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Abstract 

Generation of finite power Airy beams 
based on 

holographic and plasmonic approaches 

DAWOON CHOI 
DEPARTMENT OF ELECTRICAL AND 

COMPUTER ENGINEERING 
COLLEGE OF ENGINEERING 

SEOUL NATIONAL UNIVERSITY 

An Airy beam is a kind of non-diffracting wave such as Bessel beam and Weber beam, 

which keeps its initial field profile during propagation. It was theoretically analyzed by 

Berry and Balazs as a non-trivial solution of the Schrödinger equation describing 

movements of a free particle under the free-potential condition. Until now, the Airy beam 

has attracted much attention due to their three representative characteristics: non-

diffraction, free-acceleration and self-healing. First, an Airy beam has the invariant field 

profile during propagation: non-diffraction. Second, the Airy beam has the unique 

bending trajectory without any external force: free-acceleration. Lastly, the Airy beam 

has the ability to reconstruct its original shape after being partially blocked by an opaque 

obstacle: self-healing. These properties can be understood by noticing that a number of 

straight rays form the parabolic caustic. However, it is impossible to experimentally 

build up an Airy beam since it has a long tail containing infinite power. Thus, a finite 

power Airy beam was introduced by suppressing side lobes of an ideal Airy beam. 
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Although this Airy-like beam cannot remain the non-diffraction feature permanently, it 

shows not only reasonable propagation length with keeping its Airy field profile but also 

distinguished properties such as both free-acceleration and a self-healing ability. 

In this dissertation, the generation method of the finite power Airy beams via initial 

field modulation to suppress side lobes is presented. Three types of input beam cases, 

which are a Gaussian beam, a uniform beam of finite extent and an inverse Gaussian 

beam, are investigated both theoretically and experimentally. Especially, the finite power 

Airy beam generated by a uniform input beam of finite extent retains the Airy field 

profile much longer than that of the Airy beam generated by a conventional Gaussian 

beam. Also, the finite power Airy beams generated by an inverse Gaussian input beam 

forms a unique  focused-bending beam. 

To generate the finite power Airy beams, a novel method based on holography 

which is the recording and reconstruction technique of optical fields including amplitude 

and phase information, is introduced. After interference patterns of a reference beam and 

a finite power Airy beam are recorded on a photopolymer, the finite power Airy beams 

can be regenerated by simply illuminating the reference beam on the hologram. In 

addition, using the characteristics of holography, the self-healing property and more 

bended propagation of the reconstructed Airy beams are experimentally verified. 

Moreover, angle multiplexing of the multiple Airy beams determined by the angles of the 

reference beams is presented. This might enable the parallel processing of particle 

manipulations using the Airy beams. 

A new method to launch the finite power Airy beams based on the metallic slit array 

is presented. By tailoring the amplitude and phase of the transmitted fields from the 

metallic slit array, the launching of Airy beam with compact area has been achieved in 

free space. From the Huygens' principle, diffracted light at the slit end acts individual 

point sources and forms the interference patterns by controlling surface plasmon 

polartons (SPPs) diffracted at the exit of the subwavelength slit. It is expected that this 

method is used to various applications like particle tweezing, sorting, clearing and 

trapping without any optical components and bulky structure. 
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Chapter 1.  

Introduction 

1.1. Overview of Airy beams 

In 1978 Berry and Balazs first introduced the non-spreading wave packet from the 

Schrödinger equation in quantum mechanics for a free particle [1]. The Airy wave packet 

is the only non-trivial solution which has following unique properties: non-spreading 

according to time varying and free-acceleration without any external potential. 

From the paraxial Helmholtz equation which mathematically correspondents to the 

Schrödinger equation, in 2007, Siviloglou and Christodoulides showed the optical 

version of the Airy wave packet, namely Airy beams [2]. The Airy beam is a kind of 

non-diffraction beams whose transverse intensity distributions are assumed by Airy 

functions shown in the inset of Fig. 1.1. They presented the Airy beam solutions in one 

dimension (1D or (1+1)D) and two dimension (2D or (2+1)D) adopting an exponentially 

decaying aperture. This work led experimental realizations of finite power Airy beams 

because ideal Airy beams are not square integrable (i. e., they convey infinite power) [3]. 

Understandably, presented finite power Airy beams have the similar characteristics with 

that of the Airy wave packet - non-diffraction during propagation and the bending 

trajectory without any external force or any refractive index gradient as shown in Fig. 1.1. 

Also, just like other non-diffraction beams, it was reported that they have the self-healing 

phenomenon which is restoring their original shapes despite blocking a part of whole 

beams [4,5]. 
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Figure 1.1 Intensity distribution of (1+1)D ideal Airy beams. During 

propagation, an Airy profile is invariant (non-diffraction) and the intensity 

maximum is moving along a bending trajectory (free-acceleration). An inset 

is a transverse cross-section plot at the origin. It shows an Airy function 

profile. 

Surface plasmon polariton (SPP) is an electromagnetic wave that propagates along a 

metal-dielectric interface as shown in Fig. 1.2 [6, 7]. Let me consider a basic geometry 

sustaining SPPs, which is a single interface between a dielectric medium with dielectric 

constant εd and a flat metal with permittivity εm in a transverse magnetic (TM) case. In a 

dielectric medium (z ≥ 0), the electromagnetic fields can be expressed by the Maxwell's 

curl equation: 

 1( ) exp( ),y dH z A i x k zβ= −   (1.1) 

 1

0

( ) exp( ),x d d
d

AE z i k i x k zβ
ωε ε

= −   (1.2) 

and 
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Figure 1.2 Propagation of surface plasmon polariton at the interface between 

a metal and a dielectric medium. 

 1
0

( ) exp( ),z d
d

E z A i x k zβ β
ωε ε

= − −   (1.3) 

where β is a propagation constant of an SPP wave and kd is the wavevector in the x-

direction. In similar manner, in a metal (z < 0), the electromagnetic fields can be 

expressed by 

 2( ) exp( ),y mH z A i x k zβ= +   (1.4) 

 2

0

( ) exp( ),x m m
m

AE z i k i x k zβ
ωε ε

= − +   (1.5) 

and 

 2
0

( ) exp( ),z m
m

E z A i x k zβ β
ωε ε

= − +   (1.6) 

where km is the wavevector in the perpendicular direction to the interface. A1 and A2 

denote coupling coefficients. From the continuity relations, the dispersion relation for the 

SPP wave is 

 0 ,d m

d m

k ε ε
β

ε ε
=

+
  (1.7) 

Metal (εm)

Dielectric (εd)

z

x

Hy
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where k0 (=ω/c) is the wavevector in free space. This field is strongly confined beyond 

diffraction limit and exponentially decayed in a transverse direction from the metal 

surface. As a result, hundreds or thousands of times field enhancements can be achieved 

in subwavelength structures [8-12]. Using this characteristic, various applications such as 

imaging, lithography, sensor and optical data storage have been actively reported [13-20]. 

However, intrinsic metallic loss due to internal damping of a metal is inevitable. Hence, 

it becomes an obstacle to practical use of nano-metallic structures based on SPP. Here, 

SPP wavelength λSPP is defined by 

 2 .
Re( )SPP

πλ
β

=   (1.8) 

Recently, Airy plasmon is presented as a promising candidate to solve confronting 

hurdles of SPP [21-28]. Following respects of Airy plasmon are easy to adopt in a 

practical planar metallic system. Firstly, it shows relatively long propagation length than 

that of other non-diffraction beams on the metal surface. Secondly, since the origin of 

Airy beams is a superposition of plane waves in free space, it can be replaced with SPP 

waves in a metal surface. Thirdly, in general, it is difficult to express non-diffraction 

beams such as Bessel beams and parabolic beams in a plane because more than one 

coordinates are essential. On the contrary, Airy beams even have a quasi-one-

dimensional form such as (1+1)D or (2+1)D. Finally, it is not sensitive to surface 

roughness or defects because of their self-healing property. 

The first optical observation of the Airy beams was realized by the optical Fourier 

transform system shown in Fig. 1.2 which is adding the cubic phase to a broad Gaussian 

beam. After a computer-generated phase mask on a spatial light modulator (SLM) is 

illuminated by an input Gaussian beam, inverse Fourier transform is performed by a 

Fourier lens. As a result, the Airy beams are generated at the image plane. [3]. On the 

same principle, observations of Airy beams in wide area such as nonlinear generation 

[29-31], curved plasma channel generation [32] and electron beam generation [33] were 

reported. Meanwhile, to couple a plane wave in free space into SPPs on a metal surface, 

there are two representative methods such as prism coupling and grating coupling which 
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compensate a lack of k-vector of the plane wave in free space [34]. Recently, using a 

grating coupling method, another way to generate Airy beams on a metal surface which 

directly assigns initial launching conditions was suggested by Minovich et al. [22, 30]. 

For matching initial intensity and phase distributions of Airy beams, grating width in a x-

direction is proportional to intensity distributions of Airy beams and grating position is 

determined according to SPP wavelength. Adjacent grating is positioned with a π-phase 

difference of SPP wavelength. They used a 10 mW CW diode laser with 784 nm 

wavelength. A period of the z-direction is 764 nm, which is equal to SPP wavelength at 

784 nm. Overall size of the structure is approximately 20 μm × 10 μm. Figure 1.3(a) is a 

scanning electron microscope (SEM) image of a designed grating array on a gold film 

with a 150 nm thickness, which is fabricated by a focused ion beam (FIB). In this case, 

the permittivity of gold is -10.5099+1.0573i at 660 nm wavelength and 628 nm of SPP 

wavelength is calculated by Eq. (1.8). 100 nm of grating width in the y-direction is fixed. 

While a laser beam of 660 nm wavelength is illuminating the sample at the bottom, Airy 

plasmons ((1+1)D Airy beams) measured by a near-field scanning optical microscope 

(NSOM) are excited at a gold surface shown in Fig. 1.3(b). Also, Li et al. presented an 

array structure for launching plasmonic Airy beams based on in-plane diffractions [23]. 

When SPPs propagate through graded diffraction gratings (from 420 nm to 780 nm with 

10 nm increment) on a 60-nm-thickness silver film, they are scattered by these designed 

nanocave array. As a result, interference patterns (Airy plasmons) are formed according 

to the Huygens-Fresnel principle. They excited SPPs using a He-Ne laser with 632.8 nm 

wavelength. They experimentally demonstrated the self-healing property of the Airy 

plasmons and recorded them using a leakage radiation microscopy (LRM) system. Last, 

Zhang et al. suggested a new technique to launch plamonic Airy beams [25]. Using the 

grating coupler with a 805 nm period on a 50m-thickness gold surface, cubic phase 

modulated beams with 820 nm wavelength were coupled into Airy plasmons after 

passing through a objective lens. They dynamically controlled trajectories of Airy 

plasmons by controlling the transverse or longitudinal positions of the objective lens or 

changing the phase mask on the SLM. Observation of Airy plasmons was conducted by 

the LRM system which shows real time images of Airy plasmons.  
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Figure 1.3 (a) SEM image of a fabricated slit array for exciting Airy 

plasmons. (b) Intensity distribution of Airy plasmons measured by the 

NSOM system.  

