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Abstract

Fast Approximate Algorithms for k-NN

Search and k-NN Graph Construction

Youngki Park

School of Computer Science and Engineering

College of Engineering

The Graduate School

Seoul National University

Finding k-nearest neighbors (k-NN) is an essential part of recommeder systems,

information retrieval, and many data mining and machine learning algorithms.

However, there are two main problems in finding k-nearest neighbors: 1) Ex-

isting approaches require a huge amount of time when the number of objects

or dimensions is scale up. 2) The k-NN computation methods do not show

the consistent performance over different search tasks and types of data. In

this dissertation, we present fast and versatile algorithms for finding k-nearest

neighbors in order to cope with these problems. The main contributions are

summarized as follows: first, we present an efficient and scalable algorithm for

finding an approximate k-NN graph by filtering node pairs whose large value

dimensions do not match at all. Second, a fast collaborative filtering algorithm

that utilizes k-NN graph is presented. The main idea of this approach is to

reverse the process of finding k-nearest neighbors in item-based collaborative

filtering. Last, we propose a fast approximate algorithm for k-NN search by

selecting query-specific signatures from a signature pool to pick high-quality

k-NN candidates. The experimental results show that the proposed algorithms
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guarantee a high level of accuracy while also being much faster than the other

algorithms over different types of search tasks and datasets.

Keywords: k-nearest neighbor search, k-nearest neighbor graph construction,

collaborative filtering, locality-sensitive hashing

Student Number: 2010-30219
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Chapter 1

Introduction

Finding k-nearest neighbors (k-NN) is one of the most important base opera-

tions in the field of recommender systems, information retrieval, data mining

and machine learning. With the exponentially increasing amount of data, ap-

proximate k-NN computations rather than exact computations have become

the predominant methods due to their lower computational cost. The aim is

to reduce the search space as much as possible while retaining an acceptable

level of accuracy. There are two main k-NN computation tasks: one is the k-NN

search, which finds the (approximate) k-nearest neighbors for a given query;

the other is k-NN graph construction, which finds the (approximate) k-nearest

neighbors of all of the objects. In this dessertation, we propose a set of fast

approximate algorithms for k-NN search and k-NN graph construction.

In this chapter, we begin by introducing our motivation and research prob-

lems in Section 1.1. In Section 1.2, we give an overview of our solutions to

efficiently find approximate k-nearest neighbors. In Section 1.3, we highlight

the contributions of the dissertation. We give an outline of the remaining chap-

ters in Section 1.4.
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1.1 Motivation and Challenges

Finding k-nearest neighbors is an essential part of recommender systems: for

example, user-based [1] and item-based collaborative filtering [2] are two of the

most widely used techniques in recommender systems and the k-NN compu-

tations play a central role in their methods. Assuming that we want to rec-

ommend items to a user, we recommend the preferred items of his k-nearest

users in user-based collaborative filtering. In item-based collaborative filtering,

we recommend the k-nearest items of his preferred items. It is known that the

Amazon and YouTube recommender systems [3, 4] utilize CF-based algorithms,

and many modified versions of CF algorithms continue to be proposed for the

purpose of building context-aware recommender systems [5, 6, 7].

The k-NN computations are also very widely used in information retrieval:

for a given query, one powerful way of finding search results is to find its k-

nearest neighbors. For example, if we enter a short sequence of keywords as a

query, then a search engine can show the k documents closest the query [8].

Likewise, if we provide our own image as a query, a search engine can show the

k images closest to the query image [9]. This process is what we call search.

Note after obtaining search results, we can now browse the datasets in popular

search engines. If we select the ”similar” button of the document in Google,

then we can see its k-nearest documents [10]. Likewise, if we select any images

of the search results in Google Images, then we can see its k-nearest images in

the database. This process is what we call similarity browsing.

