

저 시-비 리-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 적 할 수 없습니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

Ph.D. DISSERTATION

Critical-Path-Aware High-Level Synthesis for
Fast Timing Closure

빠른 성능조건 만족을 위한 임계경로를 고려하는 상위
수준 합성

BY

Seokhyun Lee

FEBRUARY 2014

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

 i

Abstract

Rapid advancement of process technology enables designers to integrate

various functions onto a single chip and to realize diverse requirements of

customers, but productivity of system designers has improved too slowly to make

optimal design in time-to-market. Since designing at higher levels of abstraction

reduces the number of design instances to be considered to acquire an optimal

design, it improves quality of system as well as reduces design time and cost. High-

level synthesis, which maps behavioral description models to register-transfer

models, can improve design productivity drastically, and thus, it has been one of the

important issues in electronic system level design.

Centralized controllers commonly used in high-level synthesis often require

long wires and cause high load capacitance, and that is why critical paths typically

occur on paths from controllers to data registers instead of paths from data registers

to data registers. However, conventional high-level synthesis has focused on delays

within a datapath, making it difficult to solve the timing closure problem during

 ii

physical synthesis.

This thesis presents hardware architecture with a distributed controller, which

makes the timing closure problem much easier. A novel critical-path-aware high-

level synthesis flow is also presented for synthesizing such hardware through

datapath partitioning, register binding, and controller optimization. We explore the

design space related to the number of partitions, which is an important design

parameter for target architecture. According to our experiments, the proposed

approach reduces the critical path delay excluding FUs by 29.3% and that including

FUs by 10.0%, with 2.2% area overhead on average compared to centralized

controller architecture. We also propose two approaches, clock gating and register

constrained flow, to alleviate high peak current problem which is caused by the

proposed approach. These approaches suppress the peak current overhead to keep it

less than 3.6%.

Keywords: High-level synthesis, distributed controller architecture, register

binding, controller optimization

Student Number: 2008-30236

 iii

Contents

Abstract i

Contents iii

List of Figures vii

List of Tables xi

Chapter 1 Introduction １

Chapter 2 Background ７

2.1 High-level Synthesis ... ７

2.2 Subtasks of High-level Synthesis ... ８

2.2.1 Operation Scheduling and FU Binding .. ８

2.2.2 Register Binding ... １０

2.2.3 Controller Synthesis ... １１

2.2.4 Functional Pipelining Technique for High-level Synthesis １１

2.3 Centralized Controller Architecture ... １２

2.4 Design Closure Problem in High-level Synthesis ... １５

 iv

2.5 Thesis Contribution ... １８

Chapter 3 Target Architecture and Overall flow ２１

3.1 Target Architecture .. ２１

3.2 Overall flow .. ２３

Chapter 4 Critical-Path-Aware Datapath Partitioning ２７

4.1 Introduction .. ２７

4.2 Problem Formulation ... ３０

4.3 Proposed Algorithm ... ３２

4.4 Exploring Design Space for the Number of Partitions ３６

Chapter 5 Critical-Path-Aware Register Binding ３９

5.1 Introduction .. ３９

5.2 Problem Formulation ... ４０

5.3 Proposed Algorithm ... ４３

Chapter 6 Critical-Path-Aware Controller Optimization ４９

6.1 Introduction .. ４９

6.2 Problem Formulation ... ５０

6.3 Proposed Algorithm ... ５５

Chapter 7 Evaluation ６３

7.1 Experimental Setup .. ６３

7.2 Design Parameters and Computation Time ... ６６

7.3 Analysis Critical Path Delay on Distributed Controller Architecture ６８

7.4 Analysis of Performance and Area ... ７０

7.5 Energy Consumption ... ７８

 v

7.6 Analysis on Register Overhead ... ８０

7.6.1 Clock Gating Approach ... ８１

7.6.2 Register Constrained Approach .. ８４

7.6.3 Combined Approach .. ８６

7.7 Join to Conventional Optimization Techniques on HLS ８７

7.8 Comparison with DRFM Binding Approach ... ８７

Chapter 8 Conclusion and Future Work ８９

8.1 Summary ... ８９

8.2 Future Work ... ９０

Bibliography ９３

Abstract in Korean １０３

 vi

 vii

List of Figures

Figure 2.1 Subtasks of high level synthesis: (a) CDFG representation; (b)

scheduled and bound CDFG. .. １０

Figure 2.2 Conceptual representation of functional pipelining. １２

Figure 2.3 Hardware architecture with a centralized controller. １４

Figure 2.4 Analysis of critical path. .. １４

Figure 2.5 Design closure problem in HLS. ... １６

Figure 3.1 Target hardware architecture. .. ２２

Figure 3.2 Overall design flow. ... ２３

Figure 4.1 Architecture graph. .. ３２

Figure 4.2 Updating costs of edges. .. ３４

Figure 4.3 Algorithm structure of datapath partitioning. ３５

Figure 4.4 Design space exploration for the number of partitions. ３７

Figure 5.1 Motivation of register binding. .. ４２

Figure 5.2 Algorithm structure of register binding. ４７

 viii

Figure 6.1 Examples of controller optimization. ５４

Figure 6.2 Algorithm structure of greedy controller optimization. ５７

Figure 6.3 An example with genetic algorithm of controller optimization….

 .. ５９

Figure 6.4 Algorithm structure of genetic controller optimization. ６０

Figure 7.1 Analysis of critical path for distributed controller architecture….

 .. ６９

Figure 7.2 Comparison results for performance. ７１

Figure 7.3 Optimization redundancy of datapath partitioning and

controller/MUX optimization. .. ７４

Figure 7.4 Improvement on buffer and register propagation delay. ７４

Figure 7.5 Comparison results for area. .. ７５

Figure 7.6 Performance improvement under area constraints. ７７

Figure 7.7 Dynamic energy consumption. .. ７９

Figure 7.8 Interconnect length and switching net energy reduction

compared to centralized controller architecture. ７９

Figure 7.9 Clock network power and peak power consumption. ８１

Figure 7.10 Clock gating: (a) peak current overhead from register

overhead; (b) peak current reduction using clock gating. ８２

Figure 7.11 Reduction of peak power overhead using gated clock. ８３

 ix

Figure 7.12 Modified flow with register constraint. ８４

Figure 7.13 Performance, register area and peak power under data register

overhead constraint by 15%. ... ８５

Figure 7.14 Combined approach to reduce peak power overhead. ８６

Figure 7.15 Comparison with DRFM. .. ８８

 x

 xi

List of Tables

Table 7.1 Resource library (32bit) .. ６４

Table 7.2 Benchmarks details ... ６５

Table 7.3 Design parameters and runtime ... ６７

Table 7.4 Information of controller ... ７７

 xii

 １

Chapter 1

Introduction

Rapid advancement of process technology enables designers to integrate various

functions onto a single chip and to realize diverse requirements of customers, but

productivity of system designers has improved too slowly to make an optimal

design in time-to-market. This problem called as design productivity gap [1] makes

it important to design in the higher level of abstraction. Since designing at the

higher level abstraction reduces the number of design instances to be considered to

acquire an optimal design, it improves quality of system as well as reduces design

time and cost. Electronic system level (ESL) design to model the entire system with

high level languages such as C++ and SystemC [2] has improved design

productivity dramatically.

High-level synthesis (HLS), which maps behavioral description models to

 ２

register-transfer models, can improve design productivity drastically, and thus, it

has been one of the important issues in ESL design. Researches for decades have

achieved commercial HLS tools such as CatapultC [3], Cynthesizer [4], and

Synphony [5] as well as academic HLS tools. However, the poor quality of

synthesis results has been a reason why it has been accepted by the designers for

only limited use [6]. It is not unusual to have a large gap between the results of

HLS and those of physical synthesis in many aspects, including clock period, area

cost, and power dissipation.

The minimum clock period of a netlist can be estimated by the sum of delays

of functional units (FUs), multiplexers (MUXs), interconnects, etc. on the critical

path. However, the MUX delays and interconnect delays cannot be estimated easily

during HLS while FU delay can be obtained before scheduling and binding steps

from the library generated by logic synthesis tool. So, it is general practice for the

designer to give a design margin in the clock period before the synthesis process,

which mostly depends on the designer’s intuition. Moreover, as the minimum

feature size shrinks, the interconnect delay becomes a more critical issue in modern

design1 since it worsens and makes the design gap between HLS and physical

1 Process variation is also an important issue which can affect the quality of a deep sub-
micron design. Although the issue is beyond the scope of our thesis, we expect that our
approach can provide better margin to the given delay constraints and help alleviate
problems related with process variation.

 ３

synthesis unpredictable.

Almost all existing HLS tools generate register-transfer level (RTL) hardware

with a centralized controller. Since control signals from the centralized controller

typically drive many datapath components through long interconnects, they suffer

from longer delay than the signals between datapath components [7]. Hence, the

critical path of the synthesized hardware is usually found to be a path from a state

register of the controller to a data register. Most conventional HLS tools determine

the minimum clock period based on the maximum delay from a data register to a

data register rather than from a state register to a data register [26][27][28][29], and

it can cause another design gap between HLS and physical synthesis. They consider

physical information, but use a centralized controller with an inherent architectural

limitation of long wires from the controller to the datapath.

There have been other approaches to HLS, which are based on distributed

register architecture [31][32][33][34][35]. The circuits are partitioned into islands

such that each island has its own FU(s) and a local register file. Most of the register

accesses are to the local register files through short wires, incurring no problems

with wire delay. The accesses to register files in other islands are through global

wires, which can incur multicycle delay and cause performance degradation. These

approaches are effective in reducing the critical path delay in datapath. However,

they incur high area cost due to increased number of registers for data copy and

 ４

limited register sharing.

In this thesis, we present a novel HLS method using a distributed controller to

help speed up timing closure. First, we analyze the impact of a centralized

controller on the critical path in a physically synthesized design. Based on the

analysis, we propose the use of distributed controller architecture for high-level

synthesis. Then, we propose a critical-path-aware datapath partitioning algorithm to

reduce the length of interconnects on paths with long delay. It is preferable not to

put FUs into different partitions if they are on a potential critical path. A register

binding algorithm binds data transfers2 to registers in order to merge registers on

non-critical paths and to split registers on potential critical paths based on

partitioning information. Finally, a critical-path-aware controller optimization

algorithm distributes the load capacitance driven by registers of the controller such

that the critical path delay is reduced.

This thesis is organized as follows. Chapter 2 presents background information

of high-level synthesis to understand the proposed method. Chapter 3 proposes a

distributed controller architecture and overall design flow for mapping a control

data flow graph (CDFG) annotated by HLS to the proposed architecture. Chapter 4,

2 Conventional register binding binds variables—a value is assigned to a variable by a def
operation and then used by one or more use operations—to registers. In the case of multiple
use operations, it can be beneficial to use multiple registers, one for each data transfer to a
use operation (or a sub-group of use operations). Thus, in this thesis, we use the term
register binding to mean binding data transfers to registers.

 ５

5, and 6 respectively present three steps of the proposed algorithm: datapath

partitioning, register binding, and controller optimization. Chapter 7 shows the

experimental results, and Chapter 8 concludes the thesis with comments on future

work.

 ６

 ７

Chapter 2

Background

2.1 High-level Synthesis

HLS (behavioral synthesis or architectural synthesis) implements hardware in RTL

from the behavioral model described in high level languages, such as C, C++, and

SystemC. Behavioral model, which is input description of HLS, specifies the

relation between input and output in algorithm level with variables, operations, and

the sequence of operations with control flow. RTL design describes the structure of

hardware using FUs, registers, steering logics, and controller. Tasks of HLS

implement hardware by assigning operations to FUs and by assigning variables to

registers. They also synthesize controller and steering logics to realize sequence of

operation with control flow described in behavior model. From many

implementation candidates, they try to optimize design under various objectives

 ８

and constraints such as area, performance, and power consumption.

2.2 Subtasks of High-level Synthesis

HLS is composed of many subtasks, operation scheduling, FU binding, register

binding, and controller synthesis. It can also adopt additional optimization

techniques as subtasks to implement an optimal design. Before applying subtasks, it

is necessary to transform behavioral model in text to intermediate representation

showing data flow and dependency between operations. In this thesis, CDFG,

which contains nodes representing operations and edges representing data or

control dependencies, is adopted as intermediate representation for HLS as shown

in Figure 2.1(a). The first subtask, operation scheduling, determines a control step

for each operation to be executed. FU binding selects a FU for each operation

among available FUs, and register binding selects a register for a variable or a data

transfer to be stored. To control datapath which is generated by previous steps,

controller synthesis step synthesizes controller according to scheduling and binding

results.

2.2.1 Operation Scheduling and FU Binding

Operation scheduling and FU binding are mapping operations to the temporal

domain and to the spatial domain, respectively. Figure 2.1(b) presents scheduling

and binding example for given CDFG. Since operations which are scheduled in the

 ９

same control step cannot use the same FU and vice versa, scheduling and binding

have inter-dependency. Several researches attempt to perform these subtasks

simultaneously to find optimal solution [8][9], but those are generally performed

independently in many HLS system due to the efficiency of algorithm with time

complexity.

Operation scheduling determines when the operation starts. Execution order of

operations is determined by the control/data dependency described in CDFG, and

operations without dependency can be executed concurrently. Exploiting

parallelism of operations can maximize performance but can induce area overhead

by concurrently executed FUs. That is, scheduling algorithm explores design space

considering trade-off between performance and area. Scheduling problem is known

as NP-hard problem [10], but there are many efficient algorithms in terms of the

quality of solution and computation time [11][12][13].

FU binding selects FUs to handle operations. As the independent subtask with

scheduling, FU binding can be done after or before scheduling. When FU binding is

done after scheduling, operations scheduled in the same control step cannot be

bound to the same FU. By scheduling and binding, FUs can be shared by multiple

operations. It can reduce the number of FUs to execute all the operation in CDFG,

but it may cause additional area overhead caused by steering logics such as MUX.