1.2. Motivation of this dissertation  

To resolve the problem that ideal Airy beams are not square integrable (i.e., they carry 

infinite power), exponentially decaying terms were introduced to implement finite power 

Airy beams [2], which have similar features to those of the ideal one. They were 

generated by the optical Fourier transform of a Gaussian input beam on which cubic 

phase is imposed [3]. Although they can carry finite power, these apodized finite power 

Airy beams cannot maintain their shapes for a long time and are gradually spreading out 

during propagation [3]. Recently, based on these, various methods which tune a main 

lobe or side lobes of finite power Airy beams by using a flat-topped input Gaussian beam 

[35], a nonsymmetric apodization [36] and a sharp cutoff [37] were presented.  

In this dissertation, some alternative methods for the apodization of Airy beams for 

solving a diffraction issue in finite power Airy beams are presented [38]. Instead of 

Gaussian input beams (that involve exponentially decaying terms), uniformly distributed 

beams of finite extent or beams having an inverse Gaussian distribution is considered. In 

the case of a uniformly distributed finite-extent beam, it shows that the resultant finite 

λsppλspp/2100 nm

(a) (b)
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power Airy beam can preserve its Airy profile much farther than that generated by the 

Gaussian input beam. An inverse Gaussian apodization results in a unique propagation 

dynamics: a focused-bending beam. In each case, the solution of the finite power Airy 

beam is derived and verified by experiments. This work will provide not only the effects 

of initial fields in finite power Airy beams but also the method to overcome the 

diffraction problem in non-diffraction beams with finite power. 

 
Figure 1.4 Concept of optically mediated particle clearing along a bending 

trajectory of Airy beams. 

Recently, using an unique bending property of Airy beams, optically mediated 

particle clearing was experimentally demonstrated [4,39-42]. Using (2+1)D Airy beams 

with an Ar+ laser of 514 nm wavelength and 25 mW power, colloidal glass spheres of 

1.5 μm diameter were conveyed from one section to another section along parabolic 

trajectories shown in Fig. 1.4 [4]. Also, an optical tweezer system was reported based on 

the optical trapping force of the focused Airy beams [40]. When a 532 nm laser with 5 W 

peak power illuminates polymer particles with 3.2 μm diameter diffused in de-ionized 

water, optical trapping takes place before the focus, at the focus and after the focus. 

Optical tweezers use so-called gradient force of the electric field of a highly focused laser 
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beam to manipulate nano- or micro-size dielectric particles without physical contact [43-

48]. They are useful in sorting or guiding cells, molecules and DNAs in a biological 

system. In optical tweezers, there are several important things to consider: (1) 

improvements in spatial- and time-resolutions and (2) removals of experimental noise 

such as temperature drift, mechanical and acoustic vibrations and background electronic 

noise. In addition, multiple optical trapping is very useful because it can allow parallel 

processing of simultaneous particle manipulations. Especially, based on holographic 

method using an SLM or a diffractive optical element (DOE), simultaneous operations 

are possible to achieve the high throughput [47,48].  

In this dissertation, holographic generations of Airy beams in the beginning are 

demonstrated. By recording and reconstruction of holograms which consist of the 

interference between generated Airy beam using the optical Fourier transform system 

and a plane wave, decoded Airy beams have non-diffracted nature with a bending 

trajectory [49]. After that, multiplexing operations of two Airy beams (accelerations in 

opposite directions) determined by the angles of reference beams are presented. In 

addition, based on the characteristics of holography, the self-healing property and the 

conjugated Airy beams are investigated. This approach can be utilized to not only a novel 

and robust Airy beam generation method but also an optical tweezing system with 

multiplexing of Airy beams. 

To generate the Airy beam in free space, a method of cubic-phase wrapping to a 

Gaussian beam has been used typically [3]. After passing through an optical Fourier 

transform system which consists of the phase mask with a cubic-phase modulation 

placed one focal length in front of a lens, the incident Gaussian beam is transformed into 

the finite power Airy beams in the Fourier plane placed one focal length behind the lens. 

Also, a frequency converted Airy beams based on nonlinear processes and a femto-

second Airy beams in curved plasma channel have been generated by the same method 

[29-32]. However, these methods are not appropriate for applying to the compact-sized 

system because the bulky optical devices of high-cost such as femto-second lasers, SLMs 

and several optical elements should be required. Meanwhile, it is already known that 

both fast transmission speed and broadband communication processes can be achieved 
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by light. However, due to inevitable nature of light, namely diffraction limit which 

causes no observation below subwavelength, light remained just one of candidates to 

solve urgent issues of electronics such as slow operation speed and bulky size reduction. 

Recently, however, growing with remarkable developments of the manufacturing 

technology leads developments of the nanotechnology. Especially, plasmonics which 

combines SPPs and nanostructures is widely researched on nano-imaging, nano-

lithography, nano-manufacturing and so on. 

In this dissertation, a new method to generate Airy beams in free space based on 

plasmonics is proposed [50]. After an SPP wave is passing through subwavelength slit, it 

is coupled to a spherical wave in free space. Since each spherical wave can be regarded 

as an individual point source from the Huygens' principle, arbitrary interference pattern 

generations are possible. According to this phenomenon, a subwavelength slit array to 

manipulate light caustics which are satisfied to a Airy beam trajectory is designed. The 

designed structure, so-called metallic lens, acts as combinations of an SLM and a lens. It 

shows that the generated Airy beams have the same properties such as non-diffraction, 

bending and self-healing as those of ideal Airy beams. This work enables to reduce 

overall size of an Airy beam generation system. Therefore, it can be utilized to various 

light manipulations as well as signal processing in optical integrated circuits. 

1.3. Scope and organization  

Unique natures (non-diffraction, bending trajectory and self-healing) of Airy beams have 

attracted much interest in optical science. To maintain these characteristics over a whole 

range, conserving an entire beam profile originated from infinity power is necessary. 

However, it is impossible to impose infinity power to Airy beams due to a realistic 

constraint. Therefore, practical approaches in Airy beam generation were attempted 

considering finite experimental environments such as finite power of laser source and 

finite size of optical elements.  

In Chapter 2, I explain how to generate Airy beams in finite environments first and 

then present the effects originated from initial field modulations. In Section 2.1, I discuss 
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theoretical analysis of the Airy beams from the paraxial Helmholtz equation with 

potential-free. At first, the solutions of the ideal Airy beam and the finite power Airy 

beams are presented. From there, three types of apodization methods of ideal Airy beams 

are compared under the experimental conditions. In addition, dimension extension to the 

finite power Airy beams, which are the (2+1)D finite power Airy beams, is covered. In 

Section 2.2, the generation of the finite power Airy beams to three cases is 

experimentally observed. I provide the experimental results according to three different 

apodization types. These experimental results coincide well with the theoretical 

expectations in section 2.1. 

Chapter 3 shows the generation of the finite power Airy beams by holographic 

method. Holographic generation consists of two procedures which are recording and 

reconstruction. In Section 3.1, the recording process of the (2+1)D Airy beams is 

introduced. After recording a reference beam and the Airy beams generated by the 

convention generation method based on the optical Fourier transform and reconstructing 

them, holographic Airy beams is achieved. Especially, in the reconstruction procedure, 

the self-healing property and conjugated Airy beams are shown by illuminating an 

imperfect reference beam or a phase-conjugated  reference beam. In Section 3.2, I 

present angle multiplexing of two Airy beams according to the angles of the reference 

beams for practical uses. This work also consists of two stages. The recording procedures 

are conducted twice to record two Airy beams having different trajectories. In the 

reconstruction procedures, the reconstructed Airy beams can be obtained both 

simultaneously and separately. 

From the Huygens' principle, it was widely known that diffracted light becomes a 

point source of spherical waves which form a specific patterns. In Chapter 4, I adopt this 

principle to manipulate the finite power Airy beams using subwavelength slit array. Thus, 

the design process of a subwavelength metallic slit array is explained in Section 4.1. 

Since a subwavelength slit can be regarded as a metal-insulator-metal waveguide, the 

transmittance and the phase retardation of a surface plasmon mode according to the 

metallic slit parameters are analyzed. In Section 4.2, the proposed structure is 

numerically demonstrated by COMSOL Multiphysics based on the finite elements 
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method. In addition, I show a simulation result about self-healing which is an important 

property of Airy beams. 

Finally, concluding remarks for this dissertation and summary are provided in 

Chapter 5. 

 
Figure 1.5 Scope of this dissertation. 
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Chapter 2.  

Generation of Airy beams 
via initial field modulation 

In this chapter, finite power Airy beams generated by the Fourier transform of a cubic 

phase-modulated beam of finite extent such as a Gaussian beam (CASE I), a uniform 

beam of finite extent (CASE II) and an inverse Gaussian beam (CASE III) are discussed. 

The propagation dynamics of resultant finite power Airy beams are analyzed and 

compared with three different input beam CASES. Both theoretical and experimental 

approaches show that the finite power Airy beam generated by the use of a uniform input 

beam (CASE II) retains the Airy profile much longer than the conventional finite power 

Airy beam (CASE I). Also, the finite power Airy beam via an inverse Gaussian beam 

(CASE III) builds up a focused-bending beam. It is expected that these works in this 

chapter can be utilized to particle manipulations such as sorting, tweezing and optical 

trapping.  

2.1. Theoretical analysis of Airy beams  

Since Berry and Balazs predicted the existence of non-spreading wave packets [1] and 

Siviloglou and Christodoulides studied their optical version [2], there have been very 

active researches on Airy beams [1-5, 21-33, 35-44, 49, 50, 54, 56-60]. To sum up their 

outcomes until now, three unique characteristics of Airy beams are presented. First, Airy 

beams are non-diffracting ones that satisfy the Helmholtz equation like Bessel [51] and 

parabolic beams [52]: non-diffraction. Second, Airy beams take up a bending trajectory 
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in homogeneous media without any external forces: acceleration. Lastly, Airy beams can 

recover their original shapes when a part of them is blocked by arbitrary obstacles: self-

healing.  

2.1.1. (1+1)D finite power Airy beams 

The (1+1)D paraxial Helmholtz equation with potential-free (no gradient) can be written 

as 

 
2

2

1 0,
2

i
s

φ φ
ξ
∂ ∂

+ =
∂ ∂

  (2.1) 

where ϕ is the electromagnetic wave function. s and ξ denote the transverse coordinate x 

scaled by an arbitrary scaling factor x0 and the longitudinal coordinate z scaled by knx0
2, 

respectively, where kn (=2πn/λ) is a wavenumber in a propagating medium with a 

refractive index n, and λ is the wavelength of light in free space. By solving Eq. (2.1), the 

Airy beam solution ϕ can be obtained as follows [2]: 

 
2 3

0 ( , ) Ai exp .
2 2 12

ss s i iξ ξ ξφ ξ
       = − −                

  (2.2) 

The Fourier transform Φ0 of Eq. (2.2) at ξ=0 (at the initial position) is given by (Eq. 

(A.2)) 

 
3

0 ( ) exp .
3
kk i

 
Φ =  

 
  (2.3) 

As it was mentioned in the introduction, Eq. (2.3) is not square integrable and thus ϕ0 is 

not physically realizable. Usually, an exponentially decaying function exp(as) is 

multiplied to ϕ0 to obtain a finite power beam: 

 ( ) ( ) ( )1 , 0 Ai exp ,s s asφ ξ = =   (2.4) 

which is square integrable and its Fourier transform Φ1 becomes (Eq. (A.5)) 

 ( )2 3 2 3
1( ) exp( )exp 3 .

