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Abstract

The performance of an automatic speech recognition (ASR) system deteriorates in

the presence of background noise. Even without any background noise, the perfor-

mance may be degraded because of the linear or non-linear distortions incurred by

channel, recording devices or reverberations.

In this thesis, we discuss advanced stereo data based and blind speech feature

enhancement approaches for robust speech recognition. One of the well-known ap-

proaches to reduce the channel distortion is feature mapping which maps the dis-

torted speech feature to its clean counterpart. The feature mapping rule is usually

trained based on a set of stereo data which consists of the simultaneous recordings

obtained in both the reference and target conditions. In this thesis, we propose a

novel approach to speech feature sequence mapping based on the switching linear

dynamic system (SLDS). The proposed algorithm enables us a sequence-to-sequence

mapping in a systematic way, instead of the traditional vector-to-vector mapping.

Furthermore, we propose a novel approach to semi-blind parameter estimation which

does not require the reference feature vectors. The proposed approach is motivated

by the hidden Markov model (HMM)-based speech synthesis algorithm.

Additionally, we focus on the feature compensation technique, in which the dis-

torted input features are compensated before being decoded using the acoustic recog-
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nition models that were trained on clean speech. The proposed feature compensa-

tion algorithms are blind techniques which mean that the training or adaptation data

is not necessary for estimating the relevant parameters. In this thesis, we propose

a novel blind approach for feature compensation based on the interacting multiple

model (IMM) algorithm specially designed for joint processing of background noise

and acoustic reverberation. This approach to cope with the time-varying environ-

mental parameters is to establish a switching linear dynamic model (SLDM) for the

additive and convolutive distortions, such as the background noise and acoustic re-

verberation, in the log-spectral domain. We construct multiple state space models

with the speech corruption process in which the log-spectra of clean speech and log

frequency response of acoustic reverberation are jointly handled as the state of our

interest.

The proposed approaches show significant improvements in the Aurora-5 speech

recognition task which is developed to investigate the influence on the performance

of ASR in reverberant noisy environments.

Keywords: Robust speech recognition, feature compensation, dereverberation, stereo

data, switching linear dynamic system (SLDS), interacting multiple model

(IMM).

Student number: 2006-21319
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Chapter 1

Introduction

There exist numerous factors that cause mismatches between the input speech sig-

nals and those used for training the acoustic model for automatic speech recognition

(ASR). This mismatch of acoustic features usually causes a degradation of the speech

recognition performance. The factors that affect acoustic mismatch are largely clas-

sified into two categories: system and environmental factors [1]. The system factors

include speech capturing devices such as microphones, analog circuits, A/D convert-

ers and data compression modules. On the other hand, the environmental factors

such as additive background noise, acoustic reverberations and various interfering

signals affect the speech quality. In order to ameliorate the performance degrada-

tion of ASR systems in adverse environment, we can suppress the distortion in the

signal or feature domain or transform the model parameters to match the input.

First, signal domain approach is applied on the speech signal prior to feature

extraction. Among them, there are single or multichannel approaches based on

blind inverse filtering of room impulse responses [2–4]. However, estimation of the

exact transfer function between the speaker and the microphone is difficult and such
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approaches usually show a high sensitivity to small changes in the transfer functions.

Further, in the spectral enhancement techniques, the statistical characteristics of the

acoustic reverberation are estimated and these are subtracted from the input speech

signal in the spectral domain [5–8]. However, speech enhancement techniques may

usually introduce complicated artifacts into the speech signal with unpredictable

effects on the successive feature extraction leading to a worse ASR performance

than both the feature domain and model domain techniques.

Secondly, in the feature domain approaches, the distorted input features are

compensated before being decoded using the acoustic recognition models that were

trained on clean speech. Among the conventional feature compensation methods,

the interacting multiple model (IMM) technique [9–11] has produced good results

in the additive background noise environments. However, the performance in the

reverberant environment has not been verified since the conventional IMM technique

does not consider the effect of the convolutive distortion. Krueger et al. [12, 13]

proposed a feature compensation algorithm for reverberant speech recognition based

on the Kalman filtering approach. They proposed a stochastic observation model

which relates the clean to the reverberant logarithmic mel power spectral coefficient

(LMPSC) through a simplified model of the room impulse response. There are also

stereo data based feature mapping techniques. The stereo data set consists of data

captured in the same conditions as used in the speech recognition system training and

data collected in different environments. Among a number of traditional stereo data

based feature mapping techniques, the SPLICE [14] technique performs reasonably

well in adverse environment given a set of stereo database.

Finally, model adaptation approaches aim at reducing mismatch between the

trained speech recognition models and the input speech by adapting the model

2
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Figure 1.1: System theoretic viewpoint on feature mapping

parameters of the recognizer to the distorted environments. There are several model

adaptation methods proposed to reduce the effects of reverberation and noise [15, 16].

One of the popular model adaptation techniques is the maximum-likelihood linear

regression (MLLR) approach [17, 18]. A major drawback of the model adaptation

approach is that it requires a certain amount of adaptation data and corresponding

transcription though unsupervised adaptation is also possible.

In this thesis, we focus on the feature mapping technique in which the input

distorted speech features such as the log-spectral or cepstrum vectors are converted

to their enhanced version before being decoded through the acoustic recognition

models that were trained on a different system and in a different environment. From

a system theoretic viewpoint, feature mapping is considered a system as shown in

Figure 1.1 in which the input feature vector sequence (x0,x1, · · · ,xT−1) is converted

to the target sequence (y0,y1, · · · ,yT−1). Based on this viewpoint, the design of

the feature mapping rule can be handled as the system identification problem with

a set of input and corresponding output feature vector streams. There are two

approaches for estimating the parameters for feature mapping: stereo data based

and blind techniques. In the stereo data based technique, a database of simultaneous

recordings obtained in both the reference and target conditions is given and feature
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mapping rules are derived from the difference between the associated feature vectors

[14, 19–23]. On the other hand, in the blind techniques, only the input feature

vectors are given and the information related to the target feature vectors is provided

in the form of statistical models such as the Gaussian mixture model (GMM), hidden

Markov model (HMM) and switching linear dynamic model (SLDM) [24–26]. In

general, feature mapping for the blind technique is done according to either the

minimum mean square error (MMSE) or the maximum likelihood (ML) criterion.

In Chapter 4, we propose a novel approach to speech feature sequence mapping

based on the switching linear dynamic system (SLDS) [21–23]. We also propose a

method to train the SLDS parameters based on a given stereo database. SLDS is

considered an extension of SLDM [25]. In SLDS, since there is an exogenous input

feature vector sequence, it can be assumed to be a transducer. One of the prominent

advantages of the proposed method is that it enables a systematic implementation of

sequence-to-sequence mapping instead of the traditional vector-to-vector mapping.

In the stereo data, one is captured with the same conditions as used in the speech

recognition system training and the other is collected with a different device. The

performance of the proposed method is evaluated with speech recognition experi-

ments. The proposed algorithm shows better performance than other approaches

when evaluated with the Aurora-5 task where various kinds of mismatches between

the training and test data caused by background noises, different microphones and

acoustic reverberation exist.

In Chapter 5, we propose an approach to semi-blind estimation for the speech

feature mapping algorithms which originally require stereo data for their parameter

training [27]. In the proposed method, given target speech and transcription, an

artificial reference feature vector sequence are generated from the HMM and then

4



applies it to a conventional stereo-based technique. Our approach is motivated by

the speech feature generation method employed in HMM-based speech synthesis

[28]. In order to further improve the performance of the feature mapping system,

we also propose to interpolate the feature vector streams generated through the

HMM with those obtained from the output of a conventional feature compensation

algorithm. The proposed semi-blind estimation technique was applied to a task

of speech recognition over the Aurora-5 DB and has demonstrated a remarkable

performance improvement.

In Chapter 6, we propose a novel blind approach which is robust to both the back-

ground noise and reverberation. One of the drawbacks of the SPLICE and SLDS

techniques is that they require stereo data for parameter estimation though semi-

blind versions can be implemented. On the other hand, the proposed method is a

blind technique which means that the training or adaptation data is not necessary

for estimating the relevant parameters. The information related to the clean feature

vectors is provided in the form of the Gaussian mixture model (GMM) which is pre-

trained. Our approach to cope with the time-varying environmental parameters is

to establish a switching linear dynamic model incorporating the background noise

and acoustic reverberation in the log-spectral domain. The proposed technique can

be considered as an extension of the original IMM-based feature compensation algo-

rithm [10] and attempts to incorporate the characteristics of both the background

noise and acoustic reverberation. We construct multiple state space models charac-

terizing the speech corruption process as well as the assumed evolution process for

the background noise and acoustic reverberation. In the conventional IMM-based

feature compensation algorithm, noise feature parameters are treated as a state

vector. In contrast, in the proposed state space models, local trajectory of the log-

5



arithmic mel magnitude spectral coefficients (LMMSCs) of the clean speech and log

frequency response of reverberation are jointly handled as the state of our interest.

The rest of this thesis is organized as follows: The next chapter introduces the

experimental environments and describes the baseline system. In Chapter 3, we

present the previous conventional feature domain approaches for environment com-

pensation. In Chapter 4, we propose the SLDS for stereo data based speech feature

mapping. In Chapter 5, we provide the semi-blind estimation technique of feature

mapping parameters. The blind approach for reverberation and noise robust IMM-

based feature compensation algorithm is proposed in Chapter 6. Finally, conclusions

are drawn in Chapter 7.
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Chapter 2

Experimental Environments and

Baseline System

In this thesis, all speech recognition experiments were performed using the Aurora-5

speech database and use HTK as speech recognizer for fair comparison between al-

gorithms. In this chapter, we describe the hands-free ASR scenario in a reverberant

noisy environment and give the detail on how to extract speech features. We also

describe Aurora-5 database and present the baseline performance of the database.

For the symbols and notations of signals and relevant parameters, we will follow

those presented in [13].

2.1 ASR in Hands-Free Scenario

In this thesis, we consider a typical hands-free scenario for ASR, which is illustrated

in Figure 2.1. The target speaker is located in a reverberant noisy environment at a

certain distance from a far-field microphone. The discrete time acoustic signal ȳ(l)
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Figure 2.1: ASR for a hands-free speech input in noisy room environments

captured at this microphone with l ∈ {0, 1, · · · } denoting the time index consists

of two components, the reverberant speech signal s̄(l) and background noise n̄(l) as

given by

ȳ(l) = s̄(l) + n̄(l). (2.1)

Let h̄l(p) represent the room impulse response (RIR) from the target speaker to the

microphone at the time index l with the corresponding tap index p ∈ {0, 1, · · · }.
Then, the reverberant speech signal s̄(l) results from the convolution of the source

speech signal x̄(l) with the time-variant RIR h̄l(p), i.e.,

s̄(l) =
∞∑

p=0

h̄l(p)x̄(l − p). (2.2)

The noise signal component n̄(l) includes all the reverberant background noise sig-

nals which originate from noise sources as well as inherent microphone noise. The

three components, x̄(l), h̄l(p) and n̄(l), may be modeled as independent random pro-

cesses. The microphone signal ȳ(l) is passed to an ASR system which is expected

8



to estimate the word sequence spoken by the target speaker. A typical ASR system

is composed of two parts: front-end and back-end. At the former, features are ex-

tracted from the incoming microphone signal while at the latter, the most probable

word sequence is found based on the extracted features and trained models. These

reverberant noisy environments usually lead to performance degradation due to the

mismatches between the features obtained in clean condition and various target en-

vironments. In this thesis, we focus on estimating the clean speech features in both

stereo-based and blind manners.

2.2 Feature Extraction

The way reverberation, background noise and various distortion influence the ex-

tracted feature highly depends on the particular feature extraction method. In this

work, we focus on the MFCC which is one of the predominant feature parame-

ters for the state-of-the-art ASR systems. Among a variety of versions of MFCCs,

we focus on the method standardized according to the ETSI ES 201 108 standard

[29]. However, the feature compensation algorithm proposed in this thesis can be

easily applied to other versions of MFCCs with slight modifications. The feature

extraction process based on the ETSI standard front-end (FE) is shown in Figure

2.2.

For extracting the MFCCs, the time signal ỹ(l), which is obtained after offset

compensation and preemphasis of the captured speech signal ȳ(l), is framed and

weighted by a Hamming analysis window function w̃a(l) of finite length Lw to obtain

the frame-dependent windowed signal segments:

ỹ(t, lw) = w̃a(lw)ỹ(lw + tB) (2.3)

9
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Figure 2.2: Feature extraction according to ETSI standard font-end [29]

in which t ∈ {0, 1, · · · }, lw ∈ {0, 1, · · · , Lw − 1} and B denote the frame index, time

index within the segment and the length of frame shift, respectively. The windowed

signal segments are subsequently transformed to the frequency domain by applying

the discrete Fourier transform (DFT), resulting in the short-time discrete Fourier

transform (STDFT) representations given by

Ỹ (t, kf ) =

Lw−1∑

lw=0

ỹ(t, lw) exp

(
−j

2π

Kf
kf lw

)
(2.4)

where kf ∈ {0, 1, · · · ,Kf − 1} is the frequency bin index, Kf denotes the number of

frequency bins and j represents imaginary unit
√−1. The mel magnitude spectral

coefficients Yt,q are then obtained as perceptually weighted sums of the STDFT

magnitudes. This is accomplished by applying a bank of Q overlapping triangular

filters Λq, q ∈ {0, 1, · · · , Q−1}, which are equally spaced on the mel scale, according

10



to

Yt,q =

K
(up)
q∑

kf=K
(lo)
q

∣∣∣Ỹ (t, kf )
∣∣∣Λq(kf ). (2.5)

Different from [13], we apply the magnitude spectrum as specified in [29] instead

of the power spectrum. Here K
(lo)
q and K

(up)
q are respectively the lower and upper

bounds of the q-th mel band. The logarithmic mel magnitude spectral coefficients

(LMMSCs) are computed by taking the natural logarithm as

yt,q = ln (Yt,q) (2.6)

where yt,q represents the LMMSC for the q-th mel band.

Finally, the LMMSCs are decorrelated by applying the discrete cosine transform

(DCT) to obtain the well-known MFCCs as follows:

y
(c)
t,kc

=

Q−1∑

q=0

yt,q cos

(
kcπ

Kc

(
q +

1

2

))
(2.7)

where kc ∈ {0, 1, · · · ,Kc − 1} denotes the MFCC index and Kc the overall number

of MFCC components.

Let yt denotes Q-dimensional LMMSC vector. Then this vector can be defined

as follows:

yt =

[
yt,0 yt,1 · · · yt,Q−1

]′
(2.8)

with the prime denoting vector transpose.

2.3 Baseline ASR System for Aurora-5

Aurora-5 DB was developed to investigate the influence on the performance of ASR

for a hands-free speech input in noisy room environments [30]. In Aurora-5, two
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test conditions are also included to study the influence of transmitting the speech in

a mobile communication system. The number of test utterances was 8700 for each

test condition.

In the Aurora-5, the test data consisted of two sets: G. 712 filtered and non-

filtered sets summarized in Tables 2.1 and 2.2. The G. 712 filtered set comprised

clean speech utterances to which randomly selected car or public space noise samples

were added at SNR levels 0 to 15 dB. A car noise segment was randomly selected

from 8 recordings that were made in two different cars under different conditions.

As noise at public places a segment was randomly selected from 4 recordings at

an airport, at a train station, inside a train and on the street. The GSM radio

channel is also applied to simulate an influence for transmitting the noisy speech over

a cellular telephone network. For the simulation of the GSM transmission, AMR

speech codec was applied with various modes of bitrates and carrier-to-interference

levels. The non-filtered set consisted of clean speech utterances to which randomly

selected interior noises were added at SNR levels from 0 to 15 dB. The interior noise

samples were recorded at a shopping mall, a restaurant, an exhibition hall, an office

and a hotel lobby. Furthermore, to simulate the hands-free speech in a room, the

clean speech signals are convoluted with the impulse responses of three different

acoustic scenarios: hands-free in car (HFC), hands-free in office (HFO) and hands-

free in living room (HFL). For this simulation, the reverberation times for the office

and living rooms were randomly varied inside ranges of 0.3-0.4 and 0.4-0.5 seconds,

respectively.