 １０

2.2.2 Register Binding

After operation scheduling is done, the variable from operation has its own lifetime

from the defined time to the used time. Register binding determines register to store

variables during their lifetimes. Since variables of which lifetimes do not overlap

each other can share the same register, register binding problem is modeled as

graph coloring problem for conflict graph or clique partitioning problem for

compatibility graph [11]. In Figure 2.1(b), variable v0 and v1 are compatible since

lifetimes of them do not overlap, but v0 and v2 conflict. Register binding

minimizing the number of registers can be easily solved in polynomial time

[14][15], but register binding with extra constraints or objectives such as

Figure 2.1 Subtasks of high level synthesis: (a) CDFG representation; (b)
scheduled and bound CDFG.

 １１

minimizing MUX or interconnect is known as NP-hard problem [16][17] .

2.2.3 Controller Synthesis

Through subtasks explained previously, HLS implements datapath part of hardware

for the given application. Since operation scheduling and FU/register binding make

operations and variables to share datapath components, controller is needed in order

to forward data to correct FUs or registers. In general, controller is implemented in

finite state machine (FSM); control step, external signal or status from datapath,

and control signal are represented by state, input, and output of FSM, respectively.

Controller synthesis implements controller through general FSM implementation

flow, which consists of state minimization, state/output encoding, and logic

minimization.

2.2.4 Functional Pipelining Technique for High-level Synthesis

Functional pipelining [11] is an optimization method for generating pipelined

circuit to improve the throughput of application. As shown in Figure 2.2, circuit to

which functional pipelining is applied starts every initiation interval (II), which is

period introducing input data. Functional pipelining may also improve total latency

as well as throughput3. To apply functional pipelining, scheduling and binding

3 If functional pipelining is applied, latency of one iteration can increase. However, if it
sufficiently iterates many time, total latency can be improved.

 １２

algorithm should be modified since operations in different stages can be executed

concurrently. Some extension of heuristic scheduling algorithms [13] can be

possible such that they consider parallelism across different stages. Loop pipelining

techniques [18][19][20][21] to improve throughput of loop can also be applied to

implement functional pipelining in the same manner.

2.3 Centralized Controller Architecture

Figure 2.3 shows the conventional hardware architecture with a centralized

controller. It consists of a datapath and a controller. The datapath contains FUs to

run arithmetic and logical operations, registers to store data from FUs, and steering

logics/interconnects to route data to appropriate modules. The controller gives

control signals for correct operation of hardware. It consists of state registers, next

Figure 2.2 Conceptual representation of functional pipelining.

 １３

state logics to determine the next state, and output logics to generate control signals.

Based on the current state of the controller, control signals select function of FUs to

be executed, switch steering logics to route data, and enable registers to store data.

The output logic of controller can be implemented in two styles of FSM: non-

registered FSM and registered FSM [40]. Registered FSM uses additional registers

for controller output signals, while non-registered FSM does not use registers

except for state registers.

The critical path lies either on the path from a register in the controller to a

data register (p1 in Figure 2.3) or on the path from a data resister to a data register

(p2 in Figure 2.3) (note that the delay of controller output logic is removed from p1

if the controller is implemented as a registered FSM. Although conventional HLS

tools generally estimate minimum clock period based on the path delays between

data registers, the actual critical path usually lies from a register in the controller to

a data register. To measure the path delays in centralized controller architecture, we

have generated an RTL circuit with twenty multipliers and ten adders from a

synthetic example using a conventional HLS flow. Figure 2.4 shows the results of

timing analysis of the RTL circuits synthesized with centralized controllers—non-

registered and registered—using the TSMC 45 nm technology library. As can be

seen from the Figure 2.4, almost all of the top 300 longest paths are from controller

to data registers, and among the top 1000 longest paths, only about 7.2% are within

 １４

the datapath for the non-registered centralized controller. Even for the registered

controller, almost all of the top 300 longest paths are from controller to data

registers, and among the top 1000 longest paths, only about 17% are within the

datapath.

The centralized controller drives all of the datapath components with control

Figure 2.3 Hardware architecture with a centralized controller.

Figure 2.4 Analysis of critical path.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1-100 1-300 1-500 1-1000 1-100 1-300 1-500 1-1000

Non-registered FSM Registered FSM

O
cc

up
at

io
n

Number of top ranked delay paths

data reg. to data reg.
reg. in controller to data reg.

 １５

signals through the output logic of the controller and typically long wires. High fan-

out of the controller in this architecture essentially inflicts high load capacitance on

the controller, which may cause violations of the rules on maximum transition time

and maximum capacitance. To avoid this problem, physical synthesis tools typically

apply buffer sizing and/or buffer insertion, which reduces the transition time but

adds buffer propagation delay, and also increases the area overhead. This is the

main reason why the critical path mostly occurs on a path from a register in the

controller rather than from a data register. To overcome this weakness of the

centralized controller, a distributed controller is proposed in [7]. It shortens the

wires from the controller to the datapath and thus reduces the critical path delay,

which is the motivation of our work.

2.4 Design Closure Problem in High-level Synthesis

Conventional hardware design flow using HLS is presented in Figure 2.5. RTL

hardware generated by HLS flow from design specification is implemented by logic

synthesis and placement/routing tools. It is not easy for designers to know some

information before HLS step, such as multiplexer delay and interconnect delay. So,

practical HLS flow adopts design margin approach, which gives design margin with

predefined value or design margin determined by designer’s intuition considering

that uncertain information, when allocating resource used, scheduling, and binding.

However, final synthesis results do not meet design constraints with negative slack

 １６

although designers have already considered estimation gap at the higher abstraction

level. To meet design constraints, when designers can expand design margin, slow

FUs such as multiply-and-accumulation (MAC) cannot used for scheduling and

binding, and HLS result will be totally different from previous result. So, current

result does not also guarantee to meet design constraints, and it causes design

closure problem.

Clock period, which is easily violated in hardware design flow, is one of

important design constraints to achieve system performance, and its optimization in

HLS [22][23][24][25] is important research area to improve quality of results in

HLS. To improve system performance, it is important to select clock period to

minimize clock slack induced by quantized control step interval with clock period

in HLS [22]. [23] proposes operator delay model considering bit-level chaining,

and it selects clock period to minimize system latency by reducing clock slack.

Figure 2.5 Design closure problem in HLS.

 １７

Since resource sharing and allocation can affect clock period, delay estimation and

clock minimization approach is proposed [24]. Since interconnect delay is an

important component determining clock period in current deep sub-micron era,

method to consider interconnect delay during optimal clock selection is proposed

[25]. Although these approaches improve clock period by considering datapath

delay, they overlook the fact that critical path delay of conventional RTL hardware

mostly occurs on the path from controller to datapath.

One of important solution to alleviate design closure problem is to reduce the

gap between HLS and lower level synthesis (logic synthesis and placement/routing).

Considering low level information during HLS can help reduce the gap between

HLS and lower level synthesis. However, it may be very time-consuming especially

when it considers all the information which is not useful for achieving significant

improvement or which is too inaccurate to be estimated at the higher abstraction

level. Some techniques have been proposed to consider physical information for

high-level synthesis [26][27][28][29]. To use physical information, a simple

physical synthesis is applied to RTL generated by HLS. For example, the approach

in [26] annotates post-layout delays on the CDFG and then reschedules operations

and re-synthesizes the controller for continuous time domain without changing

resource binding. The iterative approach in [27] estimates interconnect delays

between datapath components through incremental floorplanning and then modifies

 １８

the HLS results incrementally. The approach in [28] uses stochastic wire length

model to estimate the critical path delay of a datapath and regenerate the datapath

iteratively. The approach in [29] takes the global wire reduction technique using

idle FUs. It also uses physical information obtained by early placement for initial

scheduling and binding. Considering that the critical path of a conventional RTL

design often occurs on the path from a state register of the controller to a data

register, the aforementioned approaches have limitations since they estimate the

path delays only between datapath components and modify scheduling and binding

only for the datapath based on that physical information. Since they also consider

too much low-level information, they are often time-consuming.

2.5 Thesis Contribution
Main contribution of this thesis is the first to consider the following design

aspects to reduce critical path delay:

— Our approach considers all possible critical paths including ones between

controllers and data registers as well as ones between data registers. For the

reduction of critical path delay, it integrates datapath partitioning, register

binding, and controller/MUX encoding based on physical information.

— The datapath partitioning algorithm distributes high capacitance loaded on the

centralized controller to distributed local controllers and reduces interconnect

delay from controller to datapath.

 １９

— The register binding algorithm considers reducing critical path delay whereas

conventional register binding algorithms for distributed architecture consider just

reducing number of registers [32][34].

— The controller optimization algorithm properly distributes load capacitance over

the control signals from controllers to datapaths. This algorithm allows high load

capacitance on non-critical paths but reduces it on critical paths (keeping the

aggregate load capacitance driven by the controllers unchanged).

— The proposed design flow can be coupled with conventional HLS flows utilizing

architectural optimization such as functional pipelining. The architecture that we

are targeting is just a small extension of the architecture assumed by the

conventional HLS flow, and there is no restriction on applying optimization

techniques used in the conventional HLS flow (note that the DRFM approach

cannot be integrated easily into conventional HLS flows due to the completely

different architectural assumptions). This approach does not restrict the design

space for scheduling and binding.

 ２０

 ２１

Chapter 3

Target Architecture and Overall flow

3.1 Target Architecture

Our target architecture is obtained by partitioning the conventional centralized

controller architecture as shown in Figure 3.1. FUs (multipliers, adders, load/store

units for memory operation, etc.), registers, and a controller in the same partition

are connected with relatively short wires. Each FU can access registers in other

partitions as well as those in the same partition, but interconnects to the registers in

other partitions may be longer and thus have longer delay. In this architecture,

registers store data from FUs in the same partition, and transfer the stored data to

FUs that require them. Additional registers are not added between inter-partition

interconnects to preserve architectural consistency with centralized controller

architecture; this architecture can utilize the architectural optimization results from

 ２２

the conventional HLS flow, including functional pipelining, scheduling, and

binding. Each partition has its own controller, which drives datapath components in

the same partition. Each controller separates an output register from the state

register for better output encoding and lower capacitive loading. Also, to reduce the

performance gap appearing after physical synthesis, it is necessary to reduce the

delay elements such as inter-partition interconnects, MUX, and high load

capacitance that are on the combinatorial path containing critical FUs4 such as

4 We consider FUs with delay larger than 70% of the longest FU delay as critical FUs. This
threshold is determined based on our assumption that delays of inter-partition interconnects
do not exceed 30% of the longest FU delay (typical timing margin in HLS is 20~30%). We
also assume that delay variation does not seriously affect the quality of the results due to
this delay margin, though it may depend on the quality of the process. Actually, all HLS
tools suffer from the same problem and we believe that our approach will effectively
alleviate the problem by reducing the potential critical path delays.

Figure 3.1 Target hardware architecture.

 ２３

multipliers.

3.2 Overall flow
Figure 3.2 shows an overview of the proposed design flow. The left side of this

figure depicts a conventional design flow including HLS. The designer first

modifies the input behavioral/functional description to a fixed point model if it is

necessary. Then the conventional HLS flow generates an RTL design from the

results of scheduling and binding, and logic synthesis followed by placement and

routing generates a layout for evaluation. Our work starts from an intermediate

Figure 3.2 Overall design flow.

 ２４

representation generated by the conventional HLS flow. It is actually a CDFG5

annotated with the scheduling and binding results. First, we construct a graph

representing the RTL structure obtained from the scheduling and binding

information without register binding yet; each data transfer uses a dedicated register

in this step.

During the datapath partitioning step, datapath components are clustered

according to their connections and the controller is replicated such that each cluster

gets its own controller. Replicated controllers are synchronized by a single clock

without any global controller. They implement FSMs having the same state

transitions for the same present state and the same input control signals. However,

each controller generates its own output signals to control datapath components in

its own partition. Then we perform register binding and controller/MUX

optimization to reduce critical path delays by utilizing slacks in non-critical path

delays and redistributing capacitive loading to output registers of the controllers.

The register binding algorithm allocates data transfers to registers such that delays

of MUXs used for sharing registers on the critical paths are reduced.

Controller/MUX optimization allocates more load capacitance to the controller

5 Datapath partitioning and controller/MUX optimization flow can be used regardless of
existence of control dependency in the given application since they use an RTL structure
generated by the scheduling and binding in the conventional HLS flow. Since the proposed
register binding algorithm is devised for general compatibility graphs, it can also be applied
to the CDFG.

 ２５

output registers that are not on the critical paths. We finally generate a partitioned

RTL and pipeline it to the next synthesis process.

As we go through the three new design steps (from datapath partitioning down

to controller/MUX optimization), more detailed information on physical parameters

is used to further optimize the design. In the partitioning step, for example, we

consider logic delays of FUs and the relative distance between FUs. In the register

binding step, we consider MUX delay and partitioning results. In the

controller/MUX optimization step, we consider the additional delay of control

signals due to the loading by control inputs of datapath components.

The three steps have forward dependency but do not have backward

dependency. For example, datapath partitioning may affect register binding but the

other way is not true since the parameters (e.g., FU delays) used for datapath

partitioning are not changed by register binding.

 ２６

 ２７

Chapter 4

Critical-Path-Aware Datapath
Partitioning

4.1 Introduction

As explained in Chapter 2, the conventional centralized controller architecture

suffers from high capacitive load to controller and long interconnect delay from

controller to datapath. Distributed architecture is a beneficial approach to reducing

overall wire length and to improve system performance. Distributed logic-memory

architecture in [30] reduces memory access conflicts by partitioning memory and

datapath, but it does neither consider wire length nor try to optimize clock period of

the system. The approach in [31] combines HLS with placement for distributed

register architecture to minimize system latency. It can optimize datapath delay

systematically since it isolates communication delay from computation delay.