3
ik ak k a k ia Φ = − − − 

 
  (2.5) 
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Based on Eq. (2.5) and its optical Fourier transform, the first observation of finite Airy 

beams was conducted: the cubic phase [ ( )3exp / 3ik ] was imposed on the Gaussian beam 

[ 2exp( )ak− ] using a spatial light modulator (SLM) and the resultant, cubic phase-

modulated Gaussian beam was Fourier transformed using a lens system [3]. If the higher-

order terms of the relatively small constant a is ignored, 2 3exp ( 3 )
3
i a k ia − − 

 
 in Eq. 

(2.5), the only difference between Eqs. (2.3) and (2.5) is the Gaussian function 

[ 2exp( )ak− ] which is originated from the apodization, i.e., exponentially decaying term 

exp(as). Therefore, Eq. (2.3) can be understood as a plane wave (of infinite extent) with a 

cubic phase modulation, suggesting that the finite-extent feature of the input beam results 

in the finite power Airy beam. 

2.1.2. Comparison with three CASES of Airy beams 

This discussion, i.e., the fact that a finite power Airy beam can be generated by the 

Fourier transform of a cubic phase-modulated beam of finite extent, implies that there 

can be other methods for the apodization of ideal Airy beams. That is, other types of 

finite-extent beam than the Gaussian one can be used. Here, finite power Airy beams 

generated by three different input beams - those having a conventional Gaussian 

distribution (CASE I), a uniform distribution of finite extent (CASE II) and an inverse 

Gaussian distribution (CASE III) - are considered. At first, it is assumed that the 

wavelength of an incident beam λ is 633 nm, x0 is 50 μm, the focal length of the lens f is 

50 cm and the SLM has 1080 × 1080 pixels with an 8 μm pixel pitch. 

First, let us start with the CASE I, which adopts a Gaussian beam as an input beam. 

Until now, there is no simulation including the experimental regime. Due to the finite 

size (modulation area) of the SLM, the incident Gaussian beam must be truncated. 

Therefore, Eq. (2.5) becomes 

 ( )2 3 2 3
1( ) exp( )exp 3 ,

2 3
f ik k ak k a k ia
l

λ
π

   Φ = Π − − −   
   

  (2.6) 
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Figure 2.1 Propagation dynamics of finite power Airy beams generated by (a) 

a Gaussian beam, (b) a uniform beam of finite extent and (c) an inverse 

Gaussian beam. (d) Propagation dynamics of an ideal Airy beam. 

where Π(α) is a rectangular function (1 if | α | < 0.5 and 0 otherwise) and l is the length of 

the SLM along the one dimension given by the product of the pixel pitch and the number 

of SLM pixels. The propagation dynamics of the CASE I Airy beam can now be written 

as follows using the Fresnel diffraction form of Eq. (2.4): 

 
( )

( )

2 2
1 0

3 3 2 3 2
0 0

0

( , ) exp
2

exp 3 exp( ) ,
3 2

fx z k ax k
l

i zx k a x k ia i k ikx dk
k

λφ
π

∞

−∞

 = Π − 
 

 
× − − − + 

 

∫
  (2.7) 

where the value of a is chosen to be 0.1 throughout this chapter. Calculation results of Eq. 

(2.7) are plotted in Fig. 2.1(a). In this case, the number of side lobes in the initial plane 
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(z=0 cm) is decreased because the Gaussian distribution of the input beam cannot fully 

retain the high spatial frequency components. It is known that side lobes of Airy beams 

are originated form high spatial frequency components. As a result, unlike the ideal case 

shown in Fig. 2.1(d), the Airy beam is diffracted or spreads out due to insufficient power 

flows from the side lobes. 

Second, under the same conditions, a beam with a uniform intensity distribution of 

finite extent (or a truncated plane wave as an input beam; CASE II) is adopted. In this 

case, it has 

 
3

2 ( ) exp .
2 3

f kk k i
l

λ
π

  Φ = Π   
   

  (2.8) 

From the property of the Fourier transform, the (inverse) Fourier transform of Eq. (2.8) is 

a convolution of the sinc function and the Airy function as follows:  

 2
0

( , 0) sinc * Ai ,l xx z x
f x

φ
λ

  
= =   

   
  (2.9) 

where * denotes the convolution. The propagation dynamics of the CASE II Airy beam 

can be expressed as: 

 ( )3
0 2

2
0

( , ) exp exp( ) ,
2 3 2

x kf zx z k i i k ikx dk
l k

λφ
π

∞

−∞

    = Π − +      
∫   (2.10) 

and its calculation results are presented in Fig. 2.1(b). In Fig. 2.1(b), more side lobes at 

the initial plane compared with the CASE I are observed. Figure 2.1(b) also shows that 

the incidence of a truncated plane wave and its Fourier transform after the cubic phase 

modulation can generate a finite power Airy beam which takes up a bending trajectory 

with the acceleration toward the +x direction. What is interesting is that this finite Airy 

beam can preserve its Airy profile much farther than that generated by the Gaussian input 

beam. This is because more high-frequency components are retained in Eq. (2.8) than in 

Eq. (2.6). That is, the sinc l x
fλ

 
 
 

 term resulting in imposing finite power in Eq. (2.9) is 

keeping more side lobes of Airy beams than exponentially decaying term exp(as). 



17 
 

Lastly, in the CASE III, I use a beam with an inverse Gaussian intensity distribution 

as an input beam. I have 

 
( )( )

( )

2 2
3 0

3 3 2 3 2
0 0

0

( , ) 1 exp
2

exp 3 exp( ) .
3 2

fx z k ax k
l

i zx k a x k ia i k ikx dk
k

λφ
π

∞

−∞

 = Π − − 
 

 
× − − − + 

 

∫
  (2.11) 

In this case, whose results are shown in Fig. 2.1(c), the main lobe is suppressed at the 

initial plane because the inverse Gaussian distribution can retain only high spatial 

frequency components. However, as can be found in Fig. 2.1(c), the resultant finite 

power beam generates the main lobe after some propagation distance and is accelerated 

along the +x direction. That is, Eq. (2.11) also describes a finite power Airy beam. 

Actually, this case can be taken as an extreme example proving the self-healing property 

[4, 5]: side lobes without the main lobe can regenerate the Airy profile during the 

propagation. 

 
Figure 2.2 Cross-correlations of finite power Airy beams with the ideal Airy 

beam along the propagation direction: C1(z). 

To compare the propagation characteristics of these three finite power Airy beams, 

their cross-correlations with the ideal Airy beam are calculated along the propagation  
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Figure 2.3 Cross-correlation between profiles at the initial plane and at a 

specific position z calculated in the direction of the propagation (z-direction): 

C2(z). A cyan dotted line denotes ideal Airy beams. All values are 

normalized by the cross-correlation value at the initial plane. 

direction z. In Fig. 2.2, the variation of the maximum value of this cross-correlation is 

plotted, i.e., C1(z) defined by 

 
2 2*

1 0 1,2,3( ) max ( ) ( ) .iC z x dφ τ φ τ τ
+∞

=
−∞

 
= + 

 
∫   (2.12) 

Green dashed, blue solid and red dash-dotted lines correspond to the CASE I, II and III, 

respectively. Although the cross-correlation values in Fig. 2.2 cannot be normalized due 

to infinite power of ideal Airy beams, it can be known that the cross-correlation becomes 

maximum at the initial plane and gradually decreases for the CASE I and II. This means 

that the finite power Airy beams spread out or are diffracted so that they lose their initial 

Airy shape during propagation. However, it shows that the cross-correlation value of the 

CASE II Airy beam is always higher than that of the CASE I at every z. This means that 

the CASE II Airy beam can preserve its original shape much farther than the CASE I Airy 

beam. In the CASE III, however, the cross-correlation increases after some propagation 
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distance. This indicates the recovery process of the Airy profile: the regeneration of the 

main lobe and its acceleration along the transverse coordinate. 

In addition, by comparing the cross-correlations of each beam at a specific position 

of z with their initial profiles, we can know how far they maintain their initial Airy 

distributions. The variation of the maximum value of this cross-correlation, i.e., C2(z) 

defined by 

 
2 2*

2 0,1,2,3 0,1,2,3( ) max ( ; 0) ( )φ τ φ τ τ
+∞

= =
−∞

 
= = + 

 
∫ i iC z z x d   (2.13) 

is plotted in Fig. 2.3. Naturally, the maximum cross-correlation values of ideal Airy 

beams (cyan dotted line) are constant from z= 0 cm to z=20 cm. For all other cases, they 

are gradually losing their initial Airy distributions during propagations. Over 2.6 cm, the 

CASE II is more slowly decreased than the CASE I. That is, a uniform distribution input 

case maintains their initial Airy distributions during propagations than those of a 

Gaussian distribution input case. The CASE III shows a nearly flat line from 5 cm. From 

the results of the CASE III in Figs. 2.2 and 2.3, I assume that the self-healing is observed 

after 5 cm.  

Meanwhile, let us consider truncation effects on the non-diffraction property of Airy 

beams. For example, the more SLM pixels are increased, the more high spatial frequency 

components are passed. As a result, side lobes of Airy beams are increased and more 

power is supplied. In case of twice as much pixels, propagation dynamics of finite power 

Airy beams generated by a Gaussian beam, a uniform beam of finite extent and an 

inverse Gaussian beam is shown in Figs. 2.4(a), 2.4(b) and 2.4(c), respectively. Although 

a frequency window is wider, propagation dynamics of the CASE I is much the same 

comparing Figs. 2.1(a) and 2.4(a). However, the CASE II shows more similar 

propagation with ideal Airy beams comparing Figs. 2.1(b), 2,1(d) and 2.4(b). In the 

CASE III in Fig. 2.4(c), the focused-bending beam is more apparent than Fig. 2.1(c).  In 

addition, the self-healing property is improved due to more side lobes. On the contrary, 

in case of half as much pixels, propagation dynamics of each finite power Airy beams 

CASE is shown in Figs. 2.4(d), 2.4(e) and 2.4(f), respectively. The CASE I and CASE II 
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show the similar propagation dynamics and more diffraction takes place in both CASES. 

As a result, a distance with keeping Airy profile is shorter than that of previous CASES. 

Also, the CASE III cannot reconstruct the finite power Airy beams due to lack of power 

from the side lobes. Therefore, to generate the finite power Airy beams under limiting 

experimental conditions, using a uniform beam of finite extent is suitable not only to 

closely generate the ideal Airy beams but also to preserve its Airy profile during 

propagations. 
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Figure 2.4 Propagation dynamics of finite power Airy beams in case of 

twice as much pixels generated by (a) a Gaussian beam, (b) a uniform beam 

of finite extent and (c) an inverse Gaussian beam. Propagation dynamics of 

finite power Airy beams in case of a half as much pixels generated by (d) a 

Gaussian beam, (e) a uniform beam of finite extent and (f) an inverse 

Gaussian beam. 
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2.1.3.  (2+1)D finite power Airy beams 

Now, let us consider (2+1)D finite power Airy beams. In this case, it is assumed that the 

wavelength of an incident beam λ is 633 nm, x0 is 50 μm, the focal length of the lens f is 

50 cm and the SLM has 1080 × 1080 pixels with an 8 μm pixel pitch. Equations (2.7), 

(2.10) and (2.11) are modified as 
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and 
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  (2.16) 

which correspond to the CASE I, II and III Airy beams, respectively, where lx and ly are 

the horizontal and vertical lengths of the SLM and y0 is an arbitrary scaling factor along 

the y coordinate.  

