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Machine-generated data such as sensor data now comprise major portion of 

available information. This thesis addresses two important problems: storing of 

massive sensor data collection and efficient sensing. We first propose a quality-

adjustable sensor data archiving, which compresses entire collection of sensor data 

efficiently without compromising key features. 

Considering the data aging aspect of sensor data, we make our archiving 

scheme capable of controlling data fidelity to exploit less frequent data access of 

user. This flexibility on quality adjustability leads to more efficient usage of storage 

space. In order to store data from various sensor types in cost-effective way, we 

study the optimal storage configuration strategy using analytical models that 

capture characteristics of our scheme. This strategy helps storing sensor data blocks 
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with the optimal configurations that maximizes data fidelity of various sensor data 

under given storage space. 

Next, we consider efficient sensing schemes and propose a quality-adjustable 

sensing scheme. We adopt compressive sensing (CS) that is well suited for 

resource-limited sensors because of its low computational complexity. We enhance 

quality adjustability intrinsic to CS with quantization and especially temporal 

downsampling. Our sensing architecture provides more rate-distortion operating 

points than previous schemes, which enables sensors to adapt data quality in more 

efficient way considering overall performance. Moreover, the proposed temporal 

downsampling improves coding efficiency that is a drawback of CS. At the same 

time, the downsampling further reduces computational complexity of sensing 

devices, along with sparse random matrix. As a result, our quality-adjustable 

sensing can deliver gains to a wide variety of resource-constrained sensing 

techniques. 

 

keywords : quality-adjustable sensor data, data archiving, data aging, optimal 

storage management, compressive sensing, downsampling 
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Chapter 1 

Introduction 

Rapid advances of hardware technology have created massive information flow 

generated by various sensors. In order to handle this, we have to consider how to 

capture and store sensor data efficiently. In this chapter we look at our research 

motivation and characteristics of sensor data such as spatio-temporal correlation and 

quality adjustability. We also summarize major contributions of our research and 

outline the contents of the thesis. 

1.1 Motivation 

We are now witnessing the ubiquity of computers and computing devices in our 

everyday life. To build better information-based environments, great research efforts 

have been concentrated in pervasive computing. In particular, as mobile computing 

became prevalent in the form of hand-held devices such as smart phones, their rich 

sensing capabilities are enabling new applications and spawning new research 

topics [1]. Crowd sourcing and opportunistic sensing are derivatives of this richer 

sensing capability compared to traditional sensing in terms of both quality and 

quantity [2].  
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In addition, the sensing boundary has now broadened to urban areas [3]. In 

modern society, most population tends to be concentrated in urban areas. The vision 

for smart cities originated as a natural evolution of research in smart homes and 

other smaller scale smart spaces [4-8]. In smart city, ‘things’ and people are 

intimately connected through diverse technologies. However the key technology 

behind the smart city is various sensors that gauge physical infrastructure such as 

power grids and oil pipelines, and even mobile objects such as humans and vehicles. 

People can also act as active sensors using their hand-held devices to gather 

intelligence on city operations. 

Meanwhile, the progress of hardware technology with respect to storage, 

computation, and communication capabilities has enabled continuous and rapid 

flow of data items. This progress allows us to create and replicate more information, 

which has promoted the tendency of generating any data that were once neglected 

or merely provided in aggregate form [9]. 

Among this generated information, less than half can be accounted for by user 

activities, while the rest represents machine-generated information such as sensor 

data. It is evident that data generated from countless sensors will keep increasing. 

As various types of sensors are being deployed at more places, information 

generated by these sensors is also rapidly increasing. This tremendous amount of 

information we are faced with give rise to so-called ‘information explosion’ crisis 

[10-12]. 

While the disk storage cost keeps decreasing and data storage capacity keeps 

increasing, this faster information generation rate now leads to a paradox that 

increasing storage capacity cannot catch up with the rate of information explosion. 

The amount of information created, captured, or replicated has already exceeded 

available storage for the first time in 2007. Moreover, it is reported that almost half 
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of information created and transmitted cannot be stored in 2011 [13, 14]. It is 

apparent that this gap between available storage and information creation will keep 

widened. 

In order to resolve this issue, we have to reconsider how to store data generated 

by ‘things’ such as sensors. Sensor data have several characteristics that 

differentiate them from other data. First, sensor data are highly correlated in nature 

within both spatial and temporal domain [15]. Second, accuracy of sensor data need 

not be strictly precise [16, 17]. Finally, retrieval of sensor data is gradually 

decreased as time goes by [18-20]. 

Using these characteristics of sensor data, we address the information 

explosion from the perspective of both storage and sensing environment: we 

develop (i) quality-adjustable data archiving scheme for storage efficiency, and (ii) 

quality-adjustable sensing scheme for individual sensing devices. 

 

1.2 Spatio-Temporal Correlation in Sensor Data 

Since the sensors usually capture physical phenomenon such as environmental data 

[21], we use data sets downloaded from the SensorScope website throughout this 

thesis [22]. The SensorScope website has various wireless sensor network (WSN) 

deployment scenarios that are mostly environmental data samples. In particular, we 

employ three different sensor types for our data archiving: (i) ambient temperature, 

(ii) surface temperature, and (iii) relative humidity. Figure 1.1 illustrates these three 

sample data sets captured from a certain sensor node deployed with other sensor 

nodes at École Polytechnique Fédérale de Lausanne (EPFL) campus in Lausanne, 

Switzerland. 
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(a) 

 

(b) 

 

Figure 1.1 Excerpts of sensor data samples from: (a) ambient temperature; (b) 

surface temperature; (c) relative humidity. 
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(c) 

 

Figure 1.1 (Continued). 

 

Data shown in Fig. 1.1 is highly correlated in nature within spatial and 

temporal domain [15, 23]. These correlations are presented in Fig. 1.2 where the 

autocorrelation of the ambient temperature data are plotted for demonstrating the 

spatial correlation and the temporal correlation that exist in general environmental 

data. In particular, Fig. 1.2a shows the two-dimensional autocorrelation of the 

ambient temperature data samples collected at certain time instance, by sensor 

nodes deployed within a certain area, whereas Fig. 1.2b describes the 

autocorrelation of consecutive ambient temperature data samples collected by a 

specific sensor node. In Fig. 1.2a, we can identify that close nodes observe more 

correlated data, and conversely less correlated data is observed as the distance 

between nodes increases. Similarly, the correlation depends on the time difference 

between signal samples as shown in Fig. 1.2b: the ambient temperature data is more 
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correlated within short time interval. It should be noted that between the spatial and 

temporal correlation, the temporal correlation exhibits stronger correlation than the 

spatial correlation. 

 

 

(a) 

 

(b) 

 

Figure 1.2 (a) 2-D autocorrelation of ambient temperature data samples (b) 

Autocorrelation of ambient temperature data samples collected by a sensor node. 
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This spatio-temporal correlation can be exploited to remove the redundancy in 

both spatial and temporal dimensions, which results in compressing the entire data 

set into smaller form [24]. This process is analogous to the intra prediction and inter 

prediction of video compression standards where the intra prediction removes 

redundancy among texture information of a certain video frame, while the inter 

prediction removes redundancy among consecutive frames in a video sequence [25]. 

 

1.3 Quality Adjustability of Sensor Data 

Individual sensor data does not require either bit-level accuracy or intactness due to 

several reasons: (i) each sensor node is equipped with inexpensive and imprecise 

sensors that only guarantee moderate level of sensing accuracy, (ii) sensor nodes are 

densely deployed and they periodically capture environmental data that are highly 

correlated in spatio-temporal domain, which makes storing all of data unnecessary, 

(iii) we are usually interested in overall trend of sensor data, thus we can tolerate a 

certain amount of distortion and approximate results are sufficient most of the time 

[16]. This characteristic of impreciseness, together with strong spatio-temporal 

correlation, allows us to cope with high information generation rates of sensors via 

lossy source coding that greatly reduces the amount of required storage space. 

In addition, the frequency of access to sensor data is gradually decreased as 

time goes by. Although fresh data could be frequently accessed and therefore they 

should retain high fidelity, aged data could be seldom retrieved and only find their 

use in offering a digest of historical trend in sensor readings. We can exploit this 

property by controlling the fidelity of sensor data, that is, gradually lowering data 

quality so that the accuracy of data is decreased over time. In other words, it is 
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sufficient to store key features of sensor data in most sensor applications especially 

for long-term storage [15, 18-20]. 

The trade-off between data fidelity and storage consumption can be explained 

by rate-distortion theory, where rate and distortion are inversely proportional to each 

other. When coding a source, one can allow some amount of distortion in original 

source to reduce rate that are expressed by mutual information between original and 

reconstructed source. Furthermore, the successive refinement concept [26, 27] 

enables sending a description with a particular amount of distortion and later 

deciding that the description needs to be specified more accurately. Then when an 

addendum to the original description is sent, this refinement should be as efficient 

as if the more strict requirements had been known at the start. Figure 1.3 illustrates 

this concept, where a refinement from ˆ1X  to ˆ 2X  achieves the rate-distortion 

limit at each of the two stages. 

 

 

 

Figure 1.3 Successive refinement from ˆ1X  to ˆ 2X . 
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The successive refinement concept has been realized to many applications, 

especially in multimedia field in the name of scalable coding, which has been also 

successful in practical applications [28-31]. However, a well defined successive 

refinement theory does not hold completely in reality. Even the most advanced 

scalable encoder to date is not able to achieve the rate-distortion limit shown in Fig. 

1.3 due to several reasons: (i) source distribution mismatch between actual source 

and theoretical source which has simple distributions such as Gaussian or Laplacian, 

(ii) the impossibility of assuming infinite block length for the codebook generation 

as in the case of rate-distortion theory, and (iii) side information and protocol 

overhead. 

In spite of a little inefficiency intrinsic to the scalable coding, utilizing it to 

control the fidelity of sensor data would deliver notable gain in handling the fast 

information generation rate that is triggered by vast amount of sensors. Specifically, 

we can combine multiple layers to constitute a whole data block and later easily 

discard the highest layer one by one, which should result in efficient usage of 

storage space. 

 

1.4 Research Contributions 

The contributions of this thesis are summarized as follows: 

 We propose a quality-adjustable sensor data archiving that exploits both 

spatio-temporal correlations inherent in sensor data collection, which can 

be employed as a quality management module in conventional distributed 

file system. This archiving scheme provides digested set of sensor data 

without compromising much fidelity. The performance of our scheme can 
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be demonstrated as outstanding coding efficiency with data fidelity 

corresponding to the order of sensor accuracy. 

 We focus on the gradually decreasing access pattern of sensor data, which 

can be translated into decreasing data fidelity as time elapses: it is 

sufficient to store only key features of sensor data in most sensor 

applications especially for long-term storage. Thus we offer multiple 

fidelity levels in our archiving scheme, which facilitates efficient storage 

management. 

 We delve into the relationship between quality parameters, distortion, and 

size of sensor data, from which we derive models that closely reflect the 

characteristics of our quality management scheme. Using these analytical 

models, we further find the optimal rate allocation strategy which 

minimizes distortion under a certain allowable rate. Furthermore, we study 

the optimal storage configuration strategy with which huge data from 

various sensor types have to be efficiently stored. 

 We propose a quality-adjustable sensing for an individual sensing device. 

To this end, compressive sensing (CS) is adopted that shifts the complexity 

burden of conventional source coding from the sensing device to data 

collection points that have more computational power. In particular, we 

extend general CS framework with downsampling in order to enhance the 

quality adjustability of the sensing device. We show that not only sensing 

data quality can be adapted in more efficient manner depending on various 

contexts sensors are subject to, but coding efficiency is improved using the 

downsampling approach. 
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1.5 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 presents the quality-

adjustable archiving scheme of sensor data utilizing their properties, and compares 

its performance with other coding methods. We also discuss the optimal storage 

configuration strategy that is derived from analytical models. In Chapter 3, we 

enhance the number of fidelity control options through the addition of quality 

enhancement layer to the archiving scheme, whose effect on the optimal storage 

configuration is discussed as well. Chapter 4 presents the quality-adjustable sensing 

in sensing environment. We introduce a low-complexity compressive sensing that is 

suitable for resource-limited sensors. Finally, we draw conclusions and address 

future research directions in Chapter 5. 
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Chapter 2 

Archiving of Sensor Data 

We have seen several properties of sensor data, especially the spatio-temporal 

correlation and the quality adjustability. In this chapter we begin our study of 

archiving the collection of sensor data. We show our quality-adjustable archiving 

scheme is competitive by demonstrating its coding efficiency. We derive analytical 

models that reflect the operation of our scheme. These models in turn lead to the 

optimal storage configuration strategy for handling massive data generated from 

various sensors. 

