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ABSTRACT

Optical flow estimation aims to find dense visual correspondences between a ref-

erence and a target images. Obtaining such dense correspondences may benefit

various computer vision algorithms. For decades, many researches have been dedi-

cated to resolve the problem, but it still remains challenging problem and is actively

studied these days. Specifically, various appearance of objects may weaken implicit

segmentation of flow and degrade estimation on motion boundaries. Complex and

large displacement of an object may also degenerate the performance. In addition,

individual movements of adjacent objects inherently produce occlusion in the target

image; and may increase the estimation error as the corresponding point for the

occlusion is actually undefined.

In this work, we propose several methods to address these problems. Our meth-

ods construct discrete energy models for the problems and obtain solutions with

discrete optimization techniques. First, to reduce errors of estimated flow around

motion boundaries, we propose a novel adaptive window matching approach uti-

lizing statistical information in the window. The proposed approach is based on

using large correlation windows with adaptive support-weights. We present three

new types of weighting constraints derived from image gradient, color statistics and

occlusion information. Each of the proposed constraints appreciably elevates the
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quality of estimations, and that they jointly yield results that compare favorably to

current techniques, especially on the motion boundaries.

Second, to handle complex non-transitional motion with large displacement, we

present a new energy model presenting discrete analog to the diffusion tensor-based

regularizer. Inspired from the fact that the regularization process works as a convo-

lution kernel filtering, we formulate the difference between original flow and filtered

flow as a smoothness prior. Experiments demonstrate the proposed method yields

plausible results on the various data sets including large displacement and complex

motion boundaries.

Third, we address occlusion by simultaneously estimate flow and detect occlusion

in a single framework using a novel support-weight based window matching. The

proposed support-weight provides a very effective clue to detect occlusion based on

the assumption that occlusion is sparse; and also presents reasonable estimation for

the flow of the occluded pixels. Our method improves the flow accuracy as well as

detection performance, compared to the approach alternatively finding solutions in

individual frameworks; and also yields highly competitive results outperforming the

previous state-of-the-art methods.

Keywords: Optical flow estimation, occlusion detection, window matching, support-

weight, bilateral filtering, discrete optimization, high-order MRF, message-

passing.

Student Number: 2006-23181
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Chapter 1

Introduction

Optical flow is, by Horn’s definition [4], “the distribution of apparent velocities of

movement of brightness patterns in an image, caused by the relative motion between

an observer (an eye or a camera) and the scene.” Optical flow estimation aims to

find dense visual correspondences between a reference and a target images.

Obtaining such dense correspondences is indeed a very fundamental task in image

processing and computer vision problems, and so it can benefit a number of algo-

rithms in the literature; e.g., motion segmentation, motion compensated coding,

frame interpolation, medical image registration, super-resolution, 3D scene recon-

struction, video denoising, high dynamic range image and so on.

For decades, many researches have been dedicated to resolve the problem, and

have presented plausible solutions. However, some issues still remain challenging

problem and is actively studied these days, and this work proposes novel approaches,

addressing three issues in general. First, most of recent methods employ implicit

segmentation of flow field for improve estimation on motion boundaries, but various

appearance of objects may weaken the implicit segmentation and degenerate the
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performance. Second, complex and large movements of an object are exceptional

but frequently shown in the images; and it is cumbersome to appropriately model

them by the previous approaches. Finally, separate motions of neighboring objects

generate occlusion, and since the corresponding point in the target image is missing

by definition, it may increase the estimation error around the occlusion.

1.1 Outline of this work

The remainder of this thesis is structured as follows. We briefly introduce some

fundamental approaches to the problem in Chapter 2, with explanation for choosing

the discrete energy model, which has been recently introduced in the flow estimation

literature, and presented several advantages compared to the previous frameworks

based on the continuous optimization.

In Chapter 3, we propose a novel adaptive window matching approach utilizing

statistical information in the window, reducing errors of estimated flow around mo-

tion boundaries. The proposed approach is based on using large correlation windows

with adaptive support-weights. We present three new types of weighting constraints

derived from image gradient, color statistics and occlusion information. The first

type provides gradient structure constraints that favor flow consistency across strong

image gradients. The second type imposes perceptual color constraints that reinforce

relationship among pixels in a window according to their color statistics. The third

type yields occlusion constraints that reject pixels that are seen in one window but

not seen in the other. All these constraints contribute to suppress the effect of clut-

tered background, which is unavoidably included in the large correlation windows.

Experimental results demonstrate that each of the proposed constraints appreciably
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elevates the quality of estimations, and that they jointly yield results that compare

favorably to current techniques, especially on the motion boundaries.

Addressing the issue for complex non-transitional motion with large displace-

ment, Chapter 4 presents a new energy model presenting discrete analog to the

diffusion tensor-based regularizer. Inspired from the fact that the regularization

process works as a convolution kernel filtering, we formulate the difference between

original flow and filtered flow as a smoothness prior. Then the discrete framework

enables us to employ a robust penalizer less concerning convexity and differentia-

bility of the energy function. In addition, we provide a new kernel design based

on the bilateral filter, adaptively controlling intensity variance according to the lo-

cal statistics. The proposed kernel simultaneously addresses over-segmentation and

over-smoothing problems, which is hard to achieve by tuning parameters. Involving

a complex graph structure with large label sets, this work also presents a strat-

egy to efficiently reduce memory requirement and computational time to a tolerable

state. Experiments demonstrate the proposed method yields plausible results on the

various data sets including large displacement and complex motion boundaries.

In Chapter 5, we also manage the occlusion issue, by simultaneously estimate

flow and detect occlusion in a single framework using a novel support-weight based

window matching. The proposed support-weight provides a very effective clue to

detect occlusion based on the assumption that occlusion is sparse; and also presents

reasonable estimation for the flow of the occluded pixels. Applying coarse-to-fine

approach, our method successfully detects non-sparse occlusion as well. The energy

model with the matching cost and flow smoothing cost is optimized by efficient

discrete optimization method. Our method improves the flow accuracy as well as

detection performance, compared to the approach alternatively finding solutions in

3



individual frameworks; and also yields highly competitive results outperforming the

previous state-of-the-art methods.

We finalize this work by providing conclusion and discussion for the future work

in Chapter 6.
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Chapter 2

Background

A basic clue to the optical estimation problem is the brightness constancy constraint,

assuming the intensity value of a pixel in the reference image may not change in the

target image. With this constraint only, however, the problem is highly under-

constrained with ambiguity that one pixel in the reference image may correspond to

multiple pixels in the target image.

Various approaches have been introduced. In [4], a global formulation is com-

bined with the linearized brightness constancy assumption, to enforce spatial co-

herence between locally adjacent flows, using a quadratic function. Although this

seminal approach has been employed as a baseline algorithm in numerous follow-up

researches, but it suffers from over-penalized outliers included in the motion bound-

aries. To address this challenge, several works proposed more robust penalizing

functions. Black et al. [5] replace the quadratic error function with the Lorentzian

function, which is robust to outliers, but is very difficult to find the optimum due

to its non-convexity. The functions based on L1-norm [6–8] have been shown to be

a good substitute for the non-convex robust function, utilizing variational methods
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for optimization.

Apart from this limitation, variational approaches may also suffer from restricted

form of data term. The data term for brightness constancy should be linearized

based on the Taylor series approximation to make the functional differentiable. The

estimated motion fields are assumed to be in small displacements and can not catch

up with large deformations with non-linear movement. Traditional approach [9] uses

successive pyramids in a coarse-to-fine fashion, arising another problem losing detail

structures in images. A recent work [3] proposed a solution by discretizing the data

cost functional and decoupling the energy for minimization; not guaranteed to find

the global minimum.

While most of these works employ the variational method for optimization, sev-

eral works reported promising results using discrete framework. These approaches

consider the flow estimation as a labelling problem and constructs a discrete energy

model to be optimized by the discrete methods [10–12]. In [13], proposal solutions

using continuous optimization are first computed and then, combined with discrete

optimization. To reduce the high complexity of discrete methods, Glocker et al. [14]

incrementally update flow vectors, only within highly probable regions. In [15], an

input image is represented as a tree of over-segmented regions, which defines an

energy function to be optimized by dynamic programming. A non-local smoothness

prior on the discrete framework [16] is also proposed, showing competitive results

to the variational models. In contrast, Rhemann et al. [17] presents plausible es-

timations, using cost-volume filtering without using any prior information, which

reduces much of the computational complexity.

In this work, we also employed the discrete framework which presents several

advantages compared to the previous frameworks based on the continuous optimiza-

6



tion. On this framework, more options are available for the robust penalizer less

concerning convexity and differentiability. The data term in our model inherently

covers large displacement flow since the brightness constancy assumption does not

have to be linearized. It is also compatible to various data matching functions,

which may not be the case for the variational approach. The main drawback of the

discrete method is that the computational complexity is proportional to the number

of labels. Addressing this challenge, we introduced and developed various efficient

techniques to reduce the complexity for our framework.
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Chapter 3

Adaptive Window Correlation

with Local Statistics

3.1 Introduction

One of big issues in optical flow estimation problem is enhancing performance on

motion boundaries. Regardless of optimization framework, whether it is the varia-

tional or the discrete method, the estimation error in discontinuous regions is almost

always bigger than the error in untextured regions. For example, the average end-

point error computed with the method of Brox et al. [3] for the Army sequence

in the Middlebury flow site is 0.11/0.32/0.11, for overall/discontinuous/untextured

regions respectively, while the error computed with the method of Glocker et al. [14]

is 0.12/0.34/0.11. Both methods yields relatively high estimation error on the dis-

continuous motion boundaries.
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3.1.1 Previous work

Various approaches have been introduced to address the boundary issue. Many of

them employ filtering-based implicit segmentation of flow. In [18], a multi-cue driven

bilateral filter is employed to discard background clutter in the smoothing kernel.

Sun et al. [1] reveal that applying the median filter to intermediate flow estima-

tions [19] is a very effective approach to the issue. They incorporate this heuristic

scheme in their energy function as non-local L1 smoothness prior and present state-

of-the-art results.

While most of these works employ the variational method for optimization, sev-

eral works reported promising results using discrete optimization methods [10–12].

A non-local smoothness prior on the discrete framework [16] is proposed, showing

competitive results to the variational models. Rhemann et al. [17] presents plausible

estimations, using cost-volume filtering without using any prior information, which

reduces much of the computational complexity.

