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ABSTRACT 
 
 
 

AN IMPEDANCE-MATCHED 
BIDIRECTIONAL MULTI-DROP 

MEMORY INTERFACE 
 
 

WOO-YEOL SHIN 
DEPARTMENT OF ELECTRICAL ENGINEERING AND 

COMPUTER SCIENCE 
COLLEGE OF ENGINEERING 

SEOUL NATIONAL UNIVERSITY 
 
 

In this thesis, an impedance-matched bidirectional multi-drop (IMBM) DQ bus is 

proposed, together with a 4.8Gb/s transceiver for a memory controller which supports this 

bus. Reflective ISI is eliminated at each stub of the IMBM DQ bus by resistive 

unidirectional impedance matching. The IMBM DQ bus generates no reflections during 

write operations, and the reflections that are generated during read operations do not 

reach the memory controller. Therefore, the IMBM DQ bus transmits and receives both 

read and write signals without reflective ISI. In addition, the IMBM DQ bus is more 

tolerant to stub length mismatches than a conventional stub-series terminated logic 

(SSTL) DQ bus. The proposed DQ bus is applicable to memory system applications 

which require both high speed operation and high capacity, which the conventional multi-

drop and point-to-point bus cannot handle.     
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Because the IMBM DQ bus attenuates the voltage of signals in a manner inversely 

proportionate to the number of modules, a new clocking architecture is necessary to 

support the IMBM DQ bus. In this thesis, a 4.8Gb/s transceiver which uses shifted phase-

locked loop (PLL) clock is proposed for data sampling instead of the received strobe 

signal. A prototype memory controller transceiver was designed and fabricated in a 

0.13μm CMOS process, and it operates with a 1.2-V supply voltage. Its effectiveness was 

demonstrated on various measurement configurations. At 4.8Gb/s, this transceiver, with a 

4-slot, 8-drop IMBM DQ bus, has an eye opening of 0.39UI in TX mode and 0.58UI in 

RX mode at a threshold of 10-9 BER, whereas a comparable transceiver with a 

conventional 4-slot, 8-drop stub-series terminated logic (SSTL) has no timing margin 

under the same test conditions. Our transceiver consumes 14.25mW/Gb/s per DQ in TX 

mode and 13.69mW/Gb/s per DQ in RX mode. 

 

 
Keywords: Impedance matching, memory controller, memory interface, multi-drop DQ 
bus, Stub-Series Terminated Logic, transceiver 
 
Student Number: 2005-21422
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
1.1 MOTIVATION 

 

The combination of rapid increases in both the speed of processors and the capacity 

of memory modules means that memory interfaces are now required to handle enormous 

amounts of data during read and write operations. The scaling of CMOS transistors and 

the development of new IO circuit technology has allowed the data rate of memory 

interfaces to reach 16Gb/s per channel [1.1.1] [1.1.2]. However, higher speeds [1.1.1]–

[1.1.4], such as those achieved by the XDR and GDDR memory interfaces, require the 

use of a point-to-point bus topology rather than a multi-drop bus topology. A point-to-

point bus topology can achieve much higher data-rates than a multi-drop bus topology 

because each stub of a multi-drop channel bus topology generates undesired reflections, 

causing inter-symbol interference (ISI), as shown in Fig. 1.1.1.  
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Fig. 1.1.1. Reflective Inter-Symbol Interference (ISI) caused by conventional multi-drop bus 
topology.  
 

Unfortunately, point-to-point channels require too much PCB area to allow their use 

in high-capacity memory systems such as DRAM modules for personal computers and 

servers. This is why recent DDR2/3 memory interfaces [1.1.5] uses Stub-Series 

Terminated Logic (SSTL) in spite of the resulting reflection at each stub. Nevertheless, 

unlike previous DDR1/2/3 interface, shown in Fig. 1.1.2, the next-generation DDR 

memory interface may adopt a point-to-point interface bus topology because conventional 

multi-drop channels cannot handled data rates that exceed 2Gb/s [1.1.6]. This makes it 

necessary to find some way to increase the data transfer rate while maintaining the multi-

drop bus topology, which turns the focus to ISI as caused by reflection. I expect that 

three- or four-connector module memory, with at least six or eight ranks, will be needed 

in next-generation multi-core PC, server, and workstation architectures. Therefore, a new 

approach is necessary to support both high-speed data rates and high memory capacities. 
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Fig. 1.1.2. Data rate and bus topology trend of the DDRx DRAM interface. 
. 

Various approaches are being taken to address this problem. Fully buffered DIMM 

(FBDIMM) with an advanced memory buffer (AMB) [1.1.7] [1.1.8] and a cascading 

memory architecture [1.1.9] [1.1.10] has a daisy-chained point-to-point bus topology 

which is not affected by the reflection problem. However, FBDIMM has more latency 

than the multi-drop bus topology. Latency or fast access time has priority over data 

throughput because the CPU waits until the first data arrives. Alternatively, impedance 

matching by means of a 2Z0Ω transmission line in the last part of a memory module can 
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significantly reduce the reflection in a channel [1.1.11]. However, this sort of matching 

can only be applied to a two-slot configuration. The configuration method of the PCB 

trace with a separate location on the board can reduce the reflection dramatically [1.1.12], 

but this scheme is also limited to two or three slots. Moreover, an impedance-matching 

scheme [1.1.13] in which the characteristic impedance of the PCB trace is changed for 

proper impedance has a physical problem because a smaller characteristic impedance 

means that a PCB trace with a wider width is necessary, which necessitates a larger PCB 

routing area for a heavy parallel memory interface.    

In this thesis, an impedance-matched bidirectional multi-drop (IMBM) DQ bus and 

memory controller transceiver supporting the IMBM DQ bus are proposed. The IMBM 

DQ bus achieves data-transfer rates on the order of Gb/s without reflective ISI at each 

stub while maintaining the advantages of a multi-drop channel, such as minimum latency 

during read and write operations. The proposed memory controller transceiver offsets the 

weaknesses of the IMBM DQ bus caused by voltage attenuation from the DQ bus. 

 
 

1.2 THESIS ORGANIZATION 
 

This thesis consists of six chapters. Chapter 1 is an introductory chapter which 

describes the necessity of the IMBM DQ bus. In chapter 2, various types of memory 

interface architecture and circuits will be introduced. They will be classified into different 

types. In chapter 3, the proposed IMBM DQ bus and its principles are introduced. The 
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advantage of the IMBM DQ bus will be discussed and a generalized IMBM DQ bus will 

be introduced. A steady-state model of an IMBM DQ bus will also be discussed. In 

chapter 4, the memory controller transceiver architecture and the TX and RX circuit 

details are presented. The measurement setup and experimental results are given in 

chapter 5. Finally, in chapter 6, the proposed IMBM DQ bus and the transceiver are 

summarized. 
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CHAPTER 2 
 
 
 

INTRODUCTION TO MEMORY INTERFACE 
 
 
 
2.1 MEMORY INTERFACE INTRODUCTION 

 

A memory interface is a comprehensive concept that can include everything related 

to data transmission between a memory controller (host) and a memory module (slave). A 

memory interface is composed of the bus topology, the clocking architecture, the signal 

driving method, the termination scheme, the deskew method, the sampling method, the 

data coding scheme, and other components. Fig. 2.1.1 shows the typical structure of a 

memory interface with dual-socket, multi-core CPUs, memory controllers, and memory 

modules. The structure can differ according to the application and system specifications. 

Commonly used memory interfaces are as follows: Double-Data-Rate (DDR) Dynamic 

Random Access Memory (DRAM) [2.1.1], Graphic DDR (GDDR) [2.1.2], Low Power 

DDR (LPDDR) [2.1.3], eXtreme Data Rate (XDR) [2.1.4], mobile XDR [2.1.5], Fully-

Buffered Dual-Inline Memory Module (FBDIMM) [2.1.6], Serial-Port Memory 

Technology (SPMT) [2.1.7], M-PHY [2.1.8] and Wide IO [2.1.9]. These memory 

interfaces have different characteristics depending on their purpose.        
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Fig. 2.1.1. Typical structure of a memory interface with multi-core CPUs. 
 

The DDR memory interface is used for personal computer applications. PC 

applications require moderate bandwidths and capacities. The bandwidth of the DDR2 

memory interface can be as high as 800Mb/s per pin, and the total aggregated bandwidth 

of a DDR2 module can reach 1.6GB/s. Recent DDR3 memory interfaces have a 

maximum bandwidth of 2133Mb/s per pin. FBDIMM is used for high-capacity server 

applications. Because the Advanced Memory Bus (AMB) in the FBDIMM interface 

gathers and serializes DDR signals, the bandwidth of FBDIMM is much higher than that 

of the DDR interface. FBDIMM1 has a bandwidth of 4.8Gb/s per pin while for 

FBDMM2 the bandwidth can reach 9.6Gb/s [1.1.7] [1.1.8]. Graphic memory applications 
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require higher throughput than that of DRAM for PCs. The pin bandwidth of GDDR5 is 

5Gb/s, while that of XDR is 6.4Gb/s. Recent XDR2 interfaces reach 12.8Gb/s. Mobile 

memory focuses on low power consumption. The bandwidth of LPDDR2 is 1.066Mb/s. 

Serial memory interfaces such as SPMT and M-PHY have bandwidths of 7.5Gb/s and 

5.8Gb/s, respectively. Fig. 2.1.2 shows various memory interfaces and the recent 

bandwidth trend.  

 

 

Fig. 2.1.2. Memory interface and its bandwidth trend. 
 
 
2.2 BUS TOPOLOGY 

 

Generally, there are two types of bus topologies for a memory interface – multi-drop 

bus and point-to-point bus [2.2.1], [2.2.2]. The multi-drop bus connects a memory 

controller to multiple memory modules through a shared bus, as shown in Fig. 2.2.1. The 
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multi-drop bus is used to enhance the memory capacity while maintaining the number of 

PCB traces. However, this sharing scheme creates stubs in the bus. The impedance of the 

transmission line leads to discontinuities at each stub. This causes a reflection wave, as 

shown in Fig. 1.1.1. The maximum achievable data bandwidth is limited by the reflection 

wave in the multi-drop bus. Thus, a multi-drop bus is adopted for a memory interface 

which requires high capacity with a moderate per pin bandwidth, such as DDR1, 2 and 3. 

The bus topology of the DDR4 memory interface is not yet determined to the best of my 

knowledge.         

