLA, CLA). This comparison illustrates that simultaneously synthesizing multiple

15 s M EEw

1.72
ns

1.72 ns

arrival time required time

- Logic 2
Logic 1 ADD _1
32
SUM [+ 45>
Product 32 32 32
32
32

(a) Addition operation in between two logic clusters f1, f2, and the architectural block diagram.

2.0
1.8
1.6
1.4

Delay (ns)

SO
SN RSO

design_new

——

Required Time (R13C4C4C4

M C3RY

N
M _~_-==—— Area=2034

b - design_

- —~ e
,\’ exsiting
- Arrival Time

——r—
-
’

(R3C23CS6)

z Area = 276.6

/

7 R: RCA

C:CLA
CS:Carry-

[0] [2] [4] [o] [8] [10][12] [14] [16] [18] [20] [22] [24] [26] [28] [30] Skip

Bit Position

(b) Output timing of design_existing produced by the hybrid adder scheme in [2] and design_new

produced by a further elaborated hybrid adder design method.

Figure 2.1: Synthesizing a hybrid adder in the context of both non-uniform output bit

required and input bit arrival times. It is observed that when the output required times

are not uniform a highly sophisticated hybrid adder design is expected in order to make

the timing constraint be met.

16

2.11 ns

arrival time

required time

\32
\
32
32
‘ Logicl ADD_1 ADD_2 Logic2
2.11
— —>
ns > SUM [~ SUM [+
32 32 32

(a) Arithmetic expression for a + b + ¢ surrounded by logic clusters fi, f2, f3 and the archi-

tectural block diagram.

N
n

g
=

rca-rca

/ Required Time /

chained
Area =282.2

\
\

p—
=]
\

\
]
\
\
()
"
\

-

rca-cla

chained
Area =444

-

—=—cla-rca

Sum Output Time (ns)
\

e
wn
I
\

[N

chained
Area =444

e
=

0] 2] [4] [e]

Bit Position

(8] [10] [12] [14] [16] [18] [20] [22] [24] [26] [28] [30]

cla-cla

chained
Area = 605.7

(b) Output timing of four possible adder implementations. Only CLA-CLA chained satisfies the

timing requirement.

17

LTl

2.5
@ P — Y .
52.0 '/Required Time cla .cla
g chained
§ L5 Area = 605.7
s o
E. """"""""""""" +d‘esign_exis
5 0 Arrival Time ting
£ Area =592
= J
0 -e-design_new
Area = 348.6
0.0
01 121 [41 [6] [8] [10] [12] [14] [16] [18] [20] [22] [24] [26] [28] [30]
Bit Position

(c) Output timing of design4 when ADD_1 followed by ADD_2 are reimplemented by the
adder scheme in [2] and ADD_1 and ADD_2 are simultaneously reimplemented by proposed

scheme.

Figure 2.1: Synthesizing multiple hybrid adders.

hybrid adders is essential to fully exploit the benefit of hybrid adders on optimizing

timing or minimizing area under tight timing constraint.

’ 5 4208t

Chapter 3

Definitions and Design Flow

3.1 Notations and Definitions

Our hybrid design scheme is to partition the bit addends, so that each partitioned bit
addends are added by a pure adder. That is, an n-bit hybrid adder, which we call
adaptable hybrid adder (AHA), produced by our scheme is a concatenation of sub-
adders and each sub-adder is implemented by an adder scheme in £, where L is the
set of pure adder implementation schemes. (A pure adder scheme can have multiple
implementations with different cell sizing. In our presentation we simply assume to
use a single implementation of moderate timing/area for each pure adder scheme, but
in the experiments we include not only the results produced by using the single imple-
mentations only but also the results by using multiple implementations for each adder
scheme. The details will be explained in the experimentation section.)

Adaptable hybrid adder is recursively defined as:

Definition 3.1.1 (Adaptable hybrid adder AHA) For a set L of pure adder imple-
mentation schemes, an n-bit adder A is called adaptable hybrid adder AH A(0,n —

19 ' "H tl 1--” '@1{ Tl

1) if one of the following two conditions is satisfied.

1. Ais apure adder PA), implemented by some scheme \; € L;

2. Ais decomposable into two sub-adders A; (0, k — 1) and Ay (k,n — 1) such that
the carry out of A; is connected to the carry in of As, and A1 (0, k — 1) is a k-bit
adaptable hybrid adder (which is recursively defined) and As is a pure adder that

is implementable by a scheme \; € £, forsome k, 1 <k <n — 1.

We call the AHA A; in Definition 3.1.1 head of AHA A and the pure adder As tail
of A. In addition, we use notations Aj,..q and A;,;; to indicate the head and tail sub-
adders of AHA A, respectively, and Ajeqq || Atair to indicate A. Apeqq is empty if A
is a pure adder.

Table 3.1 lists the notations to be used in our presentation. The visual description of
the notations is shown in Fig. 3.1, where a 16-bit addition of X and Y is implemented
with a hybrid adder AH A(0, 15) that is composed of a hybrid adder AH A(0, 11)
which is the head of AHA(0,15) and a pure adder PAjy, (12,15) which is the tail
of AHA(0,15). AHA(0,11) is further decomposed into head AH A(0, 8) and tail
PA,y,(9,11) of AHA(0,11).

The problem we want to solve can be described as:

Problem 3.1.2 [Generating an adaptable hybrid adder] Given a library L of pure
adder schemes, two n-bit operands X[0 : n — 1] and Y[0 : n — 1] to be added with
their arrival times a(-)s, and the required timing constraint I'[0 : n— 1] of sum outputs,
find a structure of AHA(0,n — 1) that minimizes the value of Cost(-)! of the AHA

while satisfying the timing constraint 1.

'Cost(-) is the total area of the implemented AHA in this work, but can be any design parameters

such as power consumption.

20 s M EEw

Table 3.1: Description of notations.

Notation

Description

ﬁz{)\h)‘Qa"' 7)\M}

The set of pure adder schemes

(e.g. A1 = RCA, Ay = CLA, ...)

PA,

(3

An adder implemented by a pure adder scheme \;.

X[Z j] = [$i7$i+17”' 7:1:]]

Input operand X of addition.

Yli:j] = [y yir1, 5]

Input operand Y of addition.

Sli: j) = [, Six1,- -+ »s5] | Sumoutput S of X[i: j] + Y[i: j].
cin(i) carry in to be added at bit position i.
cout(j) carry out generated from bit position j.
Arrival time of signal e.
a(e)
(e s cin, cout, or a signal in X, Y, S.)
i:j]= . . '
Required times of sum output bits.
[r(si),r(sit1), - 7r(s;)]
An AHA for X[i : j] + Yi : 4],
AHA(i,)
under a(-), I'[¢ : j], and L.
Cost(A) The implementation cost of adder A.
Apead The head sub-adder of AHA A.
Agil The tail sub-adder of AHA A.
|A| The bit-width of an addend of adder A.*

4 We assume that the two input addends in an adder have the same bit widths.

21 ; .H kl 1_'.]'| [

input arrival | [a(y,) o T o (l(yls)] =a(Y)

R T TR

AHA0,8) | PA 4, (9,11) PA;,(12,15)
a(cin)— co(8) - cin(9) co(11)=macin(12)co(15)mu/ 12’ (3]

oot el
:ilrlntg:t arrival : [a(sy) . a(s;s)] =a(s)
required times : [r(s,) o 7(515)] =T(S)

Figure 3.1: Visual description of the notations in Table 3.1 for an AHA(0,15) and its

internal structure.

Definition 3.1.3 (Feasible AHA) Given a library L of adder schemes and required
timing T'[0 : n — 1], an adder that performs X[0 : n — 1]+ Y[0 : n — 1] + cin
with the bit-level arrival times a(X[0 : n — 1]), a(Y[0 : n — 1)), and a(cin)? of
carry in cin is a feasible AHA if it is an AHA implementation using L and satisfies
a(S[0:n —1]) <T[0:n — 1] where a(S[0 : n — 1]) is the bit-level arrival times of

sum output vector S[0 : n — 1] of the adder.

Then, Problem 3.1.2 is to find a minimum-cost feasible AHA under £, the input arrival

times a(-)s, and the output required times I".

*For adding X + Y, we can assume cin = 0 and a(cin) = 0.

2 g ,,»!13! - Eﬂ vl

Chapter 4

Synthesis of Adaptable Hybrid Adders

The basic idea of generating an n-bit AHA of minimum cost is, starting from a set of
feasible AHAs of smallest bit-width, to incrementally update a set of current candi-
dates of AHASs until the bit-width of the updated AHAs reaches n.! Our AHA synthe-
sis is targeted to two scopes of addition: (case 1) resynthesizing an isolated (single)
adder on the critical timing path of circuit; (case 2) resynthesizing chained (multiple)
adders together on the critical timing path. Our AHA synthesis approach to case 1 is
a special case of case 2. Fig. 4.1 shows the flow of design methodology which utilizes
our AHA synthesis.

The first pass of synthesis for the initial HDL code returns the timing information
on the input arrival times and the output required times of an adder(s). Then, our
adder scheme produces an area-optimized hybrid adder structure(s) that satisfies the
timing constraint extracted in the first pass of synthesis. The second pass of synthesis
is then performed for the initial HDL code again while preserving the hybrid adder

structure(s) obtained by our AHA scheme.

'A discussion about theoretical background on our AHA synthesis approach is given at the end of

subsection 4.1.

23 s M EEw

___| Arithmetic intensive
initial HDL design

A 4

Synthesis: Cyp first pass

}

Extract timing

=y

. Selected
addition(s)

== Synthesis: C syn’ second pass

l

[Optimized netlist j

AHA Synthesis

Figure 4.1: The flow of design methodology using our AHA synthesis. Both of the first
and second passes of synthesis use the initial HDL design code as input, but the second
pass will preserve the hybrid adder structure(s) produced by the AHA synthesis. The

selection of addition(s) to be optimized will be controlled by designer.