 ２８

However, it has limitations in that it does not consider the actual critical path from

the controller to data registers. Architectural restrictions such as that accessing

registers of different FUs may take several cycles and registers can be shared only

by outputs from the same FU can degrade performance and area. Another popular

distributed architecture used in HLS is distributed register file microarchitecture

(DRFM) [32][33][34][35]. [32] presents a resource binding and interconnect

optimization method for DRFM, targeting FPGAs. It shows that the DRFM

approach can reduce the clock period and MUX area compared to the conventional

architecture. However, it uses register files which limit the number of read/write

ports to reduce area and delay overhead. The limitation restricts exploiting

parallelism such as functional pipelining. Inflexibility caused by using register files

also restricts adding registers to reduce critical path delay. The study focuses only

on optimizing the MUX delay in front of data registers and the number of inter-

island interconnects that are on paths from data registers to data registers,

overlooking the delay from the controller to datapath. The approach in [33] uses a

controller distribution technique. However, it is not for optimizing the path delay

from state registers to data registers but for reducing controller cost by partial

duplication of states. Since DRFM also has the architectural restrictions that FUs

can access registers in other islands in multiple cycles and registers can be shared

only within an island, it has overhead in performance and area. Although the

 ２９

generalized DRFM (GDR) proposed in [34] can relax those restrictions, it still has

restrictions in scheduling and binding due to the aforementioned architectural

restrictions of DRFM. Furthermore, it does not attempt to optimize the local

controllers; it leaves the entire controller synthesis task to conventional logic and

physical synthesis tools. Another recent distributed register architecture called HDR

(huddle-based distributed-register architecture) [35] is divided into non-uniform

islands, called huddles. To improve energy efficiency, it assigns a high supply

voltage to critical huddles and a low supply voltage to non-critical huddles. It

focuses on energy efficiency while our architecture and algorithm focus on

improving critical path delay while using a single supply voltage.

In this chapter, we propose datapath partitioning algorithm for proposed

distributed controller architecture to distribute capacitive load to controller and

reduce interconnect length from controller to datapath. Since interconnect delay

across the different partitions may be long, it is necessary for components on the

critical path not to be connected with that interconnect. Although partitioning

datapath into as many as possible is useful to reduce capacitive load and

interconnect, it can cause controller overhead and register overhead which affects

clock tree synthesis of lower level synthesis. It can also make following

optimization step (register binding and controller/MUX optimization) to lose global

information, and the efficiency of those optimizations will be degraded. Proposed

 ３０

datapath algorithm considers those design aspects, partitioning policy not to

connect components on the critical path with inter-partition interconnect and

exploring the number of partitions to maximize clock period improvement when

proposed algorithms are used.

4.2 Problem Formulation

Datapath partitioning makes datapath components to cluster around distributed

local controllers. It shortens interconnect between controllers and datapath

components and reduces load capacitance to controllers. To make the partitioning

algorithm effective, we need to identify beneficial components to be clustered

together.

It is clear that interconnects between different partitions may cause relatively

long delay. However, such inter-partition interconnects can avoid being included in

the critical path if they are used to connect only FUs with relatively short logic

delay. So, we propose a critical-path-aware datapath partitioning algorithm, which

performs partitioning such that interconnects that are likely to be in the critical path

are not cut by the partitioning. To apply the algorithm, we construct an architecture

graph GA(VF, EC) from the FU binding information (initially, registers are not

shared), where VF is a set of vertices, each of which represents an FU and its output

register(s), and EC is a set of directed hyper edges, each of which represents a

connection of two or more vertices. An edge connecting more than two vertices

 ３１

implies that outputs from two or more predecessor vertices are multiplexed to

provide data to the successor vertex, and in that case, the edge representation also

includes a MUX. In the case where a MUX provides data to two or more successor

vertices, the edge is replicated according to the number of successors. Figure 4.1

shows an example of architecture graph. Each edge has its own weight (w)

representing the penalty for being cut by partitioning. It is calculated based on the

criticality of FU delay and the number of cuts which will be explained in Section

4.3. Then the datapath partitioning problem can be formulated as follows.

Problem 1: Given an architecture graph GA(VF, EC), edge cost function w: EC→

Z+ and an integer k, divide the graph into k partitions such that the total cost of

edges cut by the partitioning is minimized.

As explained before, long interconnects do not matter if they are used to

connect FUs with short logic delay. That is why we include the logic delay of an

FU in the cost of an edge. However, we may not be able to avoid cutting some

interconnects with high cost. In that case, we can try to place FUs connected by

such an interconnect close to each other even if they are in different partitions. This

will be possible only when the number of such inter-partition interconnects is small.

That is why we set up the objective as minimizing the total cost of inter-partition

interconnects.

 ３２

Figure 4.1 Architecture graph.

 Minimum cut into bounded sets of a graph, which partitions graph into two

sets of vertices such that the sum of weights of edges cut is no more than positive

integer K, is known to be NP-complete [10]. The datapath partitioning problem,

which minimizes the sum of weights of edges cut, is NP-hard since it is at least as

hard as minimum cut into bounded sets problem.

4.3 Proposed Algorithm

To solve Problem 1, we adopt the two-way Fiduccia-Mattheyses (FM) partitioning

algorithm [36] and the terminal propagation method [37]. Then k-way partitioning

is performed by applying the FM partitioning algorithm iteratively. The number of

partitions (k) is determined in such a way that each partition is properly sized (this

is based on an empirical observation; refer to Section 4.4 for the details). The

 ３３

outline of the algorithm is shown in Figure 4.3. It has (k-1) iterations of the main

loop body for k-way partitioning as shown in line 3. In each iteration, it updates the

cost of each edge based on the number of cuts (the more an edge is cut by the

iterative partitioning, the longer the corresponding interconnect tends to be), selects

a partition to be divided further, and then performs partitioning of the selected

partition.

Figure 4.2 shows two cases of updating the cost of edges. In the case of Figure

4.2(a), the edges connect FUs within the same partition. Edge 1 connects vertex A

(some FU) to a multiplier, which is a critical FU. So, the edge gets higher cost for

partitioning than edge 2. In the case of Figure 4.2(b), the circuit has already been

partitioned to some extent, where edges (hyper edges) 3 and 4 are connecting the

FUs (C, D, E, and F) in partition P 1 and the FU (B) in partition P2. Assume that

partition P1 is to be further divided into smaller partitions in the current iteration.

Since edge 3 is connecting FUs in different partitions, we expect that edge 3 will be

implemented by a longer interconnect than edge 4. Thus, we assign higher cost to

edge 3 so that the edge is less likely to be cut again during the partitioning of P1.

This is done in order not to further increase the length of an already long

interconnect.

To reflect the concept of cost due to edges cut by partitioning, each edge e is

assigned with weight w given by

 ３４

Figure 4.2 Updating costs of edges.

w(e)=α*(#critical FUs)+β*(#cuts) (1)

Thus the weight of an edge is proportional to the number of critical FUs

connected by the edge and the number of cuts made on the edge (the number of

cuts is assumed to be the same as the number of partitions that the corresponding

interconnect should span). The edge weight is calculated by procedures

InitialEdgeCost and UpdateEdgeCost in Figure 4.3. Line 5 of InitialEdgeCost

calculates the left-side of the addition in (1), and line 3 of UpdateEdgeCost

calculates the right-side.

We set α=2 and β=1, which are determined empirically for a rough estimation

of the relative delay since it is good enough at this step. More refined delay

estimation will be used in the following steps.

 ３５

DatapathPartition(GA(VF, EC), w, k)
1 Fp(1)←VF, Fp(k) is kth partition
2 InitialEdgeCost(VF, EC, w)
3 for i ← 2 to k {
4 UpdateEdgeCost(VF, EC, w)
5 sel = SelectParition(i, EC, w, {Fp(j)| j = 1...i-1})
6 FMPartition(Fp(sel), EC, w, Fp(i))
7 }
InitialEdgeCost(VF, EC, w)
1 for c in EC {
2 w(c)←0
3 for f in Fc, Fc is the set of FUs connected to c∈EC {
4 if f is critical module
5 w(c)←w(c)+α
6 }
7 }
UpdateEdgeCost(VF, EC, w)
1 for c in EC {
2 if c is cut during the previous partitioning
3 w(c) ←w(c)+β
4 }
SelectPartition(i, EC, w, {Fp(j)| j = 1…i-1})
1 maxsize←0
2 for j←1 to i-1 {
3 if (|Fp(j)| ≥ 2) ∧ (maxsize < size of Fp(j)) {
4 maxsize←Fp(j)
5 maxpartition←j
6 }
7 }
8 return maxpartition

Figure 4.3 Algorithm structure of datapath partitioning.

 ３６

To further divide the design into more partitions, procedure SelectPartition in

Figure 4.3 selects a partition (having two or more FUs) that has the largest area.

This is to obtain a well-balanced partitioning result.

 The FM partitioning algorithm is run (k-1) times as shown in Figure 4.3.

Since each partition contains at least one FU, the number of partitions k cannot

exceed the number of FUs, and thus, k=O(|VF|). The complexity of the FM

algorithm is O(|P|), where |P| is the total number of pins [36]. UpdateEdgeCost

checks to see if each edge is cut during the previous partitioning and thus has a

complexity of (O(|EC|). SelectPartition takes the summation of edge costs for each

partition and selects the one with minimum cost, which takes O(|P|) time. Thus, the

complexity of the entire algorithm is O(|VF||P|).

4.4 Exploring Design Space for the Number of Partitions

The main purpose of partitioning is to reduce the criticality of global interconnects

and to distribute capacitance loaded on the controller. If the area of a partition is

large, we may not achieve sufficient reduction of interconnect delays and load

capacitance. On the other hand, if the area of a partition becomes too small, the

optimization of register binding and the controller is limited since global

information for optimization is lost. Area overhead also increases since sharing data

registers and controller output registers is restricted within the boundary of a

partition.

 ３７

Figure 4.4 shows critical path delay improvement for different values of area-

per-partition (total area divided by parameter k). In case of SYN2, for example,

when k is set to 1, 4, 8, or 12 (corresponding area values in x axis are 70793, 17698,

8849, and 5899), critical path delay improvements in y axis are 7.3, 7.5, 12.0, and

9.2 percent, respectively. From those empirical results, we assume that critical path

delay improvement is maximized when we set k to a value in that area bucket of

0.8~1.2×104 um2. If we increase the area beyond this range, the delay due to intra-

partition interconnect is no longer ignorable according to the parameters of metal

layer from the TSMC library6. So, we have determined the number of partitions

6 For example, considering that the effective resistance of a 2:1 MUX cell is 2,800Ω, the
increase of delay due to load capacitance is estimated by 2,800Ω×(load cap.)pF [47][50].
Since the interconnect load is about 0.007pF/100um according to the library, the additional
delay due to the 100um interconnect will be about 19.6ps, which is comparable with the
delay of the MUX cell (20ps as shown in Table 7.1).

Figure 4.4 Design space exploration for the number of partitions.

4

5

6

7

8

9

10

11

12

13

4000 20000 100000

C
lo

ck
 p

er
io

d
im

pr
ov

. (
%

)

Average area per partition (um2)

FIR(w/o pipelining)
SYN1(w/ pipelining)
SYN2(w/o pipelining)
SYN4(w/ pipelining)
SYN5(w/ pipelining)

 ３８

such that the average area of a partition is in this range.

 ３９

Chapter 5

Critical-Path-Aware Register Binding

5.1 Introduction

Register binding is traditional subtask of HLS. Initially, each variable can use its

own register, but register sharing is necessary because of register overhead. Since

registers shared by several variables may inflict input MUXs, register sharing

reduces register area at the cost of clock period. However, if operations which

produce variables sharing the same register use the same FU, register sharing

reduces area without the cost of MUX. Conventional register binding explores

those design aspects and tries to reduce the number of MUXs7 or the area of

MUXs.

[16] proposes register binding algorithm to minimize the number of MUXs. It

7 The number of MUX is generally acquired by modeling MUXs to the trees of 2:1 MUXs.

 ４０

also considers port assignment of FUs which also affects the number of MUXs.

Since FU binding result affects the quality of register binding result (note that the

number of MUXs does not increase if operations which produce variables sharing

the same register use the same FU.), simultaneous FU and register binding [17]

reduces the area of MUXs. However, since MUXs on the non-critical path do not

increase clock period, minimizing the number or the area of MUXs is insufficient to

optimize clock period.

In this chapter, we propose a heuristic register binding algorithm to optimize

clock period. Motivated by the fact that MUXs on the non-critical path do not

increase clock period, it tries to share data transfers on the non-critical path as much

as possible. Data transfers who pass through the critical path do not share the same

register or share register only when sharing does not inflict MUX.

5.2 Problem Formulation

Based on the result of the datapath partitioning algorithm, we bind registers used

for data transfer. Figure 5.1 shows a motivational example of the register binding.

In the initial binding, each data transfer is assigned with its own register as shown

in Figure 5.1(a). This binding can provide the minimum achievable delay since

there is no MUX used for sharing a register, but it is area-inefficient. Figure 5.1(b)

shows a typical register binding (only one shared register is used) obtained when

the data transfers, vAC, vBD, and vBE, are compatible (i.e., there is no overlap of live

 ４１

ranges of the corresponding data transfers, or the three data transfers are for a single

variable). However, such sharing may require MUXs and/or long interconnects, and

it may worsen the critical path delay of the circuit. One of register binding policies

to avoid this is to split a register that sends data to multiple partitions such that each

register drives only FUs in one partition [38]. In our example, the policy generates

the circuit shown in Figure 5.1(c). It can reduce the interconnect length associated

with vBD. However, this policy cannot sufficiently explore the design space

associated with register binding. For example,

1) If the path to FU D is not a critical path, Reg1 added in Figure 5.1(c) can be an

unnecessary overhead.

2) If the path to FU C is on a critical path, register binding shown in Figure 5.1(d)

can reduce the critical path delay more effectively by removing the MUX in

front of Reg0.

Thus, to explore the design space, we devise a register binding algorithm to

use shared registers on the non-critical paths and dedicated registers on critical

paths. The register binding problem can be formulated as follows.

 ４２

Figure 5.1 Motivation of register binding.

Problem 2: Given a control data flow graph GCDF(VO, EO), an FU binding π:VO

→F, and an initial register binding ρ0: ED→R, find a new register binding ρ: ED

→R, such that the number of registers is minimized under a critical path delay

constraint, where VO is a set of vertices representing operations, EO is a set of edges

representing control dependencies (EC) and data dependencies (ED) between

 ４３

operations; EO is the union of EC and ED. Each element in ED implies a data transfer

from a source operation to a destination operation through a register (or a direct

interconnect between chained operations), and data transfer between not-chained

operations is to be bound to a register. F is a set of FUs, and R is a set of registers.

As the critical path delay constraint, we use the initial critical path delay derived

from ρ0, which maps each data transfer to a dedicated register as shown in Figure

5.1(a) (we assume that the delay due to intra-partition interconnects and the

capacitive loading by output registers is much smaller than the delay due to FUs

and MUXs. Thus, we assume that the initial critical path delay is very close to the

minimum achievable delay).