In the experiments, we focused on the performance of the speech recognition

system in a clean training condition. Baseline recognition systems were built based

on the clean speech data provided by the G. 712 filtered and non-filtered data sets.
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Table 2.1: G. 712 filtered test data set

Noise Car Noise Street Noise

Hands-free in Car HFC & GSM GSM

(HFC) (HFC-GSM)

Clean Clean Clean Clean

15 15 15 15

SNR 10 10 10 10

5 5 5 5

0 0 0 0

The number of utterances used for HMM training was 8623 for each data set. In

our implementation, we employed the conventional front-end feature specified in the

ETSI standard [29] as the basic feature vectors. The magnitude spectrum for a

windowed speech frame was obtained from applying to a 23-dimensional mel scale

filter bank, i.e., Q = 23. A 13 dimensional cepstral coefficient vector was extracted

from each frame of 10 ms with the sampling rate of 8000 Hz. Derived cepstrum and

the corresponding ∆- and ∆∆-cepstra were used as the feature vectors for speech

recognition. Each word in the vocabulary, which was designed based on TI-DIGITS

DB, was modeled by a left-to-right structured HMM consisting of 16 states and four

Gaussian components per state. The training of the HMM parameters and Viterbi

decoding for speech recognition was carried out using HTK software [31]. The word

accuracies of the baseline systems are shown in Table 2.3 for the G. 712 filtered and

non-filtered data sets.
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Table 2.2: Non-filtered test data set

Noise Interior Noise

Hands-free in Office Hands-free in Living Room

(HFO) (HFL)

Clean Clean Clean

15 15 15

SNR 10 10 10

5 5 5

0 0 0

Table 2.3: Word accuracies (%) of the baseline system for non-filtered and G. 712

filtered test data sets

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.32 93.30 83.24 99.31 97.41 92.45 97.70

15 81.66 71.46 55.49 90.44 71.96 61.20 81.64

10 56.44 43.97 30.72 70.27 42.92 36.56 58.61

5 27.67 18.14 12.56 41.48 19.51 18.39 27.09

0 11.14 6.42 5.74 20.80 11.41 8.68 3.63
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Chapter 3

Previous Feature Enhancement

Approaches

In this chapter, we describe the the IMM [9–11] and SPLICE [14] algorithms which

are representative of blind and stereo data based feature enhancement methods, re-

spectively. As described in Chapter 2.2, speech signal is segmented by framing and

transformed into the frequency domain signal by FFT. For speech enhancement,

noise suppression is usually performed in spectral domain where any nonlinear trans-

form is not applied because noisy input signal must be reconstructed to enhanced

signal after eliminating the noise component. On the other hand, for speech recog-

nition, nonlinear transforms such as the mel scale filter bank and log transform, and

matrix operation such as the discrete cosine transform (DCT) or inverse Fourier

transform are applied for stable dynamic range and extract the formant informa-

tion efficiently. Therefore, most of speech enhancement algorithms are developed

in spectral domain while large amount of robust speech recognition algorithm is

performed in log-spectral or cepstral domain. The conventional IMM algorithm is
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performed in the log-spectral domain and SPLICE is applied to MFCCs.

3.1 Previous Stereo Data Based Feature Mapping Ap-

proach

3.1.1 Conventional SPLICE Algorithm

SPLICE is a frame-based bias removal algorithm for feature enhancement under

additive noise distortion, channel distortion or a combination of the two [14]. In

the SPLICE approach, the input feature vector is clustered into K separate regions,

and the estimate for the enhanced output feature vector yt is given by

ŷt =

K−1∑

k=0

p (k|xt) (xt + rk) (3.1)

where xt is clean speech feature vector, p (k|xt) is the a posteriori probability of the

k-th cluster and rk represents the associated bias.

The SPLICE algorithm assumes no explicit noise model, and the noise character-

istics are embedded in the piecewise linear mapping between the “stereo” clean and

distorted speech cepstra. The piecewise linearity is intended to approximate the

true nonlinear relationship between the two. The nonlinearity between the cepstral

vectors of clean speech and distorted (including additive noise) cepstra arises due to

the use of the mel scale filter bank and log transform in computing the cepstra as

described in Chapter 2.2. Because of the use of the stereo training data that pro-

vide accurate estimates of the bias or clean vectors without the need for an explicit

noise model, the SPLICE algorithm is potentially able to effectively handle a wide

range of difficult distortions, including nonstationary distortion, joint additive and

convolutional distortion, and even nonlinear distortion. A key requirement for the
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success of the SPLICE is that the distortion conditions under which the correction

vectors are learned from the stereo data are similar to those that corrupt the test

data.

3.2 Previous Blind Feature Compensation Approach

3.2.1 Statistical Linear Approximation

The highly nonlinear contamination procedure make it difficult to estimate clean

speech and noise feature vector exactly. For that reason, contamination relation-

ship is usually approximated by piecewise linearized model, which improves the

mathematical tractability in environmental parameter estimation. For linear ap-

proximation, statistical linear approximation (SLA) [24] is used in our work. In

SLA method, noisy input feature generation function f(x,n) is approximated by a

linear function defined by

g(x,n) = A(x− x◦) +B(n− n◦) +C (3.2)

where n and x are background noise and clean speech feature vectors, respec-

tively. In order to make the approximation have some statistical meaning, we as-

sume that n and x are statistically independent and modeled as Gaussian distribu-

tions, N (n;n◦,Σn) and N (x;x◦,Σx), respectively. Then Taylor series expansion

of f(x,n) around (x◦,n◦) by taking up to the m-th power in (x,n) is represented

by

Pm
f (x,n) =

m∑

k=0

1

k!

[
(x− x◦)

∂

∂x
+ (n− n◦)

∂

∂n

]k
· f(x,n)|x=x◦,n=n◦ (3.3)

=
m∑

k=0

k∑

i=0

ζ(k, i)(x− x◦)k−i(n− n◦)i (3.4)
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where

ζ(k, i) =
1

i!(k − i)!

∂kf(x◦,n◦)
∂xk−i∂ni

. (3.5)

The m-th order SLA approach aims to minimize the mean square error incurred

when approximating g(x,n) as Pm
f (x,n). The optimal values for {A,B,C} ob-

tained through the m-th order SLA approach, {Am,Bm,Cm} can be represented as

follows:

{Am,Bm,Cm} = argmin
{A,B,C}

E
[|Pm

f (x,n)− g(x,n)|2] (3.6)

where E[·] denotes the expectation with respect to the given distributions. After

some algebra, (3.6) can be shown that

Am = Σ−1
x E

[
(x− x◦)Pm

f (x,n)
]

(3.7)

Bm = Σ−1
n E

[
(n− n◦)Pm

f (x,n)
]

(3.8)

Cm = E
[
Pm
f (x,n)

]
. (3.9)

For calculating (3.7)-(3.9), we can use a well-known property [32] that when a ran-

dom variable y is distributed according to N (
y;µy,Σy

)
given nonnegative integer

m

E
[
(y − µy)

m
]
=





0 if m is an odd number,

∏m/2
k=1 (2k − 1)Σ

m/2
y otherwise.

(3.10)

The optimal {Am,Bm,Cm} up to the third order is shown in Table 3.1.

3.2.2 Feature Compensation in a Bayesian Framework Based on

Linear Approximation

Let y =

[
y0 y1 · · · yQ−1

]′
be aQ-dimensional noisy feature vector. Assume that

y is related to the clean speech feature x =

[
x0 x1 · · · xQ−1

]′
and background
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Table 3.1: {Am,Bm,Cm} obtained through SLA up to the third order (f(·) =

f(x◦,n◦))

m Am Bm Cm

0 0 0 f(·)

1 ∂f(·)
∂x

∂f(·)
∂n f(·)

2 ∂f(·)
∂x

∂f(·)
∂n f(·)+

1
2
∂2f(·)
∂x2 Σx + 1

2
∂2f(·)
∂n2 Σn

3 ∂f(·)
∂x + ∂f(·)

∂n + f(·)+
1
2
∂3f(·)
∂x3 Σx + 1

2
∂3f(·)
∂x∂n2Σn

1
2
∂3f(·)
∂n3 Σn + 1

2
∂3f(·)
∂n∂x2Σx

1
2
∂2f(·)
∂x2 Σx + 1

2
∂2f(·)
∂n2 Σn

noise n =

[
n0 n1 · · · nQ−1

]′
by

y = f(x,n) (3.11)

and all the vectors y,x and n at a time are statistically independent of those at

a different time. Environmental compensation means that given a noisy feature

vector sequence yT−1
0 =

[
y′
0 y′

1 · · · y′
T−1

]′
, estimating the clean speech feature

vector sequence xT−1
0 =

[
x′
0 x′

1 · · · x′
T−1

]′
. Here, the probability distribution

function (pdf) of the clean speech feature vector is given by a mixture of Gaussian

distributions such that

p(x) =

K−1∑

k=0

p(k)N (x;µk,Σk) (3.12)

where K is the total number of mixture components and p(k), µk and Σk rep-

resent the given weight, mean and covariance of the k-th Gaussian distribution,

respectively. As for the distribution of the background noise, which is statistically
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independent of the clean speech feature, it is assumed to be a single Gaussian distri-

bution N (n;µn,Σn) where the mean vector µn and the covariance Σn are unknown

and should be estimated during the environment compensation procedure.

It is usually difficult to estimate directly the environmental parameter such as

µk and Σk. This difficulty mostly comes from the nonlinearity of the speech con-

tamination rule. One possible way to alleviate this difficulty is to piecewise linearly

approximate the given nonlinear function. This indicates that in the k-th mixture

components, f(x,n) is approximated by

y = Akxt +Bknt +Ck. (3.13)

For the k-th mixture component, µk and the given initial value for µn are used as

the center of Taylor series expansion. Then

{
Âk, B̂k, Ĉk

}
= argmin

{Ak,Bk,Ck}
E
[
||f̃(x,n)−Akx−Bkn−Ck||2

]
(3.14)

where
{
Âk, B̂k, Ĉk

}
are the obtained matrices and the expectation is taken with

respect to the joint pdf given by

p(x,n) = N (x;µk,Σk) · N (n;µn,Σn). (3.15)

Let x̂t be the estimate for the clean speech feature vector at time t. Then,

according to the MMSE criterion, it is desirable to obtain the estimate based on all

the noisy observations as follows:

x̂t = E [xt|y0,y1, · · · ,yT−1] . (3.16)

Rewriting (3.16) with the environmental parameters λn = {µn,Σn}

x̂t =

∫
E
[
xt|λn,y

T−1
0

]
p
(
λn|yT−1

0

)
dλn (3.17)
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where yT−1
0 =

[
y′
0 y′

1 · · · y′
T−1

]′
denotes the given sequence of observation vec-

tors. Since, in general, precise description of p
(
n|yT−1

0

)
is difficult and the integra-

tion requires heavy computation except for some special cases such as the conjugate

prior pdfs, suboptimal method called estimative approach is adopted. In the esti-

mative approach,

x̂t = E
[
xt|λ̂n,y

T−1
0

]
(3.18)

where λ̂n is the maximum likelihood estimate for λn given the observation yT−1
0 .

After the environmental parameter estimation, the environment compensation is

completed by

x̂t = E
[
xt|λ̂n,y

T−1
0

]
(3.19)

= E
[
xt|λ̂n,yt

]
(3.20)

=
K−1∑

j=0

p
(
kt = j|λ̂n,yt

)
E
[
xt|kt = j, λ̂n,yt

]
(3.21)

where kt denotes the mixture component index a time t. In (3.21), the second

equality holds due to the assumption that xt depends only on yt observed at time

t and the a posteriori probability p
(
kt = j|λ̂n, yt

)
is given by

p
(
kt = j|λ̂n,yt

)
=

p
(
yt|kt = j, λ̂n

)
p(kt = j)

∑K−1
i=0 p

(
yt|kt = i, λ̂n

)
p(kt = i)

(3.22)

with p(kt = j) being the a priori probability associated to the j-th mixture compo-

nent.

In (3.21) it can be calculated by Bayes rule

E
[
xt|kt = j, λ̂n,yt

]
=

∫
xtp

(
xt|kt = j, λ̂n,yt

)
dxt (3.23)
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where p
(
xt|kt = j, λ̂n,yt

)
is given by

p
(
xt|kt = j, λ̂n,yt

)
=

p
(
yt|xt, kt = j, λ̂n

)
p
(
xt|kt = j, λ̂n

)

∫
p
(
yt|xt, kt = j, λ̂n

)
p
(
xt|kt = j, λ̂n

) . (3.24)

∫
p
(
yt|xt, kt = j, λ̂n

)
p
(
xt|kt = j, λ̂n

)
is the normalizing term such that the sum-

mation of p
(
xt|kt = j, λ̂n,yt

)
over all j should be equal to 1. As a result,

p
(
yt|xt, kt = j, λ̂n

)
∼ N (

yt;Ajxt +Bjµn +Cj ,BjΣnB
′
j

)
(3.25)

p
(
xt|kt = j, λ̂n

)
∼ N (

xt;µj ,Σj

)
. (3.26)

So p
(
xt|kt = j, λ̂n,yt

)
has Gaussian distribution with mean and variance m̂t, v̂t

and (3.23) becomes

E
[
xt|kt = j, λ̂n,yt

]
= m̂t. (3.27)

Two Gaussian distribution of p
(
yt|xt, kt = j, λ̂n

)
and p

(
xt|kt = j, λ̂n

)
can be de-

rived to

v̂−1
t = A′

j

(
BjΣnB

′
j

)−1
Aj +Σ−1

j (3.28)

m̂t = v̂t

[
Σ−1

j µj +A′
j(BjΣnB

′
j)

−1(yt −Bjµn −Cj)
]
. (3.29)

Summarize all results goes as follows:

x̂t =
K−1∑

j=0

p
(
kt = j|λ̂n, yt

)
m̂t (3.30)

m̂t =
(
A′

j(BjΣnB
′
j)

−1Aj +Σ−1
j

)−1

·
[
Σ−1

j µj +A′
j(BjΣnB

′
j)

−1(yt −Bjµn −Cj)
]

(3.31)

p
(
kt = j|λ̂n,yt

)
=

p
(
yt|kt = j, λ̂n

)
p(kt = j)

∑K−1
i=0 p

(
yt|kt = i, λ̂n

)
p(kt = i)

. (3.32)
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3.2.3 Conventional IMM Algorithm

One of the basic assumptions that underlies the IMM-based method is that the

environmental characteristic at a time does not vary abruptly. This means that the

background noise feature at current time is considered to have smoothly been evolved

from that of the previous time. With this meaningful assumption, the background

noise evolution process is given by [9–11].





nt+1 = nt +wt

yt = Akxt +Bknt +Ck

(3.33)

where wt is a Gaussian process with zero mean vector 0 and covariance matrix Q

independent of time.

The traditional batch approach to environment compensation implies that a

single parameter estimation for λn = {µn,Σn} is obtained based on all the noisy

feature vectors and used to estimate the whole clean speech feature vectors, xT−1
0 =[

x′
0 x′

1 · · · x′
T−1

]′
. In contrast, IMM is a sequential parameter estimation scheme

where a separate estimate for λn is obtained and updated for each time t and ap-

plied to compute the estimate of the clean speech feature x̂t. Distinguished from

the sequential EM algorithm [33], both µn and Σn can be simultaneously updated.

Several approaches for state estimation are found in the field of multiple target

tracking where the problem is usually described by a bank of Kalman filters similar

to IMM. Among the conventional state estimation schemes, IMM algorithm is taken

due to its computational advantage. The conventional IMM algorithm is performed

in the log-spectral domain [9, 10] or cepstral domain [34, 35]. In this section, we

will describe the IMM-based feature compensation in the log-spectral domain. The

whole noise state estimation and feature compensation procedure of IMM is divided
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into four major steps:

• Mixing step : the estimates of the background noise obtained from each mix-

ture component are combined together to produce a single Gaussian noise

estimate.