24 o M 2 et

In the following two subsections, we proposes our AHA synthesis schemes for the

two scopes of addition.

4.1 Synthesizing Single Adaptable Hybrid Adder

Our AHA synthesis scheme is an incremental approach. At each iteration, with a
set of all feasible AHA implementations of a certain size k of input bits, we want to
generate a set of all feasible AHA implementations of an input size greater than k. The

generation is based on the notions of Ad-attachable and Ad-extendable.

Definition 4.1.1 (Ad-attachable AHA) Let A(0, k — 1) be a feasible AHA under the
required timing of the first k bits in T'[0 : n] (k + Ad < n) and B(0,Ad — 1) be
a Ad-bit (Ad > 0) pure adder. Then, it is said that B is Ad-attachable to A if the
(k+ Ad)-bit AH A(0, k+ Ad — 1) constructed by connecting the carry out of A to the
carry in of B is feasible under the required timing of the first (k + Ad)-bit in T'[0 : n).

Definition 4.1.2 (Ad-extendable AHA) Let A0,k + s — 1) be a (k + s)-bit feasible
AHA under the required timing of the first (k + s)-bit in T'[0 : n] (k+ s < n) and
B(k,k + s — 1) be the tail sub-adder of A(0,k + s — 1) implemented by scheme \;.
Then, it is said that B is Ad-extendable from A if the (k + s + Ad)-bit AHA(0, k +
s+Ad—1) (k+ s+ Ad < n) constructed by replacing the s-bit B(k,k+s— 1) with
the (s + Ad)-bit adder implemented by \; is feasible under the required timing of the
first (k + s + Ad)-bit in [0 : n].

Figs. 4.1(a) and (b) show examples of 4-attachable and 4-extendable pure adders to
and from AHA(O,11), respectively. As seen from the examples, for Ad-attachment
any pure scheme of sub-adder can be considered whereas for Ad-extension the scheme

of sub-adder should be the matched with the scheme of tail adder. Note that each of

25 s M EEw

e 4-bits /1 attached | Lobits attached |
o S e T

AHA,(0,15)

AHA(0,8) PA;,(9,11) PA;, (12,15)

Cout(8) o cin(9) cout(11) cin(12)

50 51 SZ 53 S4 SS 56 57 S8 59 510 Sll 512 513 Sl4 515
a(s;) | 0.18 036 0.54 0.72 0.9 1.16 130 140 1.63 181 1.99 217 2.30 2.55 2.71 2.80
I(s;) | 210 178 1.95 2.01 2.08 2.00 195 1.78 217 2.20 220 2.18 2.51 2.83 2.83 2.95

* 4-bits /2 attached | 4-bits attached |
l—————————)

AHA(0,15)

AHA(0,8) PA;,(9,11) PA,, (12,15)

cout(8)=_cin(9) cout(11) cin(12)

[TIITITIT TIT I111

Sl) sl 52 S3 S4 SS 56 57 58 S9 510 sll S12 Sl3 Sl4
a(s;) | 018 0.36 054 0.72 0.9 1.16 130 1.40 1.63 181 199 2.17 2.35 253 2.71 2.89
I(s,) | 2.10 1.78 1.95 2.01 2.08 2.00 1.95 178 217 2.20 2.20 2.18 2.51 2.83 2.83 2.95

(a) Feasible AHA(0,15)s which are formed by connecting the carry out of the tail (i.e.,
PAx2(9,11) of a feasible AHA(0,11) to carry in of a 4-bit pure adder.

2 (2 A= h

i 4-bits extended i

AHA (0,15)

AHA(0,8)
cout(8)

a(si) 0.18 0.36 0.54 0.72 0.96 1.16 1.30 1.40 1.63 1.81 199 217 234 251 2.69 2.86

l"(si) 2.10 1.78 1.95 2.01 2.08 2.00 1.95 1.78 2.17 220 220 218 2.51 283 283 295

(b) A feasible AHA(0,15) which is formed by extending the bit-width of the tail (i.e.,
PAx2(9,11)) of AHA(0,11) 4-bit more to become PAx2(9, 15).

Figure 4.1: Examples of (a) 4-attachable AHA pure adder to an AHA and (b) 4-

extendable pure adder from an AHA.

the resulting AHA(0,15)s is feasible, which means that its output bits all satisfy the
required timing constraint.

Fig. 4.2 shows the iteration flow of synthesizing an n-bit AHA, starting from a set
of all feasible [y-bit (pure) adders. At each iteration, from a set of all feasible [-bit
AHA adders, a set of (I + Ad)-bit feasible AHAs is derived by applying all possible
Ad-attachments and Ad-extensions to/from each of the [-bit AHAs.

(Note that the pure adder library £ contains implementation netlist for every imple-
mentation, and the netlist is attempted to be attached and extended for every iteration
of the AHA synthesis to extract the resulting bit-level output timing.)

Let S; be the set of feasible AHAs produced in the ith iteration. Then, in the
iteration since every adder in .S; is tested one time for the extension, but tested for
attachment on all types of pure adder in £, we have |S;+1]| = O(]Si| - (|£] + o0)).

Thus, the total number of AHA adders considered for attachment and extension dur-

27 s f“"*:| - Eﬂ vl

‘ Ad - extend] ‘ Ad - attach]
l_l S
pruning by checking

required time constraints

} ‘
pruning by
dominance relation

==

‘ l<1+A4d ’

Y

return n-bit AHA with
minimum cost

Figure 4.2: The iteration flow of synthesizing an n-bit single AHA.

28 ’ -*'H -E'

ing iterations is exponentially bounded as shown in Fig. 4.3 . The following notion
of dominating/dominated AHA helps drastically prune the unnecessary partial AHAs

generated during the iterations while retaining the quality of final (n-bit) AHA.

Initial AHA
attach extend

VAR

Figure 4.3: Exponential growth of serach space.

Definition 4.1.3 (Dominating/dominated AHA) Let A and B be two feasible AHAs
such that |A| = |B| under L, T, and input arrival times a(-). Then, it is said that A is
dominating B (or B is dominated by A) if (1) Cost(A) < Cost(B), (2) |A| = |B|,

and (3) a(cout 4,,,,) < a(coutp,,,,).

The three conditions (1-3) ensure that the dominated AHAs can be removed from the
set .9; of partial AHAs before performing the next iteration. For example, Fig. 4.4
shows the generation of set S;; of partial AHAs by attachment and extension from/to
the partial AHAs in S; and the process of removing the dominated AHAs in Sj4;.
In this example, there are four 12-bit intermediate AHAs A;, As, A3 and Ay. Aq
dominates A, and A, in terms of area cost. A; also dominates A3 and A4 in terms of
a(cout n,,,) time; Thus, A4 is removed from the consideration of the attachment and

extension on the next iteration.

” s A 2] &

Cost(A,)

:AHA(0,7) PA;;(8,11) = 125 ----; dominating condition (1)
cout(7)®8cin(8) cout(11) a(cout(11)) cost

=215 - -+

‘ a(s;) ‘ 0.18 036 054 0.72 0.96 116 130 140 163 181 199 2.17

A, Cost(A,)

>, :AHA(0,7) PA ;,(8,11) = 132 “
cout(7) 2= cin(8) cout(11) a(cout(11))'
=213 : dominating condition (3)
:cout time
‘ a(s;) ‘ 031 050 0.68 0.85 1.00 115 128 140 163 1.81 1.97 215 ‘
Cost(A,)
C,:AHA(0,7) PA,(8,11) =123
cout(7) g4 cin(8) cout(11) a(cout(11))
= 2,17 <==-r~

‘ a(s’,) ‘ 0.37 0.52 0.60 0.80 1.01 1.16 1.30 1.48 1.63 1.81 1.99 2.17

A, Cost(A,)
C :AHA(0,7) PA;,(8,11) = 133 «----
cout(6) cin(8) cout(11) a(cout(11))
=219 ~---

Sﬁ S

S. S S

1 2 3 4 S, S,

5 S, S5

6 7

8 9 10 11

‘ a(s;) ‘ 0.15 031 048 0.60 0.79 097 115 131 150 170 1.89 2.18

Figure 4.4: An example of pruning dominated AHAs. The AHA A; dominates the
AHA Ay since A; has earlier timing of carry out indicated by red dotted arrow and

smaller area indicated by the black dotted arrow, thus A4 can be removed safely.

30 ,H i L'.H 'ﬁ} ITL

& -

n

The number of iterations is [x5]. The value of Ad (usually 3 ~ 6) is given by
designer. The smaller the value of Ad is, the more likely the resulting n-bit AHA sat-
isfies the timing constraint. Note that the final AHA generated is the one of minimum
cost among all implementations of hybrid adders which have the form of the concate-
nations of any number of pure adders of any bit-width of multiple Ad, and satisfy the

required (possibly non-uniform) output times.

Discussion about theoretical background: Theoretically, problem 3.1.2, which is to
generate an optimal structure of adaptable hybrid adder for given input arrival times
and output required times, can be formulated into dynamic programming, by which
the optimal structures of various smaller bit-widths are examined and used to con-
struct an optimal structure of a bigger bit-width. Thus, apparently, the total number
of computation is O(n?). (Basically, our AHA scheme can also accomplish this by
performing only the tail attachment for every value of Ad (i.e., Ad = 1,2,--- ,n).
However, such a simple construction cannot measure the change of output bit times
due to the unknown output load capacitance of the carry out signal when performing
the attachments. It can only be measured accurately by really resynthesizing the cor-
responding addition logic. Since each resynthesis is computationally expensive, our
AHA scheme devises a number of simplification and pruning techniques. Those are
using a fixed value of parameter Ad for attachment, introducing Ad-extension in ad-
dition to the Ad-attachment, and utilizing dominance relation. The optimality of our

AHA synthesis is stated below.