2.1 Encoding Sensor Data Collection 

Figure 2.1 illustrates the scenario of various sensors collecting and transmitting data 

to storages, where most of sensors are static and densely deployed. Storage 

optimization is essential in these circumstances, which calls for more efficient 

compression algorithms that can enable us to handle more information with the 

same amount of hardware. 
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Figure 2.1 Data collection scenario from various sensors. 

 

2.1.1 Archiving Architecture 

Figure 2.2 illustrates the block diagram of our quality management module working 

with conventional distributed file system that stores collected data from various 

sensors which are mostly static and densely deployed. Incoming sensor input is first 

filtered through the spatio-temporal decorrelation module where most of 

redundancy inherent in input data is removed in both spatial and temporal direction. 

 

WSN

Sensor Node

Sensor Gateway

WSN

Sensor Node

Sensor Gateway

Mobile Devices
WSN

Sensor Node

Sensor Gateway

Storage Servers



 

 １４ 

 

 

Figure 2.2 Quality management module working with conventional distributed file 

system. 

 

Incoming sensor input is first filtered through the spatio-temporal decorrelation 

module where most of redundancy inherent in input data is removed in both spatial 

and temporal direction. In particular, spatial correlation shown in Fig. 1.2a is 

removed by predicting a particular sensor value with its neighboring sensor values; 

whereas temporal correlation shown in Fig 1.2b is removed by predicting collection 

of sensor values at a certain time instant with collections at previous time instants. 

Since the temporal correlation generally exhibits stronger correlation than the 

spatial correlation, the signal decorrelation effect is stronger over temporal direction. 

The output from spatio-temporal decorrelation module in turn undergoes 

discrete cosine transform (DCT) for signal compaction. DCT has important 

characteristics such as energy compaction and signal decorrelation [32, 33], which 

is an approximation of Karhunen-Loève transform (KLT) that is optimal in reducing 

the dimensionality of feature space. 

Similar to DCT, the wavelet transform also has desirable properties for the 



 

 １５ 

compression of data such as energy compaction and signal decorrelation [32]. 

However it is well known that the performance of wavelet-based and DCT-based 

coding is almost same [34]. 

After DCT, the transformed data is subject to quantization and entropy encode 

processes. The quantization process is related to the rate-distortion theory explained 

in Section 1.3, which is concerned with the task of representing a source with the 

fewest number of bits possible for given reproduction quality. In other words, 

quality of data is compromised in the quantization process to yield compact 

representation of data, that is, lossy compression. Finally the entropy encode 

process further compresses quantized output losslessly by representing frequently 

occurring quantized labels with fewer bits and infrequently occurring quantized 

labels with more bits [32]. Meanwhile, the decoding process is straightforward: the 

entire process can be reversed to reconstruct data that approximate the original data. 

Note that this process is analogous to modern image and video encoding 

scheme [25, 32], whose performance overhead is insignificant with respect to 

today’s standard [16, 28, 31, 35, 36]. In fact, regarding sensor and environmental 

data as two-dimensional array of pixels has been embraced in literatures. Utilizing 

the inter prediction concept of a video coding standard, the watching of a ‘sensor 

movie’ idea was realized in monitoring data sensed from large WSN to increase 

sensor lifetimes [37, 38]. In addition, handling environmental data directly in 

floating-point format and making them compressible by an image compression 

standard was studied [39]. 

Compressing of sensor data in distributed environment using lossless or lossy 

approach has also been proposed in literatures [18-20, 40-42]. Since they focused 

on distributed storage of WSN, the spatial and temporal correlation inherent in 

sensor data were not fully exploited, thereby underutilizing latent correlation in 
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contrast to our archiving architecture. 

 

2.1.2 Data Conversion 

Most sensors capture physical phenomenon that can be represented using IEEE 754 

single precision floating-point format which is 32 bits long. Previous studies have 

addressed lossless compression of floating-point data [39, 43-45]. However, 4-byte 

length to represent the physical phenomenon such as environmental data is more 

than necessary most of the time. Due to the structure of the floating-point format 

that is made up of exponent and fraction bits, a number around zero enjoys 

excessively fine granularity. In addition, each sensor embedded in sensor nodes has 

only limited accuracy as discussed in Section 1.3. 

Taking these into consideration, we can represent sensor data using just one 

byte without much penalty. We could use fixed-point number instead of floating-

point, and divide normal operating range with 256 steps, while reserving both the 

first and last steps for handling anomalous data that are out of the normal operating 

range. This one byte representation leads to an immediate effect of reducing entire 

data size by three-fourths at the cost of little distortion that is 
2

12  assuming a 

mean squared error (MSE) distortion and a uniform distribution of the quantization 

error, where ∆ is the quantization step size. 

The conversion of 4-byte to 1-byte data results in smooth adaptation to the 

quality management module shown in Fig. 2.2 whose performance is optimized 

with the input of 1-byte unsigned integers. In Fig. 2.2, sensor data fed into the 

quality management module undergoes another quantization process to control the 

data fidelity, which can be adjusted through the quantization parameter (QP). The 

combination of one quantization from data conversion and the other quantization 
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from lossy coding itself seems quite complicated to analyze at first glance. However, 

they can be treated separately as the following lemma. 

 

Lemma 2.1: The joint distortion quantD  caused by the quantization from data 

conversion and the quantization from lossy coding is separable and can be 

expressed by sum of both distortions. 

Proof: Assuming the original data of single precision floating-point type is 

nearly continuous, the quantization step size c  is a division of normal data range 

by 256 steps. Then the probability density function (pdf) of quantization error from 

data conversion can be shown as in Fig. 2.3a. On the other hand, the quantization 

step size l  is controlled by QP of a lossy encoder that usually performs 

quantization operation in DCT domain. However it is well known that in an ideal 

encoder-decoder system, spatial-domain distortion and DCT-domain distortion are 

equal [32, 46], which enables us to render the probability mass function (pmf) of 

quantization error from lossy coding as in Fig. 2.3b. Assuming l  is an odd 

number without loss of generality, we can express the pmf of the quantization error 

from lossy coding as follows: 
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where LE  is a discrete random variable that denotes an amount of quantization 

error in integer domain. 
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(a) 

 

(b) 

 

Figure 2.3 (a) Pdf of quantization error from data conversion (b) Pmf of 

quantization error from lossy coding. 

 

When a specific LE  is given by Le , we can express the conditional pdf of 

quantization error from data conversion as follows: 
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where 
CE  is a continuous random variable that denotes an amount of quantization 

error. We can identify from (2.2) that the pdf shown in Fig. 2.3a can be shifted to 

left or right according to given 
LE . 

Assuming MSE distortion measure, quantD  can thus be formulated using joint 

distribution: 
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Then (2.3) yields the following: 
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which continues in 
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where   is a denominator which is 12 for small quantization step size and larger 

than 12 in case of a larger quantization step size compared to the signal variance. 
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This is because when the quantization step size becomes large, quantization errors 

can no longer be treated as uniformly distributed [47]. 

In the right-hand side of (2.5), the first term is the data conversion distortion 

and the second term is the lossy coding distortion normalized by 
c . In fact, this 

result is owing to the independence of two different distortion sources. ■ 

 

The above lemma helps us analyze and model the distortion of lossy coding by 

separating two different sources of quantization errors. Since 
c  is typically very 

small, we can confine distortion due to the data conversion to ignorable amount and 

rather focus on lossy coding itself. 

 

2.2 Compression Ratio Comparison 

In order to suggest the coding efficiency of our scheme, we compared the 

compression ratios of popular lossless coding methods with our quality-adjustable 

archiving scheme. We first focus on lossless coding methods and compare their 

performance of encoding raw environmental data. We employed several methods 

whose brief descriptions are as follows [32]. First, gzip is widely used file 

compression tool in Unix-like operating systems that is based on DEFLATE 

algorithm, which is a combination of LZ77 and Huffman coding [48]. bzip2, which 

generally yields more coding efficiency than gzip, is based on a combination of 

Burrows Wheeler Transform (BWT), move-to-front transform, and Huffman coding 

[49]. PPMd is an optimized implementation of prediction by partial matching (PPM) 

algorithm [50]. Lastly, 7-Zip is a relatively recent compressor that is based on the 

Lempel-Ziv-Markov chain algorithm (LZMA) [51]. 

Figure 2.4 shows compression ratios of lossless coding methods mentioned 
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above, where the compression ratios are expressed by the original raw data size 

divided by the compressed size. Unconverted, environmental data of single 

precision floating-point format were compressed using four lossless coding methods. 

In Fig. 2.4, we can identify that coding efficiency depends on the characteristics of 

each environmental data, where the relative humidity fluctuates vibrantly compared 

to ambient and surface temperature, hence yielding low compression ratios. In 

addition, we can observe that apart from gzip, three compression methods show 

similar compression performance throughout three data sets. 

 

 

 

Figure 2.4 Compression ratios of various lossless coding methods. 

 

We are also interested in the results of our quality-adjustable archiving scheme 

that handle the data with converted 1-byte unsigned integer format. As mentioned in 

Section 2.1.2, the conversion leads to reduction of data size by three-fourths, 

incurring distortion 
2

12c . Lossless coding methods in this case, compress the 
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converted data without loss that already carry the error due to the data conversion. 

In contrast, our quality-adjustable archiving scheme can compress more than 

lossless encoders through data fidelity adjustment at the cost of extra distortion. 

We compare our scheme with lossless coding methods in Fig. 2.5a. Although 

compressed size can be as small as how much we allow distortion, it might be 

unfair to directly compare lossy coding with lossless coding in terms of coding 

efficiency. Hence we set out a reference point for distortion, which is the sensor 

accuracy explained in Section 1.3: “each sensor node is equipped with inexpensive 

and imprecise sensors that only guarantee moderate level of sensing accuracy.” 

Vendors manufacturing sensors usually provide sensor accuracy information [52]. 

Table 2.1 shows the sensor type and its accuracy which corresponds to the sensor 

error margin e. In Fig. 2.5a, we allow total distortion up to e
2
 in terms of MSE for 

our archiving scheme where data conversion distortion 
2

12c  is within boundary 

of e
2
. 

 

Table 2.1 Sensor accuracy and type for three data types used in experiments 

Data Type Accuracy Sensor Type 

Ambient Temperature (A.T.) ±0.3°C 

Sensirion SHT75 Surface Temperature (S.T.) ±0.3°C 

Relative Humidity (R.H.) ±2% 
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(a) 

 

(b) 

 

Figure 2.5 (a) Compression ratios of our archiving scheme compared with various 

lossless coding methods (b) Log-scale compression ratios of our archiving scheme 

compared with wavelet-based methods with limited correlations at various data 

fidelities. 
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In Fig. 2.5a, LZMA performs best among lossless coders, while other lossless 

coding methods show moderate results with compression ratios under 5.0. However 

the most notable result comes with our archiving scheme that is up to 464.8 

depending on data types, allowing distortion comparable to the order of sensor error 

margin. 

The utilization of both spatio-temporal correlations culminates in outstanding 

coding efficiency as shown in Fig. 2.5b, where our archiving scheme contrasts with 

wavelet coding methods with limited correlation. Wavelet is another popular lossy 

coding method apart from DCT-based coding. Although the performance of 

wavelet-based and DCT-based coding is almost same as mentioned in Section 2.1.1, 

compression ratio shown in Fig. 2.5b juxtaposes a consequence of restricting the 

use of correlation to either spatial dimension or temporal dimension: wavelet 1D 

only exploits temporal correlation for signal compression, whereas wavelet 2D only 

exploits spatial correlation for signal compression. After signal compaction, both 

methods apply threshold, quantization and entropy encode processes for lossy 

compression of signal. Between both wavelet-based methods, wavelet 1D shows 

better results than wavelet 2D, thanks to the stronger correlation in the temporal 

domain than the spatial domain as shown in Fig. 1.2. 