µ0
n(t− 1|k) = E

[
nt−1|kt = k,yt−1

0

]
(3.34)

=
K−1∑

j=0

γk(t− 1)µ̂n(t− 1|j)

Σ0
n(t− 1|k) = Cov

[
nt−1|kt = k,yt−1

0

]
(3.35)

=

K−1∑

j=0

γk(t− 1)
[
Σ̂n(t− 1|j)+

(
µ̂n(t− 1|j)− µ̂0

n(t− 1|j)) (µ̂n(t− 1|j)− µ̂0
n(t− 1|j))′ ]

where

µ̂n(t− 1|j) = E
[
nt−1|kt−1 = j,yt−1

0

]
(3.36)

Σ̂n(t− 1|j) = Cov
[
nt−1|kt−1 = j,yt−1

0

]
(3.37)

γj(t− 1) = p
(
kt−1 = j|yt−1

0

)
. (3.38)

• Kalman step : the conventional Kalman update is carried out given the initial

estimates computed from the Mixing step.

- One-step-ahead predictive state estimate (time update)

µp
n(t|j) = µ̂0

n(t− 1|j) (3.39)

Σp
n(t|j) = Σ̂

0
n(t− 1|j) +Q. (3.40)
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- Innovation and its covariance

e(t|j) = yt −Ajµj −Bjµ
p
n(t|j)−Cj (3.41)

Re(t|j) = BjΣ
p
n(t|j)B′

j +AjΣjA
′
j . (3.42)

- Shrinked Kalman gain (α: shrinking factor (SF), 0 ≤ α ≤ 1)

Kf (t|j) = Σp
n(t|j)B′

jR
−1
e (t|j) (3.43)

K∗
f (t|j) = αKf (t|j). (3.44)

- Correction (measurement update)

µ̂n(t|j) = µp
n(t|j) +K∗

f (t|j)e(t|j) (3.45)

Σ̂n(t|j) = Σp
n(t|j)−K∗

f (t|j)BjΣ
p
n(t|j). (3.46)

• Probability calculation step : the a posteriori probability associated with each

mixture component is updated.

γj(t) = p
(
kt = j|yt

0

)
(3.47)

= p
(
kt = j|yt,y

t−1
0

)
(3.48)

=
p
(
yt|kt = j,yt−1

0

)
p(kt = j)

p
(
yt|yt−1

0

) . (3.49)

• Output generation step : the background noise estimates are generated by

combining the estimates of all the mixture components.

µ̂n(t) = E
[
nt|yt

0

]
(3.50)

=
K−1∑

j=0

γj(t)µ̂n(t|j) (3.51)

Σ̂n(t) = Cov
[
nt|yt

0

]
(3.52)

=
K−1∑

j=0

γj(t)
[
Σ̂n(t|j) + (µ̂n(t|j)−µ̂n(t)) (µ̂n(t|j)−µ̂n(t))

′
]
. (3.53)
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Chapter 4

SLDS for Stereo Data Based

Speech Feature Mapping

4.1 Introduction

There exist numerous factors that cause mismatches between the input speech sig-

nals and those used for training the acoustic model for speech recognition. This

mismatch of acoustic features usually causes a degradation of the speech recognition

performance. The factors that affect acoustic mismatch are largely classified into

two categories: system and environmental factors [1]. The system factors include

speech capturing devices such as microphones, analog circuits, A/D converters and

data compression modules. On the other hand, the environmental factors such as

additive background noise, acoustic reverberations and various interfering signals

affect the speech quality.

There are two major approaches to alleviate this type of performance degrada-

tion: feature mapping and model adaptation techniques. In the feature mapping
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techniques, the input signal waveforms or feature vectors are enhanced during front-

end processing while the model adaptation techniques modify the parameters of

acoustic recognition models to fit the input speech signal more closely. In this work,

we focus on the feature mapping technique in which the input speech features such

as the MFCC vectors are converted to their enhanced version before being decoded

through the acoustic recognition models that were trained on a different system and

in a different environment.

From a system theoretic viewpoint, feature mapping is considered a system as

shown in Figure 1.1 in which the input feature vector sequence (x0,x1, · · · ,xT−1) is

converted to the target sequence (y0,y1, · · · ,yT−1). Based on this viewpoint, the

design of the feature mapping rule can be handled as the system identification prob-

lem with a set of input and corresponding output feature vector streams. There

are two approaches for estimating the parameters for feature mapping: stereo data

based and blind techniques. In the stereo data based technique, a database of simul-

taneous recordings obtained in both the reference and target conditions is given and

feature mapping rules are derived from the difference between the associated fea-

ture vectors [14, 19–23]. On the other hand, in the blind techniques, only the input

feature vectors are given and the information related to the target feature vectors

is provided in the form of statistical models such as the GMM, HMM and SLDM

[24–26]. In general, feature mapping for the blind technique is done according to

either the MMSE or the ML criterion.

In this chapter, we propose a novel approach to speech feature sequence mapping

based on the SLDS [21–23]. We also propose a method to train the SLDS parameters

based on a given stereo database. SLDS is considered an extension of SLDM [25]. In

SLDS, since there is an exogenous input feature vector sequence, it can be assumed to
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be a transducer. One of the prominent advantages of the proposed method is that

it enables a systematic implementation of sequence-to-sequence mapping instead

of the traditional vector-to-vector mapping. In the stereo data, one is captured

with the same conditions as used in the speech recognition system training and the

other is collected with a different device. The performance of the proposed method

is evaluated with speech recognition experiments. The proposed algorithm shows

better performance than other approaches when evaluated with the Aurora-5 task

where various kinds of mismatches between the training and test data caused by

background noises, different microphones and acoustic reverberation exist.

4.2 Switching Linear Dynamic System

Let xt and yt respectively denote a dx-dimensional input feature vector and dy-

dimensional output feature vector at time t. Then our goal is to predict the output

feature vector sequence, yT−1
0 =

[
y′
0 y′

1 · · · y′
T−1

]′
, through some process when

only the input sequence, xT−1
0 =

[
x′
0 x′

1 · · · x′
T−1

]′
, is given.

We assume that the feature mapping process is modeled by K different linear

dynamic systems (LDSs). In our proposed SLDS, when the k-th LDS is applied,

the feature mapping process is approximated as follows:

zt+1 = Akzt +Bkxt + uk,t (4.1)

yt = Ckzt +Dkxt +wk,t (4.2)

where Ak, Bk, Ck and Dk are matrices with the dimension dz×dz, dz×dx, dy×dz

and dy × dz, respectively, and zt is the dz-dimensional vector which is called the

hidden state. In (4.1) and (4.2), uk,t and wk,t are random vectors with a Gaussian
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distribution as follows:

uk,t ∼ N (mu,k,Qk) (4.3)

wk,t ∼ N (mw,k,Rk) (4.4)

where N (m,Σ) means a Gaussian PDF with the mean vector m and covariance

matrix Σ.

Once the parameters of k-th LDS, λk = {Ak,Bk,mu,k,Ck,Dk,mw,k,Qk,Rk},
are given, the output feature vector sequence can be generated from the input se-

quence, xT−1
0 , as follows:

zt+1 = Akzt +Bkxt +mu,k (4.5)

yt = Ckzt +Dkxt +mw,k. (4.6)

Determining an appropriate LDS among the K candidate models at each time

is very important in SLDS-based feature mapping. The LDS selection rule should

be solely dependent on the input feature vector sequence because the output feature

vector sequence is not available at runtime. Simply, we divide the input vector xt

into K disjoint clusters. In our implementation, a GMM-based clustering technique

is applied. Since we can compute the a posteriori probability p (k|xt) in the GMM-

based technique, by taking advantage of these posterior probabilities, a soft decision

is adopted. Then the output feature vector stream is generated by following

zt+1 =
K−1∑

k=0

p (k|xt) [Akzt +Bkxt +mu,k] (4.7)

yt =
K−1∑

k=0

p (k|xt) [Ckzt +Dkxt +mw,k] . (4.8)
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4.3 Enhanced Clustering Method

Determining an appropriate LDS among the K candidate models at each time is

very important in SLDS-based feature mapping. The LDS selection rule should be

solely dependent on the input feature vector sequence because the output feature

vector sequence is not available at runtime.

A simple way may be dividing the input vector xt into K disjoint clusters [21].

However, especially when a frame is influenced by the surrounding frame such as

reverberation environment, it is advantageous to consider the local trajectory of

the input feature vector stream. For this reason, here we propose an enhanced

clustering method and apply the principal component analysis (PCA) method for

data reduction.

Let x̃t,τ =

[
x′
t−τ x′

t−τ+1 · · · x′
t−1 x′

t

]′
and Σ denote the M -dimensional

concatenation of (τ + 1) feature vectors around time t and its covariance matrix,

respectively, with the prime denoting the transpose of a vector or a matrix. Then

the eigenvalue and eigenvector matrices, Λ and V, can be obtained from a singular

value decomposition of the Σ as follows [36]:

V−1ΣV = Λ (4.9)

with

Λ(p, q) =





em, p = q = m

0, p 6= q

, ei ≥ ej for i < j (4.10)

V =

[
v0 v1 · · · vM−1

]
(4.11)

where em and vm are ordered eigenvalue and corresponding eigenvector, respectively,

and m = 0, 1, · · · , (M − 1).
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Let WL be a L × M dimensional PCA transformation matrix. Then, an L-

dimensional projected feature vector x̃L
t,τ can be calculated as follows [36]:

x̃L
t,τ = WL (x̃t,τ − E [x̃t,τ ]) (4.12)

with

WL =

[
v0 v1 · · · vL−1

]′
, 0 ≤ L ≤ M. (4.13)

Since L is usually set much smaller than the dimension of x̃t,τ , x̃L
t,τ is a lower-

dimensional vector. We then train a codebook for
{
x̃L
t,τ

}
with the use of a conven-

tional GMM training algorithm.

For each time t, we first get the local trajectory vector x̃t,τ and project it onto the

subspace spanned by the L PCA basis vectors, which results in the low-dimensional

vector x̃L
t,τ . If the hard decision technique is employed, the LDS identity, kt, which

corresponds to the nearest codeword at time t is found and the output feature vector

stream is generated by the following

zt+1 = Aktzt +Bktxt +mu,kt (4.14)

yt = Cktzt +Dktxt +mw,kt . (4.15)

In contrast, we can compute the a posteriori probability, p
(
k|x̃L

t,τ

)
of each cluster k

when soft decision is adopted. By taking advantage of these posterior probabilities

we can further modify (4.14) and (4.15) as

zt+1 =
K−1∑

k=0

p
(
k|x̃L

t,τ

)
[Akzt +Bkxt +mu,k] (4.16)

yt =
K−1∑

k=0

p
(
k|x̃L

t,τ

)
[Ckzt +Dkxt +mw,k] . (4.17)
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4.4 SLDS Parameter Estimation

The SLDS parameters λ = {λ0, λ1, · · · , λK−1} are estimated from a set of stereo

speech data. In the stereo data set, a reference feature vector stream and a target

feature vector sequence that we want to predict respectively correspond to xT−1
0

and yT−1
0 in the previous section. For simplicity, we assume that a hard decision

clustering scheme is employed to estimate the parameters. Then the LDS identity,

kt, varies with time and is determined to the nearest codeword at time t.

We apply the ML criterion for parameter estimation in SLDS. Since the state

variable zt is hidden, it is impractical to maximize the likelihood function directly.

Instead, we apply the expectation maximization (EM) algorithm which iteratively

increases the likelihood. The complete data log-likelihood is given as follows:

L
(
xT−1
0 ,yT−1

0 , zT−1
0 |λ

)

= −
T−2∑

t=0

(zt+1 −Aktzt −Bktxt −mu,kt)
′ [Qkt ]

−1 (zt+1 −Aktzt −Bktxt −mu,kt)

−
T−1∑

t=0

(yt −Cktzt −Dktxt −mw,kt)
′ [Rkt ]

−1 (yt −Cktzt −Dktxt −mw,kt)

−
T−2∑

t=0

ln |Qkt | −
T−1∑

t=0

ln |Rkt |+Constant (4.18)

where | · | means the determinant of a square matrix.

The general approach to estimate parameters is similar to the technique pro-

posed in [25]. At first, the smoothed estimate for the hidden state sequence zT−1
0 =[

z′0 z′1 · · · z′T−1

]′
is obtained conditioned on the current SLDS parameters and

then the parameters are updated so as to maximize the complete data likelihood.

Given the input and output feature vectors sequences, xT−1
0 and yT−1

0 , smoothed

estimates for the hidden state sequence zT−1
0 and some of its statistics are obtained
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by means of the traditional Kalman filtering algorithm [37].

After the Kalman filtering step is completed, the parameters are updated ac-

cording to the following criterion:

λ̂ = argmax
λ

Φ
(
λ, λ̄

)

= argmax
λ

∫
L
(
xT−1
0 ,yT−1

0 , zT−1
0 |λ

)
p
(
zT−1
0 |xT−1

0 ,yT−1
0 , λ̄

)
dzT−1

0 (4.19)

where λ̂ and λ̄ represent the updated and current SLDS parameters, respectively,

and p
(
zT−1
0 |xT−1

0 ,yT−1
0 , λ̄

)
is the posterior PDF of the hidden state sequence de-

rived from the Kalman filtering step. The two procedures of Kalman filtering and

parameter updating are iterated until convergence.

The maximization of the auxiliary function Φ
(
λ, λ̄

)
is possible by taking the

gradient such that

∂

∂λ
Φ
(
λ, λ̄

) |
λ=λ̂

= 0. (4.20)

For convenience of the formulation, we assume that yT−1
0 is generated from xT−1

0

through a single LDS. Once the update equations of single LDS parameters are

derived, it is not difficult to extend these to the case of SLDS parameters. Let

λ̂ =
{
Â, B̂, m̂u, Ĉ, D̂, m̂w, Q̂, R̂

}
be the updated parameters of this LDS. Then,

the solutions to (4.20) are given as follows:



(∑T−2
t=0 ẑtz′t

) (∑T−2
t=0 ẑtx

′
t

) (∑T−2
t=0 ẑt

)

(∑T−2
t=0 xtẑ′t

) (∑T−2
t=0 xtx

′
t

) (∑T−2
t=0 xt

)

(∑T−2
t=0 ẑ′t

) (∑T−2
t=0 x′

t

)
(T − 1)







Â′

B̂′

m̂′
u



=




(∑T−2
t=0 ẑtz′t+1

)

(∑T−2
t=0 xtẑ′t+1

)

(∑T−2
t=0 ẑ′t+1

)



. (4.21)




(∑T−1
t=0 ẑtz′t

) (∑T−1
t=0 ẑtx

′
t

) (∑T−1
t=0 ẑt

)

(∑T−1
t=0 xtẑ′t

) (∑T−1
t=0 xtx

′
t

) (∑T−1
t=0 xt

)

(∑T−1
t=0 ẑ′t

) (∑T−1
t=0 x′

t

)
(T )







Ĉ′

D̂′

m̂′
w



=




(∑T−1
t=0 ẑty

′
t

)

(∑T−1
t=0 xty

′
t

)

(∑T−1
t=0 y′

t

)



. (4.22)
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with

ẑt = E
[
zt|xT−1

0 ,yT−1
0 , λ̄

]
(4.23)

ẑtz′t = E
[
ztz

′
t|xT−1

0 ,yT−1
0 , λ̄

]
(4.24)

ẑtz′t+1 = E
[
ztz

′
t+1|xT−1

0 ,yT−1
0 , λ̄

]
(4.25)

where ẑt, ẑtz′t and ẑtz′t+1 are obtained during the Kalman filtering step, and E[·]
denotes the expectation operation. Finally, the covariance matrices, Q and R, are

updated as follows:

Q̂ =
1

T − 1

T−2∑

t=0

E

[(
zt+1 − Âzt − B̂xt − m̂u

)(
zt+1 − Âzt − B̂xt − m̂u

)′ ∣∣∣xT−1
0 ,yT−1

0 , λ̄

]

(4.26)

R̂ =
1

T

T−1∑

t=0

E

[(
yt − Ĉzt − D̂xt − m̂w

)(
yt − Ĉzt − D̂xt − m̂w

)′ ∣∣∣xT−1
0 ,yT−1

0 , λ̄

]
.

