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ABSTRACT

Lossless image compression is less used than lossy compression due to its large mem-
ory or bandwidth requirements. However in some fields, such as medical, prepress,
scientific, and artistic areas, lossy compression cannot substitute for lossless com-
pression. As cameras and display systems are going high quality and as the cost of
memory is lowered, we may also wish to keep our precious and artistic photos free
from compression artifacts. Hence efficient lossless compression will become more
and more important, although the lossy compressed images are usually satisfactory
in most cases. In this dissertation, algorithms using interchannel correlation are
studied, with which lossless compression schemes for color image and color filter
array image are proposed.

At first, a new reversible color transform (RCT) is proposed, which consists of the
conventional RCT and additional lifting steps to further decorrelate chroma images
Cu and Cv. Red, green, and blue samples in an image are highly correlated, but
Y CyC,. transform shows good decorrelation performance for RGB images. However
because the transform cannot be used for lossless compression, RCT is used for
lossless coding standards including JPEG2000. Due to its invertibility and simplicity,
the decorrelation performance of the conventional RCT is not satisfying, so the

improvement is required. With effective but simple operations, the proposed scheme



shows much higher decorrelation performance than the conventional RCT, and the
improved performance is comparable with Y CpC,.. In addition, lossless bit rates of
JPEG-LS, the standard lossless image coder, after color transforms are presented,
in which the proposed RCT outperforms the conventional RCT over 1.46% with
minimum increase in operations.

Next, a lossless color image compression method based on a new hierarchical
encoding scheme is proposed. Specifically, an input RGB image is transformed
into YC,/C,’ color space using the new RCT. After the color transformation, the
luminance channel Y is compressed by a conventional lossless image coder. The
chrominance channels are encoded with the proposed hierarchical decomposition
and directional prediction. Finally, an appropriate context modeling of prediction
residuals is introduced and generic arithmetic coding is applied. The proposed
method and several conventional methods are tested on the Kodak image set, some
medical images, and digital camera images, and it is shown that average file size
reductions over JPEG2000 for these sets are 5.85%, 10.40%, and 4.89% respectively.
When the mode selection is tried, further encoding gain can be obtained.

At last, a new lossless compression method for Bayer color filter array (CFA)
images is proposed, which focuses on efficient context modeling. For the efficient
modeling of prediction errors, hierarchical prediction scheme is adopted, in which
input mosaic image is divided into four subimages, and the subimages are encoded in
order. For the prediction of a subimage, all of subimages which are already encoded
are used to estimate edge direction and candidate predictors. The already encoded
subimages and pixels in causal neighborhood are also used to estimate the magnitude
of prediction error, and the prediction error is encoded by adaptive arithmetic coder

along with the estimated context. The proposed method is test for real CFA images

ii



and simulated CFA images from Kodak set and commercial digital camera images,

and it outperforms all the compared methods.

Key words: lossless color image compression, reversible color transform, lifting,

hierarchical coding, color filter array compression
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Chapter 1

Introduction

1.1 Lossless Color Image Compression

Digital images are usually encoded by lossy compression methods due to their large
memory or bandwidth requirements. The lossy compression methods achieve high
compression rate at the cost of image quality degradation. However, there are many
applications where the loss of information or artifact due to compression needs to be
avoided, such as medical, prepress, scientific and artistic images. For example, white
spot indicating cancer in magnetic resonance imaging (MRI) might be removed by
lossy compression. As cameras and display systems are going high quality and as
the cost of memory is lowered, we may also wish to keep our precious and artistic
photos free from compression artifacts. Hence efficient lossless compression will
become more and more important, although the lossy compressed images are usually
satisfactory in most cases.

Along with the standardization or independently, many lossless image compres-

sion algorithms have been proposed. Among a variety of algorithms, the most widely



used ones may be Lossless JPEG [1], JPEG-LS [2], LOCO-I [3] and CALIC [4]. The
LOCO-I and CALIC were developed in the process of JPEG standardization, where
most ideas in LOCO-I are accepted for the JPEG-LS standard although the CALIC
provides better compression performance at the cost of more computations.

Above mentioned methods are developed for the grayscale images, which can of
course be applied to each channel of hyperspectral or color images independently.
For achieving higher coding gain than the independent compression of each channel,
inter-channel correlation is used in [5,6]. Specifically, the Interband CALIC [5] as-
sumes linear relationship between the reference channel and a channel to be encoded.
However, the actual relationship is more complicated than just being a linear model.
Focusing on the RGB color images (rather than hyperspectral images), there is an-
other approach to reducing the channel correlation, based on the color transform.
For example, the RGB to Y CyC, transform may be the most frequently used one
for the lossy compression of color image and video. However, in the case of lossless
compression, most color transforms cannot be used due to their uninvertibility with
integer arithmetic. Hence an invertible version of color transform, the reversible
color transform (RCT) was defined and used in JPEG2000 [7]. For the color image
compression, the RCT followed by intraband compression usually provides higher

coding gain than the independent compression.

1.2 Interchannel Correlation

A pixel in most digital color images is represented as three values—red, green, and
blue. It is because human visual system has three types of cone cells, whose spectral

response functions are investigated by Commission Internationale de L’Eclairage
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(CIE) and the result is illustrated in Fig. 1.1 [8]. Because the response functions are
widely overlapped with each other, there exists high interchannel correlation between
red, green, and blue channel. For example, light ray with wavelength of 600nm
affects both type of primaries, X and y, to make the primaries highly correlated.
During image capturing process, image in XYZ color space is transformed to RGB
color space, which is proper to most display devices. After the transformation,
interchannel correlation still exists in the RGB color space, and the example for
Lena image is shown in Fig. 1.2.

To eliminate the correlation and improve compression efficiency, color transform
is used in most image and video compression method such as JPEG [9], MPEG [10],
and H.264 [11]. The RGB to Y C,C, transform is most frequently used one for lossy
compression. The transform is mathematically derived from the response functions
of XYZ primaries and their transformation into RGB color space, and generates
much more decorrelated three channels (Fig. 1.2). It can be observed that chroma
images, Cp and C., are much smoother and carry less information than luma image
Y. Quantitatively, correlation coefficient between red and green channels is 0.8786
and that between blue and green channels is 0.9106. After the transformation,

correlation coefficients are sharply decreased into 0.7408 and 0.1209.

1.3 Lossless Compression of CFA Image

Due to advantages in cost, size, and power consumption, most digital cameras
use CFA to make color images with single chip sensor. With CFA, only a single
color component is measured at each pixel position, and the resultant CFA image is

called mosaic image because pixels from different color components are interleaved
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as shown in Fig. 5.1, which is the most popular Bayer pattern [12]. Through demo-
saicking [13] [14], an interpolating process, the other missing color components are
estimated to make full resolution color image. Conventionally, CFA image is first
demosaicked, and the full resolution image is compressed for storage or transmission
with lossy or lossless scheme.

Recently, however, it is reported that the conventional demosaicking-first scheme
is not efficient because demosaicking produces additional redundancy into mosaic
image [15]. To solve this problem, various compression-first schemes, demosaicking
after compression/decompression, are proposed, and they allow offline high perfor-
mance post-processing which cannot be carried out in portable devices due to heavy
computational cost.

It is typical lossy compression that widely used for general purpose photography
because image quality and compression performance of it is sufficient to nonprofes-
sional users. In addition, redundancy introduced by demosaicking is reduced with
lossy compression more effectively than with lossless compression. However, there
are many applications where any information loss or compression artifact is not
permitted, such as medical, professional printing, scientific and artistic images. For
lossless compression, compression rate is more important problem than lossy cod-
ing, and this is why lossless CFA compression has been used by commercial digital
cameras including ones from Sony.

Some lossless CFA methods [16] [17] including many of lossy CFA compres-
sion methods [18] [19] [20] use spectral-spatial transform to make typical grayscale
subimages from mosaic image, which is followed by an existing image coder such as
JPEG2000 [7] and JPEG-LS [2]. In [16], Mallat wavelet packet transform is shown

to be beneficial for CFA image compression, and [17] proposed spectral-spatial trans-

4



form for macropixel of CFA pattern. However, the strategy of transform to typical
subimages and standard coding has a limit that spectral correlation between trans-
formed subimages is not used after the transformation. Therefore, methods which
have dedicated prediction structure for CFA image show better compression perfor-
mance thanks to increased system complexity [21] [22] [23], which first encode green

pixels and use the green pixels to predict red and blue pixels.

1.4 Outline of This Dissertation

The rest of this dissertation is organized as follows. First, conventional techniques
for lossless image compression are reviewed in Chapter 2, and the proposed RCT for
lossless color image compression is presented in Chapter 3. In Chapter 4, we explain
the hierarchical decomposition, detailed prediction process, and the proposed coding
scheme for lossless color image coding. In Chapter 5, lossless CFA compression

scheme is proposed. Finally, Section 6 concludes the dissertation.
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Figure 1.1: CIE Color Matching Functions (from [8]).

(a) Red channel (b) Green channel (c) Blue channel

Figure 1.2: Red, green, and blue channels of Lena image.



(a) Y channel (b) Cb channel (¢) Cr channel

Figure 1.3: YCbCr transform result of Lena image.

Figure 1.4: Bayer CFA pattern [12].
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Chapter 2

Related Works

In this chapter, conventional techniques for lossless image compression are reviewed,
which are related to the proposed methods. First, the Interband CALIC [5] is
explained to understand existing interchannel prediction method used for losselss
color image compression. In addition, the conventional RCT used for JPEG2000 is
described. Next, recent compression-first scheme, or CFA compression, is compared
to the conventional demosaic-first scheme, and two existing methods, LCMI and

CMBP, are explained.