 

 

Fig. 2.2.1. Multi-drop bus topology. 
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better signal integrity than the multi-drop channel. The point-to-point bus topology, 

however, cannot handle multiple memory modules simultaneously. This means that the 

point-to-point bus topology is limited when used with large-capacity memory systems. 

Thus, memory interfaces which focus on high-speed data transmission and high data 

throughput, such as the GDDR, XDR, and SPMT interfaces, adopt the point-to-point bus 

topology. In the case of a mobile memory interface such as the LPDDR interface, 

destination port is not terminated to reduce the amount of power used. This causes a 

reflection wave on the destination side and degrades the signal integrity. Because the 

multi-drop bus can be more severely damaged than the point-to-point bus, LPDDR adopts 

the point-to-point bus.          

 

 

Fig. 2.2.2. Point-to-point bus topology. 
 

To mitigate the limitations of the multi-drop bus, the daisy-chained bus [1.1.7], 
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controller. If the destination of the data is the first AMB, the first AMB receives the data 

and sends the data to its own module. If the data should go to another module, the first 

AMB passes the data to the next AMB. The host and AMBs are connected to the point-to-

point bus for high-speed operation. Northbound data is transmitted from the memory 

module to the host controller in the same way. Although the FBDIMM can easily increase 

the capacity and the number of modules via daisy-chained connections, the daisy chain 

increases data latency and impairs the system performance. Data concentration on the 

central AMB chip causes heat dissipation and requires a careful cooling scheme and a 

radiation panel.  

 

 

Fig. 2.2.3. FBDIMM architecture and AMB [2.1.6]. 
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FBDIMM, but the cascading architecture uses only a one-directional rotational bus and 

does not use a central buffer chip such as an AMB chip. Although the cascading memory 

bus can solve the heat concentration problem, its latency does not decrease. 

 

 

Fig. 2.2.4. Cascading memory architecture [1.1.9]. 
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Fig. 2.3.1. Clocking architecture of the DDR3 interface [2.3.1]. 
 

Fig. 2.3.1 shows the clocking architecture of the DDR3 DRAM interface [2.3.1].  
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Fig. 2.3.2. Center-aligned WDQS and edge-aligned RDQS. 
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read-strobe (RDQS) and write-strobe (WDQS) signals. The source-synchronous clocking 
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signal is used for RDQ sampling. Essentially, the optimal degree of RDQS shift is 

measured during the initial calibration. It may not be precisely 90° depending on the trace 

mismatch and circuit mismatch. Due to source-synchronous clocking, sampled read and 

write data is in the strobe clock domain. FIFO in both MCU and DRAM passes data into 

the system clock (CLK) domain.              

 

(a) 

 

(b) 

Fig. 2.3.3. (a) Block diagram and (b) timing diagram of DLL in DDR DRAM [2.3.1]. 
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Fig. 2.3.3 shows a block and timing diagram of DLL, which is the only phase-

shifting circuit in DRAM. As noted above, DLL is used to adjust the launch time of read 

data. To calculate the read latency (CAS latency) of DRAM in the integer multiple of 

clock cycle, DRAM launches read data with precisely the same phase of the received 

system clock (Ext. Clock). To achieve this, DLL with replica delay which imitates the 

delay sum of the input and output buffer aligns the edges of the output read data and the 

external clock.       

 

 

Fig. 2.3.4. Clocking architecture of the GDDR5 interface [2.1.2]. 
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Because the data bandwidth of the GDDR5 interface is much higher than that of the DDR 

interface, GDDR5 uses only a point-to-point bus and various training schemes. During a 

write operation, GDDR5 uses modified source-synchronous clocking. WCK (Write 

Clock) replaces the WDQS of the earlier GDDR interface. WDQS is a pulsed strobe with 

pre-amble, burst width and post-amble operations, but WCK is a free-running continuous 

clock signal. In addition, WCK can be selectively filtered by PLL in Synchronous 

Graphic RAM (SGRAM) depending on the operation condition. The controller 

determines whether or not to turn on PLL. WCK is also used for timing alignment 

between CK (including CMD/ADD) and WCK. The bang-bang phase detector [2.3.6] in 

GDDDR5 SGRAM detects the phase difference and generates an EDC signal which 

contains early/late phase information. During a read operation, GDDR5 uses 

mesochronous clocking, meaning that a forwarded clock or strobe is not used for read 

data recovery. As shown in Fig. 2.3.4, a Clock and Data Recovery (CDR) circuit is used 

at the receiver of the read path in the controller. The CDR continuously tracks data timing 

variations in the read data.         
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Fig. 2.3.5. Clocking architecture of the Terabyte Bandwidth Initiative from Rambus [1.1.1]. 
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Because this architecture does not use a forwarded clock and source-synchronous 

clocking scheme, proper selection of the interval time for periodic phase calibration is 

very important. During the initial calibration period, the controller finds the edge position 

of the write and read data timing using a sweeping phase mixer. It then determines the 

optimal operation point of the phase mixer at the center of the previously determined 

edges. During the periodic calibration after normal operation, the controller finds the 

locations of drifted edges based on the past edge position. Doing this reduces the 

calibration time by eliminating the entire phase sweeping range.  

 

 

Fig. 2.3.6. Clocking architecture of mobile XDR [2.1.5]. 
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Mobile XDR [2.1.5], whose bandwidth is 4.3Gb/s per DQ, also uses an asymmetric 

type of clocking architecture which is similar to the previously mentioned architecture of 

GDDR5, as shown in Fig. 2.3.6. During a write operation, it uses the source-synchronous 

clocking scheme. The forwarded clock, Clk, is used for data sampling in DRAM. On the 

other hand, mesochronous clocking is used for read data transactions. There is no strobe 

or forwarded clock for read data. DRAM in the mobile XDR interface does not have a 

timing-adjustment circuit, like the Terabyte Bandwidth Initiative interface. In addition, 

clock-synthesizing PLL does not exist in the mobile DRAM for low-power operation in 

DRAM. The Clk signal is used for the system clock in the DRAM in this case. Creating a 

proper transmit phase for write data and a proper sampling phase for read data is the role 

of the controller. Optimum phases are also found during the calibration period.  

  

Fig. 2.3.7. Clocking architecture of AMB1 and FBDIMM1 [1.1.7]. 
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Unlike the previously mentioned forms of clocking architecture, a memory interface 

which adopts the concept of a serial link and interface uses the symmetric clocking 

architecture. FBMM1, 2 and SPMT and M-PHY all adopt the symmetric clocking 

architecture. First, a 4.8Gb/s FBDIMM1 interface uses symmetric mesochronous 

clocking for both northbound and southbound data transactions [1.1.7]. In Fig. 2.3.7, 

CDR circuits recover the sampling clock for received data. For a daisy-chained bus, 

MUX selects the transmit data between its own DRAM data and received data from the 

preceding AMB. To reduce latency during clock recovery and clock domain crossing 

operations in FIFO, the FIFO bypass mode can be enabled. In the FIFO bypass mode, the 

MUX selects the data which bypasses FIFO, and the recovered clock of CDR is used for 

the MUX and TX driver instead of the system clock from its own PLL. Unlike the XDR 

interface, CDR in AMB1 continuously tracks the phase information of the received data 

using a phase detector. In other words, FBDIMM does not use a training period for 

optimum data sampling, instead using a CDR circuit for continuous jitter tracking. 
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Fig. 2.3.8. Clocking architecture of AMB and FBDIMM2 [1.1.8]. 
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Fig. 2.3.9. CDR architecture of AMB and FBDIMM2 [1.1.8]. 
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Fig. 2.3.10. Clocking architecture of SPMT [2.1.7]. 
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Table 2.3.1. Clocking Architecture and Features (Asymmetric Architecture). 

 

Memory 
interface 

Asymmetric clocking architecture 

DDR3 GDDR5 
Terabyte 

Bandwidth 
Initiative 

Mobile 
XDR 

Bandwidth 
per DQ ~2.133Gb/s ~7.5Gb/s 16Gb/s 4.3Gb/s 

Bus topology Multi-drop 
(~2 slots) Point-to-point Point-to-point Point-to-point 

Signaling Single-ended Single-ended Differential Differential 

Duplex 
scheme (DQ) Half duplex Half duplex Half duplex Half duplex 

Write 
clocking 

Source 
synchronous 

(strobe) 

Source 
synchronous 
(forwarded 

clock) 

Mesochronous 

Source 
synchronous 
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clock) 

Read 
clocking 

Source 
synchronous 

(strobe) 
Mesochronous Mesochronous Mesochronous 

Write 
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DLL+PI 
in controller 

(fixed) 

DLL+PI 
in controller 

(training) 

PLL+PI 
in controller 

(training) 

Unknown 
in controller 

(training) 

Read 
phase shift 

DLL+PI 
in controller 

(fixed) 

(Optionally) 
Continuous 
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in controller 

PLL+PI 
in controller 

(training) 

Unknown 
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Table 2.3.2. Clocking Architecture and Features (Symmetric Architecture). 

 

Memory 
interface 

Symmetric clocking architecture 

FBDIMM1 FBDIMM2 SPMT M-PHY 

Bandwidth 
per DQ 4.8Gb/s 9.6Gb/s 7.5Gb/s 6Gb/s 

Bus topology Point-to-point Point-to-point Point-to-point Point-to-point 

Signaling Differential Differential Differential Differential 

Duplex 
scheme (DQ) Dual simplex  Dual simplex Dual simplex Dual simplex 

Clocking Mesochronous 

Source 
synchronous 
(forwarded 

clock) 

Mesochronous Mesochronous 

Phase shift 
Continuous 

CDR 
in slave 

Dual loop 
CDR 

in slave 

Continuous 
CDR 
in RX 

Continuous 
CDR 
in RX 

     

 

2.4 COMMAND AND ADDRESS ARCHITECTURE 
 

In the conventional DDR memory interface, data is transmitted and received via a 

source-synchronous scheme. On the DRAM side, write data is sampled by a write strobe 

signal. Thus, sampled write data is in the strobe clock domain. For high-speed operation, 
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a DQ data line is shared only by DRAM with the same DQ channel (ranks 0, 1, 2 and 3). 

On the other hand, command (CMD) and address (ADDR) (C/A) functions are shared by 

all DRAM and every module. Thus, the C/A bandwidth is lower than that of DQ. For 

synchronized operations among all DRAM chips, C/A is sampled with the system clock 

(CK) in each instance of DRAM. In other words, C/A is in the system clock domain, 

whereas DQ is in the strobe clock domain. In the controller and DRAM, FIFO plays a 

domain crossing role from the strobe clock domain to the system clock domain. Fig. 2.4.1 

shows an example of the clock domain structure of GDDR3 DRAM [2.4.1]. Each 

instance of DDRx and GDDRx (up to GDDR4) has a similar clock domain structure 

containing the strobe clock domain and the system clock domain.      