It should be again noted that similar approaches to our scheme in distributed 

environment such as WSN have been proposed to reduce traffic and storage usage 

inside the network itself [18-20, 40-42]. Apart from these efforts, an efficient data 

compression technique that fully exploits spatio-temporal correlation of huge sensor 

data set, in contrast to the limited correlation of distributed environment case, is 

demanded for better management of storage space. 

The results in Fig. 2.5 convince us that our scheme is a viable solution for 

archiving huge amount of sensor data. In the following section, we will show more 
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comprehensive results of quality-adjustable archiving scheme with varying data 

fidelities, where we will study the effects of data fidelity control on both rate and 

distortion aspects. 

 

2.3 Quality-Adjustable Archiving Model 

We have seen the importance of utilizing both spatio-temporal correlations in our 

sensor data archiving scheme by comparing coding efficiency. We further focus on 

the quality adjustability of our archiving scheme; therefore, we derive analytical 

models that reflect the effect of adjusting data fidelity on both rate and distortion 

aspects. We show our model is close to actual results, which subsequently enables 

us to develop the optimal storage configuration strategy. 

2.3.1 Data Fidelity Model: Rate 

While the size of data can be controlled by adjusting QP at the quantization process 

in Fig. 2.2 in the traditional rate-distortion theoretical sense, it can also be 

controlled by adjusting the granularity in temporal domain, which is equivalent to 

the temporal scalability. Figure 2.6 shows the temporal coding structure of our 

spatio-temporal decorrelation module. There are total five temporal levels shown in 

Fig. 2.6, where each increasing temporal level corresponds to a double of frequency 

at which collections of sensor data at certain time instance are included in coded 

data set. Thus, the highest temporal level shall contain all of data sampled in line 

with temporal dimension. Figure 2.6 also displays the temporal prediction structure 

shown by arrows, which exploits strong temporal correlation we have seen in Fig. 

1.2b. It should be noted that this type of the temporal coding and prediction 

structure has been adopted in various video coding standards, where its efficiency 
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has been verified as well. 

 

 

 

Figure 2.6 Temporal coding and prediction structure of our spatio-temporal 

decorrelation module. 

 

It is quite intuitive to reckon that the size of compressed data R is reduced by 

half as the temporal level decreases by one step. However, due to the temporal 

prediction structure shown in Fig. 2.6, the amount of reduction becomes less than 

half per one temporal level decrease. We can model this relation as: 

 

 ( ) exp( ( ) ),l lR T        (2.6) 

 

where ( )l   and ( )l   are model parameters dependent on the quantization 

step size 
l , and {0,1,2,3,4}T   denotes the temporal level. In fact, the range of 

temporal levels can be extended or reduced depending on applications, which 

entails modification of the temporal coding and prediction structure shown in Fig. 

2.6. Without loss of generality, we use the structure shown in Fig. 2.6 throughout 

this thesis. 

Comparison between actual data size and the model in (2.6) with a fixed l  

is shown in Fig. 2.7a, where we can confirm the model effectively follows the 
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varying size of actual sensor data with respect to the temporal level. 

 

 

(a) 

 

(b) 

 

Figure 2.7 (a) Rate curve as a function of temporal level estimated by (2.6) with 

QP=20 (b) Rate curves as functions of quantization step sizes for different temporal 

levels estimated by (2.6). 
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In (2.6), two model parameters ( )l   and ( )l   have to be estimated from 

the real data based on the quantization step size, which are represented by 

 

 ( ) exp( ) exp( ),l l la b c d           (2.7) 

 ( ) exp( ) ,l la b c         (2.8) 

 

where a , b , c , and d  are data-dependent constants supplementary to 

( )l   in (2.6), and similarly, a , b , and c  are constants for ( )l   in (2.6). 

It should be noted that b  and d  in (2.7) and b  in (2.8) are all negative 

valued parameters that reflect decay of ( )l   and ( )l   with an increasing 
l . 

Combining (2.7) and (2.8) with (2.6), we can represent the total rate as a function of 

both the quantization step and the temporal level. The resulting model function is 

plotted in Fig. 2.7b, where five lines represent each temporal level and actual data 

points are also plotted for comparison. We can confirm the model effectively 

follows the varying size of actual sensor data. 

2.3.2 Data Fidelity Model: Distortion 

In addition to the rate modeling discussed above, we can estimate the distortion of 

data due to the quantization as well, which is given by 

 

 exp( ) ,quant quant quant quantD a b QP c      (2.9) 

 

where 
quanta , 

quantb , and 
quantc  are data-dependent constants. It should be noted 

that (2.9) is a function of QP, whose relationship with the quantization step size l  
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can be expressed by /6
0.625 2

QP

l    [53]. Figure 2.8 shows actual distortion 

points and its approximation using (2.9). 

 

 

 

Figure 2.8 Distortion curve as a function of QP estimated by (2.9). 

 

Although (2.9) effectively models the distortion caused by quantization, the 

source of distortion is not limited to the quantization. As the temporal level T varies, 

the amount of sampled data along temporal dimension varies as well, which causes 

another distortion. Recalling the temporal coding structure shown in Fig. 2.6, as T 

decreases by one step, half of data are excluded from data set, which leads to the 

condition that omitted data should be estimated using previous data samples. As a 

result, the total distortion increases as T decreases. 

In order to incorporate the temporal distortion into total distortion along with 

the quantization distortion, we assume that the temporal distortion is measured by 

mismatch between actual data samples and omitted data samples that are replaced 
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by previous data samples. Although the combination of these two different types of 

distortion seems tightly coupled, they can be separated as in the case of the lemma 

2.1. The following lemma proves their separability. 

 

Lemma 2.2: The joint distortion totalD  caused by the quantization from lossy 

coding and the omission of data samples along temporal dimension is separable and 

can be expressed by sum of both distortions. 

Proof: First we assume an arbitrary pdf of distance between actual data 

samples and reconstructed data samples, in which missing samples are covered by 

previous existing data samples. This pdf is denoted by ( )
TE Tf e , where random 

variable 
TE  reflects the near continuity of distance between data samples. 

When a specific 
TE  is given by 

Te , the conditional pmf of the quantization 

error from lossy coding is given by 
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which indicates that the pmf shown in Fig. 2.3b can be shifted to left or right 

according to given TE . 

We can express totalD  using joint distribution: 
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Then we have 
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which continues in 
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In the right-hand side of (2.13), the first term is the distortion in temporal 

dimension and the second term is the lossy coding distortion. Again, this result 

explains the independence of two different distortion sources. ■ 

 

Using the above lemma, the total distortion can be simply expressed by 

summing distortions from two different sources, which later will be proved as a 

useful property for modeling distortion. Meanwhile, throughout the lemma, we 

assumed an arbitrary pdf ( )
TE Tf e  that illustrates the distribution of distance 

between data samples. Intuitively we can conjecture that the range of distances 

between actual and omitted data samples which are replaced by previous data 

samples is widened as more data samples are dropped along the temporal dimension. 

Indeed, this conjecture can be confirmed as shown in Fig. 2.9, where four distance 

histograms are illustrated with respect to each temporal level except for the highest 

temporal level that has no temporal distortion. 
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(a) 

 

(b) 

 

Figure 2.9 Distribution of distance between actual and omitted data samples for: (a) 

T=3; (b) T=2; (c) T=1; (d) T=0. 
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(c) 

 

(d) 

 

Figure 2.9 (Continued). 

 

The distributions shown in Fig. 2.9 all have property that most of probability 
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masses are concentrated in zero, which demonstrates that there are excessive zeros 

in distance samples. This property can effectively be captured employing zero-

inflated model [54]. We can model the distributions using the mixture of the Dirac 

delta function and Laplacian distribution. Let p denotes an inflation term that 

indicates point mass at zero, then the rest of probability mass (1-p) can be 

represented using the pdf of Laplacian. This zero-inflated Laplacian distribution is 

given by 
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  (2.14) 

 

where λ is the shape parameter of Laplacian distribution. We can identify that (2.14) 

follows the actual distributions properly in Fig. 2.10 where ( )
TE Tf e  was drawn 

over the histogram of Fig. 2.9d. Since the mean of ( )
TE Tf e  is zero, its variance 

2

TE  is equivalent to the distortion in temporal dimension. The range of distances 

between actual and omitted data samples that are replaced by previous data samples 

is widened as more data samples are dropped along the temporal dimension, which 

equates to decreasing p in (2.14). 
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Figure 2.10 Distribution of distance fitted with zero-inflated Laplacian distribution. 

 

With the lemma 2.1 and lemma 2.2 at hand, we can state the separability of all 

distortion sources with the following theorem. 

 

Theorem 2.1: Every source of distortion is separable and can be analyzed 

independently. 

Proof: Using the lemma 2.1 and lemma 2.2, the proof is straightforward. ■ 

 

Now we turn to the problem of estimating the temporal distortion model. 

Specifically, we have found that the temporal distortion 
tempD  is a linear function 

of the temporal level T, which is given by 

 

 ,temp temp tempD a T b     (2.15) 
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where 
tempa  and 

tempb  are constants. The accuracy of (2.15) can also be verified 

by Fig. 2.11. 

 

 

 

Figure 2.11 Temporal distortion as a function of T estimated by (2.15). 

 

Thanks to the separation property proven in the theorem 2.1 and especially the 

lemma 2.2, we can combine both distortions in (2.9) and (2.15) to yield the joint 

distortion 
totalD  as follows: 

 

 ( , ) exp( ) ,total quant temp quant quant temp totalD QP T D D a b QP a T a       (2.16) 

 

where 
quantc  in (2.9) and 

tempb  in (2.15) are absorbed into one constant. 

 

2.4 QP-Rate-Distortion Model 



 

 ３７ 

We now discuss the accuracy of our analytical model. Thus far, we have discussed 

the relationship between QP, temporal level, distortion, and rate, i.e., compressed 

data size. If we express the relationship without temporal level, we obtain the results 

shown in Fig. 2.12a, where the temporal change is implied in the variation of the 

rate, given a particular QP. The actual QP-Rate-Distortion surface graph is also 

shown in Fig. 2.12b for comparison. In Fig. 2.12, we can identify our model 

estimation is close to the actual result, which was confirmed for two other types of 

data as well. 

 

 

(a) 

 

Figure 2.12 (a) QP-Rate-Distortion surface of ambient temperature estimated by 

model (b) Actual QP-Rate-Distortion surface of ambient temperature data set. 
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(b) 

 

Figure 2.12 (Continued). 

 

It is difficult to model our quality-adjustable archiving scheme using general 

rate-distortion models. For instance, a well-established modeling of rate and 

distortion for DCT-based video encoder is 
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where   is the same as in (2.5), and 
2

x  is the variance of the source [47]. 

In (2.17),   needs to be empirically adjusted to account for a wider range of 

∆. However, modeling our scheme with (2.17) yields discouraging results as shown 

in Fig. 2.13. In Fig. 2.13a,   was adjusted to the actual distortion, which leads to 

the result identical to the actual distortion curve. On the contrary, the rate modeling 

of (2.17) with obtained   is very far from the actual rate, as shown in Fig. 2.13b. 
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Furthermore, (2.17) has no provision for data fidelity control over temporal 

dimension, in contrast with our analytical model. Thus it is imperative that an 

accurate model is used in order to derive the optimal storage configuration strategy. 

 

 

(a) 

 

(b) 

 

Figure 2.13 (a) Distortion curves comparison; (b) Rate curves comparison with 

(2.17) and our model. (Rate modeling of (2.17) yields negative values after QP=35.) 
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2.5 Optimal Rate Allocation 

2.5.1 Rate Allocation Strategy 

Using the analytical model derived in Section 2.3, our next concern is how to find 

the minimum distortion with a given specific rate 0R . The optimal rate allocation 

problem can then be formulated as follows: 

 

 { , }

0

min ( , )

s.t.   ( , ) ,

total
QP T

D QP T

R QP T R
  (2.18) 

 

where ( , )totalD QP T  and ( , )R QP T  is the distortion and the rate function derived 

in (2.16) and (2.6), respectively. 

Figure 2.14 shows the surface graph of ( , )totalD QP T  derived in (2.16), where 

10 contour plots, which are isolines of rate, are drawn together over the surface to 

reveal the contours of same rate over varying distortion. In Fig. 2.14, we can see 

that the minimum distortion can be obtained along the boundary of QP and T. 

