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Abstract

Markov Random Field (MRF) models are of fundamental importance in com-

puter vision. Many vision problems have been successfully formulated in MRF op-

timization. They include stereo matching, segmentation, denoising, and inpainting,

to mention just a few. To solve them effectively, numerous algorithms have been de-

veloped. Although many of them produce good results for relatively easy problems,

they are still unsatisfactory when it comes to more difficult MRF problems such

as non-submodular energy functions, strongly coupled MRFs, and high-order clique

potentials.

In this dissertation, several optimization methods are proposed. The main idea of

proposed methods is to combine stochastic and deterministic optimization methods.

Stochastic methods encourage more exploration in the solution space. On the other

hand, deterministic methods enable more efficient exploitation. By combining those

two approaches, it is able to obtain better solution. To this end, two stochastic

methodologies are exploited for the framework of combination: Markov chain Monte

Carlo (MCMC) and stochastic approximation.

First methodology is the MCMC. Based on MCMC framework, population based

MCMC (Pop-MCMC), MCMC with General Deterministic algorithms (MCMC-

GD), and fusion move driven MCMC (MCMC-F) are proposed. Although MCMC

provides an elegant framework of which global convergence is provable, it has the
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slow convergence rate. To overcome, population-based framework and combination

with deterministic methods are used. It thereby enables global moves by exchanging

information between samples, which in turn, leads to faster mixing rate. In the view

of optimization, it means that we can reach a lower energy state rapidly.

Second methodology is the stochastic approximation. In stochastic approxima-

tion, the objective function for optimization is approximated in stochastic way. To

apply this approach to MRF optimization, graph approximation scheme is proposed

for the approximation of the energy function. By using this scheme, it alleviates

the problem of non-submodularity and partial labeling. This stochastic approach

framework is combined with graph cuts which is very efficient algorithm for easy

MRF optimizations. By this combination, fusion with graph approximation-based

proposals (GA-fusion) is developed.

Extensive experiments support that the proposed algorithms are effective across

different classes of energy functions. The proposed algorithms are applied in many

different computer vision applications including stereo matching, photo montage, in-

paining, image deconvolution, and texture restoration. Those algorithms are further

analyzed on synthetic MRF problems while varying the difficulties of the problems

as well as the parameters for each algorithm.

Key words: Markov random fields, Combinatorial optimization, Markov chain Monte

Carlo, Population based algorithm, Stochastic approximation, Non-submodular

energy model, Higher order energy model

Student number: 2007-20950
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Chapter 1

Introduction

1.1 Markov random field

1.1.1 MRF and Gibbs distribution

Markov Random Field (MRF) models are of fundamental importance in computer

vision. Many vision problems have been successfully formulated in MRF optimiza-

tion. They include stereo matching, segmentation, denoising and inpainting, to men-

tion just a few. Recently, Szeliski et al. [2] presented a comprehensive review of the

standard MRF-based vision problems and the comparative results of existing opti-

mization algorithms.

The general formulation of the MRF models is as follows. Let X = {X1, · · · , XN}

be a set of random variable. Each random variable Xi takes a value xi. The set of

random variable X is said to be an MRF if and only if it satisfies the following

Markovian property:

p(xi|x1, · · · , xi−1, xi+1, · · · , xN ) = p(xi|xNi), (1.1)

1



2 CHAPTER 1. INTRODUCTION

where Ni is a set of index of neighbors of ith random variable and

xNi = xk|k ∈ Ni. (1.2)

An MRF is often represented by a graph G = 〈V, E〉, where V is the set of nodes

and E is the set of edges. Each random variable Xi corresponds to ith node and the

neighboring system Ni is defined by the set of edges E .

The Hammersley-Clifford theorem established that the joint probability of any

MRF can be represented by Gibbs distribution. It is so called Markov-Gibbs equiv-

alence. The Gibbs distribution of an MRF X, defined on the graph G = 〈V, E〉 with

the neighboring system E , is given by

p(x) =
1

Z

∏
c

φc(xc), (1.3)

where Z is a normalizing constant and φc is a clique potential function defined on

the set of random variable xc for the clique c, that is,

xc = xk|k ∈ c. (1.4)

1.1.2 MAP estimation and energy minimization

Computer vision problems have been used MRF to formulate the probability func-

tion for possible solutions and achieve most probable solution. That is to find the

Maximum A Posteriori (MAP) solution from given the probability function. A MAP

solution is defined by

x∗ = arg max
x

p(x). (1.5)
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Often, the energy function is considered instead the joint probability function

because of the simplicity and the computational issue. The energy function defined

on an MRF is given by

E(x) = − ln p(x) + Z (1.6)

E(x) =
∑
c

θc(xc), (1.7)

where

θc(·) = − lnφc(·). (1.8)

Now the MAP solution x∗ can be represented by the energy function as following:

x∗ = arg min
x

E(x). (1.9)

Therefore, estimating the MAP solution for the given MRF is equivalent to

finding the solution x which minimizes the energy function (1.7).

1.1.3 MRF formulation for computer vision problems

To formulate energy function, it is often more convenient to express the energy

function as sum of the several terms according to clique size, That is,

E(x) =
∑
s∈V

θs(xs) + α
∑
〈s,t〉∈E

θst(xs, xt) + β
∑
〈∈H

θ〈(x〈), (1.10)

where α and β are the weight factors, H is the set of higher-order cliques, and x〈 is

the set of random variable which corresponds to the vertices in the clique 〈 ∈ H.

The first term θs(xs) is called the unary term or data term and is defined in

various ways depending on the applications. For example, in stereo problem it can
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be intensity difference, sum of squared difference or Birchfield-Tomasi measure of

corresponding pixels. In denoising problem, it can be the intensity difference between

the true and the noisy pixels. In the segmentation problem, it can be the color

difference between a single pixel and the histogram of the segment it belongs to.

The second term θst(xs, xt) is called the pairwise term or smoothness term. This

term usually encodes the prior knowledge into the energy function. In most applica-

tions, smoothness regularization constraints are commonly used, which compel the

solution to be piecewise smooth. Widely-used smoothness models include the Potts

model, the truncated linear model and the truncated quadratic model. The MRF

formulation in computer vision has long been limited up to pairwise terms due to the

weak minimizing power of the optimization methods. The third term θ〈(x〈), which

is called higher-order term, has been introduced to overcome the limitations of the

energy models with only up to pairwise terms. The higher-order term encodes more

complex and realistic knowledge about the scene [3, 4, 5].

Recently, there has been increasing emphasis on the higher-order term [5, 6, 4,

7, 8, 9, 10, 11]. This term is introduced to design more sophisticated probability

model. They are usually modeled by capturing more information from the statistics

of images. Although this term helps to obtain much better solutions, it often makes

the problems intractable.

1.2 Optimizing energy function

Many algorithms have been proposed to solve MRF problems. The existing algo-

rithms can be divided into two approaches: deterministic and stochastic sampling

algorithms. Some of the well-known deterministic algorithms are move-making algo-
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rithms. Move-making algorithms iteratively make local moves to explore the solution

space. They include Iterated Conditional Modes (ICM), the Gradient Descent Al-

gorithm and Graph Cuts [12, 13, 14]. Graph Cuts are the state of the art among

those move-making algorithms. It becomes more powerful due to recent advances in-

cluding the fusion move and the Quadratic Pseudo-Boolean Optimization (QPBO)

algorithm [15, 5]. Graph Cuts iteratively optimize the binary sub-problems of the

original problem. They are fast, accurate and even find global optima for some

classes of functions. Another important class of deterministic algorithms is the mes-

sage passing approach. It includes Belief Propagation (BP) [16] and Tree Reweighted

Message Passing (TRW) [17, 18]. BP was originally developed for graphs without

cycles. Although there is no guarantee of convergence in the case of the graph with

cycles, it has been successfully applied to vision problems. One of the important

properties of TRW is that it gives a lower bound of the energy function, which can

be used to check optimality of the solutions.

Although those methods have been successively applied to various problems, the

story becomes different when it comes to more difficult MRF problems. There are

some known factors which make MRF problems more difficult: non-submodular func-

tions, strongly coupled MRF models, high connectivity and higher-order clique po-

tentials. It is known that more non-submodular terms make the problem harder [15].

The coupling strength also affects performance in solving MRF problems. The cou-

pling strength refers to the relative strength of pairwise versus unary terms. As cou-

pling strength increases, problems become more difficult [2, 19]. High connectivity of

graphs is another factor which makes the problem difficult [20]. Higher-order clique

potential also make the problem difficult. Despite difficulty, higher-order clique po-

tential has often been used to improve the results in some vision applications [6, 5].
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(a) deterministic (b) stochastic

Figure 1.1: The comparison between (a) the deterministic and (b) the stochastic optimization meth-

ods. Since the deterministic methods always move to the higher probability state in greedy way, it

is easily stuck at local optima. On the other hand, the stochastic methods allow more exploration

over the solution space. In consequence, it leads the solution to the global optima.

More difficult MRF models are inevitable to incorporate realistic image priors into

the models. (e.g., occlusion terms in stereo and texture information in denoising and

segmentation.) To those difficult examples, most existing algorithms are not appli-

cable, and even with some applicable algorithms the results are far from the global

optimum.

To overcome the limitations of previous approaches, stochastic optimization

methods are considered in this dissertation. Stochastic optimization refers a set

of methods which obtain the solution in probabilistic way. Stochastic optimization

allows the solution to explore over the solution space more than deterministic ones.

Figure 1.1 compares deterministic and stochastic optimization methods. In deter-

ministic method, the solution is updated always to the higher-probability state. On

the contrary, stochastic method randomly updates the solution to the higher- or

lower-probability states. Consequently, stochastic optimization is able to avoid get-

ting stuck at local minima and achieves better results than deterministic one. In this
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dissertation, two different methods are considered to develop new algorithms. They

are Markov chain Monte Carlo and stochastic approximation.

1.2.1 Markov chain Monte Carlo

MCMC algorithms have been used to sample from the target distribution p(x). It

generates a sequence of samples x(0),x(1), · · · using a Markov chain. A tth sample

x(t) is drawn from a conditional distribution q(x(t)|x(t−1)). We call q(·|·) the kernel

of the Markov chain. A kernel q(·|·) is reversible if and only if

p(x(t−1))q(x(t)|x(t−1)) = p(x(t))q(x(t−1)|x(t)). (1.11)

This is also called detailed balance condition. If a kernel q(·|·) satisfies detailed

balance, the Markov chain process x(0),x(1), · · · generated by the kernel converges

to the target distribution p(x).

Along with simulated annealing, MCMC has also been used to obtain an opti-

mum sample of the target function, i.e. a sample x which maximizes p(x). In MCMC,

a new sample is drawn from the previous sample with a local transition probability,

based on the Markov chain.

Although simulated annealing is proven to converge to optimal solution, it still

takes very long time to reach the global optimum becuase most MCMC methods

allow only local moves in a large solution space. To overcome the limitations of

MCMC methods as an optimizer, recently Swendsen-Wang Cuts (SWC) was pro-

posed [21, 22]. In SWC, it is shown that bigger local moves are possible than in

previous methods while maintaining the detailed balance. SWC uses Simulated An-

nealing (SA) [23] to find the global optimum. Although SWC allows bigger local

moves, a very slow annealing process is still needed to approach the global optimum
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with probability 1. Therefore, we need a faster annealing process for real vision ap-

plications. However, fast annealing does not always guarantee the global optimum

and the samples are often trapped in local optima.

In this dissertation, population-Based framework [24, 25] is used to overcome the

drawbacks of previous MCMC methods. Also, new idea is proposed to exploit the

advantages of deterministic algorithms in the framework of MCMC.

1.2.2 Stochastic approximation

Stochastic approximation algorithms are a set of methods which optimize an objec-

tive function f(x), which cannot be directly calculated, but only estimated via some

approximations. A famous example of stochastic approximation is the stochastic

gradient method.

Stochastic gradient method deals with an objective function that has the form

of a sum:

f(x) =
∑
i

fi(x). (1.12)

For each iteration, this method updates the solution by the following equations.

xn+1 = xn − ηn∇fi(x), (1.13)

where η is a step size. This process is similar to that of gradient descent method

except the fact that it calculates the approximated gradient only using a single

instance of fi(x). Sometimes, a subset of fi(x) is used instead of a single instance.

This method is often used for training parameters with large data set. The aim

for training is to find parameters x, which minimize loss function f(x). However,
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calculation of the gradient ∇f(x) is often computationally expensive. In this case,

we can consider stochastic gradient method using the update scheme (1.13). When

the objective function is convex or pseudoconvex, appropriate scheduling of the step

size η leads solution to the global minimum [26].

1.3 combination of stochastic and deterministic meth-

ods

One of the main ideas in this dissertation is to combine stochastic and deterministic

methods to deal with difficult MRF problems. There are two interpretations why

combination approach achieves better performance. On the one hand, the stochas-

tic methods are boosted by combination with deterministic algorithms. Stochastic

methods alone generally cannot achieve large and effective move. By the help of de-

terministic methods, a stochastic method achieves more efficient exploration in the

solution space. Moreover, deterministic methods guide it to make effective jumps

from one basin to another over the energy barrier. Consequently, this property yields

faster convergence and better solutions. On the other hand, the stochastic methods

help deterministic algorithms not to be stuck in local minima. Every deterministic

method ends up in one of the local minima. With the help of stochastic methods,

however, it can escape from the local minima and keep searching for better solutions.

1.4 Outline of dissertation

The structure of the dissertation and the main ideas are summarized in Figure 1.2.

The main goal of this dissertation is to combine stochastic and deterministic methods



10 CHAPTER 1. INTRODUCTION

Methodology Proposed method

1
MCMC

2
Stochastic approximation

1
Population based

framework

Idea

2

Combination with

deterministic methods

Figure 1.2: Summary of the methods proposed in this dissertation. Two methodologies are used

to develop stochastic optimization algorithms. They are Markov chain Monte Carlo (MCMC) and

stochastic approximation. Also, two main ideas are used, which are population-based framework

and combination with existing deterministic methods.

to achieve better performance. Two different framework of stochastic optimization

are considered. In Chapter 2–4, MCMC based methods introduced. Chapter 5 pro-

poses a new method based on stochastic approximation. To combine deterministic

methods within the framework of MCMC, population-based approach is exploited.

Chapter 2 proposes Pop-MCMC algorithm [27, 28] designed for MRF optimization.

On this population-based framework, several new methods are proposed by combi-

nation with deterministic methods (Chapter 3–4). Chapter 3 proposes MCMC-GD

algorithm [29, 30]. In MCMC-GD, an elegant approach for combining determinis-

tic methods within the framework of Pop-MCMC are developed. This combination

strategy is extended to solve continuous optimization problems in Chapter 4, in

which MCMC-F algorithm [31] is introduced. To allow more active exploration in

the solution space, other stochastic optimization framework called stochastic ap-

proximation is considered. By combining graph cuts (deterministic method) and
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stochastic approximation, GA-fusion algorithm [32] is developed.
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Chapter 2

Population-based Markov Chain

Monte Carlo

2.1 Introduction

Markov random field (MRF) have been used in numerous areas in computer vi-

sion [2]. MRFs are generally formulated as follows. Given a graph G = (V, E), the

joint probability function of the pairwise MRF is given by

p(x) ∝
∏
i∈V

φi(xi) ·
∏

(i,j)∈E

φi,j(xi, xj), (2.1)

where V is the set of nodes, E is the set of edges, and xi ∈ {1, 2, · · · , L} is the label

assigned on node i. Obtaining maximum a posteriori (MAP) solution of probability

(2.1) is NP-hard in general cases. To achieve better approximation solutions, many

different optimization methods have been developed.

Graph cuts-based methods are fast and provide very low energy solution with

standard 4-neighborhood benchmark problems. However, it can be applied to a lim-

13
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ited class of energy functions [14]. [2] showed that α-expansion move method was

faster and slightly better than αβ-swap move method in all cases in their experi-

ments. However, α-expansion move method can be applied to more limited class of

energy functions than αβ-swap move. BP (Belief Propagation) is a message passing

method originally developed for graphs without cycles. In general, although it is not

guaranteed to converge, it has been successfully applied to loopy graphs [33]. TRW

(Tree-reweighted message passing) is also a message passing method [17]. It finds

lower energy solution than Graph cuts in many problems. An important property of

TRW is that it gives a lower bound on the energy which can be used to check how

close our solution to the global minimum energy. All of the deterministic methods

are approximation algorithms. Although Graph cuts provides global minimum for

some restricted energy models, none of these methods guarantee to obtain the global

minimum solution for a general stereo model in practical time since it is known to

be an NP hard problem.

In contrast to the deterministic methods, stochastic approaches such as sampling-

based methods can be used to find global optimum. Sampling-based methods were

originally developed to generate samples from a given target distribution or to inte-

grate functions in high dimensional space. These Sampling-based methods are also

have been used for statistical estimation and optimization. In this chapter, we use a

sampling-based method for energy minimization to solve the stereo matching prob-

lem.

The Monte-Carlo method is the most primitive sampling-based method. In this

method, a new sample is drawn depending on a pre-determined proposal distribu-

tion. This distribution is independent on previous samples. However, there are some

difficulties in applying the Monte Carlo methods to vision problems as an optimizer.
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In general, we need to solve vision problems in very high-dimensional solution spaces.

Even if it is assumed to be 100 pixels in the width and height, respectively, the di-

mension of the image space can be as high as 104. Monte Carlo methods would

take infinitely long time since the acceptance rate would be almost zero in such

a high-dimensional case. Moreover, we need to design a proper proposal distribu-

tion close to the target distribution. To resolve these problems, Markov Chain Monte

Carlo (MCMC) methods had been tried. In MCMC, a new sample is drawn from the

previous sample with a local transition probability, based on the Markov chain. Con-

trary to simple Monte Carlo methods, the acceptance rates of MCMC methods are

high enough, and the proposal distributions are designable even in high-dimensional

problems. Therefore, MCMC methods are more appropriate for the application to

vision problems than the Monte Carlo methods. However, difficulties still remain in

applying MCMC to vision problem as an optimizer. Since most MCMC methods

allow only local moves in a large solution space, it still takes very long time to reach

the global optimum.