Calculated 2D intensity distributions of (2+1)D finite power Airy beams are shown 

in Figs. 2.5(a) and 2.5(b) (ϕ1; CASE I), Figs. 2.5(c) and 2.5(d) (ϕ2; CASE II) and Figs. 

2.5(e) and 2.5(f) (ϕ3; CASE III). Figures 2.5(a), 2.5(c), 2.5(e) and 2.5(b), 2.5(d), 2.5(f) are 

the results at z=0 cm and z=15 cm, respectively. Comparing Figs. 2.5(a), 2.5(c) and 

2.5(e), more side lobes in Fig. 2.5(c) than in Fig. 2.5(a), while the main lobe disappears 

in Fig. 2.5(e), can be found. After some propagation (z=15 cm), the finite power Airy 

beam generated by a Gaussian beam (CASE I) does not preserve its initial Airy profile 

anymore. On the other hand, the finite power Airy beam generated by a truncated plane 



23 
 

wave (or a uniform beam of finite extent; CASE II) maintains its initial profile although 

the beam is broadened due to the diffraction. Therefore, the uniform beam of the CASE II 

is more advantageous than the Gaussian beam of the CASE I. In the case of the inverse 

Gaussian beam (CASE III), although the main lobe is missing at the initial plane (Fig. 

2.5(e)), side lobes recover the main lobe after some propagations as can be found in Fig. 

2.5(f). 
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Figure 2.5 Intensity distributions of (2+1)D finite power Airy beams. CASE 

I: (a) at z=0 cm and (b) z=15 cm. CASE II: (c) at z=0 cm and (d) z=15 cm. 

CASE III: (e) at z=0 cm and (f) z=15 cm. 
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2.2. Experiments of finite power Airy beams  

The generation of the finite power Airy beams to three CASES is experimentally 

demonstrated. The conventional method to generate finite power Airy beams used one 

SLM wrapping phases to an incident Gaussian beam. The two SLMs function not only as 

phase wrapping device to incident beams but also as modulator of initial fields such as a 

conventional Gaussian distribution (CASE I), a uniform distribution of finite extent 

(CASE II) and an inverse Gaussian distribution (CASE III). This work will promise to 

know roles of initial field distributions.  
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Figure 2.6 (a) Schematic diagram. M1 is a mirror, P1, P2 and P3 are 

polarizers and L1 is a lens with f=50 cm. (b) Experimental setup for the 

generation of finite power Airy beams. 

2.2.1. Experimental setup 

Figures 2.6(a) and 2.6(b) show the schematic diagram and the experimental setup for the 

generation of finite power Airy beams, respectively. A laser beam with a 633 nm 

wavelength is expanded to form a collimated plane wave. To change this input wave into 

the Gaussian, inverse Gaussian or uniform beam of finite extent, the SLM1 (Mitsubishi 

Electric XL9U LCD projector with 1024 × 768 pixels of 11.9 μm pixel pitch) is placed 

between two orthogonal linear polarizers (P1 and P2) [53]. These polarizers allow the 

SLM1 to perform intensity modulations. Corresponding phase masks are shown in Figs. 

2.7(a), 2.6(b) and 2.6(c), respectively. x- and y-resolutions of the SLM1 are not a square, 

only 768 × 768 pixels are used to modulate input beams. As a result, the rest of 768 × 

768 pixels are filled with white. After passing through the SLM1, the beams have a 

Gaussian distribution (CASE I, Fig 2.7(d)), a uniform distribution of finite extent (CASE 

II, Fig. 2.7(e)) or an inverse Gaussian distribution (CASE III, Fig 2.7(f)).  
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Figure 2.7 Phase mask for modulating initial beams: (a) Gaussian 

distribution, (b) uniform distribution of finite extent and (c) inverse 

Gaussian distribution. Measured intensity distribution by the CCD after 

passing through the SLM1: (d) Gaussian distribution, (e) uniform 

distribution of finite extent and (f) inverse Gaussian distribution.  

By passing these beams through the optical Fourier transform (2-f) system, finite 

power Airy beams at the initial plane (z=0 cm) can be obtained. The optical Fourier 

transform system consists of a lens (L1; f=50 cm) and a phase-only SLM2 (Holoeye 

Pluto with 1920 × 1080 pixels of 8 μm pixel pitch) which is placed in front of the lens 

and imposes cubic (k3) phase. The same computer-generated cubic phase mask (Fig. 2.8) 

is used to all CASES because the higher-order phase terms can be ignored due to the 

relatively small constant a. Similarly, x- and y-resolutions of SLM2 are not a square, only 

1080 × 1080 pixels are used to modulate beams. As a result, the rest of 1080 × 1080 

pixels are filled with black. To obtain clear Airy beam images, a blazed grating is 

overwrapped in the cubic phase mask [54]. As a result, when an initial beam with a 

normal incidence is reflected by the SLM2, the 1st order beam is propagating along an 
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optical axis and the 0th order beam is propagating with an oblique angle. Another 

polarizer P3 is used to attenuate the output beam so that a twin image can be eliminated. 

  
Figure 2.8 Phase mask for launching (2+1)D Airy beams: x0=50 μm, y0=50 

μm and a=0.1. The cubic phase is wrapped without the higher-order phase 

terms. 

2.2.2. Experimental results 

To obtain exact experimental results, perfect alignment must be preceded before 

observing acceleration of Airy beams. Especially, if the beam reflected from the SLM2 

does not propagate along the optical axis, it is difficult to observe acceleration of Airy 

beams. A target image mask which is provided by Holoeye to adjust alignment between 

the SLM2 and the charge-coupled device (CCD) is used. At first, the vivid target image 

z=0 cm (Fourier plane) shown in Fig. 2.9(a) is captured. Then, the cross pattern of the 

target image is clearly seen without the 0th order diffraction due to a blazed grating with a 

proper period. Next, moving the CCD from z=0 cm to z=15 cm, the target image, which 

is shown in Fig. 2.9(b) is captured again. It shows the blurring cross pattern but the 

center of the image maintains the initial position, qualitatively. Therefore, throughout 

this dissertation, the errors from misalignment were neglected. 
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Figure 2.9 The cross patterns of the target image at (a) z=0 cm and (b) z=15 

cm.  

The images of the finite power Airy beams were captured by the CCD at z=0 cm 

and z=15 cm and shown in Figs. 2.10(a) - 2.10(f). All images are obtained under the 

same conditions that no adjustments in intensities were made. From these results, it can 

be concluded that the CASE II Airy beam [Figs. 2.10(c) and 2.10(d)] retains the Airy 

profile much longer than the CASE I Airy beam [Figs. 2.10(a) and 2.10(b)]. Meanwhile, 

the CASE III Airy beam recovers the main lobe at z=15 cm as shown in Figs. 2.10(e) and 

2.10(f). These experimental results coincide well with the calculation results shown in 

Figs. 2.5(a) - 2.5(f). 
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Figure 2.10 Captured CCD images of finite power Airy beams. CASE I: (a) 

at z=0 cm and (b) z=15 cm. CASE II: (c) at z=0 cm and (d) z=15 cm. CASE 

III: (e) at z=0 cm and (f) z=15 cm. 
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Chapter 3.  

Generation of Airy beams  
by holographic method 

In this chapter, the novel Airy beam generation method based on holography is present. 

The holographic finite power Airy beams can be obtained by recording the interference 

patterns between the Airy beams and the reference beam on a photopolymer and 

reconstruction under illuminations of the reference beam. This method has several 

advantages as the following. After they are recorded in the photopolymer, a bulky optical 

setup such as the SLM and lenses is unnecessary to generate Airy beams. That is, simple 

generation illuminating the reference beam is possible. Also, by the use of the phase-

conjugated reference beam to reconstruct the recorded Airy beams, the Airy beams with 

the reversed propagation direction keeping its original amplitudes and phases and more 

bent symmetric Airy beam can be generated. Since this method is possible to realize 

angle multiplexing of the two Airy beams accelerating in opposite directions determined 

by the angle of the reference beams, it is expected to utilize to be used as a practical 

approach in the applications such as particle manipulation and optical signal processing. 

3.1. Holographic generation of Airy beams 

So far it is impossible to implement the optical Airy beams because ideal Airy beams 

impose infinite power. However, in 2007, Siviloglou and Christodoulides, announced 

that finite energy Airy beams can be achieved by tailoring side lobes with an aperture 

function and they have similar propagating characteristics by comparison with the ideal 
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Airy beams [2]. Based on this report, the first optical observation of the Airy beams was 

realized by the optical Fourier transform system which is adding the cubic phase to a 

broad Gaussian beam using the spatial light modulator (SLM) [3]. On the same principle, 

observations of Airy beams in wide area such as nonlinear generation [29-31], curved 

plasma channel generation [32] and electron beam generation [33] were reported. 

The way to generate Airy beams which directly assigns initial launching conditions 

was suggested. By matching initial intensity and phase distributions of Airy beams and 

that of surface plasmon polaritons (SPPs) after passing through the metal slits or gratings, 

(1+1)D Airy beams can be launched: Airy plasmon which has longer propagation length 

than other surface waves [21-27]. Also, through the grating on the metal surface, 

generated Airy beams in free space can be coupled to Airy plasmons which have 

dynamically controlled trajectories by controlling the position of the objective lens or the 

phase mask on the SLM [25]. 

In this chapter, a novel Airy beam generation technique based on holography is 

presented [49]. At first, using the optical Fourier transform system, Airy beam can be 

generated in free space. Second, the interference patterns between the generated Airy 

beams (signal beam) and reference beam are recorded on a photopolymer. Finally, when 

the photopolymer is exposed by the reference beam with blocking the signal beam, 

recorded Airy beams are reconstructed from the plane of the photopolymer. It is shown 

that generated Airy beams maintain non-diffracted nature with a bending trajectory after 

holographic recording and reconstruction procedures. 

In case of the (2+1)D finite power Airy beams at the origin (z=0 cm), Eq. (2.5) can 

be expanded to 

 
0 0 0 0

( , , 0cm) Ai exp Ai exp ,x x y yx y z a a
x x y y

φ
       

= =        
       

  (3.1) 

where x0 and y0 are arbitrary scaling factors of x- and y-coordinates, respectively. 

Throughout this chapter, parameters for the finite power Airy beams, x0, y0 and a are set 

to 50 μm, 50 μm and 0.1, respectively and operating wavelength is 633 nm. The intensity 

distributions of the (2+1)D finite power Airy beams at z=0 cm, z=5 cm and z=15 cm in 
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Figs. 3.1(a), 3.1(b) and 3.1(c), respectively, are plotted. 

 
Figure 3.1 Intensity distributions of the (2+1)D finite power Airy beams (a) 

at z=0 cm, (b) z=5 cm and (c) z=15 cm. 