The register binding problem can be transformed to the minimum clique

partitioning problem with constrained weight (MCPCW). [39] shows that this

problem is NP-hard when the weight of a clique is represented by the sum of

weights of vertices in the clique. Since the evaluation of the weight of a clique in

our problem (i.e., evaluation of the critical path delay) is harder than that in

MCPCW, the register binding problem is also NP-hard.

5.3 Proposed Algorithm

To solve the register binding problem, we devise a heuristic clique partitioning

algorithm for a compatibility graph of data transfers, G(VV, EV), where VV is a set of

vertices representing data transfers in a given CDFG, and EV is a set of edges

 ４４

connecting compatible vertices. Two vertices are compatible if the corresponding

data transfers can share the same register, i.e. there is no overlap of live ranges

between the data transfers, or they are from the same operation. The proposed

algorithm iteratively constructs a maximal clique under critical path delay

constraint. To construct the clique, it selects a vertex with minimum weight of

merging. The weight W(v,C) for merging a vertex v∈VV to clique C currently under

construction is defined as follows:

𝑊(𝑣,𝐶) = 𝑊𝑃(𝑣,𝐶) +𝑊𝑆(𝑣,𝐶) +𝑊𝐷𝐼𝑆𝑇(𝑣,𝐶) (2)

𝑊𝑃(𝑣,𝐶) = �
0, 𝐹𝑠(𝑣) ∩ (⋃ 𝐹𝑠(𝑣𝑘))𝑣𝑘∈𝐶 ≠ ∅
 1, 𝑙𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

𝑊𝑆(𝑣,𝐶) = �
 0, 𝐹𝑑(𝑣) ∩ (⋃ 𝐹𝑑(𝑣𝑘))𝑣𝑘∈𝐶 ≠ ∅
 1, 𝑙𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

𝑊𝐷𝐼𝑆𝑇(𝑣,𝐶)= ��⋃ 𝑃𝑑(𝑣𝑘)𝑣𝑘∈𝐶+ �, �⋃ 𝑃𝑠(𝑣𝑘)𝑣𝑘∈𝐶+ � = 1
∞ , 𝑙𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

where C+= {v}∪C, Fs(vk) is the set of the source FUs of vk, Fd(vk) is the set of the

destination FUs of vk, Ps(vk) is the set of partitions that contain a source FU of vk,

and Pd(vk) is the set of partitions that contain a destination FU of vk.

If a source FU of data transfer v is also a source of another data transfer

already included in C, v can share the same input of the MUX in front of the shared

register, so this merging does not increase the MUX delay. If a destination FU of

data transfer v is also a destination of another data transfer already in C, then by

 ４５

merging v with C (sharing the same register), v can also share the same input of the

MUX in front of that FU, thus allowing this merging to also reduce the MUX delay.

These binding aspects are considered in (3) and (4).

As shown in Figure 3.1, our architecture assumes that outputs of each partition

are registered to avoid long combinatorial paths. This assumption also decreases the

design space for register optimization since we are excluding the case of placing

registers on the input side of FUs within a partition. Then data transfers from

different partitions can never be grouped to share a register. Equation (5) prevents

merging data transfer v to C when the source FU of v and the source FU(s) of C are

in different partitions. As the number of partitions to which a register should

provide data increases, the loading to the output of the register becomes larger; it

should be discouraged. Equation (5) also reflects this as the cost of binding.

Although we use (2) for selecting data transfers to be merged, we do not use it

for modeling the effect of register binding on the critical path delay since it does

not accurately reflect the delay:

1) Even if the MUX size increases (WP(v,C) =1 or WS(v,C) = 1), the MUX delay

may not increase in some cases. For example, when the number of inputs

increases from three to four, the MUX delay may not increase since the height

of the 2:1 MUX tree remains the same.

 ４６

2) Although the number of partitions to which a register provides data can affect

the interconnect length, the length can be short and thus ignored when those

partitions are closely placed.

3) Merging of data transfers may increase the delay of some paths, but it does not

always increase the critical path delay.

We devise an expression for Tcp, a better estimation of the critical path delay,

as follows:

Tcp =𝑚𝑚𝑚𝑟𝑘∈𝑅 𝑇𝑅(𝑟𝑘) (6)

𝑇𝑅(𝑟𝑘) = 𝑚𝑚𝑚𝑓∈𝑝𝑟𝑒𝑑(𝑟𝑘) 𝑇F(𝑓) + 𝑇MUX(𝑚(𝑟𝑘)) (7)

𝑇𝐹(𝑓) = 𝑚𝑚𝑚𝑚∈𝑀(𝑓) 𝑇MUX(𝑚) + 𝑇𝑙𝑜𝑔𝑖𝑐(𝑓) (8)

where TR(rk) represents the delay of the longest path from the controller to register

rk, pred(rk) is a set of FUs that provide data to register rk, TF(f) represents the critical

path delay of FU f (including the delay of its input MUXs), m(rk) is the MUX in

front of register rk, TMUX(m) is the delay of MUX m, M(f) is a set of input MUXs of

f, and Tlogic(f) represent the logic delay of f itself. The MUX delay is estimated by

the height of a 2:1 MUX tree; we do not differentiate 'delay from select input to

data output of a 2:1 MUX' from 'delay from data input to data output' since they are

almost the same according to our observation. Tcp obtained for the initial register

binding is used as the critical path delay constraint (refer to Problem 2), and we

 ４７

Register binding(VV, EV)
1 for each vi in VV
2 ρ0(vi) ← ri
3 evaluate initial path delay Tcp(0) by (6)
4 n←0

5 while VV ≠ ∅ {
6 calculate TR(ρ0(v)), ∀v ∈ VV
7 Cn ← v with largest TR(ρ0(v))
8 U = {v ∈ VV : v is adjacent to all vertices of Cn}

9 while U≠ ∅ {
10 update W(vi,Cn), ∀vi ∈ U
11 select v ∈ U with minimum cost W(v,Cn)
12 if TR(Cn∪v) ≤ Tcp(0) ∧ W(v,Cn) ≠∞ {
13 Cn←v,
14 U = U-{vi ∈ U : vi is not adjacent to v}
15 }
16 else {
17 U = U-{v}
18 }
19 }
20 VV = VV - Cn
21 n←n+1
22 }

Figure 5.2 Algorithm structure of register binding.

perform register binding such that all path delays do not exceed the constraint.

The proposed clique partitioning algorithm shown in Figure 5.2 iteratively

constructs a maximal clique from a seed vertex while keeping the estimated delay

(obtained by (7)) of the clique (register) under the critical path delay constraint.

 ４８

More specifically, it first takes a seed vertex vs that has the largest TR(ρ0(vs)) as the

initial clique. Then, it selects other vertices to be merged (bound) to the clique

(register) based on the weights of the vertices in (2) (least-weighted vertex first).

For each merge of a selected vertex, the algorithm evaluates the result by estimating

the path delay using (7). If the path delay is equal to or shorter than the critical path

delay constraint, it commits the merging. Otherwise, it restores the previous result.

When adding more vertices to the clique is impossible, the clique is saved and the

same process is repeated to construct another clique until all data transfers belong

to their own clique. The proposed algorithm constructs a maximal clique by

repeating the loop body starting at line 10 in Figure 5.2 at most |VV| times until U

becomes null. Inside the loop body, since TR(rk) can be calculted in O(|VV|) time and

W(vi,Cn) can be updated in constant time, the complexity of constructing one

maximal clique is O(|VV|2). So, the complexity of the entire algorithm is O(|VV|3).

This approach can incur register area overhead due to the policy of registering

all outputs and sharing registers only on non-critical paths. However, it tends to

reduce MUX area and delay. Additionally, the controller optimization flow, which

will be explained next, reduces the number of buffer insertions during physical

synthesis. So, the overall area overhead is tolerable when considering the

improvement in clock period.

 ４９

Chapter 6

Critical-Path-Aware Controller
Optimization

6.1 Introduction

Datapath of target application is mostly implemented through the algorithms in

previous chapters. Synthesis of controller is the other important work to make

datapath to operate correctly and to optimize clock period since critical path mostly

lies on the path from controller to datapath.

The controller, which is typically described by a finite state machine (FSM),

has a significant impact on the performance of the synthesized hardware. Some

researchers have contributed to controller optimization related to logic synthesis

[40][41][42]. The state assignment and pipelining algorithm proposed in [40]

optimizes the controller delay, which is measured from the latest FSM input to the

 ５０

FSM output. [41] presents a method for partitioning and optimizing the controller

in a hierarchical high-level description to reduce the implementation cost. Selection

and hybrid approach between two possible FSM styles [42], Moore and

synchronous Mealy machine, is proposed since they have the different area

overhead and latency by the characteristic of application. However, these

approaches focus on optimizing the control logic itself and do not consider the

actual critical path from the controller to the datapath. [7] reports that a centralized

controller worsens the critical path delay because of long wire length between the

controller and datapath. To alleviate the problem, a distributed controller for RTL

design is proposed. However, there is no consideration of HLS.

In this chapter, controller/MUX optimization method is proposed. Since logic

delay is affected by output capacitive load, assigning capacitive load to its driver

impacts on clock period. Proposed algorithm tries to assign high capacitive load to

output registers of controller on the non-critical path. Since the organization of

MUX tree which is driven by controller impacts on capacitive load to output

registers, MUX optimization is also performed by encoding input selection signal

of MUXs. Based on MUX encoding, control signals from the output register of

controller are also encoded for correct operation of datapath.

6.2 Problem Formulation

As mentioned in Section 2, most critical paths are paths from the controller to data

 ５１

registers. We can break a path delay down into various delay sources as follows.

Ttotal = TC2Q + Tlogic + Tint +Tsetup (9)

where Ttotal is the total path delay, TC2Q is the clock-to-output delay of the

register that starts the path, Tlogic is the delay of the logical components including

controller's output logic, MUXs, FUs, and buffers inserted to fix design rule

violations, Tint is the interconnect delay, and Tsetup is the setup time of the register at

the end of the path.

Our overall objective is to minimize the maximum path delay, i.e., the

minimum clock period. We consider that the setup time of a register is a fixed

parameter, and MUXs and interconnects are optimized by the partitioning

algorithm and the register binding algorithm as described in the previous sections.

The minimum FU delay is also considered as a fixed parameter since the minimum

critical path delay of an FU for a given technology library can be obtained before

starting HLS steps. The controller optimization in this section focuses on

optimizing the propagation delay of registers of the controller, inserted buffer delay,

and the output logic delay of the controller. As explained in the previous section, a

centralized controller should drive high load capacitance. This causes side effects

during physical synthesis. Every technology library cell defines maximum

capacitance and transition rules, which are easily violated in the controller. Physical

synthesis tools typically fix the violations by inserting buffers when simple gate

 ５２

sizing does not work, and thus, these tools inevitably add the delay of the inserted

buffers to the paths. The propagation delay of a register (TC2Q) is also modeled as a

linear function of the load capacitance as follows when the capacitance is within a

limited range [50].

TC2Q(r) = γ×l(r) + δ (10)

where l(r) is the load capacitance driven by register r, and γ and δ are given in the

library.

The objective of controller optimization in this work is to reduce the output

logic delay and the load capacitance driven by the controller on the critical path. To

identify the critical path, the path delays to registers are estimated by (9). Then, by

using the algorithm that will be explained in the next subsection, we reduce the

output logic delay and the load capacitance imposed on the controller that drives

paths containing a critical FU and/or a long interconnect.

Figure 6.1 shows our motivational example for control optimization. Assume

that the target application has been scheduled with four control steps. Also assume

that the combinatorial path containing the multiplier is a critical path and

combinatorial paths containing adders have slacks in time. Scheduling and binding

results are shown in Figure 6.1(a), where “-” means don’t care. Figure 6.1(b) shows

a binary encoding of states, which is used to drive the MUXs with selection signals.

As the control step advances, the value of the state register bit st0 changes following

 ５３

the pattern 0011, while st1 changes following the pattern 0101. For the control of

each MUX, the controller needs both st0 and st1 to generate a proper selection

signal using some output logic, thus incurring unnecessary capacitive loading and

logic delay.

We modify the controller such that the output registers (instead of state

registers) can directly (without output logic) drive MUXs with proper control

signals. Figure 6.1(c) shows one possible encoding of the output, where output

register bits o0 and o1 can drive MUX0 directly, and o2 can drive MUX1 and MUX2

directly with the required control signals. This approach can remove output logic

delay of controllers and reduce the load capacitance imposed on the output registers.

Additionally, we can optimize the load capacitance by exploiting don’t cares

and by changing the order of MUX inputs as shown in Figure 6.1(d). Using these

approaches, control signals to MUXs can be modified such that o2 drives only

MUX1. Because multipliers have long logic delay, this configuration of control

signals can reduce the critical path delay.

Motivated by this example, we can define a controller optimization problem.

Consider a set P = {p1, p2, …, pN} of control patterns to control MUXs. If we have

four control steps, for example, then 14 different patterns {0001, 0010, 0011, …

1110} are available. Note that patterns 0000 (always zero) and 1111 (always one)

are excluded since they are useless. Therefore, the total number of possible patterns

 ５４

Figure 6.1 Examples of controller optimization.

(Np) can be computed by:

Np = 2n – 2 (11)

where n is the number of control steps. Then the problem of controller optimization

 ５５

can be formulated as follows:

Problem 3: Given a set O of output register bits of a controller and a set P of

possible patterns, find mappings σ:M→W(O) and τ:O→P such that the critical

path delay is minimized, where M is a set of MUXs and W(O) is the power set of O.

Thus, σ(m)=w, w∈W(O), denotes that MUX m∈M is controlled by the output

register bits in w (note that for a k:1 MUX, |w| = ⌈𝑙𝑙𝑙2 𝑘⌉), and τ(o)=p denotes that

the value of output register bit o∈O changes according to pattern p∈P.

Controller/MUX optimization can be transformed to the column compaction

problem where the weight of a column is the critical path delay. Since the column

compaction problem is known to be NP-complete [43], the controller/MUX

optimization problem is NP-hard.

6.3 Proposed Algorithm

To solve Problem 3, we first define a cost function that represents the critical path

delay from output register bit o to data registers.