Specifically, when there is available rate, it has to be first spent on reducing QP, and 

only after arriving at the minimum QP can the rate be spent on increasing the 

temporal level. This allocation strategy can also be explained by deriving the 

gradient of the distortion function, which is given by 

 

 ( , ) ( , ).quantb QP

total quant quant tempD QP T a b e a    (2.19) 

 

In (2.19), the magnitude of 
tempa  is much smaller than that of the QP component of 
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the gradient, which means it is more advantageous to adjust QP than temporal level 

in order to reach the minimum distortion quickly. 

 

 

 

Figure 2.14 Isolines of rate over distortion surface. 

 

2.5.2 Optimal Storage Configuration 

We can furthermore extend the rate allocation problem of single sensor data block 

to accommodate more general case of storage configuration problem where multiple 

data blocks have to be stored efficiently. In our scheme, five temporal levels are 

supported with a fixed QP, which can be utilized as supplementary layers that can 

be gradually discarded as time elapses to handle less frequent data access. Figure 

2.15 illustrates how incoming sensor data input is handled and archived with our 

archiving scheme. The quality management module first compresses raw sensor 

data block with a selected QP, which is then stored on the highest fidelity cluster, i.e. 

cluster 4. When a certain amount of time passes, the quality management module 



 

 ４２ 

discards the top layer and shift the data block to the next cluster. This process 

continues until the data block finally reaches cluster 0, where the data block is 

archived for a long time. 

 

 

 

Figure 2.15 Data flow using our quality-adjustable archiving scheme. 

 

Considering total storage efficiency, we are interested in how to allocate 

storage to each fidelity cluster and how to determine QP of each data block. Since 

each data block occupies less storage space in lower fidelity clusters than higher 

fidelity clusters, lower fidelity clusters can hold more data blocks given the same 

capacity. Besides, it is more natural to retain lower fidelity data longer than higher 

fidelity data. Assuming single sensor data type, the optimal storage configuration 

problem can then be formulated as follows: 
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where 
iQP  denotes QP of each data block, N is the number of data blocks in 

cluster 4, and 
j  is a natural number denoting the proportion of data block 

numbers with respect to N. This equation describes a storage configuration at a 

certain instant where data blocks in lower fidelity clusters inherited QP’s from data 

blocks in higher fidelity clusters. When the total rate budget totalR  is given, the 

optimal storage configuration should yield the overall minimum distortion. 

The solution to (2.20) is an equal QP for each data block such that 

4

0
j total

j

R R


 , which no longer constrains 
j  to be a natural number: 

j  could 

be any positive rational number not less than 1. Hence the relationship between 

jR ’s is given by 
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j i j i
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
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N and 
j  are system parameters that can be appropriately adjusted according to 

the target duration of retaining sensor data for each cluster. 

The same result applies to a case when there are multiple sensor data types: an 

equal QP for each data block between the same types. However different sensor 

data types imply different model parameters, which leads to different QP's for 

different data types. In particular, the relationship between two different sensor data 

types using AQP  and BQP  can be represented as follows: 
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where we used separate distortion and rate function for each QP. In (2.22), the ratio 

of the weighted sum of distortion slopes for each temporal level to the weighted 

sum of rate slopes for each temporal level is fixed. This result is a case of constant 

slope optimization [55, 56]: we obtain same marginal return for an extra rate spent 

on either sensor data type. 

Utilizing the results, the optimal storage configuration strategy is first to 

determine proper QP's for each sensor data type in proportion to available storage, 

and then to encode sensing data input with the maximum temporal level. As time 

elapses, aged data blocks are shifted to next lower clusters till they reach the cluster 

0. The gradually decreasing access pattern of sensor data is exploited using this 

scalable archiving scheme, resulting in efficient management of storage space. 

2.5.3 Experimental Results 

Although the solutions to (2.20) given in Section 2.5.2 are the optimal in analytical 

sense, we further want to show their optimality for selecting actual operating points 

of our archiving scheme. Given N, 
j , and totalR , we first find the optimal QP’s 

for each sensor data type using our analytical model, then actual operating points 

corresponding to the optimal QP’s are selected to give overall distortion. We 

compare this overall distortion with other selection criteria: (i) uniform selection of 

arbitrary QP’s even in the same sensor types; (ii) equal QP’s for the same sensor 

types, but ignoring their relationship in (2.22). 

Experimental results are shown in Table 2.2, where all of three storage 
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configuration strategies occupy the same storage space. However they exhibit 

dramatic difference in terms of overall distortion: the arbitrary QP selection 

strategy is the worst as expected, the equal QP for the same sensor types strategy 

shows better result, but neither of two strategies is comparable to our optimal 

configuration strategy. In other words, we spend the same amount of storage space 

for poorer overall data fidelity, which is equivalent to maintaining the same quality 

of data blocks while spending more amount of storage space. In addition, since the 

results in Table 2.2 are distortion ratios normalized by our optimal distortion, 

cumulative distortion will increase as N increases to practical values for storage 

configuration. This result clearly shows the importance of the optimal storage 

configuration that has to be derived from proper analytical models. 

 

Table 2.2 Distortion ratios of three strategies normalized by our strategy ( 10N  ; 

0 10  , 
1 4  , 

2 3  , 
3 2  , 4 1  ) 

Storage Configuration Strategy Distortion Ratio 

Our Optimal Configuration 1 

Arbitrary QP Selection 8.3947 

Equal QP for the Same Sensor Types 5.5941 
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Chapter 3 

Scalable Management of Storage 

In the previous chapter, we have seen the quality-adjustable sensor data archiving 

and its application for the optimal storage configuration. In this chapter, we add 

another quality dimension: the quality enhancement layer. This added quality 

dimension offers more options for controlling data fidelity, which should be 

advantageous to a scalable management of storage space. We derive analytical 

models that capture the characteristic of the added quality dimension, and study the 

optimal storage configuration strategy. 

3.1 Scalable Quality Management 

In Section 2.5, we discussed about utilizing the temporal levels as supplementary 

layers that can be gradually discarded to handle decreasing access pattern. In 

addition to adjusting temporal levels, another dimension can be employed to control 

the fidelity of data as well. This dimension is directly related to the management of 

quality of data, thus named as the quality enhancement layer. 

In contrast to the QP adjustment that has to be determined prior to an encoding 

process, adding the quality dimension is close to the successive refinement concept 
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discussed in Section 1.3 apart from the fact that we reverse the refinement process 

such that discarding the highest layer one by one results in the efficient usage of 

storage space. In other words, the subset bitstream can be derived by dropping 

packets from the larger bitstream. 

Few studies have embodied the quality adjustability of sensor data in their 

schemes [18-20, 41]. Since individual sensor nodes have limited storage space, 

fidelity control of aged data for storage efficiency may not be crucial in distributed 

environment. On the contrary, when we have to handle huge data from various 

sensor types, simply storing all data with the same fidelity is unacceptable 

considering storage efficiency and decreasing access pattern, which makes the 

quality adjustability essential in archiving sensor data. 

Moreover, previous studies [18-20] supported the graceful degradation of 

quality by retaining multi-versions of fidelity blocks, which is contrary to the case 

of our scalable management where the graceful degradation is supported via one 

scalable data block. This difference in particular affects the coding efficiency since 

our scheme is designed to utilize the correlation among multiple fidelity levels, 

which yields better coding efficiency than previous studies. 

3.1.1 Archiving Architecture 

For the quality enhancement layer, we combine two layers each with different QP’s 

to enable the quality enhancement layer, which is illustrated in Fig. 3.1 where the 

base layer and the enhancement layer are encoded with different QP's. In Fig. 3.1, 

the temporal coding structure in Fig. 2.6 is extended to incorporate the quality 

enhancement layer, where the base layer represents the coding structure we have 

described in Section 2.3.1. Again, the range of temporal levels can be extended or 

reduced depending on applications, which entails modification of the temporal 
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coding and prediction structure. But we use this structure throughout the thesis. 

Figure 3.1 shows temporal coding and prediction structure of the enhancement 

layer not only exploits the temporal correlation, but it benefits from the correlation 

inherent in the texture information of the base layer. 

 

 

 

Figure 3.1 Temporal coding and prediction structure including quality enhancement 

layer. 

 

Figure 3.2 shows an overview of scalable quality management module that is 

an extension of the quality management module in Fig. 2.2. Similar to the quality 

management module, incoming sensor input is first filtered through the spatio-

temporal decorrelation module where most of correlation inherent in input data is 

removed, which in turn undergoes DCT for signal compaction. After that, the 

transformed data is subject to scalable quantization and entropy encode processes 

for lossy compaction of multiple layers. Again, the decoding process is the reverse 

T0 T0T1T2 T2T3 T3 T3 T3T4 T4 T4 T4 T4 T4 T4 T4

Enhancement layer

Base layer
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of this process. Here the scalable quantization process accounts for combining two 

layers: the base layer and the enhancement layer. 

 

 

 

Figure 3.2 Scalable quality management module operating with distributed file 

system. 

 

3.1.2 Compression Ratio Comparison 

Figure 3.1 shows the combining of two layers each with different QP’s. An ideal 

data block in accordance with the successive refinement concept should have data 

size equivalent to the size of non-scalable data block with lower QP. However, the 

actual combined data block using the scalable quality management module in Fig. 

3.2 shows suboptimal data size due to the side information overhead as explained in 

Section 1.3. Nevertheless, the size of combined data block is still smaller than the 

sum of both data block with different QP’s. Figure 3.3 shows the average 

compression ratios of sensor data sets with reference to the aggregate bitstream, 

where average ratio of aggregate bitstream to scalable bitstream and aggregate 

metadata servers
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spatio-temporal 
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bitstream to ideal bitstream are illustrated. The result of scalable bitstreams, which 

is our concern, is not very convincing when compared with the result of ideal 

bitstreams, showing ratios merely around 1.12. However a scalable data block is 

designed to be stripped down layer by layer and eventually to the base layer that has 

higher QP, so as to efficiently use the storage space. When the data block reaches 

the base layer, its coding efficiency is no more compromised. In Fig. 3.3, the QP 

difference between two layers is 12, which is a reasonable value when we consider 

a typical quality-enhanced data block. 

 

 

 

Figure 3.3 Average compression ratios of quality-scalable and ideal bitstream. 

 

In order to present the performance of the quality enhancement layer, we 

compared our archiving scheme with lossless coding methods similar to Fig. 2.5a. 

Figure 3.4 shows the performance of our scheme employing the quality 

enhancement layer compared with lossless coding methods, where the compression 
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ratios are again expressed by the original raw data size divided by the compressed 

size. As in Fig. 2.5a, distortion incurred is still comparable to the order of sensor 

error margin e
2
. In Fig. 3.4, our scheme exhibits some penalty in coding efficiency 

due to the overhead. Nevertheless, our scheme still shows impressive results and 

this penalty becomes insignificant, considering more data fidelity control options 

and vanishing penalty as layers are discarded. 

 

 

 

Figure 3.4 Compression ratios of our quality-scalable archiving scheme compared 

with lossless coding methods. 

 

3.2 Enhancing Quality Adjustability 

The scalable video coding, which is a notable realization of the successive 

refinement discussed in Section 1.3, has been a popular research area since its 

adoption to various video coding standards. In particular, quality scalability and its 

analytical modeling have been studied in several literatures [46, 57-60]. Although a 
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certain mechanism in scalable coding [61] can be well analyzed [46], others are 

difficult to model analytically due to different mechanisms [28, 29], which leads to 

solutions resorting to approximate estimation of quality scalable model [57-59]. In 

addition, these studies focus on the peak signal to noise ratio (PSNR) rather than 

MSE distortion itself since their target application is the scalable video. As a result, 

we should derive our own analytic models that precisely reflect the enhanced 

quality adjustability of our archiving scheme. 

3.2.1 Data Fidelity Model: Rate 

We found that the side information overhead of a quality-scalable bitstream can be 

effectively modeled by introducing additive scaling factors to the model parameters 

( )l   and ( )l   in (2.6), which represent the overhead of the quality 

enhancement layer as follows: 

 

    ( , ) ( ) ( ) exp( ( ) ),l l lR QP T S S T            (3.1) 

 

where S  is a data-dependent constant and ( )lS   is a model parameter that is a 

function of 
l , which is given by 

 

 ( ) ,Sb

l S l SS a c       (3.2) 

 

where Sa , Sb , and Sc  denote data-dependant constants. In (3.1), we can observe 

that the overhead incurred by the quality enhancement layer affects every temporal 

level of a quality-enhanced data block. Figure 3.5 shows actual data points and the 

model function of (3.1), which confirms accuracy of the modeling. 
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Figure 3.5 Rate curve of quality-enhanced data block as a function of temporal level 

estimated by (3.1) with QP=26. 