Many data mining and machine learning algorithms also exploit k-nearest

neighbors. For example: 1) k-NN classifier determines the category of a query

object based on the categories of its k-NN. 2) It is known that we can simulate

agglomerative clustering using all of the k-NN relationships between objects

in the database. The main idea of this approach is that instead of directly

finding the closest pairs among the clusters, selecting the closest pairs among

2



the k-NN relationships is enough for clustering. 3) It is also known that we can

detect the outliers based on k-NN [11]. The basic idea of this algorithm is that

if there is an object o such that all of the other objects do not select o as a

k-NN, then we select o as an outlier. 4) Locally linear embedding (LLE) uses

all of the k-nearest neighbor relationships to reduce the dimensionality of data

[12]. Unlike principal component analysis (PCA), LLE well preserves the k-NN

relationships in reduced vectors.

Although there are many advantages and applications in finding k-nearest

neighbors, there are two main problems related to k-NN computations: the

first problem is that the exact k-NN computations require a hugh amount of

time when the number of objects or dimensions is scale up. Thus approximate

k-NN computations have become the predominant methods rather than exact

computations recently. In Section 1.1.1, we will discuss this issue in detail.

The second problem is that the existing approaches do not show the consistent

performance over different search tasks and types of data. Thus for some cases,

even the state-of-the-art approximate algorithms are not faster than the exact

calculation method while keeping the acceptable level of accuracy. In Section

1.1.2, we will discuss this issue in more detail.

1.1.1 Fast Approximation

The first problem in finding k-nearest neighbors is that the exact k-NN com-

putation method requires too much time. Let n be a number of objects and

d be a number of dimensions. Assuming that we use the cosine similarity as

our similarity measure, the exact k-NN computation for every object requires

the time complexity of O(n2d). Thus as the number of objects increases, the

computation time increases significantly. For example, Figure 1.1(a) shows the

amount of time required for the exact k-NN computation of every object using

the New York Times dataset. Because it takes more than 12 hours for 120,000

news articles in a single machine, it is impractical to use the exact calculation

3



method for larger datasets, such as Wikipedia pages or YouTube videos.

Our aim is to develop fast and scalable algorithms for k-NN computation

while keeping the acceptable level of accuracy. In this dissertation, we set the

acceptable level to the accuracy of 90% defined in Section 3.5.1, because it is

known that at this level of accuracy the results of the collaborative filtering and

agglomerative clustering algorithms are nearly the same as the original results

[12, 13]: when we implement a recommender system based on the MovieLens

dataset, the k-NN graph accuracy of more than 70% yields the similar recall to

the 100% case with a difference of at most 0.1 on average; when we implement

an agglomerative clustering algorithm based on the PIE face database, an 89%

accurate graph is much similar to the 100% graph. Obviously, it could be varied

depending on applications so that the k-NN computation method should also

be able to adjust the accuracy using its parameters. Figure 1.1 shows that NN-

Descent, which is one of the most efficient state-of-the-art algorithms, cannot

achieve the 90% accuracy although the algorithm outperforms the brute-force

approach significantly.

1.1.2 Versatility

The second problem in finding k-nearest neighbors is that the existing ap-

proaches do not show the consistent performance over different k-NN compu-

tation tasks and types of data. Thus we do not know in advance which algo-

rithm is best for given application. Furthermore, it is observed that for some

cases, none of the existing approaches is not faster than the exact computation

method while keeping the acceptable level of accuracy. Examples of those cases

are described in the following sections.

Typically, there are three types of k-NN computation tasks: k-NN compu-

tation for a single query (k-NN search), for every object in the database (k-NN

graph construction), for some of the objects in the database (partial k-NN graph

construction). An interesting thing is that although the k-NN graph construc-

4



tion can be implemented by the iterative executions of k-NN search, the k-NN

search algorithms do not perform as well for k-NN graph construction, and vice

versa. It is because they do not reuse the information that can be obtained

from the k-NN computations of the other objects. Therefore, in cases where we

need two or three types of k-NN computation tasks (e.g., a search engine that

supports both search and similarity browsing), we have to find or develop an

effective algorithm for each task.

