

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Cost-Aware Data Offloading with
Throughput-Delay Tradeoffs

처리율과지연시간의트레이드오프를통한비용

인지데이터오프로딩

2014년 8월

서울대학교대학원

전기 ·컴퓨터공학부

임영빈

Cost-Aware Data Offloading with
Throughput-Delay Tradeoffs

지도교수권태경

이논문을공학박사학위논문으로제출함

2014년 5월

서울대학교대학원

전기 ·컴퓨터공학부

임영빈

임영빈의박사학위논문을인준함

2014년 6월

위 원 장 김종권 (인)

부위원장 권태경 (인)

위 원 최양희 (인)

위 원 최성현 (인)

위 원 백상헌 (인)

Abstract

Cost-Aware Data Offloading with
Throughput-Delay Tradeoffs

Youngbin Im

School of Computer Science & Engineering

The Graduate School

Seoul National University

To cope with recent exponential increases in demand for mobile data, wireless

Internet service providers (ISPs) are increasingly changing their pricing plans and

deploying WiFi hotspots to offload their mobile traffic. However, these ISP-centric

approaches for traffic management do not always match the interests of mobile users.

Users face a complex, multi-dimensional tradeoff between cost, throughput, and de-

lay in making their offloading decisions: while they may save money and receive a

higher throughput by waiting for WiFi access, they may not wait for WiFi if they

are sensitive to delay. To navigate this tradeoff, we develop AMUSE (Adaptive band-

width Management through USer-Empowerment), a functional prototype of a prac-

tical, cost-aware WiFi offloading system that takes into account a user’s throughput-

delay tradeoffs and cellular budget constraint. Based on predicted future usage and

WiFi availability, AMUSE decides which applications to offload to what times of

i

the day. Since nearly all traffic flows from mobile devices are TCP flows, we intro-

duce a new receiver-side bandwidth allocation mechanism to practically enforce the

assigned rate of each TCP application. Thus, AMUSE users can optimize their band-

width rates according to their own cost-throughput-delay tradeoff without relying on

support from different apps’ content servers. Through a measurement study of 20

smartphone users’ traffic usage traces, we observe that though users already offload

a large amount of some application types, our framework can offload a significant

additional portion of users’ cellular traffic. We implement AMUSE on Windows 7

tablets and evaluate its effectiveness with 3G and WiFi usage data obtained from a

trial with 37 mobile users. Our results show that AMUSE improves user utility; when

compared with AMUSE, other offloading algorithms yield 14% and 27% lower user

utilities for light and heavy users, respectively. Intelligently managing users’ com-

peting interests for cost, throughput, and delay can therefore improve their offloading

decisions.

Keywords : Bandwidth management, mobile data, WiFi offloading

Student Number : 2007-21064

ii

Contents

Abstract . i

I. Introduction . 1

1.1 Empowering User Decisions . 1

1.2 Components of AMUSE . 4

1.2.1 User Interface . 5

1.2.2 Bandwidth Optimizer . 5

1.2.3 TCP Rate Controller and Session Tracker 6

II. Related Work . 9

III. Bandwidth Optimizer . 11

3.1 Predicting WiFi Connectivity . 12

3.2 Predicting Future Usage . 13

3.3 User Utility Maximization . 15

3.3.1 Utility Functions . 15

3.3.2 Users’ Optimization Problem 18

3.4 Online Algorithm . 21

IV. Implementation . 23

4.1 Receiver-Side TCP Rate Control 24

V. Measurement . 28

iii

5.1 Data Collection . 28

5.2 Application types . 29

5.3 Offloading practice . 32

VI. Experimental Evaluation . 36

6.1 Bandwidth Optimizer . 36

6.1.1 Experimental Data and Settings 36

6.1.2 Baseline Algorithms . 40

6.1.3 Numerical Results . 42

6.2 Receiver-side TCP rate control . 45

6.2.1 Real network experiments 46

6.2.2 Experiments in emulated networks 46

VII. Discussion . 58

7.1 Application of AMUSE in various data plans 58

7.2 Overhead of location sensing . 59

VIII. Conclusion . 60

Bibliography . 62

Korean Abstract . 67

iv

List of Figures

Fig. 1.1 Overview of AMUSE’s components. 8

Fig. 4.1 Screenshots of the AMUSE prototype. Users can view their monthly

usage and set bandwidth rates for individual applications. 24

Fig. 5.1 Screenshots of the usage monitoring app. 29

Fig. 5.2 Traffic amounts for each category and network type. 33

Fig. 5.3 The ratio of traffic WiFi to cellular network traffic for each appli-

cation type. 34

Fig. 5.4 CDF of the number of periods for which each user uses Email and

Social networking applications. 35

Fig. 6.1 Normalized cumulative usage of iPhone users. 37

Fig. 6.2 Normalized cumulative usage of Android users. 38

Fig. 6.3 CDF of WiFi prediction accuracy. 39

Fig. 6.4 CDF of WiFi prediction accuracy of LifeMap data. 40

Fig. 6.5 An example traffic demand and cellular usage amount under each

offloading algorithm. 41

Fig. 6.6 CDF of relative utility function values compared to AMUSE. . . 43

Fig. 6.7 CDF of relative offloaded traffic amount and amount spent com-

pared to AMUSE. 44

Fig. 6.8 Average offloaded traffic, utility, and cost of heavy and light users

in all traces. 45

Fig. 6.9 Testbed settings. 47

v

Fig. 6.10 Test for various target rates. 49

Fig. 6.11 Test for various smoothing fator values. 50

Fig. 6.12 Test for various rate control window values. 51

Fig. 6.13 Time variation of proposed rate control algorithm. 51

Fig. 6.14 Time variation of TCR. 52

Fig. 6.15 Test for coexistence of rate controlled flows in proposed rate con-

trol algorithm. 53

Fig. 6.16 Test for coexistence of rate controlled flows in TCR. 54

Fig. 6.17 Test for coexistence of a rate controlled flow with non-controlled

flows in proposed rate control algorithm. 55

Fig. 6.18 Test for coexistence of a rate controlled flow with non-controlled

flows in TCR. 55

Fig. 6.19 Test for various TCP variants. 56

Fig. 6.20 Test for the performance in lossy networks. 57

vi

List of Tables

Table. 3.1 Estimated parameters for the utility function (3.1). 18

Table. 5.1 Top 15 applications in WiFi network. 30

Table. 5.2 Top 15 applications in cellular network. 31

Table. 6.1 Basic rate control test using Iperf. Parentheses denote the standard

deviations. 46

Table. 6.2 Application rate control test using HTTP and FTP. Parentheses

denote the standard deviations. 48

vii

Chapter 1

Introduction

Recent unprecedented increases in demand for mobile data traffic have begun

to stress many mobile operators’ networks: Cisco, for instance, predicts that mobile

data traffic will grow at 61% annually from 2013 to 2018, reaching 15.9 exabytes

per month by 2018 [1]. To cope with this surge in data usage, which is driven by

applications such as mobile video, cloud services, and online magazines, many ISPs

(Internet service providers) have adopted tiered pricing plans with monthly data caps

to discourage heavy usage [2]. To further reduce network traffic, many ISPs have also

introduced supplementary networks such as WiFi hotspots or femtocells to offload

their cellular traffic [3–5]. Such supplementary offerings introduce new challenges

for users as they decide which parts of their traffic can be offloaded at what times.

1.1 Empowering User Decisions

Many data plans, especially in the U.S., charge large overage fees when users

exceed a monthly usage cap. While offloading to WiFi reduces cellular data usage,

thus saving users money on their data spending, they must also take into account

WiFi’s intermittent availability and higher throughput performance. At some times,

e.g., while out shopping, a user does not have immediate WiFi access and must wait

for WiFi connectivity. The user then faces a choice:

1

• Don’t wait for WiFi: The user must consume cellular data, using up some of

his data cap, and may experience lower throughput than WiFi. However, she

need not wait for data access, which is important for urgent applications, e.g.

email.

• Wait for WiFi: The user can save money and experience higher throughput,

but must decide how long to wait. Different applications can wait for different

periods of time, e.g., cloud backups might be more delay tolerant than photo

uploads to Facebook. Given each app’s willingness to wait for some period

of time, users must anticipate whether WiFi will be available at that time and

decide whether the potential savings in data offloading and potential increase

in throughput are worth the wait.

Waiting for WiFi also introduces the risk that apps waiting for WiFi must share

the limited 3G bandwidth, should WiFi ultimately not be available. Some apps,

such as videos, will require a large amount of bandwidth; their quality can

suffer significantly if they must share bandwidth with other apps, e.g., cloud

backups.1

Most users will not manually balance these competing factors in making offload-

ing decisions. Thus, we propose a user-side, automated WiFi offloading system called

AMUSE (Adaptive bandwidth Management through USer EMpowerment) that in-

telligently navigates these tradeoffs for the user. AMUSE utilizes WiFi access and

application usage predictions to decide how long application sessions should wait for
1While our systems apply to any form of cellular data, e.g., 3G or LTE networks, we frame our

discussion in terms of 3G data. LTE speeds can exceed WiFi, which makes the users’ tradeoffs more
complicated and AMUSE even more useful.

2

WiFi and, in case WiFi is not available, to optimally allocate 3G bandwidth among

different apps. Building such a system poses both algorithmic and implementation

challenges–not only must the user’s tradeoff between cost, throughput quality, and

delay be quantified and balanced, but we require a way to automatically enforce

AMUSE’s waiting for WiFi and sharing of 3G bandwidth. In solving these problems,

we make the following contributions:

1. We develop a system for cost-aware WiFi offloading that exploits a user’s delay

tolerances for different applications and makes offloading decisions satisfying

her throughput-delay tradeoffs and 3G budget constraints.

2. To enforce AMUSE’s bandwidth allocation decisions for each application, we

implement a practical receiver-side rate control algorithm for TCP.2 The algo-

rithm is fully contained on and driven by end-user devices, making it suitable

for practical deployment as it requires no modification of the TCP server side.

3. In order to analyze current mobile offloading patterns and the potential to of-

fload more traffic from different apps, we conduct a measurement study using

application usage data collected from 20 Android smartphone users for one

week.3 The results reveal several facts that show offloading practice and possi-

bility of smartphone users.

4. We surveyed 100 participants in the U.S. to evaluate users’ tradeoff between

the cost of 3G usage and their willingness to wait for WiFi access. We incorpo-
2We assume that download traffic makes up most of users’ usage, so that the receiver is synonymous

with the user.
3Throughout this work, “app usage data” refers to the volume of data used by each application, not

the time duration of application usage.

3

rate the resulting cost-throughput-delay tradeoff estimates into our model, and

evaluate AMUSE’s performance using these results and 3G and WiFi usage

data collected from a trial with 37 mobile users.

AMUSE is the first WiFi offloading system to fully account for cost, delay, and

throughput in offloading traffic from 3G to WiFi. Other works have considered using

WiFi offloading to reduce cost within a basic delay constraint, e.g., by using predic-

tions of WiFi connectivity to improve offloading [6] or allocating more WiFi band-

width to users who are expected to leave the WiFi coverage area in a short amount of

time [7]. Mobility can also enhance prefetching data over WiFi [8]. Wiffler [9] con-

siders a more sophisticated model of different applications’ delay tolerances, but does

not consider different apps’ bandwidth needs or their need to share 3G bandwidth.