3.1.1. Holographic recording of Airy beams 

Holography is a technique which can record and reconstruct both the amplitude and the 

phase of the optical wave [55]. It consists of two steps: recording and reconstruction. The 

mathematical representation for the (2+1)D finite power Airy beam ϕ is given by 
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  (3.2) 

where k=2πn/λ0. The optical intensity I of the (2+1)D finite power Airy beams is obtained 

by taking the square modulus of Eq. (3.2): 
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× − + −         

  (3.3) 

Here, the transmittance t is proportional to the intensity distributions. That is, the 

transmittance is defined by 

 ( ) ( ), ,,t x y hI x y=   (3.4) 

where h is a constant. Since the photopolymer is placed at z=0 cm, the transmittance to of 
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the (2+1)D finite power Airy beams is expressed by 

 2 2

0 0 0 0

( , ) Ai exp 2 Ai exp 2 .o
x x y yt x y a a
x x y y

       
=        

       
  (3.5) 

A uniform plane wave as a reference beam Ur with an incident angle θ has a complex 

amplitude, which is given by 

 ( ) ( )( )( , ) exp sin exp sin cos .rU x y ikx jk x zθ θ θ= − − +   (3.6) 

In addition, interference patterns t between an object beam (ϕ; Eq. (3.2)) and a reference 

beam (Ur; Eq. (3.6)) are recorded on the photopolymer: 
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[ ]
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* *

2 cos arg( ) arg( ) ,

r r r r

o r r r

o r o r r

t U U U U

t I U U

t I t I U

φ φ φ φ

φ φ

φ
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  (3.7) 

where Ir is the intensity of the reference beam at z= 0 cm.  

 
Figure 3.2 Schematic diagrams of recording for generating the (2+1)D 

holographic Airy beams. (M: mirror, L: lens, BS: beam splitter) 
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Figure 3.2 is a schematic diagram of recording procedures. After passing through 

the beam splitter 1 (BS1), a plane wave from the He-Ne laser with 633 nm wavelength is 

divided into the signal arm and the reference arm. In the signal arm, a 2-f system consists 

of the SLM (Holoeye Pluto, reflection type, 1920 × 1080 pixels, 8 μm pixel pitch) which 

imposes the computer-generated cubic phase mask and the lens 2 (L2) with the focal 

length f (=50 cm). Two phase masks are made for launching the (2+1)D finite power Airy 

beams bent in different directions which are +x and +y directions with the phase mask 1 

(x0=50 μm and y0=50 μm) and -x and -y directions with the phase mask 2 (x0=-50 μm and 

y0=-50 μm) as shown in Figs. 3.3(a) and 3.3(b), respectively. The L2 with a distance f 

apart from the SLM (object plane) is placed to perform the optical Fourier transform. A 

λ/2 wave plate and a linear polarizer are used to adjust states of the polarization and 

eliminate twin images, respectively.  

 
Figure 3.3 Phase mask for launching (2+1)D Airy beams: (a) x0=50 μm, 

y0=50 μm and a=0.1. (b) (a) x0=-50 μm, y0=-50 μm and a=0.1. The cubic 

phase is wrapped without the higher-order phase terms. 

After the signal beam is reflected in the SLM and travels f after passing through the 

L2, the finite power Airy beams at the Fourier plane (z=0 cm) can be obtained, 

successively. Before the recording procedure, the charge-coupled device (CCD) is 

located to confirm the optical reconstruction of the finite Airy beams. The resultant 

captured images of the (2+1)D finite power Airy beams at z=0 cm, z=5 cm and z=15 cm 

are shown in Figs. 3.4(a), 3.4(b) and 3.4(c), respectively. After that, interference patterns 

between the signal beam (Airy beam) and the reference beam (plane wave) are recorded 

on the photopolymer. In this procedure, the reference beam has an incident angle of 60° 
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with 32 mJ/cm2 energy density and exposure time is 40 seconds. Throughout this chapter, 

incident angles from 30° to 70° have similar diffraction efficiency of near 50 %. The 

incident angle of the reference beam 60° is determined by achieving the maximum 

diffraction efficiency of 51 %. A holographic film on a slide glass of 1.518 refractive 

index is used as a holographic photopolymer because it is easy to handle and has the 

simple post exposure processing. It consists of two layers which are a photopolymer 

layer with 14 ~ 18 μm thickness and an optically clear plastic substrate with 175 μm 

thickness. The refractive index of the used photopolymer is 1.485 before recording at 633 

nm wavelength of incident light and has index change as much as 0.03. The substrate 

index is 1.57 at 589 nm wavelength of incident light. For curing, the recorded sample is 

exposed by the UV-lamp with 110 mW/cm2  power density during 3 minutes and the 

distance between the UV-lamp and the sample is 30 cm.  

 
Figure 3.4 Captured CCD images of the (2+1)D finite power Airy beams (a) 

at z=0 cm, (b) z=5 cm and (c) z=15 cm. Camera settings are the same. 

3.1.2. Holographic reconstruction of Airy beams 

To reconstruct the Airy beams (object beam) from the recorded hologram, the reference 

wave Ur with the same incident angle θ illuminates the recorded sample. The resultant 

reconstructed wave ϕr is expressed as below: 

 2* .φ φ φ= ∝ + + +r r o r r r r rtU t U I U I U   (3.8) 

In Eq. (3.8), the physical meaning of the third term ϕIr is the (2+1)D finite power Airy 

beams multiplied by the reference beam intensity Ir. That is, this term represents Airy 

beams which can be reconstructed by the holographic method. 
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Figure 3.5 Schematic diagrams of reconstruction for generating the (2+1)D 

holographic Airy beams. (M: mirror, L: lens, BS: beam splitter) 

The schematic diagram of the reconstruction procedure is shown in Fig. 3.5. While 

the signal arm is blocked, the reference beam illuminates the photopolymer. As a result, 

the (2+1)D finite power Airy beams are generated from the photopolymer without the 

SLM and the Fourier lens. The intensity distributions of the reconstructed beam are 

captured at z=5 cm and z=15 cm as shown in Figs. 3.6(a) and 3.6(b), respectively. Since 

the CCD camera cannot approach in front of the photopolymer surface, the intensity 

distribution of the reconstructed beam at z=0 cm cannot be presented. These results show 

slight differences in comparison with simulation results and CCD images generated by 

the SLM. This is resulted from scattering in non-uniform grating originated from the 

non-uniform shrinkage according to thickness of the photopolymer in curing process [56] 

and at bubbles between the film and the slide glass. However, reconstructed Airy beams 

show similar intensity distributions at z=5 cm which are Figs. 3.1(b), 3.4(b) and 3.6(a). In 

like manner, after propagating 15 cm, they still coincide well as shown in Figs. 3.1(c), 

3.4(c) and 3.6(b). Interestingly, it is known that the reconstructed Airy beams do not lose 

the characteristics of the Airy beams such as acceleration and non-diffraction during 
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holographic recording and reconstruction procedures. 

 
Figure 3.6 Captured CCD images of the reconstructed Airy beams (a) at z=5 

cm and (b) z=15 cm. 

3.1.3. Self-healing of Airy beams 

In the reconstruction procedure of holography, if the incident reference beam does not 

fully cover the entire recorded region of hologram, loss of original information is 

inevitable because angular frequency components of original information are distributed 

in the entire region. In case of Airy beams, however, it can be inferred that recorded Airy 

beams can be perfectly reconstructed during propagation under the same conditions. This 

is originated from the unique self-healing feature of Airy beams. To confirm this property 

in holography, a part of the reference beam is partially blocked by an opaque obstacle 

placed between the M2 and the photopolymer instead of shifting incident x- and y-

positions of the reference beam to achieve partial illumination to the recorded region. 

Especially, by shifting the positions of the obstacle, recorded Airy beams with the 

suppressed main lobe can be obtained at z=5 cm as shown in Fig. 3.7(a). After 

propagating 10 cm and 15 cm, reconstructed Airy beams recover their original 

distribution shown in Figs. 3.7(b) and 3.7(c). It is known that the perfect reconstruction 

of original information is possible despite imperfect incidence of the reference beam. 

That is, robust generation is possible. Moreover, after Airy beams are reconstructed, they 

show the self-healing property. When the obstacle blocks the Airy beams between the 
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photopolymer and the z=5 cm plane, no main lobe can be seen in Fig. 3.7(d). After 

propagating 10 cm and 15 cm, reconstruction of the veiled region takes place as shown in 

Figs. 3.7(e) and 3.7(f), respectively.  

 
Figure 3.7 Self-healing property for partial illumination (a) at z=5 cm, (b) 

z=10 cm and (c) at z=15 cm. Self-healing property of reconstructed Airy 

beams (d) at z=5 cm, (e) z=10 cm and (f) at z=15 cm. 

3.1.4. Ballistic trajectory of conjugated Airy beams 

In Eq. (2.4), the exponentially decaying factor a imposes finite power to Airy beams. Let 

us suppose that a is a complex number a1+a2i, where a2 determines the initial launch 

angle of Airy beams [57]. In this case, the (1+1)D finite power Airy beam ϕ is expressed 

as 

 ( ) ( ) ( )1 2, 0 Ai exp exp( ).φ ξ = =s s a s ia s   (3.9) 

By solving Eq. (2.1) with the initial condition Eq. (3.9), the (1+1)D finite power Airy 

beam solution ϕ can be obtained as follows [3]: 
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2 2 3 2

( , ) Ai exp .
2 2 12 2 2
ξ ξ ξ ξ ξφ ξ ξ

     = − + − + − + +             

a a ss s ia as i   (3.10) 

Here, Eq. (3.10) can be rewritten using a=a1+a2i: 
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  (3.11) 

Here, different launch angles are considered as shown in Figs. 3.8 which shows the 

propagation dynamics of the (1+1)D Airy beams in Eq. (3.11) with a=0.1, 0.1+1i and 

0.1-1i as a function of z from -25 cm to 25 cm. In case of a1=0.1 and a2=0, the ballistic 

trajectory of Airy beams draws a symmetrically parabolic curve to the z=0 cm axis 

shown in Fig. 3.8(a). In addition, when a1=0.1 and a2=1i, the trajectory has the positive 

launch angle as shown in Fig. 3.8(b). That is, it shows more bending in z>0 cm and less 

bending in z<0 cm motions than that of the case with a1=0.1 and a2=0. On the contrary to 

this, when a1=0.1 and a2=-1i, the trajectory has the negative launch angle as shown in Fig. 

3.8(c). Therefore, it is revealed that the specific position of deflection can be determined 

by the launch angle parameter a2. 

 
Figure 3.8 Propagation dynamics of the finite power Airy beams when 

values of a are (a) 0.1, (b) 0.1+1i and (c) 0.1-1i, respectively. 