 

 

Fig. 2.4.1. Clock domain of GDDR3 DRAM [2.4.1]. 

Diff. Clock (CK,CK#)
Clock Enable (CKE)

Chip Select (CS)
Command (RAS#,CAS#,WE#)

Address (BA0~2, A0~11)

Reset (RES)

VSSQ

Mirror Func. (MF)
Scan Enable (SEN)

ZQ

Data in/out (DQ0~7)
Write Strobe (WDQS0)
Read Strobe (RDQS0)
Input Data Mask (DM0)

Data in/out (DQ24~31)
Write Strobe (WDQS3)
Read Strobe (RDQS3)
Input Data Mask (DM3)

DQ
POW , GND
 (VDDQ,VSSQ)

GDDR3
SGRAM

CK Domain

RX :
WDQS Domain

TX :
RDQS Domain

(CK à DLL)

GDDR3
Controller

POW, GND
(VDD,VSS)

DLL
POW, GND
(VDDA,VSSA)

VREF
 (0.7 * VDDQ)



２８ 

 

 

Up to the DDR2 memory interface, C/A is transmitted through a T-branch, as shown 

in Fig. 2.4.2 [2.4.2]. The length of the traces of C/A from the memory controller to each 

DRAM chip is tightly matched to avoid byte-alignment failure. The T-branch, however, 

creates impedance discontinuity points and stubs. Due to the stubs and impedance 

discontinuity, undesired reflection occurs and degrades the maximum data bandwidth of 

the C/A channel.    

 

 

Fig. 2.4.2. T-branch network for C/A of the DDR2 interface [2.4.2].  
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first chip of the C/A network receives a command first. Likewise, the last chip lastly 

receives a command from the controller, as shown in Fig. 2.4.3. This skew means that 

each memory chip transmits or receives data at a different time, leading to C/A-DQ 

mismatch, byte alignment failure, and synchronization failure.      

 

 

Fig. 2.4.3. Fly-by network for C/A of DDR3 interface [1.1.5]. 
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small value. In contrast, the delay of the DQS signal for DRAM, which receives C/A later, 

has a larger value.        

 

Fig. 2.4.4. Write leveling operation in the DDR3 interface [1.1.5]. 

 

For the read leveling operation, the controller loads pre-defined data from the Multi-

Purpose Register (MPR) of the DRAM chip during the calibration period, as shown in 

Fig. 2.4.5. If read data from the MPR arrives early, the controller sets a larger delay value 

of DQS and DQ for this DRAM chip. In the opposite case, the controller sets a smaller 
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Fig. 2.4.5. Read leveling operation in the DDR3 interface [1.1.5]. 
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In the DDR memory interface, the C/A and DQ cannot transmit using the same bus 

topology because the C/A signal should be shared among all chips, whereas the DQ signal 

is not shared in the same module. If the C/A signal is duplicated and is not shared among 

memory chips, which means that every chip has a dedicated C/A channel with the same 

content, the C/A signal can be transmitted in the same manner as the DQ signal [1.1.1]. 

The Terabyte Bandwidth Initiative and serial memory interfaces use this concept. As 

shown in Fig. 2.4.6, the Terabyte Bandwidth Initiative configures the C/A link and 

transmits C/A signals with a high bandwidth.     

 

 

Fig. 2.4.6. C/A link of the Terabyte Bandwidth Initiative interface [1.1.1]. 

 

The FBDIMM interface, which adopts the serial link concept and a daisy-chained 

bus, transmits the C/A by packetizing C/A data with write data, as shown in Fig. 2.2.3. By 

packetizing, the FBDIMM interface does not require a dedicated C/A channel, while 

additive circuit overhead is necessary for de-packetizing [2.1.6].   
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2.5 SIGNALING AND TERMINATION SCHEME 
 

As shown in Tables 2.3.1 and 2.3.2, each memory interface adopts a different 

signaling scheme. The memory interface affiliated with DDR (DDRx, GDDRx, and 

LPDDRx) uses a single-ended half duplex signaling scheme. Half duplex means that TX 

and RX share a data bus but that each side does not transmit data when the other side is 

transmitting. The memory interface, which is based on serial interface technology such as 

FBDIMM, SPMT and M-PHY, uses differential dual-simplex signaling. Dual-simplex 

means that the interface has a dedicated TX and RX channel.  

Each memory interface uses a different type of driver circuit. DDRx and LPDDRx 

use a push-pull type of voltage mode driver in the transmitter, as shown in Fig. 2.5.1 

[2.5.1].    

 

Fig. 2.5.1. Voltage mode driver of the DDR memory interface [2.5.1].   

 

The mobile XDR interface uses a N-over-N type of voltage mode driver, as shown in 
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Fig. 2.5.2. [2.5.2]. 

 

 

Fig. 2.5.2. Voltage mode driver of the mobile XDR memory interface [2.5.2]. 

 

The voltage mode driver uses less power than the current mode driver by one quarter 

or half depending on the termination method. Although the voltage mode driver consumes 

less power, it requires circuit overhead for impedance control, swing level control and its 

de-emphasis configuration [2.5.3]. 
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Fig. 2.5.3. Current mode driver of XDR, FBDIMM, SPMT and M-PHY. 

 

XDR, the Terabyte Bandwidth Initiative, FBDIMM, SPMT and the M-PHY interface 

adopt the differential current mode signaling shown in Fig. 2.5.3. Although the current 

mode driver consumes more power than the voltage mode driver, it can easily adjust its 

output voltage swing, termination impedance and de-emphasis configuration [2.5.4].  

Each type of memory adopts a different destination-side (receiver-side) termination 

scheme. First, the LPDDR interface does not terminate at the receiver to reduce the 

termination power. Thus, the LPDDR interface requires careful source termination and 

rise time control to suppress the reflection signal. A memory interface which uses current 

mode signaling adopts a fixed form of source-destination double termination, as shown in 

Fig. 2.5.3. The GDDR interface adopts the Pseudo Open Drain (POD) signaling scheme 

shown in Fig. 2.5.4 [2.5.5]. When the transmitter transmits a “High” signal, POD 

signaling does not consume any current. Thus, the Data Bus Inversion (DBI) and Address 

Bus Inversion (ABI) schemes, which convert the data polarity when data has more 

“High” than “Low” signals, are used in the GDDR5 interface.     
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Fig. 2.5.4. POD signaling for GDDR 3/4/5 [2.5.5]. 

 

The signaling scheme of the DDR interface should be considered with the bus 

topology. The DDR interface uses the Stub-Series Terminated Logic (SSTL) bus topology 

[2.2.2]. In the SSTL DQ bus, bus suppresses reflection is accomplished by inserting a 

series resistor (Rstub) in each stub, as shown in 2.5.5 (a). The DDR interface adopts a 

push-pull type of termination scheme. Unlike other memory interfaces, the DDR memory 

interface selectively turns on the source and destination termination resistor, as shown in 

Fig. 2.5.5 (b) [2.5.1]. This scheme is termed the On Die Termination (ODT) control 

scheme. To enhance the voltage margin of the write and read signal, the termination 

resistor of the active module is disconnected. When the destination is in an open state, the 

entire signal is reflected, and thus the destination can receive 2X times the voltage. Using 
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“High” No DC current

“Low” DC current



３６ 

 

this phenomenon, the DDR memory interface controls the termination resistor depending 

in the operation mode. Although this ODT scheme enhances the voltage margin, the 

reflected signal on the destination side does not settle during high-speed operation faster 

than 2Gb/s. Thus, a careful channel design is required when the bus uses the selective 

ODT scheme.  

 

(a) 

 

(b) 

Fig. 2.5.5. (a) SSTL bus of the DDR memory interface. (b) ODT table for the DDR2 

interface [2.5.1]. 
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2.6 EQUALIZATION IN MEMORY INTERFACE 
 

In the conventional DDR memory interface, a channel equalization circuit which 

compensate for the frequency-dependent loss in the channel is not used because the Inter-

Symbol Interference (ISI) caused by reflection is dominant in the moderate Gb/s 

bandwidth range. However, when the bandwidth of the memory interface increases, the 

memory interface typically adopts various equalizing circuits [2.6.1]. FBDIMM2 uses 3-

tap TX de-emphasis for equalization to achieve a 9.6Gb/s bandwidth [1.1.8]. An 

asymmetric equalization technique is proposed in the 16Gb/s Terabyte Bandwidth 

Initiative interface [1.1.1]. As shown in Fig. 2.6.1, a DRAM chip does not have an 

equalizing circuit due to the slow memory process. Both the TX de-emphasis equalizing 

circuit for write data and the RX continuous-time linear equalizer (CTLE) for read data 

are present on the controller side.  
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Fig. 2.6.1. Asymmetric equalization scheme in the Terabyte Bandwidth Initiative [1.1.1]. 

 

As the data rate of the GDDR memory interface continues to increase, some GDDR5 

vendors have begun to adopt a RX decision feedback equalizer (DFE) circuit in GDDR5 

DRAM [1.1.3]. In future memory, more complex and powerful equalization schemes will 

be necessary due to the increased data rate of the memory interface.  
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injection-locked oscillator (ILO) is introduced for jitter tracking of the forwarded clock 

[2.7.1]-[2.7.3]. Because the ILO achieves a high jitter tracking bandwidth without a 

feedback loop, CDR using an ILO consumes less power and occupies a smaller area. 

However, an ILO requires complex and precise frequency tuning.  

In the bus topology area, the 3D-IC scheme is popularly used in DRAM interfaces 

[2.7.4]-[2.7.6]. By eliminating the off-chip interconnect with a heavy capacitive load and 

stub due to the use of a multi-drop connection, 3D-IC can achieve data transmission with 

a dense arrangement and low power consumption. Through-Silicon Via (TSV) technology 

is used for the wire-lined 3D-IC scheme. Fig. 2.7.1 shows a DRAM chip that implements 

TSV technology. 

 

 

Fig. 2.7.1. DDR DRAM with 3D-TSV technology [2.7.4]. 

 

A wireless 3D-IC scheme using inductive coupling [2.7.7]-[2.7.8] and an optical 

signaling scheme using fiber interconnect [2.7.9]-[2.7.10] have also been actively 

researched to replace conventional memory interface technology.  