To overcome the limitations of MCMC methods as an optimizer, recently Swendsen-

Wang Cuts (SWC) was proposed [21, 22]. In SWC, it is shown that bigger local moves

are possible than in previous methods while maintaining the detailed balance. SWC

uses Simulated Annealing (SA) [23] to find the global optimum. Although SWC

allows bigger local moves, a very slow annealing process is needed to approach the

global optimum with probability 1. This is an apparent drawback of SWC. There-

fore, we need a faster annealing process for real vision applications. However, fast

annealing does not always guarantee the global optimum and the samples are often

trapped in local optima.

In this chapter, we propose a new MCMC method called Population-Based
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MCMC (Pop-MCMC) [24, 25] that can overcome the drawbacks of SWC. Our goal

is to obtain the lower energy state faster than other sampling methods including

SWC which have been previously applied to this problem. In Pop-MCMC, two or

more samples are drawn at the same time. Samples can exchange information with

each other. This makes it possible to perform global moves of samples. It means that

the mixing rate of drawn samples becomes faster. And in the view of optimization,

the faster mixing rate means that it takes shorter time for the samples to approach

the global optimum than conventional methods.

This chapter presents the design of Pop-MCMC for MRF optimization. The pro-

posed algorithm is applied to stereo matching and compared with previous methods.

The chapter is organized as follows: In Section 2.2, SWC and Pop-MCMC are briefly

introduced. Then, we present how Pop-MCMC is applied to Gibbs distribution on

MRF model in Section 2.3. Section 2.4 gives the experimental results. In the final

Section 2.5, we summarize the chapter with discussions.

2.2 Related Works

In this section, we first describe the SWC, which has been applied to vision prob-

lems [21, 22]. Then, we present the description of Pop-MCMC.

2.2.1 Swendsen-Wang Cuts

Swendsen-Wang Cuts (SWC) originated from the Swendsen-Wang (SW) method.

Swendsen and Wang proposed SW method in 1987 [34]. It overcame the slow con-

vergence of previous sampling-based methods such as Gibbs sampler. Let us explain

SW briefly.
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We consider a 2-D lattice graph G = 〈V, E〉, where V is the set of nodes and E is

the set of edges connecting neighboring nodes. Each node v ∈ V is assigned a label

xi ∈ {1, 2, · · · , L}. The number of possible labels is L. In a 2-D lattice graph, each

node has four edges. We assume that this graph follows the Potts model, which is

often used in vision as a prior model. The formulation of Potts model is as follows.

p(x) =
1

Z
expβ

∑
〈i,j〉∈E

1(xi = xj), (2.2)

where x represents (x1, · · · , xN ) and N is the number of nodes. Z and β are con-

stants. 1(·) represents a Boolean function. When the graph follows the Potts model,

a global minimum should be the states in which all the nodes have the same labels.

In Gibbs sampler, the label of only one node can be flipped to generate the next

sample. So it needs a generation of O(LN ) samples to reach the global optimum. In

contrast, in SW the labels of a cluster of nodes are flipped at the same time.

However SW has several drawbacks. It assumes fixed number of labels, and does

not create new labels in the case when the number of labels is unknown. And it is

only applicable to Ising/Potts model. In addition, it does not consider the external

field, such as the observed visual data in vision.

To overcome the above limitations of SW, SWC has been proposed by extend-

ing SW from the Metropolis-Hastings perspective [21, 22]. SWC can be applicable

to arbitrary posterior probabilities, and can incorporate external data easily. The

summary of SWC is described in the following:

Assume that a current state is A, repeat the process below.

1. If the labels of two neighboring nodes s and t are different, the edge connecting

two nodes is removed. If the labels are the same, we determine whether the
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edge is retained or not with the probability qe. If there exists external field,

we consider it in designing the probability qe. This process is repeated for all

edge e = 〈s, t〉 ∈ E . Then nodes connected by remaining edges are considered

as a cluster.

2. One cluster V0 is randomly selected.

3. New label l′ of the chosen cluster V0 is proposed with a proposal distribution

q(l′|V0, A).

4. Determine whether we accept the newly generated sample (or state B) with

acceptance probability α by the following Metropolis-Hastings rule.

α = min

(
1,
q(V0 | B)q(l | V0, B)p(B | I)

q(V0 | A)q(l′ | V0, A)p(A | I)

)
, (2.3)

where I represents the external field, that is, the observed input image. No matter

how qe and the proposal distribution q(l′|V0, A) are designed, the detailed balance is

maintained by Metropolis-Hastings kernel. Therefore, we can appropriately design

qe and the proposal distribution of the new label freely, so as to use the information

of input image properly.

In order to reduce the complexity of SWC, a modified clustering method, SWC-2

has been proposed [21]. In SWC-2, a connected node cluster V0 is determined by a

recursive method as described in the following.

1. Select a seed node v ∈ V randomly, and assign it to a cluster V0.

2. Repeat until no more node is added to V0.

For any edge e =< s, t >∈ E between the node s ∈ V0 and its neighboring

node t /∈ V0,
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Figure 2.1: Chains in parallel tempering.

(a) If the labels of the two nodes s and t are deferent, remove the edge.

Otherwise, determine whether the edge e should be retained or not with

probability qe, same as in SWC.

(b) If the edge e is not removed, add the node t to the cluster V0.

Note that in constructing V0, we need to calculate qe only for the edges at the

border of the cluster V0. It leads to saving of computational costs. In our work, we

adopt SWC-2 as a part of the proposed algorithm.

2.2.2 Population-based MCMC

Population-based MCMC (Pop-MCMC) or evolutionary Monte Carlo is a stochas-

tic simulation method that combines a population of Metropolis-Hastings samplers

and Evolutionary Algorithm to improve the performance of MCMC samplers. Pop-

MCMC generates multiple chains in parallel with different temperatures, and ex-



20 CHAPTER 2. POPULATION-BASED MCMC

changes information among them to accelerate the mixing rate. This method can

be considered as a variant of the Parallel Tempering (PT), that was proposed by

Geyer [35] in 1991 and modified by others later [36]. PT aims to overcome the

problems of traditional single process MCMC using a Metropolis-Hastings update,

which has low mixing rate. The basic idea of PT is to simulate multiple replicas of

the original system in parallel at a series of different temperatures, and swap the

configurations with a Metropolis-Hastings criterion. The target distribution of ith

chain is defined as follows.

pi(x) = p(x)
1
Ti , (2.4)

where p(x) is an original target distribution, and Ti is the temperature of the ith

chain. In the chain with high temperature, the target distribution is nearly flat

as depicted in Figure 2.1, where the heights of barriers between local optima are

very low. Therefore, the samples in such chain can freely wander in contrast to the

samples in a chain with low temperature. By exchanging these higher-temperature

configurations with the configuration of a low temperature of our interest, we can

allow the low temperature simulation to sample configurations much more efficiently

than with local Metropolis updates only. This leads to a faster mixing rate between

samples, and helps to escape from local minima.

Pop-MCMC allows chains to exchange information more actively than PT by

introducing a new move called the crossover move. It originated from the genetic

algorithm and then modified to fit the MCMC framework [24]. In Pop-MCMC, the

Markov chain state is augmented as the population of all chains. Given an original

target distribution p(x), a new expanded target distribution is defined as follows.
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p∗(x1:N ) =

N∏
i=1

pi(xi), (2.5)

where N is the number of chains to use. We assume that pk ≡ p for at least one

chain k ∈ {1, . . . , N}. x1:N = {x1, · · · ,xN} is a population composed of samples of

N chains. Each component xi in the vector x1:N is called as a chromosome. The

term chromosome is borrowed from genetic algorithm. The goal of Pop-MCMC is to

generate samples x1:N which follow the new target distribution p∗. And a collection

of chromosomes from the kth chain, which has the target distribution pk = p, is

what we want to obtain finally.

Pop-MCMC has three different types of moves; mutation, exchange and crossover,

which are described below in detail.

1. Mutation move

The mutation move updates a chromosome of a single chain using a Markov ker-

nel, while other chains keep unchanged. We can use a conventional MCMC algo-

rithm. Let us suppose that the current population is x1:N = {x1, · · · ,xi, · · · ,xN}.

Among N chains, we randomly select ith chain and generate a new chromosome

yi from the current chromosome xi by an MCMC algorithm. Then, a new popu-

lation y1:N = {x1, · · · ,yi, · · · ,xN} is proposed, and is accepted according to the

Metropolis-Hastings rule with probability

α = min(1, γm), (2.6)

where
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γm =
p∗(y1:N )

p∗(x1:N )
· T (y1:N → x1:N )

T (x1:N → y1:N )

=
pi(yi)

pi(xi)
· T (yi → xi)

T (xi → yi)
,

(2.7)

where T denotes the transition probability between populations. In short, in the mu-

tation move an MCMC move is performed at a specific chain independently, while

other chains are kept unchanged. The irreducibility of Pop-MCMC is guaranteed by

this mutation move.

2. Exchange move

The exchange move is the same as that used in PT. In this move, two different

chains are randomly chosen first. And then the chromosomes of those two chains are

exchanged to propose a new population. Let us suppose that the current population

is x1:N = {x1, · · · ,xi, · · · ,xj , · · · ,xN}, and the ith and jth chains are selected Then,

the newly proposed population will be y1:N = {x1, · · · ,xj , · · · ,xi, · · · ,xN}. Similar

to the mutation move, the new population is accepted according to the acceptance

probability:

α = min(1, γe), (2.8)

γe =
p∗(y1:N )

p∗(x1:N )
· T (y1:N → x1:N )

T (x1:N → y1:N )

=
pi(xj)pj(xi)

pi(xi)pj(xj)
.

(2.9)

The last equality holds due to the definition of the target distribution and the

symmetry property of the transition probability.
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In general, to obtain the higher acceptance rate, exchange moves are performed

on chains that have similar target distributions with neighboring temperatures.

3. Crossover move

The crossover move is newly introduced in Pop-MCMC. The main concept of this

move is borrowed from the genetic algorithm. The design of this move is the main

contribution of Pop-MCMC. There are several variations of the crossover moves.

One of the popular moves is the 1-point crossover move. The basic idea of it is as

follows: As in the exchange move, two different chains, say ith and jth chains, are

randomly selected. If the chromosome is a d-D vector, we randomly choose a natural

number k between 1 and (d− 1). And new chromosomes yi and yj are proposed by

swapping the same part of chromosomes xi and xj as follows.

 xi = (xi1, · · · , xik, xi(k+1), · · · , xid)

xj = (xj1, · · · , xjk, xj(k+1), · · · , xjd)

→
yi = (xi1, · · · , xik, xj(k+1), · · · , xjd)

yj = (xj1, · · · , xjk, xi(k+1), · · · , xid)


(2.10)

In this case, the ratio of proposal distributions in the acceptance probability is

canceled by symmetry. We only need to calculate the ratio of the target distributions.

A new population is proposed as y1:N = {x1, · · · ,yi, · · · ,yj , · · · ,xN}, and according

to the Metropolis-Hastings rule, it is accepted with probability

α = min(1, γc), (2.11)

where
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γc =
p∗(y1:N )

p∗(x1:N )
· T (y1:N → x1:N )

T (x1:N → y1:N )

=
pi(yi)pj(yj)

pi(xi)pj(xj)
· q(xi,xj |yi,yj)
q(yi,yj |xi,xj)

,

(2.12)

where T (x1:N → y1:N ) is p(i, j|x1:N ) · q(yi,yj |xi,xj). p(i, j|x1:N ) denotes the proba-

bility that ith and jth chains are chosen and q(yi,yj |xi,xj) indicates the probability

that the chromosomes yi and yj are proposed, when current chromosomes xi and

xj are given. Choosing chains is independent of the current state, so p(i, j|x1:N ) and

p(i, j|y1:N ) are canceled out in the second equality.

In order to include various ways of exchanging information between chromo-

somes, the 2-point crossover move, k-point crossover move, and adaptive crossover

move were also proposed in the literature [24, 37].

2.3 Proposed Algorithm

In this chapter, we apply the Pop-MCMC method to MRF optimization. For this

purpose, we design new effective 2-D mutation and crossover moves to explore the

high dimensional state space efficiently.

Given a target probability distribution p(x) ∝ exp{−E(x)}, our aim is to find

the state x where the probability is maximized. In Pop-MCMC, we draw multi-

ple samples from multiple chains at the same time with respect to the following

distributions.

pi(xi) = p(xi)
1
Ti ∝ exp

{
−
E(xi)

Ti

}
, (2.13)

where Ti is the temperature of ith chain. The appropriate sequence of the tempera-
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U<Qm

Y

Mutation Crossover

Exchange

N

U~[0,1]

Initialization

Figure 2.2: The overall flow chart of the proposed Pop-MCMC algorithm applied to stereo matching.

tures can be designed empirically according to the target distribution. Each sample

from each chain is a chromosome, and chromosomes interact with each other, which

helps perform global moves.

The overall flow of Pop-MCMC is illustrated in Figure 2.2. The three moves,

mutation, crossover, and exchange moves are repeatedly performed and samples are

generated at each iteration. In this process, we first choose a random number U

between 0 and 1, and compare U with the mutation rate Qm. Depending on the

value of U , we choose one move between mutation and crossover. So, by varying

Qm, we can control the rates between the global move (crossover) and local move

(mutation) easily. This means that Qm adjusts the trade-off between exploration and
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convergence of the algorithm [38]. A proper value of Qm can be chosen according

to the given problem, the model, or the number of chains. For example, if a large

number of chains are used, Qm is usually set to a small value for faster convergence.

Let us describe the detailed design of each move for the Gibbs distribution of MRF.

1. Mutation move

In the proposed algorithm, we employ the MCMC kernel of SWC-2 for the mu-

tation move of a randomly selected chain. At first, we construct a random cluster V0

as in SWC-2 for a selected chain. For clustering, we need to design edge probability

qe, which determines whether the edge should be retained or not. We define the edge

probability,

qe = 1− exp

−
Ki · S(s, t)

θv1(xv1)

|Nv1 |
+
θv2(xv2)

|Nv2 |
+ 2

 , (2.14)

where v1 and v2 represent neighboring nodes, |Nv| is the number of the pixels in

the node (segment) v, and Ki represents a weighting factor for the chosen ith chain.

The more similar the intensities of the connected nodes and the lower the matching

costs are, the higher the probability that the edge remains. Note that the matching

costs are normalized by the sizes of the corresponding segments. By varying Ki,

we can control the average size of clusters. A bigger Ki tends to generate bigger

clusters. We set Ki to increase as i increases. Consequently, clusters are likely to

be small in lower-temperature chains and big in higher-temperature chains. It helps

more effective exploration and also prevents chromosomes from correlating with each
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Figure 2.3: An example of mutation move.

other.

The new label l′ for the selected cluster V0 is proposed according to the following

proposal distribution.

q(l′ | V0,xi) = exp

[
−
{∑

v∈V0 θv(l
′)∑

v∈V0 |Nv|
+ 1−

∏
〈v1,v2〉∈N,v1∈V0,v2 6∈V0

1(l′ = fv2)

}]
, (2.15)

where l′ is the newly proposed label for V0, and xi is the current state of selected

ith chain. When the nodes in the cluster V0 have low matching costs and there exist

neighboring nodes of same label, the value of q(l′ | V0,xi) becomes high. After a

new label is proposed, it is accepted according to the Metropolis-Hastings rule. By

substituting (2.13) and the transition probability in (2.3) into (2.7), we can calculate

the acceptance probability:

α = min(1, γm)

= min

(
1,
pi(yi)

pi(xi)
· T (yi → xi)

T (xi → yi)

)

= min

(
1, exp

{
E(xi)− E(yi)

Ti

}
· q(V0 | yi)q(l | V0,yi)
q(V0 | xi)q(l′ | V0,xi)

)
,

(2.16)
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Figure 2.4: An example of exchange move.

where yi is the proposed state of the ith chain, and q(V0 | xi) is the probability for

selecting cluster V0 when current state is xi. Figure 2.3 illustrates an example of

mutation move on the ith chain.

2. Exchange move

In this move, we choose two chains and propose to exchange the chromosomes of

two chains. The proposal is accepted or not by the Metropolis-Hastings rule. Figure

2.4 shows an example of exchange move. Note that for the exchange move, there is

no need for a special design for stereo matching problem. So, when the ith and jth

chains are selected, by substituting (2.13) into (2.9), we can obtain the acceptance

probability by
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α = min(1, γe)

= min

(
1,
pi(xj)pj(xi)

pi(xi)pj(xj)

)

= min

(
1, exp

[{
E(xi)− E(xj)

}( 1

Ti
−

1

Tj

)])
,

(2.17)

where xi and Ti are the current state and temperature of the ith chain. In order

to achieve faster mixing rate, we need to raise the acceptance rate, and this can be

accomplished by choosing two neighboring chains that have similar temperatures.

Then, from the above equation, the Metropolis-Hastings ratio tends to get bigger.

3. Crossover move

Typical crossover moves commonly used in conventional Pop-MCMC are the 1-point

crossover and 2-point crossover moves. However, since these methods are designed

for the chromosomes of 1-D vectors, it is inappropriate to apply them directly to the

stereo matching problem, in which the chromosomes are 2-D state configurations.

Nonetheless, the 1-point and 2-point crossover moves have an advantage of low com-

putational complexity because the most of terms in the Metropolis-Hastings ratio

cancel out each other. Therefore, in this work, we introduce a new 2-D crossover

move that maintains this advantage. Detailed description of the proposed crossover

move is as follows.