In case of the (2+1)D finite power Airy beam in the initial plane (z=0 cm), Eq. (3.9) 

can be expanded as following: 
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In like manner, three different cases a of the (2+1)D finite power Airy beams, which are 

0.1, 0.1+1i and 0.1-1i, are investigated. When a=0.1 without the complex term, intensity 

distributions of the (2+1)D finite power Airy beams at z=0 cm, z=15 cm and z=-15 cm 

are presented in Figs. 3.9(a), 3.9(b) and 3.9(c), respectively. For the same propagation 

distances of 15 cm and -15 cm in the z-direction, Airy beams have the same intensity 

distributions as depicted in Figs. 3.9(b) and 3.9(c), respectively. The maximum intensity 

points of the main lobe are moved from (-0.45 μm, -0.45 μm) to (407 μm, 407 μm) 

during 15 cm propagation. In case of the positive initial launch angle with a=0.1+1i, 

intensity distributions at z=0 cm, z=15 cm and z=-15 cm are shown in Figs. 3.9(d), 3.9(e) 

and 3.9(f), respectively. In this case, propagations in the +z-direction and the -z-direction 

have different deflection extents. While Airy beams are propagating 0 cm to 15 cm in the 

z-direction, the maximum intensity points are moved from (-0.45 μm, -0.45 μm) to (709 

μm, 709 μm). In addition, while Airy beams are propagating -15 cm to 0 cm in the z-

direction, the maximum intensity points are moved from (0.95 μm, 0.95 μm) to (-0.45 

μm, -0.45 μm). Finally, in case of the negative initial launch angle with a=0.1-1i, 

intensity distributions at z=0 cm, z=15 cm and z=-15 cm are depicted in Figs. 3.9(g), 

3.9(h) and 3.9(i), respectively. Here, intensity distributions at z=15 cm and z=-15 cm are 

the same as that of z=-15 cm and z=15 cm with the a=0.1+1i case, respectively. That is, 

Airy beams are more deflected in z<0 cm and less deflected in z>0 cm. Through all cases, 

the same intensity distributions are seen in Figs. 3.9(a), 3.9(d) and 3.9(g). 
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Figure 3.9 Intensity distributions of the (2+1)D finite power Airy beams 

with three cases of a: (1) 0.1 at (a) z=0 cm, (b) z=15 cm and (c) z=-15 cm. (2) 

0.1+1i at (d) z=0 cm, (e) z=15 cm and (f) z=-15 cm. (3) 0.1-1i at (g) z=0 cm, 

(h) z=15 cm and (i) z=-15 cm. 

The images of the finite power Airy beams with a=0.1 were captured by the CCD 

from z=-15 cm to z=15 cm at the interval of 5 cm as shown in Figs. 3.10(a) - 10(g). They 

have the similar intensity distributions under the same propagating distance to the +z-

direction or the -z-direction. As a result, the ballistic trajectory is formed during 

propagation. 
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Figure 3.10 Captured CCD images of the (2+1)D finite power Airy beams 

with a=0.1 from z=-15 cm to z=15 cm at the interval of 5 cm. 

In case of a=0.1+1i, the images of the finite power Airy beams were presented from 

z=-15 cm to z=15 cm at the interval of 5 cm in Figs. 3.11(a) - 11(g). Due to the positive 

initial launch angle, deflection extents in the +z-direction are longer than that in the -z-

direction. Especially, in comparison with Figs. 3.11(d) and 3.11(g), a decided intensity 

distribution difference originated from more bent trajectory in the +z-direction is shown.  
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Figure 3.11 Captured CCD images of the (2+1)D finite power Airy beams 

with a=0.1+1i from z=-15 cm to z=15 cm at the interval of 5 cm. 

Finally, when a=0.1-1i, I obtained the CCD images of the finite power Airy beams 

with the negative initial launch angle case from z=-15 cm to z=15 cm at the interval of 5 

cm as shown in Figs. 3.12(a) - 3.12(g). On the contrary to the positive initial launch 

angle case, deflection extents in the -z-direction are longer than that in the +z-direction. 

All experimental results coincide well with the calculation results shown in Figs. 3.9(a) - 

3.9(i). 
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Figure 3.12 Captured CCD images of the (2+1)D finite power Airy beams 

with a=0.1-1i from z=-15 cm to z=15 cm at the interval of 5 cm. 

In the reconstruction procedure, the object beam can also be reconstructed by 

illuminating the conjugated reference beam Ur
*. In this case, resultant reconstructed wave 

ϕr
* is expressed as below: 

 2* * * * * * .φ φ φ= ∝ + + +r r o r r r r rtU t U I U U I   (3.13) 

In Eq. (3.13), the fourth term ϕ*Ir represents the (2+1)D finite power Airy beams 

multiplied by the reference beam intensity Ir propagating in the -z-direction. Thus, the 

phase-conjugated reference beam to reconstruct the conjugated Airy beams which have 

opposite power flows to the signal Airy beams is considered [58]. When a=0.1+1i, the 

ballistic trajectory of the reconstructed Airy beams is interesting. From Eq. (3.13), 

reconstructed Airy beams by the phase-conjugated reference beam can be regarded as the 
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conjugated Airy beams which mean the Airy beams with a=0.1-1i propagating in the -z-

direction. As a result, two Airy beams with the same trajectories and the reversed 

propagation directions each other can be obtained simultaneously by illuminating the 

reference beam and the phase-conjugated reference beam. That is, more bent symmetric 

Airy beams shown in Fig. 3.13 can be generated. 

 
Figure 3.13 Propagation dynamic of more bent symmetric Airy beams. 

The schematic diagram of generating the phase-conjugated reference beam is 

illustrated in Fig 3.14. Suppose that interference patterns between the (2+1)D finite 

power Airy beams with the initial launch angle of a=0.1+1i and the reference beam with 

the incident angle of 60° are recorded on the photopolymer placed at z=0 cm. The shifted 

cubic phase mask (Fig. 3.15) of a=0.1+1i and x0=y0=50 μm is used to generate the 

(2+1)D Airy beams with initial launch angle. While the signal Airy beams are being 

blocked, the reference beam is illuminating the photopolymer. As a result, the more bent 

finite power Airy beams propagating in the +z-direction are obtained at z=5 cm, z=10 cm 

and z=15 cm, which are shown in Figs. 3.16(a), 3.16(b) and 3.16(c), respectively. Blue 

line represents the position of the main lobe at z=5 cm. 
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Figure 3.14 Schematic diagrams of reconstruction procedure with 

conjugated reference beam. 

To reconstruct the conjugated Airy beam, the phase-conjugated reference beam 

illuminates the back side of the photopolymer while both the reference beam and the 

signal Airy beams are being blocked. In this case, the conjugated Airy beam can be 

reconstructed to the -z-direction. Since Airy beams propagating in the -z-direction cannot 

be generated by the typical generation method using the SLM, the holographic 

generation method is advantageous to apply to variety of experimental conditions. The 

CCD camera is placed between L2 and the photopolymer to capture the images of the 

reconstructed wave. The CCD images of Airy beams at z=-5 cm, z=-10 cm and z=-15 cm 

are captured and shown in Figs. 3.16(d), 3.16(e) and 3.16(f), respectively. Comparing 

Figs. 3.16(a) and 3.16(d), there are misalignments among the positions of the initial main 

lobes. This is originated from the position of the CCD camera. However, they show the 

approximately same extent of ballistic deflection from each initial position. Therefore, 

the phase-conjugated reference beam reconstructs the recorded field which has the 
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reversed propagation direction, keeping its original amplitudes and phases. As a result, 

more bent symmetric Airy beams are realized experimentally. 

 

Figure 3.15 Phase mask for launching (2+1)D Airy beams with the initial 

launch angle: x0=50 μm, y0=50 μm and a=0.1+1i. 
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Figure 3.16 Captured CCD images of the reconstructed Airy beams with 

a=0.1+1i (a) at z=5 cm, (b) z=10 cm and (b) z=15 cm. Captured CCD 

images of the conjugated Airy beams (a) at z=-5 cm, (b) z=-10 cm and (b) 

z=-15 cm. Blue line represents the position of the main lobe at z=5 cm. 
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3.2. Angle multiplexing of Airy beams 

In this section, angle multiplexing of two Airy beams determined by the angles of 

reference beams for practical uses such as optical signal processing, particle tweezers and 

particle clearing is presented. This work consists of three stages. The first procedure of 

the first stage is recording the interference patterns of two optical fields which are Airy 

beams and a plane wave with an incident angle θ on a photopolymer. The second is over-

recording the interference patterns between other Airy beams and a plane wave with an 

incident angle -θ on the same photopolymer. During the reconstruction procedure, two 

kinds of reference beams which have the incident angles θ and -θ, respectively, are used. 

They can be reconstructed both simultaneously and separately. 

 
Figure 3.17 Schematic diagrams of recording of Airy beam multiplexing. (M: 

mirror, L: lens, BS: beam splitter) 
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3.2.1. Recording of multiple Airy beams 

The feasibility of the angle multiplexing of Airy beams based on holography is 

investigated. In this case, the recording procedure is conducted in twice. Figure 3.17 is a 

schematic diagram of the recording procedure for the angle multiplexing. Each Airy 

beam which propagates in different directions of deflection is successively recorded at 

the same area on the photopolymer. Both reference beams are incident to the 

photopolymer with 60° and -60° incidence angles and 32 mJ/cm2 energy density with 40 

seconds exposure time. To compensate power difference between reference wave 1 and 

reference wave 2, a neutral density (ND) filter is located in the reference arm 1. First, the 

(2+1)D finite power Airy beam with x0=50 μm and y0=50 μm (phase mask 1; Fig. 3.3(a)) 

is recorded on the photopolymer while opening the reference wave 1 and blocking the 

reference wave 2. Next, the (2+1)D finite power Airy beam with x0=-50 μm and y0=-50 

μm (phase mask 2; Fig. 3.3(b)) is recorded in the same area of the photopolymer while 

opening the reference wave 2 and blocking the reference wave 1. 
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Figure 3.18 Schematic diagrams of reconstruction of Airy beam 

multiplexing. 

3.2.2. Reconstruction of multiple Airy beams 

To reconstruct recorded Airy beams, an additional barrier to block the Airy beams 

between the lens and the photopolymer shown in Fig. 3.18 is used. An experimental 

setup is also provided in Fig. 3.19. Two reference beams are incident to the photopolymer 

with 60° and -60° angle at the same time. As a result, two Airy beams accelerating in 

opposite directions shown in Figs. 3.20(a) and 3.20(b) which are captured at z=5 cm and 

z=15 cm by the CCD, respectively, are obtained. In Fig. 3.20(b), dual Airy beams which 

have a symmetric intensity pattern and better self-healing property are shown [59].  
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Figure 3.19 Experimental setup of Airy beam multiplexing. 

Moreover, only the reference beam 1 is blocked and the CCD images are captured at 

z=5 cm and z=15 cm as shown in Figs. 3.20(c) and 3.20(d), respectively. In this case, 

only one Airy beam with x0=-50 μm and y0=-50 μm is generated. That is, each Airy beam 

can be individually controlled when one of the reference beams except one is blocked by 

a barrier. This can be utilized to on-off switching or routing in optical signal processing 

[60]. Also, it is possible to adopt particle manipulation: a portion of particles can be held 

or released while the others are being released or held.  
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Figure 3.20 Captured CCD images of the reconstructed two Airy beams 

accelerating in opposite directions, resulted from angle multiplexing (a) at 

z=5 cm and (b) z=15 cm. Reconstructed Airy beams at (c) z=5 cm and (d) 

z=15 cm while the reference beam 1 is blocked. 
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Chapter 4.  