 

TSV (~300)

Rank3
Rank2
Rank1
Rank0

PCB Master Chip

Slave Chips

DRAM Core Core test
Logic

DRAM Core Core test
Logic

DRAM Core Core test
Logic

DRAM Core RD/WR

Slave

Master

I/O 
Buffer PAD



４０ 

 

 
 
 

CHAPTER 3 
 
 
 

IMPEDANCE-MATCHED BIDIRECTIONAL 
MULTI-DROP DQ BUS 
 
 
 
3.1 IMPEDANCE-MATCHED BIDIRECTIONAL MULTI-DROP DQ BUS 

 

When a transmission line has an impedance discontinuity, a reflection wave occurs 

[2.2.1] [2.2.2]. In the case of a conventional SSTL DQ bus, a series resistor of Z0/2Ω 

reduces the ringing and reflection, as shown in Fig. 3.1.1 (a), but this bus cannot suppress 

reflections entirely when there are more than two slots, as the reflection coefficient of an 

SSTL DQ bus has a non-zero value. This can be expressed as follows: 

        

0
0 0 0

0

0 0
0 0 0

||
2 1

4||
2

T
SSTL

T

ZZ Z Z
Z Z
Z Z ZZ Z Z

  + −  −   Γ = = = −
+   + +    

           (3.1.1) 
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Z0 Z0

Z0
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Irefl,SSTL

ZT

 

 

 N-k-1th slot

 

(a) 

 kZ0 Ω

Z0 Z0

Z0

Z0/k Ω

N-k-1th slot

Iinci,IMBM

Ik,IMBM

Ik+1,IMBM

ZT

 

 

(b) 

Fig. 3.1.1. Equivalent stub model of (a) a conventional SSTL DQ bus and (b) the proposed 
IMBM DQ bus. 
 

Thus, a reflected signal, Irefl,SSTL, is generated at every stub, and these signals 

propagate across connectors repeatedly and cause overshooting or overdamped responses 

depending on the position of the module. As the data rate increases, these reflection 
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waves play a key part in generating ISI in an SSTL DQ bus. 

Fig. 3.1.1 (b) shows part of the IMBM DQ bus [3.1.1]. The insertion of two resistors 

of appropriate values at each stub allows us to match the impedances at the stubs without 

attempting to alter the characteristic impedances of the PCB traces. Resistors can be 

introduced within the width of a PCB trace with the use of emerging technologies such as 

embedded PCB resistors or film resistors. The reflection coefficient at each stub of an 

impedance-matched DQ bus can be expressed as follows: 

    
( )

( )

0
0 0 0 0

0

0 0
0 0 0 0

||
0

||

T
IMBM

T

ZZ Z kZ Z
kZ Z

Z Z ZZ Z kZ Z
k

  + + −  −   Γ = = =
+   + + +    

      (3.1.2) 

This shows that, at least in theory, an IMBM DQ bus does not generate a reflected 

signal at each stub. The ratio between Ik+1,IMBM and Ik,IMBM can be expressed as follows: 

    ( ) 0
1, , 0 0 0: : :1k IMBM k IMBM

ZI I Z kZ Z k
k+

 = + + = 
 

       (3.1.3) 

This means that an IMBM DQ bus transmits an incident signal to every module with 

the same current and allows an identical transfer response regardless of the position of a 

module. 
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Fig. 3.1.2. Impedance-matched bidirectional multi-drop (IMBM) DQ bus. 

 

 

Fig. 3.1.3. Stub-Series Terminated Logic (SSTL) DQ bus. 

 

Fig. 3.1.2 shows an IMBM DQ bus as the counterpart of the conventional SSTL DQ 
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bus shown in Fig. 3.1.3. Resistors of Z0, Z0/2, Z0/3, 2Z0, and 3Z0Ω match the 

impedances in the left-to-right direction along the upper four transmission lines (TLs). 

Thus, each memory module receives the same voltage from the memory controller, and 

the memory controller receives the same voltage from each memory module. To prevent 

reflections at the ends of the channel, the memory controller and the memory modules 

both have on-die-termination (ODT) resistors.  

 

3.2 OPERATION OF IMBM DQ BUS 
 

Although the impedances are only matched in one direction, the IMBM DQ bus can 

cancel reflective ISI during the transmission of both write and read data. Because there is 

no reflection at the right-hand ends of the TLs (TL1, TL2, TL3, and TL4) on the 

motherboard during a write operation, as shown in Fig. 3.2.1, the data stream being 

written from the memory controller to memory modules #0, #1, #2, and #3 is transmitted 

without reflections [3.2.1] [3.2.2].   
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Fig. 3.2.1. Write operation of the IMBM DQ bus. 
 

In a write operation, the maximum turn-around time (Tturn_around) occurs when writing 

from the controller to memory module #3. This time can be expressed in the equation 

below (3.2.1). Td is the flight time of the signal passing through each TL.    

      _ , ,#3 , 1 , 2 , 3 , 4 , 5turn around WR d TL d TL d TL d TL d TLT T T T T T= + + + +       (3.2.1) 

Because reflection does not occur during a write operation, additive waiting time for 

the settling of reflections is unnecessary. Reading is performed in a different manner. A 

read operation from memory module #0 to the memory controller causes a reflection at 

the top end of TL5, as shown in Fig. 3.2.2, but this signal is absorbed by the ODT resistor 

of module #0. The read data is split at the stub, and the desired data signal flows from the 

right-hand end of TL1 to its left-hand end, eventually reaching the memory controller. 

Meanwhile, unwanted signals flow from left to right through TL2 and proceed towards 
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memory modules #1, #2, and #3, causing no reflections, and are eventually absorbed by 

the ODT resistors. Thus, although reflections do occur in an IMBM DQ bus during read 

operations, no reflective ISI arrives at the controller.  

 

 

Fig. 3.2.2. Read operation of the IMBM DQ bus – from module #0. 
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resistors. Read operations from memory modules #2 and #3 behave similarly, and again 

there is no reflective ISI. During a read operation, the maximum turn-around time occurs 

when reading from memory module #3 to the controller. In this case, the controller waits 

until the reflection signal at the left side of TL2 disappears in the bus, as shown in Fig. 

3.2.4. This turn-around time can be expressed by equation (3.2.2). Td,CMD denotes the 

flight time of the command signals from the controller to the memory modules. 

( )
( ){ }

_ , ,#3 , , 8 , 4 , 3 , 2

, 1 , 2 , 3 , 4 , 8                        max ,

turn around RD d CMD d TL d TL d TL d TL

d TL d TL d TL d TL d TL

T T T T T T

T T T T T

= + + + +

+ + + +   
(3.2.2) 

In summary, the IMBM DQ bus generates no reflections during write operations, 

and the reflections that are generated during read operations do not reach the memory 

controller. Therefore, the IMBM DQ bus transmits and receives both read and write 

signals without reflective ISI. In addition, IMBM DQ bus is tolerant to stub length 

variation. Because the impedance is matched in right-ward direction, additional settling 

time for the settling of reflections is not required, except for residual reflection due to 

parasitics. In the case of the SSTL DQ bus, stub resistors suppress reflections instead of 

fully eliminating reflection. Thus, the signal behavior of the SSTL DQ bus depends on the 

stub length. Both the SSTL DQ bus and IMBM DQ bus are affected by characteristic 

impedance and series resistor value mismatches. 
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Fig. 3.2.3. Read operation of the IMBM DQ bus – from module #1. 
 

 
Fig. 3.2.4. Read operation of the IMBM DQ bus – from module #3 
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3.3 GENERALIZED IMBM DQ BUS 
 

In section 3.1, the IMBM DQ bus is introduced, where the characteristic impedance 

of the memory module’s PCB trace and motherboard’s PCB trace is identical. Generally, 

their characteristic impedances can differ. In this section, a generalized IMBM DQ bus 

will be established and its resistor value will be derived. We call the characteristic 

impedance of the motherboard’s PCB Z1 and refer to that of the memory module’s PCB 

as Z2, as shown in Fig. 3.3.1.    

 

 

Fig. 3.3.1. Generalized IMBM DQ bus (Z1≥Z2). 
 

3.3.1 Z1 ≥ Z2 CASE 

 

If Z1 is larger than Z2, ZB0 can be a series resistor. Because the equivalent 
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impedance from the right end of the TLT1 is (ZB0 + Z2), the resistance of ZB0 should be 

Z1-Z2. To satisfy the condition of the IMBM DQ bus, the two equations below should be 

satisfied for the (N-k-1)th stub. Here, k is the number of remaining slots on the right side, 

as shown in Fig. 3.1.1.  

( ) ( )1 1||Tk BkZ Z Z Z+ =                      (3.3.1) 

( ) ( )1 2: 1:Tk BkZ Z Z Z k+ + =                    (3.3.2) 

Equation (3.3.1) is the condition for no reflection at the right end of the top TLs 

(TLT1~TN), and Equation (3.3.2) is the condition for an equivalent current distribution of 

all modules. Equations (3.1.4) and (3.1.5) can be expressed with the variables ZTK and 

ZBK:  

2
1 2 1( ) 0Tk BkZ Z Z Z Z− − + =                     (3.3.3) 

1 2Bk TkZ kZ kZ Z= + −                       (3.3.4) 

After inserting (3.3.3) into (3.3.4) and solving the quadratic equation, the root of ZTk 

is equal to (Z1/k) or (-Z1). Because we cannot implement passive negative resistance in 

the PCB, the resistance values of ZTk and ZBK are determined as follows:  

1
Tk

ZZ
k

=                           (3.3.5) 

( ) 1 21BkZ k Z Z= + −                       (3.3.6) 

Thus, the generalized IMBM DQ bus in the case of (Z1≥Z2) can be described as 

shown in Fig. 3.3.2. 
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Fig. 3.3.2. Generalized IMBM DQ bus (Z1≥Z2) with resistor values. 
 

 
3.3.2 Z1 < Z2 CASE 

 

If Z1 is smaller than Z2, ZB0 cannot be connected serially as shown in Fig. 3.1.11. To 

match the equivalent impedance of the combination of ZB0 with Z2, ZB0 should be 

connected in parallel, as shown in Fig. 3.3.3.  
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Fig. 3.3.3. Generalized IMBM DQ bus (Z1<Z2). 
 