3.1.2 Our approach

We address the estimation based on the discrete MAP-MRF framework [14, 20],

comprising the data matching cost and the spatial smoothness cost. In comparing

brightness of pixel for the data cost calculation, we employ local neighborhoods of

the pixel [7, 21], instead of the single pixel of interest. This pixel set of local neigh-

borhoods is referred to as a correlation window. We aim to improve the estimation,

by enhancing the quality of the correlation window matching.

One critical factor for the quality of the matching is the size of the window. A

large correlation window can address the aperture phenomenon, and other robust-
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ness issues, such as illumination change and/or random noise. On the other hand,

the large window may also include cluttered background motion segments, which

may cause incorrect window matching on motion boundaries. To address this issue,

the support-weight based approach [22,23] has been widely employed in the field of

stereo matching. It imposes different weights on each pixel t in the window according

to geometric and photometric constraints, e.g., the pixel’s proximity and the color

difference to the central pixel s, defined as follows:

wprox
s (t) = exp

(

−
||xs − xt||

2

2σ2
g

)

, (3.1)

wcolor
s (t) = exp

(

−
||I(s)− I(t)||2

2σ2
p

)

, (3.2)

where xs, xt indicate 2D coordinates, and I(s), I(t) mean color values of the points

s and t, respectively.

This strategy gives an effect accentuating the foreground object, and outperforms

previous works, such as adaptively changing window size [24] and using multiple

windows [25]. However, the fixed variances (σg, σp) that are applied to all image

regions can degrade the performance on certain image regions, particularly for very

large correlation windows. Learning the parameters on test images can be a solution,

but it requires extra time complexity, and may not cover the variety of real world

scenes.

We propose to employ three new types of weight constraints, which are adaptively

adjusted, based on contents in the correlation window.

Gradient structure constraint: The previous proximity constraint applies the

homogeneous weight to every correlation window regardless of the image contents

in each window. This may help coherent estimation on a single large object, but
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may degrade results on objects with detailed geometric structures, such as small

branches of a tree. Since such objects form strong image gradients in general, we

propose to use the structure tensor of the window, to adaptively apply the weight

distribution according to the geometric structure. We assign strong weights normal

to the predominant gradient directions in the window. As a result, the shape of

weighted region in the window appears to be a sharp ellipse along with the objects,

reducing the effect of background regions outside the objects.

Perceptual color constraint: In the previous color constraint in Eq. (3.2), σp

needs to be small enough, to clearly distinguish a foreground object from background

objects by their color difference. However, the small variance may result in over-

segmented estimation on a single large object containing various colors inside, which

could stem from object texture, image noise or specular illumination. Addressing

the issue, we propose to use perceptual color distance that takes account of color

distribution and accordingly calculate the weight. By applying a new perceptual

color distance, instead of the Euclidean color distance, we could obtain relatively

high coherence inside the single object, while using the small σp for the boundary

distinction.

Occlusion constraint: Occlusion indicates the phenomenon that a certain area

of the reference image is not seen in the target image due to various reasons, such

as object movement and/or view change. Since the pixels in the occlusion do not

correspond to any pixel in the target image, we propose to exclude this region in

computing widow correlation.

We compare our results with results using the proximity and color constraints

in [22, 23], and show the proposed constraints outperform the previous constraints

12



in our experiments. To demonstrate the effect of the occlusion constraint, we show

that adding the occlusion constraints to the geometric and photometric constraints

leads to improvements in quantitative evaluation. We also show the proposed con-

straints jointly yield highly competitive performance on various data sets, especially

on motion boundaries.

The rest of this chapter is organized as follows. Section 2 briefly defines our

energy formulation for the discrete framework. In Section 3 we propose the new

adaptive correlation window design and show its advantages. Section 4 introduces a

method to enhance the efficiency of the discrete optimization, and Section 5 presents

experimental results evaluating the proposed model. We finalize this chapter by

providing the conclusion and the future work in Section 6.

3.2 Background

Let G be an undirected graph with a node set V and an edge set E . A node in

V corresponds to a pixel in the reference image. Let ls be a label, i.e., a random

variable for a node s in some discrete sample space Ls = {1, . . . , L2}, representing the

quantized displacement vector set Ts = {us(1), . . . ,us(L
2)}. Note the displacement

vector is two dimensional, i.e., us = (us, vs), and each dimension is homogeneously

quantized by L labels. Optical flow estimation can be expressed as finding the labels

for each pixel, which minimizes an energy function such as:

∑

s∈V

Φs(ls) +
∑

(s,t)∈E

Ψst(us(ls)− ut(lt)) , (3.3)

where Φs(·) imposes the cost for matching the correlation window for s, and Ψst(·)

denotes the spatial smoothness term between s and t.
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3.2.1 Coarse-to-fine approach

The discrete sample space L is a finite set. The size of the space |L| (= L2) is

proportional to the maximum displacement over the desired flow precision µ, such

that, |L| ∝ max(T )/µ. If the given scenes contain very large displacement, or if

we desire very accurate flow estimation, using a big sample space with sufficient

number of labels would be a simple solution; however, it may drastically increase

computational complexity and memory requirement. To yield similar estimation

results using fewer labels, we employ the following coarse-to-fine approaches.

Image pyramid: We build Gaussian image pyramids for the input images, and

find the rough solution from the top level of the pyramids. Down to the next

level, the dense flow field is estimated by interpolating the coarse solution, and is

provided as the initial flow field for further estimation. The number of pyramid level

is determined by logd(max(T )/|L|) where d−1 is the downsampling factor building

the image pyramid. We use d = 2 in our experiments.

Incremental flow update: To produce high precision flow using the limited num-

ber of labels, we iteratively find the incremental flow based on the current flow field.

For the ith iteration, the flow precision is set to f (i) = 0.5f (i−1), so that the discrete

algorithm employs smaller quantization unit for the incremental flow. We note, in

practice, the flow accuracy at a higher level pyramid strongly influences the perfor-

mance of the next level pyramid; thus we run this process to obtain sufficiently high

precision at every pyramid level.
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3.2.2 Data matching criteria

A virtue of the discrete approach is that we can test various data matching cost

Φs(ls) in Eq. (5.1), without changing the optimization scheme according to the

cost function. We tested SAD (Sum of Absolute Difference), SSD (Sum of Squared

Difference), and NCC (Normalized Cross Correlation), which are combined with

GIP (Gradient Inner Product) [14]. GIP is a measure for geometric constancy [26],

computing the angle between the gradients of two input images. Except NCC,

weighted versions of these matching criteria are defined using the support-weight on

each pixel in the window, such that:

Φs(ls) =

∑

t∈W (s) ws(t)ws′(t
′)ρ(t, t′)

∑

t∈W (s) ws(t)ws′(t′)
, (3.4)

where W (s) is a node set in the window supporting s, and ws means a weight

function for s. s′ and t′ are points in the target image, where s, t in the reference

image are mapped to by displacement vector u(ls). ρ(t, t′) denotes a similarity

measure between pixels at t and t′, for example of GIP:

ρ(s, s′) =

∣

∣

∣

∣

∇I1(s)

|∇I1(s)|
·
∇I2(s

′)

|∇I2(s′)|

∣

∣

∣

∣

, (3.5)

where the subscripts 1 and 2 for I denote the reference and the target images re-

spectively. The weighted NCC [23] is defined as follows:

ΦWNCC
s (ls) =

∑

t∈W (s)ws(t)ws′(t
′)J1(s, t)J2(s

′, t′)
√

∑

t∈W (s) |ws(t)J1(s, t)|
2
√

∑

t∈W (s) |ws′(t′)J2(s′, t′)|
2
, (3.6)

where J(s, t) = I(t)− Ī(s) and Ī(s) is the mean intensity of pixels in W (s).
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The combination of GIP and each criterion is implemented by summing two

terms with a balancing parameter λ; e.g., GIP+NCC is defined as follows:

Φs(ls) = λΦWGIP
s (ls) + (1− λ)ΦWNCC

s (ls).

We empirically found GIP+NCC with λ = 0.7 showed the best performance

among other combinations, and used it through experiments in the work.

3.3 Proposed Constraints for Adaptive Window Corre-

lation

The weight function in Eq. (5.2) consists of three types of constraints. We assume

all constraints are independent events and that they can be measured individually.

Then the function is determined by multiplying each factor as follows:

ws(t) = wgrad
s (t)wperc

s (t)wocc
s (t), (3.7)

where wgrad
s , wperc

s and wocc
s are functions related to the three proposed constraints.

3.3.1 Gradient structure constraint

At the point where strong gradient is found, we may expect distinct object boundary

in the direction normal to the gradient. By adaptively imposing weak weight along

this gradient, the pixels across the boundary have less effect on the matching cost

calculation. This constraint can be implemented using the structure tensor (i.e.,

second moment matrix) of a correlation window. The eigenvectors of the structure

tensor indicate the predominant directions of the gradient in the window. We define

an anisotropic tensor Tp(s) with the structure tensor of the window around s as

follows:
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Tg(s) =
1

Dg





1

|W (s)|

∑

k∈W (s)

∇Ig(k)∇Ig(k)
T + ν21



 , (3.8)

where 1 means the 2× 2 identity matrix, and ∇Ig means the gradient of the gray-

scaled input image. Dg represents a denominator for normalization, defined as the

trace of the matrix in the parenthesis. ν is the parameter controlling the degree of

isotropy. If ν is large enough, Tg(s) becomes close to the identity matrix, and if ν

is close to zero, Tg(s) is almost identical to the second moment matrix.

With this tensor, we define the weight function as follows:

wgrad
s (t) = exp

(

−
(xs − xt)

T Tg(s) (xs − xt)

2σ2
g

)

. (3.9)

The effect of the proposed constraint is demonstrated in Figure 3.1. We sam-

ple two points (shown in red boxes in (d)) and present their weight distributions.

Compared to the previous proximity constraint shown in (e), the proposed con-

straint can impose low weight on background regions; e.g., around the branch as

shown in (f). As a result, the proposed constraint presents improvements, with

less foreground-fattening effect around fine structures of the scene, as seen in (b)

compared to (c). While the weight distributions for the previous constraint are ho-

mogeneous regardless of the sample points, the proposed constraint controls degree

of isotropy according to the image content, as presented in (g).