(4.27)

4.5 Comparison With Other Approaches

In this section, similarity and difference between the SLDS and SLDM, which is

conventionally applied to statistical modeling of feature trajectories, are described.

We also compare the SLDS approach with some of the traditional vector-to-vector

mapping techniques used for robust speech recognition.

4.5.1 Comparison Between SLDM And SLDS

SLDM is an efficient model for capturing the smooth time evolution of speech fea-

tures [25, 42, 44]. Basically, SLDM provides a systematic way to represent the sta-

tistical characteristics of the speech feature vector sequence yT−1
0 . In SLDM, the
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whole space of the speech feature vectors is divided into K disjoint clusters, and for

each cluster k, yt is described in terms of a linear state space model given as follows:

zt+1 = Akzt + ũk,t (4.28)

yt = Ckzt + w̃k,t (4.29)

with

ũk,t ∼ N (m̃u,k,Qk) (4.30)

w̃k,t ∼ N (m̃w,k,Rk) . (4.31)

It is noted that the structural form of the SLDM is very similar to that of the

proposed SLDS given by (4.1) and (4.2). If we set

ũk,t = Bkxt + uk,t (4.32)

w̃k,t = Dkxt +wk,t (4.33)

then (4.1) and (4.2) become exactly the same to (4.28) and (4.29). From this sim-

ilarity, we can say that the SLDS is a special form of SLDM, in which the process

noise ũk,t and observation noise w̃k,t have time-varying mean vectors as given by

m̃u,k = Bkxt +mu,k (4.34)

m̃w,k = Dkxt +mw,k. (4.35)

The two uncorrelated noises, ũk,t and w̃k,t in conventional SLDM approaches are

usually assumed to be stationary random processes with time-invariant first- and

second-order statistics. In contrast, the noises now have time-varying first-order

statistics depending on the input feature vector sequence xT−1
0 when we apply the

SLDS approach. Since the aim in this work is to find an appropriate mapping rule
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between the input and output feature vector sequences, it is meaningful to assume

that the statistical properties of the output sequence are revised depending on the

given input sequence. In the future study, it will be also possible to simultaneously

modify both the first- and second-order statistics of the noises by incorporating

additional information obtained from the input feature vector sequence.

It is also worth mentioning that in the traditional feature compensation tech-

niques based on SLDM [25, 44], the output yt generally represents a noisy speech

feature vector at time t corrupted by background noise or reverberation. In these

techniques, the state zt and the process and measurement noises, ũk,t and w̃k,t are

characterizing the statistical properties of the clean speech features and the sources

of distortion. On the contrary, in the proposed SLDS approach, the output yt stands

for the clean speech feature vector while the deterministic input xt corresponds to

the distorted speech feature vector which is directly observed. Therefore, the most

prominent distinction between the previous SLDM techniques and the SLDS ap-

proach presented in this paper lies on how to define the input and output of a

dynamic system model.

4.5.2 SLDS Viewed as Filtering

Linear filtering is considered a natural way to control the temporal trajectories of

the input feature vector sequence. One of the popular pre-processing techniques

employed for robust speech recognition is the RASTA processing in which the input

feature vector stream is passed through a fixed infinite impulse response (IIR) filter

to reduce the effect of convolutional noises and to smooth the temporal changes due

to analysis artifacts [38]. Suppose that yT−1
0 is generated from xT−1

0 via a linear

time-invariant causal IIR filter. Then, the relationship between yT−1
0 and xT−1

0 can
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be written as follows:

yt =
M∑

m=1

Fmyt−m +
N∑

m=0

Gmxt−m (4.36)

where {F1,F2, · · · ,FM} and {G0,G1, · · · ,GN} are the filter coefficients matrices

for the auto regressive (AR) and moving average (MA) parts, respectively. This is

an extended form of the typical ARMA filter applied to vector sequences.

We can account for the ARMA type filter given by (4.36) under the LDS frame-

work. Let the state at time t, zt be defined as

zt =

[
y′
t−1 y′

t−2 · · · y′
t−M x′

t−1 x′
t−2 · · · x′

t−N

]′
. (4.37)

Then, we can construct an LDS as follows:

zt+1 =




Ã11 Ã12

Ã21 Ã22


 zt +




B̃1

B̃2


xt + ut (4.38)

yt = C̃zt + D̃xt +wt (4.39)
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where

Ã11 =




F1 F2 F3 · · · FM−1 FM

Idy Ody Ody · · · Ody Ody

Ody Idy Ody · · · Ody Ody

...
...

...
. . .

...
...

Ody Ody Ody · · · Idy Ody




(4.40)

Ã12 =




G1 G2 · · · GN

Odx Odx · · · Odx

...
...

. . .
...

Odx Odx · · · Odx




(4.41)

Ã21 =




Ody Ody · · · Ody

...
...

. . .
...

Ody Ody · · · Ody




(4.42)

Ã22 =




Odx Odx Odx · · · Odx Odx

Idx Odx Odx · · · Odx Odx

Odx Idx Odx · · · Odx Odx

...
...

...
. . .

...
...

Odx 0dx 0dx · · · Idx 0dx




(4.43)

B̃1 =

[
G′

0 Ody · · · Ody

]′
(4.44)

B̃2 =

[
Idx Odx · · · Odx

]′
(4.45)

C̃ =

[
F1 F2 · · · FM G1 G2 · · · GN

]
(4.46)

D̃ = G0 (4.47)

with Id and Od denoting the d × d dimensional identity and zero matrices, respec-
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tively. In (4.38) and (4.39), ut and wt are uncorrelated zero-mean Gaussian random

vectors, which are introduced to represent the modeling error in ARMA formula-

tion. From (4.40)-(4.47), we can see that the parameters of the LDS are described

in terms of the ARMA filter coefficients matrices, F1, F2, · · · , FM , G0, G1, · · · ,
GN .

In summary, if the LDS matrices Ak, Bk, Ck, Dk in (4.1) and (4.2) have con-

strained structures as given by (4.38)-(4.47), the SLDS becomes equivalent to switch-

ing K separate ARMA filters. In this case, the ARMA filter coefficients matrices

can be estimated from the given stereo data by applying a constrained optimization

algorithm for which we need to modify the EM algorithm presented in the previous

section.

4.5.3 Vector-to-Vector Mapping Techniques

A variety of vector-to-vector mapping techniques have been developed in the past

to compensate the mismatch between the training and test conditions. These tech-

niques are well summarized in [41]. Basically, a vector-to-vector mapping technique

predicts the output feature vector yt based solely on the input feature vector xt

obtained at the same time. Here, we will show that most of the previous vector-to-

vector mapping techniques are particular cases of the proposed SLDS approach.

SPLICE is one of the popular stereo data based approaches to noise compensa-

tion for robust speech recognition [14]. In this approach, the input feature vector

is clustered into K separate regions, and the estimate for the output feature vector

yt is given by

ŷt =
K−1∑

k=0

p (k|xt) (xt + rk) (4.48)

40



where p (k|xt) is the a posteriori probability of the k-th cluster and rk represents

the associated bias. Under the SLDS framework, this can be achieved if we set

dz = dx = dy, Ck = Ody , Dk = Idy and mw,k = rk in (4.8). For this formulation,

the state transition model given by (4.7) is unnecessary, and the biases {rk} and

the covariances of the observation noises {Rk} are used to compute the posterior

probabilities {p (k|xt)}.

A more generalized form of the vector-to-vector mapping techniques is written

as follows:

ŷt =
K−1∑

k=0

p (k|xt) (Ukxt + rk) (4.49)

where Uk is a dy × dx matrix. This is a feature domain version of the well-known

maximum likelihood linear regression (MLLR) approach usually employed for model

adaptation [17, 18]. Similar formulation can be also found in the area of feature

transformation though some discriminative criteria other than ML are employed

[39, 40]. It is not difficult to see that setting dz = dy, Ck = Ody , Dk = Uk

and mw,k = rk in (4.8) while ignoring the state transition model turns out to be

equivalent to (4.49).

4.6 Multi-frame Based SPLICE

The conventional SPLICE algorithm is the vector-to-vector mapping. However, to

achieve a better performance, it may need to consider the past feature vector stream

together for estimating current clean feature especially in the reverberant envi-

ronments. In the previous section, we proposed the sequence-to-sequence mapping

based on the SLDS. On the other hands, we propose a multi-frame based SPLICE
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technique to overcome a limitation of the conventional vector-to-vector SPLICE

algorithm in this section.

In the proposed approach, the enhanced clustering approach proposed in Section

4.3 is applied. Furthermore, the bias is also estimated from the PCA projected

feature. Let x̃L̀
t,τ be an L̀-dimensional projected feature vector of x̃t,τ . Then in

similar manner with (4.12) and (4.13), the PCA projected feature can be calculated

as follows:

x̃L̀
t,τ = WL̀ (x̃t,τ − E [x̃t,τ ]) (4.50)

with

WL̀ =

[
v0 v1 · · · vL̀−1

]′
, 0 ≤ L̀ ≤ M. (4.51)

Note that the dimension of x̃t,τ is M = (τ+1)×dx since the vector is extracted from

the local trajectory of the input feature vector stream. In the enhanced clustering

approach in Section 4.3, the reduced dimension L is usually set much smaller thanM .

However, in this case, the reduced dimension L̀ is set relatively large for decreasing

the reconstruction error.

In the proposed multi-frame based SPLICE algorithm, the bias (−r̃k) of the

PCA projected feature vector x̃L̀
t,τ is estimated and removed such that

ˆ̃y
L̀
t,τ =

K−1∑

k=0

p
(
k|x̃L

t,τ

) (
x̃L̀
t,τ + r̃k

)
. (4.52)

After removing bias, it is converted to the estimated local trajectory of the clean

feature using the pseudo inverse of the PCA transform matrix as follows:

ˆ̃yt,τ =

((
WL̀

)′
WL̀

)−1 (
WL̀

)′
ˆ̃y
L̀
t,τ . (4.53)

Then ˆ̃yt,τ is reconstructed to the output feature vector ŷt by the overlap-add method.
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4.7 Experimental Results

We performed experiments to evaluate the robustness of the proposed approach to

channel distortion caused by system and environmental factors with the Aurora-5

DB [30]. As described in Section 2.3, the Aurora-5 test data consisted of two sets:

G. 712 filtered and non-filtered sets. Both of the sets comprised clean and noisy

speech utterances where noisy speech utterances are summation of clean speech and

randomly selected interior, car or public space noise samples at SNR levels 0 to

15 dB. Furthermore, to simulate the hands-free speech in a room, the clean speech

signals are convoluted with the impulse responses of different acoustic scenarios.

There are three different hands-free input conditions: hands-free in office (HFO),

hands-free in living room (HFL) and hands-free in car (HFC). In the G. 712 filtered

set, the GSM radio channel is also applied to simulate an influence for transmitting

the noisy speech over a cellular telephone network.

In the experiments, we focused on the performance of the speech recognition

system in a clean training condition. Baseline recognition systems were built based

on the clean speech data provided by the G. 712 filtered and non-filtered data sets.

The number of utterances used for HMM training was 8623 per data set. In our

implementation, we employed the conventional frontend (FE) feature specified in

the ETSI standard [29] as the basic feature vectors. A 13-dimensional cepstrum

and the corresponding ∆- and ∆∆-cepstra were extracted from each frame and used

as the feature vector for speech recognition.

The performances of the proposed and the reference feature mapping algorithms

were compared in terms of relative error rate reduction (RERR). For convenience,

we denote the SLDS with the proposed enhanced clustering method by SLDS and
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Table 4.1: RERR’s (%) for different environments

Non-Filtered G. 712 Filtered

HFO HFL HFC HFC-GSM GSM

SPLICE 68.06 47.12 25.90 75.07 71.04 67.28 60.38

SPLICE (τ = 2) 68.43 49.14 25.25 76.99 76.52 71.08 55.08

SPLICE (τ = 4) 65.80 50.45 27.29 76.18 73.20 69.98 55.85

SPLICE-MF (τ = 2) 68.54 49.05 29.58 78.02 77.72 71.99 58.83

SPLICE-MF (τ = 4) 68.79 56.75 33.80 78.57 76.54 73.20 62.88

SLDS-BASE 67.63 49.31 32.41 78.81 76.54 72.49 63.09

SLDS (τ = 2) 67.68 50.03 32.96 78.24 77.96 73.67 62.96

SLDS (τ = 4) 67.07 51.90 36.23 77.35 75.88 73.69 63.06

with simple clustering method [21] by SLDS-BASE. The total number of LDSs K

was 128 and we employed a GMM-based soft-decision scheme given by (4.16) and

(4.17). The dimensions of the input feature vector, output feature vector, and the

hidden state of each LDS were set to 13, 13 and 39, respectively. In the SLDS,

τ is assigned to 2 and 4, and the number of PCA basis vectors, L was held fixed

at 13 which equals the dimension of a single cepstrum. As reference systems, we

also implemented SPLICE [14] algorithm which is a well-known stereo data based

feature mapping technique. For convenience, we denote the conventional SPLICE

method by SPLICE and the proposed multi-frame based SPLICE in Section 4.6

by SPLICE-MF. In SPLICE, as the distribution of the input, the same GMM at

the SLDS-BASE was applied. From the results, we can see that the SLDS algo-

rithm provided better performance than the SPLICE algorithm. We can also ob-
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Table 4.2: RERR’s (%) for different SNR’s

Clean 15 dB 10 dB 5 dB 0 dB Average

SPLICE 25.57 70.47 71.92 59.93 34.73 54.16

SPLICE (τ = 2) 26.06 71.63 71.63 62.41 35.75 55.16

SPLICE (τ = 4) 35.39 71.26 72.15 59.34 36.54 56.12

SPLICE-MF (τ = 2) 29.17 72.22 74.43 63.49 37.70 56.99

SPLICE-MF (τ = 4) 35.05 75.08 74.78 65.31 42.28 59.92

SLDS-BASE 46.88 71.70 74.30 64.36 41.23 60.47

SLDS (τ = 2) 50.67 73.51 74.46 64.73 40.72 61.43

SLDS (τ = 4) 50.07 73.10 74.64 64.15 42.49 61.55

serve that the SPLICE and SLDS approaches with enhanced clustering method are

more robust to channel distortions compared with the SPLICE and SLDS-BASE,

respectively. In exceptional cases, when there is no channel distortion caused by

reverberation, the performance of the proposed SLDS approaches with enhanced

clustering method are slightly worse than that of SLDS-BASE. The observation re-

flects the fact that considering neighboring feature vectors jointly is useful in rever-

berant environments especially when the reverberation time is long. Furthermore,

by comparing the performances of the SPLICE-MF with that of the SPLICE, we

can deduce that the multi-frame based approach shows better performance than the

conventional vector-to-vector technique. However, the performance of the proposed

sequence-to-sequence mapping technique based on the SLDS is superior to that of

the multi-frame based SPLICE-MF. The best overall performance of the proposed

algorithm was obtained when τ = 4. Detailed performance of the SLDS is given in
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Table 4.3: Word accuracies (%) of the proposed SLDS (K = 128, τ = 4) for non-

filtered and G. 712 filtered test data sets

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.32 96.65 89.92 99.31 99.29 97.48 98.19

15 96.04 89.32 72.04 98.73 97.05 94.49 94.78

10 91.91 80.94 64.64 96.10 92.47 89.67 87.06

5 80.85 58.11 44.24 84.96 79.06 79.87 75.85

0 42.16 34.70 26.99 69.52 58.57 54.27 47.07

Table 4.3.

4.8 Summary

In this chapter, we have proposed a speech feature mapping algorithm based on

SLDS. In contrast to the conventional vector-to-vector mapping approach, SLDS

can describe the sequence-to-sequence mapping in a systematic way. The proposed

algorithm has been applied to stereo data based speech feature mapping for channel

distorted speech recognition. From a number of experiments, it has been shown that

the proposed method outperforms the conventional feature mapping approach.
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Chapter 5

Semi-Blind Estimation of

Feature Mapping Parameters

5.1 Introduction

In general, the performance of a speech recognition system degrades when there is

a mismatch between test and training conditions. There are several factors that

lead to acoustic mismatch such as the background noise, different audio devices,

reverberations, data compression modules, etc. In order to ameliorate the degrada-

tion in recognition performance, feature mapping techniques have been frequently

applied [9, 14, 19, 21–23, 26, 41, 42]. In the feature mapping techniques, the signal

waveforms or feature vectors are enhanced during front-end processing.