2.1 Lossless Image Compression Using Interchannel Cor-

relation

2.1.1 Interband CALIC

Interband version of CALIC [4] is presented in [5], which uses linear model to predict
a pixel in current frame from pixels in reference frame. In this method, every pixel

x; in reference band X is encoded with intraband CALIC, and then a pixel y in

9



current band Y is predicted using x and casual neighborhood pixels of y and =,
which are illustrated Fig. 2.1. At first, the correlation coefficient between current

band Y and reference band X is measured as

o(X,Y) = 830 Ty — Do i D i ‘ @2.1)
VB 22 — (S, w28 YL, v — (5, )

When p(X,Y") is high, or larger than threshold T}, it can be assumed that strong
similarity exists between the two bands in the neighborhood of current pixel. In this
case, linear model Y =aX+ 5 is used to predict y. The parameters which minimize

||[Y — Y| are known to be

8 8 8
o= 8 i1 Tilli — Qi1 Ti Qi Vi (2.2)
8 Z?:l ;% — (Z?:l ;)
and
828_ Yi — azs_ ;i
g =—== 3 =10t (2.3)

When p(X,Y) is sufficiently high, § = ax + S might be a good predictor for
y. If a sharp edge is near y, however, the least-square fitting from the eight neigh-
boring pixels may not be accurate at the location of y. To avoid this problem, the

approximations

X7 | Te Yr | Ye
Ty | T3 | X2 | T4 Ys | Ys | Y2 | Y4
Ts | 21 | X Ys | Y1 | Y

(a) Reference Band (b) Current Band

Figure 2.1: The labeling of neighboring pixels used for prediction and modeling in
interband CALIC.
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y—y=9—gi=alr—m1) and y—y2=9— 1o = a(r —x2) (2.4)

are used to get the predictors

yh =1+ oz —2z1) and ¥, =y + alz — x2), (2.5)

where ¥}, and vy, are extrapolations along with horizontal and vertical directions. yp,
is more accurate than 7, when horizontal gradient |z — x| is smaller than vertical
gradient x — zo and vice versa. Therefore, the following gradient-adjusted predictor

is used.

Un if |z —axa| — |z —a1| > T

if |z —ao] — |z — 21| < =T (2.6)

Nafy
Il
<
e

(Yn + Yp)/2 otherwise.

This interframe predictor outperforms intraframe predictors if p(X,Y") is high. When
the correlation is low, however, it is better to use intraframe predictors. Therefore,
if p(X,Y’) > T, then the interframe predictor is used; otherwise intraframe predictor

defined in CALIC is used.

In this method, a pixel in current frame is predicted by just one reference frame,
but most color images have three or more channels. Method using color transforms
can simultaneously decorrelate all channels in an image although the decorrelation
performance might be unsatisfying. In addition, interchannel correlation is modeled
as linear relationship in interband CALIC, but first order model is not sufficient

especially near object edges, which can be shown in Fig. 2.2. In the method,

11



moreover, pixels are processed in raster scan order, and prediction is carried out
by extrapolation. However, this extrapolation often fails when object boundary or
sharp edge exist near current pixel location because ratio between different channel

signals changes near the region.

2.1.2 RCT

The RGB components of images are highly correlated with each other, so decorre-
lating color transforms are used before encoding each component. For example, the

Y CyC,. transform widely used for lossy compression of image and video is defined as

Y 0.299 0.587 0.114 R
Ch | = | —0.16875 —0.33126 0.5 G (2.7)
Cr 0.5 —0.41869 —0.08131 B

where the elements of the matrix are derived from spectral responses of red, green,
and blue color filters of standard RGB system. But, this cannot be used for lossless
compression because there is no exact inverse transform required for manipulating
integer pixel values. Hence, in the case of JPEG2000 lossless scheme, a reversible

color transform is introduced as

y:{R+2G+BJ GZY_VMJ

4 4

C,=R-G — R=C,+G . (2.8)
C,=B—-G B=C,+G

This is named “reversible” because the transform is exactly invertible with integer
arithmetic. Ignoring effect of the floor operations, this transform can be expressed

as

12



1/4 1/2 1/4 | | R R 1 3/4 —1/4 Y
Co|=] 1 -1 o0 G|l=|G|=|1-1/4 -1/4| | C,
Cy 0 -1 1 B B

Since this transform is focused on simplicity and invertibility with integer arithmetic,
it does not provide satisfying decorrelation performance. Hence, a new RCT that

can better decorrelate the channels is proposed in Chapter 3.

2.2 Lossless Compression of Mosaic Image

2.2.1 LCMI

To make CFA image, most digital cameras use Bayer pattern [12] as shown in Fig.
5.1. Letting R(y,x), G(y,x), and B(y,x) be respectively red, green, and blue sam-

ples at pixel position (y,z), CFA image I(y,x) is defined as

/

R(y,x) if yis even and z is odd

I(y,z) = B(y,z) if yis odd and x is even (2.10)

G(y,z) otherwise.

Part of CFA image might be shown as

13



Goo Roq Goz2 Roz Goa Ros
Bio Gip Biz2 Giz Bia Gigs
G20 Rayn Gap Rez Gay Ras
, (2.11)
Bso G31 B3z G333 B3zs Gzs
Gao Rsn Gap Ruz Gaa Ras

Bso Gsi1 Bsa Gs3z Bsa Gss

where red, green, and blue samples are interleaved as shown in Fig. 2.3(b), and
spatial correlation in the mosaic image is difficult to be used without addition pro-

cessing.

To make mosaic image into more suitable form in the image compression as-
pect, discrete wavelet transform (DWT) is used to deinterleave the red, green, and
blue samples. The low-pass and high-pass filters of biorthogonal 5/3 CDF wavelet

transform are

1262 1 1 1
— 22z _ - g=[——=,1,—=]. 2.12
Ju < 8878’8’ 8> and f < 277 2) ( )

1 -2 1
1
Frung = fhfn = 1172 4 -2/ (2.13)
1 -2 1

This filter is only used for Gopm41,2n+1 because decimation is performed in DWT

process. At G3 3 position, DWT output J3 3 is

14

&

| &1
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2 1
J33=G33 — 1(32,3 + Ry3+ B3a+ B3a) + Z(GZZ + Gy + Gao+ Gaa), (2.14)

where the green pixels are low-pass filtered and the result is subtracted by the red
and blue pixels. The subtraction makes an effect of interchannel prediction. With

the same manner, the LH, HL, and LL filters are defined as

Frp=fhfr=-—=|-2 4 12 4 —2|, (2.15)

1 -2 1
-2 4 =2
Fur = fl fu = Tl6 —6 12 —6|; (2.16)
-2 4 =2
i 1 -2 1 |

and

2 4 12 4 -2
Fio=fifo==|-6 12 36 12 —6|. (2.17)
2 4 12 4 -2

1 -2 -6 -2 1

Like the HH filter, the other three filters operate as a low-pass filter in intraband

and simultaneously as a predictor in interband. Decomposed LL, LH, HL, and HH

15
’;r“‘-'! ) C':l -L ]
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subbands are defined as

LL(y,v) = Jay o0 = FrL * T2y 20

LH(y,x) = Joy+1,2¢ = Fru * loy41,22

HL(y,x) = Joy 2211 = Frr * Ioy 2241 (2.18)
and

HH(y,x) = Joyt1,204+1 = Frm * Ioy41,2041

where * denotes 2D convolution. An example of the decomposition is illustrated in
Fig. 2.4, where each subband is deinterleaved so that it has homogeneous samples
in spatial and spectral aspects unlike the interleaved mosaic image in Fig. 2.3(b).
In LCMI, the decomposed subbands are independently encoded with JPEG2000

(Lossless mode).

2.2.2 CMBP

Among many lossless CFA compression methods [16,17,21-23], CMBP [21] provides
very high compression rates. This method compresses green pixels first, and uses
the encoded green pixels to predict and encode the rest red and blue pixels. In this
process, the channel correlation is utilized in the form of color difference coding. To
be precise, the green pixels are compressed in raster scan order. They are predicted
from the information of already encoded pixels, and the prediction errors are en-
coded. For example, the prediction § for the pixel in Fig. 2.5 is a weighted sum of

the candidate pixels Cq, Cy, C3, and Cy as

4
§=>Y wC;, (2.19)
k=1

16



where w; are the weights, and the four candidate pixels among the neighboring green
pixels are determined by a context matching technique. In the case of red and blue
pixels, the green pixels at the corresponding positions are first estimated, and then
the color difference images are also compressed by predictive coding. The prediction

residuals are modified to have exponential distribution and the Rice code is applied.

17



(a) Lena image (b) Red, green, and blue signals

Figure 2.2: Lena image and signals in object boundary (white line).

(a) Lighthouse (Kodak 19) image (b) Part of the mosaic image

Figure 2.3: Lighthouse (Kodak 19) image and part of its mosaic image.
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Figure 2.4: Decomposed subbands of mosaic image of Lighthouse (Kodak 19).

Figure 2.5: The green channel compression of CMBP.
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Chapter 3

New Reversible Color

Transform

3.1 Introduction

Because the components of RGB images are highly correlated with each other, a
decorrelating color transform is used before encoding each component. For example,

the Y CpC,. transform for lossy compression is defined as

Y 0.299 0.587 0.114 R
Cbhb | =| —0.16875 —0.33126 0.5 G (3.1)
Cr 0.5 —0.41869 —0.08131 B

where the elements of the matrix are derived from spectral responses of red, green,
and blue color filters of standard RGB system. But, this cannot be used for lossless
compression because there is no exact inverse transform required for manipulating

integer pixel values. Hence, in the case of JPEG2000 lossless scheme, a reversible
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color transform is introduced as

Y_V”?C”BJ G_Y_{CMJ

4 4

C,=R-G — R=C,+G : (3.2)
C,=B-G B=C,+G

This is named “reversible” because the transform is exactly invertible with integer
arithmetic. Since this transform is focused on simplicity and invertibility with integer
arithmetic, it does not provide satisfying decorrelation performance. Hence, a new

RCT that can better decorrelate the channels is proposed.