𝑇𝑂(𝑙) = 𝑇𝐶2𝑄(𝑙) + 𝑚𝑚𝑚𝑚,𝑜∈𝜎(𝑚) 𝑇𝑀(𝑚) + 𝑇𝑠𝑒𝑡𝑢𝑝 (12)

𝑇𝑀(𝑚) = 𝑇𝑀𝑈𝑋(𝑚) + 𝑇logic(𝑓(𝑚)) + 𝑚𝑚𝑚𝑟𝑘∈𝑅(𝑓(𝑚)) 𝑇𝑀𝑈𝑋(𝑚(𝑟𝑘)) (13)

where f(m) denotes an FU connected to the output of MUX m. R(f) denotes a set of

registers that store the data from FU f. Note that (7) and (13) are different

representations of the same path delay, except that (7) is the maximum path delay to

 ５６

a given data register and (13) is the maximum path delay from a given input MUX.

The design space of the controller optimization problem is too large to explore

for an exact solution. For each MUX m, we have a set CP(m) of candidate sets of

control patterns for proper MUX selection inputs. CP(m) can be obtained by

assigning proper control patterns to MUX selection inputs for care states and

enumerating all different control patterns for don’t-care states. Thus,

|CP(m)|= 2cPk × (2𝑐)𝑑 (14)

where c is the number of control bits (i.e., selection inputs) of m, k is the number of

data inputs of m (c = ⌈𝑙𝑙𝑙2 𝑘⌉), and d is the number of don’t-care states for MUX m.

From these candidates, we should select a set of control patterns to minimize the

critical path delay, which is a computationally very difficult problem. So, we adopt

two heuristic algorithms: a greedy algorithm and a genetic algorithm.

Our greedy algorithm [38] to solve this problem is shown in Figure 6.2. In this

algorithm, we focus on finding a mapping σ:M→W(O), while assuming that each

output register bit of the controller is assigned with a unique control pattern to

reduce the design complexity (i.e., τ:O→P is a one-to-one mapping and pre-

determined arbitrarily). This assumption can restrict opportunities to reduce the

critical path delay further by duplicating output registers, which will be considered

later in the genetic algorithm. The algorithm starts by finding a set CP(m) for each

MUX m from W(O). Separately, we sort MUXs in descending order of TM(m), and

 ５７

GreedySelect(St, I)
1 for each i in I
2 CSi ← subset S ⊂ St, when S can provide proper control to i
3 Sort I by Tcp(i)(descending) and by |CSi|(ascending) in case of tie
4 Initialize St
5 for each i in I {
6 mindelay ←∞
7 for each S in CSi {
8 if maxst∈S Tcp(st)< mindelay, when γ(i)=S {
9 γ(i)←S
10 mindelay←maxst∈s Tcp(st)
11 }
12 Update Tcp(st) and l(st), st∈ γ(i)
13 }
14 }

Figure 6.2 Algorithm structure of greedy controller optimization.

in the case of a tie, the MUXs are sorted in ascending order of the number of

candidate sets of control patterns. The first ordering is to first consider the MUXs

with long delay since they will significantly affect the final critical path delay. The

second ordering is to first consider the MUXs with control inputs having fewer

choices. Finally, in that order, the algorithm selects control patterns for MUXs in a

greedy way. As shown in line 8 of Figure 6.2, we use the cost function defined by

(12). The term TC2Q is calculated by (10) and the term 𝑚𝑚𝑚𝑚,𝑜∈σ(𝑚) 𝑇𝑀(𝑚) is

calculated by (13). Tsetup is ignored since we assume that it is a constant parameter.

Although the proposed greedy algorithm can reduce the design space to be

 ５８

explored, it is still unsuitable for examples with many control steps since the

number of candidates |CP(m)| increases exponentially. It also has the

aforementioned limitation in optimizing the critical path delay due to prohibited

duplication of an output register on the critical path. To overcome these limitations,

we devise a genetic algorithm that optimizes the controller allowing duplication of

output registers. Moreover, we use a more precise model of the MUX tree driven by

the controller as shown in Figure 6.3(b). The model considers the variation of load

capacitance of each selection input of the MUX. It also considers the variation of

the internal delay from a selection input to the output of the MUX.

Figure 6.3 shows an encoding and evaluation example for a chromosome of

the proposed genetic algorithm. Once scheduling and binding results are given, the

chromosome of a MUX is created by encoding the string of control patterns,

{p0p1p2p0p2}, as shown in Figure 6.3(a). Design parameters are also given as shown

on the right side of Figure 6.3(a); the row “Register” shows the parameters used in

(10), “T” is the propagation delay of a 2:1 MUX, and “cap.” is the input

capacitance. From the encoding, we can construct MUX trees for delay estimation

as shown in Figure 6.3(b) using the given design parameters. In the fitness

evaluation phase, we first estimate the minimum critical path delay as shown in

Figure 6.3(c). For the estimation, each of the selection inputs of MUXs is assigned

with its own output register. For a Pareto-optimal design, output registers are

 ５９

Figure 6.3 An example with genetic algorithm of controller optimization.

 ６０

GeneticSelect
1 GenInitChromosomes (C, n)
2 while termination != true {
3 c0 ← Selection(C)
4 c1 ← Selection(C)
5 off ← Crossover(c0, c1)
6 off ← Mutation(off)
7 off ← Repair(off)
8 Evaluate(off)
9 Replace(C, off)
10 if (the best solution is not improved for 500 generation)
11 termination ← true
12 }

Figure 6.4 Algorithm structure of genetic controller optimization.

merged as shown in Figure 6.3(d). Two registers with the same control pattern are

merged if merging them does not increase the critical path delay. For example, o0

and o3 are merged, but o2 and o4 are not merged.

We have implemented the genetic algorithm as shown in Figure 6.4. The

“GenInitChromosomes” step generates initial chromosomes by randomly changing

the encoding of MUX inputs as explained in Figure 6.3(a). Inside the loop, the

algorithm selects two solutions (parents) using rank-based selection, makes one

offspring with two-point crossover, and mutates the offspring with 2% of

probability. Then it repairs the generated offspring to control MUX correctly. The

cost of the offspring is evaluated by the cost of output registers under critical path

 ６１

delay constraints as shown in Figure 6.3(c) and (d), and the offspring replaces one

of the parents based on their costs. That makes a new generation. The process is

repeated until the genetic algorithm is terminated when the solution no longer

improves for 500 generations.

 ６２

 ６３

Chapter 7

Evaluation

7.1 Experimental Setup

We have implemented the proposed design flow in C++ language. The design flow

starts with a behavioral description in the C language, which is first parsed and then

optimized with the SUIF compiler [44]. From the SUIF intermediate form, a CDFG

is generated using the CDFG library [45]. We have first performed scheduling and

FU binding over the CDFG using an in-house tool. Then, for the centralized

controller architecture, we have applied register binding using simulated annealing

(SA) to minimize MUX area [9][46]. For a non-registered FSM controller, we have

just performed state encoding to generate an RTL description to be used for logic

synthesis, but for a registered FSM controller, we have also performed explicit

encoding of MUX selection signals to connect register outputs directly to the

 ６４

MUXs. For the proposed distributed controller architecture, we have applied the

proposed algorithms. From the results, an RTL design with a centralized controller

and the one with a distributed controller are generated. The RTL designs are fed to

the Synopsys Design Compiler [48] to generate synthesized gate-level netlists,

which are placed/routed using the Synopsys IC Compiler [49] with the TSMC

45nm nominal Vt technology library [50]. Table 7.1 shows parameters of the

resource library that we have used for our design flow, where TC2Q-γ and TC2Q-δ are

constants used in (10), and Load of MUX(2:1) is the total loading by the selection

pin of a 32bit MUX.

Table 7.2 provides the details of benchmark examples used in this experiment

and HLS results (scheduling and FU binding) of them. The examples include six

realistic examples, including DCT from JM [51], FIR from DSP stone [52], FFT,

product of matrix, 2D-convolution, and IDCT [53], and six synthetic examples; the

synthetic examples are designed to present the effectiveness of our approach when

design size increases. Since synthetic examples contain many operations and many

Table 7.1 Resource library (32bit)
Add. Sub. MUX(2:1)

Delay(ps) Area(um2) Delay(ps) Area(um2) Delay(ps) Area(um2) Load(pF)

140 370 130 420 20 90 0.032

SFT. Mul. Reg

Delay(ps) Area(um2) Delay(ps) Area(um2) TC2Q-γ(ps/pF) TC2Q-δ(ps) Area(um2)

130 290 460 2730 730 30 120

 ６５

Table 7.2 Benchmarks details

Bench

marks

CDFG Operations Performance Used Resources

Node Edge Mult. Add Sub. Shift II CStep Mult. Add Sub. Shift

SYN0 80 176 71 9 - -
4 22 18 3 - -

- 12 7 1 - -

SYN1 100 224 85 15 - -
4 22 22 4 - -

- 11 8 3 - -

SYN2 120 271 100 20 - -
4 27 25 6 - -

- 12 9 3 - -

SYN3 80 176 54 26 - -
4 25 14 7 - -

- 12 5 3 - -

SYN4 100 222 65 35 - -
4 25 17 9 - -

- 11 7 4 - -

SYN5 120 280 80 40 - -
4 24 20 10 - -

- 12 7 5 - -

DCT 60 129 16 13 13 18
4 24 4 4 4 6

- 10 4 2 2 4

FIR32 64 129 32 31 - 1
4 17 8 8 - 1

- 12 6 5 - 1

FFT 230 492 68 81 81 -
6 40 12 15 15 -

- 16 6 8 8 -

PRODMAT 112 241 64 48 - -
4 11 16 12 - -

- 12 7 11 - -

CONV3X3 89 187 49 40 - -
4 15 13 10 - -

- 13 6 7 - -

IDCT 68 144 14 27 13 14
4 21 4 7 4 4

- 10 3 4 4 4

 ６６

of them are multiplication operations, they occupy a relatively large chip area and

thus clearly show the effect of interconnect delay and load capacitance. Each

benchmark has two rows in Table 7.2, where the upper one shows the result

obtained by applying functional pipelining with an initiation interval given in the

eighth column, and the lower one shows the result obtained without functional

pipelining. Each row also shows the resource constraint given for the HLS. Based

on the HLS results, we partition the datapath, bind registers, and optimize the

controller.

The following abbreviations are used to represent the algorithms implemented

for the synthesis steps:

1) Cent: centralized controller architecture with register binding using simulated

annealing.

2) R-FSM: controller is implemented with registered FSM.

3) DC: datapath partitioning for distributed controller architecture.

4) CRB: critical-path-aware register binding.

5) Greedy: controller optimization based on the greedy algorithm.

6) Genetic: controller optimization based on the genetic algorithm.

7.2 Design Parameters and Computation Time

We have determined the number of partitions (k) by the policy presented in Section

 ６７

Table 7.3 Design parameters and runtime

Bench

marks

Functional

pipelining

Datapath

Partitioning
Register Binding Controller Optimization

k
Time

(ms)

SA CRB Greedy Genetic

Time(ms) Time(ms) Time(ms) Pop. Avg.Gen. Time(ms)

SYN0
W 10 0.21 95.5 9.0 0.24 100 1203.5 186.5

W/O 4 0.044 47.4 6.3 114298 100 2830.75 273.5

SYN1
W 12 0.33 132.6 17.1 0.30 100 1330.8 251.7

W/O 6 0.11 66.7 12.7 8153 100 4718 754.2

SYN2
W 16 0.52 169.9 28.1 0.34 100 1199.6 287.0

W/O 8 0.17 73.7 20.1 174799 100 1973 411.2

SYN3
W 8 0.21 97.9 8.6 0.23 100 1698 315.3

W/O 4 0.055 48.0 11.1 156673 100 4505 472.4

SYN4
W 12 0.42 138.1 17.0 0.30 100 1246.3 265.6

W/O 6 0.15 66.5 11.9 31191 100 4925.2 843.5

SYN5
W 12 0.48 181.1 30.0 0.36 100 1645.8 501.1

W/O 8 0.21 74.5 18.1 452291 100 2761.3 668.3

DCT
W 2 0.10 56.2 3.5 0.15 100 4613.5 387.3

W/O 2 0.07 31.1 1.7 1812 100 5282.5 994.8

FIR32
W 4 0.46 56.9 1.6 0.17 100 3760.8 604.3

W/O 4 0.43 43.9 1.6 79314 100 5238.3 830.5

FFT
W 16 0.13 456.2 153 14.5 100 5117.5 3574.4

W/O 8 0.75 137.0 60.9 2.9X107 100 2649 3427.7

PRODMAT
W 12 0.66 128.0 6.4 0.49 100 1930.1 410.0

W/O 6 0.50 78.7 4.4 82456 100 5448.2 1418.7

CONV3X3
W 8 0.32 101.6 4.5 0.43 100 2421.8 402.6

W/O 4 0.17 66.5 2.9 668930 100 6173.3 1359.3

IDCT
W 4 0.21 78.3 3.3 0.32 100 3681.5 397.2

W/O 2 0.19 39.4 2.0 355.7 100 6538.5 1093.4

 ６８

4.4. Table 7.3 shows the value of design parameter k used for each benchmark and

the computation time for each algorithm. Columns show respectively names of test

examples, with or without functional pipelining, number of partitions, runtime of

datapath partitioning, runtime of SA based register binding and CRB, runtime of

Greedy controller optimization, and population size, average number of generations,

and runtime for Genetic. For the average number of generations, we have averaged

the number of generations over all partitions.

The runtime of CRB is much shorter than that of SA based register binding,

while CRB outperforms SA based register binding in terms of critical path delay.

The runtime of Greedy for designs using functional pipelining is very small, but

that for designs not using functional pipelining increases exponentially. It is

because |CP(m)| increases exponentially as the number of control steps increases.

Genetic provides acceptable computation time even for non-pipelined cases, which

makes Greedy less competitive in terms of computation time.

7.3 Analysis Critical Path Delay on Distributed Controller
Architecture

The distributed controller architecture obtained by the proposed datapath

partitioning algorithm is more effective in reducing path delays from controllers to

datapath than reducing path delays within datapath. Nevertheless, the delay cost

function of the register binding and controller optimization focuses only on the

 ６９

paths from controllers to datapath, and thus one may have a concern that the paths

within datapath become critical. However, the datapath partitioning algorithm

actually penalizes partitioning that generates long interconnects, and register

binding algorithm discourages the case where a data register provides data to many

different partitions to suppress delay increases within datapath. Thus the path

delays within datapath rarely dominate.