 

In our coding structure, the number of quality enhancement points depends on 

the temporal coding structure of the base layer: given the base layer temporal level 

{0,1,2,3,4}T  , there are T+1 quality enhancement points and one base layer point 

with no quality enhancement. For instance, if the base layer temporal level is 2, the 

enhancement layer temporal level can also increase up to 2, which is described in 

Fig. 3.6. 
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Figure 3.6 Temporal prediction structure with 2BASET   and 1ENHT  . 

 

Since the base layer rate can be expressed using (2.6), we can accurately model 

these quality enhancement points as well. Specifically, if we let BASET  denote the 

base layer temporal level and ENHT  the enhancement layer temporal level where 

ENH BASET T , we can express the rate of every quality enhancement points ENHR  

as follows: 
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where BASER  and TOTR  represent the base layer rate and the total rate of the 

enhancement and base layers that are expressed by (2.6) and (3.1), respectively; 

ENHQP  denote the QP of the enhancement layer and 
diffQP  the QP difference of 
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base and enhancement layer. Thus (3.3) can be specified in detail as follows: 
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where 
BASEl  and 

ENHl  denote the quantization step size of the base and 

enhancement layer. It should be noted that in (3.4), if 
ENHT  equals 

BASET , 
ENHR  

becomes equivalent to 
TOTR  in (3.1). 

3.2.2 Data Fidelity Model: Distortion 

Now that we found the quality scalable layer incurs a certain amount of overhead 

that can be incorporated in our rate model, our next question is how to properly 

model distortion at diverse quality enhancement points. We observed that distortion 

remains almost unchanged for the base layer and even for the enhancement layer as 

compared to the case of non-scalable data block. Moreover, the separation property 

of the quantization and temporal distortion proven in the lemma 2.2 also holds for 

the quality scalability: the temporal distortion only depends on the base layer 

temporal level regardless of the enhancement layer temporal level. This can be 

recognized by looking at Fig. 3.6, where we can find that a variation in the 

enhancement layer temporal level does not affect underlying base layer temporal 

encoding structure. In other words, the enhancement layer temporal level is solely 

related to the distortion of the quantization from quality control. 

The above observation for the distortion in quality scalable dimension leads to 

the conclusion that we can use the distortion model derived in (2.16) in order to 

estimate the distortion of quality-enhanced data block. However this observation is 

valid only if the base layer temporal level is identical to the enhancement layer 
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temporal level such that ENH BASET T . In case of the quality enhancement points 

not being full temporal level such that ENH BASET T , we have to find another way 

of estimating distortion in these quality enhancement points. 

By the separation lemma 2.2, we already know the temporal distortion can be 

modeled as a linear function of the base layer temporal level as in (2.15). Hence we 

can concentrate on the relationship between quality enhancement points when 

BASET  is equal to 4. We empirically derived the linear relationship between ratios of 

distortions of quality enhancement points with 4ENH BASET T   to the distortion 

of full temporal enhancement level with 4ENH BASET T  , which is given by 
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  (3.5) 

 

where ( , , )D ENH diff ENHS QP QP T is the ratio of distortion, ( , , )quality ENH diff ENHD QP QP T

is the distortion of quality enhancement points, ( , )ENH diffQP QP  is a model 

parameter dependent on ENHQP  and 
diffQP . ( , )ENH diffQP QP  can be derived by 

the following formula: 

 

 ( , ) ( ) exp( ( ) ),ENH diff diff diff ENHQP QP QP QP QP        (3.6) 

 

where ( )diffQP  and ( )diffQP  are model parameters dependent on 
diffQP  

that are also given by 

 

 ( ) ,diff diffQP a QP b
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 ( ) ,diff diffQP a QP b
        (3.8) 

 

where a


, b


, a


, and b


 denote data-dependent constants. 

We can now combine the multiplicative scaling factor in (3.5) and the joint 

distortion totalD  in (2.16) as follows: 

 

 ( , , ) ( , , ) ( , 4).quality ENH diff ENH D ENH diff ENH total ENHD QP QP T S QP QP T D QP    (3.9) 

 

Finally, we include the temporal distortion in (2.15) and obtain 
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The accuracy of the rate and distortion in quality enhancement points 

expressed by (3.3) and (3.9) can be verified by Fig. 3.7 and Fig. 3.8. Figure 3.7a 

shows the result of our model using (3.4), and Fig. 3.7b the surface graph describing 

the actual rate points. In Fig. 3.7, the rate points of seven different quality-enhanced 

data blocks with 4BASET   and each having base and enhancement layer QP 

differences of 12 are shown. Similarly, Fig. 3.8a illustrates the result of our model 

using (3.9) and Fig. 3.8b actual distortion points, where we have the same 

configuration as in the case of Fig. 3.7. From Fig. 3.7 and Fig. 3.8, we can see that 

our model closely approximates actual rate and distortion points, which was 

confirmed for two other types of data as well. 
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(a) 

 

(b) 

 

Figure 3.7 (a) Rate surface of quality-enhanced data block for ambient temperature 

as the function of ENHQP  and ENHT  estimated by (3.4) (b) Actual rate surface of 

quality-enhanced data block for ambient temperature data set. 
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(a) 

 

(b) 

 

Figure 3.8 (a) Distortion surface of quality-enhanced data block for ambient 

temperature as the function of ENHQP  and ENHT  estimated by (3.9) (b) Actual 

distortion surface of quality-enhanced data block for ambient temperature data set. 

 

3.3 Optimal Rate Allocation 
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In Section 2.5, we have discussed how to allocate rate optimally in order to 

minimize distortion when we can control the quantization parameter QP and the 

temporal level T, where we have reached to a conclusion that the rate should be first 

spent on reducing QP rather than increasing T. Moreover, we extended our analysis 

to the case of multiple sensor data blocks from various sensor types, which led to 

the optimal storage configuration strategy. 

Now that we have added another quality dimension, i.e., the quality 

enhancement layer, we have also added other controllable parameters, which are the 

quantization parameter and temporal level of enhancement layer, namely 
ENHQP  

and 
ENHT ; and the QP difference of base and enhancement layer 

diffQP . Therefore 

we have to take these controllable parameters into account when we consider the 

optimal rate allocation problems. 

3.3.1 Rate Allocation Strategy 

Using the analytical models derived in Section 3.2, we are now interested in how to 

allocate rate optimally in order to minimize distortion with a given specific rate 0R , 

adjusting various parameters. If we focus on the minimum distortion of the 

enhancement layer, then the rate allocation problem would be formulated as follows: 
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  (3.11) 

 

where
_ ( , , , )quality total ENH diff ENH BASED QP QP T T and ( , , , )ENH ENH diff ENH BASER QP QP T T  

are the distortion and the rate function derived in (3.10) and (3.3), respectively. 

Figure 3.9 illustrates 10 contour plots that are isolines of rate, drawn over the 

surface graph of distortion shown in Fig. 3.8a to display the contours of same rate 
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over differing distortion. Comparing Fig 3.9 to Fig. 2.14, we can see similar results 

as distortion can be minimized along the boundary of ENHQP  and ENHT  given a 

certain rate. In other words, available rate has to be first spent on minimizing 

ENHQP , and only after arriving at the minimum ENHQP  can the rate be spent on 

increasing ENHT . 

 

 

 

Figure 3.9 Isolines of rate over distortion surface of quality-enhanced data block. 

 

In addition, BASET  and ENHT  should be both integer values between 0 and 4, 

along with the condition ENH BASET T . Figure 3.10 shows varying distortion with 

respect to both temporal levels, where we can identify BASET  governs most 

distortion while ENHT  accounts for linear enhancement of quality. 
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Figure 3.10 Distortion graphs as a function of 
ENHT  for different 

BASET ’s 

estimated by (3.10) with 26ENHQP   and 12diffQP  . 

 

We are also interested in the effect of varying 
diffQP  on distortion, which is 

illustrated in Fig. 3.11. In contrast to the result in Fig. 3.10, no dominant factor is 

found between ENHT  and 
diffQP , which can also be explained by wider range of 

possible values 
diffQP  can have unlike the limited range of ENHT . 
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Figure 3.11 Distortion graphs as functions of 
diffQP ’s for different 

ENHT ’s 

estimated by (3.10) with 26ENHQP   and 4BASET  . 

 

Since 
ENHQP , 

diffQP , 
ENHT , and BASET  are all non-negative integer values, 

now (3.11) turns into the problem of nonlinear integer programming [62]. In 

addition, we can draw a general rule of thumb from above results: the priority of 

four variables is the following order ENHQP , BASET , ENHT , and 
diffQP . In other 

words, 
ENHQP  is generally the most important factor for the enhancement layer 

distortion under given specific rate, and BASET  precedes ENHT , which 
diffQP  

follows. 

3.3.2 Optimal Storage Configuration 

The rate allocation problem of single sensor data block in the previous subsection 

can be extended to more general case of storage configuration problem where 

multiple data blocks have to be stored efficiently. With fixed ENHQP  and 
diffQP , 

nine quality enhancement points are supported that can be utilized as supplementary 
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layers, which can be gradually discarded as time elapses to handle less frequent data 

access. 

Figure 3.12 illustrates how incoming sensor data input is handled and archived 

with our scalable quality management scheme. The scalable quality management 

module first compresses raw sensor data block with selected 
ENHQP  and 

diffQP , 

which is then stored on the highest fidelity scalable cluster, i.e. scalable cluster 8. 

When a certain amount of time passes, the scalable quality management module 

discards the top layer and shift the data block to the next cluster. This process 

continues until the data block finally reaches the scalable cluster 0, after which the 

final quality enhancement point, i.e., 0ENHT  , is discarded and the sensor data 

block is permanently archived with 0BASET   only. 

 

 

 

Figure 3.12 Data flow using our scalable quality management scheme. 

 

Concerning total storage efficiency, we are interested in how to allocate storage 

to each fidelity scalable cluster and how to determine ENHQP  and 
diffQP  of each 

sensor data block. Since each block occupies less storage space in lower fidelity 

scalable clusters than higher fidelity scalable clusters, lower fidelity scalable 
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clusters can hold more sensor data blocks given the same capacity. Moreover, it is 

more natural to retain lower fidelity data longer than higher fidelity data. If we 

assume unique sensor data type, the optimal storage configuration problem can be 

formulated as follows: 
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where 
iENHQP  and 

idiffQP  denote 
ENHQP  and 

diffQP  of each sensor data block, 

N is the number of sensor data blocks in the scalable cluster 8, and 
j  is a natural 

number denoting the proportion of block numbers with respect to N. A storage 

configuration at a specific instant is described by (3.12) where sensor data blocks in 

lower fidelity scalable clusters inherited ENHQP ’s and 
diffQP ’s from sensor data 

blocks in higher fidelity scalable clusters. Given the total rate budget 
totalR , the 

optimal storage configuration yields the system-wide minimum distortion. 

The analytical solution to (3.12) is an equal ENHQP  and an equal 
diffQP  for 

each sensor data block such that 
8

0
j total

j

R R


 . This result no longer constrains 
j  

to be a natural number: 
j  can be any positive rational number that is not less than 

1. N and 
j  become system parameters that can be appropriately adjusted 

according to target duration of retaining sensor data for each scalable cluster. 

A similar result to (3.12) applies to a case when multiple sensor data types 

should coexist on the storage: an equal ENHQP  and an equal 
diffQP  for each 
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sensor data block between the same sensor data type. But different sensor data types 

imply different model parameters, which results in different 
ENHQP ’s and 

diffQP ’s 

for different sensor data types. Specifically, the relationship between two different 

sensor data types A and B can be represented as follows: 
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where we used separate distortion and rate function for each sensor data type. In 

(3.13), 
AENHQP  and 

AdiffQP  denote ENHQP  and 
diffQP  for sensor data type A; 

BENHQP  and 
BdiffQP  for sensor data type B. From this result, we can deduce that 

the ratio of the weighted sum of partial derivative of distortion with respect to 

ENHQP , to the weighted sum of partial derivative of rate with respect to ENHQP  for 
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each sensor data type is fixed; in addition, this ratio applies to partial derivative with 

respect to 
diffQP  in the same way. This result is another case of the constant slope 

optimization [55, 56]: in the optimal operating points, we obtain same marginal 

return for an extra rate spent with adjusting 
ENHQP  or 

diffQP  on either sensor 

data type. 