3.2 Proposed Method

For the improvement of decorrelation performance, we modify the computations
for C, and C,, which will lead the transform matrix more close to the Y C{,C,
computation. In this process, we need to keep the additional computations as small
as possible, and of course need to keep the invertibility. In the conventional RCT
in (3.2), it can be seen that B is not involved in the computation of C, and R is
missing in C,,, whereas they are actually needed as shown in (3.1). For including
the missing components, the best method may be to add the lifting process followed

by the original RCT as shown in Fig. 3.1. This system gives the output

R e— Y
G Forward |C, C
RCT v
c, |« |P
B e— . C,

Figure 3.1: Flowgraph of the proposed RCT.
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C) =C, — |aC,] Cu =G+ |BC)]

Cy=0C) + |aCy]

(3.3)
Cu, — Ou - LBCU,J

where o and (3 are the coefficients that will lead the result close to Y C,C,.. The floor
operations on |aC, | and |3C,’| are required for the existence of inverse transform
with integer arithmetic. Note that C,, is calculated with C,’ instead of C,. Another

expression of (3.3) without the floor function is

c,’ —« —14a 1
~ G (3.4)

o l+af —1+B—aBf -8

which shows that all the color components are now involved for the computa-
tion of chrominance channel. Comparing (3.4) and (3.1), o~ 2 x 0.16875 and
B~ 2 x 0.08131 may be reasonable choices. For the implementation with only shift

and addition, we approximated them as o = 1/4 and 5 = 1/8.

3.3 Experimental Results

Table 3.1 shows the magnitudes of correlation coefficients of RGB channels for a set
of Kodak images shown in Fig. 3.2. The table also shows the channel correlations
when they are transformed by the conventional and proposed RCT. It can be shown
that the chrominance images of the proposed RCT shows lower correlation to the
luminance image Y, compared to those of the existing RCT. It also shows that the

correlation by proposed RCT is close to the correlation by Y C,C:..
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Table 3.1: Inter-channel correlation for 24 Kodak images.

RGB Y CyC, RCT Proposed RCT

R/G | B/G G/Y | C./)Y | U)Y | V)Y UN | V)Y

1 0.8627 | 0.9914 | -0.5207 | -0.0856 | -0.5686 | -0.6767 | -0.5241 | -0.0882
2 0.5279 | 0.9740 | 0.0591 | -0.2038 | -0.0231 | -0.3393 | 0.0442 | -0.1879
3 0.7185 | 0.5534 | -0.0925 | -0.3883 | -0.2287 | -0.3214 | -0.1037 | -0.3657
4 0.6004 | 0.9568 | -0.4609 | 0.4880 | -0.4602 | 0.1385 | -0.4638 | 0.4961
5} 0.8981 | 0.9034 | -0.1219 | -0.3854 | -0.2049 | -0.3985 | -0.1255 | -0.3778
6 0.9772 | 0.9911 | 0.4413 | -0.8502 | 0.3216 | -0.8749 | 0.4384 | -0.8485
7 0.8330 | 0.9084 | 0.0449 | -0.0720 | 0.0103 | -0.0015 | 0.0391 | -0.0559
8 0.9665 | 0.9746 | -0.0596 | -0.4779 | -0.1781 | -0.5699 | -0.0650 | -0.4730
9 0.9486 | 0.8560 | 0.1209 | -0.4896 | -0.0479 | -0.4753 | 0.1125 | -0.4796
10 0.9555 | 0.9695 | -0.0056 | -0.5907 | -0.1432 | -0.6835 | -0.0105 | -0.5841
11 0.8225 | 0.9744 | -0.3167 | -0.0166 | -0.3621 | -0.2761 | -0.3204 | -0.0131
12 0.9133 | 0.9674 | -0.5092 | -0.1005 | -0.5592 | -0.3713 | -0.5125 | -0.0936
13 0.9818 | 0.9639 | -0.1830 | 0.0207 | -0.2007 | 0.0134 | -0.1858 | 0.0282
14 0.8613 | 0.7107 | 0.1138 | -0.5458 | -0.0628 | -0.5183 | 0.1021 | -0.5320
15 0.8602 | 0.9880 | -0.5175 | -0.0802 | -0.5552 | -0.5933 | -0.5210 | -0.0774
16 0.9842 | 0.9511 | 0.0376 | -0.3919 | -0.1272 | -0.4190 | 0.0309 | -0.3797
17 0.9852 | 0.9779 | -0.3027 | -0.1784 | -0.4315 | -0.2931 | -0.3071 | -0.1806
18 0.9163 | 0.8362 | 0.4836 | -0.6084 | 0.3929 | -0.4883 | 0.4780 | -0.5978
19 0.9672 | 0.9158 | 0.3025 | -0.2824 | 0.2460 | -0.2010 | 0.2918 | -0.2722
20 0.9955 | 0.9764 | -0.1116 | 0.0873 | -0.1383 | 0.1140 | -0.1209 | 0.0908
21 0.8957 | 0.9155 | -0.2371 | 0.0018 | -0.3535 | -0.0161 | -0.2508 | 0.0159
22 0.8714 | 0.8752 | 0.0595 | 0.0573 | 0.0576 | 0.1507 | 0.0553 0.0707
23 0.6147 | 0.6408 | 0.0095 | -0.2343 | -0.0582 | -0.1277 | 0.0013 | -0.2109
24 0.9761 | 0.9649 | -0.1048 | -0.1577 | -0.1586 | -0.1687 | -0.1123 | -0.1551
] Avg. \ 0.8722 | 0.9057 | 0.2174 | 0.2831 | 0.2454 | 0.3429 | 0.2174 | 0.2781

Table 3.2 shows lossless bit rates of JPEG-LS for chroma images of Kodak set.

Using proposed RCT before JPEG-LS, bit rates for U is slightly increased (1.27%)

but bit rates for V' is rather decreased (4.02%). The tendency is similar to that of

the inter-channel correlation results, in which gain of proposed RCT for V is larger

than that for U. Using the proposed RCT before JPEG-LS gives 1.46% of overall

gain over the conventional RCT.
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Table 3.2: Lossless bit rates of JPEG-LS for 24 Kodak chroma images.

RCT Proposed RCT
U \ \Y% U’ \ Vv’

1 2.5963 | 2.6436 | 2.5874 | 2.4987
2 2.9253 | 2.4661 | 2.9362 | 2.4334
3 2.1637 | 2.4193 | 2.1736 | 2.3010
4 2.9383 | 2.4573 | 2.9441 | 2.2813
5 2.9833 | 3.1825 | 2.9846 | 3.0619
6 2.3805 | 2.7760 | 2.4688 | 2.6812
7 2.3638 | 2.6259 | 2.3792 | 2.4827
8 2.9495 | 3.0797 | 2.9649 | 2.9979
9 2.5112 | 2.6758 | 2.5255 | 2.4880
10 2.5377 | 2.7238 | 2.5497 | 2.5739
11 2.5427 | 2.3975 | 2.5575 | 2.2865
12 2.2841 | 2.4867 | 2.2902 | 2.3262
13 2.9150 | 3.4007 | 2.9301 | 3.2938
14 2.7361 | 2.8393 | 2.7692 | 2.8035
15 2.7770 | 2.6115 | 2.7668 | 2.4715
16 2.1848 | 2.4725 | 2.2053 | 2.3565
17 2.4487 | 2.6263 | 2.4538 | 2.4969
18 3.1241 | 3.3010 | 3.1307 | 3.2121
19 2.6889 | 2.8229 | 2.7039 | 2.7221
20 1.7982 | 2.9350 | 2.2520 | 2.9033
21 2.5643 | 2.9483 | 2.6076 | 2.8724
22 3.0289 | 3.1538 | 3.0244 | 3.0572
23 2.6317 | 2.7300 | 2.6377 | 2.6004
24 2.7160 | 2.9704 | 2.7439 | 2.8593

| Avg. | 2.6163 | 2.7811 | 2.6495 | 2.6692

3.4 Conclusion

In this Chapter, a new reversible color transform is proposed, which consists of
the conventional RCT and additional lifting steps to decorrelate chroma images

Cu and Cv further. Nearly optimal but simple parameters are found, and the
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proposed scheme shows comparable decorrelation performance with Y CpC, which
can be applied only to lossy compression. In addition, lossless bit rates of standard
lossless images coder are presented, in which the proposed RCT outperforms the

conventional RCT over 1.46% with minimum increase in operation.
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Figure 3.2: The Kodak images.
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Chapter 4

Hierarchical Prediction Scheme
for Lossless Color Image

Compression

4.1 Introduction

In this Chapter, a new hierarchical prediction scheme is developed. While most of
existing prediction methods in lossless compression are based on simple raster scan
prediction, it is sometimes inefficient in the high frequency region. To be specific,
we propose a prediction scheme that can use lower row pixels as well as the upper
and left pixels. An RGB image is first transformed to Y C,C, by the RCT, and Y
channel is encoded by a conventional grayscale image compression algorithm. In the
case of chrominance channels (C,, and C,), the signal variation is generally smaller
than that of RGB, but still large near the edges. For more accurate prediction

of these signals, and also for accurate modeling of prediction errors, we use the a
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hierarchical coding scheme. To be precise, the chrominance image is decomposed
into two subimages; i.e. a set of even numbered rows and a set of odd numbered
rows respectively. Once the even row subimage X, is encoded, we can use all the
pixels in X, for the prediction of a pixel in the odd row subimage X,. This means
we can use the pixels in the lower rows as well as the upper and left pixels for the
prediction of a pixel, which sometimes results in more accurate prediction compared
to the conventional raster scan method. In addition, since the statistical properties
of two subimages are not much different, the pdf of prediction errors of a subimage
can be accurately modeled from the other one, which contributes to better context
model for arithmetic coding. A subimage can be further decomposed, but we try
only a one-level decomposition where the X, is once more decomposed into even

and odd column subimages.

4.2 Proposed Method

4.2.1 Hierarchical Decomposition

The chrominance channels C,,’ and C,’ resulting from the RCT usually have differ-
ent statistics from Y, and also different from the original color planes R, G, and
B. In the chrominance channels, overall signal variation is suppressed through the
color transform, but the variation is still large near the object boundaries. Hence,
prediction errors in the chrominance channels are much reduced in smooth region,
but remain relatively large near the edge or texture region.