To match the impedance, the resistance of ZB0 should take the value below.  
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−

                          (3.3.7) 

Next, the necessary current for the last module should be increased by IT, as shown 

in the right-hand part of Fig. 3.3.3. The relationship between IB and IT can be expressed 

as follows: 

1 2
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2 1
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Z Z I Z I

Z Z
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−
                       (3.3.8) 

2

1

1T B
ZI I
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= − 
 

                          (3.3.7) 

Thus, the condition for (3.3.2) in the previous case takes on the following form: 
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             (3.3.8) 

This equation can be expressed as follows: 

( )2
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                  (3.3.9) 

After inserting (3.3.9) into (3.3.4) and solving the quadratic equation, the root of ZTk 

becomes equal to  

( )
2

1
1

1 2

  
1Tk
ZZ or Z

k Z Z
= −

− +

                

(3.3.9) 

Because we cannot implement passive negative resistance in a PCB, as in the 

previous case, the resistance values of ZTk and ZBK are solved via the following 

equations:  

( )
2

1

1 21Tk
ZZ

k Z Z
=

− +
                       (3.3.5) 

1BkZ kZ=                            (3.3.6) 

Thus, the generalized IMBM DQ bus in the case of (Z1<Z2) can be described as 

shown in Fig. 3.3.4. 
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Fig. 3.3.4. Generalized IMBM DQ bus (Z1<Z2) with resistor values. 
 

 

3.3.3 DOUBLE-SIDED MODULE CASE 
 

To increase the memory capacity, today’s memory modules are formed of double-

sided DIMM. Each memory module has both top-side memory chips and bottom side 

memory chips. Through-hole vias connect the top-side chips and bottom-side chips. 

Because two transmission lines run along each via, as shown in Fig. 3.3.5, the equivalent 

impedance is reduced by half, Z2/2. To cancel the reflection in this via, therefore, Z2/2 

ohm resistors should be inserted in the double-sided DIMM, as shown in Fig. 3.3.5. 
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Fig. 3.3.5. Generalized IMBM DQ bus (Z1≥Z2) with a double-sided module. 
 

 

3.4 STEADY-STATE RESISTOR MODEL OF IMBM DQ BUS 
 

To compare the voltage swing level of the conventional SSTL DQ bus and IMBM 

DQ bus, a steady-state resistor model of both types of DQ buses is analyzed in this 

section. At high-speed data transmissions, the transmission line causes various reflection 

waves and transient responses until the reflection waves settle. Therefore, the transient 

voltage of the transmitted signal can vary with the reflection environment. After the 

signal settles, however, the steady-state voltage of the transmitted signal is determined to 

certain value, and the value is not affected by the reflection situation. In addition, the 
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characteristics of the transmission lines. In other words, the steady-state voltage value of 

a resistor network containing transmission lines is identical to the value of the resistor 

network in which the transmission lines are substituted with simple wires. Thus, we can 

determine the steady-state voltage value and voltage loss from the memory controller to 

the memory module if we model both the SSTL DQ bus and the IMBM DQ bus with a 

resistor network. 

First, single-sided, N-slot, N-drop DQ buses will be described, after which double-

sided, N-slot, and 2N-drop DQ buses will be introduced. In the case of the SSTL DQ bus, 

a selective ODT scheme is used to the enhance voltage margin. The SSTL DQ bus with 

this scheme is also analyzed. The selective ODT scheme is only available in the SSTL 

DQ bus because the reflection coefficients of the bottom transmission line (TLbottom) in 

the IMBM DQ bus differ from case to case. Figs. 3.4.1 (a) and (b) show the equivalent 

stub model and equivalent impedance from the bottom transmission line of both types of 

DQ buses.    
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(a) 

 

(b) 

Fig. 3.4.1. Equivalent stub model and equivalent impedance from the bottom transmission 
line of (a) a conventional SSTL DQ bus and (b) the proposed IMBM DQ bus. 
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is as follows:  
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The reflection coefficient of the IMBM DQ bus in the same case can be expressed as 

follows:  
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 (3.4.2) 

As shown in equation (3.4.1), the SSTL DQ bus does not reflect the reflected signal 

by the opened ODT resistor. On the other hand, the IMBM DQ bus immediately reflects 

the signal which is reflected by the opened ODT resistor. As a result, the selective ODT 

control scheme which disconnects the ODT resistor of the active module cannot be used 

with the IMBM DQ bus. In fact, although the reflected signal by the ODT resistor of the 

SSTL DQ bus does not produce a reflection wave on the bottom side of the transmission 

line, this reflected signal is reflected by the upper transmission and stubs. Therefore, 

during high-speed data transmission, this selective ODT scheme which enhances the 

voltage margin reduces the signal integrity.  

 

3.4.1 SINGLE-SIDED MODULE CASE 
 

Fig. 3.4.2 shows the steady-state resistor model of the single-sided SSTL DQ bus 

with all ODT resistors on, indicating no control over the ODT resistor among active 
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modules. Fig. 3.4.3 shows the same SSTL DQ bus with the selective ODT scheme. In the 

single-sided module, the number of slots and the drop are identical.  

  
Fig. 3.4.2. Steady-state resistor model of the single-sided SSTL DQ bus without the selective 
ODT scheme. 
 

 

 

Fig. 3.4.3. Steady-state resistor model of the single-sided SSTL DQ bus with the selective 
ODT scheme. 
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and the memory module receives the signal with VMM. N is the number of slots and the 

drop. At node nN-1 in Fig. 3.4.2, the equivalent impedance on the right is (Z0/2+Z0)/N. 

Thus, the voltage gain of Fig. 3.4.2 is equal to 

0

0

0 0 0
0

(3 / 2)
2

(3 / 2) (1/ 2) 2 3
MM

MC

Z
ZV N

ZV Z Z NZ
N

= =
+ ++

         (3.4.3) 

On the other hand, the equivalent impedance of node nN-1 of Fig. 3.4.3 is divided by 

N-1 and does not share voltage with the Z0/2 ohm resistor, as the ODT resistor of the 

active module is opened and does not drive any impedance. Thus, the voltage gain in Fig. 

3.4.3 can be expressed as follows: 

0
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Z
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ZV NZ
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−= =
++

−

               (3.4.4) 

A steady-state resistor model of the singled-sided IMBM DQ bus is described in Fig. 

3.4.4. In the IMBM DQ bus, the equivalent impedance of the right side of node n1~N-1 is 

always Z0. Using this characteristic, the VMM voltage can be calculated by successive 

voltage divisions. The voltage gain of the single-sided IMBM DQ bus is derived by 

equation (3.4.5). 
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Fig. 3.4.4. Steady-state resistor model of the single-sided IMBM DQ bus. 
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3.4.2 DOUBLE-SIDED MODULE CASE 
 

The steady state resistor model of double-sided module can be modeled in the same 

way as the single-sided module. In addition, the voltage gain can be calculated with the 

same method. Fig. 3.4.5 and Fig. 3.4.6 show the model of the SSTL DQ bus. The voltage 

gain of each model is derived in equations (3.4.6) and (3.4.7). 
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Fig. 3.4.5. Steady-state resistor model of the double-sided SSTL DQ bus without the selective 
ODT scheme. 
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Fig. 3.4.6. Steady-state resistor model of the double-sided SSTL DQ bus with the selective 
ODT scheme. 
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The double-sided IMBM DQ bus can also be modeled as shown in Fig. 3.4.7. 

 

 

Fig. 3.4.7. Steady-state resistor model of the double-sided IMBM DQ bus. 
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3.4.3 VOLTAGE GAIN COMPARISON 
 

In the previous section, the voltage gain of both the SSTL DQ bus and the IMBM 

DQ bus were derived from the memory controller to the memory module (VMM/VMC). 

The reverse voltage gain (VMC/VMM) can be easily derived using the reciprocity theorem 

[3.4.1].  

 

 

Fig. 3.4.8. Reciprocity. 
 

The reciprocity theorem shown in Fig. 3.4.8 reads as follows: “If a voltage source E1 

acting in one branch of a linear passive network causes a current I2 to flow in another 

branch of the linear passive network, then the same voltage source E2 acting in the 

second branch would cause an identical current I1 to flow in the first branch (If E1=E2, 

I2=I1).” Because the steady-state resistor model of both the SSTL and the IMBM DQ bus 

consists of only passive resistors, the forward voltage gain (VMM/VMC) and reverse 

voltage gain (VMC/VMM) are identical according to this reciprocity theorem. Therefore, 

we do not have to derive the reverse voltage gain.  

With the result of the voltage gain formula, the voltage gain decreases as the number 
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of slots increases. This trend is applicable to both DQ buses. Comparing the SSTL and 

the IMBM DQ bus, the voltage gain of the SSTL DQ bus is larger than that of the IMBM 

DQ bus by 2~3 times in accordance with number of slots and the ODT scheme. Although 

the SSTL DQ bus has a higher voltage gain and wastes less power, the SSTL DQ bus 

cannot be used in a high-speed and high-capacity channel, as mentioned earlier. When 

using the selective ODT, signal integrity is increasingly degraded. In other words, the 

IMBM DQ bus cancels the reflection wave at every stub with the sacrifice of the voltage 

gain and the power consumption. In addition, the maximum number of slots of the IMBM 

DQ bus is limited by the transmitted voltage and the sensitivity of the receiver circuits. 

Tables 3.4.1 and 3.4.2 summarize the voltage gain of both DQ buses.  
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Table 3.4.1. Voltage Attenuation Comparison of the Single-sided DQ Bus. 
 

# of 
slots 

Single-sided (N-drop) 

SSTL 
(active open) 

SSTL 
(all ODTs on) 

IMBM 
(all ODTs on) 

N 3/(2N+1) 2/(2N+3) 1/2N 
2 0.6 0.286 0.25 
3 0.429 0.222 0.167 
4 0.333 0.182 0.125 

Signal 
integrity -- - + 

     

 

Table 3.4.2. Voltage Attenuation Comparison of the Double-sided DQ Bus. 
 