Depending on the type of training or adaptation data, parameter estimation

approaches for feature mapping can be divided into stereo-based and blind tech-

niques. Stereo-based technique is applied when there exists a database of simulta-

neous recordings obtained in both the reference and target conditions, and feature
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mapping rules are derived from the difference between the pair of feature vectors

[14, 19, 21–23, 41]. In the blind technique, on the other hand, only the input feature

vectors are given and the information related to the target feature vectors is usually

provided by statistical models such as the GMM, HMM and SLDM [9, 26, 42]. In

general, feature mapping for the blind technique is done based on either the MMSE

or the ML criterion. In Chapter 4, we proposed a stereo-based feature mapping ap-

proach based on the SLDS [21–23]. One of the prominent advantages of the SLDS

is that it enables a systematic implementation of sequence-to-sequence mapping

instead of the traditional vector-to-vector mapping [41].

In this chapter, we propose an approach to semi-blind estimation for the speech

feature mapping algorithms which originally require stereo data for their parameter

training [27]. In the proposed method, given target speech and transcription, an

artificial reference feature vector sequence are generated from the HMM and then

applies it to a conventional stereo-based technique. Our approach is motivated by

the speech feature generation method employed in HMM-based speech synthesis

[28]. In order to further improve the performance of the feature mapping system,

we also propose to interpolate the feature vector streams generated through the

HMM with those obtained from the output of a conventional feature compensation

algorithm. The proposed semi-blind estimation technique was applied to a task

of speech recognition over the Aurora-5 DB and has demonstrated a remarkable

performance improvement.
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5.2 Stereo-Based Feature Mapping

Suppose that we have two simultaneous recordings of the same speech realizing

a word sequence: one is obtained in the target (mismatched) and the other in

the reference (matched) conditions. Let xT−1
0 =

[
x′
0 x′

1 · · · x′
T−1

]′
be the se-

quence of feature vectors of length T extracted from the recording obtained in the

target condition with the prime denoting the transpose of a vector or a matrix,

and xt ∈ Rd represent the feature vector at time t. In a similar way, yT−1
0 =[

y′
0 y′

1 · · · y′
T−1

]′
represents the corresponding sequence of feature vectors ob-

tained in the reference condition. In the feature mapping approaches, a feature

vector sequence xT−1
0 obtained in the mismatched condition is mapped to a feature

sequence ŷT−1
0 =

[
ŷ′
0 ŷ′

1 · · · ŷ′
T−1

]′
which is considered a promising counterpart

in the matched condition.

A variety of feature mapping techniques have been proposed in the past to

compensate the mismatch between the training and test conditions. Among them,

we apply the SLDS and SPLICE algorithms presented in Chapter 4 and Section

3.1.1, respectively, as the conventional stereo-based feature mapping techniques.

The SPLICE is a frame-based bias removal algorithm for feature enhancement un-

der additive noise distortion, channel distortion or a combination of the two [14].

The SLDS-based feature mapping technique systematically implements a sequence-

to-sequence mapping in contrast to the conventional vector-to-vector mapping ap-

proaches [21–23]. In this section, we briefly review the SLDS which is a sequence-

to-sequence mapping technique including most of the conventional vector-to-vector

mapping approaches as its special cases [23].

In the SLDS, the output feature vector sequence yT−1
0 is assumed to be generated
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from the input feature vector stream xT−1
0 by switching K different LDS’s [23].

When the k-th LDS is applied, the feature mapping process is approximated by

following

zt+1 = Akzt +Bkxt +mu,k (5.1)

ŷt = Ckzt +Dkxt +mw,k (5.2)

where zt denotes the hidden state of the system at time t and λk = {Ak, Bk,

mu,k, Ck, Dk, mw,k} are the LDS parameters to be estimated. If the a posteriori

probability of each LDS is available, we can employ a soft-decision scheme which

modifies (5.1) and (5.2) into

zt+1 =
K−1∑

k=0

p (k|xt) [Akzt +Bkxt +mu,k] (5.3)

ŷt =

K−1∑

k=0

p (k|xt) [Ckzt +Dkxt +mw,k] (5.4)

where p (k|xt) represents the posterior probability of the k-th LDS.

5.3 Artificial Stereo Data Generation

In the stereo-based approaches such as SLDS and SPLICE, in order to estimate

the relevant parameters, a set of stereo data has to be given. This means that

for each target feature vector sequence xT−1
0 we have the corresponding reference

feature vector sequence yT−1
0 . The two feature vector sequences, xT−1

0 and yT−1
0 are

extracted from simultaneous recordings of the same speech. However, in the semi-

blind technique, the actual reference feature vector sequence yT−1
0 is unavailable

and all that we have are the target feature vector sequence xT−1
0 a statistical model

for yT−1
0 and the corresponding transcription. In this section, we propose novel
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approaches to generate artificial reference feature vector stream. Once the artificial

reference feature vector sequence is generated for each target feature vector sequence,

a conventional stereo-based technique can be straightforwardly applied to estimate

the mapping parameters.

5.3.1 Artificial Reference Feature Generation From HMM

Suppose that the statistical model for yT−1
0 is given by an HMM. Then the HMM,Λy

which characterizes the statistical properties of yT−1
0 is assumed to consist of S states

and the observation distribution at each state is given by a GMM. Conventionally

in speech recognition, the HMM Λy is defined over an extended feature vector to

account for both the static and dynamic characteristics simultaneously. Let yt be

an original reference static feature vector at time t. Then, the extended feature

vector ỹt is formed by appending dynamic features e.g., ∆- and ∆∆-cepstra to yt

as follows:

ỹT−1
0 =




ỹ0

ỹ1

...

ỹT−1




= WyT−1
0 =




W0

W1

...

WT−1







y0

y1

...

yT−1




(5.5)

where W is a constant matrix, and

ỹt = Wty
T−1
0 . (5.6)

Generation of an artificial reference feature vector sequence is motivated by the

speech feature generation technique in HMM-based speech synthesis [28]. In HMM-

based speech synthesis, the goal is to find an optimal feature vector sequence given
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the HMM parameters in the ML sense, i.e.,

ŷT−1
0 = argmax

yT−1
0

ln p
(
yT−1
0 |Λy

)
. (5.7)

For a specific state sequence sT−1
0 =

[
s0 s1 · · · sT−1

]′
and a mixture component

sequence mT−1
0 =

[
m0 m1 · · · mT−1

]′
, the log likelihood can be calculated due

to the relation between yT−1
0 and ỹT−1

0 as given by (5.6) as follows:

ln p
(
yT−1
0 |sT−1

0 ,mT−1
0 ,Λy

)

= −1

2

T−1∑

t=0

(
Wty

T−1
0 − µ̃st,mt

)′
Σ̃

−1
st,mt

(
Wty

T−1
0 − µ̃st,mt

)
+Const. (5.8)

where µ̃st,mt
and Σ̃st,mt indicate respectively mean vector and covariance matrix

of mt-th Gaussian mixture at state st. Since it is practically difficult to solve (5.7)

directly, we apply the EM algorithm which iteratively updates the estimate for yT−1
0 .

Let ȳT−1
0 =

[
ȳ′
0 ȳ′

1 · · · ȳ′
T−1

]′
be the estimate for yT−1

0 obtained at the previous

iteration. Then, at each iteration of the EM algorithm it is updated in the following

way:

ŷT−1
0 = argmax

yT−1
0

E
[
ln p

(
yT−1
0 |sT−1

0 ,mT−1
0 ,Λy

)
|ȳT−1

0 ,Λy

]
(5.9)

where ŷT−1
0 =

[
ŷ′
0 ŷ′

1 · · · ŷ′
T−1

]′
indicates the updated sequence of the reference

feature vectors and E [·] represents the expectation operation.

In order to solve (5.9), we first compute the a posteriori probability of each

Gaussian component, {γt (s,m)}. It can be efficiently obtained by means of the

forward-backward algorithm or can be approximated with the use of the Viterbi

algorithm. After {γt (s,m)} are computed, the updated reference feature vector
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sequence is derived as follows [28]:

ŷT−1
0 =

(
T−1∑

t=0

S−1∑

s=0

M−1∑

m=0

γt (s,m)W′
tΣ̃

−1
s,mWt

)−1(T−1∑

t=0

S−1∑

s=0

M−1∑

m=0

γt (s,m)W′
tΣ̃

−1
s,mµ̃s,m

)

(5.10)

whereM and S indicate the total number of Gaussians and states inΛy, respectively.

5.3.2 Combination With Feature Compensation Technique

One of the drawbacks of the approach proposed in (5.10) is that the generated fea-

ture vector sequences will tend to become similar if we obtain similar alignments

for the HMM states and mixture components even though they show quite differ-

ent characteristics in the original feature domain. This phenomenon may mislead

parameter estimation of the feature mapping techniques.

In order to alleviate this problem, it is useful to apply a feature compensation

algorithm where an estimate for the clean speech feature is derived by taking advan-

tage of a speech corruption model. Let ŷFC
t denote an estimate for yt obtained from

a feature compensation algorithm and ŷHMM
t be the corresponding vector derived

from the HMM as shown in (5.10). Then, one of the simplest ways to generate the

artificial reference feature vector ŷt is to interpolate between ŷFC
t and ŷHMM

t such

that

ŷt = ρŷFC
t + (1− ρ) ŷHMM

t (5.11)

where ρ ∈ [0, 1] is an interpolation weight. It is important that the interpolation

weight ρ should account for the variance of ŷFC
t , which can be treated as a measure

of uncertainty for the output of the feature compensation algorithm. Similar strate-

gies are often employed in the uncertainty decoding techniques where the back-end
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recognition parameters are modified depending on the uncertainty measure provided

by the front-end module [43].

5.4 Experiments

Proposed approach was applied to the task of speech recognition with the Aurora-5

DB which was developed to investigate the influence on the performance of automatic

speech recognition for a hands-free speech input in noisy room environments [30]. In

Aurora-5, two test conditions are also included to study the influence of transmitting

the speech in a mobile communication system. The number of test utterances was

8700 for each test condition.

In the experiments, we focused on the performance of the speech recognition

system in a clean training condition. Baseline recognition systems were built based

on the clean speech data provided by the G. 712 filtered and non-filtered data sets.

The number of utterances used for HMM training was 8623 per data set. In our

implementation, we employed the conventional frontend (FE) feature specified in

the ETSI standard [29] as the basic feature vectors. A 13-dimensional cepstrum

and the corresponding ∆- and ∆∆-cepstra were extracted from each frame and used

as the feature vector for speech recognition. The word accuracies of the baseline

systems are shown in Table 2.3 for the G. 712 filtered and non-filtered data sets.

We evaluated the performance of the SLDS and SPLICE algorithms presented

in Chapter 4 and Section 3.1.1, respectively, with various artificial reference feature

vector streams. For the non-filtered data set of Aurora-5 DB, 575 utterances were

applied to estimate the SLDS parameters for each separate test condition while 431

utterances were used in the case of G. 712 filtered data set. The number of mixture
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components was set K = 128 and the dimension of the state zt in (5.1) was fixed at

39 which was three times of the cepstrum dimension.

For artificial feature generation from HMM, we applied (5.10). In the case of

feature compensation, we applied the conventional IMM algorithm presented in Sec-

tion 3.2.3. For convenience, we denote the SLDS algorithm with artificial reference

feature vector stream generated from HMM by SLDS HMM, and from IMM by

SLDS IMM. We combined the feature vector streams generated through HMM with

those obtained from IMM, which we denote by SLDS HMM+IMM. The interpo-

lation weight ρ in (5.11) was set to 0.5 which showed a good performance in our

experiments. In similar way, we denote the SPLICE algorithm with artificial refer-

ence feature vector stream generated from HMM by SPLICE HMM, from IMM by

SPLICE IMM, and from combination of the two by SPLICE HMM+IMM. It is noted

that SLDS HMM, SLDS IMM, SLDS HMM+IMM, SPLICE HMM, SPLICE IMM

and SPLICE HMM+IMM are semi-blind approaches while the conventional SLDS

and SPLICE algorithm (denoted by SLDS stereo and SPLICE stereo, respectively)

are stereo-based techniques. The performance of each algorithm was compared in

terms of relative error rate reduction (RERR).

Tables 5.1 and 5.2 show the RERR’s of the SLDS in each separate environ-

mental and SNR condition, respectively. These results clearly demonstrate that

the interpolation between the two sets of feature vectors, one derived from a fea-

ture compensation algorithm and the other from HMM, is very useful in generating

more realistic artificial reference features. One may consider the results obtained

from SLDS stereo as a performance upper bound for any semi-blind estimation tech-

niques. It is noted that the performance of SLDS HMM+IMM is almost similar to

that obtained from stereo-based parameter estimation and even better than that of
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Table 5.1: RERR’s (%) of the SLDS for different environments

SLDS stereo SLDS HMM SLDS IMM SLDS HMM+IMM

Interior 67.07 45.53 68.81 68.72

HFO 51.52 46.03 45.55 55.76

HFL 36.95 23.17 35.64 45.68

Car 77.35 59.01 74.50 76.58

HFC 75.22 46.71 52.38 69.57

HFC-GSM 72.28 53.95 40.10 64.31

Street 54.71 24.60 41.72 51.47

the stereo-based approach in some conditions. This phenomenon can be partially

accounted for according to the criterion applied to artificial reference feature genera-

tion, in which the focus is not only to faithfully reconstruct the clean speech features

but also to increase the likelihood of the HMM used for speech recognition.

In addition, the performances of the SPLICE algorithm in each separate environ-

mental and SNR condition are shown in Tables 5.3 and 5.4, respectively. SPLICE

is a simple vector-to-vector bias removal algorithm and it is important to estimate

the bias of each mixture component exactly for a better performance. A remarkable

performance improvement due to the proposed semi-blind approaches occurred in

the hands-free office (HFO) and hands-free living room (HFL) environments where

acoustic reverberation are severe. For these environments, it may be difficult to

estimate the additive bias because the reverberation is not considered additive. In

that case, it may be better to use the reverberant clean speech as the reference data

instead of the clean speech. Since the generated reference speech is closer to the
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Table 5.2: RERR’s (%) of the SLDS for different SNR’s

SLDS stereo SLDS HMM SLDS IMM SLDS HMM+IMM

Clean 50.07 5.94 2.39 44.97

15 dB 73.10 51.16 67.48 74.61

10 dB 74.64 62.43 70.77 76.36

5 dB 64.15 51.69 60.92 64.62

0 dB 42.49 29.11 34.85 40.16

Average 61.55 42.13 50.00 61.06

reverberant clean speech than the actual reference speech, the proposed semi-blind

techniques seem to perform better than the stereo-based approach.

5.5 Summary

In this chapter, we have proposed a novel approach to semi-blind parameter estima-

tion for speech feature mapping. The proposed approach first generates an artificial

reference feature vector sequence from the HMM and interpolates it with the output

feature vector stream obtained from a feature compensation algorithm. This inter-

polation enables not only to faithfully reconstruct the clean speech feature but also

to increase the likelihood of the HMM used for speech recognition.
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Table 5.3: RERR’s (%) of the SPLICE for different environments

SPLICE stereo SPLICE HMM SPLICE IMM SPLICE HMM+IMM

Interior 67.07 45.53 68.81 68.72

HFO 51.52 46.03 45.55 55.76

HFL 36.95 23.17 35.64 45.68

Car 77.35 59.01 74.50 76.58

HFC 75.22 46.71 52.38 69.57

HFC-GSM 72.28 53.95 40.10 64.31

Street 54.71 24.60 41.72 51.47

Table 5.4: RERR’s (%) of the SPLICE for different SNR’s

SPLICE stereo SPLICE HMM SPLICE IMM SPLICE HMM+IMM

Clean 25.57 28.09 4.68 31.64

15 dB 70.47 61.94 68.11 71.16

10 dB 71.92 67.27 69.95 72.54

5 dB 59.93 55.74 58.86 60.31

0 dB 34.73 31.54 31.21 34.81

Average 54.16 50.18 49.10 55.45
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Chapter 6

Blind Approach for

Reverberation and Noise

Robust Feature Compensation

6.1 Introduction

In automatic speech recognition (ASR) systems, the received signals are often de-

graded by acoustic reverberation, background noise and other interferences, which

naturally lead to the performance deterioration of ASR systems. In order to ame-

liorate the performance degradation of ASR systems in adverse environment, we

can suppress the distortion in the signal or feature domain or transform the model

parameters to match the input.