For the efficient lossless compression, it is important to accurately estimate the
pdf of prediction error for better context modeling, along with the accurate predic-

tion. For this, we propose a hierarchical decomposition scheme as depicted in Fig.
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4.1, which shows that pixels in an input image X is separated into two subimages:
an even subimage X, and an odd subimage X,. Then, X, is encoded first and is used
to predict the pixels in X,. In addition, X, is also used to estimate the statistics of
prediction errors of X,. This decomposition and prediction can be carried out in a

multi-level manner.

4.2.2 Directional Prediction

For the compression of X, pixels, directional prediction is employed to avoid large
prediction errors near the edges. For each pixel x,(i, ) in X,, horizontal predictor

2p (i, 7) and vertical predictor @, (i, j) are defined as

fh(za]) = xo(ihj - 1)

elt,J el +1,7
6. = rouna (50 £ 219

(4.1)

and one of them is selected as a predictor for x,(7,7). With these two possible
predictors, the most common approach to encoding is “mode selection,” where better
predictor for each pixel is selected and the mode (horizontal or vertical) is also
transmitted as side information. However, the vertical predictor is more often correct
than the horizontal one when the predictors are defined as (4.1) because upper and
lower pixels are used for the “vertical” whereas just a left pixel is used for the
“horizontal”. The horizontal predictor is more accurate only when there is a strong
horizontal edge. Hence, vertical predictor is used for most pixels, and mode selection
is used only when the pixel seems to be on a strong horizontal edge.

For implementing this idea, we define a variable for the direction of edge at
each pixel dir(i,j), which is given either H or V. Actually, it is given H only

when the horizontal edge is strong, and given V for the rest. Deciding dir(i,7) is
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Algorithm 1 Calculation of dir(i, ).
if |20(4,7) — 25 (4, 5)] + T1 < |20(4,7) — 24(4, 5)| then
dir(i, j) < H
else
dir(i,j) « V
end if

Algorithm 2 Calculation of Z,(3, j).
if dir(i —1,7) = H or dir(i,j — 1) = H then
Calculate dir(i,j) by Algorithm 1
Encode dir(i, )
if dir(i,j) = H then
fo(i7j) — fh(ivj)
else
o1, J) <= @o(i, )
end if
else
7000, )  Bu(i )
Calculate dir(i, j) by Algorithm 1
end if

summarized in Algorithm 1, where it can be seen that the direction is given H only
when |x,(7, j) — & (4, 7)| is much smaller than |z,(i, j) — 2, (7, j)| by adding a constant
11 to the former when comparing them.

Based on the directions of pixels, the overall prediction scheme is summarized in
Algorithm 2. It can be seen that the mode selection is tried when more than one of
dir(i — 1,7) or dir(i,j — 1) are H, and the vertical prediction is performed for the

rest.

4.2.3 Proposed Coding Scheme

In this section, we explain the overall process of image compression, including the
new encoding scheme. An input RGB color image is transformed into Y C,'C,’

color space by the proposed RCT. The luminance image Y is encoded by any of
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lossless grayscale image coders, such as CALIC, JPEG-LS, or JPEG2000 lossless.
The chrominance images C,’ and C,’ are encoded using the method described in

Section 3. To be specific, a chrominance image X e {C,/,C,/} is decomposed

row by row into an even subimage Xe(l) and an odd subimage X(gl)

Fig. 4.2. The subimage X(gl) is predicted and encoded using Xél), as described in

Section 3. The subimage Xe(l) can be further decomposed column by column into

the even subimage X6(2) and the odd subimage XéQ) as shown in the last figure of

Fig. 4.2, where the subimage X£2) is compressed using Xél). For this “one level”

decomposition image, the Xc@ can be encoded by a standard image coder, or we

as shown in

can further decompose Xc@ (multi-level decomposition) and process the encoding

hierarchically.

In the predictive lossless compression, efficient encoding of the prediction error
e(i,j) = xo(i,j) — Z0(7,7) plays an important role. Although the proposed predic-
tion method usually generates small prediction errors owing to new RCT and the
sophisticated prediction scheme, there are still relatively large errors near the edge
or texture region, which degrades the compression performance. For the efficient
compression, the statistics of symbols (prediction errors) should well be described
by an appropriate model and/or parameters. We model the prediction error as a
random variable with pdf P(e|C,,), where C,, is coding context that reflects the
magnitude of edges and textures. Specifically, C), is the level of quantization steps

of pixel activity o(i,j) defined as

o(i,J) = lwe(i, 7) — we(i + 1, 5)]- (4.2)

Note that the local activity and its quantization steps are calculated with the pixels
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in X, because all the pixels of X, are available and its statistical property would
be almost the same as that of X,. The local activity is quantized into K steps such

that C, represents the step

Gn—1 < (i, J) < qn (4.3)

forn = 1,--- K with ¢q9p = 0 and gx¢ = o0. The length of quantization steps
is determined such that each step includes the same number of elements (local
activities). For each context, a generic adaptive arithmetic coder [24] is used to
encode the prediction error. For illustration, Fig. 4.2.3 shows an input image, the
local activity of a subimage (context), and P(e|C),) for several C),. It describes the
statistical property of prediction error very well, in that the error magnitude is large
when the local activity is strong. Hence the proposed model can be effective for the

compression with arithmetic coding.

4.3 Experimental Results

As stated in the introduction, the state-of-the-art lossless compression method may
be the CALIC [4], which shows higher coding gain than the JPEG-LS (or LOCO-
I) [2] [3] at the cost of higher computational complexity. For the compression of
color image, the M-CALIC and JPEG2000 lossless provide better coding efficiency
than the independent coding of each channel by CALIC or CALIC followed by
RCT. Hence we compare the proposed method with the CALIC, CALIC after RCT,
M-CALIC, and JPEG2000 lossless.

We first apply the algorithm on Kodak image set [28], which is widely used for

the test of lossless compression [29-31] and demosaicking [32]. In all the experi-
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ments, the parameter 77 in Algorithm 2 and number of contexts K are set to 3 and
6 respectively, and each input image is one-level decomposed. The luminance images
and decomposed highest level images Xc@ in Fig. 4.2 are encoded by JPEG2000
lossless. Experiments are summarized in Table 5.4, which shows that the proposed
method performs better for most images and the maximum gain over JPEG2000
lossless is 9.01% for the image 9. On the average, the proposed algorithm improves
5.85%, 14.55%, and 40.74% over JPEG2000 lossless, M-CALIC, and CALIC respec-
tively. In Table 5.4, the “proposed (RCT)” means that the proposed hierarchical
encoding is applied to the conventional RCTed images. From the last two columns,
new RCT and the new encoding scheme both contribute to the coding gain for these
images.

The proposed method is also tested on some of medical images in Fig. 4.4 and
compared with JPEG2000 in Table 4.2. The result for M-CALIC is not shown here
because the code provided by the authors does not work for the image size over
1024x1024. When only some part of images are compressed for this reason, the
coding gain shows similar trend as Table 5.4. The test medical images are positron
emission tomography (PET) images for human brain, digital camera images for
eyes and eyeground, and endoscope images for human intestine, which are generally
smooth and hence less bits are generated when compared with the case of Kodak
images. On the average, the proposed algorithm produced 10.40% less bits than
JPEG2000 lossless.

In addition, experiments for images from commercial digital cameras (shown
in Fig. 4.5) are also conducted, and the results are compared in Table 4.3. The
first five images are captured with NIKON D90, and the rest are captured with

OLYMPUS E-P1. On the average, the proposed algorithm produces 4.89% less bits
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Table 4.1: Lossless bit rates of various schemes (bpp) for Kodak images.

CALIC | M-CALIC | JPEG2K Pgﬁ%oTs‘jd Proposed
1 | 18.0224 | 11.2800 | 10.3844 | 9.8765 | 9.6803
9 | 13.7745 | 10.2870 | 9.1628 | 8.7501 | 8.6156
3 125939 | 8.8260 | 8.0917 | 7.5406 | 7.4545
4 | 142316 | 102120 | 9.1116 | 8.6669 | 8.4811
5 177021 | 12.0720 | 10.8167 | 10.4720 | 10.2921
6 |16.9876 | 10.4970 | 9.5911 | 9.2385 | 9.1535
7 | 13.5490 | 9.6060 | 8.5039 | 8.0021 | 7.8692
8 |17.9877| 12.4230 | 11.1389 | 10.7668 | 10.6165
9 [13.0003| 9.7260 | 8.9045 | 8.2458 | 8.1020
10 | 13.5027 | 9.7680 | 9.0564 | 8.4700 | 8.3057
11 | 157682 | 10.4940 | 9.2918 | 88744 | 8.6958
12 | 13.8552 | 9.2640 | 8.6577 | 8.1067 | 7.9601
13 |19.6935 | 13.0740 | 11.8608 | 11.5393 | 11.3734
14 | 16.9641 | 11.4240 | 10.1605 | 9.6818 | 9.5768
15 |12.9272 | 9.8040 | 8.9967 | 8.6241 | 8.4379
16 | 15.3833 | 9.6360 | 8.7748 | 8.1853 | 8.0705
17 | 13.9580 | 9.8670 | 9.0644 | 8.4054 | 8.2557
18 | 16.7664 | 12.3480 | 10.7706 | 10.5167 | 10.3532
19 | 151774 | 10.7850 | 9.6655 | 9.1798 | 9.0475
20 |11.7572 | 7.6200 | 8.0769 | 8.1534 | 8.5058
21 |16.4392 | 10.9020 | 9.7621 | 9.3302 | 9.2145
92 | 15.3030 | 11.4150 | 10.0939 | 9.8458 | 9.7116
23 | 12.0347 | 9.4650 | 8.5047 | 8.0375 | 7.8719
94 | 157731 | 11.0940 | 10.1673 | 9.7110 | 9.5975

| Avg. [ 15.1351 | 104954 [ 9.5254 | 9.0925 [ 8.9684

than JPEG2000 lossless.