We first choose two chains randomly and construct a cluster V0 in a similar way as

in SWC-2 (or the mutation move). However, there are two differences in constructing

V0 compared with SWC-2. First, qe is set constant, not adaptively determined with
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Figure 2.5: An example of crossover move.

the matching costs or the intensities of the input image, since there is no need for

the nodes of the cluster V0 to be homogeneous in this case. It is also computationally

efficient to use qe as a constant value because the proposal distribution part in the

Metropolis-Hastings ratio is canceled out. Second, when we calculate the probability

qe, we do not have to check whether the labels of the nodes are the same or not, so

the resulting cluster V0 can have nodes with different labels. Therefore, compared

with the mutation move that requires the identifying and removing processes of

all the edges connecting the nodes with different labels, the selecting scheme and

the calculation of the acceptance probability of V0 in the crossover move is much

simpler. Eventually this property enables high efficiency in computation, and also

the freedom in the construction of V0 helps to achieve faster convergence.

The process after constructing a cluster V0 is similar to the 1-point crossover

move. From the chromosomes xi and xj of two selected chains, new chromosomes
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yi and yj are proposed by exchanging the labels of the nodes which belong to the

cluster V0 as shown in Figure 2.5. The acceptance probability α = min(1, γc) of

the newly proposed chromosomes is calculated, and the next population of samples

is determined. By substituting equation (2.13) into the Metropolis-Hastings rule in

(2.12), we can obtain γc as follows.

α = min(1, γc)

= min

(
1,
pi(yi)pj(yj)

pi(xi)pj(xj)
· q(xi,xj |yi,yj)
q(yi,yj |xi,xj)

)

= min

(
1,
pi(yi)pj(yj)

pi(xi)pj(xj)

)

= min

(
1, exp

[
E(xi)− E(yi)

Ti
+
E(xj)− E(yj)

Tj

])
,

(2.18)

where we used the symmetric property of the proposal distribution q(xi,xj |yi,yj).

The proposed Pop-MCMC algorithm is summarized in Algorithm 1.

2.4 Experiments

2.4.1 Segment-based stereo matching

In order to improve the accuracy of the disparity map, various energy models have

been newly proposed for the stereo problem. Among them, we choose the segment-

based energy model since it is known as one of the best energy models and it is

robust to noise [39, 40, 41, 42]. This model assumes that each segment corresponds

to a planar patch in the scene. In a segment-based energy model, the reference

image is first over-segmented. This segment-based energy model also reduces running

time since the number of nodes is much smaller than pixel-based model. Mean-shift
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.6: Test stereo images: (a)-(d) reference images, (e)-(h) ground truth disparity maps. (a, e)

Tsukuba, (b, f) Venus, (c, g) Teddy, and (d, h) Cones.

algorithm is often used for the segmentation [43].

Each segment is defined as a node v ∈ V, and neighboring nodes s and t are

connected with edges 〈s, t〉 ∈ E . Then we construct a graph G = (V, E). And the

energy function is defined by

E(x) =
∑
s∈V

θs(xs) +
∑
〈s,t〉∈E

θst(xs, xt)

=
∑
v∈V

CSEG(fv) +
∑
〈s,t〉∈N

βs,t1(fs 6= ft),

(2.19)

where x represents the current state of every segment, fv is an estimated plane

for each segment, CSEG(fv) is a matching cost, and βs,t is a penalty for different

neighboring nodes of s and t, which are defined by
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CSEG(fv) =
∑

(x,y)∈V

C(x, y, fv(x, y)), (2.20)

βs,t = γ ·BL(s, t) · S(s, t), (2.21)

where function C(x, y, fv(x, y)) is the Birchfield-Tomasi cost, BL(s, t) is the shared

border length, and S(s, t) is the mean color similarity defined by

S(s, t) =
1

2

(
1−min

(
1,
|RVs −RVt |+ |GVs −GVt |+ |BVs −BVt |

255

))
+

1

2
, (2.22)

where RVs , GVs and BVs are average intensity values of segment Vs, which are

between 0 and 255. Mean color similarity has a value between 1
2 and 1. When two

neighboring segments have similar intensities, it becomes closer to 1. By varying γ,

we can control the relative effect of matching cost and smoothness cost.

We first need to make a list of the planes for assigning each segment to a plane

by examining segment by segment. For each pixel, we calculate the initial disparity

by using SAD (Sum of Absolute Differences) and WTA (Winner Takes All) schemes.

Using these initial disparities, we fit a plane for each segment. The equation of a

plane in 3D-space can be written by

d(x, y) = c1x+ c2y + c3, (2.23)

where x and y are the coordinates of a pixel, and d(x, y) is its disparity. Based on

the above equation, we construct the following algebraic equation for each segment.

A [c1, c2, c3]
T = B, (2.24)
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where the ith row of the matrix A is the coordinates [xi, yi, 1] of the ith pixel, and

the ith row of the matrix B is the disparity d(xi, yi) of that pixel. Then, the values

of c1, c2, c3 are obtained as a least squares solution by solving (2.24). In this method,

the outlier disparities are initially detected and removed by a disparity crosscheck-

ing method [41]. Once we find the plane parameters, we can further identify more

outlier disparities that are not close to the fitted plane. For those pixels with outlier

disparities, we re-estimate the correct disparities by confining the search range to be

small near the fitted plane. Then, the least squares method is repeated to update

parameters c1, c2, c3 based on the modified disparities.

The above plane fitting process is repeated for each segment and newly found

planes are added to a list. After that, each segment is assigned to a plane in the

list that has lowest CSEG value. Then we group the segments assigned to the same

plane. And for each group, the above plane fitting is repeated in order to improve

the accuracy of a plane. At last, we have the final list of the planes to use. Although,

this plane-based model does not explicitly handle the occlusion, occluded pixels are

likely to be detected as outlier through the crosscheck in plane estimation.

We have implemented the proposed algorithm on a 2.8GHz Pentium IV PC

platform. In this section, we evaluate the performance of the proposed algorithm

by comparing with other conventional methods such as SWC-2, SA, BP, and Graph

cuts. In addition, we illustrate the effects of each move, temperature parameter,

and the number of chains. We tested the proposed algorithm on several benchmark

images in the Middlebury datasets [1]. Figure 2.6 shows the reference images and the

ground truth maps of the test images. We used the segment-based energy model in

(2.19) for the test. Pop-MCMC, SWC-2, and SA methods were repeated ten times

on each test stereo image pair since they are stochastic methods, and the averages
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and standard deviations of the resulting energies were compared.

We fixed the parameter values of Pop-MCMC for all the test sets. Empirically, the

temperatures were set to be decreasing linearly in the range of predefined maximum

and minimum temperature values. The maximum and minimum temperatures were

set to 1.0 and 0.0001, respectively, and the number of chains was set to five. Qm was

set to be 0.25. For the edge probability of the ith chain, we set Ki = 3i + 1. This

helped the chromosomes not to correlate with each other.

Figure 2.7 presents the comparison of the energy plots against running time in

second for Pop-MCMC, SWC-2, SA, BP, and Graph cut methods (expansion move

and swap move). The same energy model was applied to each method. For the im-

plementation of SWC-2, we followed the work of Barbu and Zhu [21, 22], and for

Graph cuts, we used the source code from [44]. Expansion move method showed the

best performance in all the tests. The proposed Pop-MCMC algorithm was compa-

rable to the expansion and swap move methods. Although proposed method perform

slightly worse than expansion and swap move methods, Pop-MCMC has much wider

applicability than expansion and swap move methods. Contrary to expansion and

swap methods which can be applied only to submodular functions with pairwise

priors, Pop-MCMC can be applied to any type of energy functions even including

higher-order MRFs and highly complicated MRFs. Therefore Pop-MCMC can be

a good alternative to expansion and swap move methods. And, Pop-MCMC algo-

rithm reached much lower energy states than SA and SWC-2 on all the cases except

Tsukuba. Note that it even showed better performance than BP for all the test im-

ages. On the Tsukuba images, each method obtained relatively good result since the

dimension of the solution space is low and thus the energy model is relatively simple.

Note that on all test images, the convergence rates of Pop-MCMC are much faster
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and its standard deviations are consistently smaller than those of SA and SWC-2.

From these results we can argue that conventional sampling-based methods like SA

and SWC-2 are easily trapped at local minima, while Pop-MCMC is more likely

to approach the global minimum due to the global moves in Pop-MCMC, such as

exchange and crossover moves.
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Algorithm 1 Proposed Pop-MCMC algorithm

(Initialize)

Initialize the population x1:N by Winner-Takes-All manner with data cost.

Set the temperatures T1 < T2 < · · · < TN .

repeat

if U ∼ [0, 1] < Qm then

for i = 1 to N do

(Mutation)

Select a random node v in ith chain.

Draw a cluster from a node v with SWC-2.

Propose a new label for the cluster and determine whether accept it or not

with Metropolis-Hastings rule.

end for

else

for i = 1 to
⌊
N
5

⌋
do

(Crossover)

Select two random chains and a random node v.

Draw a cluster from node v with modified SWC-2.

Determine whether swap the cluster or not with Metropolis-Hastings rule.

end for

end if

for i = N − 1 to 1 do

(Exchange)

Perform the exchange move onto ith and i + 1th chains with Metropolis-

Hastings rule.

end for

until The algorithm converges.
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Figure 2.7: Performance (energy vs. running time) comparison of Pop-MCMC, SA, SWC-2 and BP

on (a) Tsukuba, (b) Venus, (c) Teddy, and (d) Cones. Pop-MCMC obtains lower energy results

than other methods except on Tsukuba.
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(a) (b)

(c) (d)

Figure 2.8: Results of the proposed algorithm: the disparity maps of (a) Tsukuba, (b) Venus, (c)

Teddy, and (d) Cones.
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The disparity error rates of the Pop-MCMC were compared with those of other

algorithms and shown in Table 2.1, and the resulting disparity maps of the proposed

algorithm are shown in Figure 2.8. Note that there are some limitations of the

segment-based energy model. When real world objects are piecewise planar, the

results are quite good. However, for the cases of Teddy and Cones that include

objects with curved surfaces, the performance seems not satisfactory. And also, for

a fronto-parallel plane, a non-segment based energy model can be superior to the

segment-based energy model due to the smaller number of labels. In addition, since

occlusion or visibility was not considered in our stereo model, the error rates at the

vicinity of discontinuity were relatively large.

2.4.2 Parameter analysis

Figure 2.9 and Figure 2.10 exhibit the performance for differing parameters. Both

experiments were carried on the Venus image. Figure 2.9 shows the energy conver-

gence plots according to the variation of the max-temperature. The min-temperature

was set to 0.0001. We observed that if the max-temperature was too low, it quickly

moved to the nearest minimum but easily got stuck in local minima. While if it

was too high, the algorithm was rarely trapped in local minima but the convergence

speed became too slow. Figure 2.10 shows the energy convergence plots by varying

the number of chains. If the population size was large, it helped each other to reach

the global minimum by exchanging information. However, a large size of population

usually increases redundancy in the algorithm. We found empirically that for our

segment-based stereo energy model, the optimal max-temperature was 1.0 and the

optimal number of chains was five.

Figure 2.11 and Figure 2.12 report the contribution of each move in Pop-MCMC.
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Figure 2.11 shows the statistics of each move while Pop-MCMC is running on the

Venus images. We counted the number of accepted moves every ten seconds. As

shown in the graphs, the mutation move occurred most frequently. In the beginning,

all the three moves frequently occurred but as time went on, they tended to decrease

since they were approaching the optimum. The exchange move occasionally occurred

when higher-temperature chromosomes had lower energy states than those of lower-

temperature chromosomes. Figure 2.12 compares the energy convergence rates for

different combinations of moves. We illustrated the energy curves and the boxplots

of the final state energies. We performed the experiment on the Venus images. The

exchange move contributed larger amount than the crossover move. Obviously, when

we combined all the three moves, they together helped each other to achieve fast

convergence. Boxplots of the final state energies show not only that the three moves

together could reach lower energy state, but also that they decreased the standard

deviation, and in turn made the algorithm quite stable. It took about 190 seconds

to minimize the energy to be 100,000 using all moves. However, if one of the moves

was missing, it became much slower. For example, without the crossover move, it

took about 440 seconds, and without the exchange move, it could not reach that

state until 500 seconds.

2.5 Summary

In this chapter, we proposed a new stereo matching algorithm based on Pop-MCMC.

We showed that the proposed sampling-based Pop-MCMC was a good optimizer

for stereo problem. Pop-MCMC uses multiple chains in parallel, and establishes

faster mixing rate by exchanging information between chromosomes. In this work,
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Figure 2.9: The performance of the Pop-MCMC for different max temperature values: (a) Energy

curves, (b) boxplots of the final states.

we designed new effective 2-D mutation and crossover moves for stereo matching

based on cluster sampling technique. Consequently, it is shown that the proposed

algorithm provides much faster convergence rate than conventional sampling-based

methods including SA and SWC, and gives lower energy states than BP. We also

investigated the contribution of each move. Combining all the three moves together

made the algorithm more stable. In addition, we analyzed the effect of parameters

such as temperature and the number of chains, and found the optimal parameters for

our problem. We have a plan to apply and analyze the performance of the proposed

method to more sophisticated stereo energy models including occlusion handling and

visibility terms as well as the segmentation problem.
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Figure 2.10: The performance of the Pop-MCMC for different number of chains: (a) Energy curves,

(b) boxplots of the final states.
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all the three moves are quite active, and then tend to decrease as time goes on. While mutation
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Chapter 3

Markov Chain Monte Carlo

Combined with General

Deterministic Methods

3.1 Introduction

Markov Random Field (MRF) models are of fundamental importance in computer

vision. Many vision problems have been successfully formulated in MRF optimiza-

tion. They include stereo matching, segmentation, denoising, and inpainting, to men-

tion just a few. Recently, Szeliski et al. [2] presented a comprehensive review of the

standard MRF-based vision problems and the comparative results of existing opti-

mization algorithms.

Many algorithms for minimizing the aforementioned energy function have been

proposed. Although those methods have been successively applied to various prob-

lems, the story becomes different when it comes to more difficult MRF problems.

47
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There are some known factors which make MRF problems more difficult: non-

submodular functions, strongly coupled MRF models, high connectivity and higher-

order clique potentials. It is known that more non-submodular terms make the prob-

lem harder [15]. The coupling strength also affects performance in solving MRF

problems. The coupling strength refers to the relative strength of pairwise versus

unary terms. As coupling strength increases, problems become more difficult [2, 19].

High connectivity of graphs is another factor which makes the problem difficult [20].

Higher-order clique potential also make the problem difficult. Despite difficulty,

higher-order clique potential has often been used to improve the results in some

vision applications [6, 5]. More difficult MRF models are inevitable to incorporate

realistic image priors into the models. (e.g., occlusion terms in stereo and texture

information in denoising and segmentation.) To those difficult examples, most ex-

isting algorithms are not applicable, and even with some applicable algorithms the

results are far from the global optimum.

Therefore, we definitely need a more efficient optimization technique to cope

with such difficult MRF vision problems. Our main idea is to combine the stochastic

sampling and deterministic algorithms so that we can take advantages of both sides.

Our new algorithm is mainly inspired by the work of Strens et al. [45]. They used

direct search optimization (downhill simplex method and differential evolutions) in

the framework of Population-based Markov Chain Monte Carlo (Pop-MCMC) to

increase stochastic sampling performance. Although they improved performance by

combining sampling and optimization method, they remain focused only on sampling

rather than optimization. Moreover, they did not provide a general framework for

combination of algorithms. On the other hand, we propose a general framework for

optimization which is suitable for many vision applications. This chapter is organized
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as follows. We continue with recent researches which are related to our work in the

following section. We present the details of the proposed algorithm in Section 3.3.

Section 3.4 gives the experimental results both on synthetic and real problems.

3.2 Related works

Many algorithms have been proposed to solve MRF problems. The existing algo-

rithms can be divided into two approaches: deterministic and stochastic sampling

algorithms. Some of the well-known deterministic algorithms are move-making algo-

rithms. Move-making algorithms iteratively make local moves to explore the solution

space. They include Iterated Conditional Modes (ICM), the Gradient Descent Al-

gorithm and Graph Cuts [12, 13, 14]. Graph Cuts are the state of the art among

those move-making algorithms. It becomes more powerful due to recent advances in-

cluding the fusion move and the Quadratic Pseudo-Boolean Optimization (QPBO)

algorithm [15, 5]. Graph Cuts iteratively optimize the binary sub-problems of the

original problem. They are fast, accurate and even find global optima for some

classes of functions. Another important class of deterministic algorithms is the mes-

sage passing approach. It includes Belief Propagation (BP) [16] and Tree Reweighted

Message Passing (TRW) [17, 18]. BP was originally developed for graphs without

cycles. Although there is no guarantee of convergence in the case of the graph with

cycles, it has been successfully applied to vision problems. One of the important

properties of TRW is that it gives a lower bound of the energy function, which can

be used to check optimality of the solutions.

Sampling-based algorithms have also been applied to the MAP–MRF based vi-

sion problems. They include Markov Chain Monte Carlo (MCMC) algorithm and its
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variants. MCMC is one of the most popular sampling algorithms. It was originally

developed to generate samples from a given target distribution or to integrate func-

tions in high dimensional spaces. Along with Simulated Annealing, MCMC has also

been used to obtain optimum samples of target functions. In MRF optimization for

vision, Swendsen–Wang Cuts was proposed to solve image segmentation and stereo

problems [22, 46]. Recently, Kim et al. [27, 28] proposed a more advanced MCMC

method called Pop-MCMC to optimize a plane-based stereo energy model. In addi-

tion, Jung et al. [47, 48] proposed window annealing algorithm to increase mixing

ratio of the MCMC method.

Aforementioned methods have been successively applied to many problems. Nev-

ertheless, they all are unsatisfactory when it comes to more difficult MRF problems.