Definition 4.1.4 (Excess-O(n) property) Letr A(i,j) and A(i, k), and B'(k + 1,),
1 < k < j be three pure adders implemented by the same scheme in L which use the
same input addends and carry in, except that B'(k + 1, j) uses, as carry in, a cin’
with a(cin’) < a(cout o(; k). Then, it is called that L satisfies Excess-O(n) perperty

if for every scheme in L, the corresponding three adders can satisfy the inequali-

31 s M EEw

ties of Cost(B'(k + 1,j) < Cost(A(i,j) — Cost(A(i, k) and a(coutpi(41,5)) <

a(coutA(m)).

The area cost inequality of Excess-O(n) property holds for nearly all adder schemes
since RCA, which is known to be the most area efficient adder scheme for all values
of bit-width n, follows a consistent linear curve on area. On the other hand, the timing
inequality of Excess-O(n) does not hold if the carry propagation delay curve is below
a linear line, for example, logyn curve for large values of bit-width n for CLA where
b is the blocking factor. However, since the size of partial pure adders used to form
a hybrid adder is quite small, which is usually less than 8 bits in practice, the timing
property will be satisfied for most of adder schemes. In particular, RCA satisfies the

property for all sizes.

Theorem 4.1.5 If the pure adder set L satisfies Excess-O(n) property, the proposed
AHA generation scheme in Fig. 4.2 using Ad = 1 will always find, if there exists, an
optimal AHA.

Proof. Let A(0,n) be an optimal AHA. Then, it suffices to show: every sub-AHA
A(0,k), k= 0,--- ,n of A(0, A) will never be pruned by the dominating/dominated
relation.

Suppose B(0, k) is not a partial AHA of an optimal AH A(0,n) and dominates
A(0, k). (It means Cost(B(0, k)) < Cost(A(0, k)) and a(cout g 1)) < alcout 4o x))-)
Then, A(0,k + 1) of optimal A(0,n) belongs to one of the two cases: (case 1)
A0,k + 1) has 1 — attachment relation with A(0, k); (case 2) A(0,k + 1) has
1 — extension relation with A(0, k).

For case 1, we replace A(0,k) in A(0,n) with B(0,k) to form a new AHA
B(0,k)[|A(k + 1,n). Since a(coutpox)) < alcout 4o k)), A(k + 1,n) which uses
coutp() as carry in is still feasible. But, since C'ost(B(0,k)) < Cost(A(0,k)),

5 s M EEw

Cost(B(0,k)||A(k + 1,n)) < Cost(A(0,n)), which contradicts the assumption that
B(0, k) is not a partial AHA of an optimal AH A(0,n).

For case 2, let A(3, j) be the pure adder in A(0,n) such thati < k < j. We create
a pure adder B'(k + 1,3) by using cout gy as its carry in. Then, by the Excess-
O(n) property of the adder schemes in £, Cost(B'(k + 1,7)) < Cost(A(i,j)) —
Cost(A(i, k)) since a(cinp: (141,5)) < a(cout o xy)- Thus, if we replace A(k + 1, j)
in A(0,n) with B'(k+1, j), the resulting AHA A(0, k)||B’'(k+1, 7)||A(j+1,n) is still
feasible because a(cout g (41,5)) < a(cout 4(; ;)), and satisfies Cost(A(0, k)|| B’ (k+
LIA(GG+1,n)) <Cost(A(0,k))+(Cost(A(i,j)) —Cost(A(i, k)))+Cost(A(j+
1,n)) = (Cost(A(0,i — 1)) + Cost(A(i, k) + Cost(A(i,j)) — Cost(A(i, k)) +
Cost(A(j + 1,n)) = Cost(A(0,i — 1)) + Cost(A(i, 7)) + Cost(A(j + 1,n)) =
Cost(A(0,n)), which contradicts the assumption that B(0, k) is not a partial AHA of
an optimal AHA(0,n).

(
(

4.2 Synthesizing Multiple Adaptable Hybrid Adders

This section describes a scheme of (simultaneously) synthesizing AHAs for multiple
additions that are directly cascaded through the critical path of circuit. Obviously, ap-
plying the single AHA synthesis scheme proposed in the previous section to the adders
sequentially one by one would not be sufficiently effective because resynthesizing an
adder on the critical path will be greatly affected by the timing result of the previously
resynthesized adders on the critical path. To be more effective, we propose a technique
of simultaneous synthesis of two AHAs for two connected additions. For more than
two additions, we can use a repeated application of the proposed technique to the ad-
ditions. First, we suggest a set of structures of addition expression that are suitable for

the multiple AHA synthesis application. Then, we propose an efficient procedure of

33 s M EEw

synthesizing (simultaneous) multiple AHAsS.

Identifying addition expressions for multiple AHAs: It is traditionally known that gen-
erating a CSA-tree (carry-save adder tree)? (e. g., [25,26]) or FA-tree (full-adder tree)?
(e.g., [27,28]) followed by a final adder implementation is the most effective approach
to the synthesis of fast arithmetic circuit for a cluster of addition operations. For ex-
ample, Fig. 4.5(a) shows the CSA-tree consisting of one CSA and a carry propagating
(final) adder for implementing F'= X +Y + Z. Note that the final adder can be imple-
mented with a single AHA if we want to reduce area while meeting the same timing
requirement as before. Since there is no carry propagation in the CSA-tree or FA-tree,
the timing of the transformed circuit will be the fastest. (See the internal structure of
a CSA in Fig.4.5(a).) However, there are a number of cases where such a CSA-tree or
FA-tree transformation is not adequate or causes a high design penalty if applied, but
our multiple AHA synthesis scheme can be applied safely and effectively. The cases
are illustrated in Figs. 4.5(b), (c), and (d) which explain addition with multiple fanout,
multiplexor between additions, and additions across design boundary, respectively.
(Note that our AHA scheme can also be applied to every addition expression with any

mixture of the three cases in Figs. 4.5(b), (c), and (d).)

e Case 1 (addition with multiple fanout): When the output of an addition is used
as input to another logic, as shown in in Fig. 4.5(b) where the outcome of the
upper addition is used as input to logic f3 as well as the lower addition. In this
case, CSA-tree (or FA-tree) implementation is not possible because there is no
way to produce the output of the upper addition, if operation duplication is not

allowed due to area limitation.

e Case 2 (multiplexor between additions): Similar to case 1, when there is a multi-

21t corresponds to the word-level compression tree for additions.
31t corresponds to the bit-level compression tree for additions.

3 s - w k)

Xn-1Yn-1Zn-1 Xn-2Yn-2Zn-2 Xo Yo Zo

CSA Tree

Propagation
Adder

(a) The conventional CSA-tree transformation is shown on the left side. The internal structure of a CSA is

shown on the right side.

(b) Case 1: addi- (c) Case 2: multiplexer be-
tion with multiple tween additions.
fanout.

design A i

Propagation
Adder

(d) Case 3: additions across design boundary

Figure 4.5: The sweet spots of CSA-tree (or FA-tree) and multiple AHA implementa-
tions. (a) Case where CSA-tree implementation is effective. (b), (c), (d) Cases where
simultaneous multiple AHA implementation is effective.
. E-] =].
3 [=) ”HTEE] -}

LG

ITA

=

plexor between two addition operations as shown in Fig. 4.5(c), the simultaneous
AHA implementation can be used for optimizing timing through the additions,
which otherwise an expensive operation duplication over the multiplexor shall

be required to enable CSA-tree or FA-tree transformation.

e Case 3 (additions across design boundary): When two additions are placed
across a design boundary in the hierarchical design, applying CAS-tree (or FA-
tree) transformation to the additions will change the number of input/output
ports on the design boundary. This means that the meaning of some of the
original ports is no longer valid. For example, the right side in Fig. 4.5(d) shows
the transformed CSA-tree with final adder, in which new ports P,,c,, and Qe
are created with the additional checking of port constraints v(Ppey) = V(Qnew)
in addition to the original checking of v(Py) = v(Qp) where v(-) represents the
data value that passes on the port. Furthermore, the original meaning of the data
on ports Py and () is lost. To reduce the burden on checking design validation
environment, it is desirable to avoid such a port change. For this reason, in a
safe hierarchical design testing AHA implementation can be another alternative

for timing optimization across design boundary.

Simultaneous synthesis of multiple AHAs: The idea of simultaneously synthesizing
two chained additions into AHAs is considering the AHAs collectively as one super
AHA. Thus, a super AHA consists of two AHAs where one is called fop AHA and
the other is called bottfom AHA, and there is data connection from the top AHA to the
bottom AHA. The generation procedure of a super AHA is basically the same as that
of the generation of a single AHA described in the previous section. At each iteration,
four possible combinations of Ad-attachment and Ad-extension are applied to the
tail of the partial (super) AHA, as shown in Fig. 4.6, where the partial super AHA
is composed of top partial AHA and bottom partial AHA. For example, Fig. 4.6(b)

36 s M EEw

shows the expansion of super AHA by applying Ad-extension to the top AHA and
Ad-attachment to the bottom AHA, and Fig. 4.6(d) shows the expansion by applying
Ad-extension to both of the top and bottom AHAs. Note that the pruning based on
dominance relation is also applied to the set of expanded partial supper AHAs.