The existing algorithms are also significantly affected by the types of datasets

being used. For example, the existing approaches do not efficiently find the k-

nearest neighbors for text or log data, because they are usually represented

by very high-dimensional sparse vectors. Figure 1.2 shows that there is a sig-

nificant difference in dimensionality between text/log datasets and multimedia

datasets, more than an order of magnitude. As another example, even using the

same raw multimedia data, the performance of existing approaches significantly

varies depending on the types of feature extraction methods being used. Thus

in cases where we need two or more types of feature extraction methods (e.g.,

a search engine that uses facial features for facial images and global features

for the other images [14]), we have to find or develop an effective algorithm for

each feature extraction method.

1.2 Our Solutions

In this section, we briefly introduce the fast approximate algorithms through our

k-NN computation framework as shown in Figure 1.3. In this framework, there

are 6 layers: data, weighting scheme, similariy measure, preprocessing, algorithm

and application. For each layer, the components can be divided into two groups:

one group is for sparse datasets (text and log data), and the other group is for

dense datasets (multimedia data). For implementing a speicifc application, we

can scan from the bottom to the top of this figure while selecting the components

we want to use in the application. For example, in order to construct a real-
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time recommender system, we can select log data as our data, TF-IDF as our

weighting scheme, cosine similarity as our similarity measure, L2-normalization

and sorting by value/dimension as our preprocessing step, greedy filtering as our

k-NN computation method, and reversed CF as our recommendation algorithm.

Note as shown in Figure 1.4, greedy filtering does not support k-NN search

operation so that we have to use signature selection LSH instead when our

application needs k-NN search.

Among the various components described in Figure 1.3, our contribution

consists of three parts: greedy filtering (GF), signature selection LSH (S2LSH),

and reversed CF (RCF). Each part is described in the following subsections.

1.2.1 Greedy Filtering

GF can be used for both the k-NN graph construction and partial k-NN graph

construction. The algorithms takes either text data or log data. This assumes

that we use TF-IDF as our weighing scheme, which is de facto standard in

text information retrieval and is also suitable for recommender systems. When

we weight vectors with TF-IDF, we can use many variants described in [15].

Although GF is originally developed for cosine similarity, this also supports at

least five representative similarity measures: cosine similarity, pearson corre-

lation coefficient, adjust cosine similarity, normalized Euclidean distance, and

Euclidean distance. We can use the first three similarity measures, because they

are based on dot products. We can also use the fourth similarity measure be-

cause the k-nearest neighbors based on normalized Euclidean distance are same

as those based on cosine similarity by the following formula: for normalized vec-

tors a and b, |a− b|2 = 2(1−cos(a, b)). Finally, GF supports the fifth similarity

measure because the k-nearest neighbors of based on Eucliean distance are sim-

ilar to those based on cosine similarity when the dimension is high [16]. As a

pre-processing step, GF basically uses L2-normalization and sorting by value

and dimension in order to enhance its performance.
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The limitations of greedy filtering is that it is specialized for high dimen-

sional sparse datasets and k-NN graph construction. However, as shown in

Figure 1.4, S2LSH can replace this algorithm when appropriate.

1.2.2 Signature Selection LSH

S2LSH is a generalized algorithm that can perform all of the three k-NN compu-

tation tasks. Although the algorithm basically takes multimedia data, it can also

applied to text or log data if there is an efficient locality-sensitive hashing algo-

rithm for those data. It can use various types of feature extraction methods, such

as color features, texture features, and shape features. One main characteristics

of S2LSH is that it can support even the non-metric similarity measures, such

as Kullback-Leibler (KL) divergence, chamfer distance, dynamic time warping

(DTW) distance, and edit distance, because there are locality-sensitive hash-

ing algorithms for those similarity measures [17]. The locality sensitive hashing

algorithm is one of the most important component for S2LSH, which affects

the accuracy significantly. Thus we recommend to use the state-of-the-art LSH

algorithms, such as anchor graph hashing (AGH) [18] or spherical hashing (SH)

[9].