3.3.2 Perceptual color constraint

To define a new color distance between two pixels, proposed perceptual color con-

straint makes use of the Mahalanobis distance style, instead of the Euclidean dis-

tance. Assuming the color distance in a correlation window share the same distribu-

17



(a) (b) (c)

(d) (e) (f) (g)

Figure 3.1: Weight calculation around fine details of objects in images. The esti-

mation results are represented in HSI color space (direction: hue, magnitude: sat-

uration) (a) The Grove3 sequence. (b) Estimation using the proximity constraint.

(c) Estimation using the gradient structure constraint. (d) Magnified view of the

reference image, containing a thin branch and a stone highlighted by red boxes.

(e) Weight distribution using the proximity constraint. The distribution is homoge-

neous regardless of image contents. (f) Weight distribution for the branch using the

proposed gradient structure constraint. (g) Weight distribution for the stone using

the proposed constraint.

tion, we define the new color distance measure using the covariance matrix of color

difference of adjacent pixels in the window. For a three-channel color space, the

covariance matrix in the window around a node s is defined as follows:
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Table 3.1: Quantitative evaluation for γ

γ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

EPE 0.353 0.342 0.325 0.314 0.310 0.312 0.316 0.319 0.318 0.321

Σc(s) =
1

Dp













σC0,C0
σC0,C1

σC0,C2

σC1,C0
σC1,C1

σC1,C2

σC2,C0
σC2,C1

σC2,C2













, (3.10)

where σX,X , σX,Y means the variance and covariance of channel X,Y ∈ {C0, C1, C2}

for the gradient image ∇I. Dp represents a denominator for normalization, defined

as the trace of the matrix. In experiments, we use the CIELab color space.

We define the weight function to adaptively compute the difference of color:

wperc
s (t) = exp

(

−
(I(s)− I(t))T Σ−1

c (s) (I(s)− I(t))

2σ2
p

)

. (3.11)

Figure 3.2 demonstrates the effect of the perceptual color constraint. The estima-

tion in (b) employs σp = 2.4, and the flow around the right hand shows foreground-

fattening effect. Applying a smaller variance (e.g., σp = 1.8) addresses the problem

as seen in (c), but it causes over-segmentation artifact for the flow around the left

hand. In contrast, the proposed constraint using the same variance σp = 1.8 ad-

dresses the problem without the artifact, as shown in (d).

3.3.3 Occlusion constraint

In the reference image, a certain area of a scene can disappear in the target image

for some reasons, e.g., object movement and/or view change. Since the pixels in the

area do not play any role in correlating the windows, we may ignore those pixels by
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(a) (b)

(c) (d)

Figure 3.2: Effect of the perceptual color constraint. (a) The Beanbags sequence.

(b) Estimation using the previous color constraint with σp = 2.4. (c) Estimation

using the previous color constraint with σp = 1.8. (d) Estimation using the proposed

constraint with σp = 1.8.

setting the weight to zero. Given an occlusion map O = {v(s)|s ∈ V}, where the

binary variable v(s) indicates if the pixel s is occluded or not, we define the weight

function as follows:

wocc
s (t) = 1− v(t). (3.12)
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Although the occlusion map is not initially given, we can generate it by checking

consistency, in the iterations for the incremental flow update. In each iteration,

we additionally estimate backward flow from the target to the reference, and check

consistency of a pixel using the following equation:

v(s) =











0 if ‖us + u′
s′‖ < γ

1 else
(3.13)

where us means the forward flow at xs, u
′
s′ means the backward flow at xs′ = xs+us,

and γ is a threshold parameter. In experiments, we found the optimal γ = 2.5 by

quantitative evaluation of the Middlebury test dataset, which produces the minimum

average end-point error, (i.e., EPE=0.310,) as shown in Table 3.1.

Figure 3.3 demonstrates the qualitative effect of the occlusion constraints. The

example image contains complex motion boundaries with non-rigid movement and

similar color distribution. The result with a non-weighted window presents the

obvious foreground-fattening effect around object boundaries. Although utilizing

the proximity and the color constraints can reduce such an effect, the occlusion

constraints present much better results with more structured mesh around motion

boundaries.

3.4 Efficient Optimization

To find the optimal solution for the MRF formulation in (5.1), we employ the TRW-

S [11], which has shown state-of-the-art results [27] in many discrete framework

applications. The asymptotic computational complexity of the TRW-S, in general,

is O(|V||L|2). In our current framework, we may rewrite it as O(|V|L4). Since
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Figure 3.3: Flow estimation for the Mequon sequence (in part). Results are illus-

trated using mesh deformation with the occluded region shown in red. The bottom

row shows magnified views of the top row (in the blue boxes) Left: Result using the

non-weighted window. Middle: Result using the proximity and color constraints.

Right: Result using the proposed constraints.

the complexity is dominated by the number of labels, and our method requires

an adequate number of labels to yield plausible estimation results, we introduce a

technique to address the complexity issue.

3.4.1 Node decomposition

We apply the node decomposition scheme [28], reducing the complexity to O(|V|L2).

The scheme decomposes the node s ∈ V into two nodes sx ∈ Vx and sy ∈ Vy.

We may define lsi as a random variable for a node si in some discrete sample

space Lsi = {1, . . . , L}, representing the quantized 1D displacement vector set
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(dx, dy)
dx

dy

Figure 3.4: Conceptual illustration for the node decomposition. Left: The original

MRF model. A node represents a label for 2D displacement vector: (dx,dy). Right:

The original node is decomposed into two nodes representing labels for 1D vectors:

dx and dy respectively. The unary term (shown in a black square) in the original

MRF model becomes a pairwise term between the decomposed nodes.

Tsi = {usi(1), . . . , usi(L)} where i ∈ {x, y}. The original displacement vector us(ls)

corresponds to (usx(lsx), usy(lsy)). The original edge set E is decomposed into Ex

and Ey, and the new edge set Exy is introduced, to account for the pairwise potential

between the decomposed nodes. Figure 5.4 shows a conceptual illustration of the

decomposition scheme. The original MRF formulation in (5.1) is updated as follows:

∑

(sx,sy)∈Exy

Φxy(lsx , lsy) +

∑

(sx,tx)∈Ex

Ψst(usx(lsx)− utx(ltx)) +
∑

(sy ,ty)∈Ey

Ψst(usy(lsy)− uty(lty )). (3.14)

We note the original unary potential Φs is updated to the pairwise potential Φxy,

defined by the decomposed nodes. Unary potentials for these nodes are undefined,

imposing no cost on any configuration. As the number of labels for a node reduces

to L, the complexity of the TRW-S also reduces to O(|V|L2).

In addition, the decomposition enables defining the pairwise potential Ψst as
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linear to the label difference; that is, we may rewrite Ψst(us(ls)−ut(lt)) as Ψ
′
st(ls−lt).

Then we can apply the min-convolution algorithm [29] for the TRW-S, reducing the

time complexity to O(|V|L). In experiments, we set Ψ′
st(ls − lt) = α|ls − lt|, which

is a parametric and robust convex penalizer.

3.5 Experimental Results

We validate our flow estimation method on the Middlebury flow dataset [30]. The

dataset contains several image sequences of indoor and outdoor scenes, containing

various real or synthetic objects.

We assumed the maximum deformation for each direction to be 32, and quantized

each direction by 4 with the target precision µ = 0.05. The size of correlation

windows was fixed to 35 × 35. The parameters affecting the relative influence and

strictness of the different constraints, were evaluated in Section 3.5.2, and fixed to

optimal values for other experiments: σg = 7.2, σp = 1.8. By varying σg, we can

control the effective area with non-negligible weight in the window, and so we may

think σg implicates the actual window size. Other parameters were empirically tuned

to α = 0.05 and ν = 10−6.

3.5.1 Effect of individual constraints

To show the effects of each proposed constraint, Figure 3.5 provides quantitative

analysis comparing estimation errors obtained with our full algorithm (“full”) to

errors computed with various constraints removed. Removing the perceptual con-

straint (“w/o perc”) causes significant degradation compared to the full algorithm,

particularly when using the large windows (e.g., σp > 5.) Not using the gradient
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Figure 3.5: Quantitative evaluation for the effect of individual constraints. From

top left to bottom right, we present average end-point errors of the Grove2, Grove3,

Urban2, RubberWhale, Hydrangea, and Dimetrodon sequences, for varying window

size.

structure constraint (“w/o grad”) also leads to an amount of increase in errors, as

the window size increases. Leaving out the occlusion constraint (“w/o occ”) also

shows worse results than the full algorithm; although the difference is not signifi-

cant, due to the fact that the occluded region is sparse in general. Figure 3.6 shows
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Figure 3.6: From top left to bottom right: Estimation results of the Grove2, Grove3,

Urban2, RubberWhale, Hydrangea, and Dimetrodon sequences. The flow vectors

are represented in HSI color space (direction: hue, magnitude: saturation, occlusion:

black)

the visualization of the flow results, obtained with our full algorithm.
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3.5.2 Comparison to previous constraints

We additionally validate our technique through comparisons with the previous support-

weight constraints, employing the bilateral filtering-based weights [22,23]; i.e., prox-

imity and color constraints which correspond to the gradient structure and percep-

tual color constraints. The occlusion constraint is excluded for fair comparison.

Figure 3.7 (a) compares the geometric constraints without the photometric con-

straints. Although the geometric constraints generally degrade performance as we

apply larger windows, the proposed constraint (“grad”) presents lower EPE than

the previous constraint (“prox”) for all varied parameters. Next, the photometric

constraints is compared in Figure 3.7 (b). We chose a mid-size window (e.g., 15×15)

and varied σp, from 0.6 to 4.8. The perceptual color (“perc”) yields better estima-

tions with relatively small variances, presenting the lowest EPE at σp = 1.8. Finally,

we compare the combinations of the geometric and photometric constraints in Fig-

ure 3.7 (c). With the optimal color variances obtained from the previous analysis,

we varied the window size by σg. Although the proposed constraints (“grad+perc”)

yielded slightly worse estimations for small windows, it outperforms the previous

constraints (“prox+color”) for large windows σg > 5.

3.5.3 Comparison to other methods

We also provide comparison to other top-performing methods, to validate overall

performance of the full algorithm. Table 4.1 lists the seven best methods in the

Middlebury Flow site [30] for the average end-point error, and the average angular

error measured on different image part: whole image (all), motion boundary (disc,)

and untextured region (untext). We also present the results from the previous con-
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Table 3.2: Quantitative comparison with top-performing methods for the Middle-

bury evaluation data set

straints, shown as Bilateral-Window.