Note that α-Expansion and αβ-Swap is able to achieve satisfactory results only with

submodular energy functions, whose pairwise terms satisfy

θst(β, γ) + θst(α, α) ≤ θst(β, α) + θst(α, γ). (3.1)

To solve functions whose pairwise terms does not satisfy this relationship, we should

truncate the non-submodular terms, i.e. violating terms should be replaced with

submodular approximations. Consequently, it seriously degrades the quality of so-

lutions when violating terms are getting larger. On the other hand, QPBO can be

applied those functions without truncation. As the difficulty of problems increases,

however, it produces more unlabeled pixels, which yields unsatisfactory results. The

number of unlabeled pixels depends on the strength of unary and pairwise terms, the

number of non-submodular terms and the connectivity of the graph structure [15].

To resolve this problem, probing is proposed by Rother et al. [15] but it still leaves
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some pixels unlabeled. In addition, all Graph Cut based algorithm can handle only

pairwise graphs. Message passing algorithms are also degraded as the difficulty of

the problem increase. The complexity of belief propagation exponentially increases

with the size of the largest clique. Also, Komodakis and Paragios [19] mentioned

that the solutions and the lower bounds do not converge in difficult MRF problems.

Note that the gap between the solutions and the lower bounds of TRW-S (Sequential

TRW) [17] can be an efficient measure of qualities of the solutions. Sampling-based

algorithms also have weaknesses. Although applicable to any class of MRF problems,

they are usually slower than deterministic algorithms even in the simple MRF prob-

lems [27, 28], and do not lower the energy state substantially [47, 48]. If difficulty of

the problem increases, we do not think they can solve the problems in a practical

timescale since they are too slow even in the simple ones.

Recently, there has been increasing emphasis on the higher-order MRF models

because it can capture the rich statistics of natural scenes [4, 5, 8, 9, 49]. However,

due to intrinsic difficulty of the model and the lack of efficient algorithms, it has

often been troublesome to use the higher-order MRF models. There are some ap-

proaches to overcome those limitations. First, in the move-making algorithms, the

reduction technique has been introduced. This technique reduces higher-order clique

potentials into pairwise ones so that it can be possible to apply the algorithms for

only up to pairwise ones, such as Graph Cuts. Kolmogorov and Zabih introduced a

technique that reduces third-order clique potentials into pairwise ones [14]. Unfor-

tunately, their reduction was limited only up to the third-order cliques. Ali et al.

recently used more general reduction technique, which can reduce any order clique

potentials into pairwise ones [10]. This technique, however, produces severe amount

of non-submodular term. Because of that, it is hard to apply this technique to the
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clique potentials which has higher-order than 3. More recently, Ishikawa proposed

a new reduction technique which reduces any order clique potentials into pairwise

ones [9, 8]. However, we cannot still ignore the fact that the reduction produces non-

submodular terms leading to potentially many pixels unlabeled. Moreover, all the

reduction techniques produce additional terms in the energy function and they grow

exponentially with the maximum clique size. This consequently yields exponential

growth of the time complexity as well as dimensionality. Message passing algorithms

have also improved. To solve higher-order MRFs, belief propagation variants have

been introduced. Lan et al. proposed some approximation methods for BP with

learned potentials [49]. Potetz proposed a technique to compute belief propagation

messages in time linear with the size of the largest clique for some class of energy

functions [11, 7]. However, message passing algorithms applied to the higher-order

MRF usually need much longer convergence time than Graph Cuts.

3.3 Proposed algorithm

The proposed algorithm is called Markov Chain Monte Carlo combined with Gen-

eral Deterministic algorithms (MCMC-GD). In this section, we explain the proposed

MCMC-GD algorithm in detail. Our basic strategy is to combine deterministic algo-

rithms in the structure of Pop-MCMC. As mentioned above, we can take advantages

of the combination. However, the combination of sampling and deterministic algo-

rithms is not an easy task. Careless embedment of deterministic algorithms in the

sampling algorithm easily causes trouble.

The overall structure of MCMC-GD is described in Algorithm 2. The structure

of MCMC-GD is similar to conventional population-based MCMC. The difference
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comes from the design of new kernel in the MCMC algorithm. This new kernel is pro-

posed to make use of deterministic methods. It is based on the snooker crossover [37].

The detailed procedures for each step will be described in the following subsections.

3.3.1 Population-based sampling framework for MCMC-GD

To present overall structure of MCMC-GD, we would like to begin with MCMC first.

MCMC algorithms have been used to sample from the target distribution p(x). It

generates a sequence of samples x(0),x(1), · · · using a Markov chain. A tth sample

x(t) is drawn from a conditional distribution q(x(t)|x(t−1)). We call q(·|·) the kernel

of the Markov chain. A kernel q(·|·) is reversible if and only if

p(x(t−1))q(x(t)|x(t−1)) = p(x(t))q(x(t−1)|x(t)). (3.2)

This is also called detailed balance condition. If a kernel q(·|·) satisfies detailed

balance, the Markov chain process x(0),x(1), · · · generated by the kernel converges

to the target distribution p(x).

Along with simulated annealing, MCMC has also been used to obtain an opti-

mum sample of the target function, i.e. a sample x which maximizes p(x). In MCMC,

a new sample is drawn from the previous sample with a local transition probability,

based on the Markov chain. Since most MCMC algorithms allow only local moves,

in a large solution space it takes a very long time to reach the global optimum. To

overcome the limitations of MCMC, Pop-MCMC has recently been applied to the

vision problem [27, 28].

Pop-MCMC or evolutionary Monte Carlo is a stochastic simulation algorithm

that combines a population of Metropolis–Hastings samplers and Evolutionary Al-

gorithms to improve the performance of MCMC samplers. Pop-MCMC generates
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multiple chains in parallel. Each chain has a different target distribution pi(x) =

(1/Zi){p(x)}1/Ti where Zi is a constant to make the integral of the function equal to

one and Ti represents the temperature for the ith chain. From multiple chains, mul-

tiple samples are drawn at the same time and they exchange information with each

other. This enables global moves of samples which consequently make the mixing

rate of drawn samples faster. In terms of optimization, the fast mixing rate means

fast convergence to the global optimum.

Basically, MCMC-GD algorithm is built on the framework of Pop-MCMC. We

first build the target distribution using Eq 3.3.

p(x) =
1

Z
exp{−E(x)}, (3.3)

where Z is a constant to make the integral of the distribution function equal to one.

Note that, the domain of the target distribution p(·) is a real-valued space while

that of the energy function E(·) is a integer-valued space. With the target distri-

bution p(x), we construct multiple chains with probability distribution of chain i

as

pi(x) = (1/Zi){p(x)}1/Ti (3.4)

where Zi is a normalizing constant and Ti is the temperature of the ith chain. In the

chain with high temperature, the target distribution is nearly flat, where the heights

of barriers between local optima are very low. Therefore, the samples in such chains

can freely wander in contrast to the samples in a chain with low temperature. By

exchanging these higher-temperature configurations with the configuration of a low

temperature of our interest, we can allow the low temperature simulation to sample
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configurations much more efficiently than with local Metropolis updates only. This

leads to a faster mixing rate between samples, and helps escape from local minima.

The appropriate sequence of the temperatures depends on the given energy function.

It is empirically determined (see Section 3.4 for discussions on how it is determined).

Note that pi is defined on real number space.

Given an original target distribution p(x), a new expanded target distribution is

defined as follows:

p∗(x1:N ) =

N∏
i=1

pi(xi), (3.5)

where N is the number of chains to use. x1:N = {x1, · · · ,xN} is a population

composed of samples of N chains. Our new goal is to generate a sequence of the

population of samples x
(0)
1:N ,x

(1)
1:N , · · · using a kernel q(x

(t)
1:N |x

(t−1)
1:N ).

In this population-based sampling framework, deterministic algorithms are com-

bined by using a new MCMC kernel. If we simply apply deterministic algorithms

as the kernel of the sampling algorithm, it might violate the reversibility condition

of the MCMC. Consequently, it is impossible to satisfy detailed balance. That is,

we are not able to sample from the target probability function. Next subsection

describes the design of kernel by which the deterministic algorithms are successfully

combined with the sampling algorithm.

3.3.2 Kernel design

In this subsection, we present a new MCMC kernel design which enables the com-

bination between sampling and deterministic method while satisfying reversibility

and detailed balance. This new MCMC kernel generates a proposal sample by us-

ing deterministic algorithms. It enables much better move than widely-used random
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Phase 1 Phase 2

dynamic-anchor case
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Figure 3.1: MCMC kernel for combining existing methods.

perturbation. The proposed kernel is composed of two phases: anchor generation

and snooker crossover. Deterministic algorithms are employed in the first phase.

The whole procedure for the kernel is illustrated in Figure 3.1.

3.3.2.1 Anchor generation

First phase is the anchor generation. The purpose of this phase is to generate an-

chors which have substantially low energy using the deterministic algorithms. In

this subsection, we propose two different types of anchors according to the class

of the algorithms to be combined: Dynamic anchors and static anchors. Although

the dynamic anchor plays important role to produce well spread anchors, not every

deterministic method can be used to generate the dynamic anchor. The Dynamic

anchors are generated by using move-making algorithms. To also use other than

move-making algorithms, such as message-passing algorithms, static anchors are

proposed.

To generate dynamic anchors, we first select a sample x
(t)
p in the population.
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We call this sample a parent. And then, we run a few iterations of a move-making

algorithm with the parent as an initial. The resulting solution is used as the anchor

for the next phase. This anchor is dynamically generated and destroyed while the

algorithm is running.

To generate the static anchors, we initially run message-passing algorithms such

as the TRW and BP before MCMC-GD starts. Those solutions are used as the

anchor points. While the algorithm is running, we just pick one of the static anchors

with uniform probability.

At each iteration, a single anchor is obtained by either dynamic or static anchor

generation. To choose the type of the anchor, we draw a uniform random number U

uniformly from interval [0, 1) as mentioned in Algorithm 2. The random number U

is compared with predefined dynamic anchor-based proposal rate QD which controls

the relative weight of the dynamic and static anchor-based proposals. According to

the value of U , we choose either the dynamic or static anchor-based proposals as

the next proposal.

For the extreme cases, we can set QD = 1 and QD = 0. When QD is set to 1, the

algorithm only uses dynamic anchors. On the other hand, when QD is 0, the algo-

rithm only uses static anchors. Those algorithms are called MCMC-D and MCMC-S,

respectively. (D and S stand for Dynamic and Static.) The relative performance of

those variations is reported in experimental section.

3.3.2.2 Snooker crossover

After an anchor is chosen, we perform sampling by using snooker crossover (Fig-

ure 3.2). The snooker crossover has been proposed by Liang and Wong [37] for the

MCMC sampling in a real-valued space. It start from selecting a sample x
(t)
c other
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Figure 3.2: Snooker crossover. A cadidate sample x
(t)
c is randomly selected from the population

{x(t)
1 , · · · ,x(t)

N }. The sample x
(t)
c is then updated with a newly proposed sample x

(t+1)
c which is

generated by the line sampling along the direction passing through the candidate x
(t)
c and the

anchor point A.

than the parent from the population {x(t)
1 , · · · ,x(t)

N }. This sample is called a candi-

date. After the candidate is chosen, we perform snooker crossover with the anchor

point A. In the conventional snooker crossover, the anchor point is set to be the one

of the samples chosen from population. On the other hand, in our algorithm, the

anchor point comes from the result of the deterministic methods. A newly-generated

sample x
(t+1)
c lies on the line going through the anchor and the candidate according

to:

x(t+1)
c = x(t)

c κ exp (s) +A(1− κ exp (s)), (3.6)

where s and κ are control parameters of snooker crossover. s is the random variable

taken from the predefined set S with probability distribution r(s). The set S can

be designed as any set closed under the operator s̄, which is defined by −s. The

parameter s controls the distance between the newly-generated sample and the an-
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chor. Small s results in the new sample being close to the anchor and large s results

in the new sample being far away from the anchor. κ can be fixed either by +1 and

−1 or randomly chosen among +1 and −1 with equal probability. κ will decide if

the new sample, started from the candidate, passes over the anchor or not. When κ

is −1, the newly-generated sample lies on the ray from the anchor in the opposite

direction to the candidate. That is, the new sample passes over the anchor point.

When κ is +1, the newly-generated sample lies on the ray from the anchor through

the candidate.

After snooker crossover, the candidate x
(t)
c is substituted with the new sample

x
(t+1)
c according to the Metropolis–Hastings rule with the acceptance probability:

α = min(1, γ), (3.7)

where

γ =
pc(x

(t+1)
c )pp(x

(t+1)
p )

pc(x
(t)
c )pp(x

(t)
p )

· q(x
(t)
c ,x

(t)
p |x(t+1)

c ,x
(t+1)
p )

q(x
(t+1)
c ,x

(t+1)
p |x(t)

c ,x
(t)
p )

=
pc(x

(t+1)
c )

pc(x
(t)
c )

· q(x
(t)
c |x(t+1)

c ,x
(t)
p )

q(x
(t+1)
c |x(t)

c ,x
(t)
p )

=
pc(x

(t+1)
c )

pc(x
(t)
c )

· r(−s)
r(s)

= exp

[
E(x

(t)
c )− E(x

(t+1)
c )

Tc

]
· r(−s)
r(s)

.

(3.8)

Note that the reverse transition is attained by selecting −s from S.

Instead of a single candidate, we can also pick multiple candidates at each iter-

ation. The opposite extreme of using a single candidate is to take all the samples as

candidates except the parent.
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3.4 Experiments

3.4.1 Analysis on synthetic MRF problems

3.4.1.1 Pairwise MRF problems

In this subsection, we analyze the performance of the proposed MCMC-GD algo-

rithm while varying the difficulty of the target energy functions. To this end, the

synthetic MRF problems were used so that the difficulty of the problem can be easily

controlled. The difficulty of the MRF problems depend on many factors: the ratio of

non-submodular terms, the coupling strength, the graph size, the number of labels,

the connectivity, etc.

For graph construction, we followed the synthetic MRF construction in Ko-

modakis’s work [19]. We built multi-label MRFs defined on N by N grid graphs

with four-neighborhood structures. We set the unary term of each node with a ran-

domly generated number from Gaussian distribution N (0, 1). The pairwise terms

were set as:

θst(xs, xt) =


0 if xs = xt,

λst if xs 6= xt,

(3.9)

where λst was drawn from |N (0, σ2)| for submodular terms and from −|N (0, σ2)| for

non-submodular terms. The parameter ρ controls the percentage of non-submodular

terms and the parameter σ controls the coupling strength.

For MCMC-GD, identical control parameters were used for all the experiment

in this subsection. We used 100 chains and the temperature of ith chain was set

to i. For the snooker crossover, κ was randomly chosen among +1 and −1 with
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Figure 3.3: Experimental results on the synthetic MRF problems. 30 by 30 grid graphs are generated.

The difficulty of the energy function defined on the graph is controlled by two paramters: the

percentage of non-submodular terms ρ and the coupling strength σ. As the problem becomes harder

to solve, the gap in the performance between the proposed algorithm and others is getting larger.

equal probability. exp (s) was drawn from {0.1, 0.5, 2, 10} with probability 0.5, 0.2,

0.2, and 0.1, respectively. QD was set to 0.9. The effect of the control parameters

will be discussed in the later section in detail. At each iteration, we selected sin-

gle candidate. For the dynamic anchor-based proposal, we used a single iteration of

QPBO algorithm. The single iteration of QPBO algorithm is composed of a single α-

expansion using QPBO with randomly chosen α-label. Because of non-submodular

terms, QPBO leaves unlabeled pixels. Those unlabeled pixels were assigned to cur-

rent labels. For the static proposal, static anchors were obtained using TRW-S and

BP-S. Please note that the time for generating static anchor is excluded from the

running time except for the Section 3.4.3.

There are two issues in MCMC-GD. First issue is how to assign appropriate

values for various control parameters. The effect of choices of different parameters

will be discussed in the later subsection. Second issue is to determine algorithms

for the anchor generation. We believe it would be hard to provide rigorous math-
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ematical theories in this case. Instead, we can provide rough guideline to obtain

better solutions. We need to understand what are good anchors. First, good anchors

have low energy. Second, good anchors need to be well-distributed. Therefore, it is

recommended to use available state-of-the-art algorithms for anchor generation. In

addition, we suggest using various algorithms which have different search schemes.

On the other hand, it is left up to users to make a choice of algorithms to

use. We propose a general framework for combining different algorithms. In this

framework, any existing algorithms can be combined together. We can provide only

a rough guideline. We experimentally found that it is usually better to combine

good-performing algorithms and to combine various algorithms. It is, however, not

good idea to combine too many algorithms. Our recommendation is to use one graph

cuts-based algorithm and one message passing-based algorithm if both are available.

In the first set experiments, we compared the performance of MCMC-GD and

other algorithms while varying the ratio of non-submodular terms and the coupling

strength to control the difficulty of the problems. It has been shown that the amount

of non-submodular terms affects the performance of QPBO by Rother et al. [15].

Our experimental results show that the performance of other well-known algorithms

such as TRW and BP also depend on the amount of non-submodular terms. It

consequently tells the difficulty of the MRF problems depends on the amount of

the non-submodular terms. The coupling strength refers to the relative strength

of pairwise versus unary terms. It is known that the MRF problems become more

difficult as the coupling strength is getting larger [15, 19]. For the comparison, we

applied QPBO, TRW-S, and two different variants of BP: BP-S [2] and BP-M [16].

We also applied MCMC-D and MCMC-S which are the variants of MCMC-GD.

The parameters ρ was set to 1%, 25%, and 50% and the coupling strength σ was
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Figure 3.4: The running time of MCMC-GD applied to the synthetic problems with different number

of nodes. The number of nodes was set to 30 by 30, 50 by 50, 100 by 100, 200 by 200, 300 by 300,

and 500 by 500. The parameter ρ and the coupling strength were fixed to 50% and 8, respectively.

The running time increases almost linearly with the number of nodes.

set to 0.1, 2, 4, 6, and 8. On the other hand, the number of labels and the size of the

graphs are fixed to be 5 and 30 by 30, respectively. For each parameter setting, we

construct 20 different instances of MRF problem. For each instance, final energies

are normalized so that the minimum energy is to be 100 and the average of the final

energies was obtained.