1.2.3 Reversed CF

RCF exploits log data to recommend items to users. The log data should be

weighted by the TF-IDF weighting scheme, because it decreases the k-NN graph

construction time significantly. Although all of the five similarity measures GF

supports are widely used in recommender systems, RCF uses the cosine similar-

ity measure in order to implement non-normalized cosine neighborhood. This

algorithm uses L2-normalization and sorting by value/dimension as a prepro-

cessing step. RCF can select either GF and S2LSH, because it only requires k-

NN graph construction. However, we recommend to use GF rather than S2LSH

because the existing LSH algorithms for text/log datasets, such as random
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hyperplanes [19] and MinHash [38, 39] are not good as those for multimedia

datasets.
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Figure 1.1: Experimental results of the existing approaches. Brute-force ap-

proach takes much time to construct a k-NN graph, and NN-Descent cannot

construct a graph with a high level of quality for the New York Times dataset.
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Text/log datasets (TREC, DBLP, NYTimes and MovieLens) usually have very

high dimensions, whereas multimedia datasets (Shape, Audio and Corel) usu-

ally have high dimensions.
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Figure 1.4: Our k-NN computation methods

1.3 Contributions

The main contributions of this dissertation can be summarized as follows:

• We present greedy filtering (GF), an efficient and scalable algorithm for

finding an approximate k-nearest neighbor graph by filtering node pairs

whose large value dimensions do not match at all. In order to avoid skew-

ness in the results and guarantee a linear time complexity, our algorithm

chooses essentially a fixed number of node pairs as candidates for every

node. We also present an optimized version of greedy filtering based on

the use of inverted indices for the node prefixes.

• We propose signature selection LSH (S2LSH), a novel algorithm for ap-

proximate k-NN search. We select query-specific signatures from a signa-

ture pool to pick high-quality k-NN candidates. The signatures are gen-

erated based on a data-dependent LSH algorithm to capture the global

topological features specific to the given dataset. We also incorporate

three additional optimization techniques to further improve the perfor-

mance of S2LSH in a bulk execution setting such as k-NN graph con-
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struction.

• A fast collaborative filtering algorithm based on a k-NN graph is intro-

duced. We call this algorithm as reversed CF (RCF), because the main

idea of this approach is to reverse the process of finding k neighbors; in-

stead of finding k similar neighbors of unrated items as in conventional

collaborative filtering, RCF finds the k-nearest neighbors of rated items.

Not only does this algorithm perform fewer predictions while filtering out

inaccurate results, but it also supports the rapid retrieval of similar items.

1.4 Outline

The rest of this dissertation is structured as follows. Chapter 2 discusses back-

ground and related work of k-NN search and k-NN graph construction. Chap-

ter 3 describes greedy filtering, a fast approximate k-NN graph construction

algorithm. Chapter 4 describes signature selection LSH (S2LSH), a fast ap-

proximate k-NN search algorithm. Its extension for k-NN graph construction

and partial k-NN graph construction is also presented. Chapter 5 describes re-

versed CF (RCF), a fast collborative filtering algorithm based on GF. Chapter

6 concludes the dissertation.
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Chapter 2

Background and Related Work

This chapter describes the background knowledge by providing an overview of

the existing k-NN search and k-NN graph construction algorithms. In Section

2.1, the k-NN search algorithms are introduced. In Section 2.2, the algorithms

for k-NN graph construction are described while comparing with the algorithms

in Section 2.1. Section 2.3 summarizes this chapter.

2.1 k-NN Search

As shown in Figure 2.1, k-NN search finds the k-nearest neighbors of query q.

Formally, it is defined as follows:

Definition 1 (k-NN Search) Given a set of data vectors V , a parameter

k and a query vector q, the similarity search returns argmaxkv∈V (sim(v, q)),

where argmaxk returns the k arguments that give the highest values.