As we know an equal 
ENHQP  and an equal 

diffQP  have to be selected 

between the same sensor types throughout entire scalable clusters, the next question 

is how to determine 
ENHT  and 

BASET  of each sensor data block within particular 

scalable cluster j. This problem can be formulated as follows: 
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Unsurprisingly, the solution to (3.14) is an equal ENHT  and an equal BASET  

for each sensor data block in particular scalable cluster. In fact, we can describe 

( , )ENH BASET T  pairs that belong to specific clusters using a graph as shown in Fig. 

3.12, where a scalable cluster index corresponds to the sum of ENHT  and BASET . A 

routing path from (4, 4) to (0, 0) in this graph represents a possible selection of 

( , )ENH BASET T  pairs in the course of entire data aging process. According to the 

solution of (3.14), each scalable cluster from 2 to 6 has equal ( , )ENH BASET T  pairs 

for the same sensor type data blocks. 

Thus we have to pick one selection of ( , )ENH BASET T  pair for the scalable 

clusters from 2 to 6; the selection process should be based on possible routing paths 
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in the graph. If we count the number of routing paths in Fig. 3.12, we obtain 14 

different paths. However, not all of them are eligible for quality enhancement paths: 

some paths yield suboptimal results in terms of the Pareto efficiency as shown in 

Fig. 3.13. Figure 3.13 represents possible storage configurations at a specific time 

instant, where storage consumption and system-wide distortion are displayed. 

Obviously we should choose configurations that yield the minimum system-wide 

distortion under a certain rate budget. 

 

 

 

Figure 3.13 Possible storage configurations for ambient temperature data and their 

Pareto frontier. ( 1N  , 2ENHQP  , 12diffQP  ; 0 9  , 1 8  , 2 7  , 

3 6  , 
4 5  , 

5 4  , 
6 3  , 

7 2  , 8 1  ) 

 

Finding optimal quality enhancement paths with specific ENHQP  and 
diffQP  

can be carried out using a deterministic dynamic programming with a trellis 

diagram that represents all possible solutions [63]. In the trellis diagram, each stage 

corresponds to sensor data blocks in particular scalable cluster with its index equal 
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to the sum of ENHT  and BASET  in question, and each node of the trellis at a given 

stage represents a possible cumulative rate usage. In addition, each branch has a 

distortion corresponding to a particular choice of ( , )ENH BASET T  pair. 

Figure 3.14 shows an example of dynamic programming using the trellis 

diagram with the same set-up as in Fig. 3.13. Since there is only one path from (4, 4) 

to (3, 4), we start the diagram from (3, 4). At the scalable cluster 3 that corresponds 

to (1, 2) and (0, 3) in Fig. 3.12, nine different routing paths are available as 

presented by nine separate nodes. In Fig. 3.14, cumulative distortion along different 

paths is listed in solid and dotted boxes. In particular, three dotted boxes represent 

suboptimal paths that yield more system-wide distortion than achievable. 

 

 

 

Figure 3.14 Dynamic programming using trellis diagram. 

 

In fact, all of these suboptimal paths converge at (1, 2); but there are other 

paths that converge at (1, 2) and still provide Pareto optimal results. Thus we can 
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remove the three suboptimal routing paths without penalty and proceed to the next 

stage. Putting together, an algorithm for the optimal storage configuration strategy is 

described in Fig. 3.15. 

 

 

 

Figure 3.15 Algorithm for the optimal storage configuration. 

1) Determine sensor data block size and duration of 

retaining sensor data for each scalable cluster 

- adjust system parameters N and 
j  accordingly 

2) Find model parameters and data-dependent constants for 

different sensor data types 

3) Determine proper 
ENHQP  and 

diffQP  for a specific sensor 

data type in proportion to available storage 

- minimizing ENHQP  is far more effective for decreasing 

system-wide distortion in data aging process than 

minimizing 
diffQP ; minimizing 

diffQP  is more responsible for 

quality of permanently archived sensor data 

4) Encode sensing data input 

5) Find optimal routing paths in quality enhancement 

points with dynamic programming using the result in Step 4 

- determine proper routing path in proportion to available 

storage 

6) Store encoded data block with the highest quality 

enhancement points (4, 4) on the scalable cluster 8 

7) As the duration determined in Step 1 elapses, discard 

top layer and shift aged sensor data blocks to next lower 

scalable clusters following the routing path in Step 5 

8) If aged sensor data blocks are set at the scalable 

cluster 0, discard the last layer and permanently archive 

them 
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3.3.3 Experimental Results 

We now show the optimality of solutions to (3.12) in Section 3.3.2 by selecting 

actual operating points of our scalable archiving scheme. Given N, 
j , and 

totalR , 

we find the optimal pairs of 
ENHQP  and 

diffQP  for each sensor data type using the 

relationship in (3.13), then actual operating points corresponding to analytical 

solutions are selected for our configuration. We compare this result with a 

configuration of equal pairs of 
ENHQP  and 

diffQP  only for the same sensor types, 

but ignoring the relationship in (3.13). 

In reality, it is difficult to satisfy (3.13) strictly since the amount of impact on 

derivatives may be mismatched between 
ENHQP  and 

diffQP . In this case, 
ENHQP  

and 
diffQP  can be separately handled to satisfy (3.13). Table 3.1 shows 

experimental results of our optimal configuration strategy and equal pairs of 

ENHQP  and 
diffQP  for the same sensor types strategy. Both strategies exhibit the 

same storage consumption, while incurring distinct distortion ratios normalized by 

our optimal distortion. In Table 3.1, we can again verify the importance of 

determining optimal parameters as in Section 2.5.3. 

 

Table 3.1 Distortion ratios of different strategies normalized by our strategy ( 1N  ; 

0 9  , 1 8  , 2 7  , 3 6  , 4 5  , 5 4  , 6 3  , 7 2  , 8 1  ) 

Storage Configuration Strategy Distortion Ratio 

Our Optimal Configuration 1 

Equal parameters for the Same Sensor Types 6.8069 

 

We can also quantify the importance of determining optimal routing paths by 
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comparing distortion ratios. In particular, we take the case shown in Fig. 3.13 for an 

example and show the result in Table 3.2, which compares the maximum difference 

of distortion ratios under a certain rate budget. 

 

Table 3.2 Distortion ratio difference between routing paths in Fig. 3.13 

Quality Enhancement Path Distortion Ratio 

Our Optimal Path 1 

Worst Case 1.2865 

 

Results in Table 3.1 and Table 3.2 provide a rationale for the use of the optimal 

storage configuration strategy in Fig. 3.15. The gradually decreasing access pattern 

of sensor data is effectively exploited using this scalable quality management 

strategy, resulting in efficient utilization of storage space. 
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Chapter 4 

Quality-Adjustable Sensing 

Thus far, we have seen how to optimally store massive collection of sensor data. 

Our next concern is the sensing environment: how to efficiently capture physical 

phenomena. This chapter addresses the quality-adjustable sensing that is suited for 

resource-limited sensors. To this end we adopt a different coding method called 

compressive sensing. We enhance the quality adjustability of the basic compressive 

sensing framework by introducing quantization and downsampling. We also discuss 

resource savings and coding efficiency improvement induced by the downsampling. 

4.1 Compressive Sensing 

Compressive sensing or compressed sampling (CS) is an emerging 

sensing/sampling paradigm that enables sampling of a signal under the Nyquist-

Shannon sampling rate, where the signal must be sampled at least two times faster 

than the signal bandwidth [64-67]. 

A typical data acquisition scenario works as follows: massive amounts of data 

are collected and most part of them is discarded at the compression stage for storage 

and transmission needs. In particular, a signal is sampled at high frequency to 
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accommodate possible high frequency component inside that can be up to half the 

sampling frequency. The sampled signal is transformed using DCT or wavelet 

transform as explained in the previous chapters. The transformed signal in turn 

undergoes the quantization process, which inevitably involves discarding 

insignificant coefficients and keeping only a few largest coefficients. 

This process of massive data acquisition followed by compression is wasteful, 

especially for resource-constrained devices. On the contrary, CS operates very 

differently as if it were possible to directly acquire just the important information 

about the object of interest. 

Previous studies presented compression of data tailored for usage on mostly 

individual sensor node [18-20, 40-42, 68-74]. Among these studies, some of them 

adopted lossless coding schemes [40, 69, 71-74], while others adopted lossy coding 

schemes [18-20, 41, 42, 68, 70]. Whether their schemes were lossless or lossy, they 

tried to achieve two goals: energy savings in wireless transmission and storage 

usage savings, with the help of reduced sensor data size using compression. 

Although these studies modified conventional coding schemes to adapt to 

resource-constrained sensor nodes, their computational complexity is still high as 

compared to that of CS, which hampers their wide adoption to various types of 

resource-limited devices such as wearable sensors [75]. In contrast, CS is well 

suited even for such limited devices. 

4.1.1 Compressive Sensing Problem 

In CS, a signal is projected onto random vectors whose cardinality is far below the 

dimension of the signal. For instance, consider a signal 
N

x  that can be 

compactly represented in some orthogonal basis Ψ  with only a few large 

coefficients and many small coefficients close to zero as follows: 



 

 ７５ 

 

 ,x Ψs   (4.1) 

 

where 
N

s  is the vector of transformed coefficients. In (4.1) Ψ  could be any 

orthogonal basis that makes x  sparse in transformed domain such as DCT and 

wavelet. The signal x  is called K-sparse if it is a linear combination of only 

K N  basis vectors in Ψ : only K of the coefficients in s  are significant. 

CS projects x  onto random sensing basis 
M N

  as follows (M < N): 

 

 , y Φx ΦΨs   (4.2) 

 

where Φ  is generally constructed by sampling independent identically distributed 

(i.i.d.) entries from the Gaussian distribution with mean 0 and variance 1/M. Instead 

of Gaussian, other sub-Gaussian distributions can be used such as Rademacher 

distribution, i.e., symmetric Bernoulli distribution [76]. (Sub-Gaussian is the 

distribution where moment-generating function is bounded by that of Gaussian, 

which has more uniform and shorter tail than Gaussian distributions.) 

The system shown in (4.2) is ill-posed as the number of equations M is smaller 

than the number of variables N: there are infinitely many x 's that satisfy y Φx . 

Nevertheless, this system can be solved with overwhelming probability provided 

that s  is sparse. 

Here since M < N, the sampled (or measured) signal 
M

y  is undersampled 

than the Nyquist-Shannon sampling rate. For a discrete-time signal such as x , if a 

signal were dynamic at the granularity of each vector element, that is, if it had the 

highest frequency component, the Nyquist-Shannon sampling rate would force the 

length N of x  preserved. In contrast, CS enables undersampling of the signal by 
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the length M provided that ( log( ))M O K N K . 

4.1.2 General Signal Recovery 

The signal recovery algorithm must take 
M

y , the random sensing matrix Φ , 

and the orthogonal basis Ψ . Then the recovery algorithm recovers s  knowing 

that s  is sparse; but it needs not know that s  is exactly K-sparse. Once we 

recover s , the original signal x  can be recovered through (4.1). 

It has been shown that the following linear program gives an accurate 

reconstruction of s : 

 

 
1

min        subject to       .s ΦΨs y   (4.3) 

 

Apparently, there are many efficient linear programming algorithms that solve (4.3). 

4.1.3 Noisy Signal Recovery 

Suppose y  were corrupted with a noise 
M

z  that is a stochastic or 

deterministic unknown error term, which could be from communication channel or 

quantization. The corrupted ŷ  can be represented as 

 

 ˆ . y ΦΨs z   (4.4) 

 

It has been shown that (4.4) can be solved using the following minimization 

problem with relaxed constraints for reconstruction: 

 

 
1 2

min        subject to       ( ) ,  s ΦΨ s s z   (4.5) 
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where ε bounds the amount of noise in the signal. Problem (4.5) is often called 

LASSO [77] and can also be solved efficiently. 