In this chapter, we focus on feature compensation and propose a novel approach

which is robust to both the background noise and reverberation. Our approach to

cope with the time-varying environmental parameters is to establish a switching
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linear dynamic model incorporating the background noise and acoustic reverbera-

tion in the log-spectral domain. The proposed technique can be considered as an

extension of the original IMM-based feature compensation algorithm [10] and at-

tempts to incorporate the characteristics of both the background noise and acoustic

reverberation. We construct multiple state space models characterizing the speech

corruption process as well as the assumed evolution process for the background noise

and acoustic reverberation. In the conventional IMM-based feature compensation

algorithm, noise feature parameters are treated as a state vector. In contrast, in

the proposed state space models, local trajectory of the logarithmic mel magnitude

spectral coefficients (LMMSCs) of the clean speech and log frequency response of

reverberation are jointly handled as the state of our interest. The proposed method

is a blind technique which means that the training or adaptation data is not neces-

sary for estimating the relevant parameters. The information related to the clean

feature vectors is provided in the form of the GMM which is pre-trained. In the

previous study, similar frameworks were proposed e.g., in [12, 13]. Compared with

those techniques, our approach has some advantages. First, no a priori knowledge

of the acoustic reverberation is necessary. Since there are no constraints imposed

on the frequency response parameters, the proposed approach can cope with not

only the reverberation but also various convolutive distortions caused by the chan-

nel, codec and microphone characteristics. Secondly, we utilize the local trajectory

of the LMMSC vector for clean speech distribution. This enables us to derive a

robust statistical model for both the static and various dynamic features. Thirdly,

the proposed algorithm can jointly handle the background noise and acoustic rever-

beration. Furthermore, the proposed algorithm can adapt to the time-varying room

impulse response due to the movements of speaker or microphone by updating the
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parameters on-line.

The rest of this chapter is organized as follows: The next section introduces the

task of ASR in a reverberant noisy environment and describes the feature extraction

process specified to the mel frequency cepstral coefficients (MFCCs). In Section 6.2,

we present the observation model which relates the clean to the reverberant noisy

LMMSCs. In Section 6.3, we propose a feature compensation method in a Bayesian

framework based on the approximated speech corruption process. In Section 6.4,

we present the IMM-based feature enhancement algorithm resulted from the im-

plementation of the Bayesian idea. The experimental environments and results of

the tests on speech recognition under various distorted conditions are provided in

Section 2.3 and 6.5, respectively. Finally, conclusions are drawn in Section 6.6.

6.2 Relation Between Clean And Reverberant Noisy

LMMSCs

The derivation provided by [13] leads us to the following relationship between the

corresponding LMMSCs:

yt,q = ln

(
LH∑

τ=0

exp (xt−τ,q + ht,τ,q) + exp (nt,q)

)
+ vt,q (6.1)

where xt,q, nt,q and yt,q respectively represent the LMMSCs of the clean, background

noise and corrupted speech signal at the t-th frame for the q-th mel band, and the

RIR coefficients ht,τ,q can be interpreted as a logarithmic mel magnitude spectral-like

representation of the RIR as follows:

ht,τ,q = ln (Ht,τ,q) (6.2)
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where Ht,τ,q denotes the average RIR magnitudes per mel band. Interested readers

are referred to [13] for a detailed derivation of spectral representation of the RIR.

The error term vt,q is given by

vt,q = ln

(
1 +

Et,q∑LH
τ=0 exp (xt−τ,q + ht,τ,q) + exp (nt,q)

)
(6.3)

with

Et,q =Yt,q −
(

LH∑

τ=0

Xt−τ,qHt,τ,q +Nt,q

)
. (6.4)

Let yt, xt, nt and vt respectively denote the Q-dimensional LMMSC vectors

of the reverberant noisy speech, clean speech, background noise and approximation

error of the observation model in (6.1) at the t-th frame. We also let ht,τ represent

the Q-dimensional vector which reflects the time-variant log frequency response of

the reverberant acoustic path from the speaker to the microphone, which is specified

at a frame index t for a tap index τ . These vectors are defined in the following way:

yt =

[
yt,0 yt,1 · · · yt,Q−1

]′
(6.5)

xt =

[
xt,0 xt,1 · · · xt,Q−1

]′
(6.6)

nt =

[
nt,0 nt,1 · · · nt,Q−1

]′
(6.7)

vt =

[
vt,0 vt,1 · · · vt,Q−1

]′
(6.8)

ht,τ =

[
ht,τ,0 ht,τ,1 · · · ht,τ,Q−1

]′
(6.9)

with the prime denoting matrix or vector transpose. When the background noise

and acoustic reverberation exist simultaneously, the relation shown in (6.1) can be

written in a vector form as follows:

yt = ln

(
L∑

τ=0

exp (xt−τ + ht,τ ) + exp (nt)

)
+ vt (6.10)
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where the function exp(·) is applied component-wisely and we assume that the ap-

proximation error distribution is given by

vt ∼ N (µv,Σv) (6.11)

in which N (µ,Σ) indicates a Gaussian PDF with mean vector µ and covariance

matrix Σ. Compared to the previous IMM algorithm [10], (6.10) incorporates not

only the background noise but also the acoustic reverberation effect.

6.3 Feature Compensation in a Bayesian Framework

In this work, our purpose is to estimate the clean speech LMMSC sequence {xt} given
the noisy LMMSC sequence {yt}. In the Bayesian framework, the clean speech, fre-

quency response of acoustic reverberation, background noise and reverberant noisy

speech LMMSC vectors, respectively denoted by {xt}, {ht,τ}, {nt} and {yt} are

assumed to be realizations of individual stochastic vector processes.

The core idea of our approach is to estimate the posterior distribution p
(
zt|yt

0

)

of the joint feature vector

zt =

[
x′
t x′

t−1 · · · x′
t−L h′

t,0 h′
t,1 · · · h′

t,L

]′
(6.12)

conditioned on all the observed reverberant noisy speech LMMSC vectors

yt
0 =

[
y′
0 y′

1 · · · y′
t

]′
(6.13)

where xt2
t1
=

[
x′
t1 x′

t1+1 · · · x′
t2

]′
denotes a subsequence of vectors from frame in-

dex t1 to t2. Note that both the clean speech component and log frequency responses

are estimated simultaneously by introducing a joint feature vector zt which we will

refer to as the state vector at the t-th frame. Let xt be a local clean speech LMMSC
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trajectory consisting of (L+ 1) consecutive frames and ht be the concatenation of

log frequency response of acoustic reverberation at frame t defined as follows:

xt =

[
x′
t x′

t−1 · · · x′
t−L

]′
(6.14)

ht =

[
h′
t,0 h′

t,1 · · · h′
t,L

]′
. (6.15)

Then (6.12) can be rewritten

zt =

[
x′
t h′

t

]′
(6.16)

which concatenates the local trajectory of the clean speech and frequency responses

of the acoustic reverberation.

A typical way of computing the posterior distribution of the state vector zt

based on a Bayesian inference is to recursively compute the predictive distribution

p
(
zt|yt−1

0

)
and posterior distribution p

(
zt|yt

0

)
given the previous reverberant noisy

observations as follows:

p
(
zt|yt−1

0

)
=

∫
p
(
zt|zt−1,y

t−1
0

)
p
(
zt−1|yt−1

0

)
dzt−1 (6.17)

p
(
zt|yt

0

)
=

p
(
yt|zt,yt−1

0

)
p
(
zt|yt−1

0

)
∫
p
(
yt|zt,yt−1

0

)
p
(
zt|yt−1

0

)
dzt

(6.18)

where we approximate p
(
yt|zt,yt−1

0

)
by

p
(
yt|zt,yt−1

0

) ≈ p (yt|zt) . (6.19)

If both p
(
zt|yt−1

0

)
and p

(
zt|yt

0

)
are assumed to be Gaussian distributions, it is

sufficient to revise the statistical moments up to the second-order which are defined

64



as follows:





ẑt|t−1 = E
[
zt|yt−1

0

]

Σ̂zt|t−1
= E

[(
zt − zt|t−1

) (
zt − zt|t−1

)′ |yt−1
0

] (6.20)





ẑt|t = E
[
zt|yt

0

]

Σ̂zt|t = E
[(
zt − zt|t

) (
zt − zt|t

)′ |yt
0

] (6.21)

where E[·] indicates expectation. The mean vectors and covariance matrices in

(6.20) and (6.21) are obtained through the IMM algorithm which will be described

in Section 6.4.

Since the frequency responses are considered independent of the process of gen-

erating clean speech, the overall predictive distribution p
(
zt|zt−1,y

t−1
0

)
can be fac-

torized, i.e.,

p
(
zt|zt−1,y

t−1
0

) ≈ p
(
xt|xt−1,y

t−1
0

)
p
(
ht|ht−1,y

t−1
0

)
. (6.22)

Under the framework of environment compensation, our goal is to estimate the se-

quence of the local clean feature vector trajectory xt
0, log frequency response ht

0 and

background noise nt
0 given a noisy feature vector sequence yt

0. For this purpose,

we propose in this section a variety of models for the clean speech, RIR and back-

ground noise by considering the characteristics of the individual components, and

also present the methods of describing process evolution and function approximation

necessary for an efficient estimation.
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6.3.1 A Priori Clean Speech Model

Since speech has a high degree of dynamics, it is appropriate to model the a priori

speech distribution as a mixture of K Gaussians as

p(xt) =
K−1∑

i=0

p(γt = i)N (xt;µi,Σi) (6.23)

where γt ∈ {1, 2, · · · ,K} denotes the index of the mixture component at the t-th

frame, and p(γt = i), µi and Σi represent the weight, mean vector and covariance

matrix of the i-th Gaussian distribution, respectively. It is noted that the covariance

matrix Σi in the above a priori model should be properly structured to incorporate

the temporal and spectral correlations among the components of the local clean

speech trajectory xt. Once (6.23) is employed, the clean speech term in (6.22) can

be written

p
(
xt|xt−1,y

t−1
0

)
=

K−1∑

i=0

p
(
xt|xt−1,y

t−1
0 , γt = i

)
p
(
γt = i|xt−1,y

t−1
0

)
. (6.24)

As in [13], we employ the approximation that

p
(
xt|xt−1,y

t−1
0 , γt = i

) ≈ p (xt|xt−1, γt = i) (6.25)

p
(
γt = i|xt−1,y

t−1
0

) ≈
K−1∑

k=0

aikp
(
γt−1 = k|yt−1

0

)
(6.26)

where

aik = p (γt = i|γt−1 = k) (6.27)

denotes the time-invariant state transition probabilities. This kind of prior model,

known as the SLDM, explicitly considers correlations between successive speech

feature vectors which are due to the speech production process on the one hand and
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the feature extraction process on the other. SLDMs have been successfully applied

to noise robust speech recognition in the previous studies [13, 25, 44].

The parameters of an SLDM are generally learned from a set of clean speech

training data through the well-known expectation maximization (EM) algorithm

[45], which iteratively delivers improved parameter estimates obtained from maxi-

mizing the likelihood of the training data based on previous parameter estimates.

6.3.2 A Priori Model for RIR

As for the distribution of the log frequency response ht, which is treated statistically

independent of the clean speech and background noise features, we adapt a random

walk process given by

ht = ht−1 +wh,t (6.28)

wh,t ∼ N (
0(L+1)Q, σ

2
hI(L+1)Q

)
(6.29)

where 0d represents the zero vector with length d and Id denotes the identity matrix

of size d× d. When σ2
h is small, this model is well suited to a slowly evolving RIR

environment.

6.3.3 A Priori Model for Background Noise

The characteristics of the background noise are very diverse and it is impossible

to train a background noise model to cover all kinds of the noise. However, for a

short period of duration within a single speech utterance, it may be reasonable to

assume that the background noise is stationary. One of the easiest way to estimate

the parameters relevant to the background noise model is to collect the signal statis-

tics during the non-speech periods, which might be obtained from a voice activity
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detection (VAD) method. Furthermore, the model complexity should be kept low

to make the system robust to the time-varying noise environment. For these rea-

sons, in this work the distribution of the background noise is assumed to be a single

Gaussian [10] as given by

nt ∼ N (
µnt

,Σnt

)
(6.30)

where the mean vector µnt
and covariance matrix Σnt are unknown and should be

estimated during the environment compensation procedure.

6.3.4 State Transition Formulation

Estimation of p (xt|xt−1, γt = i) in (6.25) is derived from the proposed state transi-

tion formulation. For simplicity, we assume that the mixture component index at

the t-th frame is given as γt = i. From (6.23), we can see that the pdf of the clean

speech feature vector trajectory for the i-th mixture component is given by

xt ∼ N (µ,Σ) (6.31)

where for convenience we omit the subscript i and

µ =




E[xt]

E[xt−1]

...

E[xt−L]




(6.32)

Σ =




Cov(xt,xt) Cov(xt,xt−1) ··· Cov(xt,xt−L)
Cov(xt−1,xt) Cov(xt−1,xt−1) ··· Cov(xt−1,xt−L)

...
...

. . .
...

Cov(xt−L,xt) Cov(xt−L,xt−1) ··· Cov(xt−L,xt−L)


 (6.33)

with Cov(a,b) denoting the covariance matrix between two random vectors, a and

b.
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Based on the simplifying assumption given in (6.25), we have

p
(
xt|xt−1 = x◦

t−1, γt = i
)

= p
(
xt|xt−1 = x◦

t−1, γt = i
)× δxt−1,x◦

t−1
δxt−2,x◦

t−2
· · · δxt−L,x

◦
t−L

(6.34)

where x◦
t−1 is some constant concatenated vector and δa,b denotes the Kronecker

delta function which is 1 if a = b and 0 otherwise. Assuming that xt and xt−1 are

jointly Gaussian leads us to

p (xt|xt−1, γt = i) ∼ N
(
µxt|xt−1

,Σxt|xt−1

)
(6.35)

with

µxt|xt−1
= E[xt] +AB−1







xt−1

xt−2

...

xt−L




−




E[xt−1]

E[xt−2]

...

E[xt−L]







(6.36)

Σxt|xt−1
= Cov(xt,xt)−AB−1A′ (6.37)

where

A =

[
Cov(xt,xt−1) Cov(xt,xt−2) · · · Cov(xt,xt−L)

]
(6.38)

B =




Cov(xt−1,xt−1) Cov(xt−1,xt−2) ··· Cov(xt−1,xt−L)
Cov(xt−2,xt−1) Cov(xt−2,xt−2) ··· Cov(xt−2,xt−L)

...
...

. . .
...

Cov(xt−L,xt−1) Cov(xt−L,xt−2) ··· Cov(xt−L,xt−L)


 . (6.39)

Based on (6.34), (6.36) and (6.37), the state transition process of the clean feature
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vector trajectory can be expressed as follows:

xt =




xt

xt−1

xt−2

...

xt−L




=




AB−1 OQ

IQ OQ · · · OQ

OQ IQ · · · OQ

...
. . .

...
...

OQ · · · IQ OQ




xt−1 +




bt

0Q

0Q
...

0Q




(6.40)

where

bt ∼ N
(
µ̃b, Σ̃b

)
(6.41)

µ̃b = E[xt]−AB−1




E[xt−1]

E[xt−2]

...

E[xt−L]




(6.42)

Σ̃b = Cov(xt,xt)−AB−1A′ (6.43)

with OQ denoting a zero matrix with size Q×Q.