In addition, at each iteration we perform the following input refining technique to
optimize timing further. Input reordering: This technique makes use of the uneven
input bit arrival times of three vector addends. This input refining technique is very
effective when there is a high variation on the bit-level arrival times of inputs. For
example, as shown on the left side in Fig. 4.6(b), the initial input bit segments to be
added are rearranged according to the ir arrival times, and the late inputs are connected
to the upper AHA, as indicated in the right side in Fig. 4.6(b). Furthermore, the two
carry outs of the (partial) super AHA are also involved in the input reordering together
with the three input bits, as shown the example of Fig. 4.6(c), where carry out couts is
now used as input to the upper AHA.

The iteration flow of synthesizing a super AHA is summarized in Fig. 4.7. Since
the four combinations of Ad-attachment and Ad-extension are considered at each iter-
ation, the total number of partial AHAs generated will be substantially large. However,
due to the limited size of bit-width, which is no more than 64 in practice and the help
of pruning by dominance relation and a proper control of Ad value for attachment and
extension, an exhaustive exploration of design space is possible within a reasonably

small run time (< 15 minutes) as verified from our experiments.

37 s M EEw

attach

attach

Sj3j Sjr1j+3

(a) Ad-attach for both top and bottom AHAsS.

Sj-3j43

(d) Ad-extend for both top and bottom AHAs.

Figure 4.6: Four possible combinations of extending a (partial) super AHA. (a) Com-
bination 1: Ad-attach for both top and bottom AHAs. (b) Combination 2: Ad-extend
for top AHA and Ad-attach for bottom AHA. (c¢) Combination 3: Ad-attach for top
AHA and Ad-extend for bottom AHA. (d) Combination 4: Ad-extend for both top
and bottom AHAs.

L 2 A=

) A e -
: ; H :
top: 4d - extend top: Ad - extend top: Ad - attach top: Ad - attach
bottom: Ad - extend bottom: Ad - attach bottom: Ad - extend bottom: Ad - attach
T T T
s l i R ELIETETEIP TR TR P, B
pruning by checking

required time constraints

N S

pruning by
dominance relation

return n-bit AHA with
minimum cost

Figure 4.7: The iteration flow of synthesizing an n-bit super AHA.

39 s M EEw

Chapter 5

Experimental Results

We implemented our proposed AHA generation scheme with TCL (Tool Command
Language) script to link to Synopsys synthesis tools on a linux server with octa-core
2.0GHz Intel zeon processor and 6GB RAM. We used Synopsys Design Compiler
and Prime Time with TSMC 40 nm library for the logic optimization and timing es-
timation, respectively. We evaluate our proposed synthesis scheme on a set of typical
arithmetic expressions with additions that are commonly appeared in DSP applica-
tions. We compare the results produced by our scheme with that produced by the
adder optimization scheme proposed in [2] as well as several pure adders under the
following settings of AHA generation mode and input and output timings: (1) gener-
ating a single adder with non-uniform input arrival times; (2) generating a single adder
considering non-uniform output required time constraint; (3) generating a single adder
considering both non-uniform input arrival and output required times; (4) generating
multiple (super) adders; In addition, (5) we compare our results with that produced by
the commercial synthesis tool; (6) we provide a set of comparisons of results to show
how much our AHA scheme is effective when more than one differently cell sized

implementation for each pure adder scheme are used in the AHA synthesis. Finally,

40 s - w k)

(7) we also provide data that shows how well our AHA scheme controls the synthesis

quality and running time.

5.1 Generating a Single Adder with Non-uniform Input Ar-

rival Times

The previous works in [1, 2,21, 22] also proposed schemes of synthesizing single
hybrid adders considering uneven input arrival times. Unfortunately, however, the
schemes are a sort of ‘specialized’ hybrid adder schemes in that they utilize (fixed)
patterns or trend of arrival times of input bits in designing a hybrid adder of the final
addition on the partial products reduction tree (PPRT) in the multiplier design; they
observed that as input bits are close to the least significant bit (LSB) the bit operands
(or signals) tend to arrive early, validating the use of a slow adder for a segment of
input operands near LSB, and as they are close to the middle bit, the signals arrive
late, validating the use of a fast adder for a segment of input operands near the middle
bit or the most significant bit (MSB). On the other hand, our hybrid adder scheme is
‘general’ in that it accepts any arbitrary arrival times of input bits. That is, our scheme
explores, for a particular segment of input bits, all possible implementations of pure
adder being used as adding the input segment. We compare our AHA synthesis results
with that produced by the most recent hybrid adder synthesis work in [2]. We also
compare our results with the several pure adder implementations that meet the output
required timing constraint.

Table 5.1 shows the comparison of the performance of our AHA synthesis with
that of pure adder implementations: RCA (ripple carry adder), CLA (carry look-ahead
adder), BKA (brent-kung adder), and CSLA (carry-select adder). The first column
shows the tested arithmetic expressions where the additions marked with red color are

the target additions and the second column shows the implementation area of AHA for

" s - w k)

Table 5.1: Comparison of AHA scheme with pure adder schemes under uneven input

arrival times.

Timing (ns) Area (umz) Area
Expression red.
RCA | CLA | BKA | CSLA | AHA AHA
(req. timing)
(A+:B)+C || 1.58 | 1.60 | 1.65 1.62 1.58 141.1 0% (1.58)
(A+2B)+C || 1.60 | 0.82 | 0.86 | 0.92 | 0.81 240.6 21% (0.82)
(A+3B)+C || 1.60 | 0.88 | 095 | 095 | 0.85 236.6 22% (0.88)
(A+4B)+C || 1.62 | 0.99 | 1.09 1.09 | 0.96 224.0 26% (0.99)
(AxrB)+C | 2.11 | 1.63 | 1.68 1.67 1.61 207.4 32% (1.63)
(A/B)+C || 30.25 | 29.20 | 29.31 | 29.50 | 29.16 291.9 11% (29.20)
(AB)+C || 1.77 | 0.78 | 0.86 1.02 | 0.70 268.8 11% (0.78)
A%+B 1.54 | 155 | 161 | 1.58 | 1.54 141.1 0% (1.54)
(A-B)+C 1.61 | 0.83 | 095 | 093 | 0.82 240.6 21% (0.83)
Average 16%

* Implementation: +7:RCA, +2:CLA, +3:BKA, +4:CSLA; *1: low order 32 bits

of 64-bit output.
* AHA: { RCA, CLA, CSKA }
RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,

* Area (32-bit addition):

CSLA:479.8.

42

the target additions when AHA scheme uses pure adder set L = {RCA,CLA,CSK A}.
The third thru seventh columns show the latest output times of the corresponding adder
implementations. For the AHA synthesis results in the second and seventh columns,
we assume a uniform required output timing constraint (shown in the parentheses of
the last column) that is set to the fastest output time of the pure adders, as indicated
by the blue colored numbers in the third thru sixth columns. (The area of pure adder
implementations is specified at the bottom of the table.)

Note that for some designs, which is usually a monotonically increasing input
arrival times, a pure RCA implementation will suffice to produce a minimal area while
meeting the required timing. (See the results for test cases (A+;B)+C and A%+B in
Table 5.1.).

The last column summarizes the area reduction by our AHA implementation over
the least-area pure adder implementation that meets the same output timing constraint.
Overall, under uneven input arrival times our scheme is able to adaptably generate
hybrid adders with 16% reduced area.

Table 5.2 shows the comparison of our AHA synthesis results with that of the
scheme in [2] which uses RCA, CLA, and CSKA adders for low-, middle-, and upper-
bit input operands, respectively. We used £ = {RCA, CLA, CSKA} for the AHA
implementation. We set the required output timing, specified in the second column, to
the output time of the hybrid adder produced by the scheme in [2]. From the table, we
can see that our AHA scheme reduces the area by 27% under the same output timing
constraint, revealing that our scheme performs very well in optimizing area over the
conventional hybrid adder design scheme as well as pure adder schemes without any
timing increase. The fifth and sixth columns show how the pure adders are combined
in the hybrid adder implementation, together with their bit-width information.

Note that the scheme in [2] does not work well on test cases (A+; B)+C and A%+B.

This is because the input arrival times of the two test cases follow a monotonically

4 s - w k)

Table 5.2: Comparison of AHA scheme with [2] under uneven input arrival times.

Req. || Adder composition (bit-widths) Area (,um2)
Expression || output Area
DAS AHA DAS | AHA
time red.
[r]
(A+1B)+C 1.59 || (020 12) 272.4 | 141.1 | 48%
(32)
[llellcllellellc]|r]
(A+2B)+C | 0091 (026 6) 2919 | 224.0 | 23%
(9444443)
[rllellcllellel[r]
(A+3B)+C 1.03 (026 6) 291.9 | 215.7 | 26%
(1244453)
[rllcllel cllellr
(A+4B)+C 1.16 (026 6) 2919 | 203.4 | 30%
(1644431)
[rllellcllellel[r]
(A% B)+C 1.65 (3236) 276.6 | 203.4 | 26%
(1644431)
[rllellcllef]r]
(A/B)+C 29.39 || (026 6) 2919 | 248.2 | 15%
(1164328)
[rllellcl|e|r]
(AB)+C 0.89 (026 6) 291.9 | 248.2 | 15%
241547
, [r]
A°+B 1.54 || (02012) 272.4 | 141.1 | 48%
(32)
[rllellcllellellc]|r]
(A-B)+C 1.01 (026 6) 291.9 | 220.0 | 25%
(12444431)
Average 27%

* DAS indicates the implementation scheme in [2], with [RCA||CLA|| CSKA]

* AHA: { RCA, CLA, CSKA }

* ‘r’ indicates RCA; ‘c’ indicates CLA.

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; *1: low order 32

bits 64-bit output.

44

increasing curve, but the scheme in [2] mainly targets U-shape pattern of input arrival

times.