Figure 7.1 shows the results of timing analysis of the RTL circuit synthesized

with a distributed controller for the same benchmark used for Figure 2.4. Compared

to centralized controller architecture, more paths within datapath are included in the

top-ranked delay paths, but delays of the paths from controllers to datapath still

dominate. Communications between controllers may take longer. However, the path

Figure 7.1 Analysis of critical path for distributed controller architecture.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 100 300 500 1000 5000

O
cc

up
at

io
n

Number of top ranked delay paths

datapath to datapath

controller to datapath

 ７０

delays between controllers are not critical since the involved logic delays are

relatively small; those paths do not appear even among top 5000 longest paths for

the benchmarks that we have used.

7.4 Analysis of Performance and Area

To show the effectiveness of our approach, reductions of critical path delay are

depicted in Figure 7.2(a). Since FU delays and register setup time are given as fixed

parameters, we exclude those delays. The delay values are normalized by the delays

of the centralized controller architecture with non-registered FSM. Compared to it,

our approach can reduce the sum of controller, MUX, and interconnect delays by

30.7% and 28.0% (in geometric mean) for non-pipelined and pipelined cases,

respectively. If we use a registered FSM, we can reduce those delays even with the

centralized controller architecture but only slightly (11.3% and 6.0% in geometric

mean for non-pipelined and pipelined cases, respectively). In some examples (Syn0

and Syn2), especially for pipelined cases where the centralized controller should

drive much more datapath components, the delay worsens compared to non-

registered ones since the conventional registered FSM does not consider the

capacitive loading to the output registers on critical paths.

CRB achieves delay reduction by reducing MUX delays on critical paths. It

does not use MUXs to share registers on possible critical paths whereas

conventional register binding algorithms tend to share registers even on the critical

 ７１

(a) MUX, controller, and interconnect delay

(b) Critical path delay

Figure 7.2 Comparison results for performance.

-5
0
5

10
15
20
25
30
35
40
45

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

Syn0 Syn1 Syn2 Syn3 Syn4 Syn5 DCT FIR FFT PRODCONV IDCTAverage

D
el

ay
 im

pr
ov

em
en

t (
%

)

Cent-R CRB CRB+DP DP+CRB+Greedy CRB+DP+Genetic

0

2

4

6

8

10

12

14

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g
w

/o
 p

ip
el

in
in

g
w

/ p
ip

el
in

in
g

A
ve

ra
ge

Syn0 Syn1 Syn2 Syn3 Syn4 Syn5 DCT FIR FFT PROD CONV IDCT

D
el

ay
 im

pr
ov

em
en

t(
%

)

CRB DC+CRB DC+CRB+Greedy DC+CRB+Genetic

 ７２

path. Improvements on non-pipelined cases are more significant since MUXs in

those cases tend to be larger than those in pipelined cases and they have much room

for improvement in register binding. The datapath partitioning algorithm, which

reduces interconnect delays and load capacitance driven by the controller, provides

the most significant improvements among the three proposed steps. Both Greedy

and Genetic reduce the critical path delay by assigning high load to controller

output registers on non-critical paths and removing controller output logic circuits.

Genetic reduces critical path delay more than Greedy. The source of improvement

given by Genetic is exploring the design space for mapping controller output

registers to control patterns, whereas Greedy assumes that each output register

gives a unique control pattern. Thus Genetic can split a highly loaded output

register to further improve the critical path delay.

Both datapath partitioning and controller/MUX optimization are redundant to

optimize capacitive load. Figure 7.3 presents this aspect of two optimization flow.

When datapath partitioning is applied first, improvement on datapath partitioning

occupies 59% of total improvement. However, when controller/MUX optimization

is applied first, improvement on datapath partitioning occupies only 25% of total

improvement. It is because distributing capacitive load which can be acquired by

datapath partitioning has already been acquired by controller/MUX optimization.

Reducing interconnect delay from controller to datapath by datapath partitioning

 ７３

occupies only 25 % of total improvement.

To analyze the source of improvement further, we break down the delay

(minimum clock period) of each design by the component types, and presents

buffer/inverter delay and register clock-to-output delay in Figure 7.4. Since our

approach optimizes controller delay with distributed architecture and controller

optimization algorithm, we compare cases: centralized architecture (Centralized)

and proposed architecture with proposed algorithms (DC+CRB+Genetic). The main

source of improvements of delay is the removal of buffers (including inverters) and

reduction of the interconnect delay 8 on the critical path. Using distributed

controller architecture and optimizing load capacitance driven by the controller

allows removing buffers and reducing the delay of registers, and that of

interconnects.

Considering that the controller, interconnect, and MUX delays in our

benchmarks account for 35-40% of the total critical path delay when we use a

centralized controller, the improvement in the total critical path delay obtained by

our approach can be limited (note that our approach improves only controller,

interconnect, and MUX delays). As shown in Figure 7.2(b), our approach reduces

the total critical path delay by 10.0% on average, and such a reduction can alleviate

8 In the timing report of the tool that we have used, the interconnect delay is included in the
delay of the cell that drives the interconnect, and that is why we cannot see it in Figure 7.4.

 ７４

Figure 7.3 Optimization redundancy of datapath partitioning and controller/MUX
optimization.

Figure 7.4 Improvement on buffer and register propagation delay.

0

2

4

6

8

10

12

14

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

A
ve

ra
ge

Syn0 Syn1 Syn2 Syn3 Syn4 Syn5

C
lo

ck
 p

er
io

d
im

pr
ov

em
en

t(
%

)

CRB CRB+DP CRB+Genetic DP+CRB+Genetic

0

5

10

15

20

25

30

35

40

Syn0 w/
pipelining

Syn2 w/o
pipelining

Syn3 w/o
pipelining

Syn4 w/
pipelining

FIR32 w/
pipelining

Average

Im
pr

ov
em

en
t o

f d
el

ay
 (%

)

 ７５

timing closure problems effectively.

Our flow reduces the critical path delay at the cost of some area overhead,

which is mainly caused by the increased number of register bits during register

binding and controller optimization. Figure 7.5 shows the number and area of

buffers/inverters, the area of registers, and total area normalized to centralized

controller architecture. CRB increases the number of data registers since it does not

share registers on critical paths. The datapath partitioning replicates controller, and

the controller optimization replicates controller output registers, and thus they

increase the number of registers. On the other hand, the number and area of

buffers/inverters decrease when DC+Genetic is applied. Table 7.4 presents

Figure 7.5 Comparison results for area.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B
uf

f.
nu

m
B

uf
f.

ar
ea

R
eg

. a
re

a
To

ta
l a

re
a

B
uf

f.
nu

m
B

uf
f.

ar
ea

R
eg

. a
re

a
To

ta
l a

re
a

B
uf

f.
nu

m
B

uf
f.

ar
ea

R
eg

. a
re

a
To

ta
l a

re
a

B
uf

f.
nu

m
B

uf
f.

ar
ea

R
eg

. a
re

a
To

ta
l a

re
a

B
uf

f.
nu

m
B

uf
f.

ar
ea

R
eg

. a
re

a
To

ta
l a

re
a

B
uf

f.
nu

m
B

uf
f.

ar
ea

R
eg

. a
re

a
To

ta
l a

re
a

Syn0 w/
pipelining

Syn2 w/o
pipelining

Syn3 w/o
pipelining

Syn4 w/
pipelining

FIR32 w/
pipelining

Average

N
or

m
al

iz
ed

 A
re

a

Centralized CRB DC+CRB+Genetic

 ７６

controller information for the case of centralized controller (note that the controller

is replicated for the distributed architecture). For example, the distributed controller

architecture of FFT without functional pipelining has eight local controllers, each of

which has 16 states. Column “Area” presents logic area of controller and the

proportion of controller to total area. The fact that the controller is typically very

small helps to reduce the overhead of controller replication of our approach.

Therefore, the overall overhead is not serious as shown in Figure 7.5. Although our

approach adds additional controller output registers and data registers to the circuit,

combinational logic can decrease since additional data registers possibly remove

register sharing MUXs, and distributed controller and controller optimization

method can reduce buffer insertion and buffer sizing during physical synthesis. The

overall area overhead of our approach is 2.2% on average. This overhead is

significantly low compared to the performance improvement.

Physical synthesis tools typically allow improving performance at the cost of

area. So, when the area of hardware generated by proposed approaches is restricted

to the area of hardware generated by centralized controller architecture,

performance improvement may be restricted. However, performance degradation

by restricted area is limited only to 0.5% as shown in Figure 7.6.

 ７７

Table 7.4 Information of controller

Bench

marks
pipelining

of

states

Area

(um2 (%))

Bench

marks
pipelining

of

states

Area

(um2 (%))

SYN0
W 4 284.4(0.3)

DCT
W 4 218.4(0.9)

W/O 12 856.1(1.8) W/O 10 520.7(1.4)

SYN1
W 4 362.5(0.3)

FIR32
W 4 171.1(0.4)

W/O 11 944.1(1.7) W/O 12 520.7(1.4)

SYN2
W 4 426.2(0.3)

FFT
W 6 1184.6(0.8)

W/O 12 1171.6(1.7) W/O 16 1841.3(2.6)

SYN3
W 4 286.7(0.3)

PRODMAT
W 4 328.5(0.3)

W/O 12 848.0(2.1) W/O 12 1014.3(1.9)

SYN4
W 4 330.9(0.3)

CONV3X3
W 4 282.1(0.3)

W/O 11 996.7(1.8) W/O 13 860.1(2.0)

SYN5
W 4 423.4(0.3)

IDCT
W 4 239.2(0.6)

W/O 12 1171.6(1.9) W/O 10 536.6(2.0)

Figure 7.6 Performance improvement under area constraints.

0

2

4

6

8

10

12

14

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

el
in

in
g

w
/ p

ip
el

in
in

g

A
ve

ra
ge

Syn0 Syn1 Syn2 Syn3 Syn4 Syn5

C
lo

ck
 p

er
io

d
im

pr
ov

em
en

t(
%

) Area_constrained DC+CRB+Genetic

 ７８

7.5 Energy Consumption

Reducing energy consumption is very important issue on modern SoC design as

well as HLS. Energy consumption is proportion to switching activity, effective

capacitance, and supply voltage. Since the proposed method adds controllers and

registers, the effective capacitance increases by the increase of area. Increase of

register causes overhead of clock tree and internal power of register clock pin. On

the other hand, the proposed method decreases total interconnect length, and energy

consumption on interconnect decreases.

Figure 7.7 presents dynamic energy consumption which consists of cell

internal energy and switching net energy. Cell internal energy, which is induced by

short circuit current when switching cell, tends to increase since the number of

registers increases and total area does. Switching net energy which is produced by

driving current to drive output capacitance especially decreases for large example

design since interconnect reduction is relatively significant for large one. Relation

between total interconnect length and switching net energy is shown in Figure 7.8.

Although decrease of total interconnect length and that of switching net energy do

not match exactly, designs with significant decrease of interconnect length achieve

lower switching net energy consumption.

 ７９

Figure 7.7 Dynamic energy consumption.

Figure 7.8 Interconnect length and switching net energy reduction compared to
centralized controller architecture.

0
20
40
60
80

100
120
140
160

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

C
en

t.
C

R
B

+D
P+

G
en

et
ic

w/o
pipe.

w/
pipe.

w/o
pipe.

w/
pipe.

w/o
pipe.

w/
pipe.

w/o
pipe.

w/
pipe.

w/o
pipe.

w/
pipe.

w/o
pipe.

w/
pipe.

Syn0 Syn1 Syn2 Syn3 Syn4 Syn5

D
yn

am
ic

 E
ne

rg
y

(p
J/

cy
cl

e)

Switching Cell Internal

-30

-20

-10

0

10

20

30

40

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

A
ve

ra
ge

Syn0 Syn1 Syn2 Syn3 Syn4 Syn5

R
ed

uc
ed

 v
al

ue
 (%

)

Interconnect length
Switching net energy

 ８０

7.6 Analysis on Register Overhead

As shown in Section 7.4, the proposed method leads to register overhead. Register

overhead makes clock tree larger, and it can cause poor routability of design, which

makes clock period degradation and overhead in energy consumption, as well as

area overhead. Section 7.4 and 7.5 present that those overheads from register

increase can be compensated by improvements from proposed algorithms. However,

the other problem, peak current overhead, may occur because of register overhead.

Registers can be the main source of current flow since register clock pins

always switch at the same time during clock skew for each clock period while the

other gates switch relatively intermittently. Register overhead causes larger peak

current on the design. Since large peak current induces IR drop, it may affect the

stability of system. Figure 7.9 presents increase of power consumption on clock

network including register cell internal power on clock pins and peak power of

designs acquired by Prime Time PX [54]. Although peak power is not exactly same

as peak current, it is the best measure to reflect the variation of peak current in gate

and layout level abstractions [55][56]. Proposed method increasing the number of

registers consumes more not only clock network power but also peak power by

about 25%. To alleviate peak current overhead, we can apply two approaches, clock

gating approach and register constrained approach.

 ８１

7.6.1 Clock Gating Approach

Figure 7.10 shows the reason why register overhead of proposed method increases

peak current. Reg0 on the critical path splits to two registers Reg0 and Reg1 by

proposed register binding algorithms to reduce critical path delay. Then, current

flow in register clock pins become twice even when data to registers is not enabled.

As shown in Figure 7.10(a), these registers are not concurrently enabled since they

are separated from the same register. If we can block clock from the clock pin of

register during the register is disabled, we do not suffer from peak current overhead

from clock pin of register even though we use additional registers. Clock gating [57]

is a popular technique among modern low power design methodology. It reduces

cell internal power from register clock pin by gating clock with enable signal.

Figure 7.9 Clock network power and peak power consumption.

0
5

10
15
20
25
30
35
40
45
50

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

w
/o

 p
ip

lin
in

g

w
/ p

ip
el

in
in

g

A
ve

ra
ge

Syn0 Syn1 Syn2 Syn3 Syn4 Syn5

Po
w

er
 o

ve
rh

ea
d

(%
)

Clock network Peak

 ８２

Figure 7.10 Clock gating: (a) peak current overhead from register overhead; (b)
peak current reduction using clock gating.