Finally, by combining the transition formulations for both the clean speech and

RIR shown in (6.28), (6.29) and (6.40)-(6.43), the transition process of the state

vector zt for the i-th mixture component can be simply structured as follows:

zt = A(i)zt−1 + b
(i)
t (6.44)
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with

A(i) =




AB−1 OQ

IQ OQ ··· OQ

OQ IQ ··· OQ

...
. . .

...
...

OQ ··· IQ OQ

O(L+1)Q

O(L+1)Q I(L+1)Q




(6.45)

b
(i)
t ∼ N

(
µ
(i)
b ,Σ

(i)
b

)
(6.46)

where

µ
(i)
b =




µ̃b

0Q
...

0Q




, Σ
(i)
b =




Σ̃b OQ ··· OQ

OQ OQ ··· OQ

...
...

. . .
...

OQ OQ ··· OQ

O(L+1)Q

O(L+1)Q σ2
hI(L+1)Q



. (6.47)

6.3.5 Function Linearization

It is usually difficult to estimate directly the parameters such as {xt} and {ht,τ} in

(6.10). This difficulty mostly comes from the nonlinearity of the speech contamina-

tion rule shown in (6.10). One possible way to alleviate this difficulty is to apply

piecewise linear approximation to the given nonlinear function by using Taylor se-

ries expansion. When we apply the Taylor series expansion up to the first order,

the observation model function (6.10) can be linearly approximated as

f (zt,nt) = ln

(
L∑

τ=0

exp (xt−τ + ht,τ ) + exp (nt)

)
(6.48)

≈ Gtzt +Htnt + qt (6.49)

where Gt and Ht are constant matrices and qt is a constant vector. In our work,

we apply the statistical linear approximation (SLA) [24] method for linear approx-

imation. Let z◦t and n◦
t be some constant vectors corresponding to the center of
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vector Taylor series expansion. Then, using the first order SLA technique, which is

equivalent to the conventional vector Taylor series expansion, we have

f (zt,nt) ≈
L∑

τ=0

∂f

∂xt−τ
(xt−τ − x◦

t−τ ) +
L∑

τ=0

∂f

∂ht,τ
(ht,τ − h◦

t,τ )

+
∂f

∂nt
(nt − n◦

t ) + f (z◦t ,n
◦
t ) (6.50)

=

L∑

τ=0

∂f

∂xt−τ
xt−τ +

L∑

τ=0

∂f

∂ht,τ
ht,τ +

∂f

∂nt
nt + f (z◦t ,n

◦
t )

−
L∑

τ=0

∂f

∂xt−τ
x◦
t−τ −

L∑

τ=0

∂f

∂ht,τ
h◦
t,τ −

∂f

∂nt
n◦
t (6.51)

where all the gradients are computed at (z◦t ,n◦
t ). After some algebra with (6.49)

and (6.51), it can be shown that

Gt =

[
∂f
∂xt

∂f
∂xt−1

· · · ∂f
∂xt−L

∂f
∂ht,0

· · · ∂f
∂ht,L

]
(6.52)

Ht =
∂f

∂nt
(6.53)

qt = f (z◦t ,n
◦
t )−Gtz

◦
t −Htn

◦
t . (6.54)

6.4 Feature Compensation Algorithm

At each frame t, the proposed feature compensation algorithm based on the IMM

technique conducts five steps: preprocessing, predictive state estimation, itera-

tive linearization and Kalman update, postprocessing and clean feature estimation.

These steps are described similarly to those proposed in [13].

6.4.1 Preprocessing

The initial statistics associated to the i-th iterated Kalman filter are constructed by

mixing the corresponding estimates at the previous frame. Let us define the initial
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statistics as

ẑ
(0,i)
t−1|t−1 = E

(
zt−1|γt = i,yt−1

0

)
(6.55)

Σ̂
(0,i)
zt−1|t−1

= Cov
(
zt−1|γt = i,yt−1

0

)
. (6.56)

Then, by the IMM approximation [10], we can get

ẑ
(0,i)
t−1|t−1 =

K−1∑

k=0

Λ
(i,k)
t ẑ

(k)
t−1|t−1 (6.57)

Σ̂
(0,i)
zt−1|t−1

=

K−1∑

k=0

Λ
(i,k)
t

[
Σ̂

(k)
zt−1|t−1

+
(
ẑ
(0,i)
t−1|t−1 − ẑ

(k)
t−1|t−1

)
×
(
ẑ
(0,i)
t−1|t−1 − ẑ

(k)
t−1|t−1

)′ ]

(6.58)

in which

ẑ
(k)
t−1|t−1 = E

(
zt−1|γt−1 = k,yt−1

0

)
(6.59)

Σ̂
(k)
zt−1|t−1

= Cov
(
zt−1|γt−1 = k,yt−1

0

)
(6.60)

Λ
(i,k)
t = P

(
γt−1 = k|γt = i,yt−1

0

)
. (6.61)

In (6.61), Λ
(i,k)
t denotes the probability that model k was active at the (t − 1)-th

frame given that model i is active at the t-th frame conditioned on the observations

yt−1
0 . Based on (6.26) and (6.27) it can be shown that

Λ
(i,k)
t =

1

ci
aikP

(k)
t−1|t−1 (6.62)

with

ci =
K−1∑

k=0

aikP
(k)
t−1|t−1 (6.63)

where P
(k)
t−1|t−1 ≡ P

(
γt−1 = k|yt−1

0

)
is the a posteriori probability that model k

is active at frame (t − 1) conditioned on the observations yt−1
0 . Let P

(i)
t|t−1 ≡
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P
(
γt = i|yt−1

0

)
be the a priori model probability. Then from (6.26),

P
(i)
t|t−1 =

K−1∑

k=0

aikP
(k)
t−1|t−1, 0 ≤ i ≤ K − 1. (6.64)

6.4.2 Predictive State Estimation

Let the one-step-ahead statistics of the predictive state estimate in the i-th mix-

ture component at frame index t based on the initial estimates computed from the

previous step be defined by

ẑ
(i)
t|t−1 = E

(
zt|γt = i,yt−1

0

)
(6.65)

Σ̂
(i)
zt|t−1

= Cov
(
zt|γt = i,yt−1

0

)
. (6.66)

Then, by using the state evolution formulation of (6.44)-(6.47), we can derive

ẑ
(i)
t|t−1 = A(i)ẑ

(0,i)
t−1|t−1 + µ

(i)
b (6.67)

Σ̂
(i)
zt|t−1

= A(i)Σ̂
(0,i)
zt−1|t−1

(
A(i)

)′
+Σ

(i)
b . (6.68)

6.4.3 Iterative Linearization And Kalman Update

The general approach of this step is similar to that proposed in [46] where the

linearization and Kalman update are performed iteratively. The core idea of this

approach is to find a more optimal center of Taylor series expansion for a better

linear approximation. Let R denote the total number of iterations and r = 1, · · · , R
indicates an iteration index. Recall that z◦t is the center of vector Taylor series

expansion introduced in Subsection 6.3.5. At the r-th iteration we set

z◦t = ẑ
(r,i)
t|t (6.69)
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and at the first iteration we set

ẑ
(1,i)
t|t = ẑ

(i)
t|t−1. (6.70)

Let ŷ
(r,i)
t and Σ̂

(r,i)
yt

respectively represent the observation and the corresponding

covariance matrix predicted based on ẑ
(r,i)
t|t . Then from (6.11), (6.49) and (6.30),

ŷ
(r,i)
t and Σ̂

(r,i)
yt

can be obtained by

ŷ
(r,i)
t = Gtẑ

(i)
t|t−1 +Htµnt

+ qt + µv (6.71)

Σ̂
(r,i)
yt

= GtΣ̂
(i)
zt|t−1

G′
t +HtΣntH

′
t +Σv (6.72)

where Gt, Ht and qt are computed from (6.52)-(6.54) and (6.69). Once these are

completed, the innovation e
(r,i)
t and its covariance matrix R

(r,i)
et are computed

e
(r,i)
t = yt − ŷ

(r,i)
t (6.73)

R
(r,i)
et = GtΣ̂

(i)
zt|t−1

G′
t +HtΣntH

′
t +Σv, (6.74)

and the Kalman gain K
(r,i)
f,t is obtained as follows:

K
(r,i)
f,t = Σ̂

(i)
zt|t−1

G′
t

(
R

(r,i)
et

)−1
. (6.75)

With e
(r,i)
t , R

(r,i)
et and K

(r,i)
f,t , we can update the center of Taylor series expansion in

(6.69) by means of the conventional measurement-update scheme

ẑ
(r+1,i)
t|t = ẑ

(i)
t|t−1 +K

(r,i)
f,t e

(r,i)
t . (6.76)

From a number of experiments, we have discovered that there is a large variation

of the parameter estimates along the time axis even though the background noise

and acoustic reverberation show slowly evolving characteristic. This phenomenon

comes from the mismatch between the real process that generates the observation
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sequence and the assumed model used for the proposed algorithm. Equation (6.28)

is a simple approximation to the time-varying process of reverberant environment,

and (6.44) and (6.49) are crude approximations to the nonlinear observation func-

tion. Also, there are many other factors that give rise to modeling errors in the

statistical parametric approach. For the purpose of avoiding a rapid variation of

the estimated parameter values, we modify the original Kalman filtering approach.

The modification suggests to shrink the Kalman gain, K
(r,i)
f,t , such that

K̄
(r,i)
f,t = αK

(r,i)
f,t (6.77)

with

α =



αxI(L+1)Q O(L+1)Q

O(L+1)Q αhI(L+1)Q


 (6.78)

where K̄
(r,i)
f,t represents the shrunk Kalman gain and αx and αh which we call the

shrinking factors are positive scalars lying in (0, 1). Shrinking the Kalman gain,

though rather heuristic without any concrete theoretical basis, has been found ef-

fective for performance improvement from the experimental results [10]. By substi-

tuting K
(r,i)
f,t with K̄

(r,i)
f,t in (6.76), we have

ẑ
(r+1,i)
t|t =

(
I2(L+1)Q −α

)
ẑ
(i)
t|t−1 +α

[
ẑ
(i)
t|t−1 + K̄

(r,i)
f,t e

(r,i)
t

]
. (6.79)

From (6.79), it is not difficult to see that the shrunk Kalman gain has the effect of

smoothing the parameter estimates which renders slow variation of the estimated

parameter values.

After R iterative linearization and Kalman update, we can compute the mean
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vector and covariance matrix of the posterior distribution p
(
zt|γt = i,yt

0

)
by

ẑ
(i)
t|t = ẑ

(R+1,i)
t|t (6.80)

Σ̂
(i)
zt|t =

(
I2(L+1)Q −K

(R,i)
f,t Gt

)
Σ̂

(i)
zt|t−1

. (6.81)

6.4.4 Postprocessing

Let P
(i)
t|t denote the a posteriori model probability. Then it can be computed as

follows:

P
(i)
t|t =

1

c
p
(
yt|ẑ(i)t|t−1, Σ̂

(i)
zt|t−1

)
p
(
γt = i|yt−1

0

)
(6.82)

=
1

c
N

(
yt; ŷ

(1,i)
t , Σ̂

(1,i)
yt

)
P

(i)
t|t−1 (6.83)

where the normalizing constant c is computed from

c =
K−1∑

i=0

N
(
yt; ŷ

(1,i)
t , Σ̂

(1,i)
yt

)
P

(i)
t|t−1. (6.84)

The mean vector and covariance matrix of the posterior distribution p
(
zt|yt

0

)
are

obtained from model combination as given by

ẑt|t =
K−1∑

k=0

P
(k)
t|t ẑ

(k)
t|t (6.85)

Σ̂zt|t =
K−1∑

k=0

P
(k)
t|t

[
Σ̂

(k)
zt|t +

(
ẑt|t − ẑ

(k)
t|t

)(
ẑt|t − ẑ

(k)
t|t

)′]
. (6.86)

6.4.5 Estimation of Clean Feature

After the postprocessing step, we can obtain the estimate for not only the clean

speech feature but also RIR since

ẑt|t =
[
x̂′
t|t ĥ′

t|t

]′
(6.87)
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where

x̂t|t =
[
x̂′
t|t x̂′

t−1|t · · · x̂′
t−L|t

]′
. (6.88)

In (6.88), the (L+ 1) consecutive clean feature vectors are estimated at the same

time, where x̂t|t means the filtered estimate and all other x̂t−l|t for l > 0 are smoothed

estimates.

If we assume that the proposed system should be causal, i.e., only the filtered

estimate is allowed at each frame, a straightforward approach is to use the filtered

estimate x̂t = x̂t|t. On the other hand, if we apply noncausal system and permit

delayed decision, a simple way may be assigning x̂t = x̂t|t+L. Compared with the

causal system, this approach has the disadvantage of time delay, however, it may

provide more robust estimation of clean feature.

6.5 Experiments With Feature Compensation Techniques

In this section, we present a number of experiments with various parameter set-

tings performed on the Aurora-5 DB. As reference approaches with which we com-

pared the performance, we implemented the conventional log-spectral domain IMM

[10], SPLICE [14] and SLDS [23] algorithms. The log-spectral domain IMM is a

well-known blind feature compensation technique useful for the background noise

environments. The SPLICE and SLDS are stereo data based feature mapping ap-

proaches which produce good results under various channel distortions. Note that

both the SPLICE and SLDS algorithms are non-blind techniques where the feature

compensation rule is trained from a stereo database a priori.

Both the proposed and conventional IMM algorithms were performed in the

LMMSC domain while the SPLICE and SLDS were directly applied to MFCCs. To
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train the parameters of SPLICE and SLDS, we utilized a set of stereo data for each

test condition in which each utterance consisted of two simultaneous recordings:

one obtained from the clean speech data that was used to train the baseline recogni-

tion system and the other obtained in the target environmental condition. For the

non-filtered data set of Aurora-5 DB, 575 utterances of stereo data were applied to

estimate the parameters for each separate test condition while 431 utterances were

used in the case of G. 712 filtered data set. For convenience, we denote the conven-

tional log-spectral domain IMM algorithm by IMM and the proposed IMM-based

reverberation and noise robust feature compensation algorithm by IMM derev.

We evaluated the performance of the proposed IMM derev by varying the number

of concatenated frames L for constructing the local trajectory, the number of mix-

ture components K and the clean speech estimation methods. We also compared

the proposed IMM derev algorithm with the conventional IMM, SPLICE and SLDS

approaches. In all the experiments conducted with IMM derev, each block of the

covariance matrix was approximated as either diagonal or zero matrix as shown in

Table 6.1. This approximation was made to achieve both robust parameter estima-

tion and reduced computation, and focused on temporal correlation while ignoring

spectral correlation of the clean speech LMMSCs. The distribution of the back-

ground noise in (6.30) was estimated during the first and last 8 frames, which were

kept fixed over all the remaining periods of each utterance. This assumes the sta-

tionarity of the background noise. The number of iterations R for Kalman updating

was fixed to 3 in our implementation.
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Table 6.1: Constraints of the format of the covariance matrices

Covariance matrix Format

Cov(xt−τ1 ,xt−τ2) diagonal matrix

Cov(xt−τ1 ,ht,τ2) zero matrix

Cov(ht,τ1 ,ht,τ2) diagonal matrix (τ1 = τ2)

zero matrix (τ1 6= τ2)

6.5.1 Experiments With Varying L

We first examined the performance by varying the number of concatenated frames

L for constructing the local trajectory. The number of mixture components was

K = 64 and clean feature estimation was obtained from the filtered estimate x̂t = x̂t|t

in this experiment. The results obtained when there was no background noise are

shown in Table 6.2. In the reverberation only conditions, HFO and HFL, the word

accuracy became higher as L increased. On the other hand, when the GSM codec

or G. 712 filter was applied, the distortions caused by the codec or channel were

more dominant than that by the acoustic reverberation. In this case, since the

distortions were not considered convolutive or additive, the estimation errors slightly

increased with larger L. In the non-filtered set, IMM derev performed better than

the IMM, SPLICE and SLDS algorithms, while in the G. 712 filtered environment,

the performances of IMM derev were better than those of IMM but slightly worse

than those of SPLICE and SLDS.