5.2 Generating a Single Adder Considering Non-uniform Out-

put Required Time Constraint

To facilitate the optimization of adders under uneven output required times, we change
the target addition to be optimized in the expressions in Table 5.1, as shown in the first
column in Table 5.3. Except the change of target operation, all other conventions in
Table 5.3 are exactly the same as that in Table 5.1. As indicated by the last column in
Table 5.3, our AHA synthesis is able to use 20% less area compared to the pure adder
of least-area while meeting the output timing constraint. In addition, Table 5.4 shows
the comparison of our synthesis results with that of the scheme in [2]. We can see
that our AHA finds more fine-grained combination of pure adders to adapt the uneven
output required timing while the work in [2] dose not, which is even worse than the

pure implementations in Table 5.3 in some test cases.

5.3 Generating a Single Adder Considering Both Non-uniform
Input Arrival and Output Required Times

Unlike the tested data in Tables 5.1 through 5.4, we update the expressions, so that
each target addition has uneven input arrival times as well as uneven required output
times. Tables 5.5 and 5.6 show the comparisons of the results by AHA scheme with
pure adder schemes and the scheme in [2], respectively. It is seen that the area saving
by AHA is consistent in the range of 9% ~ 31%, which implies that AHA can be
useful in customizing adders with both uneven bit-level input arrival times and output

required times.

45 ; .H tl 1_'.]'| 'aﬂr T

Table 5.3: Comparison of AHA scheme with pure adder schemes under the constraint

of uneven required output times.

Timing (ns) Area (umz) Area
Expression red.
RCA | CLA | BKA | CSLA | AHA AHA
(req. timing)
(A+B)+,C || 1.58 | 1.60 | 1.60 1.62 1.58 141.1 0% (1.58)

(A+B)+2C || 1.60 | 0.82 | 0.88 | 0.99 | 0.82 248.2 18% (0.82)
(A+B)+3C || 1.65 | 0.86 | 0.95 1.09 | 0.86 269.0 11% (0.86)
(A+B)+4C || 1.62 | 092 | 0.95 1.09 | 091 231.6 24% (0.92)
(A+B)x,C || 2.75 | 1.76 | 1.84 | 2.03 1.72 268.8 11% (1.76)
(A+B)/C || 29.44 | 28.82 | 28.75 | 28.75 | 28.75 224.0 43% (28.75)
(A+B)<C || 1.78 | 0.78 | 0.87 1.02 | 0.71 268.8 11% (0.78)
(A+B)? 361 | 320 | 322 | 326 | 3.19 196.7 35% (3.20)
(A+B)-C 1.61 | 092 | 0.94 1.00 | 091 224.0 26% (0.92)

Average 20%

* Implementation: +7:RCA, +2:CLA, +3:BKA, +4:CSLA; *1: low order 32 bits

of 64-bit output.
* AHA: { RCA, CLA, CSKA }

* Area (32-bit addition):

CSLA:479.8.

46

RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,

Table 5.4: Comparison of AHA scheme with [2] under the constraint of uneven

required output times.

Req. Adder composition (bit-widths) Area (,umz)
Expression || output Area
) DAS AHA DAS | AHA
time red.
[r]
(A+B)+,C 1.60 141.1 | 52%
(32)
[rllellclle|r]
(A+B)+-C 0.82 248.2 | 15%
244157
[rllellcllr]
(A+B)+3C 0.86 231.6 | 21%
241511)
[rllel[r]
(A+B)+4C 0.92 157.7 | 46%
(2426)
(rllellellcllr]
(A+B)x,C 1.86 (026 6) 2919 | 252.3 | 14%
(2416406)
[rllellcllellellc]|r]
(A+B)/C 28.75 224.0 | 23%
24444410)
[rllellclle|r]
(A+B)<C 0.88 252.3 | 14%
(2416406)
) [rllellcllr]
(A+B) 3.20 196.7 | 33%
(248 18)
[rllellcllellellc]|r]
(A+B)-C 0.92 224.0 | 23%
(24444410)
Average 27%

* DAS indicates the implementation scheme in [2], with [RCA||CLA|| CSKA]

* AHA: { RCA, CLA, CSKA }

* ‘r” indicates RCA; ‘¢’ indicates CLA.

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; *x1: low order 32

bits 64-bit output.

47

Table 5.5: Comparison of AHA scheme with pure adder schemes under both uneven input

arrival and required output times.

Timing (ns) Area (,umz) Area

Expression red.
RCA | CLA | BKA | CSLA | AHA AHA
(req. timing)

((AxB)+C)-D | 2.22 | 1.85 | 1.88 1.85 1.84 190.9 37% (1.85)
((A-B)+C)xrD || 2.87 | 2.09 | 220 | 2.22 | 2.07 253.7 16% (2.09)
((A/B)+C)<D || 30.53 | 29.47 | 29.59 | 29.77 | 29.44 268.8 11% (29.47)

((AB)+C)/D || 29.64 | 28.75 | 28.75 | 28.89 | 28.75 264.8 13% (28.75)

((AB)+C)-D | 1.88 | 1.19 | 1.21 1.28 1.19 224.0 26% (1.19)
((A-B+O)<D || 1.89 | 1.11 | 1.22 1.21 1.07 240.6 21% (1.11)
Average 21%

* Implementation: +1:RCA, +5:CLA, +3:BKA, +4:CSLA; x1: low order 32 bits of
64-bit output.

* AHA: { RCA, CLA, CSKA }

* Area (32-bit addition): RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,
CSLA:479.8.

48 ; .H kl 1_'.]'| “']r i

Table 5.6: Comparison of AHA scheme with [2] under both uneven input arrival and

required output times.

Req. || Adder composition (bit-widths) Area (,um2)

Expression output Area
DAS AHA DAS | AHA
time red.

[r{leflefle]lr]

(Ax;B)+C)-D || 1.91 | (323 6) 2724 | 186.8 | 31%
(16443 5)
[r|lellellellclle]|r]
(A-B)+C)+D || 224 | (026 6) 291.9 | 224.0 | 23%
(9444443)

[rlellel[e]|r|lel[r]
(A/B)+C)<D | 29.51 || (0266) 291.9 | 268.8 | 8%
(116441472)

r{lellellellef[7]
(A<B)+C)/D | 28.75 || (026 6) 291.9 | 264.8 | 9%
(2416433)

[r[lellellellelle]|r]
(A<B)+C)-D | 1.19 | (0266) 291.9 | 224.0 | 23%
(24444410)

[r|lellellellclle]|r]
(A-B)+C)<D | 1.24 || (0266) 291.9 | 224.0 | 23%
(9444443)

Average 20%

* DAS indicates the implementation scheme in [2], with [RCA||CLA|| CSKA]

* AHA: { RCA, CLA, CSKA }

* ‘r’ indicates RCA; ‘¢’ indicates CLA.

* Implementation: +1:RCA, +2:CLA, +3:BKA, +4:CSLA; *1: low order 32 bits

64-bit output.

49 ; .H kl 1_'.]'| “']r i

5.4 Generating Multiple (Super) Adders

If two or more addition operations are chained, implementing the adders with FA-tree
or CSA-tree might reduce the overall delay. However, as stated in subsection 4.2 there
are cases where FA-tree or CSA-tree implementation is not appropriate. We assume
those cases in the experiments. We test our AHA scheme with the implementation
of RCA-RCA (two chained RCAs), CLA-CLA (two chained CLA), BKA-BKA (two
chained BKA) and CSLA-CSLA (two chained CSLA). Table 5.7 shows the results of
AHA and those combinations of pure adders. The results indicate that the multiple
AHA synthesis outperforms the pure adder implementations, but in some design there
is no improvement by AHA at all. Table 5.8 shows the comparison of AHA synthesis
results with that in [2]. The area improvement is 18% ~ 31%, which clearly indicates

that our proposed multiple AHA synthesis scheme works well.

5.5 Comparison with Commercial Synthesis Tool

It might be interesting to see how well a commercial synthesis tool selects pure adders
to optimize area under a given timing constraint. We compare our AHA synthesis
results with that produced by Synopsys Design Compiler [3]. Tables 5.9 and 5.10
show the comparison of results for various arithmetic expressions. In this experiments
the output timing constraints are set to the earliest times used in the experiments in
Tables 5.1, 5.3, 5.5 and 5.7. Our design methodology reoptimizes, in the second pass
of synthesis in the design flow shown in Fig. 4.1, the entire arithmetic logic by using
Design Compiler while retaining the implementation structure of AHA we obtained.
We have observed that Design Compiler initially uses CLA in most of designs to meet
the tight timing constraint and then gradually reduces area at the expense of increas-
ing timing [3]. For some test cases, Design Compiler uses smaller implementation

area, but for most of test cases our hybrid design scheme is able to find more efficient

50 ; ,H tl 1_'.]'| 'aﬂr T

Table 5.7: Comparison of AHA scheme with pure adders for synthesizing two chained

additions.
Timing (ns) Area (um2) Area
Expression red.
RCA | CLA | BKA | CSLA | AHA AHA
(req. timing)
(((AxLB)
2.31 | 2.07 | 2.17 2.15 2.07 381.7 37% (2.07)
+C)+D)-E
(((A-B)
296 | 235 | 2.49 2.56 2.35 464.6 23% (2.35)
+O)+D)*xE
(((A/B)
30.61 | 29.80 | 29.94 | 30.12 | 29.80 5144 15% (29.80)
+O)+D)<E
(((A<B)
29.73 | 28.97 | 29.96 | 29.23 | 28.97 605.8 0% (28.97)
+C)+D)/E
(((A<B)
1.97 | 1.44 1.47 1.59 1.43 443.1 27% (1.44)
+C)+D)-E
(((A-B)
1.98 | 1.37 1.52 1.55 1.34 464.6 23% (1.37)
+O)+D)<E
Average 21%

* Implementation: +1:RCA, +2:CLA, 4+3:BKA, +4:CSLA; *: low order 32 bits

of 64-bit output.
* AHA: { RCA, CLA, CSKA }
* Area (32-bit addition):
CSLA:479.8.