To fully incorporate cost, delay, and throughput, we build an end-to-end mobile

offloading system. In the next section, we describe AMUSE’s components and the

challenges of developing this end-user system.

1.2 Components of AMUSE

Figure 1.1 gives an overview of AMUSE’s components and their interactions.

The system architecture comprises four main modules: the User Interface, Band-

width Optimizer, TCP Rate Controller, and App-Level Session Tracker. The latter

two modules reside in the kernel and are accordingly shaded darker in the control

flow diagram (Fig. 1.1b); these enforce the offloading decisions made by the User

Interface and Bandwidth Optimizer, which reside in the user-space. To illustrate the

system’s full set of interactions, the Bandwidth Optimizer is split into three compo-

4

nents: two prediction modules for app usage and WiFi availability, and an algorithm

that computes utility-maximizing offloading decisions.

1.2.1 User Interface

As suggested by its name, AMUSE’s User Interface interacts directly with the

user, displaying the offloading decisions made as well as the user’s app-level usage

history. The user may also set her preferences on the user interface, e.g., the maximum

budget for 3G usage and delay tolerances for different applications.

1.2.2 Bandwidth Optimizer

The Bandwidth Optimizer makes offloading decisions for the user, given the

preferences set by the user on the User Interface. It consists of the three medium-

shaded components in Fig. 1.1b: app usage prediction, WiFi access prediction, and a

utility maximization algorithm.

AMUSE uses an adaptive user mobility model to predict WiFi availability at

future times (Fig. 1.1b). The app usage prediction component allows AMUSE to

calculate the expected savings from offloading an application session and to allocate

3G bandwidth to all active apps at any given time, giving more bandwidth to the apps

with higher bandwidth requirements.

The user’s offloading decisions at any given time must take into account future

offloading decisions–for instance, a myopic algorithm may delay all sessions in the

morning to 12 noon, if the probability of WiFi access at that time is high. However,

should WiFi not be available then, all of the delayed sessions would have to share

the limited 3G bandwidth, or else wait even longer for WiFi. Thus, at the beginning

5

of each day, AMUSE optimizes over the entire rest of the day, using estimates of

WiFi access probabilities and the size of application sessions at different times (e.g.,

hours). It then refines this initial solution over the day to reflect the observed usage

and WiFi access patterns.

1.2.3 TCP Rate Controller and Session Tracker

Since 99.7% of mobile traffic flows are TCP, we enforce the Bandwidth Opti-

mizer’s 3G bandwidth allocations and offloading decisions with a TCP rate controller

on end-user devices [10]. To do so, the controller modifies the TCP advertisement

window in outgoing acknowledgement (ACK) packets. Unlike typical bandwidth

throttling mechanisms, this rate control is completely specified by the end user on

a per-application basis; thus, for example, file downloads may be delayed to wait

for WiFi, while streaming videos may receive a higher 3G bandwidth and not be de-

layed. The app-level session tracker measures the actual usage for each application as

the rate controller enforces the Bandwidth Optimizer’s decisions. These usage data

are then used to update AMUSE’s prediction modules, as shown in the control flow

diagram (Fig. 1.1b), and are displayed to the user on the User Interface.

In Chapter 2, we discuss prior works that propose functions related to compo-

nents of the AMUSE system. Chapter 3 discusses the Bandwidth Optimizer in more

detail, while Chapter 4 gives an overview of the TCP Rate Controller’s algorithm

and implementation. In Chapter 5, we observe mobile users’ wireless network usage

pattern from the viewpoint of WiFi offloading, and find how much and which kind of

applications are currently offloaded and can be offloaded more. In Chapter 6, we eval-

uate AMUSE’s effectiveness in improving users’ experience, utilizing 3G and WiFi

6

data gathered from 37 mobile users. When compared with two representative offload-

ing algorithms (on-the-spot and delayed [11]), we show that AMUSE increases user

utility by intelligently managing the cost-throughput-delay tradeoff for heavy and

light users. In Chapter 6, we also evaluate the performance of TCP Rate Controller in

various scenarios. We discuss the issues that should be considered to apply AMUSE

in real world in Chapter 7. Finally, we conclude the paper in Chapter 8.

7

Future Usage
Predictor (§II.B)

User
Interface

WiFi Connectivity
Predictor (§II.A)

Deferral and  
Throttle Schedule, 

Statistics

Budget,
User Preferences

Bandwidth
Optimizer (§II)

Application #1 Application #1 Application # Applications

Kernel
TCP/IP protocol stack

TCP Rate Controller
(§III)

Usage DB

Congestion Control
Algorithms

App-level
Session Tracker

Microsoft NDIS Driver

Network Card H/W

(a) System implementation architecture.

U"lity	 Maximiza"on	
Algorithm	

WiFi	 Access	
Predic"on	

App	 Usage	 	
Predic"on	

TCP	 Rate	 Controller	

3G	 Usage	
Budget	

App-‐Level	 Session	
Tracker	

App	 Delay	
Tolerances	

User	 Interface	

App	 Usage	
History	

(b) Control schematic and main modules.

Fig. 1.1. Overview of AMUSE’s components.

8

Chapter 2

Related Work

Recent studies of 3G and WiFi usage traces, e.g. [11] have showed that of-

floading 3G traffic to WiFi can significantly benefit mobile ISPs. Other systems have

demonstrated offloading’s benefits for user experience [6, 8, 9]; other works demon-

strate that WiFi offloading can benefit both ISPs and users [12] and even generate

more revenue for ISPs [13].

Some works have focused on incentivizing users to offload traffic to WiFi. In

[14], the authors develop a utility and cost-based formulation to decide the 3G net-

work load that maximizes the user’s benefit and apply the decided loads using a

modified SCTP implementation in Linux that stripes traffic across multiple inter-

faces. Win-Coupon [15] takes a slightly different perspective and proposes a reverse-

auction scheme to incentivize users to offload their traffic so as to decrease the overall

network. Other works, including [16], consider the energy consumption when mak-

ing an offloading decision. We do not consider energy in this work, but can easily

incorporate the battery consumption into our proposed optimization algorithm.

Several research works have analyzed the traffic of smart devices in order to

understand their user behavior [17], [18], [19], [20], [21]. In particular, [17] exam-

ines users’ traffic diversity, relationship to application types, interactivity, and diurnal

patterns, while [18] investigates the usage patterns of smartphone apps via network-

side measurements. Our work is different from these in that we specifically focus on

9

the potential for WiFi offloading of different applications and incorporate findings on

their delay tolerances.

Unlike most offloading works, AMUSE also controls the 3G bandwidth for dif-

ferent applications. AMUSE is unique in using of receiver-side TCP advertisement

windows to control application-specific 3G bandwidth from the user side. While sev-

eral commercial applications (e.g., [22–24]) provide user-side application rate con-

trol, most require users to manually specify the desired rates. AMUSE provides au-

tomated bandwidth rates and, by conforming to TCP interactions, avoids the TCP

timeouts common to existing user-side rate control applications. Although the TCP

advertisement window is normally used by the TCP receiver to inform the TCP sender

of its available buffer space, other trials [25] have used the advertisement window as

a means to control the rate of applications. However, this approach has been mainly

applied to the enforcement of different application priorities, rather than direct con-

trol of the application rates. Other solutions, such as [26], focus on the edge gateway,

rather than the end user.

10

Chapter 3

Bandwidth Optimizer

In this Chapter, we describe the individual components of AMUSE’s bandwidth

optimization algorithm. Our design follows two principles: 1) AMUSE’s offloading

decisions will be implemented in real time on arriving sessions, and 2) AMUSE must

use only the data and computational resources available on the end user’s device.

Thus, we require simple, yet accurate, algorithms to compute concrete offloading de-

cisions that can be communicated directly to the TCP Rate Controller (cf. Fig. 1.1b).

In the discussion below, we first introduce practical algorithms to predict WiFi ac-

cess and application-specific usage (Sections 3.1 and 3.2). We then incorporate these

predictions into a mathematical allocation framework in Section 3.3 and propose a

heuristic algorithm for computing AMUSE’s bandwidth allocations and offloading

decisions in Section 3.4.

To consider a user’s different delay tolerances on different applications, we

group a user’s traffic into different application types, e.g., streaming, browsing, and

downloads. For practical implementability, we assume that only the most heavily

used (e.g., top five) applications are considered, and denote these collectively as a set

J . We suppose that the day is divided into n discrete periods of time, e.g., 24 hours,

and for each period, we predict both WiFi access and application usage volumes.

Given these predictions, we (i.e., AMUSE) must decide which applications to

offload when, subject to a maximum 3G usage budget. By delaying sessions to fu-

11

ture periods, users may gain WiFi access and the ability to offload; however, if WiFi

is unavailable, the user must send these sessions over 3G, which has a finite band-

width capacity that must be shared among the different applications. AMUSE there-

fore computes a 3G bandwidth allocation when deciding whether to wait for WiFi.

Following the first principle above, we formulate this decision as a multiple choice

knapsack problem, and propose a heuristic solution algorithm.

3.1 Predicting WiFi Connectivity

Since WiFi availability is heavily location-dependent, we predict the probabil-

ities of WiFi access by combining user location prediction with the probabilities of

WiFi access at different locations. We define a “location” to be an area with WiFi

coverage (e.g., a user’s home). To improve our prediction algorithm’s accuracy, we

consider the functional availability of WiFi at different locations: while WiFi is al-

ways physically available at a given location, the user may not access WiFi every

time that she is there. For instance, a user may sometimes connect to WiFi at her

local Starbucks, but may walk by on weekdays without initiating a connection. These

access probabilities also depend on time: when walking by Starbucks in the morning,

a user might habitually stop in to have some coffee. We use a training set of empir-

ical WiFi access data to estimate these time-dependent WiFi access probabilities at

each location, and modify them as we collect more access data.1 For a location l, we

denote the probability of WiFi access during period k as vk(l). We use Lk to denote

the set of observed locations in period k.
1One may refine these calculations by using only weekday or only weekend data, as user mobility

will likely differ on weekdays and weekends.

12

Given the time- and location-specific probabilities vk(l), we then predict overall

WiFi access by incorporating predictions of users’ future locations. We define wk to

be the overall WiFi probability in period k. We use a second-order Markov chain for

the location prediction, which has been shown to be highly accurate [27]. Algorithm 1

summarizes the calculation of overall WiFi access probabilities. We use the notation

pk+2
l (lklk+1) to denote the probability that a user is at location l ∈ Lk+2 during

period k+2, given his locations lk in period k and lk+1 in period k+1. To calculate

these pk, we define Nk(s) as the number of times that s is observed, where s is a

sequence of locations that ends in period k; the observed location in each period k

is denoted by λk. We update the pk values using the empirical probabilities of a user

being at location k.