For the first four sequences (i.e., the Army, Mequon, Schefflera and Wooden,) our

method presents very competitive results on the overall regions. We note these se-

quences are based on real scenes and provide accurate ground truth occlusion maps,

by which the occluded regions are excluded in calculating the end-point/angular er-

rors. We also note our method outperforms Bilateral-Window, especially on motion

boundaries. The performance gain increases for the sequences containing an amount

of occlusions, e.g., the Urban and Teddy.

In Figure 3.8, we also provide qualitative results for various real-world scenes.

The first column of the figure demonstrates layered two input frames for each scene,

showing various motions of objects. While the top-performing method [2] in the

Middlebury Flow evaluation (shown in the third column) generally presents the best

estimations, our method also shows competitive results. Compared to the method

of Sun et al. [1] (shown in the second column), which is also famous for its state-of-
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the-art performance, the proposed method yields better estimations particularly on

regions with large displacements. (e.g., the beak of the duck and the right foot of

the football player.)

3.6 Discussion

In this chapter, we presented a new adaptive window correlation for optical flow

estimation on the discrete MRF framework. A novel data cost design incorporating

various constraints efficiently ignores inhomogeneous motion in correlation windows

on object boundaries, helping to enlarge the window size to cover the aperture

phenomenon. The effect of each constraint compared to the previous constraints has

been shown with quantitative analysis. In order to reduce computational complexity

and fully utilize image resolution, we utilized the decomposed scheme combined with

the course-to-fine approach.

In future work, we plan to enhance the occlusion detection algorithm. The cur-

rent algorithm adopts a symmetric approach, obtaining an occlusion map given a

flow field and vice versa, implying that the field and map are not generated at once.

Using discrete optimization, an integrated framework combining both energy models

can provide a better solution, which is closer to the global minimum. More sophis-

ticated occlusion reasoning may result in further improvement in flow estimation.

Our current implementation takes 935.4 seconds, on average, to find the estima-

tion of a 640 × 480 image, with a 35 × 35 correlation window. We employ graphic

hardware for parallel calculation of the data matching cost, which takes only 182.4

seconds. The rest of the time is taken for optimization on the CPU; and we be-

lieve significantly faster processing can be obtained with a full implementation that
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computes message-passing based optimization on parallel graphics hardware [31].
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(a) (b)

(c)

Figure 3.7: Quantitative analysis using the Middlebury flow test dataset. (a) Com-

parison of the proposed gradient structure constraint and the previous proximity

constraint. (b) Comparison of the proposed perceptual color constraint and the pre-

vious color constraint. (c) Comparison of combination of the proposed constraints

and that of the previous constraints. The occlusion constraint is excluded for fair

comparison.
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Figure 3.8: Qualtitative comparison with other methods. Column 1 input frames,

Column 2 Sun et al. [1], Column 3 Xu et al. [2]. Column 4 Ours.
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Chapter 4

Convolution Kernel Prior

4.1 Introduction

The linearized brightness constancy is frequently employed data matching criterion

in the methods using the variational approaches. It assumes infinitesimal displace-

ment of a pixel and may produce inaccurate estimation for images including objects

with large motions. The window matching based approaches (e.g., our method in

Chapter 3) inherently addresses the large displacement issue. However, it may suf-

fer from images containing complex motions, such as rotational motion; since it

generally assumes transitional model due to limited number of labels.

4.1.1 Previous work

Trying to preserve discontinuities, various regularization terms have been introduced.

Many of them are based on diffusion tensors considering a global regularization pro-

cess can be seen as a local diffusion of flow. Alvarez et al [32] proposed to adaptively

control the degree of diffusivity according to the gradient magnitude of an image.
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Earlier than this approach, Nagel [33] presented a novel regularizer using anisotropic

diffusion along object boundaries. Showing plausible edge-preserving property, this

regularizer has been adopted in numerous methods [34, 35] until nowadays. While

these approaches employ smoothness priors reflecting local image structure, other

researches [36,37] focused on the flow structure to avoid over-segmentation artifact

on textured area. Recently a new diffusion tensor combining both image and flow

structure [38] is introduced and its modification [39] shows state-of-the-art perfor-

mance on the Middlebury evaluation site [30].

In contrast, Xiao et al [40] presented a rather different type of regularizer. As-

suming the diffusion tensor-based energy functional can be minimized through two

individual updating processes, they convert the diffusion process to the correspond-

ing convolution kernel filtering [41] applied to the intermediate flow estimation. The

kernel is further replaced by the bilateral filter [42], known as an excellent edge-

preserving smoother.

Meanwhile, Black et al [43] proposed to refrain from a quadratic penalizer for the

cost calculation, which is claimed to excessively penalize outliers from a statistical

viewpoint. Employing a linear penalizer, e.g., total variation for smoothness cost

or L1-norm for data cost [9, 35, 44] presented enhanced performances. In addition,

statistical analysis for derivatives and brightness constancy errors in natural images

showed the distribution is highly kurtotic and heavy tailed [45]. As the robust

penalization becomes non-differentiable and non-convex, optimizing energy function

with variational approach becomes more complicated; and prone to be trapped in

local minima.
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4.1.2 Proposed approach

Apart from this limitation, variational approaches also suffer from restricted form

of data term. The data term for brightness constancy should be linearized based

on the Taylor series approximation to make the functional differentiable. The esti-

mated motion fields are assumed to be in small displacements and can not catch up

with large deformations with non-linear movement. Traditional approach [9] uses

successive pyramids in a coarse-to-fine fashion, arising another problem losing detail

structures in images. A recent work [3] proposed a solution by discretizing the data

cost functional and decoupling the energy for minimization; not guaranteed to find

the global minimum.

Addressing these challenges, we propose a new energy model defined on the

discrete MRF framework. On this framework, more options are available for the

robust penalizer less concerning convexity and differentiability. The data term in

our model inherently covers large displacement flow since the brightness constancy

assumption does not have to be linearized. We also manage the issues of the image-

based regularizers as well, proposing a new convolution kernel based on the bilateral

filter. Using perceptual information, this kernel adapts to the local statistics avoiding

over-segmentation as well as over-smoothing without parameter tuning.

The rest of this paper is organized as follows. Section 2 defines a new regu-

larizer on the discrete framework, which we named as convolution kernel prior. In

Section 3 we introduce the new adaptive kernel design and show its advantages.

Section 4 gives a strategy to enhance the efficiency of the algorithm and Section 5

presents experimental results evaluating the proposed model. We finalize this work

by providing the conclusion and the future work in Section 6.
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4.2 Convolution Kernel Prior

We briefly introduce the two-step updating procedure [40] and derive the new regu-

larizer. The derivation is also possible using the definitions from [46] where discrete

regularization term for p-Dirichlet energy is theoretically defined. Note the pro-

posed model can be extended to other types of neighborhood smoothness prior with

diffusion tensor as well as non-local prior with arbitrary graph structure.

An energy functional is defined to find appropriate dense flow vector u on image

domain Ω

E(u) = Ed(u) + Es(∇u) =

∫

Ω
(ed(u) + es(∇u)dx, (4.1)

where ed and es represent data matching cost and smoothness cost respectively. Min-

imizing (4.1), we apply the Euler-Lagrange equation to iteratively find the answer

yielding the updating process as follows:

∂u

∂τ
= uτ − uτ−1 = −

(

∂ed(u)

∂u
− div

(

∂es(∇u)

∂∇u

))

.

where τ indicates a time step in the iteration. As proposed in [40], we decouple this

updating process into a two-step procedure; such that,

uτ ′ − uτ−1 = −
∂ed(u)

∂u
, (4.2)

uτ − uτ ′ = div

(

∂es(∇u)

∂∇u

)

, (4.3)

where τ ′ means the intermediate time step. Employing a certain diffusion tensor D

to define es(∇u), we can rewrite (4.3) as

uτ − uτ ′ = div

(

∂(∇uTD∇u)

∂∇u

)

= div
(

D∇uτ ′
)

.
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We develop this divergence form into corresponding oriented Laplacian formu-

lations, whose solution can be shown in terms of convolution kernel filtering [41] as

follows:

uτ = G ∗ uτ ′ ,

where the kernel G represents a 2-D oriented Gaussian kernel defined by eigenvectors

of the diffusion tensor D. This equation gives an inspiration for a new smoothness

prior: the prior can be formulated with the difference between the original flow and

the filtered flow with the convolution kernel G corresponding to the diffusion scheme.

We replace the smoothness term in (4.1) with

Es(u) =

∫

Ω
Ψ(u−G ∗ u)dx,

where Ψ(·) represents a certain penalizing function.

For the corresponding discrete MRF model, let G be an undirected graph with

node set V and edge set E . A node in V corresponds to a pixel in an input image. Let

ls be a random variable for a node s in some discrete sample space Ls = {1, . . . , L},

representing quantized displacement vector set Ts = {u(1), . . . ,u(L)}. Discrete

analog to (4.1) can be given as,

E(l) =
∑

s∈V

(Φs(ls) + Ψ(u(ls)−Gs ∗ u(ls))) , (4.4)

with Φs(·) defining the data cost for a node s. Transforming the convolution into

weighted sum, we obtain
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E(l) =
∑

s∈V

(

Φs(ls) + Ψ

(

u(ls)−

∑

t∼swstu(lt)
∑

t∼swst

))

=
∑

s∈V

(

Φs(ls) + Ψ

(

∑

t∼s

w̄st(u(ls)− u(lt))

))

, (4.5)

where w̄st means the normalized weight.

Unfortunately, this energy formulation involves higher order clique potentials

inducing practically intractable complexity for current discrete optimization tech-

niques. Managing this challenge, we suggest to find the solution for an upper bound

equation of (4.5) which guarantees to make lower energy for the original equation.

Without loss of generality, we assume the penalizing function Ψ(·) as convex, yielding

the upper bound equation defined by,

EUB(l) =
∑

s∈V

(

Φs(ls) +
∑

t∼s

w̄stΨ(u(ls)− u(lt))

)

=
∑

s∈V

Φs(ls) +
∑

(s,t)∈E

w̄stΨ(u(ls)− u(lt)). (4.6)

This equation eventually converts the higher order clique potentials into a highly

connected graph structure consisting only of unary and pairwise terms. Note the

proposed model does not need to depend on the support window-based data match-

ing [47], the widespread method on the discrete framework to address the aperture

problem. In fact, since the window-based matching scheme generally assumes only

transitional movement of objects, it often generates false matching on the regions

with severe non-rigid motion or rotation. Figure 4.1 gives an example of this limita-

tion where a synthetic basketball is rotated on smoothly varying background. The

window-based matching (with simple neighborhood prior) moderately works on the

background region but fails to find accurate flow on the rotated object.
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Figure 4.1: Flow estimation involving rotation. Left top and bottom: Input

images with a rotating basketball synthesized on smoothly varying background (part

of the Schefflera sequence.) Center and right top: Flow and deformed image

from 11 × 11 support window-based matching with 8-neighborhood prior. Center

and right bottom: Flow and deformed image from the proposed model. The flow

images are illustrated by the HSI color space (direction: hue, magnitude: saturation)
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4.3 Adaptive Regularizer

The main issue for the regularizer is how to preserve accurate motion boundaries.