# of 
slots 

Double-sided (2N-drop) 

SSTL 
(active open) 

SSTL 
(all ODTs on) 

IMBM 
(all ODTs on) 

N 1/(N+1) 2/(2(N+1)) 1/4N 
2 0.333 0.167 0.125 
3 0.25 0.125 0.083 
4 0.2 0.1 0.063 

Signal 
integrity -- - + 
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CHAPTER 4 
 
 
 

MEMORY CONTROLLER TRANSCEIVER  
 
 
 
4.1 MEMORY CONTROLLER TRANSCEIVER ARCHITECTURE 

 

Fig. 4.1.1 shows the architecture of a memory controller transceiver designed to 

support the IMBM DQ bus. This transceiver includes four data (DQ) channels, a data 

strobe (DQS) channel, a PLL and a clock tree. Each bidirectional DQ channel consists of 

a transmitter (TX) and a receiver (RX). The TX is made up of a PRBS generator for BER 

testing, a four-tap 8:1 serializer, and a current-mode driver to allow de-emphasis with four 

taps. The RX consists of a linear equalizing buffer [4.1.1], a sampler, a 2:8 deserializer, 

and a PRBS verifier. The PLL and clock trees provide a TX clock for the serializer and a 

multi-phase clock for the strobe recovery unit (SRU) of the DQS block. The DQS channel 

generates a strobe signal with the same phase as the DQ write data. This strobe signal is 

used for timing recovery in the RX of a memory module and is not used for direct 

sampling in the sampling circuit. Instead, the recovered strobe signal which is generated 

from the PLL and the phase interpolator is used for data sampling. Because the IMBM 

DQ bus attenuates the voltage of the signals in inverse proportion to the number of 
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modules, direct sampling of data using the received strobe is not advisable due to the 

large amount of power required to limit the input strobe signal.  
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Fig. 4.1.1. Memory controller transceiver block diagram and its clocking architecture.  
 

Fig. 4.1.1 also shows the SRU and RX clocking architecture in detail. The SRU has 

a dual-loop architecture for timing recovery [2.3.3]. In order to generate a sampling clock 

with the proper phase for every DQ, a phase interpolator and a half-rate bang-bang phase 
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detector are used in the SRU. The central PLL generates multi-phase clock signals which 

are delivered by the clock tree to drive the phase interpolators. The SRU loop control 

block, which is composed of a deserializer, a first-order ΔΣ modulator, and a finite-state 

machine, receives the early and late information from the PD and then supplies the 

appropriate up or down control bit to the phase interpolator. The ΔΣ modulator dithers 

this control bit to prevent the entire strobe recovery loop from enacting a limit-cycle. The 

proposed memory controller transceiver does not have to track the frequency offset; this 

avoids the need for integrating control of the strobe recovery loop and thus prevents the 

ΔΣ modulator from causing a stability problem. A duty-cycle corrector (DCC) is also 

used to adjust the sampling clock, which eliminates the distortion of the duty-cycle that 

would otherwise be caused by the clock tree and phase interpolator. All DQ channels 

must receive the recovered sampling clock with the same phase; therefore, the shorting 

clock method [4.1.2] is used to reduce the on-chip clock skew. To eliminate skew 

between each DQ channel and the SRU, the sampling clock signal used in the PD 

traverses the clock tree in parallel with the recovered clock. This increases the loop 

latency of the entire SRU and the limit cycle; but the first-order ΔΣ modulator in this loop 

can cope with this extended latency, which thus has a negligible effect on the jitter of the 

recovered clock signal. 

 

4.2 TX CIRCUITS OF THE TRANSCEIVER 
 

To compensate for the non-ideal nature of the channels, the memory controller 
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transceiver uses a linear equalizer in RX mode and performs de-emphasis in the TX mode. 

To achieve the latter, a 8:1 serializer with a 4-tap output is implemented, as shown Fig. 

4.2.1. The front 8:4 and 4:2 serializer uses the parallel 5-latch 2:1 serializer shown in Fig. 

4.2.2 (a), whose timing diagram is shown in Fig. 4.2.2 (b). The final 2:1 serializer, as 

shown in Fig. 4.2.3, has a four-tap output. Its driver has a separate component for each 

tap. Instead of using an XOR gate [4.2.1], two intermediate multiplexers that select their 

polarity while generating a negative output signal are employed. The differential output 

signal is driven by the final multiplexers, which are in turn driven by the delayed clock 

signal CLKD, as the cascaded multiplexers need a timing margin to operate at a high 

speed. The four-tap serialized signal is then delivered to the four-tap current-mode driver 

shown in Fig. 4.2.4. Equalization coefficients are controlled by means of the control 

signal tap weight (TW). 

 

 

Fig. 4.2.1. 8:1 serializer with a 4-tap output. 
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(a)                                   (b) 

Fig. 4.2.2. (a) Five-latch 2:1 serializer and (b) its timing diagram. 

 

 

 

Fig. 4.2.3. Four-tap half-rate serializer with a differential output. 
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Fig. 4.2.4. Four-tap current-mode driver. 

 

Fig. 4.2.5 shows the proposed duty-cycle corrector (DCC). To reduce its area and 

complexity, the controlled and uncontrolled transistors in the DCC buffer are separated, 

as shown in Fig. 4.2.5 (c). An equivalent circuit model of the jth stage of an (m–1)-stage 

DCC buffer is given in Fig. 4.2.5 (b). The resolution of the DCC in the jth stage can then 

be expressed as follows: 

( )
1 1 1

2 2 1||R R R jR C R C R C
m j j m j m m j

    
+ + =    − − −    

       (4.2.1) 

In this design, m is 5 and thus the resolutions of consecutive stages are 1/20, 2/15, 

3/10 and 4/5. Because the ratios between successive resolutions are close to 2, the DCC 

buffer can achieve linearity despite its simple design and small area. Fig. 4.2.6 shows the 

measured DCC linearity curve for 2.4GHz DQS and DQSB output signals. The DCC can 

cover a duty cycle ranging from -42% to 38%. 
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                        (a)                                     (b) 

 

                                   (c) 

Fig. 4.2.5. (a) Overall duty-cycle corrector structure, (b) simple equivalent model of the jth 

stage of the DCC buffer, and (c) a schematic diagram of the DCC buffer. 
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Fig. 4.2.6. Measured DCC linearity of a 2.4GHz DQS signal. 

 

4.3 RX CIRCUITS OF THE TRANSCEIVER 
 

Fig. 4.3.1 shows detailed block diagram of the SRU. Two phase interpolators 

generate the recovered strobe signal from the PLL signals. An in-phase (I-phase) phase 

interpolator is used for data sampling and a quadrature-phase (Q-phase) phase 

interpolator is used for edge sampling and phase detection. Each phase interpolator 

consists of a CMOS-to-CML (current mode logic) stage, a phase interpolator core stage 

with a CML level and a CML-to-CMOS stage. Each phase interpolator core has left and 
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right mux. For seamless phase switching, the left mux selects the phases from 0°-, 90°-, 

180°-, and 270°- multi-phase, the right mux selects phase from 45°-, 135°-, 225°-, and 

315°- multi-phase, and the Q-phase phase interpolator selects the 90° shifted phase from 

that of I-phase phase interpolator.  

 

 

Fig. 4.3.1. Block diagram of the strobe recovery unit (SRU). 
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information which becomes deserialized. The deserialized up and down signal is filtered 

in the CDR loop control block, as shown in Fig. 4.3.1. The CDR control block, which is 

composed of a bit-shifting gain block, an accumulator and an over-/and under-flow 

detection block, is equivalent to a first-order ΔΣ modulator. The filtered up/down signals 

are delivered to the phase shifting controller, which generates the mux selection signal 

and the weight value for the phase interpolator. Fig. 4.3.2 shows a schematic diagram of 

the sampler which is used in the half-rate BB PD and RX of each DQ block. Switch 

transistors are inserted for offset canceling by steering the output current. To enhance the 

linearity during the offset canceling step, NMOS with the gate voltage of VDD are 

stacked together with switches. Fig. 4.3.3 shows the continuous-time linear equalizer 

(CTLE) whose peak gain is about 6dB at 2.4GHz. This linear equalizer uses a differential 

capacitance scheme to reduce the occupied area [4.1.1].   

 

 

Fig. 4.3.2. Schematic diagram of the sampler. 
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Fig. 4.3.3. Schematic diagram of the continuous-time linear equalizer. 

 

There are two possible types of phase interpolators. In one type, the phase 

interpolator core and multiplexer are separated, while the other type has an embedded 

multiplexer [4.3.1]. In the latter type, all of the phases are simultaneously connected to 

the input pair of the phase interpolator. This reduces the effect of clock feedthrough on 

the linearity, but it also increases the load on the output capacitance, which in turn limits 

the speed of this type of phase interpolator when there are more than eight phases coming 

from the PLL. In the SRU, therefore, the phase interpolator shown in Fig. 4.3.4 is used. It 

has a separate multiplexer for each of the eight phases, thus improving the linearity. 
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Clock feedthrough is normally considered to be the main source of nonlinearity, but it 

actually enhances the linearity of this design of phase interpolator, as it creates a mid-

phase during multi-phase switching. Fig. 4.3.5 shows the linearity curve of the phase 

interpolator as well as its DNL. This figure shows that mid-phase occurs during phase 

switching and that the absolute value of the DNL does not exceed 1. 

 

 

Fig. 4.3.4. Schematic diagram of the phase interpolator. 
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Fig 4.3.5. Measured linearity of the phase interpolator. 

 

4.4 LIMITATION OF THE TRANSCEIVER 
 

Unfortunately, the proposed memory controller transceiver has some drawbacks. 

First, the designed transceiver has a low jitter tracking bandwidth (JTB). Because most 

memory interfaces adopt source-synchronous clocking, a high jitter tacking bandwidth is 

advantageous for a memory controller transceiver. Generally, a strobe signal is 

transmitted simultaneously with a data signal. Thus, the strobe signal contains the same 

jitter variation as the data signal. Ideally, the receiver will receive data with high jitter 

phase switching
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tolerance if an unprocessed strobe signal is used for data sampling. However, an 

unprocessed strobe signal cannot be used for data sampling in a multi-channel serial link 

due to the necessity of clock buffering capability for driving multiple receivers and 

filtering uncorrelated high-frequency jitter. To track correlated jitter between the data and 

strobe signal and to filter high-frequency uncorrelated jitter, the jitter tracking bandwidth 

of the receiver should range within a few hundred MHz because recent packages and 

regulators generate power supply noise generally from 100 MHz to 500MHz [2.7.3]. The 

proposed transceiver, however, adopts the type II DLL [4.4.1], and its jitter tracking 

bandwidth is under 10MHz. Second, the memory controller needs deskew capability in 

both the write and read directions [4.4.2]. Because the memory interface has many 

channels and modules, the PCB trace length of each channel can vary over the 1UI timing. 