Finally, it is worth to note that the proposed method does not always perform
best for every set of images. Specifically, the proposed hierarchical encoding scheme
sometimes works better and sometimes worse than the conventional methods, de-
pending on image sets and also depending on the channels (Y, C,/, and C,/). Tt
is also true for every compression algorithms, i.e. the coding gain of compression

algorithms differ on different set of images. For example, on the set of classical test
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Table 4.2: Lossless bit rates for the medical images.
JPEG2K | Proposed

PET1 6.7390 6.0314
PET2 7.3403 6.5233
PET3 7.0232 6.3074
Eyel 5.7498 4.6807
Eye2 5.4467 4.4916

Eyeground 3.2763 3.0460
Endoscopel 7.3532 7.0701
Endoscope2 | 5.1304 4.9087

| Avg. | 6.0074 | 5.3824 |

Table 4.3: Lossless bit rates for the commercial digital camera images.
’ ‘ JPEG2K \ Proposed

Ceiling 7.5571 7.2423
Locks 7.4574 7.1785
Flamingo 7.0366 6.6535
Berry 7.2468 6.9479
Sunset 6.3586 6.0411
Flower 6.4141 6.1307

Park 5.8977 5.5945
Fireworks 5.7797 5.3289
Avg. 6.7185 6.3897

images such as Lena, Peppers, and Mandrill, even the channel independent CALIC
sometimes performs better than JPEG2000 and our algorithm, as shown in Table
4.4. Considering this variability on different set and different channels, we may
combine the existing methods and our hierarchical encoding scheme for enhancing
the compression gain of color images. More precisely, note that our algorithm can
employ any of grayscale image compression methods (including the proposed hier-
archical scheme) for the compression of Y and lowest level images in C,/ and C,’.
Like H.264 [11] and HEVC [33] which heavily use “mode selection,” where many

methods and parameters are tried and the best one is selected, we may also try
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Table 4.4: Lossless bit rates of various schemes (bpp) for Classic images.

CALIC | M-CALIC | JPEG2K | Proposed | © -oPosed with

mode selection
Lena | 13.1787 | 13.2570 | 13.5848 | 13.7690 13.2354
Peppers | 13.8661 | 13.9560 | 14.8000 | 15.2072 14.7024
Mandrill | 18.1551 | 17.7990 | 18.0939 | 18.5813 18.1291
Barbara | 14.9567 | 12.1500 | 11.1612 | 11.6044 11.6044
| Avg. [ 15.0392 | 14.2905 | 14.4100 | 14.7905 14.4178
Bike | 15.4654 N/A [ 11.8153 | 12.0074 12.0074
Cafe | 17.9384 N/A | 14.0001 | 14.2420 14.1299
Woman | 14.9120 N/A | 11.2629 | 11.3883 11.3883
| Avg. [ 161053 [ N/A | 123594 | 12.5459 12.5085

Table 4.5: Summary of experimental results.

JPEG2K | Proposed Proposed W.lth

mode selection
Kodak 9.5254 8.9684 8.9473
Medical 6.0074 5.3824 5.1215
Digital 6.7185 6.3897 6.3012
Classic 1 | 14.4100 | 14.7905 14.4178
Classic 2 | 12.3594 | 12.5459 12.5085

different grayscale compression algorithms for Y and highest level images in C, and
(., and choose the best one along with just several bits of side information. The
last column in Table 4.4 is the proposed method with this mode selection scheme
(mode selection only for Y is tried), which shows that the proposed color compres-
sion scheme achieves better coding gain. Table 4.5 also shows that further coding

gain is achieved by the mode selection scheme, for each of image sets tested above.

4.4 Conclusion

We have proposed a lossless color image compression method based on a new re-

versible color transform that provides higher decorrelation performance, and also a
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new hierarchical encoding scheme. Specifically, an input RGB image is transformed
into YC,/C,’ color space using the new RCT. After the color transformation, the
luminance channel Y is compressed by a conventional lossless image coder. The
chrominance channels are encoded with the proposed hierarchical decomposition and
directional prediction. Finally, an appropriate context modeling of prediction resid-
uals is introduced and generic arithmetic coding is applied. The proposed method
and several conventional methods are tested on the Kodak image set, some medical
images, and digital camera images, and it is shown that average file size reductions
over JPEG2000 for these sets are 5.85%, 10.40%, and 4.89% respectively. When the

mode selection is tried, further encoding gain can be obtained.
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Figure 4.1: Input image and its decomposition.

(0)
S NESINES

Figure 4.2: Illustration of one level decomposition.

(a) Input image (b) Context (c) Conditional pdf

Figure 4.3: Context modeling (Kodak19).
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Figure 4.4: The medical images.
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Figure 4.5: The digital camera images.
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Figure 4.6: The Classic images.
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Chapter 5

Color Filter Array Compression

5.1 Introduction

Most digital cameras have a single image sensor plane, where every cell captures
wide wavelength range of light. For producing color image with this sensor, green
(G), blue (B) or red (R) filters are regularly placed on the cells, which is called
color filter array (CFA) sensor. The most widely used pattern of color filter may
be the Bayer pattern shown in Fig. 5.1 [12]. Compared with the cameras that
capture R, G, and B at each pixel position by separate sensor planes, the CFA
cameras need less room for optical system, less power and lower cost. However,
since only one of RGB components is available at each cell position, it is required to
interpolate other two color components from neighboring data, which is called the
demosaic process [13,14]. Since the advantages of CFA outweigh its disadvantages
for compact implementation of color image capturing system, most compact cameras

and mobile systems use CFA sensor, and many DSLRs also use CFA.

With the raw data captured by CFA, image processor in the camera performs
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most pre-processing steps such as white balancing, denoising, demosaicking, etc,
and then the demosaicked RGB image is saved as raw RGB or trasferred to im-
age compressor. Most commercial cameras provide only raw RGB data and/or
JPEG-compressed images to the users, and the CFA data are not available. In this
case, performing some algorithms on these RGB images is actually doing the pro-
cessing again on the data which are already processed by image processor in the
camera. Hence it deserves consideration to process the untouched CFA data in a
powerful computer for better image processing results, instead of doing that in the
low-powered image processors of cameras. In terms of compression performances,
compressing CFA data instead of demosaicked RGB image is also more efficient as
addressed in many literatures on CFA image compression [15,18-20,17,16,21-23].
Specifically, the compression-first scheme is more efficient than the demosaic-first
method because the demosaic process increases the number of data that are some-
how correlated. These earlier works include lossy and lossless compression of CFA
data, but we will consider only lossless compression in this paper, with the hope
that users may consider processing untouched CFA data by complicated algorithms
in a powerful PC for producing better images.

The lossy CFA compression methods referenced above [18-20] and some lossless

Figure 5.1: Bayer CFA pattern [12].
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methods [17,16] use spectral-spatial transform to generate typical grayscale subim-
ages from a mosaic image, which is followed by standard and/or widely used image
coder such as JPEG2000 [7] and JPEG-LS [2]. Specifically, Mallat wavelet packet
transform is shown to be beneficial for CFA image compression in [16], and a new
spectral-spatial transform is defined for the CFA compression in [17]. However,
since the correlation between color components is not sufficiently exploited in the
case of transform approaches, more elaborated inter-color prediction methods have
also been proposed [21-23]. These methods encode G pixels first and then predict B
and R from the encoded G. Especially, the context-matching prediction method [21]
provides the best compression rate among the above referenced methods on simu-
lated mosaic data, at the cost of more computational complexity than the transform

methods.

In the case of predictive lossless compression methods, accurate prediction is
very important for reducing the energy and/or entropy of prediction residual that
will be manipulated by the entropy encoder. When there are large prediction errors,
which usually arise around the edges or textured areas, the performance of generic
arithmetic coder is degraded. However, if we can also estimate the pdf of prediction
error for the given situation, compression performance can be further increased by
using context-based adaptive encoding scheme as addressed in [4]. More precisely,
we can estimate the magnitude of error from the neighboring pixels (context) and
thus we can build pdf of error conditioned on the given context. Then even very
large errors are well expected ones under some context, and thus do not increase
the number of encoded bits. In summary, accurate estimation of error magnitude
is as important as accurate pixel prediction in the case of context-adaptive lossless

data encoding, and we develop a hierarchical prediction method that can better
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predict pixels and also estimate the magnitude of prediction errors for the given
neighbors. The information from the neighboring pixels forms the ”context,” and
the conditional pdf of error over the given context is used for efficient entropy coding.
In the proposed hierarchical pixel prediction scheme, some of G pixels are used for
the prediction of other G, and they are again used for the prediction of R, and then
all of these are used for the prediction of B. In this process, already encoded pixels
are also used as context for the estimation of conditional pdf for the context-adaptive
arithmetic coding. Finally, the prediction errors along with the contexts are encoded

by a conventional context adaptive arithmetic coder.

In the experiments, the proposed method is compared with a recent predictive
encoding method in [21], which provides the best performance on the simulated CFA
data made from KODAK image set [28], and also with the recent transform method
in [16]. We also compare the results on some other simulated CFA data and also on
real CFA data available at [27]. The comparison shows that the proposed method
yields less bpp on all of the images referenced above. The executables of our encoder

and decoder are also available at [27].