Plasmonic approach  
to Airy beam generation  
using subwavelength slit array  

In this chapter, I present the novel method to launch the finite power Airy beams in free 

space using a metallic slit array. To set the initial phase distribution and the intensity 

profile of the finite power Airy beams, it is divided into seven sections according to the 

seven lobes. In each section, the number of slits and the slit height determine the 

intensity and the phase, respectively. The launched beams have the properties of the Airy 

beams: diffraction-free, bending and self-regeneration. I expect that this method can be 

utilized to generate various beams which have the desired initial phase and intensity 

profiles without the use of any complicated optical components and to manipulate 

nanoparticles, being adopted in optical tweezing and trapping. 

4.1. Design of subwavelength metallic slit array 

I propose a new method which can launch the Airy wave packet based on the metallic slit 

array. It is widely known that the light manipulation such as beaming and focusing can 

be realized by controlling surface plasmon polartons (SPPs) excited at the exit of the 

subwavelength slit [61-65]. Especially, a properly designed slit array which plays a role 

of a lens can build up the highly directional beam or the focused beam determined by 

phase retardations between adjacent slits [61, 62]. From the Huygens' principle, 
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diffracted light came from each slit end acts as an individual point source and the 

interference of the spherical waves makes specific interference patterns. I adopt this 

mechanism on the Airy beam generation instead of the complicated generation systems. 

The two requisites for the Airy beam generation on the initial intensity profile and the 

phase distribution, can be satisfied just by arranging a metallic slit array. The number of 

the slits and the slit height can control the intensity and the phase retardation, 

respectively. 

4.1.1. Metal-insulator-metal plasmonic waveguide 

Throughout this chapter, I regard each subwavelength metallic slit as the metal-insulator-

metal (MIM) waveguide. The MIM waveguide is composed of the dielectric core and 

surrounding metal claddings [6]. In the MIM waveguide, the SPP modes are strongly 

confined at the metal-dielectric interfaces because the tails of the SPP wave cannot 

penetrate deep into the surrounding metal claddings. The MIM waveguide can support 

two sorts of the SPP modes which are the symmetric mode and the anti-symmetric mode. 

Supposing p-polarized light propagates along the z-direction in the MIM waveguide, 

only Ex, Ez and Hy components of electromagnetic fields can exist. I describe the 

symmetric and anti-symmetric plasmonic modes of the y-component magnetic field Hy in 

the MIM waveguide with its width of the insulator part (w) as follows: 

 

( )

( ) ( )

( )

1

1

1

exp exp
2 2

( , ; ) cosh exp
2 2

exp exp
2 2

m

y d

m

w wA k x j z t x

w wH x z t B k x j z t x

w wA k x j z t x

β ω

β ω

β ω

     − −  −  ≥           
  =  −  − ≤ ≤     
      +  −  ≤ −           

  (4.1) 

and 



57 
 

 

( )

( ) ( )

( )

2

2

2

exp exp
2 2

( , ; ) sinh exp
2 2

exp exp ,
2 2

m

y d

m

w wA k x j z t x

w wH x z t B k x j z t x

w wA k x j z t x

β ω

β ω

β ω

     − −  −  ≥           
  =  −  − ≤ ≤     
     − +  −  ≤ −           

  (4.2) 

where β is the propagation constant in the MIM waveguide. km and kd represent 

wavenumbers in metal and dielectric, respectively. By momentum conservation relation, 

I obtain 

 2 2 2 2 2 2 2
0 0 ,m m d dk k k kβ ε ε= + = +   (4.3) 

where k0 is a wavenumber of the incident light in free space. In addition, x- (Ex) and z- 

(Ez) component electric fields of the symmetric and anti-symmetric plasmonic modes are 

derived from the following Maxwell's curl equation: 

 
0

1 y
x

r

H
E

j zωε ε
∂ 

= − − ∂ 
  (4.4) 

and 

 
0

1 .y
z

r

H
E

j xωε ε
∂ 

= −  ∂ 
  (4.5) 

First, Ex and Ez of the symmetric plasmonic mode is expressed as below: 
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respectively. Next, Ex and Ez of the anti-symmetric plasmonic mode is expressed as 

below: 
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respectively. From Eqs. (4.1), (4.6) and (4.7), coupling coefficients A1 and B1 are 

obtained as below:  
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As a result, the dispersion relation of the symmetric mode of the MIM waveguide is 
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In like manner, from Eqs. (4.2), (4.8) and (4.9), relations of coupling coefficients A2 and 

B2 are obtained as below: 
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As a result, the dispersion relation of the anti-symmetric mode of the MIM waveguide is 
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4.1.2. Design of subwavelength metallic slit array 

There are two surface plasmon modes in the MIM waveguide which are the symmetric 

mode and anti-symmetric mode according to the y-component of the magnetic field 

distribution. In this chapter, let me consider only the symmetric mode since the anti-

symmetric mode exhibits the cut-off process as the dielectric core width is decreased 

below hundreds of nanometers [66]. From solving the Maxwell's equations where 

tangential components of the electric field and magnetic field should be continuous at the 

boundaries between different media, the dispersion relation in the TM polarization, Eq. 

(4.12) combining with Eq. (4.3) is rewritten as below: 
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Throughout this chapter, permittivity values of metal εm and dielectric are -10.1889+0.8311i [68] 

and 1, respectively, when operation wavelength is 532 nm. Figures 4.1(a) and (b) show 
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relations of the real part and imaginary part of effective index neff as a function of the slit 

width w. According to Eq. (4.16) or Fig. 4.1(a), the real part of effective index neff (=β/k0) 

of the subwavelength slit continues decreasing as the slit width w is increased. In 

addition, the imaginary part of effective index also shows the same tendency from Fig. 

4.1(b). 

 
Figure 4.1 (a) Real part and (b) imaginary part of effective index as a 

function of the slit width w in the MIM waveguide. 

After passing through the subwavelength metallic slit (MIM waveguide), the SPP 

mode undergoes the phase retardation as much as Δφ which can be expressed by the 

following equation [61]: 
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where h is the slit height. In general, the second argument term of Eq. (4.17) is omitted 

because it is small compared with the first term Re(βh). Combining Eqs. (4.16) and 

(4.17), it is known that the slit width w determines the propagation constant β and the 

phase retardation Δφ is a function of the slit height h with the fixed propagation constant 

β. When the silt widh w is fixed as 50 nm, the phase retardation Δφ as a function of slit hetght h is 

plotted in Fig. 4.2. Here, Δφ is given as zero when h is 100 nm. 
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Figure 4.2 Phase retardation Δφ as a function of the slit height h with fixed 

w (=50 nm). 

4.2. Numerical simulations and results 

In this chapter, numerical simulations are conducted by COMSOL Multiphysics, which 

is based on the finite elements method (FEM) [67]. Here, the FEM is a numerical 

simulation technique used to solving a variety of the scientific and engineering analysis 

based on partial differential equations. It is advantageous to apply the arbitrary points or 

shapes in an analytic domain. Moreover, it can easily approach to the geometrically 

complicated structure, nonlinear medium and anisotropic material.  

To perform the precise FEM simulation, dense triangular meshes are used. It is 

necessary to balance between overflows of the computer memory and smaller mesh size. 

In theses simulations, the waveguide domains around the skin depth of SPP which is 

about 50 nm in this case are divided into many triangular FEM meshes. Above all, 

meshes of slit boundaries are set to be 50 nm, which is sufficiently dense when compared 

with operation wavelength of incident light. 
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Figure 4.3 At the input (z=0 μm), the cross-section of intensity distributions 

(solid green line) and the phase distribution of the finite power Airy beams 

are shown in case of a=0.05, x0=1 μm and λ=532 nm.  

4.2.1. Numerical simulation of Airy beam generation 

Throughout this chapter, a=0.05, x0=1 μm and λ=532 nm are assumed. At the input (z=0), 

the cross-section of intensity profile and the phase distribution are plotted in Fig. 4.3. The 

intensity profile has the highest value at the main lobe spanned between -2.34 μm and 10 

μm and it is sinusoidally decreased to the side lobes while the phases are periodically 

changed between 0° and 180° from the main lobe to the side lobes. Figure 4.4 is a 

schematic diagram of the proposed structure for launching the finite power Airy beams. 

It consists of a sliver (Ag) slab (εm=-10.1889+0.8311i at 532 nm wavelength) with a 

metallic slit array which is filled with air (εd=1). In case of slit width w (=50 nm) which 

is fixed throughout this chapter, the real part of the effective index Re(neff) is calculated 

as 1.4856 from the transfer matrix method (TMM). When p-polarized light is incident to 

the bottom of the Ag slab, light is coupled into SPPs at each slit. After propagating along 

the slits, SPPs are coupled into light again at the slit ends. Diffracted light at each slit end 

is regarded as an individual point source which radiates a spherical wave into free space 

with the initial phase and transmittance. From the Huygens' principle, the point sources 
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started from slit ends make the interference patterns which form the arbitrary shapes in 

free space. 

 
Figure 4.4 Schematic diagram of the proposed structure for launching the 

finite power Airy beams. 

Design rule is as follows. The Ag slab is divided into seven sections. Each section is 

one-to-one correspondence to each lobe of the finite power Airy beams which is 

truncated to seven lobes. The structural parameters of the proposed structure are designed 

to achieve the initial conditions of the finite power Airy beams (Fig. 4.3) at 2 μm apart 

from the bottom of the Ag slab which is a sufficient distance to separate surface plasmon 

wave and diffracted spherical wave. To make 180° phase difference between adjacent 

sections, the Ag slab has stepped-heights denoted by h1 and h2. To fit the shape of the 

intensity profile, the number of slits is assumed: the transmittance from the multiple slits 

is the linear summation of the single slit transmittance and the more number of the slits is, 

the stronger transmittance can be achieved. Since the extraordinary transmission and the 

zero transmission do not occur in the designed grating width (w=50 nm) and grating 

period (Λ=150 nm), these assumptions can be acceptable [69,70]. Figure 4.5 shows 

transmitted power as a function of the slit height h obtained by the FEM method when p-

polarized light with 532 nm is incident to a single slit with 50 nm width. Here, the 

transmittance power after passing through a single slit is calculated by the line integral at 

2 μm apart from the bottom of the slit. It is periodically increased and decreased while 

the slit height h is being increased due to the Fabry-Pérot resonance. If the area of the 

main lobe is set to 100, the area ratio among the lobes in Fig. 4.3 is 100 : 49 : 34 : 27 : 

22 : 18 : 15. In this thesis, h1 and h2 are selected to 339 nm and 883 nm because they 

satisfy not only the 180° phase difference calculated from Eq. (4.17) but also have the 

Ag slab (εm = -10.1889+0.8311i)

p-polarized light (λ0=532 nm)
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transmitted power ratio of roughly 10 : 7. When the transmitted power ratio between h1 

and h2 is 10 : 7, the difference between the area ratio and the intensity ratio determined 

by slit number is comparatively less. In this case, the numbers of the metallic slits in each 

section are selected to 14 (=h1), 9 (=h2), 5 (=h1), 5 (=h2), 3 (=h1), 3 (=h2) and 2 (=h1), 

respectively, which make intensity ratio of 100 : 46 : 36 : 26 : 21 : 15 : 4. The slit array is 

located within the center of the full-width at the half-maximum (FWHM) range. 