 

4.2 Quality Adjustability in Sensing Environment 

Various sensing devices from mobile phones to large scale sensor networks are 

essential in our daily lives. The near-optimal coding process we have seen in the 

previous chapters is not applicable to many resource-constrained devices due to its 

complexity. For instance, a sampled signal has to be transformed and quantized to 

discard insignificant coefficients. Since we are not aware of the exact positions of 

significant coefficients, the position information should be included as side 

information, as well as the coefficients themselves. These are in turn entropy-coded 

to yield the compact representation of the original signal. The entire chain of these 

processes is not an issue in storage environment we have discussed so far, where 

plenty of resources are available. 

However, the sensing environment does not entirely consist of devices that are 

capable of this whole chain of coding processes. While some sensors such as mobile 

phones are fully fledged, others such as biosensors are severely resource-limited. At 

this point, CS comes into relief that can be used instead of conventional source 

coding schemes. CS shifts the complexity burden to the decoder where original 

signal is estimated in best-effort manner, which promotes its universal adoption 

among various types of sensing devices. 

In Section 1.3, we discussed the quality adjustability of sensor data, from 

which we devised the efficient archiving scheme. Besides, the quality-adjustable 

nature of sensor data can also be leveraged in sensing environment. Sensing devices 
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may want to adjust data quality for various reasons: (i) energy, (ii) network 

bandwidth, and (iii) task overhead. If overall conditions get worse (e.g., device 

energy is low and CPU is loaded with other more important tasks), sensors can 

decrease data quality (reduce data rate); if conditions get better, vice versa. 

Apart from its low complexity benefit, CS inherently supports a progressive 

refinement of data quality through the number of random measurements: the more 

measurements are received by the decoder, the better reconstruction of data is 

possible [78]. In other words, we get progressively better results as we compute 

more CS measurements. Therefore, CS is an ideal coding method for the sensing 

environment. 

The progressive refinement feature in CS promises that the quality of 

recovered signal is as good as if one knew ahead of time the location of most 

significant pieces of information and decided to measure those directly [64]. This 

means that we need not send the side information that contains the position 

information of significant coefficients, which is automatically determined in 

decoding process. 

Meanwhile, in Section 2.1.1, we briefly discussed the characteristics of DCT 

such as energy compaction and signal decorrelation, where we also mentioned that, 

being an approximation of KLT, it had similar performance to wavelets. In order to 

show the performance of three orthogonal transform bases (i.e., DCT, wavelet, and 

KLT) in terms of the progressive refinement feature, we present in Fig. 4.1 MSE 

results of three bases with varying percentage of significant transform coefficients 

included, where all other coefficients are set to zeros. 
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Figure 4.1 Best K-term approximations for three transform bases (Daubechies-8 

wavelet used). 

 

In Fig. 4.1, it is clear that three transform bases show similar performances. 

Since KLT is not ideal for actual implementations [32], we can select a particular 

Ψ  among DCT and various wavelet families. However, CS-equipped sensing 

devices need not decide which transform basis it will use; rather, a transform basis 

is decided at decoder. In other words, if a better transform basis is found in terms of 

signal energy compaction, the same random measurements can be used to 

reconstruct more accurate view of the original signal [78]. 

4.2.1 Quantization and Temporal Downsampling 

Although CS supports the control of sensor data quality, simply relying on the 

adaptation of random measurements is insufficient for adjusting data quality; we 

need more options for the quality adjustment that can handle various context 

sensing devices are subject to. 
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Therefore, we employ (i) quantization and (ii) temporal downsampling into 

basic CS framework. This addition provides more rate-distortion operating points 

than basic CS framework, by which sensing data quality can be adapted in more 

efficient manner depending on various contexts. 

If a K-sparse time-domain signal 
N

x  captured by a sensing device is 

projected onto random sensing basis 
M N

  as in (4.2), it has been shown that 

log( )M c K N K   random measurements is sufficient to recover the original 

signal [64]. In (4.2), each entry in 
M

y  is usually represented in IEEE floating 

point format that is 32 bits (single precision) or 64 bits long (double precision). This 

measurement vector can be quantized to reduce length. In contrast to the 

quantization process we have seen in the previous chapters where the quantization 

occurred after the transform process, CS framework directly applies the 

quantization on the random measurements 
M

y . 

Thus the quantization on the measurement vector yields ˆ  y ΦΨs z  with a 

quantization noise z . At decoder, this noise-corrupted signal can be reconstructed 

with the LASSO optimization problem as in (4.5), where we allow slack ε in the 

constraint to account for the quantization noise. 

The solution 
s  to (4.5) obeys the following reconstruction error bound [64]: 

 

 
0 112

quantization errormeasurement error

,KC K C 


     s s s s   (4.6) 

 

where Ks  is the vector s  with all but the largest K components set to 0; and 0C  

and 1C  are constants depending on data. Although (4.6) provides us with an upper 

bound on the reconstruction error, the separable nature between measurement error 

(due to insufficient M) and quantization error (due to quantization noise) indicates 
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that both errors are also separable when calculating the expected error, which was 

indeed confirmed through our several experiments. 

We now introduce a powerful tuning knob for adjusting data quality: temporal 

downsampling. The signal x  is down-sampled and goes through CS with 

quantization. Figure 4.2 presents our quality-adjustable sensing architecture that 

extends CS with both quantization and temporal downsampling. Here the encoder 

and decoder use same pseudo-random matrix, which can be periodically updated 

using seed, e.g., combination of global seed and device ID. Note that this is a 

common practice in CS literatures [78-81]. 

 

 

 

Figure 4.2 Quality-adjustable sensing architecture incorporating downsampling. 

 

In Fig. 4.2, downsampling is performed without prior low-pass filtering at the 
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encoder, which should cause the aliasing of signal that are generally deemed to be 

undesirable. However, real low-pass filters (LPFs) are not comparable with an ideal 

filter in terms of sharp cutoff between passband and stopband. We found in 

experiments that using LPFs worsen the reconstruction quality most of times. LPFs 

incur much distortion when up-sampled and linear-interpolated although they 

reduce artifacts on down-sampled signal. 

Three quality adjusting parameters affect overall performance of a sensing 

device as shown in Table 4.1: we need ( )O MN  multiplication and summation 

operation (Computation) by default, which corresponds to max( )O MR  total rate 

(Bandwidth) where maxR  is the number of bits used by raw vector y  without 

quantization. Among three parameters, in order to examine the effect of 

downsampling by factor of D, consider log( )M c K N K   random 

measurements without the downsampling. The downsampling without LPF leaves K 

large coefficients mostly concentrated on low frequency intact, and reduces N to 

N/D. Thus the number of random measurements with downsampling involved is 

given by 

 

 log( ).downM M c K D     (4.7) 

 

Table 4.1 Effect of adjusting parameters on overall performance (marginal 

difference) 

 Computation (Energy) Bandwidth 

Measurements ↓ (N) ↓ (Rmax) 

Quantization ↑ (on initial operation) ↓↓ (M) 

Downsampling ↓↓↓ (( ) )down
NDM M
D

   ↓↓↓ max( log( ) )c K D R  
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Furthermore, temporal downsampling surprisingly yields better coding 

performance under the same condition of random measurements and quantization; 

enough number of random measurements for down-sampled signal and 

interpolating between nonzero values approximate to original signal more closely. 

Figure 4.3 depicts approximations of two different signal types with downsampling 

and quantization. 

 

 

(a) 

 

Figure 4.3 (a) Ambient temperature data; (b) solar radiation data [22] and their 

approximations using downsampling by factor of 4 (N/4=256) and 16 bits 

quantization (Daubechies-8 wavelet for Ψ ). 
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(b) 

 

Figure 4.3 (Continued). 

 

The advantage of our quality-adjustable sensing scheme can be identified by 

Pareto optimal frontier (the best achievable points) in Fig. 4.4, which shows the 

improvement of average MSE by 84.5% when the downsampling is employed. This 

better coding efficiency from temporal downsampling and linear interpolation can 

be a remedy for CS that suffers optimality in coding efficiency compared to 

conventional source coding we have seen in the previous chapters [82]. Moreover, 

the downsampling reduces both computational complexity and network bandwidth 

as can be identified in Table 4.1, demonstrating it can be a compelling add-on to CS 

framework. 
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Figure 4.4 Set of operating points for ambient temperature data and their Pareto 

frontiers using CS with only quantization; and our scheme with both quantization 

and downsampling where 
2

2
ˆMSE N x x . (Similar results obtained for the 

solar radiation data) 

 

4.2.2 Optimization with Error Model 

The effect of linear interpolation is almost unrelated with (4.6), which was also 

identified through experiments. Besides, the norm of error in transform coefficients 

is equivalent to the norm of error in signal since we use orthogonal basis Ψ . Thus 

total reconstruction error is given by 

 

 0 1 interpolation1
2 Refinement ,

R

K sourceD C K C N


    s s   (4.8) 

 

where R is bits spent on quantizing each entry in y , and source  is the standard 
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deviation of the original signal 

In (4.8), we replaced ε in (4.6) with 2
R

sourcec N


 , which can be derived 

from the following theorem. 

 

Theorem 4.1: Quantization error ε can be explained by 2
R

sourcec N


 . 

Proof: Note that 
2

  z . We want to analyze its approximation in statistical 

sense: especially we want to find its expected value 
2

  Ε z . To this end, we start 

with the following result [82]: 
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where iy  is each entry in y  and c is a constant. 

In the right-hand side of (4.9), the numerator can be denoted as follows: 
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E z
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where iz  is again each entry in z . Similarly, the denominator can be denoted as 

follows: 
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where the last approximate equality is due to the restricted isometry property (RIP) 

[64]. Thus (4.9) can be reformulated as 
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Meanwhile, we can find that the following approximate equality holds for 

sufficiently large M: 

 

 
2

2 2
,      

E z E z   (4.13) 

 

which can be also validated through numerical experiments, assuming iz  follows 

various distributions such as Gaussian, uniform, and beta. Moreover, we know that 

2 2 2

2
( )source sourceN    

 
Ε s , where we can assume that source mean is zero 

without loss of generality. Therefore, combining this with (4.12) and (4.13), we 

obtain the result 
2

2 .
R

sourcec N


   Ε z  ■ 

 

This error model can be utilized to find the optimal operating points with given 

rate budget 
totalR . We here consider the optimization solely in rate-distortion sense. 

Specifically, if we approximate 
1Ks s  using K


   (α, β, and γ are model 

constants), we can cast the problem as follows: 

 

 min        subject to       .totalD R MR   (4.14) 
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The resulting optimization is shown in Fig. 4.5, where four actual rate-

distortion curves with different quantizations are obtained from a down-sampled 

signal. We can also identify our error model in (4.8) follows the actual curves well. 

It is quickly apparent that in Fig. 4.5, the optimal operating points appear in 

quantization-granularity increasing order, that is, R=4, 8, 12, 16. 

 

 

 

Figure 4.5 Our model following the rate-distortion curves of down-sampled signal 

(N/2=512) with different quantizations. 

 

4.3 Low-Complexity Sensing 

In CS, a signal is projected onto random sensing basis as in (4.2), which is 

essentially the computation of inner products, that is, multiplication and summation 

operations. Since the random sensing basis Φ  is generally constructed from dense 

random matrices such as Gaussian and sub-Gaussian distributions, the inner product 



 

 ８９ 

computation is the key factor in overall encoding complexity. 

Meanwhile, if we can construct Φ  from sparse matrix, we can dramatically 

reduce the encoding complexity. This indeed is possible through the use of sparse 

random matrix while assuring the same performance as dense random matrices [83, 

84]. This sparse matrix is binary and very sparse, which apparently reduces the 

multiplication and summation operations. Combined with the downsampling we 

already discussed, the sparse random matrix can significantly benefit resource-

limited sensing devices. 

4.3.1 Sparse Random Matrix 

Suppose a dense random sensing matrix Φ  of which virtually every entry is set to 

non-zero real numbers. This leads to ( )O MN  multiplication and summation 

operations; however, this might sometimes be costly to resource-limited sensors 

without specific CS-supporting architectures [64]. 

The sparse random matrix turns out to be a solution to this complexity issue. 