The rest of this paper is organized as follows. In Section 2, the structure of our
encoder is presented. Then Section 3 shows the prediction scheme and Section 4
shows the context modeling for adaptive encoding. Experiments on simulated and
real CFA data are presented in Section 5, and the conclusions are given in Section

6.
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5.2 Overview of Proposed Encoder

Fig. 5.2 shows the structure of our encoder, which is consisted of hierarchical pre-
dictor (inside the dashed block), a conventional grayscale encoder and a context
adaptive arithmetic coder. For the input CFA image as in Fig. 5.1, G1 pixels (G
pixels in odd rows) are first encoded by a conventional grayscale coder. Second, they
are used for the prediction of G2 (G in even rows), which produces the prediction
error ego. Third, G pixels are interpolated to fill in the green values at the positions
of R and B pixels. Fourth, these demosaicked G pixels are subtracted from R and
B pixels, producing dR and dB. Note that dR and dB are used instead of R and
B respectively, for exploiting channel correlation. Fifth, dR values are predicted
from the already encoded neighboring dR values, along with the information from
G pixels, and the prediction error eyg is obtained. Finally, all the already encoded
pixels (including G, dR, and also preceding dB) are used to find an appropriate
predictor for a given dB, and the prediction error eyp is generated. The details
on the interpolation and prediction methods will be explained in Section 3. The
error signals obtained by the prediction block, i.e., egs, eqr, and egp are fed to the

context-adaptive arithmetic coder.

It needs to be noted that large prediction errors are inevitable near the edges and
textured area even if a very elaborated predictor is used, which severely degrades the
performance of conventional entropy coder. However, if we can estimate pdf of error
for the given neighbors, more efficient encoding is possible as addressed in [4]. More
precisely, when we encode an error e, at a pixel position n, we use the information
from the already encoded neighboring pixels as the ”context” C,. In other words,

we build the pdf P(e,|C,) while encoding, which is used for the adaptive arithmetic
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Figure 5.2: Structure of the proposed encoder.

coding. For example, the context in a homogeneous region would be different from
the context near the edges, i.e., the pdf for the former case has narrow Laplacian
shape and the pdf for the latter will have long tailed shape. Hence, if the context
modeling is correct, even the large error is actually a well expected one (with low
entropy) and thus the context adaptive encoder produces less bits than a plain
entropy coder. The details of context modeling for the CFA data will be explained

in Section 4.

5.3 Hierarchical Prediction of CFA data

In this section, we explain the prediction scheme (dashed block in Fig. 5.2) of our
encoder. As shown in Fig. 5.1, we define a mosaic image as composed of four
subimages: G1, G2, R and B. If we denote the mosaic image as X, their relationship

can be expressed as
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Figure 5.3: Illustrations for the explanation of (a) prediction of Gy pixel from the
neighboring pixels, and (b) interpolation of missing green pixel (at the position of
R and B).

Gao(i,j) = X(2i+1,25+1) (5.1)
R(i,j) = X(2i,2j+1)
(

B(i,j) = X(2i+1,2j).

As stated previously, we first encode G by a grayscale compression method JPEG-

LS, and then hierarchical prediction of other subimages follows.

5.3.1 Prediction of G,

Let us consider the situation that a pixel denoted as ”x” in Fig. 5.3(a) is being
encoded. Note that light green boxes are the pixels in G; and dark green boxes
are the ones in G. For the prediction of ”x”, we can use the already encoded
pixels of G2 such as nw, n, ne, w, and all the neighboring pixels (I,,) in G;. As in
conventional prediction approaches, we define four directional predictors (horizontal,

vertical, right diagonal, left diagonal) as
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(5.2)

Is+ 1y I+ I
{Phupvvpdfupdl}:{wun) 5+ 2 6+ 8}7

2 72
which are consisted of the nearest pixel(s) to the ”x”, into the corresponding direc-
tions. In the proposed prediction scheme, we do not choose one out of these four
predictors, but we choose two best predictors and combine them with appropriate
weights as will be discussed later.

The choice of predictors and weights is of course based on the direction of edges

9

around the "x”. We define the edge directivity around "x” as

> (pixel differences around x into the direction a)

D, = (5.3)

> (distances of pixel pairs)

where a = h, v, dr or dl. By this definition, small D, means that edge is probably
into the direction of a and thus predictor P, would be a good choice. To be specific,

four edge directivities around the "x” in Fig. 5.3(a) are defined as

Dn = (Jnw—n|+|Is— Is| + I — Is|
+ [I7 — Is| + |Is — Iy])/10

D, = (lnw—w|+ Iy —I5| + |I5 — I3]
+ |13 — Ig| + |Is — Ig])/10

Dy = [(Inw — Is| 4 |n — Ig| + |w — Ig| (5.4)
+ |15 — Iy]) /5v2] x @

Dy = [(In—Is| + |ne — Is| + |I5 — w|

+ ‘IG — Ig’)/5\/§] X Q.

Note that the number of considered pixel pairs for Dy, and D, is 5, but the sum of
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distances is 10 because each pair is two pixels away. We may consider less number
of pixel pairs around ”x,” but we choose to include all the adjacencies for reducing
noisy results. Conversely, considering too many pixel pairs beyond this bound may
not reflect the correct edge direction. In the case of Dy and Dy,., the number of
considered pixel pairs is 4. But since one of the pairs is two pixels away into the
diagonal direction (|I5 — Ig| or |Is — Ig| which are paired across ”x”), the total sum
of distances is to be 5v/2. Also note that we intentionally reduce Dy and Dy, by
multiplying a (< 1) to them as shown in the above equation, with the intention that
diagonal predictors are more often selected than horizontal or vertical predictors.
The reason for this is from the observation of Fig. 5.3(a) and eq. (5.2), which shows
that Py and Py are consisted of {I5,Ig} or {Is, Is} which are adjacent to ”x,”
whereas P, = w and P, = n are two pixels away from ”"x,” and thus the diagonal
predictors are more often close to ”x” than the horizontal or vertical predictors. In
all the experiments that will be discussed in Section 5, the « is set to 0.2.

As stated above, the actual prediction of ”x” is obtained as a weighted sum of
two predictors among eq.(5.2). Denoting the smallest and the second smallest D,’s

in eq. (5.4) as Dy and Da, the weights for the prediction of ”x” are defined as

wi=D1+1 and wy= Dy +1, (5.5)

where 1 is added to avoid ”divide by zero”. Then the actual estimator of ”x” is

defined as

P wo P + w1P2’ (5.6)
w1 + w2

where P; and P, are the predictors corresponding to the directions of Di and Do
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respectively.

5.3.2 Interpolation of green values in the positions of R and B

As stated above, the blue and red pixels are not directly encoded, but dR=R — G
and dB = B — G are predicted and encoded. For this, we need to find the green
values in the positions of R and B. This can be done just by using any of conventional
demosaic algorithms, but we use the same method as G2 is predicted from GI.
Specifically, let us consider the situation in Fig. 5.3(b), where the missing green pixel
”x” is interpolated using the neighboring pixels. Since all the closest 4 neighbors

are available in this case, we interpolate (predict) only into horizontal and vertical

directions as

Ig+ I Iy+ I
{Phapv}:{6_; 7)4_; 9}~ (57)
We also calculate the edge directivity in the same manner of eq. (5.4) as
Dy = |Ih— L+ |3 — L]+ |14 — I5| + |Is — I7|
+ [Is — Ig| + |Ig — I1o| + [I11 — I12]
, (5.8)

D, = [|I3—Ig|+ [l — Ig| + |Is — 11| + |14 — Io|
+ Iz — I7| + |I7 — Ir2| + [I5 — I1o]
where the divisors are omitted because they are the same. Then the final interpolator

is defined as

wy P, + wp Py

Wh, + Wy

>
I
—~
o
Ne)
SN—

where

54



wp,=Dp+1 and w,=D,+1. (5.10)

5.3.3 Prediction of red and blue pixels

After obtaining green values in the positions of R and B, we can compute dR and dB.
First, let us consider the encoding of dR as illustrated in Fig. 5.4(a). For predicting
the dR in the position marked ”x”, the predictors are simply the neighboring dR’s

in the corresponding directions as

{Py, Py, Py, Py} = {w,n,nw,ne}, (5.11)

In a similar manner as the predictors of G2 are selected, we define the edge

directivity for dR by using all the neighboring G and R pixels as

Dp = (lnw—n|+4[Io— In|+ 4|11 — L2

+2 ’17 — IS‘ + 2 ’113 — 114‘)/26

D, = (jnw—w|+4|ly— Ig|+ 4|13 — I14]
+2 I5—111 +2‘Iﬁ—112‘)/26
| | (5.12)
Dy = (2|15 — Ig| + 2 |Iy — Ii1| + I3 — Th2|
+ |11 — T4])/6V/2
Ddl = (’TL—'IU’+2‘Iﬁ—18’+2ug—112’

+ |Ig — Iy| + |2 — Th4])/8V2

where closer pixels to ”x” are given larger weights. The final predictor is obtained
in the same manner of egs. (5.5) and (5.6) as

Encoding of dB is performed in the same way, except that red pixels are also
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(b)

Figure 5.4: (a) Prediction of dR pixels, and (b) prediction of dB pixels.

9

involved in defining the edge directivity. Consider the situation that a dB in ”x

of

Fig. 5.4(b) is being encoded. The directional predictors are defined the same as eq.

(5.11), and directivities can be more efficiently computed by using the previously

calculated ones as

Ddr

Dy

(26D + 2 |Iig — Iig| + 2 |T19 — Ino|
+2 |Io1 — Iog| + 2 |Iag — I23]) /42
(26DF + 2|11 — I1g| + 2| 119 — Ino]
+2 |Ii7 — Iao| + 2 [I20 — I23]) /42
(67/2DE + g — Ins|)/8V2

(8V2DE + |Izo — I52])/10v/2

(5.13)

where DE (a € {h,v,dr,dl}) refers to D, for the red pixels in (5.12). The final

prediction of dB is also calculated as eqgs. (5.5) and (5.6).
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5.4 Encoding Prediction Errors

This section presents the ”context adaptive arithmetic coding” block of our encoder
in Fig. 5.2. In the case of predictive encoders, it is important to reduce the energy
of residual signal as much as possible. In addition, if we correctly estimate pdf of
residual signal, we can further reduce entropy and thus enhance the compression
performance by using context-based coding as addressed in [4]. Hence, we estimate
the pdf of prediction errors, from the states of neighboring pixels (context) in the
form of conditional pdf.