Numerous edge-preserving regularizers have been proposed so far; particularly, image-

driven regularizers (e.g., the anisotropic diffusion tensor) have shown plausible per-

formances. They adaptively give weak smoothing effect on areas where a certain

intensity change is detected. This strategy works very fine on a region where the

intensity-based segments are identical to the actual motion segments, but shows

some over-segmentation artifact on textured regions sharing an identical motion.

Several works [38, 39] presented flow-driven smoothers based on intermediate flow

estimation; however, this approach requires an accurate initial estimation. Oth-

erwise, it may recursively worsen the following estimation, commonly resulting in

over-smoothing artifact.

This work adopts a regularizing kernel based on the bilateral filtering. We define

the weight in (4.5) using the product of two factors; i.e., proximity and color, such

that wst = wp
st ∗ w

c
st where

wp
st = exp

(

−
||(xs − xt)||

2

σp

)

, (4.7)

wc
st = exp

(

−
||I(xs)− I(xt)||

2

σc

)

. (4.8)

The problem is, this regularizer is also image-driven and suffer from the similar

drawback. In specific, the performance is much influenced by the parameter σc in the

image-driven factor wc
st. If it is set too small, the result undergoes over-segmentation

on textured regions; while in opposite case, the motion boundaries are often overly

smoothed.
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Figure 4.2: Comparison between the bilateral kernel and the proposed kernel. Top

row: Input images from the Marble sequence. Middle row: Flow estimation

resulting from both kernels. Bottom row: Detailed views in the red box with

the flow illustrated using mesh. The proposed kernel shows better regularizing

performance on the textured area without over-smoothing artifact (in the blue box.)
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To this end, we propose to replace the Euclidean color difference in (4.8) with

perceptual difference defined by the Mahalanobis distance. The new weight factor

gives an effect adaptively changing the intensity (color) variance parameter σc based

on local statistics. We rewrite the color weighting factor as follows:

wc
st = exp

(

−
(I(xs)− I(xt))

T Tc (I(xs)− I(xt))

σc

)

,

with a certain anisotropic tensor Tc on color space defined by

Tc =
1

1 + ν2
(e1e

T
1 + ν21),

where 1 is a 3 × 3 identity matrix and ν is a parameter controlling the degree of

isotropy. e1 is the largest eigenvector of Σ−1
c , the inverse of the color variance-

covariance matrix defined by

Σc =













σR,R σR,G σR,B

σG,R σG,G σG,B

σB,R σB,G σB,B













.

where σX,X means the intensity variance of adjacent pixels around xs, for each color

attribute X and σX,Y is the covariance between attribute X and Y .

Figure 4.2 illustrates an example comparing the original bilateral kernel and the

proposed kernel. Both kernels share the same parameter setting. In the result from

the bilateral kernel, distinctive outliers are detected on textured area as marked

with the red box; while the blue box points out over-smoothed flow examples due

to the similar intensity distribution as shown in the input images. Note one can

not simultaneously address both artifacts by tuning the parameter σc because they

are in trade-off relation. In contrast, the proposed kernel is less affected by this
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limitation since it conceptually employs larger σc on textured areas; at the same

time, employs smaller σc on homogeneous areas enhancing discrimination.

4.4 Optimization

Although the upper bound energy (4.6) successfully converts higher order terms into

pairwise edge terms, it still yields acute computational complexity due to the highly

connected graph structure. In this section we present two approaches to efficiently

reduce the complexity of the proposed model.

4.4.1 Coarse-to-fine approach

In order for the discrete approach to follow up the natural flow field with subpixel

accuracy, the quantized unit needs to be small enough. However, dense quantization

of the vector space will cause radical increase in computational complexity as well

as memory requirement. We employ a hierarchical approach in a coarse-to-fine

manner [48] acquiring plausible accuracy with limited number of labels.

The algorithm starts with sparse quantization for the maximum deformation

range. After the first optimization is completed, we obtain a solution with rough

motion field. For further iterations, we set a smaller deformation range starting

from the moved position by the current motion field. In this fashion, the algorithm

reduces the quantization unit and incrementally forms accurate motion field.

When the deformation is over the maximum range of the algorithm, we use a

pyramidal approach to coarsen the image and find rough solution with scaled motion.

Backing to the original scale, dense flow field is estimated by interpolating the coarse

solution and provided as initial flow field for the further subpixel estimation.
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4.4.2 Node decomposition

Executing a discrete optimization procedure, we generally define a pairwise cost

table to be directly referred during the procedure. Online calculation of the cost

is not preferred due to serious degradation of convergence speed. In our case, the

coarse-to-fine approach may define slightly different pairwise interaction on each

edge in the graph; that is, using a pre-defined and fixed pairwise cost table is not

available. In consequence, the algorithm requires vast amount of memory space

amounting to O(|E||L|2) to keep the cost table for each edge.

One possible solution is employing the min-convolution algorithm [49] with Ψ(·)

defining a parametric penalizer; e.g., linear or quadratic to the difference of labels.

Then the algorithm allows each edge to store only a few parameters instead of the

whole cost table. However, Ψ(u(ls)−u(lt)) in (4.6) will hardly define such a penalizer

since a quantized 2-D vector u(ls) can not be defined as linear to the corresponding

label ls.

We address this issue through the node decomposition [50]. A node s ∈ V is

decomposed into two nodes sx and sy representing one dimensional displacement

vectors, as described in Figure 5.4. In consequence, the quantized 1-D vector ui(lsi)

can be defined as linear to the corresponding label lsi ; e.g., ux(lsx) − ux(ltx) =

β(lsx − ltx) where β indicates a scale parameter. Note that the actual virtue of the

node decomposition lies in the fact that the number of labels for a node is decreased

from |L| to
√

|L|, considerably reducing computational complexity for the discrete

optimization. The original unary potential Φs is determined by the two labels;

i.e., transformed to pairwise potential. The MRF formulation in (4.6) subsequently

becomes
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Table 4.1: Quantitative analysis on the Middlebury evaluation data set. Only five

top-performing results are listed for the average angular and end-point error. The

least errors are written in bold and underlined for each column.

Complementary OF 4.44 11.20 4.04 2.51 9.77 1.74 3.93 10.60 2.04 3.87 18.80 2.19 3.17 4.00 2.92 4.64 13.80 3.64 2.17 3.36 2.51 3.08 7.04 3.65

Adaptive 3.29 9.43 2.28 3.10 11.40 2.46 6.58 15.70 2.52 3.14 15.60 1.56 3.67 4.46 3.48 3.32 13.00 2.38 2.76 4.39 1.93 3.58 8.18 2.88

Proposed 4.19 9.27 3.60 2.40 8.21 1.65 3.40 8.96 1.84 2.87 14.40 1.44 3.36 4.15 3.07 6.35 16.10 4.90 4.21 4.80 6.03 3.29 5.99 2.82

Aniso. Huber-L1 3.71 10.10 3.08 4.36 13.00 3.77 6.92 15.30 3.60 3.54 15.90 2.04 3.38 4.45 2.47 3.88 12.90 2.74 3.37 4.36 2.85 3.16 7.52 2.90

DPOF 5.12 12.90 3.49 3.07 10.30 2.44 3.09 7.47 2.43 3.42 12.90 2.41 3.55 4.56 3.35 4.69 14.20 5.14 3.59 4.67 3.83 2.00 4.93 1.65

Adaptive 0.09 0.26 0.06 0.23 0.78 0.18 0.54 1.19 0.21 0.18 0.91 0.10 0.88 1.25 0.73 0.50 1.28 0.31 0.14 0.16 0.22 0.65 1.37 0.79

Complementary OF 0.11 0.28 0.10 0.18 0.63 0.12 0.31 0.75 0.18 0.19 0.97 0.12 0.97 1.31 1.00 1.78 1.73 0.87 0.11 0.12 0.22 0.68 1.48 0.95

DPOF 0.13 0.35 0.09 0.25 0.79 0.19 0.24 0.49 0.21 0.19 0.62 0.15 0.74 1.09 0.49 0.66 1.80 0.63 0.19 0.17 0.35 0.50 1.08 0.55

Aniso. Huber-L1 0.10 0.28 0.08 0.31 0.88 0.28 0.56 1.13 0.29 0.20 0.92 0.13 0.84 1.20 0.70 0.39 1.23 0.28 0.17 0.15 0.27 0.64 1.36 0.79

Proposed 0.11 0.25 0.09 0.18 0.59 0.13 0.27 0.64 0.16 0.15 0.78 0.09 0.82 1.14 0.71 1.90 1.90 0.99 0.23 0.17 0.49 0.77 1.44 0.91

Urban Yosemite Teddy

Average end-point

error

Army Mequon Schefflera Wooden Grove Urban

Average angle

error

Army Mequon Schefflera Wooden Grove

Yosemite Teddy

EUB(l) =
∑

(sx,sy)∈Exy

Φs(lsx , lsy) +
∑

(s,t)∈Ex∪Ey

w̄stΨ(β(lsi − lti) + ksi), (4.9)

where k represents some offset value stemming from the coarse-to-fine approach.

Despite the offset value, Ψ holds convex to the label difference and thus the min-

convolution algorithm is still applicable for optimizing (4.9). In experiments we set

Ψ(·) = α| · |, which is a parametric and convex penalizer.

In order to utilize the node decomposition, the optimization method should be

based on the message-passing algorithm. We employ the TRW-S [51] which is

proven to give state-of-the-art results [52] in many intensive test cases; moreover,

use of the min-convolution algorithm enable the TRW-S to run in O(|V|
√

|L|) time,

as fast as the Graph-cuts [53].