The results of the first set of experiments are summarized in Figure 3.3. We

applied MCMC-GD, MCMC-D, MCMC-S, QPBO, TRW-S, BP-S, and BP-M. In

the graph, the x-axis represents the coupling strength and the y-axis are relative

energy given by 100×(energy ofsolution)/(minimum energy)%. We obtained

better results by combination. Note that MCMC-GD always obtained the lowest

energy among all other methods. Moreover, the energy gap between MCMC-GD
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and others became larger as the problem was more difficult in terms of the ratio of

non-submodular terms and the coupling strength. The running time of MCMC-GD

algorithm was set to 8 s. QPBO is the fastest among all the methods. It took less

than 0.1 s to converge. For TRW-S, BP-S, and BP-M, the maximum number of

iterations was set to 2000. It took 3–5 s for TRW-S to terminate and 7–9 s for BP-S

and BP-M to terminate.

In the second set experiments, we analyzed the complexity and the performance

of MCMC-GD for different graph sizes. To measure time complexity, we need to set

up reasonable stopping criteria. It is not easy to decide when the algorithm should

be terminated. When we run population-based stochastic optimization algorithms

for a long enough time (e.g., an exponentially long time), many of them will finally

end up with the globally optimal solution. This, however, is waste of computational

resources since at the early phase of the algorithm the energy is severely decreased

whereas the decrease is too small at the late phase. Consequently, algorithms need

to be terminated with an appropriate stopping criterion. One of the best ways is to

terminate the algorithm when the discrepancy between the global minimum energy

and the current energy is small enough. In practical cases, however, the knowledge

about global optima is usually not available. In this experiment, instead, we first

execute the algorithm for long enough time to get reasonably low energy solutions.

After that, we measured the discrepancy between the energy of those solutions and

the current energy. The algorithm is terminated when the discrepancy becomes less

than 0.5%.

The running time is plotted on Figure 3.4. The number of nodes was set to 30 by

30, 50 by 50, 100 by 100, 200 by 200, 300 by 300, and 500 by 500. The parameter ρ, the

coupling strength, and the number of labels were fixed to 50%, 8, and 5, respectively.
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Figure 3.5: Relative energies of algorithms applied to the synthetic problems with different number

of nodes. The number of nodes was set to 30 by 30, 50 by 50, 100 by 100, 200 by 200, 300 by 300,

and 500 by 500. The parameter ρ and the coupling strength were fixed to 50% and 8, respectively.

MCMC-GD always found lowest energy solution among all applied algorithm. Note that relative

energy of each algorithm is almost similar without regard to the number of nodes.

For each parameter setting, we construct 20 different instances of MRF problem. For

each instance, final energies are normalized so that the minimum energy is to be 100

and the average of the final energies was obtained. The parameters for MCMC-

GD algorithms were set to the same as the first experiment. The discrepancy of the

energy was measured at every second. For 30 by 30 graph the algorithm converged in

one second and for 500 by 500 graph the algorithm converged in 590 s. The detailed

results are summarized in Figure 3.4. The running time increases almost linearly

with the number of nodes. In Figure 3.5, relative energies of algorithms applied

to the synthetic problems with different number of nodes are shown. MCMC-GD

always found lowest energy solution without regard to the graph size. The ranking

and the relative energies of algorithms remain almost same across different graph

sizes.

Figure 3.5 shows the comparison of the final energy values obtained by different
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Figure 3.6: Relative energies of algorithms applied to the synthetic problems with different number

of labels. The number of labels was set to 5, 10, 15, 20, 25, and 30. The parameter ρ and the

coupling strength were fixed to 50% and 8, respectively. MCMC-GD always found lowest energy

solution among all applied algorithm. BP-S and TRW is getting better when the number of labels

become larger.

algorithms while varying the number of nodes. MCMC-GD, QPBO, TRW, BP-S is

used for the experiments. MCMC-GD always obtained the lowest energy solution

among the tested algorithms. The performance between algorithms remains rela-

tively unchanged with increase in the number of nodes. It suggests that the graph

size does not have significant influence on the relative performance of the algorithms.

In the third set experiments, we compared the performance of MCMC-GD for

different number of labels. The number of labels was set to 5, 10, 15, 20, 25, and 30.

The parameter ρ, the coupling strength, and the size of the graph were fixed to 50%,

8, and 30 by 30, respectively. For each parameter setting, we construct 20 different

instances of MRF problem. For each instance, final energies are normalized so that

the minimum energy is to be 100 and the average of the final energies was obtained.

Figure 3.6 shows the comparison of the final energy values obtained by different

algorithms while varying the number of labels. MCMC-GD, QPBO, TRW, BP-S is
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Figure 3.7: Relative energies of algorithms applied to the synthetic problems with different connec-

tivity. The number of neighbors for each node was set to 4, 8, 16, and 32. The parameter ρ and the

coupling strength were fixed to 50% and 8, respectively. MCMC-GD always found lowest energy

solution among all applied algorithm. BP-S and TRW is getting better when the number of labels

become larger.

used for the experiments. MCMC-GD always obtained the lowest energy solution

among the tested algorithms. As the number of labels gets larger, the performance

of QPBO was degraded. On the other hand, the performance of TRW and BP-S was

enhanced when the number of labels gets larger.

In the fourth set experiments, we compared the performance of MCMC-GD

while varying the number of neighbors (i.e. connectivity). Contrast to previous ex-

periments, we did not used grid graph to easily control the connectivity of graphs.

The number of graph was set to 33 and the neighborhood structure is following.

For the neighborhood structure, we assign the nodes i− k, · · · , i− 1, i+ 1, · · · , i+ k

as neighbors of the nodes i. In this case, the connectivity of graph is 2k. In case

connectivity is 32, the graph is fully connected. The connectivity was set to 4, 8, 16,

and 32. The parameter ρ, the coupling strength, the number of graphs, and the size

of the graph were fixed to 50%, 8, 5, and 30 by 30, respectively. For each parameter
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setting, experiments were repeated 20 times with different random number seeds

to generate 20 different target functions and the average of the final energies was

obtained.

Figure 3.7 shows the comparison of the final energy values obtained by different

algorithms while varying the connectivity of graphs. MCMC-GD, QPBO, TRW, BP-

S is used for the experiments. MCMC-GD always obtained the lowest energy solution

among the tested algorithms. As the connectivity gets larger, the performance of

QPBO and BP was degraded. On the other hand, the performance of MCMC-GD

and TRW remained relatively unchanged.

3.4.1.2 Parameter analysis

In this subsection, we analyze the performance of the proposed MCMC-GD algo-

rithm while varying the parameters used in MCMC-GD. The parameters include

QD, which is the ratio of the dynamic and static anchor-based proposals, the tem-

peratures, and the number of chains (i.e. the population size). We are going to

examine how stable MCMC-GD is with respect to the selection of the parameters.

Throughout the experiments in this subsection, the algorithm is tested on the

same set of energy functions. The energy is defined on 30 by 30 grid graph. The

unary and pairwise terms are defined the same way as in the previous subsection.

The parameters for the graph were fixed as follows: The ratio of non-submodular

term ρ was set to 50%; the coupling strength was set to 8; and the number of the

graph was fixed to 5. We construct 20 different instances of MRF problem. For each

instance, final energies are normalized so that the minimum energy is to be 100 and

the average of the final energies was obtained.

In the first set of experiments, we analyzed the performance of MCMC-GD while
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Figure 3.8: Sensitivity of the proposed algorithm w.r.t. to parameter QD. Experiments were per-

formed on the synthetic MRF problems. The parameter ρ and the coupling strength were set to

50% and 8. The algorithm is stable to change of the parameter QD.

varying the parameter QD. The parameter QD controls the relative weight of the

dynamic and static anchor-based proposals. When the QD gets larger, the algorithm

uses more dynamic anchor-based proposals, and vice versa. The other parameters

and settings were fixed to the same as in previous subsection.

Figure 3.8 shows the comparison of the final energy values obtained by MCMC-

GD while varying the parameter QD. The parameter QD was changed from 0.1 to

0.9 by 0.1. In every case, the final relative energy was less than 100.2%. It shows that

MCMC-GD is stable with choices of the parameter QD as long as it is not chosen

from 0 or 1.

In the second set of experiments, we analyzed the performance of MCMC-GD

while varying the temperature for each chain. Throughout all the experiments, only

the maximum and minimum temperatures are defined. In-between values are de-

fined by linear interpolation of them. The maximum temperature was varied from

1 to 10, 000 and the minimum temperature was varied from 0.1 to 1000. The other
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Figure 3.9: Algorithm robustness to the temperature setting. Experiments were performed on the

synthetic MRF problems. The parameter ρ was set to 50% and the coupling strength was set to 8.

The algorithm is stable to change of the temperatures.
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Figure 3.10: Algorithm robustness to the number of chains. Experiments were performed on the

synthetic MRF problems. The parameter ρ was set to 50% and the coupling strength was set to 8.

The algorithm is stable to change of the number of chains.

parameters and settings were fixed to the same as in previous subsection.

Figure 3.9 shows the comparison of the final energy values obtained by MCMC-

GD while varying the temperatures of chains. In every case, the final relative energy

was less than 101%. It shows that MCMC-GD is stable with choices of the temper-

ature as long as it is selected from a reasonable range.

In the third set of experiments, we analyzed the performance of MCMC-GD while

varying the number of chains. Figure 3.10 shows the comparison of the final energy

values obtained by MCMC-GD while varying the number of chains. In every case,

the final relative energy was less than 100.1%. It shows that MCMC-GD is stable

with choices of the number of chains as long as it is selected from a reasonable range.
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Figure 3.11: The energy gaps between QPBO and MCMC-GD against the difficulties of the prob-

lems. The energy gaps are given by (energy of QPBO) − (energy of MCMC-GD). Combined with

QPBO, MCMC-GD always obtains better solutions than QPBO does. Especially, energy gap be-

tween QPBO and MCMC-GD is larger when the problems are more difficult. Difficulties are (a)

controlled by changing unary strength and (b) estimated by amount of unlabeled nodes in QPBO.

In (b), a single blue dot represents each individual experiment and the histogram of the blue dots

is drawn by yellow bars.

3.4.1.3 Higher-order MRF problems

We also evaluated the proposed algorithm on the higher-order MRF synthetic prob-

lems. For the experiments, we constructed 10 by 10 grid graphs with unary and

higher-order potentials. The labels were discrete values between 0 and 255. To de-

fine unary terms, random values rs between 0 and 255 are first assigned for each

node s. Unary potential was defined by Normal distribution functions which have

randomly assigned values as mean values and 20 as standard deviation:

θs(xs) ∝ exp

{
−

(xs − rs)2

2 · 202

}
. (3.10)
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Higher-order clique potentials were defined by Fields of Experts (FoE) [3]:

θc(xc) ∝
K∏
i=1

{
1 +

1

2
(Ji · xc)2

}−αi

, (3.11)

where Ji is an n×n linear filter, K is the number of filters, and αi is a positive value.

The parameters Ji and αi are learned from a database of natural images. Instead

of learning, however, we randomly generated parameters for the experiments here.

Each element of the filter Ji and the parameter α were drawn from the uniform

distribution in the interval (−1, 1] and (0, 2], respectively. The number of the filters

was set to three.

Table 3.1: Average energies of the solutions over 1000 instances of synthetic problems.

MCMC-GD QPBO BP

Energy 1737.3 1797.3 2283.5

First experiment of the higher-order MRFs shows how the performance changes

against the unary strength. We applied QPBO [8] and MCMC-GD to randomly

generated MRF problems while changing the unary strength. The unary strength

was set to 0.2, 0.4, 0.6, 0.8, and 1.0. For each unary strength setting, we construct 20

different instances of MRF problem. For each instance, final energies are normalized

so that the minimum energy is to be 100 and the average of the final energies was

obtained. For MCMC-GD, we set the number of chains and the temperatures to the

same values as in previous experiments. The random variable κ and exp (s) was also

drawn from the same distribution as in previous ones. At each iteration, we selected

all sample except the parent as candidate. In this experiment, we only use dynamic
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anchors by setting QD to 0. For the dynamic anchor generation, QPBO was used.

The running time of MCMC-GD are set to 30 s.

The results of the first experiment are summarized in Figure 3.11(a). The x-axis

is unary strength and the y-axis is energy gap (energy difference) between QPBO and

MCMC-GD. Note that MCMC-GD always obtains the lower energy than QPBO.

The energy gap is getting larger when the problems are more difficult.

The second experiment of the higher-order MRFs analyzes the affect of non-

submodular terms which are inevitable when we reduce higher-order clique poten-

tials into pairwise ones. However, it is impossible to control the amount of non-

submodular terms by manipulating higher-order clique potentials. Instead, we car-

ried out 1000 experiments on the randomly generated MRF problems. And then,

we estimated the amount of the non-submodular terms by estimating the difficul-

ties using the percentage of the unlabeled nodes in QPBO process. It is well known

that the unlabeled nodes in QPBO can be used to measure the difficulties of the

problems [15].

The results for second experiment are summarized in Table 3.1 and Figure

3.11(b). Table 3.1 contains the average energies of the solutions from each algo-

rithm over 1000 instances. MCMC-GD obtains the lowest energy solutions. Figure

3.11(b) shows the results in more detail. Each green dot represents each instance

of experiments. The x-axis is ratio of the unlabeled pixels in QPBO. The bigger

it is, the harder problem is. The y-axis is energy gap (energy difference) between

QPBO and MCMC-GD. We also depicted the average energy gaps for every 10%

with yellow bars. It is shown that the energy gap between QPBO and MCMC-GD

is getting larger as the problem becomes more difficult.
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3.4.2 Results on real problems

3.4.2.1 Photomontage

We also applied MCMC-GD to a practical vision problem known as photomon-

tage [50, 2]. The photomontage problem seamlessly stitches multiple number of pho-

tos. Given a set of input images I1, I2, · · · , IL, the goal is to output a merged image

by copying colors from one of the input images per pixel. It usually begins with

some user strokes as a hard constraint. For each image, a user make marks which

are desired to appear in output image. With this hard constraint, the photomon-

tage merges input images into a single output image. In this experiment, the energy

model was set to the same as that in Szeliski et al.’s paper [2] (second benchmark

in photomontage). We used five input images so that the number of labels was also

five. We applied our MCMC-GD algorithm as well as other methods.

Among all the benchmark MRF problems in Szeliski et al.’s comparative study [2],

the photomontage is considered as the most difficult problem due to the intrinsic

property of the energy formulation. It is because the energy of the photomontage

problem is dominated by the smoothness cost. As shown in the previous subsection,

large coupling strength makes the problem more difficult. In addition, the function

itself is non-submodular which consequently leads the truncation for α-Expansion

method. We also empirically found that fewer user strokes and larger clutter in the

image made the problem even harder.

Now, the settings for MCMC-GD algorithm are as follows. First of all, we used

100 chains and the temperature of ith chain was set to i × 100. The temperature

was set to be a little higher than the synthetic cases due to the size of problem.

We experimentally found that higher temperature setting gives better results when
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the size of problems are getting larger although the algorithm is rather robust to

the change of the temperature (note Section 3.4.1.2). At each iteration, we selected

all sample except the parent as candidates. This is better than single candidate

because single move of the move-making deterministic algorithm takes long time

in this problem. For the dynamic anchor-based proposal, we used five iterations of

α-Expansion algorithm. Note that the number of iterations was set to the same as

the number of labels. For the static proposal, static anchors were obtained using

TRW-S. The parameter settings for the snooker crossover were the same as used

for the synthetic MRF problems in the previous subsection. For TRW-S, BP-S, and

BP-M, the maximum number of iterations was set to 2000.

The input images are shown in Figure 3.12. User strokes are represented by the

white pixels. An example of quantitative results is provided in Figure 3.13. Upper

row shows the resulting photomontage image of the each algorithm, and the lower

row exhibits the corresponding color-coded image according to the labeling. Figure

3.14 presents the comparative energy plots of all the test algorithms against running

time in seconds. Note that MCMC-GD algorithm always reached the lowest energy

state among all other methods. The preprocessing time for obtaining the static

anchor was not counted on the graph.

3.4.2.2 Inpainting

We also applied MCMC-GD to image inpainting which was formulated as higher-

order MRF model. The energy function for inpainting is difficult to minimize because

it does not have unary terms. It is shown in previous section that the smaller unary

strength makes the problems more difficult. Therefore, inpainting problem is an

appropriate application to compare the performance of the algorithms.
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Given original image, we first mark 70% of pixels as ‘unknown’. In Figures 3.16(a)

and 3.17(a), unknown pixels are represented by red color. And then, the goal is to

restore the intensity values for those pixels. As a prior, we used FoE model which is

learned in Roth’s work [3].

Now, the settings for MCMC-GD algorithm are as follows. We used 100 chains

and the temperature of ith chain was set to i. The random variable κ and exp (s)

was drawn from the same distribution in previous experiments. At each iteration,

we selected all sample except the parent as candidate. By setting QD to 0, we only

used dynamic anchors. For dynamic anchor generation, 10 iterations of QPBO were

used.

Table 3.2: Energy and PSNR for four images using MCMC-GD and QPBO algorithms. Both algo-

rithms are run for 3000 s.

test image
MCMC-GD QPBO [8]

energy PSNR energy PSNR

Berkeley001 19278 27.20 20115 26.51

Berkeley002 20213 28.11 20964 27.67

Berkeley003 19351 25.93 19884 25.76

Berkeley004 32288 24.61 33040 24.28

We experimented on four images in the Berkeley segmentation database [51].

Final energies and the PSNR from QPBO and MCMC-GD are listed in table 3.2.

PSNR is the Peak Signal-to-Noise Ratio given by 20 log10(255/σ) where σ is the

standard deviation of the intensity difference between the solution and the ground
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truth images. MCMC-GD always found lower energy solutions with higher PSNR.