RCA:141.1, CLA:302.9, CSKA:220.1, BKA:395.5,

51

Table 5.8: Comparison of AHA scheme with [2] for two chained additions.

Req. Adder composition (bit-widths) Area (,qu)

Expression || output Area
. DAS AHA DAS | AHA
time red.

rfleflellef[r{lr]

(((Ax1,B) 500 (3236) (1344443) 5530 | 3817 | 31%
+C)+D)-E ' (3 23 6) (7| |||l |l le]|r] ' ' 7

(1344443)

[r|[cllcllel|e]|r||r]

((A-B) (026 6) (9444443)
2.52 583.9 | 4149 | 29%
+C)+D)x . E ©0266) | [r|lrlellelle] |l 7

(9444443)

[r|[cllcllc||e]lel|e]]r|[r]

(((A/B) 20,92 (026 6) 344444441) 5839 | 4812 | 18%
+C)+D)<E ’ 026 6) | [r||r]|ellel|cllel|el|el|r] ’ ’ ?

(344444441)

[r[lefle]|c[[c[[el[e]|r][r]
(((AkB) 50,00 (026 6) 344444441) s83.9 | 4812 | 18%
+C)+D)/E ' 026 6) | [r||r]|cllcl|cl|el|el|el|r] ' ' 7

(344444441)

[rfleflelellef[r{lr]

((A<B) 1.44 (0266) (3464447 583.9 | 443.1 | 24%
+C)+D)-E) (026 6) iElEiEEEE ' ’ 7
(3464447)
[r{lcllellellef|r|]r]
((A-B) (026 6) (9444443)
1.54 583.9 | 4149 | 29%
+C)1+D)<E 0266) | [rlIrllellellcllcllr] ’
9444443)
Average 25%

* DAS indicates the implementation scheme in [2], with [RCA||CLA|| CSKA]
* AHA: { RCA, CLA, CSKA }

* ‘r’ indicates RCA; ‘¢’ indicates CLA.

* Implementation: +1:RCA, +9:CLA, +3:BKA, +4:CSLA; xr: low order 32

52 ' ﬁﬂ'iftlyﬁ}'ﬂ{

bits 64-bit output.

implementations.

Table 5.9: Comparison of AHA scheme with Synopsys Design Compiler [3] for

simple arithmetic expressions.

Area (,qu) Area (,qu)

Area Area

Expression Expression
AHA | DC red. AHA | DC red.

(A+1B)+C || 141.1 | 261.2 || 46% (A+B)+,C || 141.1 | 263.7 || 46%

(A+9B)+C || 216.6 | 2609 | 17% (A+B)+2C | 2254 | 260.9 || 14%

(A+3B)+C || 2145 | 261.8 | 18% (A+B)+3C | 269.0 | 260.9 || -3%

(A+4B)+C || 224.0 | 2609 | 14% (A+B)+4C | 231.6 | 260.9 || 11%

(AxB)+C || 199.0 | 260.9 || 24% (A+B)*x;C | 2364 | 260.9 | 9%
(A/B)+C || 236.4 | 260.9 | 9% (A+B)/C || 268.8 | 260.9 || -3%
(AKB)+C || 2364 | 2609 | 9% (A+B)<C || 2364 | 2609 || 9%
A%+B 141.1 | 260.9 || 46% (A+B)? 196.7 | 260.9 || 25%

(A-B)+C || 216.6 | 260.9 || 17% (A+B)-C | 224.0 | 260.9 || 14%

Average 22% Average 14%

* Implementation: +7:RCA, +2:CLA, +3:BKA, +4:CSLA; *: low order
32 bits of 64-bit output.
* DC: Synopsys Design Compiler®

5.6 AHA Synthesis Combined with Cell Sizing

To consider the effect of cell sizing on the AHA synthesis, besides the area-efficient

implementations RCA, CLA, BKA, and CSLA used previously, we have produced

53 ; .H kl 1_'.]'| [

Table 5.10: Comparison of AHA scheme with Synopsys Design Compiler [3] for

complex arithmetic expressions.

Area (umz) Area (,umz)

Area Area
Expression Expression

AHA | DC || red. AHA | DC || red.
((AxrB)+C)-D || 190.9 1 260.9 | 27% (((Ax1,B)+C)+D)-E || 380.3 | 521.8 || 27%
((A-B)+C)xrD || 253.71260.9| 3% (((A-B)+C)+D)*E ||464.6|523.9| 11%
((A/B)+C)<D (1236.4|2609 || 9% (((A/B)+C)+D)<E [|450.9|522.3 | 14%
((AKB)+C)/D (1234.3]2609 | 10% (((A<B)+C)+D)/E || 605.8 | 527.8 || -15%
((A<B)+C)-D || 224.0|1260.9 || 14% (((A<B)+C)+D)-E | 443.1|521.8 || 15%
((A-B)+C)<D |240.6 12609 || 8% (((A-B)+C)+D)<E ||424.4|521.8| 19%
Average 12% Average 12%

* DC: Synopsys Design Compiler®

54

four additional fast implementations labeled RCA,,,, CLA,,,, BKA,,, and CSLA,, by
applying Synopsys Design Compiler [3] with set _max_delay 0 all_outputs()
command. Carry out time, maximum sum out time and area of the adders with respect
to bit width of each adders are depicted 5.1. We set the pure adder library £ = {RCA,
RCA,,, CLA, CLA,,, BKA,,} in our AHA synthesis. The comparisons of results are
shown in Tables 5.11, 5.12, and 5.13. As expected, for some test cases, considering the
cell sizing effect on the AHA synthesis is very effective in reducing area while meet-
ing timing, but for some test cases, there is no improvement. This is the case where
due to the tight timing constraint (blue numbers in tables) our scheme was not able to
produce an AHA composed of multiple pure adders and thus used, as the AHA, only
the single (i.e., the whole n-bit) fast pure adder implementation that had been created

by cell sizing.

5.7 Synthesis for power minimization

AHA synthesis can be used for power consumption minimization while satisfying
given timing constraints. Table 5.14 shows optimization results targeting minimiz-
ing power consumption while satisfying given timing constraints. The first column
shows the tested arithmetic expression and addition marked with red color are the ad-
dition to be optimized. Timing constraints are given by using the addition with pure
adders {RCA, RCA,,,, CLA, CLA,,, BKA, BKA,,,, CSLA, CSLA,, }, then selecting
the adders which gives fastest timing. The last column represents power reduction
compared to the pure adders which gives best timing.

Fig. 5.2 shows area and power consumption relationship of the optimal solution
which targets minimizing power consumption. As shown, the adder with larger area

consumes more power and this have almost linear relationship.

55 s M EEw

—-rca

—+rca_mindel
—<cla

-e-cla_mindel
——BKA

~—BKA_ mindel
--CSELA
~+-CSELA_mindel

(a) Carry output time

1.6
~1.4 //
w12 —-rca
£ / -
= 1 ——rca_mindel
g 0.8 / sy —ecla
£0.6 / M -e-cla_mindel
& 0.4 IR ——BKA
é K = M ~—BKA_mindel

0.2 B ~CSELA

0 ~~CSELA_mindel
\\\ Q’\ \g\ <\\ \q\Q\\&\&\@\Q@,\Q\\&\&\\,{\\@\Q\\
Bit Width
(b) Maximum sum output time
1200
1000
—-rca
& 800 .
<E —+rca_mindel
2 600 —cla
g -e-cla_mindel
< 400 —+—BKA
200 - ~—BKA_mindel
--CSELA
0 ~+~CSELA_mindel
\\\ & \5\ Q\ \o,\\\\\\\m,\\\c;\x\f\\\\o,\\,»\\@\\,ﬁ\@\\&\@\\
Bit Width
(c) Area

Figure 5.1: Cout time, maximum sum out time and Area of the adders with respect to

bit width

s e A 2T

Table 5.11: Comparison of AHA scheme using multiply cell sized pure adder imple-

mentations under uneven input arrival times.

Timing Area | Area
Exp. (ns) (um?)| red.
RCA |RCA,, | CLA |CLA,, | BKA |BKA,, |CSLA|CSLA,, || AHA
(A+:B)+C| 1.58 | 1.59 | 1.60 | 1.69 | 1.65| 1.76 | 1.62 | 1.65 | 141.1| 0%
(A+2B)+C| 1.60 | 1.01 | 082 | 0.72 | 0.86 | 0.76 | 0.92 | 0.75 | 489.2| 0%
(A+3B)+C| 1.60 | 1.02 | 0.88 | 0.78 | 095 | 085 | 095 | 0.84 | 389.5|20%
(A+4B)+C| 1.62 | 1.06 | 099 | 096 | 1.09 | 1.01 | 1.09 | 0.99 | 281.0|43%
(AxB)+C| 2.11 | 1.66 | 1.63 | 1.57 | 1.68 | 1.61 | 1.67 | 1.59 | 489.2| 0%
(A/B)+C {/30.25| 29.54 |29.20| 29.08 {29.31| 29.02 | 29.50 | 29.07 | 753.1 | 0%
(AB)+C || 1.77 | 1.07 | 0.78 | 0.62 | 0.86 | 0.55 | 1.02 | 0.60 || 753.1| 0%
A%+B 1.54 | 1.54 | 1.55| 1.64 | 1.61 | 1.71 | 1.58 1.60 | 186.8 |57%
(A-B)+C || 1.61 | 1.00 [0.83 | 0.82 | 095 | 0.88 | 093 | 0.84 | 2454 |50%
Average 16%

* Implementation: +1:RCA, +32:CLA, +3:BKA, +4:CSLA; *1: low order 32 bits of

64-bit output.