Moreover, the on-chip circuit mismatch and routing mismatch increases the skew. Thus, 

the skew should be offset in the memory controller transceiver. In this thesis, a four-

channel DQ and a DQS are carefully laid out and the PCB trace is implemented with high 

accuracy. However, the next version of this transceiver would be improved with a 

deskewing circuit.         
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Fig 4.4.1. Next version plan of the memory controller transceiver – not implemented. 
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The reference DLL and the phase interpolator play the role of write signal skew 

offsetting. Additionally, the replica DLL and phase interpolator compensates for the skew 

of the read signal. Although the TX clock signal runs continuously, the RX strobe signal 

toggles only when a read command is delivered. Thus, the reference DLL provides the 

control signal of the replica DLL. Moreover, a high jitter tracking bandwidth injection-

locked oscillator (ILO) is used in the DQS receiver [2.7.2]. Because the ILO has a high 

jitter tracking bandwidth, it can track correlated time-varying jitter and can filter out 

uncorrelated high-frequency jitter. An on-chip transmission line would be necessary if the 

transceiver requires low power consumption during clock delivery [2.5.3]. Finally, the 

resistors, necessary for configuring the IMBM DQ bus, occupy the PCB area with a 

complex routing when the differential signaling scheme is used. Thus, optimal system 

efficiency can be achieved when the transceiver adopts a single-ended signaling scheme.      
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CHAPTER 5 
 
 
 

EXPERIMENTAL RESULTS 
 
 
 
5.1 EXPERIMENTAL SETUP 

 

A prototype memory controller transceiver was designed and fabricated using a 

0.13μm CMOS process, and Fig. 5.1.1 is a microphotograph of the die. The transceiver, 

composed of four DQs and a DQS, occupies an area of 1400μm × 1200μm. The 

transceiver chip was implemented as a part of the I/O circuitry of the memory controller, 

and a test board with a motherboard and memory module PCBs was implemented, as 

shown in Fig. 5.1.2. There are no actual memory chips in this setup; the test equipment, 

including a BERT and an oscilloscope, plays this role. To compare the simple load and 

heavy load imposed by memory chips, inactive modules are modeled in two ways. First, 

only passive 50Ω resistors are modeled for a light load condition [3.1.1]. Next, passive 

50Ω resistors in parallel with 1pF capacitors are used for a heavy load condition.  

 

 

 



８４ 

 

D
Q

0
D
Q

1
D
Q
S

D
Q

2
D
Q

3

1400um

12
00

um

CLK tree

Serial 

Interface PLL
 

Fig. 5.1.1. Die photo of the memory controller transceiver implemented in 0.13μm CMOS. 
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Fig. 5.1.2. Scope of this work. 
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To facilitate a range of measurements, the chip- and channel-boards are implemented 

separately. Nelco material instead of FR4 is used to reduce insertion losses. MicroTCA 

[5.1.1] connectors are used on the channel board, as DDR2/3 connectors are not suitable 

for multi-gigabit per second transmissions. The chip board has a 2.5 inch trace and the 

channel board has a trace with a length between 1.43 and 2.29 inches. The spacing of the 

connectors is 0.43 inches. A block diagram and photograph of the actual 4-slot 8-drop 

double-sided IMBM DQ bus is shown in Fig. 5.1.3. 

 

 

Fig. 5.1.3. Implemented 4-slot 8-drop IMBM DQ bus. 
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To eliminate the reflections which occur in front of the vias (the through-hole paths 

to the other surface) in a memory module, Z0/2Ω resistors are inserted. To compare the 

channel characteristics of the IMBM DQ bus with those of a conventional SSTL DQ bus, 

the latter was implemented with similar specifications, as shown in Fig. 5.1.4. For 

fairness, I assumed that every memory module in the conventional SSTL DQ bus has an 

ODT resistor. 

 

 

Fig. 5.1.4. Implemented 4-slot 8-drop SSTL DQ bus. 
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5.2 SINGLE-BIT RESPONSE AND EYE DIAGRAM 
 

The single-bit response and an eye diagram were both measured using an 

oscilloscope. Because the memory controller transceiver uses a VDD-referenced CML-

level signal during transmission and an oscilloscope only provides ground termination, 

DC block and ground-terminated channel boards were used, as shown in Fig. 5.2.1. 

 

 

Fig. 5.2.1. Setup I for measuring the eye diagram and single-bit response. 
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being transmitted through a very lossy channel. The first post-cursor level is almost half 

the magnitude of the main cursor. The heavy load of 1pF generates capacitive reflection 

and harms the signal integrity increasingly, as shown in Fig. 5.2.2 (b). Conversely, the 

single-bit response of the IMBM DQ bus is identical for all module positions, as shown in 

Figs. 5.2.2 (c) and (d). The 1/8-scaled single-bit response of a signal passing through the 

chip board alone is very similar to that of the signals that go through the IMBM DQ bus, 

suggesting that there is little reflection in the IMBM channel. In case of the SSTL DQ bus, 

timing and voltage margin can be improved when non-linear type equalizer such as 

floating-tap DFE is used [5.2.1]. However, non-linear equalizer increases circuit overhead 

and complexity. Moreover, different coefficient setting is required in the memory 

controller RX during read operation from each memory module. 
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(d) 

Fig. 5.2.2. Measured 4.8Gb/s single-bit responses of (a) a SSTL DQ bus with a 50Ω load, (b) 

a SSTL DQ bus with a 50Ω and a 1pF load, (c) an IMBM DQ bus with a 50Ω load and (d) an 

IMBM DQ bus with a 50Ω and a 1pF load. 

1UI
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To check the timing and voltage margins, eye diagrams for both SSTL and IMBM 

DQ buses are obtained. The memory controller transceiver and chip board alone have 

considerable post-cursor voltage levels, mainly caused by the capacitance of the package 

and pad. Therefore, TX de-emphasis is used to measure both the unequalized and 

equalized signals. Equalization coefficients were chosen to cancel the ISI, which is not 

related to the reflections from each stub but to the insertion loss of the PCB trace on the 

chip board and the capacitive loading imposed by both the memory controller transceiver 

chip and the 1pF loading capacitors. The coefficient of the pre-cursor tap was set to 0, the 

main cursor tap was set to 1, the first post-cursor tap was set to -0.33, and the second 

post-cursor tap was set to -0.08. Figs. 5.2.3 (a)-(d) and Figs. 5.2.4 (a)-(d) show the 

measured eye diagrams of the SSTL DQ bus with a 50Ω load and at 50Ω with a 1pF load 

for a 4.8Gb/s 27-1 PRBS data pattern. As can be predicted from the single-bit response of 

both the SSTL and IMBM DQ buses, modules #5 and #7 of the SSTL DQ bus have 

severely closed eye diagrams, whereas modules #1 and #3 have clean diagrams. With TX 

de-emphasis, modules #1 and #3 show over-boosted behavior because module #1 has 

negative post-cursors and #3 has small post-cursors. The eyes for modules #5 and #7 are 

enlarged, but the timing and voltage margins of the equalized signal are, respectively, 

only half the 1UI timing and signal levels, as shown in Figs. 5.2.3 and 5.2.4 (e)-(h).  

Figs. 5.2.5 and 5.2.6 are eye diagrams of signals transmitted through the IMBM DQ bus. 

These diagrams are identical for all modules, allowing the memory controller transceiver 

to have the same equalization coefficients for all modules. With TX equalization, the 

IMBM DQ bus has a wide-open eye diagram and the voltage and timing margins are 
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much greater than those of the SSTL DQ bus. Fig. 5.2.7 shows the 4.8Gb/s eye diagram 

and a histogram of the de-emphasized DQ and DQS signals in the IMBM DQ bus. The 

DQS signal toggles every cycle and has less timing jitter than the DQ signal, which is 

random data. The measured jitter in the DQ signal is 9.21 psrms, and the jitter in the DQS 

signal is 5.41 psrms. 
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(a)                (b) 

 

(c)                (d) 

 

(e)                (f) 

 

(g)                (h) 

Fig. 5.2.3. Measured 4.8Gb/s eye diagrams of an unequalized signal (a) #1, (b) #3, (c) #5, 

and (d) #7; a de-emphasized signal (e) #1, (f) #3, (g) #5, and (h) #7 at the SSTL module with 

a 50Ω load. 
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(a)                (b) 

 

(c)                (d) 

 

(e)                (f) 

 

(g)                (h) 

Fig. 5.2.4. Measured 4.8Gb/s eye diagrams of an unequalized signal (a) #1, (b) #3, (c) #5, 

and (d) #7; a de-emphasized signal (e) #1, (f) #3, (g) #5, and (h) #7 at the SSTL module with 

a 50Ω and a 1pF load. 
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(a)                (b) 

 

(c)                (d) 

 

(e)                (f) 

 

(g)                (h) 

Fig. 5.2.5. Measured 4.8Gb/s eye diagrams of an unequalized signal (a) #1, (b) #3, (c) #5, 

and (d) #7; a de-emphasized signal (e) #1, (f) #3, (g) #5, and (h) #7 at the IMBM module 

with a 50Ω load. 
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(a)                (b) 

 

(c)                (d) 

 

(e)                (f) 

 

(g)                (h) 

Fig. 5.2.6. Measured 4.8Gb/s eye diagrams of an unequalized signal (a) #1, (b) #3, (c) #5, 

and (d) #7; a de-emphasized signal (e) #1, (f) #3, (g) #5, and (h) #7 at IMBM module with a 

50Ω and a 1pF load. 
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Fig. 5.2.7. Measured 4.8Gb/s eye diagram and histogram of a de-emphasized (a) DQ signal 

and (b) a DQS signal, both on the IMBM DQ bus with a 50Ω and a 1pF load. 

 

5.3 BER OF TRANSMITTED SIGNALS (WRITE SIGNALS) 
 

A further comparison between the SSTL and IMBM DQ bus was made by 

measuring the BER of transmitted signals using the measurement setup shown in Fig. 

5.3.1. Unlike an oscilloscope, a BERT (Agilent J-BERT N4903A) can provide VDD-level 

termination voltage, allowing us to dispense with the DC block and ground-terminated 

channel board.  

The unequalized bathtub graph shown in Figs. 5.3.2 (a) and (b) shows that the signal 

transmitted through SSTL modules #5 and #7 have no timing margin. This may be related 

to the single-bit response and the eye diagrams. The equivalent bathtub curve for the 

unequalized IMBM DQ bus has a BER which approaches 10-7 at the optimum sampling 

point. When the transceiver enables TX de-emphasis, the difference between the SSTL 

and IMBM results becomes more noticeable. The IMBM DQ bus achieves a BER of 10-9 
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with a timing margin of 0.39UI, as shown in Fig. 5.3.3. However, some modules of the 

SSTL DQ bus do not reach a BER of 10-9 at any sampling positions, as shown in Fig. 