Original images of experiments are shown in Figure 3.15. Both quantitative and

qualitative results are shown in Figures 3.16 and 3.17. In Figures 3.16(a) and 3.17(a),

bottom left is the enlarged result image of QPBO and bottom right is that of MCMC-

GD. We can see MCMC-GD produced less artifacts and the result of it looks better

especially near the boundaries. Figures 3.16(b) and 3.17(b) show the energy versus

time graph. While QPBO converges fast and almost does not decrease the energy

after about 200 s, MCMC-GD kept decreasing the energy of the solution much lower

than QPBO. The ratio of marked pixels also affects the performance of algorithm.

By marking more pixels, we can make the problem more difficult. It is because more

marked pixels means bigger problem size and larger connectivity. We found out that

when more pixels are marked, the difference in performance between MCMC-GD

and QPBO became larger, and vice versa.

3.4.3 Alternative approach: parallel anchor generation

In the preceding experiments, we presented the experimental results while excluding

the running time for obtaining the static anchors. To obtain the static anchors,

message passing algorithms are run before the MCMC-GD algorithm starts. For a

fair comparison, the running time for obtaining the static anchors should be included.

It consequently makes the MCMC-GD algorithm less satisfactory in terms of the

time complexity.

In this subsection, we propose an alternative approach which shortens the whole

running time including the time for generating the static anchors. Instead of running

the message passing algorithms before the MCMC-GD algorithm starts, we propose

to run the message passing algorithms in parallel with MCMC-GD sampling. For
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example, we can alternately perform the single iteration of the message passing

algorithm and the single iteration of the MCMC-GD sampling. In that case, the

static anchor will not remain same but changed as algorithm runs. The static anchor-

based proposals will be generated with unconverged solutions. This idea can be

generalized by alternately running the N iterations of the message passing algorithm

and M iterations of the MCMC-GD sampling.

Figure 3.18 shows the comparison of the original MCMC-GD and its alternatives

on Lab images. MCMC-GD(M :N) refers the variation of MCMC-GD, where M

iterations of the message passing and N iterations of the sampling is alternatively

performed. In the original MCMC-GD, the sampling procedure starts after 1000 s.

In its variations, on the other hands, the sampling procedure starts at the beginning

phases. It is shown that the alternative approach effectively reduce the total running

time for MCMC-GD.

3.5 Summary

Although there have been great advances in solving simple MAP–MRF based vision

problems, optimizing more complex MRF problems is still remained as challenging.

Examples of the complex MRF problems include non-submodular energy functions,

strongly coupled MRF, and high-order clique potentials. Most existing optimization

algorithms have inherent limitations in solving those difficult problems. In this chap-

ter, we proposed a new efficient algorithm called MCMC-GD that could cope with

those difficult MRF problems. Basically, MCMC-GD is the sampling-based method

(Pop-MCMC) combined with deterministic methods. By combination, the deter-

ministic methods help the sampling-based method to rapidly move into the lower
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energy state. Moreover, the deterministic methods make the sampling-based method

jump easily from one basin to another over the energy barrier. Consequently, the

mixing rate was increased and we achieved faster convergence and better solutions.

On the other hand, the sampling-based method helps deterministic methods not to

be stuck in local minima. We experimentally showed that the proper combination of

the different approaches could substantially improve the overall performance. Our

new energy minimization framework will be useful in solving many challenging vision

problems. Consequently, this will encourage the design of better yet more complex

energy models for practical vision applications.
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Algorithm 2 MCMC-GD algorithm

1: <Initialize>

2: Initialize the population x1:N

3: Set the temperatures T1 < T2 < · · · < TN

4: Run message passing algorithms to get solutions A1
static,A2

static, · · · ,AKstatic

5: repeat

6: <Anchor generation>

7: if U ∼ [0, 1] < QD then

8: p ∼ {1, 2, · · · , N}

9: A ←Move making algorithm(x
(t)
p )

10: else

11: k ∼ {1, 2, · · · ,K}

12: A ← AKstatic

13: end if

14: <Snooker crossover>

15: c ∼ {1, 2, · · · , N} − {p}

16: κ ∼ {+1,−1}

17: s ∼ S

18: x
(t+1)
c ← x

(t)
c · κ exp (s) +A · (1− κ exp (s))

19: Determine whether accept the new population or not by the Metropolis–

Hastings rule.

20: until The algorithm converges.
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(a)

(b)

(c)

(d)

Figure 3.12: Input images of photomontage. (a) Lab images, (b) bookshelf images, (c) family images,

and (d) landscape images.
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MCMC-GD ICM α-Expansion

αβ-Swap TRW-S BP-S BP-M

Figure 3.13: Photomontage results. There is no single input image in which everybody is looking at

the camera. The goal is to generate a merged image with five front-view faces. First and third rows

show the resulting photomontage images of the each algorithm. Second and forth rows represents

the corresponding color-coded image according to the labeling. Although energy function enforces

seams visually unnoticeable, ICM, αβ-Swap, BP-S, and BP-M produce distinct seams. On the other

hand, MCMC-GD, α-Expansion, and TRW-S give qualitatively good results.
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Figure 3.14: Experimental results on the photomontage problem: (a) Lab images, (b) bookshelf

images, (c) family images, and (d) landscape images. Each result is depicted three times with

increasing scale from left to right. In all cases, MCMC-GD found the solution with the lowest

energy.
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(a) (b)

(c) (d)

Figure 3.15: Input images of inpainting. (a) Berkeley001, (b) Berkeley002, (c) Berkeley003, and (d)

Berkeley004.
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Figure 3.16: The inpainting results of the Berkeley001 image. (a) Qualitative and (b) quantitative

comparisons of QPBO and MCMC-GD.
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Figure 3.17: The inpainting results of the Berkeley003 image. (a) Qualitative and (b) quantitative

comparisons of QPBO and MCMC-GD.
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Figure 3.18: The comparison between the original MCMC-GD and its variations on Lab images.

Because of the running time for calculating static anchors, the sampling procedure starts after 1000

s in the original MCMC-GD. In the alternative approaches, static anchor generation and MCMC

sampling is performed in parallel. In MCMC-GD(M :N), M iterations of the message passing and N

iterations of the sampling is alternatively performed. This alternative approach shortens the total

running time of MCMC-GD and obtains similar results. Note that two graphs shows the same result

in different scale.
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Chapter 4

Fusion Move Driven Markov

Chain Monte Carlo

4.1 Introduction

MRF model have achieved great success in many vision applications [2]. Although

most of them have been formulated as discrete labeling problems, continuous for-

mulation of the problem often achieves great improvement on the qualities of the

solutions in some applications such as stereo matching and optical flow.

However, continuous formulation make it much more difficult to optimize the

target function compared to the fact that we have many powerful discrete optimizer

such as Graph Cuts [12, 14, 13] and Message Passing methods [18, 17]. There are

two dominating approaches to solve the continuous optimization problems. First ap-

proach is to model the problems as convex [52] which are easy to optimize. Despite

of its success, it is limited by the fact that it cannot allow non-convex energy models.

Second approach is to apply powerful discrete optimization algorithms to some re-

89
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Figure 4.1: Three types of anchor generations and snooker crossover: (a) dynamic anchor with both

parents from the samples, (b) dynamic anchor with one parent from the samples and the other from

the proposals, and (c) static anchor.

duced discrete solution spaces [5, 53]. This approach is also limited by the fact that

it cannot fully explore the original solution space. So it only provides approximated

solutions and cannot sufficiently lower the energy of the solutions.

In this chapter, we propose a powerful optimization technique that directly

solves the continuous MRF problems. It combines two powerful methods: Markov

Chain Monte Carlo method (MCMC) and Quadratic Pseudo-Boolean Optimization

(QPBO) fusion move. The idea to combine stochastic methods and deterministic

methods was proposed by Kim and Lee [29, 31]. They, however, applied their method

only to the discrete MRF optimization. To deal with continuous MRF optimiza-

tion, we propose a new method, called Fusion Move driven Markov Chain Monte

Carlo (MCMC-F). It exploits powerful deterministic methods in the framework of

sampling-based stochastic method. The samples can rapidly move to lower energy

state owing to deterministic methods. Also, it can effectively jump from one basin

to another over the energy barrier. Consequently, this property increases mixing



4.2. PROPOSED ALGORITHM 91

rate and yields faster convergence and better solutions. Moreover, exploration is not

restricted in the reduced space. To demonstrate the effectiveness of the algorithm,

MCMC-F is applied to stereo matching problems.

4.2 Proposed algorithm

In this section, we briefly review the sampling-based optimization, and then we

explain the detail of our MCMC-F algorithm.

4.2.1 Sampling-based optimization

Sampling-based optimization exploits the sampling method to obtain optimum solu-

tion of the energy function. MCMC methods have been used to sample from a given

distribution p(x). For the optimization problem, MCMC is often embedded into the

Simulated Annealing framework. However, since most MCMC methods allow only

local moves, in a large solution space it takes a very long time to reach the global

optimum.

To overcome the limitations of MCMC, Population-Based MCMC (Pop-MCMC)

has been applied to the vision problem [27, 28]. In Pop-MCMC, multiple samples

are drawn from multiple Markov chains. To obtain the optimum sample, Paral-

lel Tempering is used instead of Simulated Annealing. It generates multiple chains

in parallel according to several different temperatures, and exchanges information

among them to accelerate the mixing rate. The target distribution of ith chain is

defined as follows.

pi(xi) = p(xi)
1
Ti ,
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where xi is the sample of the ith chain, p(x) is an original target distribution, and

Ti is the temperature of the ith chain.

4.2.2 MCMC combined with fusion move

The main idea of MCMC-F is to combine MCMC method and the QPBO fusion

move. To combine them, we follow the strategy which has been introduced by Kim

and Lee [29, 31]. Using this strategy, we have designed the algorithm to optimize

the energy function formulated in section II.

As in Pop-MCMC, we derive multiple samples from multiple chains. Each sample

represents a single disparity map. Those samples are iteratively updated to obtain

the optimum solution in the main body of the MCMC-F algorithm. The main body

is composed of two phases: anchor generation and snooker crossover. Overall algo-

rithm of MCMC-F is summarized in Algorithm 3.

Initialization We initialize samples using plane fitting method for stereo match-

ing. We firstly obtain 14 segmentation results of the reference (left) image using

different methods [43, 54] and different parameters. And then we calculate initial

disparities for each pixel using the Sum of Absolute Difference (SAD) and Winner

Algorithm 3 MCMC-F algorithm

1: Initialize the population x1,x2, · · · using the proposals

2: repeat

3: Generate an anchor A

4: Perform snooker crossover

5: until The algorithm converges.
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Takes All (WTA) schemes. Incorrectly estimated disparities are eliminated by the

disparity crosschecking method [41]. After that, for each segment we estimate a plane

by the least squares method with reliable disparity values. After we estimated the

plane, we further identify more outlier disparities that do not fit to the plane. We

iteratively re-estimate the exact plane only using remaining inliers. We finally obtain

14 different disparity maps which are called proposals henceforth. Each sample in

MCMC-F is initialized to one of the proposal disparity maps at random.

Anchor generation In the MCMC-F algorithm, there are three different types

of anchors. The first two are the dynamic anchors. When generating dynamic an-

chors, we first select two samples as parents. And then, we generate a new disparity

map through QPBO fusion of the parents. The solution of QPBO is the dynamic

anchor. This anchor is dynamically generated and destroyed while the algorithm is

running. Instead of selecting two parents from samples, we can select one of the

parent from samples and another from proposals. The third type of the anchor is

the static anchor. To generate the static anchors, we initially run non-move-making

deterministic algorithms such as the Tree ReWeighted Message Passing (TRW) and

Belief Propagation (BP) before MCMC-F starts. Those solutions are used as the

anchor points while the algorithm is running. Three types of anchor generation are

illustrated in Figure 4.1.

For each iteration, we generate a dynamic anchor with the probability QDM , and

a static anchor with the probability 1−QDM .

Snooker crossover After an anchor is chosen, we update the samples by using

snooker crossover. For every samples (except parent) as a candidate xc, we perform
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(a) Cones

(b) Teddy

Figure 4.2: Close view of the resulting disparity maps. First column is reference image, second

column is results of MCMC-F, and third column is results of TRW. (Best viewed in color.)

snooker crossover with the anchor point A. Newly generated sample yc lies on the

line going through the candidate and the anchor according to:

yc = κsrxc + (1− κsr)A,

where κ, r and s are random variables which control the dynamics of snooker

crossover. They are designed to satisfy the reversibility condition of Markov chain.

In our implementation, the parameters κ and r are randomly chosen among +1 and
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−1 with equal probability. With the probability of 0.5, the parameter s has the value

s = smin and with the probability of 0.5, the parameter s is uniformly drawn from

(smin, smax].

After the new sample yc is generated, the candidate xc is substituted with yc

according to the acceptance probability:

α = min

(
1,
pc(yc|I0, I1)
pc(xc|I0, I1)

)
.

where pc is the target distribution of cth chain.

4.3 Experiments

To evaluate the performance of MCMC-F on stereo problem, we design a posterior

probability of the disparity map that is composed of two terms: data term and

smoothness term. The formulation is as follows.

p(x|I0, I1) =
1

Z

∏
p∈V

exp
{
−dp(xp)

}
·
∏

(p,q)∈E

exp
{
−Vpq(xp, xq)

}
, (4.1)

where x = {x1, x2, · · · , xN} is the disparity map, xp denotes the disparity of the

pixel p, I0 and I1 is left and right images, and the set V and E contain the nodes

and the edges in the MRF model, respectively.

The data term dp is defined as follows.

dp(xp) = ‖I0(p)− I1(p+ xp)‖2,

where ‖ · ‖ is the Euclidean distance of the RGB color values. Since the disparity xp

can have real value, we linearly interpolate the pixel values to compute I1(p+ xp).
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Figure 4.3: Final energy obtained by each algorithm.

For the smoothness term Vpq, we assume 4-neighborhood system, and we define

Vpq(xp, xq) = λpq log

1 +
1

2ν2
|xp − xq|2

 .

We design the smoothness penalty to be the negative log of a Student-t function.

The parameter ν controls the degree of freedom. The weight λpq varies according to

the color difference between neighboring pixels so that we enforce disparity discon-

tinuities to coincide with image color discontinuities.

To demonstrate the performance of the proposed method, we experimented on

4 Middlebury test images: Cones, Teddy, Tsukuba, and Venus [1]. We compared

the performance of MCMC-F, QPBO, and TRW [18, 17]. For TRW, the original
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problems were reduced so that it had only integer values as labels since we cannot

directly apply TRW to the continuous optimization problems. The solution of TRW

was used for the static anchor. The running time of MCMC-F, and TRW was set

to 1,000 seconds. QPBO took 75 ∼ 90 seconds to terminate. All the experiments

were performed on the Intel Quad Core 2.4GHz PC platform. In all experiments,

the parameters was fixed as follows: for MCMC, population size was 100, QDM was

set to 0.9, the temperature of ith chain was set to i× 100; for the energy function,

ν = 0.2 and λpq = 150 if the sum of absolute differences between I0(p) and I0(q)

was less than or equal to 30, and λpq = 50 otherwise.

Some of the resulting disparity maps are shown in Figure 4.2. Final energies and

the error rates of the disparity maps are depicted in Figure 4.3 and Figure 4.4, respec-

tively. Relative energies were computed by 100×(energy of solution)/(minimum energy).

We note that the results of TRW have severe artifacts due to quantization. Because

the solution of TRW can have only integer values as labels, disparities of the slanted

objects are presented as piece-wise fronto parallel planes. TRW cannot fully explore

the continuous solution spaces. On the contrary, MCMC-F produces much more nat-

ural disparity maps. It is also shown that MCMC-F always finds the lowest energy

solutions which have minimum error rates.

The properties of the solution spaces differ from image to image. For exam-

ple, TRW solutions have lower energy values than QPBO solutions for Cones and

Tsukuba images. On contrary, TRW solutions have higher energy values for Teddy

and Venus images. Despite of that, MCMC-F achieves the lowest energy among all

the algorithms for every test image.
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Figure 4.4: Error rate on the un-occluded region of each disparity map with error threshold of 0.5.

4.4 Summary

MRF optimization has achieved great success over wide range of applications. In

some applications such as stereo matching and optical flow, continuous formulation

enables to obtain much more realistic results. However, so far, existing continuous

MRF optimization methods have limitations in application to real problems. In

this chapter, we proposed MCMC-F algorithm to effectively optimize functions in

continuous spaces. It is sampling-based optimization algorithm that is combined with

fusion move. It exploits powerful discrete optimization methods while it has ability

to fully explore the continuous solution space. Since samples can move to lower

energy state where it is impossible to be reached by the conventional approaches, it

can find lower energy state than other algorithms. We experimentally demonstrate
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that it achieves significantly lower energy state solutions than QPBO and TRW.

Furthermore, since MCMC-F can be applied to any type of general energy functions,

it will be useful to solve many other applications. And this work will also help to

design more realistic complex energy models.
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Chapter 5

Fusion with Graph

Approximation

5.1 Introduction

Markov random field (MRF) has been used for numerous areas in computer vision [2].

MRFs are generally formulated as follows. Given a graph G = (V, E), the energy

function of the pairwise MRF is given by

E(x) =
∑
p∈V

θp(xp) + λ
∑

(p,q)∈E

θpq(xp, xq), (5.1)

where V is the set of nodes, E is the set of edges, and xp ∈ {1, 2, · · · , L} is the label

assigned on node p. Optimization of the MRF model is challenging because finding

the global minimum of the energy function (5.1) is NP-hard in general cases.

Graph cuts-based algorithms have attracted much attention as an optimization

method for MRFs [14, 13, 12, 55, 56]. Graph cuts can obtain the exact solution in

polynomial time when the energy function (5.1) is submodular. Even if the function

101
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next
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Figure 5.1: The basic idea of the overall algorithm. The original function is approximated via graph

approximation. The approximated function is optimized, and the solution is used as a proposal for

the original problem.

is not submodular, a partial solution can be obtained with unlabeled nodes using

quadratic pseudo-Boolean optimization (QPBO) [57, 15]. Graph cuts have also been

used to solve multi-label energy functions. For this purpose, move-making algorithms

have been proposed, in which graph cuts optimize a sequence of binary functions to

make moves.