3.2 Predicting Future Usage

At the beginning of each day, we use previous data to predict the size sj(k) of

each application type j ∈ J’s usage in each period k. To accommodate the depen-

dence of session size on the amount of bandwidth allocated, our definitions of ses-

sion “size” depend on the application: for fixed-volume application sessions such as

downloads, in which the volume (MB) does not depend on the available bandwidth,

we define the session size as its volume. For fixed-time sessions such as streaming,

in which the volume does depend on the bandwidth, we define the size as the time

to complete. We use Jv to denote the set of fixed-volume and Jt the set of fixed-

time application types. We stress that our prediction algorithms do not depend on the

definition of session size; they rely only on users’ consistency from day to day. We

13

Algorithm 1: Computation of WiFi access probabilities over the rest of the day
in period i.

if i = 1 then
for k ← 1 to n do

wk ←
∑

l∈Lk
vk(l)

Nk(l)
N

, N is the number of days of data. // Calculate WiFi

probabilities for the next n periods.

if i > 1 then
for k ← 2 to n do

forall the l ∈ Lk , lk−1 ∈ Lk−1, lk−2 ∈ Lk−2 do
if Nk−1(lk−2lk−1) > 0 then

pkl (lk−2lk−1)←
Nk(lk−2lk−1l)

Nk−1(lk−2lk−1)

else

pkl (lk−2lk−1)←
Nk(lk−1l)

Nk−1(lk−1)

wk ←
∑

l∈Lk
pkl (λk−2λk−1)vk(l)

estimate the future usage sj(k) by taking a moving average of the observed usage

sizes σj(k) of application j in period k over some fixed number of days.2

In updating our usage estimates, we modify the moving-average calculation to

take into account our deferral recommendations. Since a user may delay application

usage to another time in order to offload it to WiFi, we “shift the usage back” in

order to evaluate and detect changes in the underlying usage pattern over the day. We

perform these adjustments if the observed usage size for application j in period i is

much less than the predicted sj(i), i.e., the user has shifted her usage of application j

from period i. To account for the uncertainty in our predictions, we suppose that the

actual usage deferred to period k from each period i is proportional to the predicted

usage deferred; this assumption ensures that we do not calculate that more usage was

deferred to period k than the actual usage observed in that period. Thus, for each
2Other prediction methods (e.g., ARIMA) can be substituted for a moving average without affecting

the overall structure of our system.

14

application j ∈ J and period i < k, we adjust the observed usage σj(i) and σj(k) by

σj(i)← σj(i) +

n∑
k=i+1

cji (k)sj(i)σj(k)

sj(k) +
∑k−1

l=1 cjl (k)sj(l)
,

σj(k)← σj(k)−
k−1∑
i=1

cji (k)sj(i)σj(k)

sj(k) +
∑k−1

l=1 cjl (k)sj(l)
.

Here cji (k) is an indicator variable taking the value 1 if application j is deferred from

period i to period k and 0 otherwise.

3.3 User Utility Maximization

In this section, we formulate the user’s offloading decision problem, assuming

the future WiFi probabilities wk and usage sj(k) are known. In the discussion be-

low, the phrase “originally in period i” indicates that the application session(s) under

consideration are completed in period i if they are not deferred to a future period.

3.3.1 Utility Functions

To mathematically formulate the user’s offloading decision problem, we need a

concrete measure of the user’s tradeoffs between cost, throughput, and delay. Thus,

for a given application type j in period i, we derive expressions for users’ utility of

completing those application sessions over 3G and over WiFi. This utility is deter-

mined by the per-volume price p of 3G, the amount of time t the session is deferred,

the bandwidth speed r at which the session is completed, and the size s of the session.

We use Uj(p, t, r, s) to denote the utility of application j ∈ J .

Though many functions could be used as the Uj , we note that these should be

15

decreasing in p and t (price and time deferred) and increasing in r and s. We use the

economic principle of diminishing marginal utility to argue that as s or r becomes

larger or t becomes smaller, users’ marginal utility from s or r should decrease, and

the marginal utility from t should increase. For simplicity, we take the units of t to

be the number of periods deferred, and do not consider sessions’ timing within the

period to which they are deferred. Since different users will have different tradeoffs

between cost, quality, and delay, we suppose that the Uj functions take the same form,

but have different parameters that depend on the particular application and user.

The above guidelines still leave many possible utility functions. To narrow these

down, we conducted an online survey of over 100 users, primarily students, faculty

and staff from U.S. universities. For each application in Table 3.1, we gave partic-

ipants the cost to complete one application session over 3G, as well as the speed

of WiFi relative to 3G. We then asked the participants how long they would wait

for WiFi access instead of immediately completing the session over 3G; for each

question, we offered five options for the maximum amount of time participants were

willing to wait, ranging from “I won’t wait” to “as long as necessary.”3

We find that our survey data provides a good fit with the functional form

Uj(p, t, r, s) = Cj exp (−ν + rν − µt)− ηprs j ∈ Jt

Uj(p, t, r, s) = Cj exp (−(s/r)ν − µt)− ηps j ∈ Jv,

(3.1)

where Uj denotes the parameterized utility function for application types j; prs for

j ∈ Jt and ps for j ∈ Jv denote the cost of each session; and Cj , µ, ν, and η

3The survey questions are available in [28].

16

are nonnegative parameters that depend on j. These functions satisfy several desir-

able properties: for example, the constants Cj allow for different user priorities for

different types of sessions (e.g. a user intrinsically derives more utility from certain

applications, even with zero delay or time to completion).4 For j ∈ Jv, the s/r term

in the exponential represents the time to completion, while for j ∈ Jt, the bandwidth

r represents the quality of the streaming video.

Table 3.1 shows the parameter values calculated for each session type. To esti-

mate these parameter values, we used the probability that a user would not wait for

WiFi as the utility function value, with b, t, r and s measured relative to their values

for WiFi. We assume a negligible cost term for low-volume (e.g., email) sessions.

We then used nonlinear curve-fitting methods to calculate the utility function param-

eters, and found a small average squared-error of 0.05 for each survey question, upon

comparing the actual answers with our estimates.

We see that the Cj coefficients roughly match our expectations, with email the

most important and social networking (photo uploads) the least important applica-

tions. The parameter µ represents the amount of time that a user will wait to start

an application, e.g., in anticipation of WiFi access or higher 3G speeds: it is largest

(i.e., users are least willing to wait) for browsing and email. The importance of avail-

able throughput is parameterized by ν, and is highest for video and lowest for social

networking.
4The −ν in the exponential for j ∈ Jt is included for normalization: with maximum bandwidth 1

and no delay, we then have Uj = Cj .

17

Table. 3.1. Estimated parameters for the utility function (3.1).

C µ ν η

Email 0.9848 0.1527 0.1527 assumed 0
Browsing 0.6865 0.3269 0.0263 assumed 0

Video 0.9399 0.0144 4.3785 0.0986

Social netw. 0.4738 0.006 0.006 0.0986

Downloads 0.6737 0.0097 0.0097 0.0986

3.3.2 Users’ Optimization Problem

We now use the utility functions (3.1) to formulate the user’s optimization prob-

lem. To represent possible 3G and WiFi bandwidth speeds, we normalize the volume

units so that the fixed per-second WiFi speed equals 1. The 3G speed γ is chosen

from a finite subset of possibilities Γ. For each γ ∈ Γ and period k ≥ i, we define the

indicator variables cji (k, γ) to be 1 if a session of type j is deferred from period i to

period k and assigned 3G speed γ, and 0 otherwise. The user’s expected utility from

WiFi in period k, for a session of type j originally in period i, is then

∑
γ∈Γ

cji (k, γ)

wkUj (0, k − i, 1, sj(i)) ,

while the expected utility from 3G in period k is

∑
γ∈Γ

cji (k, γ)(1− wk)Uj (p, k − i, γ, sj(i)) .

18

The user wishes to maximize the sum of these utilities over all (original) periods i

and application types j:

max
cji (k,γ)

n∑
i=1

[∑
j∈J

(∑
k≥i

(∑
γ∈Γ

(
wkUj

(
0, k − i, 1, sj(i)

)
+

(1− wk)Uj

(
p, k − i, γ, sj(i)

))
cji (k, γ)

))]
(3.2)

s.t.
∑
k≥i

∑
γ∈Γ

cji (k, γ) = 1; cji (k, γ) ∈ {0, 1} , (3.3)

where (3.3) ensures that each application j in period i is deferred to only one period

k (we may have k = i), with 3G speed γ. This optimization is performed subject to

two constraints: a budget constraint on expected 3G usage, and capacity constraints

on the 3G bandwidth in each period.

We assume that the user specifies a maximum monthly budget B for 3G usage.

We then calculate a daily budget B, taking into account both the number of days

remaining in the month (denoted by m) and the amount of budget Br that has not yet

been spent. To allow the user some flexibility, we multiply the average usage Br/m

by the factor exp
(
1−m−1

)
, which equals 1 only if m = 1: at the end of the month,

the user cannot exceed the remaining budget. The daily budget B is then defined as

Br exp
(
1−m−1

)
/m, and the budget constraint is

p

n∑
i=1

[∑
j∈Jv

∑
k≥i

∑
γ∈Γ

cji (k, γ)(1− wk)sj(i)

+

∑
j∈Jt

∑
k≥i

∑
γ∈Γ

cji (k, γ)(1− wk)γsj(i)

] ≤ B, (3.4)

19

The 3G bandwidth capacity constraints ensure that the sum of the bandwidth al-

located to each application in a given period does not exceed the fixed maximum

bandwidth, which we denote as β. Mathematically, this constraint is

(1− wl)
∑
i≤l

∑
j∈J

∑
γ∈Γ

cji (l, γ)γ ≤ (1− wl)β. (3.5)

We include a 1 − wl term on each side so that if wl = 1 and all sessions complete

over WiFi, any 3G speed γ may be chosen. Putting (3.2-3.5) together, we obtain the

optimization problem

max
cji (k,γ)

n∑
i=1

[∑
j∈J

(∑
k≥i

(∑
γ∈Γ

(
wkUj

(
0, k − i, 1, sj(i)

)
+

(1− wk)Uj

(
p, k − i, γ, sj(i)

))
cji (k, γ)

))]
(3.6)

s.t. p
n∑

i=1

[∑
j∈Jv

∑
k≥i

∑
γ∈Γ

cij(k, γ)(1− wk)sj(i)

+

∑
j∈Jt

∑
k≥i

∑
γ∈Γ

cij(k, γ)(1− wk)γsj(i)

] ≤ B (3.7)

(1− wl)
∑
i≤l

∑
j∈J

∑
γ∈Γ

cij(l, γ)γ ≤ (1− wl)β ∀ l (3.8)

∑
k≥i

∑
γ∈Γ

cij(k, γ) = 1 ∀ j ∈ J ; i = 1, 2, . . . , n (3.9)

cij(k, γ) ∈ {0, 1} .

We can view the constraints (3.9) as choosing exactly one item from a knapsack,

where each (i, j) pair for i = 1, 2, . . . , n and j ∈ J is associated with a knapsack

20

consisting of items indexed by the variables k ≥ i and γ ∈ Γ. With this interpretation,

(3.6-3.9) can be seen as a multidimensional, multiple choice knapsack problem.