5.3.2. In the case of a heavy load condition, as shown in Fig. 5.3.2 (b), BER of module #7 

is worse than 10-3.  

 

 

Fig. 5.3.1. Setup II for measuring the TX BER. 
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(a) 

 

(b) 

Fig. 5.3.2. Bathtub graph based on TX BER measurements of both equalized and 

unequalized SSTL signals with (a) a 50Ω and (b) a 50Ω and a 1pF load. 
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(a) 

 

(b) 

Fig. 5.3.3. Bathtub graph based on TX BER measurements of both equalized and 

unequalized IMBM signals with (a) a 50Ω and (b) a 50Ω and a 1pF load. 
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5.4 BER OF RECOVERED SIGNALS (READ SIGNALS) 
 

A memory interface channel is bidirectional. In write operations (the TX mode of the 

memory controller transceiver), data is transmitted from the chip board to the channel 

board. During read operations (the RX mode of the memory controller transceiver), data 

from the channel board is received by the chip board. To verify correct bidirectional 

operation of the IMBM DQ bus, the RX measurement setup is configured as shown in Fig. 

5.4.1. In the RX mode, the transceiver extracts the phase information of every DQ signal 

with respect to the common DQS signal. Thus, both the DQ and DQS signals must be 

generated and transmitted simultaneously by the BERT. The Agilent PBERT 81250 is a 

parallel BERT which can handle both DQ and DQS signals. Therefore, this instrument is 

used to measure the RX BER. If intentional skew between the generated DQ and DQS 

signals is asserted, a bathtub graph can be drawn for the memory controller transceiver 

during RX mode which is similar to that for the TX BER results. 
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Fig. 5.4.1. Setup III for measuring the RX BER. 

 

Figs. 5.4.2 and 5.4.3 show bathtub graphs based on the measurement of RX BER for 

unequalized and equalized received signals. In RX mode, a linear equalizer is used, and 

the BER results generally indicate a larger timing margin than the TX BER results, as the 

PBERT has an ideal wide-bandwidth driver. Fig. 5.4.2 shows that data recovered from the 

unequalized SSTL DQ bus has many errors, originating in modules #5 and #7, which 

would not be acceptable during manual operation; this is similar to the TX results. 

However, the IMBM DQ bus has a timing margin of 0.52UI when the BER is 10-9, as 

shown in Fig. 5.4.3 (b). When the memory controller transceiver turns on the linear 

equalizer and boosts the high-frequency gain, the SSTL DQ bus still has no timing 

margin; but the IMBM DQ bus has a timing margin of 0.58UI under the heavy load 

condition shown in Fig. 5.4.3 (b).   
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(a) 

 

(b) 

Fig. 5.4.2. Bathtub graph based on RX BER measurements of unequalized and equalized 

SSTL with (a) a 50Ω and (b) a 50Ω and a 1pF load. 
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(a) 

 

(b) 

Fig. 5.4.3. Bathtub graph based on RX BER measurements of unequalized and equalized 

IMBM with (a) a 50Ω and (b) a 50Ω and a 1pF load. 
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Fig. 5.4.4. Measured 4.8Gb/s eye diagram and histogram of a recovered DQ signal with the 

pattern 10101010∙∙∙, on the IMBM DQ bus. 

 

To verify the correct operation of the strobe recovery unit, the recovered clock jitter 

is measured. The recovered clock pin was not assigned to the transceiver, and the jitter of 

the recovered clock signal is measured by attempting to recover a 1010101010… data 

pattern. Fig. 5.4.4 shows the 4.8Gb/s eye diagram and a histogram of the recovered DQ 

signal on the IMBM DQ bus. The measured jitter of the recovered clock is 2.47psrms. The 

hunting jitter caused by the limit cycle is low, and the histogram shows a single Gaussian 

peak rather than two. The use of a first-order ΔΣ modulator in the bang-bang loop of the 

strobe recovery unit eliminates the limit cycle. 

The memory controller transceiver is split into three different power domains: the 

I/O circuits (driver and linear EQ buffer); the analog circuits (PRBS generator, serializer, 

sampler, deserializer, PRBS verifier and clock trees); and the remaining circuits. In TX 

mode at 4.8Gb/s, the I/O domain consumes 39.5mA/DQ and the analog domain consumes 

17.5mA/DQ. Thus the energy efficiency of the transceiver in TX mode is 
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14.25mW/Gb/s/DQ. In RX mode, the I/O domain consumes 36mA/DQ and the analog 

domain consumes 18.75mA/DQ. The energy efficiency of each DQ of the memory 

controller transceiver is 13.69mW/Gb/s/DQ. The performance of the transceiver chip and 

the channel board are summarized in Tables 5.4.1, 5.4.2 and 5.4.3. 
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Table 5.4.1. Memory Controller Transceiver Summary. 
 

Process 0.13μm 1P8M CMOS 

Connector MicroTCA 

Package TQFP 100p 

Data rate 4.8Gb/s 

Energy efficiency 
(@4.8Gb/s, per DQ) 

14.24mW/Gb/s (TX mode) 
13.69mW/Gb/s (RX mode) 

 

 

Table 5.4.2. Timing Margin Summary of the SSTL DQ Bus. 
 

DQ bus SSTL, 4 slots (8 drops) 

Inactive modules 50Ω only 50Ω || 1pF 
TX timing margin @ 10-9 BER 

(w/o TxEQ) Fail Fail 

TX timing margin @ 10-9 BER 
(w/ TxEQ) Fail Fail 

RX timing margin @ 10-9 BER 
(w/o RxEQ) Fail Fail 

RX timing margin @ 10-9 BER 
(w/ RxEQ) 0.52 UI Fail 
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Table 5.4.3. Timing Margin Summary of the IMBM DQ Bus. 
 

DQ bus IMBM, 4 slots (8 drops) 

Inactive modules 50Ω only 50Ω || 1pF 
TX timing margin @ 10-9 BER 

(w/o TxEQ) Fail Fail 

TX timing margin @ 10-9 BER 
(w/ TxEQ) 0.39 UI 0.39 UI 

RX timing margin @ 10-9 BER 
(w/o RxEQ) 0.61 UI 0.52 UI 

RX timing margin @ 10-9 BER 
(w/ RxEQ) 0.73 UI 0.58 UI 
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CHAPTER 6 
 
 
 

CONCLUSIONS 
 
 
 

In this thesis, a new impedance-matched bidirectional multi-drop DQ bus is 

proposed in which reflections at the stub of each channel are canceled by series resistors 

between the connectors. Among various recent memory interface schemes which are 

introduced and compared, no memory interface can handle a multi-drop bus with both 

high-speed data transmission and a high capacity. Unlike the conventional DQ bus, the 

proposed DQ bus cancels reflections unidirectionally, directly eliminating reflections 

during write operations; during read operation reflections occur but never reach the 

destination ports. Thus, the IMBM DQ bus is an unique solution which achieves 

bidirectional multiple gigabit per second data transmission rates with a multi-drop 

configuration. The generalized bus and steady-state resistor model of the IMBM DQ bus 

are also analyzed in this thesis. 

A 4.8Gb/s memory controller transceiver optimized to the IMBM DQ bus and 

IMBM channel board are also implemented. Their effective operation is verified by 

means of TX and RX BER measurements. This thesis showed that reflective ISI is indeed 

eliminated in the IMBM DQ bus and that the signal integrity is much better than that 
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observed in a conventional SSTL DQ bus. By applying TX de-emphasis and RX linear 

equalization to an 8-drop IMBM DQ bus, a timing margin of more than 0.39UI with a 

BER of 10-9 can be achieved in both TX and RX modes. We fabricated the memory 

controller transceiver in the 0.13μm standard CMOS process. In this form, it consumes 

14.25mW/Gb/s per DQ at 4.8Gb/s in TX mode and 13.69mW/Gb/s per DQ at 4.8Gb/s in 

RX mode. 
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한글초록 
 
 
 
본 연구에서는 임피던스 매칭이 된 양뱡향 다분기 (IMBM) 데이터 버스와 

이 버스를 구동하는 4.8Gb/s 메모리 컨트롤러 송수신기를 제안하였다. IMBM 

데이터 버스를 사용할 경우 직렬 저항 추가를 통해 단방향 임피던스 매칭을 

할 수 있으며, 이를 통해 각 분기점에서 발생하게 되는 반사파에 의한 상호 

데이터 간섭을 제거 할 수 있다. IMBM 데이터 버스는 메모리 쓰기 동작 시 

반사파를 발생시키지 않으며, 읽기 동작 시에는 반사파를 발생시키나 이 반사

파가 컨트롤러 쪽을 향하지 않게 한다. 그러므로, IMBM 데이터 버스는 메모리 

쓰기, 읽기 두 동작 시에 모두 반사파에 의한 상호 데이터 간섭 없이 신호를 

송수신 할 수 있다. 제안하는 데이터 버스는 기존의 다분기 데이터 버스와 일

대일 데이터 버스가 쓰일 수 없는 고속 대용량 메모리 인터페이스에 사용될 

수 있다.  

제안하는 IMBM 데이터 버스는 모듈 수에 비례하여 송신 신호 크기를 감

쇄시키므로, 이를 이용하기 위해서는 새로운 클러킹 방식이 필요하다. 본 연구

에서는 스트로브 신호를 직접 사용하여 데이터를 수집하는 방식 대신, 위상 

동기화 루프의 클럭을 이동시켜 사용하는 클럭킹 방식의 4.8Gb/s 송수기를 제

안하였다. 메모리 컨트롤러 송수신기 시제품은 0.13μm CMOS 공정을 이용하여 

제작하였으며, 1.2V 전원 전압을 사용한다. 다양한 측정을 통하여 효용성을 검
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증하였으며, 4 슬롯, 8 분기 IMBM 데이터 버스 환경에서 본 송수신기는 

4.8Gb/s, 10-9
 에러 비율 기준에 대하여 송신 동작 시 0.39UI의 시간 마진을 가

지며, 수신 동작 시 0.58UI 시간 마진을 가진다. 같은 측정 환경 조건에서 기

존의 SSTL 데이터 버스는 정상 적인 동작을 하지 못하였다. 설계한 송수신기

는 한 개의 데이터 채널 당 송신 동작 시 14.25mW/Gb/s, 수신 동작 시 

13.69mW/Gb/s 의 에너지 효율을 가진다.     

 

주요어: 임피던스 매칭, 메모리 컨트롤러, 메모리 인터페이스, 다분기 데이터 

버스, 트랜시버 
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