In the case of image encoder, it is well expected that the prediction errors have
large magnitude near the edges or textured area, and they are also spatially corre-
lated. Based on this, we introduce three basic assumptions for the context modeling.
First, the prediction errors are spatially correlated, i.e., a pixel neighboring the ones
with large residuals has the high possibility of having large prediction error. Second,
error magnitude is proportional to the gradients in the neighborhood. Last, the pre-
dictors into four different directions will have similar values when a pixel is located
in smooth region. Based on these assumptions, the magnitude of prediction error is
estimated by exploiting the related parameters that have already been computed in

the process of prediction. To be precies, the magnitude is estimated as

§ = E|le|]] + 2D, + STD(P), (5.14)

where E[|e|] is the expectation of absolute prediction errors in the neighborhood
(M x M block of pixels left and upper to the x), D; is the smallest edge direction
measure among { Dy, Dy, Dg,., Dg } for the corresponding color, and ST D(P) means

standard deviation of the four directional predictors { Py, P,, Py, Py }. For testing
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Figure 5.5: Entropy of resiual with respect to 6.

the validity of this estimator, we plot the entropy of prediction errors with respect to
0 in Fig. 5.5 using the images from Kodak set [28]. It can be seen that the entropy

increases almost monotonically as § increases, and thus ¢ is a good measure of error

The estimator of prediction residual ¢ is quantized into K steps as

Cpnign1<6<gqp, forn=1,--- K (5.15)

with g9 = 0 and gx = oo, and each step C,, represents the ”context” or state of
the pixel to be encoded. In all the experiments, K is set to 30 and the quantizer
is set as shown in Table xxx, which is designed such that each bin has almost the
same number of samples when tested with the Kodak image set. With this context
model, a generic adaptive arithmetic coder [24] is used to encode the prediction

errors, which learns P(e|C),) while encoding.
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5.5 Experimental Results

5.5.1 The Proposed Method

The proposed method is compared with several standard and/or widely used lossless
image compression methods such as JPEG2000 [7] and JPEG-LS [2], and also with
recently introduced CFA lossless compression methods: LCMI [16], and CMBP
[21]. In all the experiments, we use JPEG-LS for the compression of Gy, and the
parameters are set as a = 0.2, K = 30, and the quantizer for J is set as Table xxx.
Actually, the compression performance is not much affected by the quantization
parameter setting, because the arithmetic coder works adaptively to image statistics.
The parameter « is decided from the test of Kodak image set, and used the same
for all the other images in the experiments.

First, we show the results on 1024 x 768 real CFA images, captured with Sony
1CX204 Progressive scan CCD. All the images used in this paper, along with the
executables of encoder and decoder, are avaiable in [27]. Some of cropped parts of
the images are also shown in Fig. xxx. The comparison results are shown in Table
5.1, where it can be seen that the proposed method gives the least bpp. To be
specific, the proposed method further reduces the number of bits by 20.77%, 4.97%,
3.59%, and 9.09% over JPEG-LS, JPEG2000, LCMI, and CMBP respectively.

Second, simulated Kodak CFA images are tested, which are widely used for
the test of demosaic algorithms and also for the test of lossy/lossless compression
algorithms. The ”simulated” CFA image means that it is sampled from the original
RGB image in the Bayer pattern. The results are shown in Table 5.2, which shows
that the proposed method reduces the bits by 23.96%, 9.80%, 7.49%, and 1.85%

over JPEG-LS, JPEG2000, LCMI, and CMBP respectively.
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Table 5.1: Comparison of the algorithms for a set of real CFA images.
| | JPEG-LS | JPEG2K | LCMI | CMBP | Proposed

1 6.4208 5.3910 | 5.2551 | 4.9955 | 4.9097
2 6.4222 5.4852 | 5.3288 | 5.0880 | 4.9971
3 6.5599 5.3856 | 5.2279 | 4.9952 | 4.9080
4 5.5381 4.5526 | 4.4922 | 4.2554 | 4.1369
) 5.5221 4.4454 | 4.3906 | 4.1666 | 4.0470
6 5.2284 4.6128 | 4.5490 | 4.3905 | 4.1036
7 4.8082 3.8070 | 3.7007 | 3.6133 | 3.3653
8 4.7686 3.7243 | 3.6204 | 3.5445 | 3.2835
9 5.5002 4.7357 | 4.7090 | 4.4703 | 4.2842
10 5.5565 4.7316 | 4.7025 | 4.4553 | 4.2689
11 4.8489 3.9749 | 3.9521 | 3.7361 | 3.5367
12 4.7804 3.9242 | 3.9090 | 3.7019 | 3.4964
13 4.6067 3.8626 | 3.8749 | 3.6805 | 3.4618
14 4.8703 4.1102 | 4.1070 | 3.9138 | 3.6962

| Avg. [ 5.3880 | 4.4817 | 4.4157 | 4.2148 | 4.0354 |

Lastly, we also test the algorithms on high-resolution simulated CFA images
from commercial digital cameras such as NIKON D90 (4288 x 2848) and OLYMPUS
E-P1 (4032 x 3024), and the results are summarized in Table 5.3 and Table 5.4.
Note that we can extract original (real) CFA data from the camera module that we
mentioned above (Sony ICX204), but the commercial digital cameras usually do not
provide the CFA image so that only simulated data could be tested. For NIKON
D90 images, the proposed method shows coding gain by 34.34%, 14.77%, 7.63%, and
4.47% over JPEG-LS, JPEG2000, LCMI, and CMBP respectively. For OLYMPUS
E-P1 images, the proposed method outperforms by 41.60%, 17.99%, 6.74%, and

4.57% over JPEG-LS, JPEG2000, LCMI, and CMBP respectively.

Finally, it is interesting to see that JPEG2000 shows much better performance
than JPEG-LS when applied to CFA data, sometimes comparable to LCMI [16].

(Actually, it is not fair to compare JPEG2000 and JPEG-LS with the CFA-specific
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Table 5.2: Comparison of the algorithms for a set of simulated CFA images from

KODAK set.
| | JPEG-LS | JPEG2K | LCMI | CMBP | Proposed |

1 6.4726 5.8105 | 5.7592 | 54701 | 5.4696
2 7.0514 5.1403 | 4.6862 | 4.3341 | 4.2862
3 5.8519 4.2090 | 4.0223 | 3.7360 | 3.6990
4 6.5800 4.9483 | 4.6839 | 4.3965 | 4.3530
5 6.5132 5.9617 | 5.8844 | 5.4024 | 5.3648
6 6.1042 5.2556 | 5.0810 | 4.8398 | 4.8308
7 5.8027 4.5055 | 4.3218 | 3.9339 | 3.8636
8 6.2231 5.9045 | 5.8981 | 5.5941 | 5.5775
9 5.0830 4.4044 | 4.3519 | 4.1964 | 4.1381
10 5.4077 4.5614 | 4.4803 | 4.2359 | 4.1911
11 5.8526 5.0236 | 4.9666 | 4.6669 | 4.6602
12 5.6290 4.5156 | 4.3306 | 4.0772 | 4.0447
13 6.8322 6.4079 | 6.3991 | 6.1398 | 6.1162
14 6.4785 5.5865 | 5.4927 | 5.1553 | 5.1278
15 5.8260 4.6027 | 4.4627 | 4.1299 | 3.9941
16 5.6168 4.5929 | 4.5142 | 4.3404 | 4.3473
17 4.9583 4.5509 | 4.5538 | 4.2812 | 4.2282
18 6.1751 5.5864 | 5.5679 | 5.2921 | 5.2496
19 5.4830 4.9102 | 4.8716 | 4.7102 | 4.6668
20 4.4684 4.1185 | 3.9868 | 3.5773 | 3.2277
21 5.9818 5.1132 | 4.9539 | 4.7784 | 4.7279
22 6.4901 5.2505 | 5.0924 | 4.8464 | 4.8075
23 6.5814 4.5033 | 4.0401 | 3.8760 | 3.7614
24 5.7003 5.2270 | 5.2845 | 4.9126 | 4.7910

[Avg. | 5.9651 | 5.0288 | 4.9036 | 4.6218 | 4.5635

algorithms. The comparison is just for reference how much gain would be obtained
by the CFA-specific methods over the conventional compressors.) It is because the
discrete wavelet transform in JPEG2000 plays a role of spectral-spatial transform,

like the transform in LCMI.
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Table 5.3: Comparison of the algorithms for a set of simulated CFA images from
digital cameras.
| | JPEG-LS | JPEG2K | LCMI | CMBP | Proposed |

4.9348 3.9525 | 3.6783 | 3.6629 | 3.5470
6.2309 5.2131 | 4.9453 | 4.6696 | 4.5349
4.8743 3.8237 | 3.6897 | 3.5212 | 3.4322
5.2951 3.5034 | 3.1116 | 3.0861 | 2.9388
5.0022 3.8424 | 3.4889 | 3.3515 | 3.1916
6 4.4009 3.3467 | 2.9369 | 2.8354 | 2.7094

| Avg. [ 51230 | 3.9470 |3.6418 | 3.5211 | 3.3923

U W N =

5.5.2 Demosaic-first and Compression-first Schemes

Comparison of demosaic-first and compression-first Schemes is performed both for
lossless and lossy compression. At first, lossless bitrates of the two schemes are
compared. 24 Kodak images are sampled with Bayer CFA pattern to simulate CFA
image. The simulated CFA images are compressed by the proposed CFA com-
pression method which will be presented in Chapter 5. As demosaic-first scheme,
the simulated CFA images are first demosaicked by Alternating Projection (AP)
method [14], and the demosaicked images are compressed by standard color images
compression method JPEG2000 (Lossless mode). The lossless bitrates are presented
in Table5.5. The compression-first scheme considerably outperforms the conven-
tional demosaic-first method. This is mainly because the number of samples for
demosaic-first scheme is increase three times through demosaicking process but it is
hard for lossless compression to effectively remove the increased redundancy.
Rate-distortion performances of lossy versions of both schemes are also examined.
Test for demosaic-first scheme is the same as the lossless test described above except
that JPEG2000 runs in lossy mode. To be specific, demosaicked images of the

simulated CFA images from Kodak set are compressed by JPEG2000 (Lossy mode).
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Table 5.4: Lossless bit rates of various schemes (bpp) for the simulated CFA images
from OLYMPUS E-P1 set (4032 x 3024 resolution).
| | JPEG-LS | JPEG2K | LCMI | CMBP | Proposed |