3.4 Online Algorithm

In this section, we present an online algorithm to solve the optimization problem

(3.6-3.9). At the beginning of each day, the user computes an initial solution, given

estimates of the wk and sj(k). As the wk estimates and known usage amounts are

updated over the day, this solution is refined.

While various algorithms exist to compute solutions of the knapsack problem

(3.6-3.9) to different degrees of accuracy, we use a Lagrange-multiplier based solu-

tion [29] that has relatively small computational overhead and generally returns good

approximations to the optimum.5 Given a feasible solution, the algorithm improves

the solution while maintaining its feasibility, allowing us to easily update previously

computed solutions over the day.

This Lagrange multiplier algorithm starts from a solution that maximizes (3.6)

without considering the constraints (3.7-3.9). The solution is then adjusted so that all

constraints are satisfied, beginning with the “most violated” (i.e., the constraint with

largest Lagrange multiplier). This process repeats until no constraints are violated,

and the solution can then be improved by adjusting the solution one variable at a time,

so as to most increase the objective value while still not violating the constraints.6

5Since our estimates of WiFi access and future usage are already approximations, even an exact
solution to the optimization (3.6-3.9) will be an approximation of the “true” optimum.

6If the constraints are especially tight, the Lagrange multiplier algorithm may not yield a solution.
While in practice such a situation is unlikely to occur, we can easily recover from this failure by taking
as the initial allocation the worst-case scenario, in which all sessions are given the lowest possible
bandwidth; we assume that this is a feasible solution.

21

Algorithm 2: Bandwidth allocation over a day.
i← 1 // The current period is denoted by i.

B ← (Br/m) exp
(
1−m−1

)
// Calculate the budget for the day.

Calculate WiFi probabilities using Algorithm 1 with i = 1.
Calculate predicted usage over all n periods using a moving average.
Allocate bandwidth by approximately solving (3.6-3.9).
for i← 2 to n do

B ← B − Si−1 // Remaining daily budget, given the spending Si−1 in
period i− 1.

Update WiFi probabilities using Algorithm 1.
Update bandwidth allocations by re-solving (3.6-3.9) for the remaining n− i+ 1 periods.

As the user consumes data over the day, we update both the remaining daily

budget B and our predictions of future WiFi connectivity {wk}. The new optimiza-

tion problem over the remainder of the day can then be solved by taking the existing

solution as the initial point of our Lagrange multiplier algorithm. We note that this

solution may well be feasible: the 3G capacity constraints do not change unless WiFi

becomes definitely available in some period (wk → 1), in which case that period k’s

capacity constraint is removed. Thus, if the existing solution satisfies the new budget

constraint, we can skip directly to the “solution improvement” step, which signif-

icantly reduces the computational overhead. Algorithm 2 presents this full online

algorithm, along with the WiFi and app usage predictions (Sections 3.1 and 3.2).

22

Chapter 4

Implementation

We implemented an AMUSE prototype on Windows 7 tablets with the system

architecture shown in Fig. 1.1a. We used the Windows Filtering Platform (WFP) [30]

to track application usage and implement a user-side TCP rate control algorithm to

control each application’s download rate.

The AMUSE prototype displays both total usage and the usage of individual

applications on a daily, weekly, and monthly basis, as well as the current upload and

download rates. We also provide user interfaces from which the user can, if he so

chooses, set the download rate of each application and configure his billing starting

date and data plan (e.g., 2GB per month). Figure 4.1 shows screenshots of these

features.

For the evaluation of our user-side TCP rate control algorithm in Section 6.2, we

also implemented the algorithm on Ubuntu 14.04 LTS. We utilized libnetfilter queue

[31], a userspace library providing an API to packets that have been queued by the

kernel packet filter. Using libnetfilter queue, we can modify the packet in userspace.

We next describe the details of our receiver-side TCP rate control algorithm, and

experimental data verifying its efficacy is presented in Section 6.2.

23

$ DataWiz

Monthly Usage

Monthly cap

Current Usage Projected Usage

150

100

50

0

Jan Feb Mar Apr May Jun Jul Aug

Cumulative usage of this month

Monthly Usage History

150

100

50

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Jan Feb Mar Apr May
Monthly Usage

Setup

Usage

Home

3G ▼

Bandwidth Control

$ DataWiz

Bandwidth Control
David-PC
Upload Speed 1.56 Mbps
Download Speed 0.12 Mbps

Applications 80
Processes 34
Connections 70

Monthly Usage

Setup

Usage

Home

Bandwidth Control

Currently running Top 10 bandwidth used

Fig. 4.1. Screenshots of the AMUSE prototype. Users can view their monthly usage
and set bandwidth rates for individual applications.

4.1 Receiver-Side TCP Rate Control

A TCP sender adjusts a session’s rate based on its congestion window size

(cwnd). The ACK packets from the receiver act as a feedback to the sender on how

much has been sent and how much more can be sent to the receiver. We use this

ACK clocking to shape the incoming/downloading rates of TCP traffic, by modify-

ing the TCP advertisement window size (rcv wnd) field in each ACK packet using

the WFP driver (libnetfilter queue in Linux). The idea behind this approach is that a

24

TCP sender cannot send more than min (cwnd, rcv wnd). While one could instead

shape the TCP traffic rates by adjusting the round-trip time (RTT) of each flow (i.e.,

stretching each ACK packet), this latter approach increases the overall response time

and renders some interactive or video TCP applications useless. Modifying the ad-

vertisement window size does not increase the RTT of each flow, making it suitable

for all TCP applications. We verify this with a experiment in Section 6.2.

Unlike current traffic control tools, our proposed control mechanism does not

forcibly drop incoming packets, a measure that can induce such undesirable side ef-

fects as frequent TCP timeouts. The principle behind our mechanism is as follows:

we increase the size of the advertisement window if the traffic rate recently received

is smaller than the target bandwidth, and decrease it if the traffic rate recently re-

ceived is larger than the target bandwidth. With this approach, we can implement the

bandwidth control entirely at the TCP receiver. The sender is not modified, but it will

react to the advertisement window from the receiver according to TCP flow control.1

Algorithm 3 presents the pseudo code of our implementation. The algorithm

first initializes the adv wnd to the default value (256 bytes) when the connection

is set up, and periodically calculates the traffic throughput for each application.2

The throughput is obtained by dividing the received bytes (bytes) by the interval

length (interval). Since we initialize the received bytes if interval becomes larger

than rate control win, we calculate the throughput of maximum rate control win

period. If the throughput for a given period is smaller than the target bandwidth

(target BW), we increase the advertisement window size by an amount (inc) pro-
1In order to not hurt a user’s response time with short-lived TCP flows, the algorithm only runs after

5 secs, during which these short-lived flows can complete their transfers.
2We set this period to RTT, since the effect of change in the advertisement window will be detected

only after one RTT.

25

Algorithm 3: Receiver-side TCP rate control.
Initialization:
target BW ← // Desired bandwidth (bytes/sec)
min adv win← 2 (bytes)
adv win← 256 (bytes)
last check time← current time (sec)
throughput check time← current time (sec)
rate control win← 1 (sec)
bytes← 0 (bytes)

// accumulated received bytes for current period
α← 0.1 // smoothing factor

For each TCP data and ACK packet:
begin

if a data packet is received then
bytes← bytes+ packet len
if current time− last check time > RTT then

interval← current time− throughput check time
throughput← bytes/interval

inc← adv win ∗ target BW−throughput
throughput

∗ α
adv win← adv win+ inc
if adv win > rcv buf size then

adv win← rcv buf size

else if adv win < min adv win then
adv win← min adv win

last check time← current time
if interval > rate control win then

bytes← 0
throughput check time← current time

if an ACK packet is ready to be sent then
set the advertisement window of the ACK to adv win

portional to the deficit throughput. Similarly, if the throughput is larger than the target

bandwidth, we decrease the size of the advertisement window by an amount propor-

tional to the surplus throughput. Depending on the increase/decrease of the adver-

tisement window, the TCP sender will increase or decrease the rate of the traffic

accordingly, assuming its congestion window is mostly larger than its advertisement

window. Here, we multiply the deficit/surplus bandwidth by a ratio α, in order to

reduce the oscillation of throughput due to the drastic window size changes. We use

α = 0.1 after experimentally determining this value’s efficacy in achieving the target

26

Algorithm 4: Calculation of round trip time.
Initialization:
last timestamp← 0
timestamp sent time← 0
RTT ← 0
rttV ar ← 0

For each TCP data and ACK packet:
begin

if a packet is received then
echo←TSecr of the data packet’s timestamp option
if last timestamp ̸= 0 and echo ≥ last timestamp then

interval = current time− timestamp sent time
if RTT = 0 then

RTT ← interval
rttV ar ← RTT/2

else
rttV ar ← rttV ar ∗ 3/4 + abs(RTT − interval)/4
RTT ← RTT ∗ 7/8 + interval/8

last timestamp← 0
timestamp sent time← 0

if a packet is ready to be sent then
last timestamp← TSval of the ACK packet’s timestamp option
timestamp sent time← current time

bandwidth in several different environments. We prevent the advertisement window

size from moving above the maximum buffer size (rcv buf size) and below mini-

mum window size (min adv win).

To calculate the RTT at TCP receiver, we devised Algorithm 4 whose approach

is similar to [32]. The approach in [32] is for estimation of the RTT in the middle of

the end-to-end path, while ours is a receiver-side RTT estimation method. We record

the timestamp value and sending time when a TCP timestamp option is sent. Then

when the echo of the timestamp sent is incoming, we calculate the interval between

the timestamp sending time and echo reception time. Using this interval we update

the RTT and RTT variation estimations according to the calculation method used in

TCP standard [33].

27

Chapter 5

Measurement

We conduct a measurement study in order to analyze mobile users’ network us-

age pattern from the viewpoint of WiFi offloading. Specifically, in Section 5.2 we

show that the application types considered in Table 3.1 comprise a large portion of

users’ cellular traffic. In Section 5.3, we examine the degree to which these applica-

tions are already offloaded and their potential for more offloading.

5.1 Data Collection

To collect empirical traffic data for the measurement study in this chapter, we

recruited smartphone users to participate in our trial. We recorded the data by imple-

menting a usage monitoring app and installing it on users’ phones. Figure 5.1 shows

the screenshots of the usage monitoring app, which informed users of their overall

usage over different timescales and usage at different geographical locations.

We collected application usage data from 20 Android smartphone users in Alaska

for 7 days, including application package names and categories and upload and down-

load usage amounts for each application in bytes. To compare AMUSE to other of-

floading algorithms in Chapter 6, we also collected another data set from an addi-

tional 12 Android users and 25 iPhone users in the U.S. This second dataset includes

participants’ 3G and WiFi usage, WiFi availability, and user locations at a ten minute

28

Fig. 5.1. Screenshots of the usage monitoring app.

granularity.1

5.2 Application types

1We do not collect iPhone application usage data due to iOS implementation restrictions.