The random sensing matrix Φ  now has d ones for each column; and all other 

entries are zeros. (Each column has roughly the same number of ones: slight 

unbalance in the number does not affect overall results [84].) It was shown that this 

matrix construction could be deemed an adjacency matrix of an unbalanced 

expander graph [85], which at the same time satisfies RIP-1 [83, 84]: 

 

 
1 1 1

(1 ) (1 ) ,    s ΦΨs s   (4.15) 

 

where 0   should not be close to one [64]. Note that Φ  constructed using the 

Gaussian or sub-Gaussian distributions satisfies RIP-2, i.e., the 2  norm instead of 

the 1  norm in (4.15). It was also shown that the sparse random matrix satisfying 
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RIP-1 was essentially as good as dense matrix satisfying RIP-2 [84]. Furthermore, a 

decoder with the RIP-1 matrix can recover the original signal using linear 

programming as in the case of RIP-2 matrix, which is given by (4.3). 

In this case, the solution 
s  to (4.3) obeys 
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· KC

  s s s s   (4.16) 

 

for some constant C, where Ks  is again the vector s  with all but the largest K 

components set to 0: the quality of recovered signal is as good as that with the K 

most significant pieces of information [64, 83, 84]. We get progressively better 

results as we compute more measurements M, as discussed in Section 4.2. 

Because of the selective nature of the sparse random matrix, computational 

complexity is reduced to ( )O dN , where (log( ))d O N K  [84, 86]. This is a 

considerable saving compared to the general case of ( )O MN , where 

( log( ))M O K N K . In fact, we found that d could be decreased as small as 2 

without noticeable loss in coding efficiency from our experiments where two 

different signal types were used. (If d = 1, a subset of K columns taken from Φ  

can be linearly dependent when M < N since there can be at most 
1

M 
 
 

 unique 

columns.) 

We here introduce the downsampling scheme to further reduce the 

computational complexity and increase the coding performance at the same time. 

Figure 4.6 presents our low-complexity CS architecture. The downsampling process 

takes every Lth sample and the upsampling process inserts L - 1 zeros between 

samples, where L is a downsampling factor. Note that the LPF was not used and the 

sparse random matrix generation can be synchronized between encoder and decoder 
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using pseudorandom number generator as in Fig. 4.2. 

 

 

 

Figure 4.6 Low-complexity CS architecture incorporating downsampling. 

 

The downsampling in Fig. 4.6, combined with upsampling and linear 

interpolation, again yields better coding performance than general CS framework. 

The rationale behind the better coding performance with downsampling is 

illustrated in Fig. 4.7, where original sensor data and two approximations using CS 

and CS with downsampling are drawn together. We can identify that down-sampled 

approximation is smoother than general CS approximation, resulting in less 

distortion. In other words, CS recovery tries to approximate the original signal 

while incurring distortion bounded by (4.16), which can be mitigated by less sample 

points recovery and smoothing out fluctuations using linear interpolation. 
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Figure 4.7 Ambient temperature data [22] and their approximations using CS with 

and without downsampling (Daubechies-8 wavelet used). 

 

The downsampling scheme further reduces the encoding complexity to 

( )O dN L . We classify overall encoder complexities in Table 4.2. 

 

Table 4.2 Overview of encoder complexities 

General CS Sparse Random Matrix Our Scheme 

( log( ))O NK N K  ( log( ))O N N K  (( ) log( ))O N L N K  

 

4.3.2 Resource Savings 

Two different signal types from environmental sensor data set shown in Fig. 4.8 

were selected for our experiments. In Fig. 4.9, we show averaged results of our 

downsampling scheme and the baseline scheme without downsampling. We here 

consider sum of squared error (SSE) distortion; parameters of the sparse random 
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matrix are 1024M  , 2048N  , and 2d  . It should be noted that in Fig. 4.9, 

the performance of baseline scheme is equivalent to general CS framework that uses 

dense Gaussian matrix for random sensing basis. 

 

 

(a) 

 

(b) 

 

Figure 4.8 Environmental sensor data of: (a) static; (b) dynamic types. 
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(a) 

 

(b) 

 

Figure 4.9 SSE comparison with several downsampling factors for: (a) ambient 

temperature; (b) solar radiation data. 
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In Fig. 4.9, the extra benefit of our scheme appears at 2L   (and 4); however 

SSE increases after this point, which means too few sample points and interpolation 

between them oversimplify approximations. Obviously, if reducing the 

computational burden is the utmost importance, a sensing device can increase the 

downsampling factor while sacrificing data quality. 

Meanwhile, we obtain these results using dN L  computations as compared 

to MN  computations in general CS framework, which especially is 99.95% of 

reduction at 4L  . (This is equivalent to 75% of reduction as compared to dN  

computations using solely the sparse random matrix.) Furthermore, we can leverage 

this benefit to reduce the length of vector y , which corresponds to rate and 

bandwidth usage of sensors. Therefore, we can find the minimum number of 

measurements that allows the same SSE as the baseline measurements. The 

resulting rate savings were 46.29% for ambient temperature data and 32.62% for 

solar radiation data. 
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Chapter 5 

Conclusions 

This thesis has focused on the quality adjustability of sensor data, thereby making 

two major contributions: quality-adjustable sensor data archiving and quality-

adjustable sensing. We now summarize what we have discussed thus far and present 

future research directions. 

5.1 Summary 

We first discussed a new archiving technique for huge volume of sensor data that 

leverages large spatio-temporal correlation inherent in the collection of sensor data. 

In particular, we adopted lossy coding scheme in order to take into account the 

quality adjustability of sensor data. Experimental results showed that our archiving 

scheme could efficiently handle massive volume of sensor data with remarkable 

compression ratio under tolerable amount of distortion concerning sensor accuracy, 

compared to the performance that popular state-of-the-art compression schemes 

exhibit. We could also identify the importance of utilizing both spatio-temporal 

correlation. 

Furthermore, the quality adjustability was considered in progressive manner at 
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archival level. A progressive data fidelity control is reasonable because of gradually 

decreasing access pattern to sensor data collection that user exhibits. To this end, we 

made our archiving scheme scalable by adding two dimensions for the fidelity 

control: temporal dimension and quality dimension. Through discarding 

enhancement layers as time elapses, the quality of sensor data can be progressively 

adjusted, which is essential in archival of sensor data collection. Our scheme allows 

an efficient management of storage space through graceful degradation of data 

fidelity, while retaining key features of sensor data. 

In addition, the archiving of massive data generated from various types of 

sensors should be regulated such that we make the best use of storage space: data 

fidelity of various sensor data blocks has to be maximized under given storage 

space. Thus we investigated the optimal management strategy of storage space. In 

this regard, we derived analytical models that reflected the characteristics of our 

quality-adjustable archiving scheme. We confirmed our model closely followed 

actual operation of the archiving scheme, from which the optimal storage 

configuration problem could be explored. Experiments showed the importance of 

the optimal storage configuration by comparing overall distortion under the same 

amount of storage space, where it was demonstrated that any arbitrary strategy 

could result in a waste of storage space. 

Next, we focused on the sensing environment and proposed an efficient 

sensing scheme that exploits the quality-adjustable nature of sensor data. In order to 

support resource-constrained sensing devices, we adopted compressive sensing (CS) 

that is computationally less complex than conventional source coding schemes. A 

sensing device may need to adapt data quality depending on context to meet the 

requirements of overall performance. CS is well suited to this case since it naturally 

provides for quality adjustability that can be utilized by sensors. 
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We enhanced the basic progressive refinement feature in CS by employing 

both quantization and temporal downsampling, and provided more rate-distortion 

operating points than basic CS framework. This enhancement made CS more 

adaptive to various conditions sensing devices would be subject to. The temporal 

downsampling, along with linear interpolation at decoder, was shown to 

significantly improve overall coding efficiency. 

Besides, the downsampling approach also reduced encoding complexity of 

sensing devices. This effect culminated in sheer decrease of complexity when 

combined with sparse random sensing matrix. As a result, our quality-adjustable 

sensing scheme can deliver significant gains to a wide variety of resource-

constrained sensing techniques. 

 

5.2 Future Research Directions 

In the quality-adjustable sensor data archiving, we envisaged our archiving scheme 

working with conventional distributed file systems. Currently this scheme is 

implemented by modifying popular scalable video encoder [25, 28, 29, 53], which 

is apparently optimized for image and video data. Although the scalable video 

coding has made its way to commercial success that proves its encoding and 

decoding ability in real time [31], it still has complex features that are unsuitable for 

the purpose of archiving sensor data. In addition, sensor-data-specific properties, 

which could be exploited in our archiving scheme to further improve the 

compression efficiency, have not been considered in our scheme. 

Now that we have shown feasibility of our archiving scheme with outstanding 

compression efficiency, we can reduce the complexity and possibly improve the 

compression efficiency of our archiving scheme, by closely inspecting which 
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property of sensor data is exploited to increase the compression efficiency; and 

which property is overlooked to yield suboptimal results. Moreover, in order to 

ensure its practical operation within distributed file system, we have to also consider 

the aspect of replica management and user retrieval of archival data blocks. 

Therefore we need to implement our archiving scheme as the quality management 

module in distributed file system and validate its practicality. 

In addition, we need to further investigate various aspects of the quality-

adjustable sensing. We first have to delve into the effect of downsampling and 

refine our rate-distortion analysis. Then we can extend the analysis of the three 

tuning parameters (measurements, quantization, and downsampling) to take account 

of overall system performance such as energy consumption and computational 

overhead. In this regard, the research aims to embrace real-time scheduling theory 

to address time constraint issues in quality-adjustable sensing. Specifically, the 

imprecise computation technique can be employed to account for the computational 

perspective of quality-adjustable sensing [87]. 

Meanwhile, the downsampling approach has been only considered temporally 

within individual sensing device. We need to extend this approach to spatially 

distributed sensing domain as well, which would yield distinctive performance 

especially in large scale domain. This research naturally connects with more general 

problem of big data management and analysis. While analyzing trend and pattern of 

massive data with various types, probing all the data would be impossible or very 

expensive. Low-complexity CS with downsampling could be a solution to this 

problem. 
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요약 
 

현재 센서 데이터를 비롯하여 장치들이 생성한 데이터들이 전체 데이

터 중 상당한 양을 차지하고 있다. 본 논문에서는 두 가지 중요한 문제인 

대량의 센서 데이터의 저장과 효율적인 센싱에 대해 고찰한다. 먼저 우리

는 ‘품질 조절이 가능한 센서 데이터 보관 기법’을 제안하며 이 기법을 

사용하면 중요한 특성을 훼손하지 않으면서 전체 센서 데이터 집합을 효

율적으로 압축할 수 있다. 

본 논문에서 제안하는 보관 기법은 데이터의 노화를 고려, 사용자의 감

소하는 접근 경향을 반영하여 데이터의 품질을 점차적으로 조절할 수 있

도록 설계하였으며 이는 저장 장치의 공간을 효율적으로 사용하는데 큰 

도움을 준다. 다양한 센서 종류들에서 발생하는 데이터를 효과적으로 저

장하기 위해 우리는 보관 기법에 대한 모델을 도출해 내고 이를 활용한 

최적의 저장 품질 구성 전략에 대해 논의한다. 이는 다양한 종류의 센서 

데이터 블록들을 주어진 저장 공간 하에서 최적의 품질로 저장하는 데에 

도움을 준다. 

다음으로 우리는 효율적인 센싱 기법에 착안하여 ‘품질 조절이 가능한 

센싱 기법’을 제안한다. 이를 위해 낮은 계산 복잡도의 특성을 가지는 

‘압축 센싱’ 방법을 도입한다. 이는 성능에 제약이 있는 센서 장치들에 

효과적인 방법이다. 우리는 압축 센싱 방법에서 본질적으로 지원되는 품

질 조절을 양자화와 특히 시간 차원의 다운샘플링 기법을 적용하여 개선

하였으며, 이전의 방법들에 비해 더 많은 비트량-왜곡 동작 지점을 제공

한다. 이러한 방법은 센서 장치들이 자신들이 처한 전체적인 성능을 고려

하여 데이터의 품질을 더욱 효율적으로 조절할 수 있도록 한다. 더욱이 

제안하는 다운샘플링 기법은 기존의 압축 센싱 방법에 있어서 단점이던 

부호화 효율을 향상 시킨다. 그와 동시에 다운샘플링 기법은 희소 확률 

행렬과 함께 사용하면 센서 장치의 계산 복잡도를 더욱 낮출 수 있기 때

문에, 다양한 종류의 성능 제약하의 센싱 기법들에 유리하다. 

 

주요어 : 품질 조절이 가능한 센서 데이터, 데이터 보관, 데이터 노화, 최적 저장 

공간 관리, 압축 센싱, 다운샘플링 
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