 
Figure 4.5 Transmitted power after passing through a single slit with 50 nm 

width as a function of slit height h. 

Figure 4.6(a) shows the free space propagation of the finite power Airy beams 

generated by the proposed structural parameters. Although the slight diffraction patterns 

appear around slit exits, it clearly shows the bending trajectory to the +x direction with 

non-diffraction. To compare generated Airy beams with calculated Airy beams, the 

calculated (1+1)D finite power Airy beams in case of a=0.05, x0=1 μm and λ=532 nm are 

presented in Fig. 4.6(b). Both cases show very similar propagation behaviors. However, 

since the number of the slits should be an integer, it is difficult to set the exact area ratio 

by just the number of the slits. For this reason, slight diffraction is an inevitable 

consequence, compared with the calculated case.  
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Figure 4.6 (a) Intensity distribution of the (1+1)D finite power Airy beams 

generated by the metallic slit array with h1=339 nm and h2=883 nm. (b) Free 

space propagation of the calculated (1+1)D finite power Airy beams in case 

of a=0.05, x0=1 μm and λ=532 nm. 

4.2.2. Self-healing property in Airy beams 

If a part of Airy beams is blocked by an opaque obstacle, they can reconstruct their 
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interferences of plane waves with adjusting phase along the curve trajectory. To check 

self-healing property, the propagating path of the main lobe is totally blocked using an 

opaque metallic obstacle (size: 2 μm × 1 μm) which is positioned 2 μm apart from the slit 

entrance of the main lobe. As a result, overall intensity is weak but spherical waves 

radiated from slits of other lobes regenerate the shape of the finite power Airy beams 

shown in Fig. 4.7(a). Moreover, the propagation dynamics of the finite power Airy beam 

mode which is incident at the bottom boundary calculated by the FEM technique is 

presented in Fig. 4.7(b). The white box which denote the opaque metallic obstacle blocks 

the propagation path of the main lobe in the Airy beams. Similarly, it shows 

reconstructions of the main lobe and remain their original field distribution in the x-

direction. This results prove that the proposed structure can generate the Airy beams 

satisfying the self-healing property. 
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Figure 4.7 Self-healing property in the (1+1)D finite power Airy beams (a) 

generated by the proposed structure and (b) calculated by the FEM 

technique. The white box indicates an opaque metallic obstacle which has 2 

μm × 1μm size and is located at (-1.855 μm, 2 μm). 
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Chapter 5.  

Conclusion 

In this dissertation, novel methods to generate the finite power Airy beams are proposed. 

Proposed three types of the generation methods are based on initial field modulation, 

holographic technique and plasmonic approach, respectively. The ballistic trajectory as 

well as field distributions of the generated Airy beams via theoretical analysis and 

numerical simulation are analyzed. In addition, experimental results were presented to 

verify them. 

In Chapter 2, based on the initial field modulation, the new types of the finite power 

Airy beams to solve the diffraction problem originated from realistic constraints were 

suggested. Total three types of Airy beams generated from a Gaussian beam, a uniform 

beam of finite extent and an inverse Gaussian beam are theoretically and experimentally 

investigated. Each finite power Airy beam shows notable propagation dynamics. A 

uniform beam of finite extent can generate the finite power Airy beam with longer 

propagation length than that generated by conventional Gaussian beam. The finite power 

Airy beam generated by an inverse Gaussian beam shows a focused-bending trajectory 

which is an example proving the self-healing property: side lobes without the main lobe 

of the Airy beams can reconstruct their Airy profile during the propagation. Therefore, 

under limiting experimental conditions, using a uniform beam of finite extent is 

advantageous to generate the finite power Airy beams with less diffraction. 

In Chapter 3, the finite power Airy beams using holographic techniques were 

presented. This method enables simple and robust generation as well as multiplexing of 

Airy beams. At first, holographic recording and reconstruction procedures allowed to 
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generate the finite power Airy beams without the conventional system which consists of 

the SLM and the Fourier lens. In addition, by illuminating the imperfect reference beam 

which was partially blocked by an obstacle, the self-healing of the Airy beams in the 

reconstruction procedures is observed. Also, by recording the Airy beams propagating 

along the asymmetrical trajectory and reconstructing them by the use of the phase-

conjugated reference beam, two Airy beams having the same trajectories and the reverse 

propagation directions to each other were obtained both simultaneously and 

independently. Based on this experiment, more bent symmetric Airy beams can be 

generated. Meanwhile, a feasibility study about angle multiplexing of the Airy beams 

determined by the incident angles of the reference beams is investigated. At first, two 

Airy beams propagating in the different directions are recorded. Each Airy beam was 

individually and simultaneously reconstructed when one of the reference beams was 

blocked by a barrier or all reference beams were opened. This work is suitable to 

application on on-off switching or routing for optical signal processing. Also, it is 

possible to adopt particle manipulation: a portion of particles can be held or released 

while others are held.  

In chapter 4, I presented the novel method to launch the finite power Airy beams 

with compact size using plasmonic structure which consisted of a subwavelength slit 

array. The designed metallic slit array played a role of the plasmonic lens which 

determined the transmitted power and the phase retardation of the transmitted surface 

plasmon mode. At the origin, the finite Airy beams have the intensity distribution with 

the Airy function profile and the phase distribution of 180° phase difference between 

adjacent slits. To design the plasmonic structure to launch the finite power Airy beams, 

we have to determine the number of the slits and slit height which determine intensity 

and phase retardation of the transmitted wave, respectively. Firstly, the finite power Airy 

beams were truncated to seven lobes and each lobe was one-to-one correspondence to 

each subwavelength slit section in the Ag slab. Secondly, transmitted power and phase 

retardation through a single slit are calculated. Thirdly, using stepped slit heights to 

satisfy 180° phase difference, slit numbers are selected to close the ratio of lobe areas. 

Naturally, the launched Airy beams had the same characteristics to those generated by the 
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conventional method. This work suggested the new generation method not only to solve 

bulky size of the conventional system but also to reduce high cost of optical components. 
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Appendix 
 

A.1.  Fourier transform of ideal Airy beams 

The Airy function which is a solution of wave equation, named by the British astronomer 

George Biddell Airy (1801 ~ 1892), can be defined by the improper Riemann integral 

form: 
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A.2.  Fourier transform of finite power Airy beams 

The finite power Airy beam solution ϕ1 is  
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At the initial position (ξ=0), Eq. (A.3) becomes  
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Fourier transform Φ1 of Eq. (A.4) is obtained by the same procedures as Eq. (A.2): 
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A.3.  Reason for using the same phase mask to all CASES in 

experiments 

In the CASE I and the CASE III, the phase has three terms [ ( )3 2 3exp 3
3
i k a k ia − − 

 
] 

and there is only one term [ 3exp
3
i k 

 
 

] in the CASE II. These higher-order terms are 

included in calculations of the CASE I and the CASE II. But I use the k3 phase mask only 

to all CASES in experiments. This is because I assumed that higher-order phase terms 

[ 2 3exp ( 3 )
3
i a k ia − − 

 
] can be ignored due to the relatively small constant a. To check 

the effect of higher-order phase terms, I analyzed propagation dynamics of finite power 

Airy beams generated by a Gaussian beam and an inverse Gaussian beam except higher-

order phase terms shown in Figs A1.1(a) and A1.1(b), respectively. They show the 

exactly same propagation dynamics as Figs. 2.1(a) and 2.1(c), respectively. Therefore, it 

is confirmed that my assumption is valid. 
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Figure A1.1 Propagation dynamics of finite power Airy beams generated by 

(a) a Gaussian beam and (b) an inverse Gaussian beam except higher-order 

phase terms. 
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한글 초록 

베셀빔, 웨버빔과 같이 대표적인 비회절성 빔 중 하나인 에어리 빔은 진행하면서 

필드 분포가 처음의 모양 그대로 유지되는 성질을 갖는다. 이는 자유 입자의 

운동을 기술한 슈뢰딩거 방정식의 실용해로서 연구되었으며 최근 실험을 통해서 

측정되었다. 이러한 에어리 빔은 크게 세가지 독특한 성질을 가지고 있다. 

비회절성은 에어리 빔이 진행하는 동안 횡단방향의 필드가 에어리 필드 형태를 

계속해서 유지하는 것을 말한다. 자유 가속은 에어리 빔이 진행할 때 외부의 힘이 

가해지지 않았음에도 불구하고 진행방향이 휘는 성질을 보인다. 이는 비회절성 빔 

중 오직 에어리 빔에서만 나타나는 독특한 성질이다. 마지막으로 자기 회복은 

에어리 빔이 장애물을 만나도 얼마 뒤 처음과 비슷한 필드 분포를 회복하는 

성질이다. 이러한 성질은 수 많은 빛 다발이 휘어진 형태의 포락선을 형성하는 

것으로 설명할 수 있다. 하지만 수많은 빛 다발을 구현하기는 현실적으로 

불가능하기 때문에 에어리 빔을 실제로 만드는데는 다른 방법이 필요하다. 따라서 

에어리 빔의 사이드 로브를 제거한 형태인 유한한 에어리 빔이 제안되었다. 이러한 

형태의 에어리 빔은 자유 가속, 자기 회복 등의 성질을 가지지만 비회절성질은 

시간이 지남에 따라 잃게 된다. 

본 논문에서는 입사하는 빔의 필드를 변조함으로써 다향한 형태의 에어리 

빔을 만들었다. 특히 평면파를 사용하여 만든 에어리 빔은 가우시안빔으로 

만들어진 일반적인 에어리 빔에 비해 비회절성이 향상된 결과를 얻었다. 또, 

인버스-가우시안빔으로 만든 에어리 빔은 휘어진 포커스를 형성하는 것을 보였다. 

이론 및 실험을 통하여서 입사하는 빔이 에어리 빔에 어떤 영향을 미치는지를 

제시하였다.  
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다음으로 홀로그래피를 이용하여 에어리 빔을 만드는 새로운 방법을 

제안하였다. 레퍼런스빔과 에어리 빔의 홀로그램을 기록하고 이를 재생하는 

방법으로 복잡한 실험장치 없이 간단하게 에어리 빔을 구현하였다. 레퍼런스빔 

전체를 입사하지 않더라도 에어리 빔이 만들어지는 자기 회복을 보였으며, 

레퍼런스빔을 반대방향에서 조사함으로써 파워의 방향이 반대인 에어리 빔을 

구현하였다. 이는 기존의 공간광변조기를 이용하여서는 구현할 수 없는 것이다. 또, 

실제적인 응용을 위해 각다중화를 실험하였다. 이는 동시에 여러개의 입자를 

옮기거나 제어할 수 있는 기술이 될 것이라 예상된다. 

마지막으로 금속 슬릿 어레이를 이용하여 에어리 빔을 만드는 방법을 

제안하였다. 호이겐스의 원리에 따라 표면 플라즈몬이 슬릿을 통과할 때의 파워와 

위상을 조절하여 초기 에어리 빔의 강도 및 위상 분포와 같게 만들어주면 에어리 

빔이 형성될 수 있음을 보였다. 이는 특별한 광학 장치 없이 매우 작은 구조로 만들 

수 있기 때문에 광집적회로에서의 신호전달이나 입자조작과 같은 곳에 응용될 

것이라 생각된다. 
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