29

Table. 5.1. Top 15 applications in WiFi network.

Index Package name Upload(%) Download(%) Total(%) Type

1 Streaming Media 70.20 66.38 68.14 Video
2 android.process.media 3.28 3.26 3.27 Video
3 com.google.android.music:main 3.22 2.77 2.98 Unclassified
4 com.google.android.music:ui 3.20 2.75 2.96 Unclassified
5 com.android.email 2.46 2.59 2.53 Email
6 com.emogoth.android.phone.mimi 2.67 2.29 2.46 Social networking
7 com.marvel.capinstaller 1.77 1.52 1.63 Downloads
8 com.android.browser 1.23 1.69 1.48 Browsing
9 com.clearchannel.iheartradio.controller 1.48 1.27 1.37 Unclassified
10 com.facebook.katana:providers 1.07 1.30 1.19 Social networking
11 com.facebook.katana 0.93 1.31 1.13 Social networking
12 com.motorola.process.system 0.05 2.04 1.12 Unclassified
13 com.rhythmnewmedia.android.e 0.81 1.10 0.97 Unclassified
14 com.ninegag.android.app 0.69 0.65 0.67 Unclassified

Others 6.93 9.10 8.10 -

30

Table. 5.2. Top 15 applications in cellular network.

Index Package name Upload(%) Download(%) Total(%) Type

1 Streaming Media 5.70 42.64 33.77 Video
2 com.android.email 5.64 5.59 5.60 Email
3 android.process.media 4.03 5.96 5.50 Video
4 com.facebook.katana 7.47 3.86 4.73 Social networking
5 com.android.browser 6.78 3.33 4.16 Browsing
6 com.google.android.music:main 0.04 5.27 4.01 Unclassified
7 com.facebook.katana:providers 6.30 2.51 3.42 Social networking
8 com.rhythmnewmedia.android.e 5.26 1.99 2.78 Unclassified
9 com.pandora.android 4.69 1.49 2.26 Unclassified
10 com.noinnion.android.greader.reader 4.42 1.40 2.12 Unclassified
11 com.motorola.blur.service.main 2.89 1.00 1.45 Unclassified
12 com.motorola.contacts 2.89 0.94 1.41 Unclassified
13 com.alphonso.pulse 2.17 1.07 1.33 Social networking
14 com.motorola.process.system 0.35 1.64 1.33 Unclassified
15 com.clearchannel.iheartradio.controller 1.07 1.25 1.21 Unclassified

Others 40.28 20.08 24.93 -

31

In Chapter 3, we classify user’s traffic into 5 application types (i.e. Email, Brows-

ing, Video, Social networking, Downloads). In this section, we verify that these ap-

plication types comprise most of users’ traffic by volume, indicating that AMUSE

covers most cellular traffic. In Tables 5.1 and 5.2, we list the top 15 applications for

WiFi and cellular networks, respectively. To identify the application types, we manu-

ally searched for the package names in the Android application market and used the

application descriptions there. Packages not found in the Android application market

were classified using the name itself (e.g. com.android.email is classified as “Email”).

Package names that cannot be identified using these methods are designated as “Un-

classified.” In the case of cellular network, the top five applications correspond to

the application types in Table 3.1, accounting for 54% of the total cellular traffic.

From these observations, we can conclude that our offloading mechanism can han-

dle a large portion of mobile users’ cellular traffic, demonstrating the possibility of

significantly reducing the data cost.

5.3 Offloading practice

From users’ usage traces, we find that users are already offloading a large portion

of their traffic, but a large amount of video and social networking cellular traffic still

runs over WiFi and can be delayed for offloading. In Figure 5.2, we illustrate the

amount of upload and download traffic for each application type in cellular and WiFi

networks. As expected, the amount of WiFi traffic is much larger than that of cellular,

and the amount of download traffic is larger than the upload traffic.

As in [1], video traffic accounts for the largest portion of traffic for WiFi up-

32

 0

 5000

 10000

 15000

 20000

 25000

Em
ail

Brow
sing

Video

Social
netw

orking

D
ow

nloads

U
ncategorized

T
ra

ff
ic

 A
m

o
u

n
t(

M
B

)

Application Type

WiFi Upload
WiFi Download
Cellular Upload
Cellular Download

Fig. 5.2. Traffic amounts for each category and network type.

loads/downloads and cellular downloads (74, 70, 49% respectively). For these types

of traffic, the order of the application types according to the traffic amount is Video,

Social networking, Email, Browsing, and Downloads. In the case of cellular up-

load, the traffic amount is in the order of Social networking-Browsing-Email-Video-

Downloads. We find that 84% of the total upload and 66% of the total download

traffic uses WiFi.

To investigate the fraction of each application’s traffic that is offloaded to WiFi

networks, we calculate the ratio of WiFi to cellular upload and download traffic for

all the application types, as shown in Figure 5.3. If this ratio is large, it means that

the users already offload their traffic to WiFi for that application type, either because

that application type is delay-tolerant or because it requires WiFi’s high bandwidth

(e.g., video applications).

33

 0.1

 1

 10

 100

Em
ail

Brow
sing

Video

Social netw
orking

D
ow

nloads

U
ncategorized

W
iF

i/
c
e
llu

a
r

tr
a
ff
ic

 r
a
ti
o

Traffic Type

Upload
Download

Fig. 5.3. The ratio of traffic WiFi to cellular network traffic for each application type.

From Figure 5.3, we see that different application types show different ratios.

In particular, the Video and Download types show large values for both upload and

download traffic. This coincides with the small values of µ in Table 3.1 for these

application types. Video requires high bandwidth and has high cost generally, incen-

tivizing users to wait for WiFi in order to use high bandwidth. However, by comparing

the ratios for Video and Downloads, we observe that users wait more for Video than

for Downloads. While a significant fraction of video and downloads are offloaded,

the high delay tolerance of Download apps indicates that more offloading is possible.

We also see that the Email and Social networking applications have some of-

floading potential. Figure 5.4 shows CDFs for the number of periods in which a

user uses E-mail and Social networking applications. We observe that about 40% of

users use WiFi data for Email and Social networking applications 30% of the time.

Over cellular, the data usage frequency decreases, but 20% of users spend significant

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

Time (Hours)

WiFi-Email
WiFi-Social Networking

Cellular-Email
Cellular-Social Networking

Fig. 5.4. CDF of the number of periods for which each user uses Email and Social
networking applications.

amounts of time on email and social networking. This high usage frequency indi-

cates that some Email and Social Networking traffic can be offloaded if a user does

not need to wait very long for WiFi access.

35

Chapter 6

Experimental Evaluation

6.1 Bandwidth Optimizer

To evaluate the effects of AMUSE’s Bandwidth Optimizer (Algorithm 2 in

Chapter 3) on users’ offloading experience, we collected 3G and WiFi usage and

mobility data from an additional 12 Android and 25 iPhone users over a period of 19

days and one week, respectively, as explained in Section 5.1. We then simulate the

performance of AMUSE’s bandwidth optimizer, taking the recorded usage data as

the historical usage, and compare AMUSE’s performance with two other known of-

floading algorithms. Our results show that AMUSE can both reduce users’ spending

and improve their utility compared with these two benchmarks.

6.1.1 Experimental Data and Settings

Since some of our users exhibited very similar traffic patterns and some showed

very limited data usage, we choose sixteen representative users’ data on which to

run the AMUSE simulation (eight each for iPhone and Android). Figures 6.1a and

6.1b represent the normalized cumulative usage of selected iPhone users for cellular

and WiFi, respectively. The normalized cumulative usage of selected Android users

for cellular and WiFi networks are shown in Figure 6.2a and 6.2b. We can observe

that the chosen representative users show diverse usage patterns in both WiFi and

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

N
o
rm

a
liz

e
d
 C

u
m

u
la

ti
v
e
 U

s
a
g
e

Time (Hours)

user 1
user 2
user 3
user 4
user 5
user 6
user 7
user 8

(a) Cellular usage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

N
o
rm

a
liz

e
d
 C

u
m

u
la

ti
v
e
 U

s
a
g
e

Time (Hours)

user 1
user 2
user 3
user 4
user 5
user 6
user 7
user 8

(b) WiFi usage.

Fig. 6.1. Normalized cumulative usage of iPhone users.

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

N
o
rm

a
liz

e
d
 C

u
m

u
la

ti
v
e
 U

s
a
g
e

Time (Hours)

user 9
user 10
user 11
user 12
user 13
user 14
user 15
user 16

(a) Cellular usage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

N
o
rm

a
liz

e
d
 C

u
m

u
la

ti
v
e
 U

s
a
g
e

Time (Hours)

user 9
user 10
user 11
user 12
user 13
user 14
user 15
user 16

(b) WiFi usage.

Fig. 6.2. Normalized cumulative usage of Android users.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Accuracy (%)

Android users
iPhone users

Fig. 6.3. CDF of WiFi prediction accuracy.

cellular networks. We use three days of data as each user’s usage history, and run the

simulation assuming hour-long periods. The user’s monthly budget for 3G data usage

is chosen from a truncated normal distribution between $20 and $40 (2 to 4 GB at a

unit price of $10/GB).

To verify that our three-day training set of data is sufficient to simulate AMUSE,

we test the accuracy of our WiFi prediction algorithm on this dataset. To do so, we

define the prediction accuracy as follows: if the probability of WiFi access for a given

user in a given future period is greater (respectively less) than 0.5 and we observe (re-

spectively do not observe) WiFi access in that period, we classify the prediction as

“accurate.” Otherwise, we call the prediction “inaccurate.” We then divide the num-

ber of accurate predictions by the total number of predictions for each user to find

the prediction accuracies. As shown in Figure 6.3, we observe a 64 – 90% predic-

tion accuracy over the eight iPhone users and a 67 – 97% prediction accuracy over

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Accuracy (%)

Fig. 6.4. CDF of WiFi prediction accuracy of LifeMap data.

eight Android users, indicating that our data is sufficient for producing meaningful

simulation results. To further inspect the prediction accuracy of our WiFi prediction

algorithm, we also tested with other open mobility traces. We used the data of 21

users who have enough records needed for prediction from the dataset collected in

LifeMap project [34]. We obtained the similar results with our dataset as shown in

Figure 6.4.

6.1.2 Baseline Algorithms

We compare AMUSE’s performance to two baseline algorithms: on-the-spot

offloading and delayed offloading [11].

On-the-spot offloading offloads traffic to WiFi opportunistically: users send their

traffic over WiFi if they are connected to a WiFi network at that time, and switch to 3G

if they move outside of the WiFi coverage area. No sessions ever wait for WiFi, which

40

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm
 0

 1

Tr
af

fic
 A

m
ou

nt
 (

KB
)

W
iF

i A
va

ila
bi

lit
y

Time

WiFi Availability
Traffic Demand

AMUSE
On-the-spot

Delayed

Fig. 6.5. An example traffic demand and cellular usage amount under each offloading
algorithm.

may lead to higher spending as compared with AMUSE – AMUSE allows delay-

tolerant sessions to wait for WiFi, thus saving users money. The delayed offloading

algorithm forces all traffic to wait up to a fixed time limit for WiFi access (1 hour

in our simulations). If WiFi becomes available before this time, the waiting traffic is

sent over WiFi; otherwise, it is sent over 3G. While this algorithm may offload more

traffic than AMUSE and thus save users money, it does not consider users’ delay

tolerances: even urgent sessions are forced to wait for some time. Moreover, if WiFi

is not available at the end of the fixed time limit, the sessions will complete over 3G

anyway, costing users money and making them wait.