* Area (32-bit addition):

BKA:395.5, BKA,,:753.1, CSLA:479.8, CSLA,,,:917.1.

57

RCA:141.1, RCA,,:438.9, CLA:302.9, CLA,,:489.2,

Table 5.12: Comparison of AHA scheme using multiply cell sized pure adder imple-

mentations under the constraint of uneven required output times.

Timing Area | Area
Exp. (ns) (um?)| red.
RCA |RCA,, | CLA |CLA,, | BKA |BKA,, |CSLA|CSLA,, || AHA
(A+B)+1C|| 1.58 | 1.61 | 1.60 | 1.60 | 1.60 | 1.57 | 1.62 | 1.64 | 172.5|77%
(A+B)+2C| 1.60 | 1.06 | 0.82 | 0.77 | 0.88 | 0.73 | 0.99 | 0.78 || 404.8 | 46%
(A+B)+3C| 1.65| 1.10 | 086 | 0.81 [095 | 0.78 | 1.09 | 0.83 | 753.1| 0%
(A+B)+4C| 1.62 | 1.09 | 092 | 087 [095 | 0.85 | 1.09 | 092 | 753.1| 0%
(A+B)*,C|| 2.75| 2.06 | 1.76 | 1.62 | 1.84 | 1.60 | 2.03 1.61 | 264.8|65%
(A+B)/C |/29.44| 28.82 |28.82| 28.82 |28.75| 28.82 | 28.75 | 28.82 || 224.0 | 76%
(A+B)<C || 1.78 | 1.07 | 0.78 | 0.62 | 0.87 | 0.55 | 1.02 | 0.60 || 753.1| 0%
(A+B)? | 3.61 | 3.21 |3.20| 3.15 | 3.22 | 3.13 | 3.26 | 3.18 || 2489 |67%
(A+B)-C || 1.61 | 1.08 [092| 0.87 | 094 | 0.82 | 1.00 | 0.87 | 753.1| 0%
Average 37%

* Implementation: +1:RCA, +9:CLA, +3:BKA, +4:CSLA; *1: low order 32 bits of

64-bit output.

* Area (32-bit addition):

BKA:395.5, BKA,,:753.1, CSLA:479.8, CSLA,,,:917.1.

58

RCA:141.1, RCA,,:438.9, CLA:302.9, CLA,,:489.2,

Table 5.13: Comparison of AHA scheme using multiply cell sized pure adder imple-

mentations under both uneven input arrival and required output times.

Timing Area | Area
Exp. (ns) (um?)| red.
RCA |RCA,, | CLA |CLA,, | BKA |BKA,, |CSLA|CSLA,, || AHA
((AxB)+C)-D|| 2.22 | 195 | 1.85| 1.82 | 1.88 | 1.83 | 1.85 | 1.84 | 190.9| 0%
((A-B)+C)xrD|| 2.87 | 2.27 |2.09 | 2.07 | 2.20 | 2.11 | 2.22 | 2.13 || 253.7 |48%
((A/B)+C)<D||30.53| 29.82 |29.47| 29.36 {29.59| 29.30 | 29.77 | 29.35 || 268.8 | 60%
((A<B)+C)/D ||29.64| 29.01 |28.75| 28.82 |28.75| 28.82 | 28.89 | 28.82 || 264.8 |34%
(A<B)+C)-D|| 1.88 | 1.36 | 1.19 | 1.14 | 1.21| 1.10 | 1.28 | 1.15 | 224.0| 0%
((A-B)+C)<D || 1.89 | 1.28 | 1.11 | 1.07 | 1.22 | 1.10 | 1.21 1.11 || 240.6 |51%

Average 32%

* Implementation: +1:RCA, 42:CLA, 4+3:BKA, +4:CSLA; xr,: low order 32 bits of 64-bit
output.

* Area (32-bit addition): RCA:141.1, RCA,,:438.9, CLA:302.9, CLA,,:489.2,
BKA:395.5, BKA,,:753.1, CSLA:479.8, CSLA,,,:917.1.

Area & Power Relation

175

165

155 .
145 >
E13s /‘,;')/
5125 ok
2115
&~ 105 ne¥

95 . ad

85

75 el ‘ ‘ : ‘ ‘ ‘

160 210 260 310 360 410 460 510
Area (um”2)

Figure 5.2: Area and power relation of the optimal solution targeting power minimiza-

tion.

59 s M EEw

e

Table 5.14: Comparison of AHA scheme with [2] under both

uneven input arrival and required output times.

Power
Expression Adder composition || Power (uw?) d
red.
[rllellellellclle]
((A-B)+C)xrD 100.0 41%
(7444103)
[rllellelr]
((A/B)+C)<D 110.8 51%
(12641)

rflelellel[r[leflr]
(A<B)+C)/D 102.2 27%
(24416231)

[r[leflef|c]|c[[cl[cl]r]
((A-B)+C)<D 95.1 44%
(74444441)

Average 27%

* AHA: { £ = {RCA, RCA,,, CLA, CLA,,, BKA, BKA,,,
CSLA,CSLA,, } }

* ‘r” indicates RCA; ‘¢’ indicates CLA.

* Power (32-bit addition): RCA:74.4, RCA,,:160.7,
CLA:112.5, CLA,,:168.3, BKA:140.8, BKA,,:223.9420,
CSLA:180.0, CSLA,,,:327.0.

|

0 s A=

5.8 Design Quality and Running time.

e Design quality: Fig. 5.3 shows the implementation area of AHAs with respect to
various pure adder library £ that AHA scheme uses. The tested 16 circuits are those
arithmetic expressions used in the previous tables. It is shown that L= {RC A, CLA},
{RCA,CLA,CSKA}and {RCA,CLA,CSLA} produce the most efficient adders.
Consequently, we can trim the library to £ ={RC A, C LA} to reduce the ANA synthe-
sis complexity while creating area-efficient adders under timing constraint. However,
depending on the technology and pure adder implementation details to be used, the
best library might be different.

e Running time: Fig. 5.3 summarizes the run time of AHA synthesis with respect
to various Ad values, bit-width of addends, and target library £. We measured av-
erage run time of AHA synthesis for the expressions in Tables 5.1, 5.3, 5.5, and
5.7. The slowest run time is about 15 minutes, which happens when Ad = 1 and
L ={RCA,CLA,CSK A} for 32-bit addition, as shown in Fig. 5.3(d). If the size of
L is over 4 or the bit-width of addends exceeds 32, the running time can be controlled

by increasing the value of parameter Ad.

61 s M EEw

450

B circuit 1
400 B circuit 2
H circuit 3
350 B circuit 4
300 B circuit 5
~ H circuit 6
2; 20 B circuit 7
Z 200 N circuit 8
§ 150 H circuit 9
< B circuit 10
100 ® circuit 11
50 H circuit 12
H circuit 13

u circuit 14

{RCA, {RCA, {CLA, {CLA, {CLA, {CSKA, {CSKA, {BKA, {RCA, {RCA, {CLA,
CLA} BKA} CSKA} BKA} CSELA} BKA} CSELA}CSELA} CLA, CLA, CSKA, i circuit 15
CSKA} CSELA} BKA}

H circuit 16
L : Library of pure adders

Figure 5.3: Comparison of implementation area produced by using various libraries of

pure adders.

62 i «H 2 Eﬂ :

{RCA, CLA}
600
500 A
Z 400 st
E 300 rd . wd=2
h
g 200 / / d=4
&~ /
o éé//f//; ~d=6
0
16bit 20bit 24bit 28bit 32bit
Width of Addends
(@) £ = {RCA,CLA}
{CLA, CSKA}
350
300 ,
Z 250 ~d=1
D
g 200 =2
E 150 i
2 100 =
E .
0
16bit 20bit 24bit 28bit 32bit
Width of Addends
(b) L ={CLA,CSKA}
{CSKA, BKA}
900
800
~ 700 / ~d=1
< 600
E 500 =d=2
= 400
£ 300 . d=4
& 200 —=
100 o ~d=6
_
0
16bit 20bit 24bit 28bit 32bit
Width of Addends
(©) L = {CSKA, BCA}
-]
63 2 A=

{RCA, CLA, CSKA}
900
800 -
= 700 ~d=1
~ 600
£ 500 d =d=2
= P |
= 300 = L e
% 200 L /.//4/.:/:7 —d=6
100 P ———
0 =
16bit 20bit 24bit 28bit 32bit
Width of Addends
d L ={RCA,CLACSKA}
{RCA, CLA, CSELA}
900
800
= 700 P —d=1
~ 600
£ 500 P -d=2
o P
= 300 / =4
& 200 /'/ A B
100 - // / “d=6
e
0
16bit 20bit 24bit 28bit 32bit
Width of Addends
() L={RCA,CLA,CSLA}
{CLA, CSKA, BKA}
400
350 ”
2 300 -—d=1
o 250 A
= d=2
S 200 /
= 150 " “d=4
& 100 // 4_/‘:/
50 - — _——— — “=d=6
0 é R
16bit 20bit 24bit 28bit 32bit
Width of Addends

(H) L ={CLA,CSKA, BCA}

Figure 5.3: Run times of AHA scheme for various values of parameter d, library L,

and bit-width of addends.

o4 4 A =tjj sk

Chapter 6

Conclusion

This dissertation proposed a new hybrid adder design scheme. Contrary to the con-
ventional hybrid adder scheme in which the target application was confined to the syn-
thesis of final adder in the fast multiplier design, our scheme targeted re-optimization
strategy where the design was under a stringent timing violation and an addition logic
was on a critical delay path of the design. This dissertation proposed a new systematic
hybrid adder design scheme, called adaptable hybrid adder scheme, to customize the
addition structure by combining pure sub-adders effectively to meet the timing con-
straint. The proposed adder design scheme will be practically very useful in finding
a new adder structure or resynthesizing an existing adder under a tight timing budget,
which otherwise, a complete restructuring or reoptimizing of the entire design shall be

needed.