1 7.2529 5.2788 | 4.6280 | 4.3925 | 4.2708
2 5.9338 4.6118 | 4.1577 | 4.0615 | 3.9066
3 7.2368 5.2639 | 4.5766 | 4.5273 | 4.3621
4 7.2347 5.0365 | 4.2904 | 4.2363 | 4.0692
) 7.1544 4.5750 | 3.4266 | 3.3791 | 3.1702
6 6.2255 4.9155 | 4.5286 | 4.3862 | 4.2805
7 7.3168 4.4518 | 3.2780 | 3.3215 | 3.1100
8 7.4666 5.7251 | 5.2342 | 5.0616 | 4.9478
9 6.8089 4.7928 | 3.9954 | 3.9435 | 3.7522
10 5.9278 4.5701 | 4.2821 | 4.1925 | 4.0764
11 5.4718 3.9601 | 3.5948 | 3.5035 | 3.3704
12 4.6019 3.2978 | 3.0417 | 3.0045 | 2.8533
13 6.8542 4.9610 | 4.3682 | 4.3751 | 4.2804
14 6.0079 4.5197 | 4.2131 | 4.1847 | 4.0922
15 6.1879 4.5253 | 4.1442 | 4.1652 | 4.0618
16 6.9412 4.9115 | 4.2843 | 4.2995 | 4.1944
17 6.3583 4.1038 | 3.2204 | 3.0957 | 2.9096
18 6.8115 4.3326 | 3.4836 | 3.2540 | 3.0803
19 4.7375 3.2598 | 2.9812 | 2.9254 | 2.7778
20 4.9997 3.4218 | 3.1413 | 3.0289 | 2.8669
21 4.7266 3.0694 | 2.7927 | 2.7388 | 2.5508
22 4.5890 3.3026 | 3.0746 | 2.9699 | 2.8089
23 4.5414 3.9133 | 3.8405 | 3.6271 | 3.4869
24 5.4500 3.7675 | 3.3707 | 3.1868 | 3.0213

| Avg. | 6.1182 | 4.3570 | 3.8312 | 3.7442 | 3.5959

To measure the quality of decompressed image, color peak signal to noise ratio
(CPSNR) is calculated regarding the demosaicked images as original. CPSNR is

generally used quality measure for color image and defined as

2552

CPSNR = 10 10g10 ) R 3
gﬂqﬁg'E:x-§:n1§:n2(J((ﬂ&7n2)-)f(n17n2X>

(5.16)

63



Table 5.5: Lossless bit rates of demosaic-first and compression-first schemes (bpp)
for the simulated CFA images (Kodak).
’ ‘ Demosaic-first ‘ Compression-first

1 10.1656 5.4342
2 8.1022 4.2609
3 7.1468 3.6769
4 8.0404 4.3515
5 10.3446 5.3299
6 8.9909 4.7855
7 7.6102 3.8357
8 10.8945 5.5059
9 7.6824 4.1130
10 7.8200 4.1531
11 8.6956 4.6190
12 7.6509 4.0044
13 11.4540 6.0769
14 9.5519 5.0984
15 7.9850 3.9714
16 7.9589 4.3067
17 7.8759 4.2177
18 9.7637 5.2398
19 8.6755 4.6460
20 6.9223 3.1886
21 8.7850 4.6962
22 8.9710 4.7949
23 7.2234 3.7582
24 9.3846 4.7588
[ Avg. | 8.6540 4.5343

where N; and N> denote image dimensions, ny = 1,2,..., N] and ny = 1,2, ..., Ny
denotes pixel coordinates, and X € {R, G, B} denotes the color channels.

For the test of lossy version of compression-first scheme, LCMI method is mod-
ified and used. Input CFA image is decomposed by discrete wavelet transform
(DWT) in lossless manner and the four subband images are independently encoded
with lossy JPEG2000 which is different part from the original LCMI. To measure

CPSNR, the compressed code is decoded into CFA image, and the decompressed im-
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Table 5.6: Lossy bit rates and CPSNRs of demosaic-first and compression-first
schemes for the simulated CFA images (Kodak).

Demosaic-first | Compression-first
BPP | CPSNR | BPP | CPSNR

1.4894 | 38.7030 | 1.4557 | 36.8358
1.9891 | 40.9446 | 1.9537 | 39.5055
2.4885 | 42.9042 | 2.4545 | 41.8539
2.9888 | 44.6837 | 2.9530 | 43.8910
3.4888 | 46.3000 | 3.4527 | 45.8239
3.9890 | 47.8276 | 3.9540 | 47.7306
4.4547 | 49.0867 | 4.4354 | 49.9097
5.0328 | 50.5131 | 5.1024 | 53.9637

age is demosaicked by AP method. The demosaicked image from the decompressed
CFA image is used as X in (5.16), and the demosaicked image from the simulated

CFA image is used as X in the same equation.

Rate-distortion (RD) curves of the demosaic-first and the compression-first schemes

are shown in Fig. 5.10. In lossy compression, bitrate and image quality are in trade-
off relation, so RD curve is useful to compare performances of different methods.
When a curve is located above another one, it is said to be better in RD performance
because it shows better performance in quality measure on the same bitrate. From
Fig. 5.10, demosaic-first scheme is better in the lower bitrate than about 4 bpp, and
compression-first scheme is better in the rest region. Considering that the lossless
bitrate for the same input was 4.5343 bpp, however, the region where lossy version

of compression-first scheme is useful is between 4 bpp and 4.5 bpp approximately.

Demosaic-first scheme outperforms compression-first scheme in practically useful
bpp region for lossy compression. It is first because lossy compression effectively re-
moves redundancy which is introduced by demosaicking. And because demosaicking

is non-linear process, compression artifacts to CFA image might cause large demo-
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saicking error in compression-first scheme. Therefore, CFA image is more suitable

for lossless compression.

5.6 Conclusion

We have proposed a new lossless compression algorithm for the Bayer-patterned
CFA images. The proposed scheme is to predict the color components hierarchically
and to use context adaptive arithmetic coding. The hierarchical prediction means
that we first encode half of green samples by a conventional grayscale coder, and
use these samples for the prediction of other half green samples. Then all the green
samples are used for the prediction of red ones, all of which are then used for the blue
prediction. In deciding the predictors, edge directivity is considered for reducing the
prediction residual. The information obtained in the prediction process is also used
for the context modeling of prediction residual. The proposed algorithm is tested
on the simulated data that have been popularly used in the literatures, and also
on real CFA and some additional high-resolution simulated CFA data. The results
show that the proposed method yields less bpp than the transform-based method

and other existing prediction-based method.
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Figure 5.6: The Kodak images.
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Figure 5.7: The real CFA images (demosaicked).

Figure 5.8: The NIKON D90 images.
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Figure 5.9: The OLYMPUS E-P1 images.
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Figure 5.10:

Rate-distortion performances of lossy color image compression
(demosaic-first) and lossy CFA compression (compression-first). The x-axis denotes
bit per pixel (bpp) and the y-axis denotes CPSNR.
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Chapter 6

Conclusions

Lossless image compression is less used than lossy compression due to its large
memory or bandwidth requirements. However, lossless image compression is indis-
pensable for some fields, such as medical, prepress, scientific, and artistic areas, and
people desiring the technique are increasing due to advances in cheaper and bigger
storage devices. In this dissertation, algorithms using interchannel correlation are
studied, with which lossless compression schemes for color image and color filter
array image are proposed.

In Chapter 3, a new reversible color transform is proposed, which consists of
the conventional RCT and additional lifting steps to decorrelate chroma images
Cu and Cwv further. Nearly optimal but simple parameters are found, and the
proposed scheme shows comparable decorrelation performance with Y C,C, which
can be applied only to lossy compression. In addition, lossless bit rates of standard
lossless images coder are presented, in which the proposed RCT outperforms the

conventional RCT over 1.26% with minimum increase in operation.

In Chapter 4, a lossless color image compression method based on a new hier-
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archical encoding scheme is proposed. Specifically, an input RGB image is trans-
formed into Y C,’C,’ color space using the new RCT. After the color transformation,
the luminance channel Y is compressed by a conventional lossless image coder. The
chrominance channels are encoded with the proposed hierarchical decomposition and
directional prediction. Finally, an appropriate context modeling of prediction resid-
uals is introduced and generic arithmetic coding is applied. The proposed method
and several conventional methods are tested on the Kodak image set, some medical
images, and digital camera images, and it is shown that average file size reductions
over JPEG2000 for these sets are 5.85%, 10.40%, and 4.89% respectively. When the
mode selection is tried, further encoding gain can be obtained.

At last, a new lossless compression algorithm for the Bayer-patterned CFA im-
ages is proposed in Chapter 5. The proposed scheme is to predict the color compo-
nents hierarchically and to use context adaptive arithmetic coding. The hierarchi-
cal prediction means that we first encode half of green samples by a conventional
grayscale coder, and use these samples for the prediction of other half green sam-
ples. Then all the green samples are used for the prediction of red ones, all of which
are then used for the blue prediction. In deciding the predictors, edge directivity
is considered for reducing the prediction residual. The information obtained in the
prediction process is also used for the context modeling of prediction residual. The
proposed algorithm is tested on the simulated data that have been popularly used in
the literatures, and also on real CFA and some additional high-resolution simulated
CFA data. The results show that the proposed method yields less bpp than the
transform-based method and other existing prediction-based method.

The proposed three methods, new RCT, hierarchical prediction scheme, and ef-

ficient context modeling, are applied to lossless color image compression and lossless
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CFA image compression. Each of them was test in various datasets and outper-

formed all the benchmark methods.
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