In a move-making algorithm, the most important decision is the choice of ap-

propriate move-spaces. For example, in α-expansion1, move-spaces are determined

by the selected α value. Simple α-expansion strategy has obtained satisfactory re-

sults when the energy function is metric. Recently, α-expansion has been shown to

improve when the proper order of move-space α is selected instead of iterating a

pre-specified order [58].

However, α-expansion does not work well when the energy function is non-metric.

1In this chapter, α-expansion always refers to QPBO-based α-expansion unless noted otherwise.
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In such a case, reduced binary problems are no longer submodular. Performance is

severely degraded when QPBO leaves a considerable number of unlabeled nodes. To

solve this challenge, we need more elaborate proposals rather than considering ho-

mogeneous proposals as in α-expansion. Fusion move [59] can be applied to consider

general proposals. In this case, we have much more choices for move-spaces.

Generating appropriate proposals is necessary for the success of fusion algorithm.

However, although there has been a demand for a generic method of proposal gener-

ation [59], little research has been done on the mechanism of “good” proposal gen-

eration (we will specify the notion of “good” proposals in the next section). Instead,

most research on proposal generation is often limited to heuristic and application-

specific approaches [5, 9].

In this chapter, we propose a generic and application-independent approach to

generate “good” proposals for non-submodular energy functions. With these propos-

als, we present a graph cuts-based move-making algorithm called GA-fusion (fusion

with graph approximation-based proposals). This method is simple but powerful.

It is applicable to any type of energy functions. The basic idea of our algorithm is

presented in Figure 5.1. Section 5.3 describes the algorithm in detail.

We test our approach in real and synthetic problems. Section 5.4 demonstrates

that the proposed approach outperforms other methods, particularly when the en-

ergy function is difficult. We apply our algorithm to image deconvolution and texture

restoration in which conventional approaches often fail to obtain viable solutions

because of strong non-submodularity. We also evaluated our algorithm on synthetic

problems to show robustness to the various types of energy function.
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5.2 Related works

5.2.1 Graph cuts-based move-making algorithm

Graph cuts-based algorithms have a long history. These algorithms have extended

the class of applicable energy functions from binary to multi-label, from metric to

non-metric, and from pairwise to higher-order energies (among these, higher-order

energies are not the main concern of this chapter).

Graph cuts can obtain the global minimum when the energy function (5.1) is

submodular. In binary case, a function is submodular if every pairwise term satisfies

θ00 + θ11 ≤ θ01 + θ10, where θ00 represents θpq(0, 0).

Graph cuts have also been successfully applied to multi-label problems. One of

the most popular schemes is α-expansion. α-Expansion reduces optimization tasks

into minimizing a sequence of binary energy function

Eb(y) = E(xb(y)), (5.2)

where Eb(y) is the function of a binary vector y ∈ {0, 1}|V|, and xb(y) is defined by

xb,p(yp) = (1− yp) · xcurp + yp · α, (5.3)

where xb,p(yp) is an element-wise operator for xb(y) at node p, and xcurp denotes the

current label assigned on node p. The label on node p switches between the current

label and α according to the value of yp. In such a case, the binary function Eb(y)

is submodular if the original function is metric [12]. This condition is relaxed in [14]

such that the binary function Eb(y) is submodular if every pairwise term satisfies

θα,α + θβ,γ ≤ θα,γ + θβ,α. (5.4)
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α-Expansion is one of the most acclaimed methodologies; however, standard α-

expansion is not applicable if the energy function does not satisfy condition (5.4). In

such a case, a sequence of reduced binary functions is no longer submodular. We may

truncate the pairwise terms [2, 50] to optimize these functions, thereby making every

pairwise term submodular. This strategy works only when the non-submodular part

of the energy function is very small. If the non-submodular part is not negligible,

performance is seriously degraded.

For the second option, QPBO-based α-expansion can be used. In this approach,

QPBO is used to optimize sub-problems of α-expansion (i.e., reduced binary func-

tions). QPBO gives optimal solutions for submodular binary functions; it is also

applicable to non-submodular functions. For non-submodular functions, however,

QPBO leaves a certain number of unlabeled nodes. Although QPBO-based α-expansion

is usually considered as a better choice than the truncation, it also performs very

poorly when the reduced binary functions have a strong non-submodularity, which

creates numerous unlabeled nodes.

For the third option, QPBO-based fusion move can be considered [59]. Fu-

sion move is a generalization of α-expansion. That produces binary functions in

a way similar with α-expansion (Equation (5.2)). The only difference is the operator

xb,p(yp), which is defined as follows:

xb,p(yp) = (1− yp) · xcurp + yp · xprop , (5.5)

where xprop is a proposal labeling at node p. The value of xprop can be different for

each node contrary to the case in α-expansion. In this case, the function Eb(y) is

not always guaranteed to be submodular.
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5.2.2 Proposals for fusion approach

When the fusion approach is considered, the immediate concern is related to the

generation of the proposals. The choice of proposals changes move-spaces as well

as the difficulties of the sub-problems, by changing the number of non-submodular

terms, which consequently affects the qualities of the final solutions.

Although choosing appropriate proposals is of crucial importance, little research

has been conducted on generating good proposals. In most cases, proposals are gener-

ated through heuristic and application-specific methods. For example, Woodford [5]

used approximated disparity maps as proposals for stereo application. Ishikawa [9]

blurred the current labeling to generate proposals for denoising application. How-

ever, these proposal generations cannot be easily applied to other applications.

Recently, Ishikawa [8] proposed an application-independent method to generate

proposals. This method uses gradient descent algorithm, which can be applied to

some cases, but is still limited to differentiable energy functions. Thuse, this method

cannot be applied even to Potts model, which is one of the most popular prior

models. In our understanding, this algorithm is only meaningful for ordered labels

that represents physical quantities.

Lempitsky et al. pointed out two properties for “good” proposals: quality of

individual proposal and diversity among different proposals [59]. In addition, we

claim in this chapter that labeling rate is another important factor in measuring the

quality of a proposal.

The three properties for good proposals are summarized in follows:

• Quality Good proposals are close to minimum such that proposals can guide

the solution to minimum by fusion moves. In other words, good proposals have
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low energy.

• Diversity For the success of the fusion approach, diversity among different

proposals is required.

• Labeling rate Good proposals result in high labeling rate when they are fused

with the current solution. In other words, good proposals produce easy-to-solve

sub-problems.

Note that these conditions are not always necessary. One may think of proposals

that do not meet the foregoing conditions, but help obtain a good solution. However,

in general, if proposals satisfy these conditions, we can expect to obtain a good

solution. In Section 5.4, we empirically show that our proposal exhibits the above

properties.

5.3 Proposed algorithm

5.3.1 Stochastic approximation

Stochastic approximation algorithms are a set of methods which optimize an objec-

tive function f(x), which cannot be directly calculated, but only estimated via some

approximations. A famous example of stochastic approximation is the stochastic

gradient method.

Stochastic gradient method deals with an objective function that has the form

of a sum: f(x) =
∑

i fi(x).

For each iteration, this method updates the solution by the following equations.

xn+1 = xn − ηn∇fi(x), (5.6)
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where η is a step size. This process is similar to that of gradient descent method

except the fact that it calculates the approximated gradient only using a single

instance of fi(x). Sometimes, a subset of fi(x) is used instead of a single instance.

This method is often used for training parameters with large data set. The aim

for training is to find parameters x, which minimize loss function f(x). However,

calculation of the gradient ∇f(x) is often computationally expensive. In this case,

we can consider stochastic gradient method using the update scheme (5.6). When

the objective function is convex or pseudoconvex, appropriate scheduling of the step

size η leads solution to the global minimum [26].

Our proposed algorithm is motivated by this strategy. In the context of stochas-

tic gradient method, the need of approximation is to reduce computational com-

plexity. On the other hand, for MRF optimization, we have another reason to use

approximation. We approximate an objective function to alleviate the problem of

non-submodularity. It is described in the following section how we approximate the

energy function (5.1).

5.3.2 Graph approximation

We approximated an original objective function (5.1) to relieve difficulties from non-

submodularity. Our motivation comes from the well-known fact that less connectivity

of the graph makes fewer unlabeled nodes [15].

We exploit graph approximation by edge deletion to obtain an approximated

function. This approximation is applicable to any class of energy functions, yet they

are simple and easy. In graph approximation, a graph G = (V, E) is approximated

as G′ = (V, E ′).

More specifically, we approximate the original graph with a random subset E ′
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of edges from the original edge set E . Pairwise terms θpq, where (p, q) ∈ E\E ′, are

dropped from the energy formulation (5.1). The approximated function is given by

the following.

E′(x) =
∑
p∈V

θp(xp) + λ
∑

(p,q)∈E ′
θpq(xp, xq). (5.7)

This approximation satisfies the foregoing two conditions. The approximated

function is easier to solve than the original one. In other words, more nodes are

labeled when we apply simple α-expansion algorithm. In addition, it remains similar

to the original function. This claim is supported by the experiments in the next

section.

There have been other approaches to approximate the original function in re-

stricted structures. Some structure are known to be tractable, such as bounded

treewidth subgraphs (e.g. tree and outer-planar graph) [18, 17, 60, 61]. However,

our approximation is not restricted to any type of special structure.

The inappropriateness of these approximations to our framework can be at-

tributed to two main reasons. First, the approximation with the restricted structures

requires the deletion of too many edges. For example, tree structures have |V| − 1

edges, and 2-bounded treewidth graphs have at most 2|V| − 3 edges. In practice,

the number of edges are usually smaller than 2|V| − 3. It is not desirable scenario

particularly with highly connected graphs. Second, exact optimization of 2-bounded

treewidth graphs requires too much time. Several seconds to tens of seconds my be

needed on the moderate size of graphs typically used in computer vision [62, 61].

Therefore, embedding this structure to our iterative framework is not appropriate.

In experimental section, we investigate the approximation with spanning trees
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and find it severely degrades performance.

5.3.3 Overall algorithm

The basic idea of the overall algorithm is depicted in Figure 5.1, which illustrates a

single iteration of the proposed algorithm. Our algorithm first approximates original

target function and then optimizes it to generate proposals.

A single iteration of algorithm is composed of two steps: proposal generation and

fusion, as presented in Algorithms 4 and 5. To generate proposals, we first obtain

an approximated function E′(x) of the original E(x) with ρ× 100 percent of edges.

Parameter ρ is randomly drawn from the uniform distribution U(0, 1). The value

of ρ changes for every expansion step. Thereafter, we perform a single iteration of

α-expansion using the current labeling as the initial. Solution x′ obtained through

optimizing approximated function is used as a proposal for a fusion move. Note that,

the approximated function E′(x) is not fixed throughout the entire procedure, but

it dynamically changes to give diversity to proposals.

To achieve three properties for “good proposals” mentioned in Section 5.2.2, two

conditions are required for an approximated function E′(x). First, the approximated

function should be easy to solve although the original one E(x) is difficult. Second,

the approximated function should be similar to the original one. In other words,

solution x′ of the approximated function should have low energy in terms of the

original function. Those characteristics are examined in next section.

5.3.4 Characteristics of approximated function

In this section, we experimentally show that the graph approximation strategy

achieves the two aforementioned conditions. Through the approximation, solving
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Algorithm 4 GA-fusion algorithm

1: initialize the solution xcurrent

2: repeat

3: <proposal generation>

4: xproposal ← OptimizeGA(xcurrent)

5: <fusion>

6: xcurrent ← FUSE(xcurrent,xproposal)

7: until the algorithm converges.

Algorithm 5 OptimizeGA(x)

1: initialize the solution with x

2: for i = 1→ L do

3: build a binary function Eb for expansion with the label i

4: ρ ∼ U(0, 1)

5: approximate Eb by E′
b using ρ× 100 percent of randomly chosen edges

6: x← arg minxE
′
b

7: end for

8: return x

the function becomes easier, and the solution of the approximation has low energy

in terms of original function.

We design the following experiments to meet the study objectives. First, we

build the binary non-submodular energy functions on a 30-by-30 grid graph with

4-neighborhood structure. Unary and pairwise costs are determined as follows.

θp(0) = 0, θp(1) = kp, or θp(0) = kp, θp(1) = 0, (5.8)

θpq(xp, xq) =


0 if xp = xq,

spqγpq if xp 6= xq,

(5.9)
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Figure 5.2: (a) Labeling rates and (b) relative energies are depicted as the graph is approximated

with a random subset of edges. Relative energies are calculated with the original functions. With

approximation, the labeling rate increases and the relative energy becomes lower.

where kp and γpq are taken from a uniform distribution U(0, 1), and spq is randomly

chosen from {−1,+1}. When spq is +1, the corresponding pairwise term is metric.

To vary the difficulties of the problems, we control the unary strength, which is

computed as meanp,iθp(i)/meanp,q,i,jθpq(i, j) after conversion into normal form. Since

above energy function is already written in normal form, it is easy to set the desired

unary strength by changing the weight factor λ. The unary strength is changed from

0.2 to 1.2, with interval of 0.2. For each unary strength, 100 random instances of

energy function were generated. As unary strength decreases, QPBO produces more

unlabeled nodes. Of all nodes, 54.7% are labeled with the unary strength of 1.2, and

none are labeled with the unary strength of 0.2.

We approximate the foregoing functions by graph approximation and then opti-

mize them using QPBO. For approximated functions, more nodes are labeled than

the original ones. The obtained solutions have low energies in terms of original func-
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(a) (c)

(b)

Figure 5.3: Example input images of deconvolutioin from (a) ‘characters’, (b) ‘white chessmen’, and

(c) ‘black chessmen’ datasets.

tions. These results are summarized in Figure 5.22. When the approximation uses

a smaller subset E ′, more nodes are labeled. Depending on the unary strength, an

appropriate size of the subset E ′ gives the lowest energy solution. Those results

demonstrate that the proposed approximation makes the problem not only easy to

solve but also similar to the original function.

5.4 Experiments

5.4.1 Image deconvolution

Image deconvolution is the recovery of an image from a blurry and noisy image [63].

Given its high connectivity and strong non-submodularity, this problem has been

reported as a challenging one [15]. The difficult nature of the problem particularly

degrades the performance of graph cuts-based algorithms. In the benchmark [15],

graph cuts-based algorithms have achieved the poorest results. However, we demon-

2Here, relative energy is given by the energy of the solution divided by the energy of the labeling

with zero for all nodes. The unlabeled nodes in the solution are labeled with zero.
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strate in the following that graph cuts-based algorithm can be severely improved by

the proper choice of proposals.

For experiments, we construct the same MRF model used in [63]. First, the

original image (colored with three labels) is blurred with 3 × 3 Gaussian kernel

where σ = 3. The image is again distorted with Gaussian pixel-wise noise with

σ = 10. For reconstruction, the MRF model with 5 × 5 neighborhood window is

constructed. Smoothness is given by the Potts model.

We tested various algorithms on three datasets in Figure 5.3. They include ‘char-

acters’ dataset (5 images), ‘white chessmen’ dataset (6 images), and ‘black chessmen’

dataset (6 images)3. We compare GA-fusion with other graph cuts-based algorithms.

They only differ in the strategies to generate proposals: homogeneous labeling (α-

expansion), random labeling (random-fusion), dynamic programming on random

spanning tree (ST-fusion), and proposed one (GA-fusion). The results imply that it

is important to choose proper proposals.

We also apply other algorithms including belief propagation (BP) [16, 64], and

sequential tree-reweighted message passing (TRW-S) [18, 17]. For BP and TRW-S,

we used source codes provided by authors.

The results are summarized in Table 5.1. GA-Fusion always achieves lowest en-

ergy solution. Figure 5.4 shows quantitative results for the Santa image. Only GA-

fusion achieved a fine result. α-Expansion converged in 3.51 seconds on average,

respectively. All other algorithms are iterated for 30 seconds.

We provide more detailed analysis with the Santa image in Figures 5.5–5.7.

Figure 5.5 shows the energy decrease over time in two difference scale. GA-fusion

gives best performance among all tested algorithms. It is worthy of notice ST-fusion

3Whole data set will be provided in the supplementary material
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gives poor performance. Some might expect better results with ST-fusion because

tree approximation makes the true optimal tractable. However, tree approximation

deletes too many edges. To compare GA-proposal and ST-proposal, we generate 100

different approximated graphs of the Santa problem using our approach and another

100 using random spanning tree. We optimize former with α-expansion and latter

with dynamic programming. The results are plotted on Figure 5.6. Interestingly, the

plot shows a curve rather than spread. Note that tree approximation requires ∼ 92%

of edges to be deleted.

To figure out why our proposed method outperforms others, we provide more

analysis while each graph cut-based algorithm is running (Figure 5.7). It reports the

quality (energy) of the proposals and labeling ratio of each algorithm. According to

section 5.2.2, “good” proposals satisfy the three conditions: quality, labeling rate,

and diversity. First, GA-fusion produces the proposals with lower energy. It also

achieves higher labeling rate than others. Finally, random jiggling of the plot implies

that GA-fusion has very diverse proposals.

5.4.2 Binary texture restoration

The aim of binary texture restoration [65, 66] is to reconstruct the original texture

image from a noisy input. Although this problem has binary labels, move-making

algorithms need to be applied because QPBO often fails and gives almost unlabeled

solutions.

The energy function for texture restoration is formulated as same as in [65].

Unary cost is given by θp(xp) = −β/(1 + |Ip − xp|), where Ip is the color of the

input image at pixel p, and β is the unary cost weight. Pairwise costs are learned by

computing joint histograms from the clean texture image. The costs for every edge
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(a) input (b) GA-fusion (c) ST-fusion (d) α-expansion

(e) Random-fusion (f) BP (g) TRW

Figure 5.4: Image deconvolution results on the Santa image. Proposed GA-fusion algorithm achieves

best results. (b–e) Four graph cuts-based algorithms obtain significantly different results. It implies

that the proper choice of proposal is crucial for the success of the graph cut-based algorithm.

within window size w = 35 are learned first. Second, we choose a subset of edges to

avoid overfitting. S + N of most relevant edges are chosen, where S is the number

of submodular edges, and N is the number of non-submodular edges. Relevance is

given by the covariance of two nodes.