65 s M EEw

Bibliography

[1] V. Oklobdzija and D. Villeger, “Improving multiplier design by using improved
column compressiontree and optimized final adder in cmos technology,” IEEE

Transactions on VLSI Systems, vol. 3, no. 2, pp. 292-301, 1995.

[2] S.Das and S. P. Khatri, “Generation of the optimal bit-width topology of the fast
hybrid adder in a parallel multiplier,” in Proceedings of the 1l1th International
Conference on IC Design and Technology (ICICDT’07). Los Alamitos, CA:
IEEE, 2007, pp. 1-6.

[3] “Synopsys timing constraints and optimization user guide,” 2010,

http://www.synopsys.com.

[4] B. Parhami, Computer Arithmetic Algorithms And Hardware Designs. New
York, NY: Oxford University Press, 1999.

[5] O. J. Bedrij, “Carry-select adder,” IRE Transactions on Electron Computers,
no. 3, pp. 340-346, 1962.

[6] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Trans-

actions on Computers, no. 3, pp. 260-264, 1982.

[7]1 R. Ladner and M. Fischer, “Parallel prefix computation,” Journal of ACM,
vol. 27, pp. 831-838, 1980.

66 s M EEw

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a
general class of recurrence equations,” IEEE Transactions on Computers, no. 8,

pp. 786-793, 1973.

H. Ling, “High-speed binary adder,” IBM Journal of Research and Development,
vol. 5, no. 3, pp. 156-166, 1981.

S. Knowles, “A family of adders,” in Proceedings of 14th IEEE Symp. Computer
Arithmetic, 1999, pp. 14-16.

S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar, “A 4 ghz 130 nm ad-
dress generation unit with 32-bit sparse-tree adder core,” in Symp. VLSI Circuits

Digest of Technical Papers, 2002, pp. 126—127.

R. Zlatanovic, S. Kao, and B. Nikolic, “Energy-delay optimization of 64-bit
carry-lookahead adders with a 240ps 90nm cmos design example,” IEEE Journal

of Solid-State Circuits, vol. 44, no. 2, pp. 569-583, 2009.

B. Zeydel, D. Baran, and V. Oklobdzija, “Energy-efficient design methodologies:
high-performance vlsi adders,” IEEE Journal of Solid-State Circuits, vol. 45,
no. 6, pp. 1220-1233, 2010.

T. Han and D. Carlson, “Fast area-efficient vlsi adders,” in Proceedings of Sth

IEEE Symp. on Computer Arithmetic, 1987, pp. 49-56.

T. Lynch and E. E. Swartzlander, “A spanning tree carry lookahead adder,” IEEE
Transactions on Computers, vol. 41, no. 8, pp. 931-939, 1992.

V. Kantabutra, “A recursive carry lookahead - carry select hybrid adder,” IEEE
Transactions on Computers, vol. 42, no. 12, pp. 1495-1499, 1993.

67 s M EEw

[17] Y. Wang, C. Pai, and X. Song, “The design of hybrid carry lookahead - carry
select sdders,” IEEE Transactions on Circuit and Systems, vol. 49, no. 1, pp.

16-24, 2002.

[18] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix ling adders,”
IEEE Transactions on Computers, vol. 54, no. 2, pp. 225-231, 2005.

[19] J. Lee, J. Lee, B. Lee, and M. Ercegovac, “A design method for heterogeneous
adders,” in Proceedings of the 3rd International Conference on Embedded Soft-
ware and Systems (ICESS’07). Berlin Heidelberg: Springer-Verlag, 2007, pp.
121-132.

[20] I. Koren, Computer arithmetic algorithms. Natick, MA: A. K. Peters, 2001.

[21] P. E. Stelling and V. G. Oklobdzija, “Design strategies for optimal hybrid final
adders in a parallel multiplier,” Journal of VLSI Signal Processing, vol. 14, no. 3,

pp. 321-331, 1996.

[22] P. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate operation
in multiplication time,” in Proceedings of the 13th Symposium on Computer
Arithmetic (ARITH’97). Washington D.C., DC: IEEE Computer Society, 1997,
pp- 99-106.

[23] R. Zimmermann, ‘“Non-heuristic optimization and synthesis of parallel-prefix
adders,” in Proceedings of Int. Workshop on Logic and Architecture Synthesis,

1996, pp. 123-132.

[24] R. Zimmermann and D. Tran, “Optimized synthesis of sum-of-products,” in
Proceedings of 37th Asilomar Conference on Signals, Systems, and Computers,

2003, pp. 9-12.

68 s M EEw

[25] T. Kim, W. Jao, and S. Tjiang, “Circuit optimization using carry-save-adder
cells,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, no. 10, pp. 974-984, 1998.

[26] J. Um and T. Kim, “An optimal allocation of carry-save-adders in arithmetic

circuits,” IEEE Transactions on Computers, vol. 50, no. 3, pp. 215-233, 2001.

[27] V. G. Oklobdzija, D. Villeger, and S. S. Lin, “A method for speed optimized
partial product reduction and generation of fast parallel multiplier using an algo-
rithmic approach,” IEEE Transactions on Computers, vol. 45, no. 3, pp. 294-306,
1996.

[28] P. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Design strategies for
optimal multipler circuits,” IEEE Transactions on Computers, vol. 47, no. 3, pp.

273-285, 1998.

69 s M EEw

mr
.x..#
al

OF
=k

A, B 2o A A

3

CMOS WH=A] £2ke] g4 o] Al g o= s}

217

oA HA W TR3AIL e,

o)
%)

A3 2 A A

]

NE

71, 1¥

o Zab7lel 54 7= A7 =

=<

A

N

771,

|

o

8 2o A 7Hg
384719

il

of gl 71of tisll &4 SlAl 7] 28 A& SFo] AJZE Al <F

o 514l 712

o Al Al =]

s

Aol B zol A 4 AR

}

~

A1) B8N

]

U
o|J
AT

=0

SEE

the

of A A b= o] A]

B

)

Z* 8 o]: Hybrid adder, RTL resynthesis, arithmetic optimization, timing optimization

H: 2007-30216

st
or

]
F

H &t 5

':.I.:'r_ 'I
—

S

70

ACKNOWLEDGMENT

ol
HR
o)

o
ilhi]

£Uth Sl 21 A A

dolghs AlZbo] A%k

7

o =1

A, A

td A7 <

3

Fuch B AT A4S Wt
1A A ARA BT Az A 2

(]
A

foig
=

Zo0fo

I

ds Eol

o
b
bl

NG A

ofy
Ay

o)

ol

oH

A3 oA 83 Yol ol A2

=
=

o 7

oA &7

]

ol

;?_

B

7}

il
juid

Atk o

=
jams

_ﬁo_l
7
2

B

Az
N

o] Hol& A

3 Arkol A Wel A A st

—_

;OU

mjJ

‘mmmo
ol
b

-

ol

AslE AT, ot
Fuch

el
=4

I—/\]_E

i

A4 =gy,

A
™

AA o7

)5

o

a8l

]
F

Hgkn

-:IJT_ 3
—

S

71

	1 Introduction
	1.1 Pure adders
	1.2 Parallel prefix adders
	1.3 Hybrid adders
	1.4 Hybrid adders with timing constraints
	1.5 Contribution of this dissertation

	2 Motivational Examples
	3 Definitions and Design Flow
	3.1 Notations and Definitions

	4 Synthesis of Adaptable Hybrid Adders
	4.1 Synthesizing Single Adaptable Hybrid Adder
	4.2 Synthesizing Multiple Adaptable Hybrid Adders

	5 Experimental Results
	5.1 Generating a Single Adder with Non-uniform Input Arrival Times
	5.2 Generating a Single Adder Considering Non-uniform Output Required Time Constraint
	5.3 Generating a Single Adder Considering Both Non-uniform Input Arrival and Output Required Times
	5.4 Generating Multiple (Super) Adders
	5.5 Comparison with Commercial Synthesis Tool
	5.6 AHA Synthesis Combined with Cell Sizing
	5.7 Synthesis for power minimization
	5.8 Design Quality and Running time

	6 Conclusion
	Abstract in Korean

<startpage>13
1 Introduction 1
 1.1 Pure adders 1
 1.2 Parallel prefix adders 3
 1.3 Hybrid adders 5
 1.4 Hybrid adders with timing constraints 6
 1.5 Contribution of this dissertation 8
2 Motivational Examples 11
3 Definitions and Design Flow 19
 3.1 Notations and Definitions 19
4 Synthesis of Adaptable Hybrid Adders 23
 4.1 Synthesizing Single Adaptable Hybrid Adder 25
 4.2 Synthesizing Multiple Adaptable Hybrid Adders 33
5 Experimental Results 40
 5.1 Generating a Single Adder with Non-uniform Input Arrival Times 41
 5.2 Generating a Single Adder Considering Non-uniform Output Required Time Constraint 45
 5.3 Generating a Single Adder Considering Both Non-uniform Input Arrival and Output Required Times 45
 5.4 Generating Multiple (Super) Adders 50
 5.5 Comparison with Commercial Synthesis Tool 50
 5.6 AHA Synthesis Combined with Cell Sizing 53
 5.7 Synthesis for power minimization 55
 5.8 Design Quality and Running time 61
6 Conclusion 65
Abstract in Korean 70
</body>