Next, we evaluated the performance for the noisy speech measured in terms of the

average relative error rate reduction (RERR) which indicates how much error rate of

the baseline was reduced. The results are shown in Table 6.3 where each component
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Table 6.2: Word accuracies (%) of the IMM, SPLICE and IMM derev algorithms

with varying L in clean environments
(
K = 64, x̂t = x̂t|t

)

Non-Filtered G. 712 Filtered

HFO HFL HFC HFC-GSM GSM

Baseline 99.32 93.30 83.24 99.31 97.41 92.45 97.70

IMM 99.20 91.75 81.03 99.04 87.50 79.18 96.65

SPLICE 99.32 93.09 77.94 99.31 99.20 96.73 98.38

SLDS 99.32 96.35 89.22 99.31 99.29 97.37 98.18

L = 0 99.07 95.37 85.95 97.27 96.76 94.08 96.04

L = 1 99.33 96.76 90.11 98.80 98.75 95.39 97.52

IMM derev L = 2 99.30 96.91 90.55 99.06 99.05 95.41 97.75

L = 3 99.20 97.08 91.88 99.10 99.06 94.43 97.38

L = 4 99.05 97.30 93.18 98.92 98.95 93.23 96.70

represents the RERR averaged over the SNR range from 0 to 15 dB. From the

results, we can see that IMM derev performed better than the reference algorithms

in most of the tested conditions. Exceptions were found in two conditions. In the

non-filtered data set when only the background noise existed, IMM derev showed a

slightly worse performance compared to IMM and in the HFC-GSM set with G. 712

filtering, SLDS produced the best performance.

6.5.2 Experiments With Varying K

We evaluated performance while varying the number of mixture components K. In

this experiment, IMM derev was performed with L = 2 which produced the best
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Table 6.3: RERR’s (%) averaged over SNR 0-15 dB with varying L

(
K = 64, x̂t = x̂t|t

)

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

HFO HFL HFC HFC-GSM GSM

IMM 74.67 61.04 50.78 79.16 66.85 47.03 61.57

SPLICE 66.24 45.60 25.68 74.17 70.03 66.33 59.46

SLDS 66.18 49.01 33.02 77.82 76.37 73.25 62.79

L = 0 63.36 57.57 47.91 83.00 75.70 62.22 64.55

L = 1 69.77 63.20 55.46 83.68 78.99 66.92 65.08

IMM derev L = 2 70.38 63.91 56.11 84.61 79.17 65.01 64.13

L = 3 69.29 62.37 55.17 82.61 77.51 63.48 64.71

L = 4 69.17 62.19 55.67 75.70 73.55 58.34 58.68

results as shown in Table 6.3. The other parameter settings were the same as the

previous experiment. The RERR’s averaged over 0-15 dB SNR are given in Table

6.4 from which we can see that IMM derev with K = 64 performed better than the

others while for the other approaches, K = 128 produced slightly better results.

The RERR’s averaged over all the noisy tested conditions are summarized in Table

6.5.
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6.5.3 Experiments With Different Methods of Clean Feature Esti-

mation

In the previous Subsection 6.4.5, we presented two different methods to estimate

the clean feature and we compared these two estimates. The number of mixture

components K was fixed at 64 and the other parameters were set to the same as

the previous experiment. The evaluation results when we applied x̂t = x̂t|t and

x̂t = x̂t|t+L for estimating clean speech feature vectors are shown in Tables 6.6 and

6.7, respectively. In these cases, the RERR’s averaged over all the noisy conditions

were 69.04 % and 70.07 %, respectively. From the results, we can deduce that the

clean feature estimation with noncausal assumption produced better performances

compared to that with causal hypothesis.

6.5.4 Comparison With Conventional Techniques

The best overall performance of the proposed IMM derev algorithm was obtained

when L = 2, K = 64 and x̂t = x̂t|t+L. Detailed performance of the IMM, SPLICE,

SLDS and IMM derev approaches are given in Tables 6.8, 6.9, 6.10 and 6.7, respec-

tively. We also present the average RERR in each separate environmental and

SNR condition in Figures 6.1 and 6.2, respectively. In the non-filtered set, the

proposed technique remarkably outperformed the other conventional approaches in

the HFL condition where acoustic reverberation was rather severe. This observation

reflects the fact that the proposed approach is useful in reverberant environments

especially when the reverberation time is long. It is noted that even though the

proposed IMM derev was the blind technique, it showed better performance than

the stereo data based techniques, SPLICE and SLDS. It can be seen that since the
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Figure 6.1: RERR’s for different conditions
(
K = 64, L = 2, x̂t = x̂t|t+L

)

IMM derev can cope with the time-varying distortion by adapting the environmen-

tal parameters, while the parameters of the SPLICE and SLDS were predetermined

and fixed during enhancing the feature. Moreover, the proposed model appears to

be more suitable for modeling the distortions such as background noise, channel

distortion and reverberation. The RERR’s of the proposed IMM derev algorithm

averaged over all the noisy tested conditions with respect to the baseline, IMM,

SPLICE and SLDS were 70.55 %, 18.77 %, 24.08 % and 14.68 %, respectively.

When we focus only on the reverberant noisy conditions, the above measures change

to 68.21 %, 28.32 %, 27.47 % and 15.95 %, respectively. From the results, it can

be concluded that the proposed algorithm produced better performance than the

conventional approaches in the distorted environments caused by background noise,
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Figure 6.2: RERR’s for different SNR’s
(
K = 64, L = 2, x̂t = x̂t|t+L

)

acoustic reverberation, codec or channel effects.

6.6 Summary

In this chapter, we have proposed a new reverberation and noise robust feature

compensation technique. The proposed technique can be assumed as an extension

of the previous IMM-based feature compensation algorithm. In the proposed ap-

proach, tracking of the time-varying environmental parameters is possible through a

direct modeling of the environment evolution process. For the purpose of estimating

the parameters associated with the evolution process, we have applied the iterative

linearization and Kalman updating approach. The proposed algorithm was found

robust to the background noise and acoustic reverberation as well as the codec and
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channel distortions. From a number of experiments on the Aurora-5 database, it has

been discovered that the proposed approach outperforms the conventional feature

compensation algorithms.
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Table 6.4: RERR’s (%) averaged over SNR 0-15 dB with varying K

(
L = 2, x̂t = x̂t|t

)

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

HFO HFL HFC HFC-GSM GSM

K = 32 11.47 -15.52 -5.22 80.16 64.11 37.83 55.73

IMM K = 64 74.67 61.04 50.78 79.16 66.85 47.03 61.57

K = 128 75.26 62.24 52.90 80.49 67.97 50.14 62.71

K = 32 64.97 43.84 25.50 73.31 69.22 65.65 58.66

SPLICE K = 64 66.24 45.60 25.68 74.17 70.03 66.33 59.46

K = 128 68.06 47.12 25.90 75.07 71.04 67.28 60.38

K = 32 66.52 44.81 27.63 77.47 75.22 70.29 60.22

SLDS K = 64 66.18 49.01 33.02 77.82 76.37 73.25 62.79

K = 128 67.07 51.90 36.23 77.35 75.88 73.69 63.06

K = 32 69.46 61.93 53.91 83.03 73.86 62.48 66.88

IMM derev K = 64 70.38 63.91 56.11 84.61 79.17 65.01 64.13

K = 128 70.14 63.03 53.31 82.81 77.67 64.78 65.26
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Table 6.5: RERR’s (%) averaged over all the noisy tested conditions with varying

K
(
L = 2, x̂t = x̂t|t

)

K = 32 K = 64 K = 128

IMM 32.65 63.01 64.53

SPLICE 57.31 58.22 59.27

SLDS 60.31 62.64 63.60

IMM derev 67.36 69.04 68.14

Table 6.6: Word accuracies (%) of the proposed IMM derev algorithm for non-

filtered and G. 712 filtered test data sets
(
K = 64, L = 2, x̂t = x̂t|t

)

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.30 96.91 90.55 99.06 99.05 95.41 97.75

15 96.43 92.64 85.51 98.53 96.47 88.77 93.35

10 91.45 85.62 77.25 97.11 92.33 82.72 87.94

5 79.32 70.99 60.98 92.56 84.01 72.31 76.81

0 54.86 46.21 38.21 81.18 66.83 54.46 55.37
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Table 6.7: Word accuracies (%) of the proposed IMM derev algorithm for non-

filtered and G. 712 filtered test data sets
(
K = 64, L = 2, x̂t = x̂t|t+L

)

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.31 96.87 90.21 99.06 99.05 96.02 98.05

15 96.47 92.37 84.19 98.73 96.70 90.45 94.19

10 91.67 85.48 75.76 97.45 93.05 85.03 89.04

5 79.70 70.47 60.35 93.56 85.00 74.88 77.79

0 55.37 45.81 38.56 82.79 68.03 57.02 55.98

Table 6.8: Word accuracies (%) of the conventional IMM algorithm for non-filtered

and G. 712 filtered test data sets (K = 64)

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.20 91.75 81.03 99.04 87.50 79.18 96.65

15 97.03 90.47 82.14 98.24 92.31 76.19 92.81

10 93.41 84.68 73.77 96.05 88.43 72.98 88.55

5 82.76 70.06 56.78 89.38 76.70 63.23 75.95

0 58.97 45.21 34.51 73.44 50.44 42.60 48.05
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Table 6.9: Word accuracies (%) of the conventional SPLICE algorithm for non-

filtered and G. 712 filtered test data sets (K = 64)

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.32 93.09 77.94 99.31 99.20 96.73 98.38

15 96.50 89.07 67.27 98.19 96.91 93.02 94.12

10 92.45 78.94 57.17 94.06 92.39 87.52 86.66

5 77.83 50.69 36.07 86.22 75.03 73.09 73.12

0 39.59 23.77 16.28 67.64 42.86 41.53 41.17

Table 6.10: Word accuracies (%) of the conventional SLDS algorithm for non-filtered

and G. 712 filtered test data sets (K = 64)

Non-Filtered G. 712 Filtered

Noise Interior Noise Car Noise Street Noise

SNR (dB) HFO HFL HFC HFC-GSM GSM

Clean 99.32 96.35 89.22 99.31 99.29 97.37 98.18

15 95.93 88.56 70.33 98.71 97.10 94.43 95.03

10 91.44 79.86 62.39 96.20 92.88 89.75 86.95

5 80.29 56.21 42.29 85.65 79.55 79.75 75.89

0 41.18 30.35 23.67 69.98 58.99 52.80 44.92
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Chapter 7

Conclusions

This dissertation addresses the problem of distortion robustness using current speech

recognition technology. To cope with the problem of performance drops in the pres-

ence of distortions such as background noise, channel distortion and reverberation,

we proposed a statistical approach to robust speech recognition. In this thesis, four

kinds of feature domain approaches to robust speech recognition were proposed.

Firstly, we have proposed a speech feature mapping algorithm based on SLDS. In

contrast to the conventional vector-to-vector mapping approach, SLDS can describe

the sequence-to-sequence mapping in a systematic way. The proposed algorithm

has been applied to stereo data based speech feature mapping for channel distorted

speech recognition. From a number of experiments, it has been shown that the

proposed method outperforms the conventional feature mapping approach.

Secondly, we have proposed a novel approach to semi-blind parameter estima-

tion for speech feature mapping. The proposed approach first generates an artificial

reference feature vector sequence from the HMM and interpolates it with the output

feature vector stream obtained from a feature compensation algorithm. This inter-
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polation enables not only to faithfully reconstruct the clean speech feature but also

to increase the likelihood of the HMM used for speech recognition. Future study

will include an optimal combining technique based on the Bayesian framework.

Finally, we have proposed a new reverberation and noise robust feature compen-

sation technique. The proposed technique can be assumed as an extension of the

previous IMM-based feature compensation algorithm. In the proposed approach,

tracking of the time-varying environmental parameters is possible through a di-

rect modeling of the environment evolution process. For the purpose of estimating

the parameters associated with the evolution process, we have applied the iterative

linearization and Kalman updating approach. The proposed algorithm was found

robust to the background noise and acoustic reverberation as well as the codec and

channel distortions. From a number of experiments on the Aurora-5 database, it has

been discovered that the proposed approach outperforms the conventional feature

compensation algorithms.
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s�+þA,

o�Ä», $í
Ãº, Ãº�Ð, �â
8̈�s� 1px a%¦\O�Òqt[þta��̧ y����×¼o� 9 ���r\� ���� ��r� ëß���U�́ l�

@/
��¦ e��_þvm���.

@/�<Æ�§ ���{9�Òqt M:ÂÒ'� �<Êa�ô�Ç /BN@/ I�Û�æ7ìøÍ �2;½̈[þt\�>��̧ y����_� ú́��̀¦ ���½+Ëm�

��. �<ÆÂÒ ?/?/ �½Ó�©� �<Êa�
� 9 ú́§�Ér �̧¹¡§�̀¦ �°?~�� I�d��s�ü< 1lx+À:s�\�>� :£¤Z>�y� �¦ú́�

����H ú́��̀¦ ���
��¦ z�·_þvm���. �2;½̈[þt  ü�ì�r\� �<ÆÂÒÒqt�Ö̧s� ú́§s� a�¦���°?�¦ �<Êa� ~ÃÐDh

/BNÂÒ
� 9 "3�%3�~�� ��d��_� :£¤Z>��<Ê�Ér {9��̀¦ Ãº \O��̀¦ �	כ °ú _þvm���. Õª ü@\��̧ \O��� ���\�

������ ����D¥ô�Ç I�%ò
s�ü< Ãº%ò
s�, /åL
�>� ����D¥ô�Ç ï�r�B, 0py>� ����D¥ô�Ç "é¶+À:s�, /BI ����D¥½+É

t��&³s� �̧¿º '��4�¤
�>� ú̧� ¶ú�U�́ �����¦, �©�î�rs�+þA, �©�K�+þA, 6 x���s�, 1lx8̈�s�, �&³Äº, $í


7áxs�, �©�
�, ���½©, ���Äº, t�Ãº, %ò
ï�rs�, 5pxô ¥s�+þA, $í

�, t�"é¶s�, ���&³s�¾º��, 7áx�B, ô�Ç

$í
s�, �Ð���s� 6 x#3�s�+þA 1px �̧¿º >�5ÅqK�"f a%~�Ér �'a>� s�#Q��°ú� Ãº e��U�́ ��³1Ñm���.

¢̧ô�Çs�2£§�̀¦{9�{9�s�\P���
�|��jËµ[þtt�ëß����l�/BN�<ÆÂÒÒ�¦ÀÒìøÍ1lxl�x9�ÊêC�[þtõ�Áº

«ÑÙþ¡~�� �<ÆÂÒÒqt�Ö̧\� �Ö̧§4�s� ÷&%3�~�� FCÒ�¦ÀÒ »¡¤½̈hË>"é¶[þt, �©�>��¦-"fÖ�¦@/ 1lxë�H�r ���Êê

C� x9� 1lxl�[þta��̧ y����×¼wn�m���.

Û¼3$r�\�¦ �<Êa�Ùþ¡~�� �Z4Ãº�FK �̧Êê 9r� ìøÍ ��e�� x9� Õª ��� ��e�� �r"é¶_��[þtõ� y©���_��

a��̧ y����_� ú́��̀¦ ���½+Ëm���. t�y��õ� ���$3��̀¦ ú́§s� 
�|�� Ùþ¡t�ëß� /BN�̀¦ u� 9 Û¼àÔYUÛ¼

\�¦ K��è½+É Ãº e��#Q ����̂÷�rëß� ��m��� &ñ
���|	�y©�\��̧ ú́§�Ér �̧¹¡§s� ÷&%3�~�� �	כ °ú _þvm�

��. s�]j �<Æ�§ �íÛ¼�ï\�"f Û¼3$r�\�¦ >�5Åq 
�|�� #Q§>���xt�ëß� l��r�� �)a����� �Ð9}¹כ�

\� >�e���̀¦ ô�Ç��� ½+É Ãº e��Ü¼��� a%~�̀¦ �	כ °ú _þvm���.

102



×�æ�¦1px�<Æ�§�2;½̈���¿º�B,���ô=s�,&ñ
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