Although it is not proposed to reduce peak current, we can utilize it to reduce peak

current on the proposed method. Figure 7.10(b) presents an example of reducing

peak current from clock. Since clock is gated by enable signal, only one register

clock pin is switched for each clock cycle. So, we can reduce peak current from

clock even though we use more registers.

To implement clock gating, we utilize automatic clock gating flow provided

by Design Compiler in logic synthesis step. It replaces registers with enable signal

to registers with clock gates. It also reduces clock gating overhead by sharing clock

gates with the same enable signal. Result applying clock gating technique is

 ８３

presented in Figure 7.11. It contains peak power overhead of proposed method

compared to Cent. both without clock gating and with clock gating. Peak power

increases only by 7.7% on average when clock gating is applied to proposed

method while peak power increases by 27% on average proportion to increase of

the number of registers when clock gating is not applied. 7.7% of peak power

overhead is caused by large clock tree and many clock gates induced by register

overhead. Binding data transfers from the same operation to different registers may

also produce peak power overhead since these registers are clocked at the same

time although they are split from the same register.

Figure 7.11 Reduction of peak power overhead using gated clock.

0

5

10

15

20

25

30

35

40

Syn0 w/
pipelining

Syn1 w/
pipelining

Syn2 w/o
pipelining

Syn3 w/o
pipelining

Syn4 w/
pipelineing

FIR w/
pipelining

Average

Pe
ak

 p
ow

er
 o

ve
rh

ea
d

(%
)

Normal clock Gated clock

 ８４

7.6.2 Register Constrained Approach

Although clock gating may be efficient to reduce peak power overhead induced by

our approach without modifying the result from our approach, it has inherent

overhead to insert clock gates to clock tree. In this section, we modify proposed

datapath partitioning and register binding algorithms to reduce the register

overhead.

The number of registers increases as the number of partitions increases since

register sharing is restricted across different partitions. The proposed register

binding algorithm also induces additional registers on the critical path since

registers are added if path delay to register exceeds critical path delay constraint.

Modified design flow presented in Figure 7.12 optimizes design under register

Figure 7.12 Modified flow with register constraint.

 ８５

constraint. At first, critical-path-aware register binding algorithm is performed to

get the number of registers to be used. Critical path delay constraint is relaxed when

the number of registers is more than register constraint, and these procedures are

iterated until the number of registers is less than the register constraint. Then, the

proposed flow finds the optimal number of partitions under register constraint in

the range from 1 to kopt which is acquired by the method in the Section 4.4.

Experimental results from the modified flow are presented in Figure 7.13. The

total increase of registers is restricted in 16% when we give data register overhead

constraint as 15% while proposed method without register constraint inflicts

Figure 7.13 Performance, register area and peak power under data register
overhead constraint by 15%.

0.8

0.9

1

1.1

1.2

1.3

1.4
R

eg
. a

re
a

C
lo

ck
 p

er
io

d

Pe
ak

 p
ow

er

R
eg

. a
re

a

C
lo

ck
 p

er
io

d

Pe
ak

 p
ow

er

R
eg

. a
re

a

C
lo

ck
 p

er
io

d

Pe
ak

 p
ow

er

R
eg

. a
re

a

C
lo

ck
 p

er
io

d

Pe
ak

 p
ow

er

R
eg

. a
re

a

C
lo

ck
 p

er
io

d

Pe
ak

 p
ow

er

R
eg

. a
re

a

C
lo

ck
 p

er
io

d

Pe
ak

 p
ow

er

Syn0 w/
pipelining

Syn2 w/o
pipelining

Syn3 w/o
pipelining

Syn4 w/
pipelineing

FIR w/
pipelining

Average

N
or

m
al

iz
ed

 v
al

ue
 to

 C
en

t. DP+CRB+Genetic DP+CRB+Genetic w/ RC.

 ８６

register overhead up to 35%. Since adding registers and partitioning to improve

clock period are restricted by register constraint, clock period improvement is

degraded by about 1.6%. Peak power overhead is also reduced in proportion to the

reduction of register overhead, and it is 12.7%.

7.6.3 Combined Approach

Reduction of register overhead by register constrained approach is limited to 16%

since the first objective is minimizing path delay while conventional register

binding minimizing the number of registers. However, clock gating presented in

Section 7.6.1 can also be applied, and peak power can be improved further. Figure

7.14 presents peak power overhead of proposed approach which adopts both clock

Figure 7.14 Combined approach to reduce peak power overhead.

0

5

10

15

20

25

Syn0 w/
pipelining

Syn2 w/o
pipelining

Syn3 w/o
pipelining

Syn4 w/
pipelineing

FIR w/
pipelining

Average

Pe
ak

 p
ow

er
 o

ve
rh

ea
d

(%
)

Clock gating Register constrained Combined

 ８７

gating and register constrained approach. Peak power overhead which reaches to 27%

on average is suppress to 3.6% by using combined approach of clock gating and

register constrained flow.

7.7 Join to Conventional Optimization Techniques on HLS

As explained in Section 3.2, our approach utilizes scheduling and binding results

from conventional HLS flow. So, optimization techniques such as operation

chaining including bit-level chaining and bit-width optimization can easily be

applied for our approach. However, those techniques may affect the quality of

results from our approaches.

For example, since chained operations have longer logic delay than not-

chained operations, the portion of improvement, which proposed approach focuses

on, is relatively reduced. However, capacitive load and interconnect may increase

since chaining may restrict resource sharing and make design larger. Since area of

design may smaller than design with uniform bit-width when bit-width

optimization is applied, the effect of proposed method may be degraded. However,

the portion of interconnect, MUX, and load capacitance may increases because of

smaller FU delay, and improvement on critical path delay will increases.

7.8 Comparison with DRFM Binding Approach

The DRFM binding algorithm was developed in a recent research [32] for

 ８８

distributed architecture. It optimizes the MUX delay and the number of global

interconnects. Since it cannot handle the scheduling results with functional

pipelining, we compare only for cases without functional pipelining as shown in

Figure 7.15.

In terms of area-delay product, our approach outperforms DRFM architecture

by 14.3% on average. This is because the DRFM binding algorithm focuses on

reducing the average path delay by reducing the number of MUXs through the use

of register files, and by reducing the number of global interconnects. On the other

hand, our approach focuses on reducing candidate critical path delays with the

critical-path-aware algorithm.

Figure 7.15 Comparison with DRFM.

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 v
al

ue

DRFM[32] Delay Area Delay*Area

 ８９

Chapter 8

Conclusion and Future Work

8.1 Summary

We analyzed the critical paths of typical designs with centralized controllers and

observed that the critical paths arise on the path from the controller to data registers

contrary to basic assumption of conventional HLS approaches. Based on this

observation, we presented a hardware architecture with a distributed controller, and

proposed a critical-path-aware HLS approach which integrated datapath and

controller partitioning, register binding, and controller/MUX optimization. The

datapath and controller partitioning tried to localize each of potentially critical

interconnects within a partition or within a range of nearby partitions and to

distribute capacitive load to controller. The register binding tried to reduce the

MUX delay on potentially critical paths by sharing registers with MUXs only on

 ９０

the non-critical path. The controller/MUX optimization tried to reduce the

controller output logic and assign high load capacitance driven by the controller

only on the non-critical path.

Experimental results showed that the proposed approach achieved 29.3%

reduction on average in the controller, MUX, and interconnect delay with minimal

area overhead. Also, the minimum clock period was reduced by 10.0% with 2.2%

area overhead. Since proposed approach tried to reduce interconnect from

controller to datapath, total interconnect may be reduced especially for large design.

It provided reduction of dynamic energy consumption. Register overhead can cause

peak current overhead, which may be the weakest point of proposed approaches.

However, we proposed implementation level and algorithm level solutions to

alleviate peak current overhead induced by register overhead. When compared to

DRFM, a recently proposed distributed architecture, our approach outperformed by

14.3% in terms of delay and area product. We also propose two approaches, clock

gating and register constrained flow, to alleviate high peak current problem which

is caused by proposed approach. These approaches restrict peak current overhead

fewer than 3.6%.

8.2 Future Work

There are several remaining issues as future work. As explained in Chapter 2,

subtasks of HLS have interdependency with each other. Although proposed

 ９１

algorithm gets results from scheduling and FU binding, it does not guarantee that

given scheduling and binding results are also optimal after datapath partitioning,

register binding, and controller/MUX optimization. An iterative approach, which

makes up scheduling and binding results from the information provided by

proposed algorithms such as long inter-partition interconnect, MUX delay, and

controller delay, can help get more optimal solutions.

Interconnect delay becomes important for deep sub-micron technology. Many

researches to estimate interconnect delay have done, but it remains that estimating

individual interconnect delay exactly is very difficult compared to total interconnect

estimation. As the cost function of proposed approach, individual interconnect

delay estimation may be challenging and important future work for better quality of

results.

 ９２

 ９３

Bibliography

[1] International Technology Roadmap for Semiconductors,

http://www.itrs.net/

[2] IEEE Std.1666-2011, Standard for SystemC, IEEE Std. 1666, 2011.

[3] “Catapult,” http://www.calypto.com/

[4] “Cynthesizer,” http://www.forteds.com/

[5] “Synphony High-Level Synthesis,” http://www.synopsys.com/

[6] P. Coussy and A. Morawiec, High-Level Synthesis: From Algorithm to

Digital Circuit, Springer Publishing Company, Inc., 2008.

[7] C. Papachristou and Y. Alzazefi, “A method of distributed controller

design for RTL circuits,” in Proceedings of Design, Automation, and

Test in Europe, pp. 774-775, Mar. 1999.

[8] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for

power minimization during micro-architecture synthesis,” In

 ９４

Proceedings of International Symposium on Low Power Electronics and

Design, pp. 69-74, Apr. 1995.

[9] P. Kollig and B. M. Al-Hashimi, “Simultaneous scheduling, allocation

and binding in high level synthesis,” Electronics Letters, vol.33, no.18,

pp. 1516-1518, 1997.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness, W,H.Freeman and Company, 1979.

[11] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill, Inc., 1994.

[12] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Trans. on Comput.-Aided Des. of

Integr. Circuits and Syst., vol.8, no.6, pp. 661-679, 1989.

[13] N. Park and A. C. Parker, “Sehwa: A Software Package for Synthesis of

Pipelines from Behavioral Specifications, ” IEEE Trans. on Comput.-

Aided Des. of Integr. Circuits and Syst., vol. 7, No. 3, pp. 356-370, 1988.

[14] F. J. Kurdahi and A. C. Parker, “REAL: A Program for Register

Allocation,” In Proceedings of Design Automation Conference, pp. 210-

215, June 1987.

 ９５

[15] P. Brisk, F. Dabiri, R. Jafari, et al., “Optimal register sharing for high-

level synthesis of SSA form programs,” IEEE Trans. on Comput.-Aided

Des. of Integr. Circuits and Syst., vol.25, no.5, pp. 772-779, 2006.

[16] C. Deming and J. Cong, “Register binding and port assignment for

multiplexer optimization,” In Proceedings of Asia South Pacific Design

Automation Conference, pp. 68-73, Jan. 2004.

[17] J. Cong and X. Junjuan, “Simultaneous FU and Register Binding Based

on Network Flow Method,” In Proceedings of Design, Automation and

Test in Europe, pp. 1057-1062, Mar. 2008.

[18] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and an easily

schedulable horizontal architecture for high performance scientific

computing,” in Proc. of Fourteenth Annual Workshop on

Microprogramming, pp. 183-198, Oct. 1981.

[19] B. R. Rau, “Iterative modulo scheduling: an algorithm for software

pipelining loops,” in Proceedings of the 27th annual international

symposium on Microarchitecture, pp. 63-74, Nov. 1994.

[20] R. Patasman, J. Lis, A. Nicolau, et al., "Percolation Based Synthesis," in

Proceedings of Design Automation Conference, pp. 444-449, June, 1990.

 ９６

[21] L.-F. Chao, A. S. LaPaugh, and Edwin Hsing-Mean Sha, "Rotation

scheduling: A loop pipelining algorithm," IEEE Trans. on Comput.-

Aided Des. of Integr. Circuits and Syst., vol. 16, no. 3, pp. 229-239, 1997.

[22] S. Narayan and D. D. Gajski, “System Clock Estimation based on Clock

Slack Minimization,” In Proceedings of Design Automation Conference,

pp. 66-71, Sep. 1992.

[23] S. Park and K. Choi, “Latency minimization by system clock

optimization,” IEE Electronics Letters, vol. 34, pp. 862-864, 1998.

[24] S. Bhattacharya, S. Dey, and F. Brglez, “Clock Period Optimization

during Resource Sharing and Assignment,” In Proceedings of Design

Automation Conference, pp.195-200, June 1994.

[25] J. Jeon, D. Kim, D. Shin, et al., “High-Level Synthesis under Multi-

Cycle Interconnect Delay,” In Proceedings of Asia South Pacific Design

Automation Conference, pp. 662-667, Feb. 2001.

[26] S. Park, K. Kim, H. Chang, et al., “Backward-annotation of post-layout

delay information into high-level synthesis process for performance

optimization,” In Proceedings of 6th International Conference on VLSI

and CAD, pp. 25-28, Oct. 1999.

 ９７

[27] Z. Gu, J. Wang, R. P. Dick, et al., “Unified incremental physical-level

and high-level synthesis,” IEEE Trans.Comput.-Aided Des. Integr.

Circuits Syst., vol. 26, no. 9, pp. 1576-1588, 2007.

[28] V. Krishnan and S. Katkoori, “Clock period minimization with iterative

binding based on stochastic wirelength estimation during high-level

synthesis,” In Proceedings of VLSI Design, pp. 641-646, Jan. 2008.

[29] T. Kim and X. Liu, “A global interconnect reduction technique during

high level synthesis,” In Proceedings of the Asia South Pacific Design

Automation Conference, pp. 695-700, Jan. 2010.

[30] C. Huang, S. Ravi, A. Raghunathan, et al., “Generation of distributed

logic-memory architectures through high-level synthesis,” IEEE

Trans.Comput.-Aided Des. Integr. Circuits Syst., vol. 24, no. 11,

pp. 1694-1711, 2005.