In the previous works, the numbers of edges S andN and the unary weight β were

determined by learning. However, the search space of the parameters was limited

because they applied conventional graph cuts and QPBO. In [65], conventional graph
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Figure 5.5: Energy decrease of each method for the deconvolution of the Santa image. Two plots

shows the same curves from a single experiment, with different scales on the y-axis.

cuts are used, thus N should be fixed to zero. In [66] QPBO is used to take account

of non-submodular edges. However, QPBO gives almost unlabeled solutions when

N is large and β is small.

To evaluate the capability of our algorithm, we control the model parameters so

that each algorithm is applied on four different settings: low-connectivity and high-

unary weight; low-connectivity and low-unary weight; high-connectivity and high-

unary weight; and high-connectivity and low-unary weight. For low connectivity, we

use six most relevant edges (S = 3, N = 3) and for high connectivity, we use 14

most relevant edges (S = 7, N = 7). The unary weight β is chosen to be 5 and 20.

For the input, we use the Brodatz texture dataset (Figure 5.8), which contains

different types of textures. Among them, 10 images are chosen for the purpose of

this application. The chosen images have repeating patterns, and the size of the

unit pattern is smaller than the window size (35-by-35). The images are resized to

256-by-256 pixels and binarized. Salt & pepper noise (70%) is then added.
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Figure 5.6: Original energy is approximated and optimized by two different methods (GA and ST).

For each method 100 different random results are plotted. GA-proposals usually have lower energy

than ST-proposals because random spanning tree approximation deletes too many edges.

The results are summarized in Table 5.2. Relative energies4 are averaged over 10

texture images. When the problem is easy (low-connectivity and high-unary weight),

QPBO is able to produce optimal solutions and all method except ST-fusion gives

satisfactory low-energy results. Overall, GA-fusion consistently achieves low energy

while others do not. QPBO and α-expansion converged in 2.28 and 3.44 seconds on

average, respectively. All other algorithms are iterated for 30 seconds.

5.4.3 Analysis on synthetic problems

We compare proposed algorithm with others on various types of synthetic MRF

problems to analyze performance further.

Four different types of graph structure are utilized: grid graphs with 4, 8, and 24

4Relative energy is calculated such that the energy of the best solution is 0 and that of zero-

labeled solution is 100.
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Figure 5.7: Experiment on deconvolution of the Santa image. (Left) Quality (energy) of the proposals

for each iteration using a log scale. (Right) Labeling rate with the proposals for each iteration.

Figure 5.8: Four examples of Brodatz textures (cropped).

neighbors; and fully connected graph. The size of the grid graph is set to 30-by-30

and the size of the fully connected graph is 50. Each unary cost is assigned by random

sampling from uniform distribution: θp(xp) ∼ U(0, 1). Pairwise costs are designed

using the same method in section 5.3.4 (Equation (5.9)). The difficulties of each

problem are controlled by changing coupling strength λ in the energy function (5.1).

The amount of non-attractive terms is set to 0%, 25%, 50% and 100% (non-attractive

term means pairwise cost which does not satisfy the condition (5.4))5. For each graph

5For 4-neighborhood grid graph, 100% of non-attractive terms are impossible because by simply
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Figure 5.9: Comparison result from deferent algorithms on synthetic problems. The average ranking

and the number of best case are reported according to the ratio of non-submodular terms.

setting, 10 random instances of MRF energy functions are generated. Ultimately, we

construct 220 instances of MRF models.

Table 5.3 and Figure 5.9–5.11 summarize the results. Proposed two stochastic

methods (MCMC-GD and GA-fusion) are compared with deterministic ones (TRW-

S, BP, and α-expansion). Two important properties are reported. They are average

ranking of each method and the number of the case where each method finds best

solution. As shown in Table 5.3 and Figure 5.9–5.11, proposed stochastic methods

outperforms the deterministic methods in overall. To figure out the performance of

each algorithm according to the problem type, Figure 5.9–5.11 summarize results in

different manner: according to the ratio of non-submodular terms, the connectivity,

and the coupling weight.

The relative performance of each algorithm is different according to the difficul-

flipping labels every term meets the condition (5.4)
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Figure 5.10: Comparison result from deferent algorithms on synthetic problems. The average ranking

and the number of best case are reported according to the connectivity.

ties of the problems. The difficulties are controlled by changing the ratio of non-

submodular terms, connectivity, and coupling weight. Although GA-fusion achieves

best performance in terms of average rank, it is different when it comes to submod-

ular energy functions. As shown in Figure 5.9, the ranking of GA decrease slightly

on the problem set of which the ratio of non-submodular terms are 0% and 25%.

In those cases, MCMC-GD achieves best results. When difficulties are controlled

by connectivity and coupling weight, the relative performance tends to be similar

across different settings.

The followings are some details on the experimental settings. Graph cut-based

algorithms start from the zero-labeled initial. Every algorithm, except α-expansion,

is run for 10 sec because they do not follow a fixed rule for convergence. The exper-

iment shows that 10 sec is enough time for every algorithm to converge. Although
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α-Expansion is fast, converging in less than a second, it mostly ended up with an

zero-label. It is because that reduced sub-problem is too difficult and QPBO pro-

duces none of the labeled nodes in most cases.

To further investigate the superiority of proposed methods, more comparison

experiments are performed. Since deterministic methods are highly dependent on

the initialization, α-expansion is applied on the same set of problems while chang-

ing initialization. We tried random initialization and winner-takes-all initialization.

Although final energies of α-expansion changes according to the initialization, there

was no significant changes on average ranking.

We also examine how stable to the initialization the algorithm is to. To this end,

GA-fusion, MCMC-GD, and α-expansion is applied to the single instance of the

problem 100 times with different random initialization. Standard deviation is mea-
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sured to check stability. First instances was chosen to have 50% of non-submodular

terms, coupling weight 1, and connectivity 8. The standard deviation of final ener-

gies was 1.7 for GA-fusion, 0.8 for MCMC-GD, and 17.2 for α-expansion. Second

instances was chosen to have 50% of non-submodular terms, coupling weight 10, and

connectivity 24. The standard deviation of final energies was 101.1 for GA-fusion,

2.2 for MCMC-GD, and 253.5 for α-expansion. In both cases, proposed methods

have lower standard deviation than α-expansion. MCMC-GD has lower standard

deviation than GA-fusion. On second case, this difference was more significant be-

cause it is more difficult case than the first. We can conclude that the stochastic

methods are more stable to initialization and sampling-based method has stronger

stability.

5.5 Summary

Graph cuts-based algorithm is one of the most acclaimed algorithms for optimizing

MRF energy functions. They can obtain the optimal solution for a submodular bi-

nary function and give a good approximation for multi-label function through the

move-making approach. In the move-making approach, appropriate choice of the

move space is crucial to performance. In other words, good proposal generation is

required. However, efficient and generic proposals have not been available. Most

works have relied on heuristic and application-specific ways. Thus, this chapter pro-

posed a simple and application-independent way to generate proposals. With this

proposal generation, we present a graph cuts-based move-making algorithm called

GA-fusion, where the proposal is generated from approximated functions via graph

approximation. We tested our algorithm on real and synthetic problems. Our ex-
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perimental results show that our algorithm outperforms other methods, particularly

when the problems are difficult.
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Table 5.1: Image deconvolution results on four input images. Energies and average error rates are

reported. The lowest energy for each case is in bold; GA-fusion achieves lowest energy for every

image.

Energy (×106)

GA ST α-Exp Rand BP TRW-S

[characters dataset]

Santa -3.06 265.21 15.78 5.15 8.84 14.40

Pororo -2.70 256.01 35.24 4.73 8.45 15.72

Mickey -1.27 341.60 35.29 9.51 12.51 18.26

Rodin -4.14 237.49 27.72 0.75 4.04 9.67

Gangnam 1.86 629.92 20.23 42.56 34.84 37.97

[white chessmen dataset]

white king 0.26 197.56 16.94 3.98 6.80 10.26

white queen 0.12 241.12 16.11 7.47 9.40 12.48

white rook -0.45 208.13 17.18 6.08 7.16 9.20

white bishop -0.33 188.22 12.96 4.88 6.83 9.24

white knight -0.42 213.05 13.61 7.18 8.09 9.99

white pawn -0.85 126.31 8.45 3.20 4.10 5.39

[black chessmen dataset]

black king 2.56 437.45 14.12 23.99 23.53 27.88

black queen 1.96 455.81 14.13 27.53 24.19 26.88

black rook 1.89 465.69 13.66 27.38 25.78 28.15

black bishop 1.82 496.80 13.60 31.46 27.21 29.66

black knight 1.83 443.54 12.78 26.96 24.16 26.56

black pawn 1.15 509.46 7.25 34.50 28.89 30.20

Average
1.52 % 38.30% 8.18% 20.44% 34.47% 35.98%

Error
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Table 5.2: Texture restoration experiments on 10 Brodatz textures. Average of relative energies is

reported. Four different types of energy are considered by changing the number of pairwise costs

and unary weight. The lowest energy for each case is in bold.

Energy type QPBO GA-fusion ST-fusion α-expansion random-fusion BP TRW-S

low-connectivity
0.0 0.0 1.9 0.1 0.1 0.0 0.0

& high-unary weight

low-connectivity
n/a 1.5 25.6 2.8 5.1 3.6 10.6

& low-unary weight

high-connectivity
n/a 0.9 25.3 0.1 0.9 0.4 3.3

& high-unary weight

high-connectivity
n/a 2.2 38.3 8.3 4.6 6.0 11.6

& low-unary weight

Table 5.3: Comparison result from deferent algorithms on synthetic problems. Average ranking for

220 problem instances is reported. Also, number of problem instances where each algorithm achieves

best result is reported

Average ranking number of best case

GA-fusion 1.3 184

MCMC-GD 1.8 57

TRW-S 3.4 30

BP 3.4 20

α-Expansion 4.3 12



Chapter 6

Conclusion

6.1 Summary and contribution of the dissertation

MRF optimization is one of the fundamental problems in computer vision. To solve

this problem, many methods have been proposed. However, because of its NR-

hardness, existing methods fails when it comes to more difficult MRF optimization

problems. To tackle this, four novel approaches based on stochastic optimization

method are proposed in this dissertation. By adopting the stochastic framework,

proposed methods explore more over the solution space and achieve better solu-

tion unlike other deterministic optimization methods, which easily get stuck at local

optima.

There are two different ways to embed randomness in the algorithm. The first

is to allow the solution randomly move on the solution space. For example, Markov

chain Monte Carlo (MCMC) methods uses probabilistic transition kernel to allow

random move. The second is to randomly distort the posteriori probability function

and then allow deterministic move on the approximated posteriori. For example,

127
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stochastic approximation methods approximate the original distribution in random

way. In this dissertation, Pop-MCMC, MCMC-GD, and MCMC-F are proposed on

the framework of MCMC. And GA-fusion is proposed on the framework of stochastic

approximation.

In this dissertation, two main ideas have been proposed to develop efficient meth-

ods. The first is to adopt population-based framework. This idea is originated from

the genetic algorithm and then modified to fit the MCMC framework [24]. By run-

ning multiple Markov chain and allowing them the exchange of information, the

mixing rate can be improved. In consequence, MCMC converges to the better solu-

tion. Using this approach, Pop-MCMC, MCMC-GD, and MCMC-F are proposed.

Second idea is to exploit the power of existing deterministic methods. It is done by

embedding the deterministic methods into the framework of stochastic optimization.

Using this approach, MCMC-GD, MCMC-F, and GA-fusion are developed.

6.2 Future works

6.2.1 MCMC without detailed balance

Recent studies have shown that MCMC can be accelerated by breaking the detailed

balance [67, 68], which has often been considered one of the essential elements of

MCMC. Although detailed balance condition provides us great simplicity in design-

ing a kernel, it is not a necessary condition for MCMC. By breaking detailed balance,

more efficient kernel is to be available. Given that detailed balance is not a necessary

condition, stationary distribution is achievable even without detailed balance. How-

ever, designing MCMC kernel without detailed balance is not trivial. Recently, Suwa

and Todo [67] proposed a generic framework to build a non-reversible kernel with-
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Figure 6.1: Example of landfill for the transition kernel of Gibbs sampler and Suwa–Todo method.

Upper row depicts current distribution and lower row depicts the distribution after applying kernel.

The transition kernel is visualized as moving boxes. Unlike Gibbs sampler, the kernel of Suwa–Todo

method has the zero rejection rate in this example. (best viewed in color)

out detailed balance. Similarly, non-reversible kernel can improve the performance

of MRF optimization in computer vision.

The Gibbs sampler updates a single node from its conditional distribution p(xi|x\

xi). Given that we are dealing with the process of updating a single node, let us omit

(xi|x \xi) and denote the probability as pa when xi is assigned with the label a. We

denote a transition kernel as Ka→b where a is the current label of the node i and b

is the next label. The detailed balance condition is given by the following equation.

paKa→b = pbKb→a. (6.1)

A transition kernel can be visually understood as a landfill model. The kernel for

Gibbs sampler is depicted in Figure 6.1(a). In the landfill model, the probabilities

are represented as boxes with size proportional to the probability values. These

boxes move according to the transition kernel Ka→b while preserving the size of the

probability boxes.

The Suwa–Todo method also can be easily understood by employing the landfill
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model. The transition kernel for the Suwa–Todo method is illustrated in Figure

6.1(b). Let us consider how the transition kernel updates a single node. First, γ

is randomly chosen from the uniform distribution between Ca−1 and Ca, where

Ca =
∑a

k=1 pk. The node i is updated to the label b s.t. pb−1 < γ + δ ≤ pb or

pb−1 < γ + δ − 1 ≤ pb.

6.2.2 Stochastic approximation for higher-order MRF model

Recently, there has been increasing emphasis on the higher-order MRF models be-

cause it can capture the rich statistics of natural scenes [4, 5, 8, 9, 49]. However,

due to intrinsic difficulty of the model and the lack of efficient algorithms, it has

often been troublesome to use the higher-order MRF models. There are some ap-

proaches to overcome those limitations. Proposed MCMC-GD algorithm was suc-

cessfully applied to the higher-order model (Section 3.4.2.2). On the other hand,

however, GA-fusion is only applicable to the pairwise model. To solve this problem,

graph approximation method for higher-order clique should be examined.
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국문초록

마르코프 랜덤 필드 모델은 컴퓨터 비전 분야에서 중요한 모델이다. 스테레오

정합, 영상 분할, 노이즈 제거, 인페인팅 등 많은 비전 문제들이 마르코프 랜덤 필

드의 최적화 문제로 수식화되었다. 마르코프 랜덤 필드의 최적화 문제를 풀기 위

하여 다수의 알고리즘들이 개발되어 왔다. 상대적으로 쉬운 난이도를 갖는 문제에

있어서는 많은 알고리즘이 성공적으로 적용된 반면, 어려운 문제에서는 여전히 만

족스럽지 못한 성능을 보이고 있다. 그러한 어려움들은 마르코프 랜덤 필드 모델에

내재된 속성으로부터 오는데, 비서브모듈러 항, 큰 에지 계수, 고차 클릭 등이 이에

해당된다.

본 학위 논문에서는 최적화를 위한 몇가지의 알고리즘을 제시한다. 제시된 알

고리즘들에사용된중요한아이디어는확률론적방법과결정론적방법을결합하는

것이다. 확률론적 방법을 이용하면 문제 공간에서의 더 넓은 탐색(exploration)이

가능하다. 반면, 결정론적 방법을 이용하면 더 효율적인 활용(exploitation)이 가능

하다. 이러한 두 방법론을 결합함으로써 더욱 향상된 성능을 꾀할 수 있다. 이를

위하여 마르코프 체인 몬테 카를로 기법과 확률적 근사법을 이용한다.

먼저, 마르코프 체인 몬테 카를로 기법을 기본으로 하여 Pop-MCMC, MCMC-

GD, MCMC-F로 불리는 세 가지의 알고리즘을 제안한다. 마르코프 체인 몬테 카

를로 기법은 전역 최적점을 찾을 수 있는 훌륭한 이론적 배경을 마련하여 주지만,

수렴속도가느린것이이단점이다.이를극복하기위하여개체군기반의틀과결정

론적 방법과의 결합 전략이 이용된다. 결과적으로 기존의 기법들에 비해 더욱 빠른
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수렴을 갖는 최적화 기법을 제안한다.

다음으로 이용된 확률적 근사법에서는 목적함수를 확률적으로 근사하게 되는

데, 이를 마르코프 랜덤 필드 최적화에 적용하기 위해 그래프 근사를 제안한다.

그래프근사를통해비서브모듈러항으로인한문제를감소시킬수있다.이러한아

이디어를 기존의 그래프 컷 알고리즘과 결합하여 GA-fusion 알고리즘을 제안한다.

제안한 알고리즘의 성능을 면밀히 평가하기 위하여 다양한 실험이 시행되었다.

제안된 알고리즘은 스테레오 정합, 영상 몽타주, 인페인팅, 영상 디콘볼루션, 텍스

처 복원 등 컴퓨터 비전 분야의 다양한 문제들에 적용되었다. 또한 알고리즘들의

성능을 더욱 더 자세히 분석하고자 가상의 마르코프 랜덤 필드 문제를 구성하여

문제에 난이도에 따른 특성과 알고리즘의 파라미터에 따른 특성들을 분석하였다.

주요어: 마르코프 랜덤 필드, 조합 최적화, 마르코프 체인 몬테 카를로, 개체군 알

고리즘, 확률적 근사법, 비서브모듈러 에너지 모델, 고차 클릭 에너지 모델

학번: 2007-20950
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