4.5 Experimental Results

Experiments consist of three parts. First, the overall performance is evaluated

through the evaluation data set provided by the Middlebury Flow site [30,54]. Sec-

ond, we compare the proposed method with the control group replacing two key
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contribution factors; i.e., the convolution kernel prior and the adaptive kernel. Fi-

nally, we show the proposed method is also applicable to images containing large

displacements. We start with some details of our implementation followed by exper-

imental environments and actual parameters for the replication of our work.

Data matching criteria Defining the data cost functional in (4.6), we employ the

NCC (Normalized Cross Correlation) [55] combined with the gradient constancy

measure as follows:

Φs(ls) = λ

(

1−

∑

W J1(xu)J2(x
′
u)

√

∑

W |J1(xu)|
2
√

∑

W |J2(x′
u)|

2

)

+ (1− λ) ¯arccos

(

∇I1(xu)
T∇I2(x

′
u)

|∇I1(xu)||∇I2(x′
u)|

)

, (4.10)

where J(xu) = I(xu) − Ī(xs), x
′
u = xu + u(lu) while u is an element in a node set

W supporting the node s. The balancing parameter λ is set to 0.3 and the support

window size is set to 3× 3 squared pixel, which is the minimum size implementing

the NCC.

Experimental environments All the experiments are performed on a 2.60GHz

Intel QuadCore CPU. We use a two-level pyramid with the higher level search range

covering ten pixels for each direction while lower one is set to 2.5 pixels. Conceptual

coverage is up to 20 pixels and corresponding search range becomes (2 × 20 + 1)2

squared pixels for the maximum deformation. The number of quantization for each

direction is set to 20 generating 41(= 2×20+1) labels for a decomposed node, which

would be 1684(= 41×41) labels without the decomposition. Coarse-to-fine precision
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level is set to three, enabling the flow accuracy up to 0.125 pixel for each direction.

The edges with weight factor less than exp(−4σp) are ignored at the optimization

process. This strategy generates 72.24 connected neighbors per node on average for

the Urban sequence. In the meantime, we have few parameters to be empirically

tuned. The linear penalizing term α (= 2.0) also works as a balancing term between

data and smoothness cost. We set σp = 3.5, σc = 10.0 and ν = 0.1 respectively.

The scale parameter β in (4.9) does not require tuning; it is initialized to 1 at the

highest pyramid level and further recalculated according to the precision level.

4.5.1 Overall performance

The evaluation data set contains various tough situations such as non-rigid motion,

rotation, textured region and large displacement. Table 4.1 shows the average angu-

lar error and end-point error measured on different criteria: overall image (all), mo-

tion boundary (disc) and homogeneous region (untext). We list five top-performing

results, with the least error emphasized for each item. The analysis suggests our

method is highly competitive with other state-of-the-art methods on discontinuous

areas as well as textureless regions.

4.5.2 The control group

Figure 4.1 have qualitatively demonstrated a simple neighborhood system cannot

properly handle non-linear motion as the proposed prior. Qualitative analysis in

Figure 4.2 and Figure 4.3 suggest the proposed adaptive kernel provides better per-

formance than the bilateral kernel, on textured area as well as motion boundaries.
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Table 4.2: Quantitative analysis on the Middlebury test data set. We compare the

proposed method with two control group; replacing the convolution kernel prior with

the 8-neighborhood prior on the support window, and the adaptive kernel with the

bilateral kernel.

8-neighborhood 3.09 2.37 2.92 3.15 7.24 4.47 9.46 7.50

Bilateral kernel 3.27 1.98 3.65 2.18 5.94 2.76 3.72 6.49

Proposed 3.12 1.89 3.51 2.00 5.38 2.63 3.89 6.69

8-neighborhood 0.09 0.19 0.15 0.24 0.70 0.50 1.34 0.49

Bilateral kernel 0.10 0.16 0.17 0.16 0.61 0.43 0.59 0.41

Proposed 0.09 0.15 0.17 0.14 0.54 0.37 0.57 0.47

Urban2

Average end-

point error
Urban2

Average angle

error

Figure 4.3: Flow estimation on the Middlebury test data set without the groundtruth

flow (high-speed camera sequences.) Left column: The 10th frames in the Beanbag,

the Dogdance Center column: Results from the bilateral kernel. Right column:

Results from the proposed kernel. The proposed model shows better smoothing

result inside motion segments while keeping sharp boundaries. The HSI color code

is changed for better visualization of the difference.
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Figure 4.4: Flow estimation on the Middlebury test data set without the groundtruth

flow (high-speed camera sequences.) Left column: The 10th frames in the Mini-

cooper and the Walking sequence. Center column: Results from the bilateral

kernel. Right column: Results from the proposed kernel. The proposed model

shows better smoothing result inside motion segments while keeping sharp bound-

aries. The HSI color code is changed for better visualization of the difference.
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We also present the quantitative comparison with these control group, using the

Middlebury test data set of which the groundtruth is available. For the fair com-

parison, the 8-neighborhood system uses 11 × 11 support window with adaptive

weighting [47] and the bilateral kernel shares the same parameter setting with the

proposed one. As shown in Table 4.2, the proposed model generally shows smaller

errors (in 11 out of 16 items) than these two control group.

4.5.3 Large displacements

We present qualitative comparison with the work of Brox et al [3] addressing large

displacement problems. The video sequences provided in the website contain various

fast motions occurring in real scenes. Figure 4.5 presents results for the several key

frames in the Tennis sequence, including extremely large displacements. As can be

seen, the proposed method not only catch up with large deformations but find more

accurate motion boundaries.

4.6 Discussion

This work provides a discrete analog to the historically well-developed variational

methods and benefit from both approaches. The data cost in our model does not

require linearization to be differentiable; hence, inherently covers large displacement

problems. The convolution prior model is shown to be more powerful and flexible

than the simple neighborhood system with the support window, which has been

frequently used in the literature of the discrete framework. The new adaptive kernel

generalize the bilateral kernel and presents competitive results on motion boundaries
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Figure 4.5: Flow estimation on large displacements. Row 1,2: Frame 34, 37, 40,

43, 46 and 49 in the Tennis sequence. Row 3,4: Results from the work of Brox et

al [3]. Row 5,6: Results from the proposed model. All the results are estimation

for the frame and the right next frame e.g., Frame 34 and 35.
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as well as textured motion segments without cumbersome parameter tuning.

For the future work we consider following issues. Despite the reduced complexity,

the running time for highly connected graph still requires certain amount of time;

e.g., 5872 seconds for the 640 × 480 Urban sequence. As the data cost calculation

time is easily shortened by parallelization techniques using GPU, we expect a faster

algorithm will be possible in the near future by parallelizing BP [56].

Next, since the penalizer Ψ(·) in (4.5) should be convex to refrain from the higher

order clique potential, use of non-convex robust function (e.g., truncated linear) for

the regularizer is rather limited. A verification is left for the future work if the

result can be seriously enhanced by directly using higher order cliques with a robust

penalizer.
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Chapter 5

Sparse Occlusion Detection via

Window Matching

5.1 Introduction

In estimating optical flow between a reference and a target image frames, occlusion

refers to a certain region of the reference image that does not correspond to any

region in the target image due to, e.g., movement of objects and/or view change.

Unless properly defined, occlusion may degrade the quality of estimation, partic-

ularly on object boundaries, and may lead to severe performance degeneration in

many applications of optical flow estimation; for example, frame interpolation [57],

motion segmentation, motion layer ordering [58], and motion compensated coding.

A convincing method to find exact occlusion is grasping exact motion of all

objects in the images; inversely, if we obtain exact occlusion in advance, the accuracy

of flow estimation will be much improved. Unfortunately, none of the exact motion

or the exact occlusion is given in advance in most of cases, and so it is very difficult
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to obtain highly accurate optical flow and occlusion at the same time.

5.1.1 Related work

Various approaches have been presented for optical flow estimation and occlusion

detection. Many works individually estimate optical flow, and then detect occlusion

based on the estimated flow, and iterate these steps until convergence. One simple

approach to detect occlusion given flow estimation is thresholding the residual of

subtracting warped target image from the reference image [18]. Strecha et al. [59]

introduced a probabilistic criterion employing histogram of image contents. Other

researches [60] define occlusion by checking symmetric consistency of forward and

backward flows. Xu et al. [2] employed an observation that if a certain point in

the target image is accessible by multiple pixels in the reference through forward

warping, the point may probably be occluded. They refined the estimated flow using

this probability map of accessibility. These approaches may suffer from the fact that

they depend on initial flow results which could be incorrectly estimated in occluded

area, and so the subsequent iteration may also yield erroneous results accordingly.

Moreover, they require additional computational cost, e.g., for obtaining backward

flow or the occlusion probability map.

Occlusion has also been a big issue in stereo matching problems. Zitnick et

al. [61] proposed to iteratively update a 3D disparity array using the uniqueness and

smoothness constraint, detecting occlusion by thresholding. The uniqueness con-

straint implies that each pixel in the target should have at most one correspondence

to the reference. In [62], Kolmogorov et al.showed promising results by applying

Graph-cuts algorithm [10] to efficiently enforce the uniqueness constraint. Other

method [63] used backward disparity and visibility maps to obtain symmetric occlu-
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sion detection using iterative optimization with Belief Propagation [64]. These meth-

ods generally find solutions in discrete sample spaces, and for the two-dimensional

flow estimation problem, the size of space as well as the computational complexity

may exponentially increase.

Recently, Ballester et al. [65] utilized an assumption that an occluded pixel may

be visible in the previous frame to the reference frame, but their approach is limited

to the case that multiple frames are provided, and motion across the frames is

relatively simple. In [66], Ayvaci et al. showed a new model incorporating a cost

for occlusion which is supposed to be very sparse with infinitesimal time interval.

While this method presents state-of-the-art performance in detecting occlusion, it

degenerates the performance of flow estimation as the process iterates. Also the

performance can be very sensitive to the threshold value controlling the penalty of

sparseness.

5.1.2 Proposed approach

In this chapter, we aim to simultaneously estimate optical flow and detect occlu-

sion within a single optimization framework. Our method does not iterate through

flow estimation and occlusion detection. Compared to the previous state-of-the-art

method [66], the proposed approach does not degrade the performance of optical

flow estimation, indeed it does not require sensitive threshold parameter tuning.