[31] D. Kim, J. Jung, S. Lee, et al., “Behavior-to-placed RTL synthesis with

performance-driven placement,” In Proceedings of International

Conference on Computer Aided Design, pp. 320-325, Nov. 2001.

[32] J. Cong, Y. Fan, and J. Xu, “Simultaneous resource binding and

interconnection optimization based on a distributed register-file

microarchitecture,” ACM Trans. Des. Automat. of Electron. Syst., vol. 14,

no. 3, pp. 35-65, 2009.

 ９８

[33] J. Cong, Y. Fan, G. Han, et al., “Architectural synthesis Integrated with

global placement for multi-cycle communication,” In Proceedings of

International Conference on Computer Aided Design, pp. 536- 543, Nov.

2003.

[34] A. Ohchi, N. Togawa, M. Yanagisawa, et al., “Performance-driven high-

level synthesis with floorplan for GDR architectures and its evaluation,”

In Proceedings of the IEEE International Symposium on Circuits and

Systems, pp. 921-924, May 2010.

[35] S.-Y. Abe, M. Yanagisawa, and N. Togawa, “An Energy-efficient high-

level synthesis algorithm for huddle-based distributed-register

architecture,” In Proceedings of the IEEE International Symposium on

Circuits and Systems, pp. 576-579, May 2012.

[36] C. Fiduccia and R. Mattheyses, “A linear time heuristic for improving

network partitions,” In Proceedings of Design Automation

Conference, pp. 175-181, June 1982.

[37] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of

standard-cell VLSI circuits,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 4, no. 1, pp. 92-98, 1985.

 ９９

[38] S. Lee and K. Choi, “High-Level synthesis with distributed controller for

fast timing closure,” In Proceedings of International Conference on

Computer Aided Design, pp. 193-199, Nov. 2011.

[39] J. Li, M. Chen, J. Li, et al., “Minimum clique partition problem with

constrained weight for interval graphs,” In Proceedings of the 12th

annual international conference on Computing and Combinatorics,

pp. 459-468, Aug. 2006.

[40] S. C-Y. Huang and W. H. Wolf, “Performance-driven synthesis in

controller-datapath systems,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 2, no. 1, pp. 68-80, 1994.

[41] A. Seawright and W. Meyer, “Partitioning and optimizing controllers

synthesized from hierarchical high-level descriptions,” In Proceedings of

Design Automation Conference, pp. 770-775, June 1998.

[42] S. Park and K. Choi, "Sequential circuit optimization by FSM

transformation," In Proceedings of Asia Pacific Conference on Hardware

Description Languages, pp. 53-58, Jul. 1998.

[43] S. Mitra, L. J. Avra, and E. J. McCluskey, “An output encoding problem

and a solution technique,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 18, no. 6, pp. 761-768, 1999.

 １００

[44] “The SUIF 1.x Compiler System,”

http://suif.stanford.edu/suif/suif1/index.html

[45] J. Jeon, Y. Ahn, and K. Choi, CDFG toolkit user's guide, Tech. Rep.

SNU-EE-TR-2002-8, Dept. Elect. Eng., Seoul National University, 2002.

http://dal.snu.ac.kr/index.php/Software/CDFG

[46] A. Avakian and I. Ouaiss, “Optimizing register binding in FPGAs using

simulated annealing,” In Proceeding of international Conference on

Reconfigurable Computing and FPGAs, pp. 8-16, Sep. 2005.

[47] M. Celik, L. Pileggi, and A. Odabasioglu, IC interconnect analysis,

Kluwer Academic Publishers, pp. 25-38, 2002.

[48] “Synopsys Design Compiler,” http://www.synopsys.com/

[49] “Synopsys IC Compiler,” http://www.synopsys.com/

[50] “TSMC Standard Cell Libraries,”

http://www.synopsys.com/dw/tsmc.php

[51] G. K. Wallace, “The JPEG still picture compression standard,” IEEE

Trans. Consum. Electron., vol. 38, no. 1, pp. 18-34, 1992.

[52] V. Zivojnovic, J. Martinez, C. Schlger, et al., “DSPstone: A DSP-

oriented benchmarking methodology,” In Proceedings of International

Conference on Signal Processing Applications and Technology, pp. 715-

720, Oct. 1994.

 １０１

[53] “GAUT – High-level synthesis tool,” http://hls-labsticc.univ-ubs.fr/

[54] “Prime Time PX,” http://www.synopsys.com/

[55] S.-H. Huang, C.-M. Chang, and Yow-Tyng Nieh, “State Re-Encoding for

Peak Current Minimization,” In Proceedings of International Conference

on Computer-Aided Design, pp. 33-38, Nov. 2006.

[56] J. Gu, G. Qu, L. Yuan, et al., “Peak current reduction by simultaneous

state replication and re-encoding,” In Proceedings of International

Conference on Computer-Aided Design, pp. 592-595, Nov. 2010.

[57] G. K. Yeap, Practical Low-Power Digital VLSI Design, Kluwer

Publishing, 1998.

１０２

１０３

한글 초록

공정기술의 급속한 발전으로 인해, 소비자의 다양한 욕구를

반영하기 위한 기능들이 하나의 칩에 집적되는데 반해 시스템 설계자의

생산성은 매우 더디게 발전하고 있다. 따라서 설계 과정에서 더 높은

수준의 추상화를 사용하는 것이 설계 시간 및 비용을 감소시키고 최적의

설계를 찾아 내기 위해 중요한 방법이 되고 있다. 행위 기술 모델로부터

레지스터 전송 모델을 설계해주는 상위수준 합성은 설계 생산성을

향상시키기 위한 연구 분야에서 중요한 주제가 되어 왔다. 상위 수준

합성에서 주로 사용하는 중앙 집중형 제어기의 경우 긴 연결선과 큰

정전용량을 야기해서 임계경로가 제어기에서 데이터패스 사이에서 주로

나타난다. 그러나 일반적인 상위 수준 합성에서는 데이터패스 내부의

지연시간만을 고려하기 때문에 실제 칩으로의 구현과정에서 성능제약

조건을 만족시키기 어렵게 한다. 따라서 본 논문에서는 이러한 문제를

해결하기 위해서 분산형 제어기를 사용하는 하드웨어 구조와 임계경로를

고려하는 상위 수준 합성 방법을 제안한다. 제안하는 방법은 데이터패스

분할, 레지스터 할당, 제어기 최적화 방법을 포함하며, 사용하는

하드웨어 구조를 최적화하기 위한 주요 변수인 분할 개수에 대한 설계

공간 탐색을 수행한다. 이를 통해서 제안한 방법은 기존의 중앙 집중형

하드웨어 구조에서의 상위 수준 방법에 비해, 2.2% 정도의 면적

１０４

비용으로 10%의 성능 개선을 얻을 수 있었다. 또한 제안한 방법에

야기할 수 있는 가장 큰 문제인 최대 전류 증가를 해결하기 위한 방법을

제안하여, 최대 전류의 증가량이 3.6%가 넘지 않도록 제한할 수 있었다.

주요어 : 상위 수준 합성, 분산형 제어기 구조, 레지스터 할당, 제어기

최적화

학번 : 2008-30236

１０５

감사의 글

지난 6년간의 학업을 박사논문으로 정리하면서 내용의 미흡함에 하루

에도 여러 번 아쉬움이 남습니다. 이렇게 미흡한 논문이지만 온전히 제

힘만으로는 이룰 수 없었기에 그 동안 도움을 주신 많은 분들께 이 글을

통해 감사의 마음을 전하려고 합니다.

먼저, 지난 8년동안 저를 이끌어주신 최기영 교수님께 깊은 감사를 드

립니다. 저의 연구가 방향을 잃지 않도록 조언과 지도를 해 주신 덕분에

조금이나마 학문적 성과를 이룰 수 있었습니다. 그리고 교수님께서 항상

학생들에게 보여주시는 학문에 대한 열정과 인간적인 배려는 제가 앞으

로 살아가면서 큰 귀감이 될 것 같습니다. 그리고 바쁘신 와중에도 논문

심사에 참여해 주시고 좋은 학위 논문이 될 수 있게 많은 조언을 해주셨

던 채수익 교수님, 김태환 교수님, 하순회 교수님, 이강희 박사님께 감사

의 말씀을 전합니다.

석/박사 과정을 보내면서 많은 설계자동화 연구실 선후배 동료들과 좋

은 일, 힘든 일을 함께 했습니다. 특히, 석/박사 과정에서 많은 연구를 함

께 했던 이강희 박사님, 그리고 저의 박사 과정 동안 함께 상위수준 합

성에 대한 연구를 하고 석사로 졸업한 동엽이와 재훈이형 덕분에 제 연

구분야에 대해 조금 더 깊이 있는 이해를 할 수 있게 되었습니다. 그리

고 저의 대학원 생활 모두를 함께 보낸 기성이형, 현직이형, 임용이, 이

제 함께 사회로 나갈 만휘, 규승이, 학림이, 앞으로 고생할, 그리고 일 복

１０６

터진 후배 박사과정들 한민이, 진호, 경훈이형, 준환이, 동우, 재민이, 이

제는 중요한 선택의 기로에 서있을 석사과정 선욱이, 성주, 남형이, 그리

고 먼 한국까지 와서 열심히 공부하고 있는 Pierre, 선후배 동료들 모두

감사합니다. 좋은 선후배 동료들이 있었기 때문에 힘든 대학원 과정을

즐겁게 보낼 수 있었습니다. 비록 지금은 제가 먼저 학교를 떠나지만 하

시는 연구는 물론 다른 일들도 모두 잘 되셨으면 좋겠습니다. 그리고 각

자의 영역에서 최선을 다하며 기쁜 일이나 슬픈 일 모두 함께 나누고 응

원해주는 대학동기, 친구들에게 감사함을 전하고 싶습니다.

가족들의 도움과 응원 없이는 기나긴 학업을 잘 견뎌내기 힘들었을 것

같습니다. 아직 미래가 불투명한 박사과정인 저를 믿고 결혼을 허락해주

시고 물심양면으로 지원을 아끼지 않으신 장인어른, 장모님께 깊은 감사

를 드립니다. 저에게 결혼과 아이라는 축복을 안겨주고 힘든 시간을 함

께 해 준, 언제나 저를 믿고 지지해 주는 아내 희경이에게 사랑한다는

말을 전합니다. 가끔은 새벽에 아빠를 힘들게 하지만 언제나 큰 웃음을

안겨주는 사랑하는 종하, 건강하게 자라주면 좋겠습니다. 이제 새로운 시

작을 준비하고 있는 동생 석영이, 형이 언제나 응원하고 있는 것을 잊지

않았으면 좋겠습니다. 무엇보다도 제 결정을 항상 믿고 지원해주시는 부

모님께서 안 계셨다면 오늘의 저는 있지 않았을 것입니다. 사랑하는 부

모님, 항상 건강하시길 바랍니다. 그리고 감사합니다.

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 High-level Synthesis
	2.2 Subtasks of High-level Synthesis
	2.2.1 Operation Scheduling and FU Binding
	2.2.2 Register Binding
	2.2.3 Controller Synthesis
	2.2.4 Functional Pipelining Technique for High-level Synthesis

	2.3 Centralized Controller Architecture
	2.4 Design Closure Problem in High-level Synthesis
	2.5 Thesis Contribution

	Chapter 3 Target Architecture and Overall flow
	3.1 Target Architecture
	3.2 Overall flow

	Chapter 4 Critical-Path-Aware Datapath Partitioning
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Proposed Algorithm
	4.4 Exploring Design Space for the Number of Partitions

	Chapter 5 Critical-Path-Aware Register Binding
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Proposed Algorithm

	Chapter 6 Critical-Path-Aware Controller Optimization
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Proposed Algorithm

	Chapter 7 Evaluation
	7.1 Experimental Setup
	7.2 Design Parameters and Computation Time
	7.3 Analysis Critical Path Delay on Distributed Controller Architecture
	7.4 Analysis of Performance and Area
	7.5 Energy Consumption
	7.6 Analysis on Register Overhead
	7.6.1 Clock Gating Approach
	7.6.2 Register Constrained Approach
	7.6.3 Combined Approach

	7.7 Join to Conventional Optimization Techniques on HLS
	7.8 Comparison with DRFM Binding Approach

	Chapter 8 Conclusion and Future Work
	8.1 Summary
	8.2 Future Work

	Bibliography
	Abstract in Korean

<startpage>16
Chapter 1 Introduction 1
Chapter 2 Background 7
 2.1 High-level Synthesis 7
 2.2 Subtasks of High-level Synthesis 8
 2.2.1 Operation Scheduling and FU Binding 8
 2.2.2 Register Binding 10
 2.2.3 Controller Synthesis 11
 2.2.4 Functional Pipelining Technique for High-level Synthesis 11
 2.3 Centralized Controller Architecture 12
 2.4 Design Closure Problem in High-level Synthesis 15
 2.5 Thesis Contribution 18
Chapter 3 Target Architecture and Overall flow 21
 3.1 Target Architecture 21
 3.2 Overall flow 23
Chapter 4 Critical-Path-Aware Datapath Partitioning 27
 4.1 Introduction 27
 4.2 Problem Formulation 30
 4.3 Proposed Algorithm 32
 4.4 Exploring Design Space for the Number of Partitions 36
Chapter 5 Critical-Path-Aware Register Binding 39
 5.1 Introduction 39
 5.2 Problem Formulation 40
 5.3 Proposed Algorithm 43
Chapter 6 Critical-Path-Aware Controller Optimization 49
 6.1 Introduction 49
 6.2 Problem Formulation 50
 6.3 Proposed Algorithm 55
Chapter 7 Evaluation 63
 7.1 Experimental Setup 63
 7.2 Design Parameters and Computation Time 66
 7.3 Analysis Critical Path Delay on Distributed Controller Architecture 68
 7.4 Analysis of Performance and Area 70
 7.5 Energy Consumption 78
 7.6 Analysis on Register Overhead 80
 7.6.1 Clock Gating Approach 81
 7.6.2 Register Constrained Approach 84
 7.6.3 Combined Approach 86
 7.7 Join to Conventional Optimization Techniques on HLS 87
 7.8 Comparison with DRFM Binding Approach 87
Chapter 8 Conclusion and Future Work 89
 8.1 Summary 89
 8.2 Future Work 90
Bibliography 93
Abstract in Korean 103
</body>