In Figure 6.5, we show an illustrative example scenario that explains how AMUSE

operates compared to other algorithms in making offloading decisions. Figure 6.5 il-

lustrates the cellular traffic demand and WiFi availability of one user for 8 hours.

At 1pm, the traffic demand is larger than other times, and WiFi is available at 3pm

41

and 7pm. The amount offloaded with each offloading algorithm can be calculated

from the difference in total demand and traffic for each algorithm. Since AMUSE

predicts the WiFi availability and delays longer than 1 hour if the utility is increased,

it offloads a considerable amount of the traffic in 1pm to 3pm. On the other hand,

On-the-spot offloading offloads only the traffic at 3pm and 7pm when the WiFi is

available. Delayed offloading offloads more than On-the-spot offloading by delaying

the traffic of 2pm and 6pm to 3pm and 7pm, respectively. However, since it cannot

predict the WiFi availability of 3pm at 1pm, it cannot delay the traffic of 1pm to 3pm,

thus losing the opportunity to offload. Moreover, since it blindly delays the traffic by

one hour if the WiFi is not available, the traffic of 12, 1, 4, 5pm is delayed but ulti-

mately transmitted by 3G, decreasing users’ utility. AMUSE, on the other hand, does

not always prefer offloading to transmitting on 3G network. For example, AMUSE

delays only some traffic at 1pm, since the expected utility of transmitting over 3G is

larger than that of waiting for higher bandwidth and lower cost WiFi.

6.1.3 Numerical Results

Figure 6.6 plots the distributions of relative utility values under our benchmark

algorithms compared to those under AMUSE. For each user, both benchmark algo-

rithms decrease the utility. This decrease is particularly dramatic for one user, whose

utility values with on-the-spot and delayed offloading are only 8 and 23%, respec-

tively, of the utility under AMUSE. On average, the utility of on-the-spot offloading

is 19% less than that of AMUSE, while that of delayed offloading is 22% lower.

AMUSE yields higher utility values than on-the-spot offloading due to offload-

ing more traffic onto WiFi: Fig. 6.7 shows the distributions of relative amounts of

42

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -80 -60 -40 -20 0

C
D

F

Relative Utility (%)

On-the-spot
Delayed

Fig. 6.6. CDF of relative utility function values compared to AMUSE.

traffic offloaded under both benchmark algorithms, as compared to AMUSE. We see

that for all users, the amount of traffic offloaded is larger under AMUSE than it is

under on-the-spot offloading; thus, AMUSE leverages the delay tolerance of some

sessions by allowing them to wait for WiFi access. Users then save money: Fig. 6.7

also compares users’ amount spent under the two benchmark algorithms to that spent

with AMUSE. Users consistently spend over 20% more with on-the-spot offloading,

and on average increase their spending by 33% compared with AMUSE.

Compared to delayed offloading, AMUSE trades off between reducing users’

spending by offloading traffic and completing some sessions immediately due to their

intolerance of delay. Figure 6.7 shows that delayed offloading offloads more traffic

than AMUSE for 10 users: AMUSE sends some sessions over 3G without waiting for

WiFi, allowing users to spend more and delay less. One user offloads nearly 160%

more traffic under delayed offloading relative to AMUSE. The consequent decrease in

cost relative to AMUSE (nearly 80%) is offset by less delay under AMUSE; this user

43

 0

 0.2

 0.4

 0.6

 0.8

 1

-50 0 50 100 150

C
D

F

Relative Amount (%)

On-the-spot (spent)
Delayed (spent)

On-the-spot (offloaded)
Delayed (offloaded)

Fig. 6.7. CDF of relative offloaded traffic amount and amount spent compared to
AMUSE.

in fact experiences 5% less utility under delayed offloading than that under AMUSE.

On the other hand, delayed offloading offloads less traffic than AMUSE for 6 users:

AMUSE allows delay-tolerant traffic to wait more than an hour for WiFi. We found

that this additional wait for WiFi reduces these users’ spending, offsetting the loss in

utility from delaying the session.

Finally, we examine AMUSE’s benefits for different types of users. We split

16 users into “heavy” and “light” usage groups (8 users for each group), and plot

the amount offloaded, utility, and cost of the two benchmark algorithms relative to

AMUSE in Fig. 6.8. For heavy users, both benchmark algorithms perform worse

than AMUSE: users’ utility and amount offloaded decrease under these algorithms,

while their cost increases. Thus, AMUSE’s cost savings in offloading more traffic

offset any loss in utility from waiting more for WiFi access. On-the-spot offloading

performs especially poorly compared to AMUSE, indicating that most users’ delay

44

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

offloaded utility cost offloaded utility cost

R
e
la

ti
v
e
 P

e
rc

e
n
t(

%
)

Heavy Users Light Users

on-the-spot
delayed

Fig. 6.8. Average offloaded traffic, utility, and cost of heavy and light users in all
traces.

tolerance enables them to gain utility under AMUSE by selectively delaying some

sessions and sending them over WiFi. For light users, AMUSE weights the cost sav-

ings from waiting for WiFi less heavily: some sessions do wait for WiFi, as shown

by the decrease in amount offloaded in on-the-spot offloading, but delay-intolerant

sessions do not wait, as shown by the increase in amount offloaded in delayed of-

floading. This likely arises from light users’ looser budget constraint: by definition,

light users spend less than heavy users on their data consumption. They accordingly

benefit less overall: compared with AMUSE, the utility of heavy users decreases by

27% under the benchmark algorithms, while that of light users decreases by 14%.

6.2 Receiver-side TCP rate control

In this section, we evaluate our proposed receiver-side TCP rate control algo-

rithm. Our evaluation approach is two folds. First, we evaluate our algorithm in real

45

Table. 6.1. Basic rate control test using Iperf. Parentheses denote the standard devi-
ations.

Target rate 100 Kbps 500 Kbps 1,024 Kbps

Ethernet 103.8 (0.42) 506.2 (0.42) 1031.2 (1.81)
WiFi 83.14 (3.63) 459 (6.46) 902.4 (21.67)
3G 95.28 (1.52) 474.7 (11.86) 896 (47.28)

networks. Then we evaluate the algorithm on emulated networks to see the perfor-

mance in various network environments and scenarios.

6.2.1 Real network experiments

To verify Algorithm 3 in practice, we test our receiver-side bandwidth control

algorithm by running Iperf over Ethernet, WiFi, and 3G networks. We used target

bandwidths of 100 Kbps, 500 Kbps, and 1 Mbps; experimental results for the three

cases are shown in Table 6.1. While the bandwidth control algorithm achieves the

target rate in each of the three different networks, we observe that the rate over the

Ethernet link is much closer to the target rate than the rates over WiFi and 3G: packet

loss rate and link jitter are the smallest in Ethernet.

We also test the algorithm with different applications. For this experiment, we

set the target bandwidth to 300 Kbps and run two applications (HTTP and FTP). Our

results (Table 6.2) show that the rates achieved are similar to the target rate.

6.2.2 Experiments in emulated networks

To investigate the performance of our algorithm in more various network envi-

ronments, we set up an testbed using a WAN emulator, WANem [35] as in Figure 6.9.

46

Rate Control Server

TCR AMUSE

libnetfilter_queue

Kernel Stack

VMWare

VM

WANem

Remote Host

Kernel Stack

Iperf ClientRoute setting Route setting

Iperf

Server

WAN Emulation Server

: set packet delay/loss

Fig. 6.9. Testbed settings.

47

Table. 6.2. Application rate control test using HTTP and FTP. Parentheses denote
the standard deviations.

Application (rate) HTTP (300 Kbps) FTP (300 Kbps)

Ethernet 297.04 (3.54) 291.2 (4.68)
WiFi 271.12 (10.77) 269.28 (8.27)
3G 296.16 (3.33) 279.2 (4.43)

We set three servers: Rate Control Server that controls the TCP rate in receiver-side,

Remote Host that transmits the data through TCP connection, and WAN Emulation

Server that emulates the WAN characteristics on the TCP connections. To establish

TCP connections, we run an Iperf server on Rate Control Server and an Iperf client

on Remote Host. By setting the routing path, we let both servers’ traffic go through

WANem which is installed on the virtual machine in WAN Emulation Server. We

use TCP Cubic for all the experiments except the experiment that varies the TCP

types. In addition, we ran the Iperf 15 times and show the average and standard de-

viation on the graph for each experiment except several experiments that show the

time-variation of the observed values.

As a baseline algorithm to compare the performance with our receiver-side

bandwidth control algorithm, we test TCR (TCP Rate Control) proposed in [36].

TCR adjusts the advertisement window and sets inter-ack spacing time according to

the target rate of each flow.

6.2.2.1 Test for accuracy of rate control

To check the accuracy of rate control for various target rates in networks with

different delays, we varied the one-way network delay to 10, 50, 100 msec (RTTs

48

0

500

1000

1500

2000

2500

200 Kbps 1024 Kbps 2048 Kbps 200 Kbps 1024 Kbps 2048 Kbps 200 Kbps 1024 Kbps 2048 Kbps

10 msec 50 msec 100 msec

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

Target rates/network delay

AMUSE TCR

Fig. 6.10. Test for various target rates.

49

0

200

400

600

800

1000

1200

1400

1600

1800

0.1 0.25 0.5 1 0.1 0.25 0.5 1

50 msec 100 msec

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

Smothing factor/network delay

Fig. 6.11. Test for various smoothing fator values.

are 20, 100, 200 msec), and the target rates to 200, 1024, 2048 Kbps. As we can see

in Figure 6.10, our algorithm obtains more accurate throughputs than TCR in many

cases.

6.2.2.2 Test for the parameter optimization

In order to optimize the parameter values of the algorithm, we tested the through-

put of the our algorithm by changing the values of smoothing factor (α) and rate con-

trol window (rate control win). As shown in Figure 6.11, the throughput of Iperf

approaches the target rate (1500 Kbps) most closely when the smoothing factor is

0.1. From Figure6.12, we can find that the accuracy of the rate control is the highest

when the rate control window value is 1 sec.

50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 sec 2 sec 5 sec 10 sec 1 sec 2 sec 5 sec 10 sec

50 msec 100 msec

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

rate control window/network delay

Fig. 6.12. Test for various rate control window values.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

A
d

v
e

rt
is

e
m

e
n

t
W

in
d

o
w

(B
y
te

s)

T
h

ro
u

g
h

p
u

t(
K

b
p

s)
/s

rt
t(

m
se

c)

Time(Seconds)

throughput srtt adv_win

Fig. 6.13. Time variation of proposed rate control algorithm.