Our method employs support-weight based window matching [16, 17, 22] with

discrete MRF optimization. Each pixel is related to a node representing 3D vector,

(i.e., 2D flow vector and occlusion status,) with well defined matching cost for every

possible vector values. The window refers to local neighbourhoods of the pixel to be

matched; and we fix it large enough to address the aperture phenomenon and other
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robustness issues, such as random noise. The support-weight is for accentuating

pixels in the window, if the pixels belong to the object that the central pixel belongs

to. For example, the range difference is commonly employed to decide if two pixels

belong to the homogeneous object:

w = exp

(

−
||I(s)− I(t)||2

2σ2
p

)

,

where ||I(s) − I(t)|| indicates range difference between a pixel t in the window and

the central pixel s.

Denoting wref as the weight for a window in the reference and wtar for a window

in the target, we propose to define normal weight as wrefwtar , and occlusion weight

as wref (1−wtar). For the matching cost assuming the pixel is occluded, our method

employs the occlusion weight, otherwise it uses the normal weight. Our observation

shows these weights can be utilized as a constraint for occlusion detection and can

improve the flow estimation for the occluded pixels.

Constraint for occlusion detection Figure 5.1 presents an example of the support-

weights for an occluded pixel. The bright region represents a background object

while the dark region represents a foreground object. The foreground in the ref-

erence (a) moves to left in the target (b); and the pixel indicated by red in (a)

is occluded in (b). The second and third rows of Figure 5.1 illustrate the normal

weight and the occlusion weight respectively, in case of the window in the reference

is matched to background, occlusion and foreground regions in the target. The ac-

centuated part of each window is shown in high intensity, which we refer as effective

area.

When a window in the reference image is matched to occlusion, the effective area

of the normal weight exactly represents occluded area, while that of the occlusion
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(a) (b)

(c) (d) (e)

Figure 5.1: Support-weight for an occluded pixel. (a) The reference frame. The

bright region (upper layer) moves to top, while the dark region (lower layer) moves

to left. The middle pixel shown in pink is occluded in the target frame. (b) The

target frame. Three target points (with windows) for the upper layer, occlusion, and

the lower layer are shown in green, red and yellow, respectively. (c,d,e) Illustration

of support-weights for the three target points computed with the normal weight

(top) and with the occlusion weight (bottom.)

weight accentuate background object only. When matched to other regions, i.e.,

foreground or background, the effective area of the occlusion weight is almost none.

Without loss of generality, the occlusion is supposed to be very sparse assuming the

time difference between the target and the reference frame is infinitesimal; and we

propose a simple (yet powerful) constraint for occlusion detection: if sum of the
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normal weight is smaller than that of the occlusion weight, then it is very likely that

the window is matched to occlusion, and we assign some penalty on the cost using

the normal weight.

Matching cost for an occluded pixel When a pixel in the reference image is

occluded, the pixel does not match to any pixel in the target, and its actual flow

is undefined. Instead of defining the matching cost for the occluded pixel, previous

approaches [18, 63, 66] generally assigned a constant cost for the occlusion. Not

only the constant cost is hard to fix due to its sensitiveness, but the resulting flow

estimation for the occluded pixel fully depends on regularization by neighbouring

flows. In contrast, our method assigns reasonable cost for the occluded pixel. We

observe that the matching cost for the occluded pixel may be defined using the

non-occluded neighbors which are in the homogeneous object that the occluded

pixel belongs to. As shown in Figure 5.1, the effective area of the occlusion weight

exactly represents non-occluded background area in the window, thus it can be a

good clue for estimating undefined flow for the occluded pixel.

The rest of this paper is organized as follows. Section 2 briefly defines our energy

formulation for the discrete framework. In Section 3 we propose the new support-

weight design and show its advantages. Section 4 introduces a method to enhance the

efficiency of the discrete optimization, and Section 5 presents experimental results

evaluating the proposed model. We finalize this work by providing the conclusion

and the future work in Section 6.
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5.2 Background

Let G be an undirected graph with a node set V and an edge set E . A node in V

corresponds to a pixel in the reference image. Let ls be a label, i.e., a random variable

for a node s in some discrete sample space Ls = {1, . . . , 2L2}, representing the

quantized vector set Ts = {us(1), . . . ,us(2L
2)}. A vector in Ts is three dimensional,

i.e., us = (us, vs, os). First two dimensions represent displacement vector for x and

y directions; and are homogeneously quantized by L labels. The last dimension,

denoted by os ∈ {0, 1} indicates occlusion status of the node. The flow estimation

and occlusion detection problem can be expressed as finding the labels for each pixel,

which minimizes an energy function such that:

∑

s∈V

Φs(ls) +
∑

(s,t)∈E

Ψst(us(ls)− ut(lt)) , (5.1)

where Φs(·) imposes the cost for matching the correlation window for s, and Ψst(·)

denotes the spatial smoothness term between s and t.

The discrete sample space L is a finite set. The size of the space |L| (= 2L2)

is proportional to the maximum displacement over the desired flow precision µ,

such that, |L| ∝ max(T )/µ. To cover large displacement with limited number of

labels, we build Gaussian image pyramids for the input images, and find the rough

solution from the top level of the pyramids. Down to the next level, the dense flow

field is estimated by interpolating the coarse solution, and is provided as the initial

flow field for further estimation. The number of pyramid level is determined by

logd(max(T )/|L|) where d−1 is the downsampling factor building the image pyramid.

We use d = 2 in our experiments.
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5.3 Proposed Data Matching

The conventional support-weight based window matching cost can be defined as

follows:

Φs(ls) =

∑

t∈W (s)w
ref
s (t)wtar

s′ (t′)ρ(t, t′)
∑

t∈W (s) w
ref
s (t)wtar

s′ (t′)
, (5.2)

where W (s) is a neighboring node set in the window supporting s. wref
s means the

support-weight function for s in the reference, and wtar
s′ indicates the function for

s′ in the target. s and t are mapped to s′ and t′ by displacement vector of us(ls).

ρ(t, t′) denotes a similarity measure between pixels at t and t′, e.g., the absolute

difference, the squared difference, or the gradient inner product.

We propose to use different support-weight according to the occlusion status.

The modified definition of the matching cost is shown as follows:

Φs(ls) = (1− os)

∑

t w
ref
s (t)ρ(t, t′)

Z

+ os

(

∑

t w
ref
s (t)(1 − wtar

s′ (t′))ρ(t, t′)

Zo

+ β̂

)

, (5.3)

where Z =
∑

t w
ref
s (t) and Zo =

∑

tw
ref
s (t)(1−wtar

s′ (t′)). β̂ is a conditional param-

eter that implements the constraint for sparse occlusion detection, such as:

β̂ =











0 if Z > Zo

β otherwise
(5.4)

Defining the support-weight for the reference image, we employ the conventional

bilateral filtering based approach [22], shown as follows:

wref
s (t) = exp

(

−
||xs − xt||

2

2σ2
g

−
||I(s)− I(t)||2

2σ2
r

)

, (5.5)
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where xs, xt indicate 2D coordinates, and I(s), I(t) mean color values of the points

s and t, respectively.

For wtar , we modified the geometric constraint in Eq. (5.5) such that,

wtar
s (t) = exp

(

−
(xs − xt)

T Tg(s) (xs − xt)

2σ2
g

−
||I(s)− I(t)||2

2σ2
t

)

. (5.6)

Tg(s) is an anisotropic tensor produced by the structure tensor (i.e., second moment

matrix) of the supporting window W (s), defined as follows:

Tg(s) =
1

Dg





1

|W (s)|

∑

k∈W (s)

∇Ig(k)∇Ig(k)
T + ν21



 , (5.7)

where 1 means the 2× 2 identity matrix, and ∇Ig means the gradient of the gray-

scaled input image. Dg represents a denominator for normalization, defined as the

trace of the matrix in the parenthesis. ν is the parameter controlling the degree of

isotropy. The eigenvectors of the structure tensor indicate the predominant direc-

tions of the gradient in the window. Thus, use of this tensor is more suitable to

preserves non-occluded region along the motion boundary in the window, compared

to the geometric constraint in Eq. (5.5) with fixed distribution regardless of image

contents.

In Figure 5.2, we present estimation results for some example problems. We

compare the proposed weight in Eq. (5.2) to the conventional weight in Eq. (5.3).

As seen, the proposed approach not only detect very accurate occlusion but also find

plausible flow estimation even for the occluded region.
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(a) (b) (c) (d) (e)

Figure 5.2: Estimation results for toy problems. (a) Reference frames. (b) Target

frames. (c) Flow estimation with the conventional weight. (d,e) Flow estimation

and occlusion detection with the proposed weight

5.3.1 Coarse-to-fine occlusion update

Our method assumes sparse occlusion in subsequent frames to detect occlusion by

comparing the normal weight to the occlusion weight. However, the input images

occasionally contain large occlusion, and as shown in the middle row of Figure 5.3,

the proposed method may yield a poor result in middle of the large occlusion.

As we build Gaussian image pyramids for the input images, the occluded region

is also scaled down in the upper level of pyramids; and can be considered as sparse.

Down to the next level, we interpolate the found occlusion and apply rank filtering.

We use rank 4 for 5× 5 filtering mask. The resulting occlusion map is combined to

a new occlusion map generated in the current level.
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Figure 5.3: Coarse-to-fine occlusion update. Top row: The Ambush 5 sequence.

Middle row: Estimation result without the update. Bottom row: Estimation

result with the update. Detected occlusion is shown in black.

5.4 Optimization

To find the optimal solution for the MRF formulation in Eq. (5.1), we employ the

TRW-S [11], which has shown state-of-the-art results [27] in many discrete frame-

work applications. The asymptotic computational complexity of the TRW-S, in gen-

eral, is O(|V||L|2). In our current framework, we may rewrite it as O(|V|L4). Since
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Figure 5.4: Conceptual illustration for the node decomposition. Left: The original

MRF model. A node represents a label for 3D displacement vector: (u,v, o). Right:

The original node is decomposed into three nodes representing labels for 1D vectors:

u, v, and o respectively. The unary term (shown in a black square) in the original

MRF model becomes a high-order potential term between the decomposed nodes.

the complexity is dominated by the number of labels, and our method requires an

adequate number of labels to yield plausible estimation results, we introduce tech-

niques to address the complexity issue.

5.4.1 Node decomposition

We apply the node decomposition scheme [28,67], reducing the complexity toO(|V|L2).

The scheme decomposes the node s ∈ V into three nodes x ∈ Vx, y ∈ Vy, and

o ∈ Vo. We may define li as a random variable for a node i in some discrete sam-

ple space Li = {1, . . . , L}, representing the quantized 1D displacement vector set

Ti = {ui(1), . . . , ui(L)} where i ∈ {x, y}; and lo as a random variable in Lo = {0, 1}.