51

0

1000

2000

3000

4000

5000

6000

7000

8000

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

A
d

v
e

rt
is

e
m

e
n

t
W

in
d

o
w

(B
y
te

s)

T
h

ro
u

g
h

p
u

t(
K

b
p

s)
/s

rt
t(

m
se

c)

Time(Seconds)

throughput srtt adv_win

Fig. 6.14. Time variation of TCR.

6.2.2.3 Test for the stability

To check the stability of our algorithm and TCR, we observe the time variation

of the throughput, srtt (smoothed RTT) at TCP sender, and advertisement window

size. We set the target rate to 100 Kbps and session time to 120 seconds. From Figure

6.13 and 6.14, we can see that the degree of the time variation of srtt and advertise-

ment window for the proposed algorithm is much smaller than that of TCR. When

the srtt value becomes large, the TCP sender will regard the network between the

sender and receiver as a slow network, and set the retransmission timeout (RTO) to

a large value. This will make the detection of the packet loss and retransmission at

TCP sender late, so the performance of real-time applications can be degraded. We

presume that this increased srtt can be explained as follows: when the data packets

are sent in bursts (in cases such as the slow start), some ACK packets are delayed

due to ACK pacing, so the time between sending the data packet and receiving the

52

0

200

400

600

800

1000

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

Time(Seconds)

flow 1 flow 2 flow 3

Fig. 6.15. Test for coexistence of rate controlled flows in proposed rate control algo-
rithm.

ACK packet for the data packet gets longer. After receiving these spaced ACK pack-

ets, the sender will send packets with spaces, then the srtt will be get smaller after

some time since the TCP receiver does not need to put an extra space between ACKs.

The increase of the advertisement window in TCR is obvious, since it is set to be

proportional to the RTT values.

6.2.2.4 Test for the coexistence among rate controlled flows

To see the performance when rate controlled flows coexist, we sequentially cre-

ated 3 rate controlled flows with the target rates of 500 Kbps and 60 seconds intervals

between flows. The first flow runs for the whole experiment period of 300 seconds,

while other two flows run for 120 seconds, respectively. From Figure 6.15 and 6.16

we can observe that both algorithms do not show any performance degradation due

to the interference among flows.

53

0

200

400

600

800

1000

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

Time(Seconds)

flow 1 flow 2 flow 3

Fig. 6.16. Test for coexistence of rate controlled flows in TCR.

6.2.2.5 Test for coexistence of a rate controlled flow with non-
rate controlled flows

We set one rate controlled flow with the target rate of 1500 Kbps and two non-

rate controlled flows, in order to see the performance when rate controlled and non-

rate controlled flows coexist. We created the non-rate controlled flows at 60 and 120

seconds, respectively, and retained them for 120 seconds. We set the total bandwidth

to 2 Mbps. As we can see in Figure 6.17 and 6.18, both algorithms show a similar

behavior: the throughput of the rate controlled flow drops, but is higher than other

flows when there are non-rate controlled flows. After the non-rate controlled flows

disappear, the throughput of the rate controlled flow is recovered immediately.

54

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

Time(Seconds)

flow 1(rate controlled) flow 2 flow 3

Fig. 6.17. Test for coexistence of a rate controlled flow with non-controlled flows in
proposed rate control algorithm.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

Time(Seconds)

flow 1(rate controlled) flow 2 flow 3

Fig. 6.18. Test for coexistence of a rate controlled flow with non-controlled flows in
TCR.

55

0

200

400

600

800

1000

1200

Vegas Westwood

T
h
ro
u
g
h
p
u
t(
K
b
p
s)

AMUSE TCR

Fig. 6.19. Test for various TCP variants.

6.2.2.6 Test for various TCP variants

We ran Iperf using TCP Vegas and Westwood on both TCP sender and receiver,

to see the performance of rate control algorithms in different TCP variants. We set the

target rate to 1024 Kbps. From Figure 6.19 we observe that our proposed algorithm

performs more accurate rate control than TCR for both TCP Vegas and Westwood.

6.2.2.7 Test for lossy networks

To observe the performance in lossy network environments, we checked the

throughputs by varying the packet loss rates to 0.3, 0.6, 0.9%. We set the target rate

to 1024 Kbps. From Figure 6.20, we can see that while the throughput of TCR drops

drastically as the packet loss rate increases, the proposed algorithm shows a slightly

smaller throughput than the target rate only in the case of 0.9% loss rate. We presume

that this is because while our algorithm, by nature, tries to recover the throughput

when the throughput drops due to packet loss, TCR does not have such a recovery

56

0

200

400

600

800

1000

1200

0.3 0.6 0.9

T
h

ro
u

g
h

p
u

t(
K

b
p

s)

loss rate(%)

AMUSE TCR

Fig. 6.20. Test for the performance in lossy networks.

mechanism.

6.2.2.8 Summary

In a lot of scenarios, the proposed algorithm shows that it can provide more

accurate rate control than TCR. In addition, the TCP retransmission timeout is not

increased, so it does not hurt the performance of real-time applications. Also the pro-

posed algorithm is more robust to packet loss than TCR, and it can avoid the draw-

backs when we use packet pacing. According to [37], the pacing fragments the packet

losses, so more SACK blocks are needed to convey loss information. Also when used

with TCP Reno, pacing results in lower throughputs and increased latencies in many

scenarios.

57

Chapter 7

Discussion

7.1 Application of AMUSE in various data plans

We have assumed a usage-based data plan for AMUSE algorithm. According

to [5], ISPs provide various data plans for wired and wireless Internet services such

as Fixed Flat Rate, Usage Based, Priority Pricing, Time of Day, Cumulus Pricing,

App-Based Pricing, and Congestion Based. We claim that AMUSE is general so that

it can be applied to a number of variants of usage-based data plan by adjusting the

cost, bandwidth of the utility function and the cost constraint, etc.

The data plans in which AMUSE can be applied includes “Cap, then metered”

which is prevalent worldwide, and “monthly fee, unlimited”, “monthly fee, flat to a

cap, then throttle”. In “Cap, then metered” data plan, a user pays a flat price (basic

charge) up to a predetermined traffic volume (basic data volume), beyond which the

user is charged in proportion to the amount of data he consumes. AMUSE can be

applied in two ways for this data plan. First, we can assume that the user has a budget

that he sets regardless of the basic charge. In this case, even though the user uses the

data under the basic data volume, the cost will be applied in his utility. Therefore,

AMUSE can be utilized as it is. Second, we can set the cost to zero and remove the

cost constraint when the user uses the data under the basic data volume since the

actual cost is not increased. Then we consider the cost in utility function, and apply

58

the cost constraint with the budget of (the budget that the user sets - basic charge)

only when the usage amount exceeds the basic data volume.

7.2 Overhead of location sensing

According to [38], the energy consumption of one GPS location sensing oper-

ation is about 143.1 and 166.1 mW, respectively, with internal antenna enabled and

external antenna enabled. We claim that AMUSE’s energy consumption for location

sensing is reasonably low: several times of GPS operations per hour are enough since

AMUSE requires the overall location not the exact movement path during each time

slot. However, to minimize the energy consumption, we can further utilize energy

efficient location sensing techniques proposed by [39], [34].

59

Chapter 8

Conclusion

In this paper, we propose AMUSE, a cost-aware WiFi offloading system that

maximizes the end user’s utility under her 3G budget constraints. AMUSE consists of

two main components: a bandwidth optimizer and a TCP rate controller. By predict-

ing future usage and WiFi availability, the bandwidth optimizer chooses how long an

application should wait for WiFi access, as well as a 3G data rate should WiFi not be

available. These choices are optimized so as to balance the user’s tradeoffs between

the cost of sending an application’s traffic over 3G, the higher throughput received

over WiFi, and the delay inherent in waiting for WiFi. The TCP rate controller prac-

tically enforces the 3G rates chosen for each application by controlling the TCP ad-

vertisement window from the user side. AMUSE also allows for end-user interaction

by providing a user interface through which users can set their bandwidth allocation

preferences and view the offloading decisions made. Through a measurement study,

we show that though a large amount of some applications’ traffic is offloaded already,

our offloading framework can offload a larger portion of mobile users’ cellular traffic.

We prototyped AMUSE and evaluated its performance with mobile traces from

37 users. Our results show that AMUSE can improve both heavy and light data users’

utility from offloading; for heavy users, two other representative WiFi offloading al-

gorithms achieve 27% lower utility than AMUSE on average. Heavy users’ costs

were on average 18 and 36% higher under these benchmark algorithms compared to

60

AMUSE, a savings realized by offloading more traffic onto WiFi. Though our results

are based on data from a limited number of users, we expect similar performance

from a wider range of users.

61

Bibliography

[1] “Cisco visual networking index: Global mobile data traffic forecast update,

2013 - 2018,” Feb 2014, http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/white paper c11-520862.pdf.

[2] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “Incentivizing time-shifting of

data: A survey of time-dependent pricing for Internet access,” IEEE Communi-

cations Magazine, vol. 50, no. 11, pp. 91–99, 2012.

[3] T. Ricker, “AT&T making tourists even more annoying with free Times

Square WiFi,” Engadget, May 2010, http://www.engadget.com/2010/05/25/

atandt-making-times-square-tourists-even-more-annoying-with-free-w/.

[4] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: A sur-

vey,” IEEE Communications Magazine, vol. 46, no. 9, pp. 59–67, 2008.

[5] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “A survey of smart data pric-

ing: Past proposals, current plans, and future trends,” ACM Computing Surveys,

vol. 46, no. 2, p. 15, 2013.

[6] A. J. Nicholson and B. D. Noble, “BreadCrumbs: Forecasting mobile connec-

tivity,” in Proceedings of ACM MobiCom. ACM, 2008.

[7] N. Santhapuri, J. Manweiler, R. Choudhury, and S. Nelakuditi, “BytesToGo:

Offloading 3G via WiFi prioritization,” Duke University, Tech. Rep., 2011,

http://synrg.ee.duke.edu/papers/bytes.pdf.

[8] V. A. Siris and M. Anagnostopoulou, “Performance and energy efficiency of

mobile data offloading with mobility prediction and prefetching,” in Proc. of

WoWMoM. IEEE, 2013, pp. 1–6.

[9] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting mobile

3G using WiFi,” in Proceedings of ACM Mobisys. ACM, 2010, pp. 209–222.

62

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.engadget.com/2010/05/25/atandt-making-times-square-tourists-even-more-annoying-with-free-w/
http://www.engadget.com/2010/05/25/atandt-making-times-square-tourists-even-more-annoying-with-free-w/

[10] A. Rahmati, C. Shepard, A. Nicoara, L. Zhong, and J. P. Singh, “Mobile tcp

usage characteristics and the feasibility of network migration without infras-

tructure support,” ACM SIGMOBILE Mobile Computing and Communications

Review, vol. 14, no. 4, pp. 10–12, 2011.

[11] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, “Mobile data offloading: How

much can WiFi deliver?” in Proceedings of ACM CoNEXT. ACM, 2010.

[12] J. Lee, Y. Yi, S. Chong, and Y. Jin, “Economics of wifi offloading: Trading

delay for cellular capacity,” in INFOCOM, 2013 Proceedings IEEE, 2013, pp.

3309–3314.

[13] C. Joe-Wong, S. Sen, and S. Ha, “Offering supplementary wireless technolo-

gies: Adoption behavior and offloading benefits,” in Proc. of IEEE INFOCOM

2013. IEEE, 2013, pp. 1061–1069.

[14] X. Hou, P. Deshpande, and S. Das, “Moving bits from 3g to metro-scale wifi for

vehicular network access: An integrated transport layer solution,” in Network

Protocols (ICNP), 2011 19th IEEE International Conference on, oct. 2011, pp.

353 –362.

[15] X. Zhuo, W. Gao, G. Cao, and Y. Dai, “Win-Coupon: An incentive framework

for 3G traffic offloading,” in Proceedings of IEEE ICNP, Oct. 2011, pp. 206

–215.

[16] N. Ristanovic, J.-Y. Le Boudec, A. Chaintreau, and V. Erramilli, “Energy

efficient offloading of 3g networks,” in Proceedings of the 2011 IEEE Eighth

International Conference on Mobile Ad-Hoc and Sensor Systems, ser. MASS

’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 202–211.

[Online]. Available: http://dx.doi.org/10.1109/MASS.2011.27

[17] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Es-

trin, “Diversity in smartphone usage,” in Proceedings of the 8th international

conference on Mobile systems, applications, and services. ACM, 2010, pp.

179–194.

63

http://dx.doi.org/10.1109/MASS.2011.27

[18] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman, “Identifying

diverse usage behaviors of smartphone apps,” in Proceedings of the 2011 ACM

SIGCOMM conference on Internet measurement conference. ACM, 2011, pp.

329–344.

[19] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin, “A first

look at traffic on smartphones,” in Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement. ACM, 2010, pp. 281–287.

[20] A. Gember, A. Anand, and A. Akella, “A comparative study of handheld and

non-handheld traffic in campus wi-fi networks,” in Passive and Active Measure-

ment. Springer, 2011, pp. 173–183.

[21] G. Maier, F. Schneider, and A. Feldmann, “A first look at mobile hand-held

device traffic,” in Passive and Active Measurement. Springer, 2010, pp. 161–

170.

[22] “NetLimiter,” http://www.netlimiter.com/.

[23] “SoftPerfect Bandwidth Manager,” http://www.softperfect.com/.

[24] “PRTG Network Monitor,” http://www.paessler.com/prtg/.

[25] V. Raisinghani, A. Singh, and S. Iyer, “Improving TCP performance over mo-

bile wireless environments using cross layer feedback,” in Proceedings of IEEE

Conference on Personal Wireless Communications, Dec. 2002, pp. 81 – 85.

[26] H.-Y. Wei, S.-C. Tsao, and Y.-D. Lin, “Assessing and improving TCP rate shap-

ing over edge gateways,” IEEE Transactions on Computers, vol. 53, pp. 259–

275, 2004.

[27] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating next-cell predictors with ex-

tensive Wi-Fi mobility data,” IEEE Transactions on Mobile Computing, vol. 5,

no. 12, pp. 1633–1649, 2006.

64

http://www.netlimiter.com/
http://www.softperfect.com/
http://www.paessler.com/prtg/

[28] Y. Im, C. Joe-Wong, S. Ha, S. Sen, T. T. Kwon, and M. Chiang, “A survey

of cost, quality and delay tradeoffs in WiFi offloading,” Princeton University,

Tech. Rep., 2012, http://www.princeton.edu/\simcjoe/AMUSE Survey.pdf.

[29] M. Moser, D. Jokanovic, and N. Shiratori, “An algorithm for the multidimen-

sional multiple-choice knapsack problem,” IEICE Transactions on Fundamen-

tals of Electronics, Communications and Computer Sciences, vol. 80, no. 3, pp.

582–589, 1997.

[30] “WFP Callout Driver,” http://msdn.microsoft.com/en-us/library/windows/

hardware/gg463267.aspx.

[31] “libnetfilter queue,” http://www.netfilter.org/projects/libnetfilter queue/.

[32] B. Veal, K. Li, and D. Lowenthal, “New methods for passive estimation of tcp

round-trip times,” in Passive and Active Network Measurement. Springer,

2005, pp. 121–134.

[33] V. Paxson, M. Allman, and C. T. R. Timer, “Rfc 2988,” Computing TCP’s Re-

transmission Timer, 2000.

[34] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Mobility prediction-based smart-

phone energy optimization for everyday location monitoring,” in Proceedings

of the 9th ACM conference on embedded networked sensor systems. ACM,

2011, pp. 82–95.

[35] “Wanem,” http://wanem.sourceforge.net/.

[36] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, “Tcp rate control,”

SIGCOMM Comput. Commun. Rev., vol. 30, no. 1, pp. 45–58, Jan. 2000.

[Online]. Available: http://doi.acm.org/10.1145/505688.505694

[37] D. Wei, P. Cao, S. Low, and C. EAS, “Tcp pacing revisited,” in Proceedings of

IEEE INFOCOM. Citeseer, 2006.

[38] A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone.”

in USENIX annual technical conference, 2010, pp. 271–285.

65

http://www.princeton.edu/$\sim $cjoe/AMUSE_Survey.pdf
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463267.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463267.aspx
http://www.netfilter.org/projects/libnetfilter_queue/
http://wanem.sourceforge.net/
http://doi.acm.org/10.1145/505688.505694

[39] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency of location

sensing on smartphones,” in Proceedings of the 8th international conference on

Mobile systems, applications, and services. ACM, 2010, pp. 315–330.

66

초록

최근의 모바일 데이터 수요의 급격한 증가에 대처하기 위해, 무선 인터

넷 서비스 제공자들(ISPs)은 새로운 요금제를 점차 도입하고 있으며, 모바일

트래픽을오프로딩하기위해WiFi핫스팟을설치하고있다.하지만,이러한인

터넷 서비스 제공자 중심의 트래픽 관리를 위한 방안들은 모바일 사용자들의

이익과 항상 일치하는 것은 아니다. 사용자들은 그들의 오프로딩 결정을 위

해 비용, 처리율, 지연시간 간의 복잡하고 다차원적인 트레이드오프(tradeoff)

에 직면하게 된다. 즉, WiFi를 사용하기 위해 기다림으로써 비용을 절약하고

높은처리율을제공받을수있지만,지연시간에민감한사용자의경우WiFi가

접근가능할때까지기다리지않을수있다.이러한트레이드오프를처리하기

위해우리는사용자의처리율,지연시간트레이드오프와데이터예산상의제

약을고려하는실용적인비용인지WiFi오프로딩시스템의기능적프로토타입

인AMUSE(Adaptive bandwidth Management through USer-Empowerment,사용자

중심의적응적대역폭관리기법)를제안한다.예측된미래의데이터사용량과

WiFi 이용가능 여부를 바탕으로, AMUSE는 어떠한 어플리케이션을 하루 중

어떤 시간으로 오프로딩 할지를 결정한다. 또한 모바일 장치의 대부분의 트

래픽이 TCP 트래픽이기 때문에, 각 TCP 어플리케이션의 할당된 레이트(rate)

를 적용하기 위한 새로운 수신자 기반 대역폭 할당 기법을 제시한다. 따라서,

AMUSE는 다양한 어플리케이션 컨텐트 서버의 도움 없이 비용-처리율-지연

시간트레이드오프에따라대역폭할당을최적화할수있다. 20명의스마트폰

사용자의트래픽사용량데이터에대한측정연구를통해,사용자들은몇몇종

류의어플리케이션에대해트래픽의많은부분을이미오프로딩하고있지만,

67

우리의기법을사용하여이동통신트래픽의상당부분을추가적으로오프로딩

할수있음을발견하였다.우리는 AMUSE를Windows 7테블릿상에구현하고,

37명의 모바일 사용자로부터 얻은 3G 및 WiFi 사용량 데이터를 통해 AMUSE

의성능을평가하였다.실험결과는 AMUSE가사용자의만족도를향상시킴을

보여준다. AMUSE와비교해서다른오프로딩알고리즘은사용량이적은사용

자와 많은 사용자에 대해 각각 14% 와 27% 낮은 사용자 만족도를 보여준다.

결론적으로,비용,처리율,지연시간에대한사용자의상충된이해관계를지능

적으로관리함으로써오프로딩결정을향상시킬수있음을알수있다.

주요어: 대역폭관리,모바일데이터, WiFi오프로딩

학번: 2007-21064

68

	Abstract
	I. Introduction
	1.1 Empowering User Decisions
	1.2 Components of AMUSE
	1.2.1 User Interface
	1.2.2 Bandwidth Optimizer
	1.2.3 TCP Rate Controller and Session Tracker

	II. RelatedWork
	III. Bandwidth Optimizer
	3.1 Predicting WiFi Connectivity
	3.2 Predicting Future Usage
	3.3 User Utility Maximization
	3.3.1 Utility Functions
	3.3.2 Users Optimization Problem

	3.4 Online Algorithm

	IV. Implementation
	4.1 Receiver-Side TCP Rate Control

	V. Measurement
	5.1 Data Collection
	5.2 Application types
	5.3 Offloading practice

	VI. Experimental Evaluation
	6.1 Bandwidth Optimizer
	6.1.1 Experimental Data and Settings
	6.1.2 Baseline Algorithms
	6.1.3 Numerical Results

	6.2 Receiver-side TCP rate control
	6.2.1 Real network experiments
	6.2.2 Experiments in emulated networks

	VII. Discussion
	7.1 Application of AMUSE in various data plans
	7.2 Overhead of location sensing

	VIII. Conclusion
	Bibliography
	Korean Abstract

<startpage>2
Abstract 3
I. Introduction 10
 1.1 Empowering User Decisions 10
 1.2 Components of AMUSE 13
 1.2.1 User Interface 14
 1.2.2 Bandwidth Optimizer 14
 1.2.3 TCP Rate Controller and Session Tracker 15
II. RelatedWork 18
III. Bandwidth Optimizer 20
 3.1 Predicting WiFi Connectivity 21
 3.2 Predicting Future Usage 22
 3.3 User Utility Maximization 24
 3.3.1 Utility Functions 24
 3.3.2 Users Optimization Problem 27
 3.4 Online Algorithm 30
IV. Implementation 32
 4.1 Receiver-Side TCP Rate Control 33
V. Measurement 37
 5.1 Data Collection 37
 5.2 Application types 38
 5.3 Offloading practice 41
VI. Experimental Evaluation 45
 6.1 Bandwidth Optimizer 45
 6.1.1 Experimental Data and Settings 45
 6.1.2 Baseline Algorithms 49
 6.1.3 Numerical Results 51
 6.2 Receiver-side TCP rate control 54
 6.2.1 Real network experiments 55
 6.2.2 Experiments in emulated networks 55
VII. Discussion 67
 7.1 Application of AMUSE in various data plans 67
 7.2 Overhead of location sensing 68
VIII. Conclusion 69
Bibliography 71
Korean Abstract 76
</body>