The original displacement vector us(ls) corresponds to (ux(lx), uy(ly), lo). The orig-

inal edge set E is decomposed into Ex, Ey, Eo, and the new hyper-edge set Exyo is

introduced, to account for the high-order potential between the decomposed nodes.

Figure 5.4 shows a conceptual illustration of the decomposition scheme. The original
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MRF formulation in (5.1) is updated as follows:

∑

(x,y,o)∈Exyo

Ψxyo(lx, ly, lo) +
∑

(i,i′)∈Ei,i∈{x,y,o}

Ψii′(ui(li)− ui′(li′)). (5.8)

We note the original unary potential Φs is updated to the factor node, an element

of a hyper edge set EF , represented by the ternary potential Ψxyo. Unary potentials

for these nodes are undefined, imposing no cost on any configuration. As the number

of labels for a node reduces to L, the complexity of message-passing for pairwise

interactions reduces to O(|V|L2).

Conversion from high-order potential to pairwise interactions The factor

node induced by the decomposition is not easy to control in message-passing in the

TRW-S algorithm. We apply the conversion proposed in [68, 69] and introduce its

efficient implementation. Let a be an auxiliary variable node. a is associated to a

new label z ∈ A, where A is the Cartesian product of label spaces of connected three

nodes, i.e., A = Lx × Ly × Lo. We replace the factor node with the auxiliary node

a. Unary and pairwise potentials for the converted energy model are described as

follows:

Φa(z) = Ψxyo(lx, ly, lo) , (5.9)

Ψai(z, li) =











0 if zi = li

∞ otherwise
∀i ∈ {s, t, u} . (5.10)

where any possible value z has one-to-one correspondence to the triplets (lx, ly, lo).

zi (i ∈ {x, y, o}) denotes the associated component of the triplet. The pairwise po-

tential Ψai enforces zi to be consistent with the labels of the neighboring decomposed

nodes. After the conversion, energy model (5.8) changes to following,
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∑

z∈A

Φa(z) +
∑

(a,i)∈EF

Ψai(z, li) +
∑

(i,i′)∈Ei,i∈{x,y,o}

Ψii′(ui(li)− ui′(li′)). (5.11)

The auxiliary node may induce O(L3) of time complexity as well as O(L2) of

memory space to store messages. However, a message a to i ∈ {x, y, o} does not

require any storage since the pairwise potential Psiai never adds a value on the

message; in addition we may ignore all updating operations if zi 6= li. In sum, by

just modifying message-update logics in the implementation, the time complexity

remains O(L2).

5.4.2 Regularization for occlusion

The pairwise potential for Eo can impose regularization for occlusion status between

adjacent pixels. We have applied the Potts model with various λ values, and found

the best results with λ = 0, i.e., no regularization.

5.4.3 Min convolution

The decomposition enables defining the pairwise potential Ψst as linear to the label

difference; that is, we may rewrite Ψst(us(ls) − ut(lt)) as Ψ′
st(ls − lt). Then we

can apply the min-convolution algorithm [29] for the TRW-S, reducing the time

complexity to O(|V|L). In experiments, we set Ψ′
st(ls − lt) = α|ls − lt|, which is a

parametric and robust convex penalizer.

5.4.4 Incremental flow update

To obtain very high precision of sub-pixel accuracy, we iteratively find the incremen-

tal flow based on the current flow field. For the ith iteration, the flow precision is
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set to µ(i) = 0.5µ(i−1), so that the discrete algorithm employs smaller quantization

unit for the incremental flow. We note, in practice, the flow accuracy at a higher

level pyramid strongly influences the performance of the next level pyramid; thus

we run this process to obtain sufficiently high precision at every pyramid level.

5.5 Experiments

We validate our flow estimation and occlusion detection method on various datasets,

e.g., the Sintel dataset [70,71] and the Middlebury flow dataset [30,72]. The Sintel

dataset contains several image sequences generated by movements of synthetic ob-

jects, thus providing the exact ground-truth optical flow and occlusion map. The

Middlebury dataset includes image sequences of indoor and outdoor scenes, con-

taining various real or synthetic objects. To assess the accuracy of estimated flow,

we compare average end-point error (AEPE) and average angular error (AAE); and

for the performance of occlusion detection, we calculate the F1 scores using the

ground-truth occlusion maps.

We assumed the maximum deformation for each direction to be 64, and quan-

tized each direction by 8 with the target precision µ = 0.05. The size of correlation

windows was fixed to 30 × 30. The parameters affecting the relative influence and

strictness of the different constraints are fixed to optimal values for other experi-

ments: σg = 7.2, σr = 3.8, σd = 3.8, and α = 0.05.

To show the effect of occlusion detection, Figure 5.5 presents qualitative analysis

comparing estimation obtained with the proposed algorithm to the result computed

with our algorithm without occlusion detection, referred as ours w/o occ. We simply

impose very large penalty on the matching cost using the occlusion weight. As seen,
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Figure 5.5: Estimation results for the Alley 1 sequence. Top left: The reference

frame. Top right: Flow estimation with our method, which does not use occlu-

sion detection. Bottom left/right: Flow estimation with our method. Detected

occlusion is shown in black in the left image.

flow estimation on homogeneous regions is not clearly different. However, on the

region with occlusion, (as shown in black in the left-bottom image, e.g., upper region

of the left arm and the fruit,) the proposed method obviously improves the quality

of flow estimation.

Figure 5.6 additionally presents illustrative comparison of our algorithm to vari-

ous related methods. We employed the source codes provided in their website. The

method of Xu et al. [2] (the bottom row of the first column,) one of top-performing

methods in the Middlebury flow site [30], demonstrates state-of-the-art estimation

overall, (AEPE=0.44,) but the lack of occlusion detection causes degenerated es-
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Figure 5.6: Estimation results for the Bamboo 2 sequence using various algorithms.

Row 1: The referenc image and estimation with Xu et al. Row 2: Estimation with

Ayvaci et al. Row 3: Estimation with ours Row 4: Ground-truth flow. Detected

(or ground-truth) occlusion is shown in black in the top row.
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Table 5.1: Flow estimation error.

Table 5.2: Occlusion detection evaluation.

timation around the region with large occlusion. (e.g., the right wing of the but-

terfly.) Estimation with Ayvaci et al. [66] finds very delicate motion boundaries,

but both of flow estimation and occlusion detection are also severely deteriorated

(AEPE=0.67, F1=0.09), particularly on the region with large displacement. In con-

trast, our method presents plausible flow estimation (AEPE=0.29) and occlusion

detection (F1=0.54) even on the problematic region.

In Table 5.1, we show quantitative analysis comparing AEPE/AAE with these

methods to estimation errors with ours, for several sequences in the Sintel dataset.
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The reference frame is the tenth frame for each sequence. We excluded the results

from the sequences containing too large displacement, that no algorithm found mean-

ingful estimation with AEPE less than 10. For reference, we also add estimation

results with ours w/o occ. Compared to the method of Xu et al., ours shows lower

AEPE in average, probably due to better estimation on the occluded region, as ours

w/o occ. also shows similar performance with the method of Xu et al. Table 5.2

also provides analysis comparing precision/recall/F1-score measuring occlusion de-

tection performance with the method of Ayvaci., the state-of-the-art simultaneously

estimating flow and detect occlusion, to detection performance of ours. While the

method of Ayvaci et al. shows better precision in some sequences, but the proposed

method outperforms Ayvaci et al. for recall, and yields higher F1-score for most of

sequences. We note the method of Ayvaci degenerates the accuracy of flow estima-

tion for occlusion detection while our method even improve the accuracy, as shown

in table 5.1.

5.6 Discussion

In this work, we presented a novel support-weight based window matching method

for simultaneously estimate optical flow and detect occlusion. Our method works on

a unified optimization framework, which does not require any explicit estimation of

flow for occlusion detection, nor additional computation for occlusion. The proposed

support-weight provides an effective clue to detect occlusion, and improve estimation

of flow in occluded area. Experiments showed our method yields highly competitive

results, for optical flow estimation as well as occlusion detection. Compared to

the previous state-of-the-art method, our method does not degrade performance of
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optical flow to enhance detection.

We currently assume foreground and background objects are distinguishable by

their color, and so our algorithm may not present plausible estimation and detection,

for the region that assumption is not valid. More effective approach to distinguish

those objects can much improve the results in the future. Also, we plan to use

multi-labels for occlusion to specify the class of occlusion, e.g., order of motion

layer, rotation, viewpoint change, or severe illumination change.

Our current implementation takes 2012.4 seconds, on average, to find the esti-

mation of a 640× 480 image, with a 30× 30 correlation window. Graphic hardware

is already employed for parallel computing of the data matching cost, but we be-

lieve significantly faster processing can be obtained with a full implementation that

computes message-passing based optimization on parallel graphics hardware [31].
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Chapter 6

Conclusion

In this work, we proposed novel methods that address several current issues in optical

flow estimation.

To reduce errors around motion boundaries, we presented a new adaptive win-

dow correlation based on the discrete MRF framework. A novel data cost design

incorporating various constraints efficiently ignores inhomogeneous motion in cor-

relation windows on object boundaries, helping to enlarge the window size to cover

the aperture phenomenon. The effect of each constraint compared to the previous

constraints has been shown with quantitative analysis. In order to reduce compu-

tational complexity and fully utilize image resolution, we utilized the decomposed

scheme combined with the course-to-fine approach.

Addressing complex non-transitional motion with large displacement, we propose

a discrete analog to the historically well-developed variational methods and benefit

from both approaches. The data cost in our model does not require linearization

to be differentiable; hence, inherently covers large displacement problems. The

convolution prior model is shown to be more powerful and flexible than the simple
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neighborhood system with the support window, which has been frequently used in

the literature of the discrete framework. The new adaptive kernel generalize the

bilateral kernel and presents competitive results on motion boundaries as well as

textured motion segments without cumbersome parameter tuning.

For the occlusion issue, we presented a novel support-weight based window

matching method for simultaneously estimate optical flow and detect occlusion.

Our method works on a unified optimization framework, which does not require any

explicit estimation of flow for occlusion detection, nor additional computation for

occlusion. The proposed support-weight provides an effective clue to detect occlu-

sion, and improve estimation of flow in occluded area. Experiments showed our

method yields highly competitive results, for optical flow estimation as well as oc-

clusion detection. Compared to the previous state-of-the-art method, our method

does not degrade performance of optical flow to enhance detection.
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