One of the main barriers to achieving fast approximate k-NN search is that

the data are usually represented by high-dimensional vectors: for example, 1)

documents and logs are usually represented by a huge number of words or items,
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Figure 2.1: An example of k-NN search

respectively; 2) we usually represent images and videos by a huge number of

extracted features. Although there have been proposed tree-like space parti-

tioning approaches such as kd-tree, quadtree and R-tree in order to speed up

this process, they all suffer from the curse of dimensionality [20].

Locality-sensitive hashing is one of the most effective techniques for find-

ing k-nearest neighbors in a high-dimensional space [21]. It converts high-

dimensional vectors into signatures while preserving the relative distances be-

tween them. Formally, a signature of a vector v consists of an ordered set of hash

values, each calculated by the corresponding LSH hash function h(v) : Rd → N.

Because the signatures are usually low-dimensional vectors, we can find similar

vectors with lower computational cost.

There are two types of challenges for LSH-based k-NN search: 1) improving

the quality of LSH itself, and 2) finding the k-nearest neighbors using a given

LSH algorithm.

2.1.1 Locality Sensitive Hashing

In order to improve the quality of LSH, there have been proposed various types

of LSH functions. As shown in Figure 2.2(a), one of the most popular LSH func-

tions is based on random projections [36, 21], which project a high-dimensional
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vector onto a small line segment as follows:

ha,b(v) =

⌊
a · v + b

r

⌋
(2.1)

Here, v denotes a query vector (or a data vector); a is a vector where each

component is drawn independently from a p-stable distribution; r is a constant;

b is a constant chosen uniformly from the range [0, r]. By randomly selecting a

and b the H number of times, we can obtain H hash functions h1, h2, ..., hH and

corresponding signatures of length H. There are also many popular variants of

the random projections, such as random hyperplanes for cosine similarity [19]

shown in Figure 2.2(b) or random-permutations based MinHash for jaccard

similarity [20].

2.1.2 LSH-based k-NN Search

If we have a signature for every data vector v and a query q, then we need a

way to find candidates for a given query q. One simplest way is to calculate

the distances between the signatures of q and that of every data vector v, and

select the k clostest data vectors as the k-nearest neighbors of q. However,

this approach is not sufficient for many applications because of the following

reasons: 1) if we have short signatures (for example, a length of 100), even

the state-of-the-art data-dependent LSH algorithms do not achieve the level

of MAP@100 higher than 15% for large amounts of datasets [9]; 2) if we have

long signatures, it takes much time to calculate the similarities between the

signatures. To cope with this problem, Exact Euclidean LSH (E2LSH) [21, 20]

constructs compound hash functions g1(v), g2(v), ..., gL(v), each consisting of

an equal number of hash functions. Then if a query vector q and a data vector

v have a same compound hash value, i.e., gi(q) = gi(v) for some i, we consider

v as a candidate for the k-nearest neighbors of q. LSB-tree and LSB-forest [22]

further convert every low-dimensional vector g(v) into one-dimensional value

using z-order curve. Given a query vector q, they select a vector that has a
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Figure 2.2: Illustrative examples of two of the most popular locality-sensitive

hashing schemes

z-order value with the greatest LLCP (length of longest common prefix) as a

candidate for q. Collision Counting LSH (C2LSH) [23] counts the number of

collisions between a query vector q and data vectors v using the hash functions

h1, h2, ..., hH , and if the collision counts is equal to or greater than pre-specified

threshold l, then it selects v as a candidate for q.

2.2 k-NN Graph Construction

As shown in Figure 2.2, k-NN graph construction finds the k-nearest neighbors

for every node. Formally, it is defined as follows:

17



615 

𝑣1 

𝑣2 

𝑣3 

𝑣4 

𝑣5 𝑣6 

𝑣7 

𝑣8 

2-NN of 𝑣5: {𝑣4, 𝑣6} 
2-NN of 𝑣8: {𝑣6, 𝑣7} 

2.08 
2.32 

2.08 

0.82 

1.80 
1.21 0.87 

2.82 1.82 
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Figure 2.4: An example of brute-force approach for k-NN graph construction

Definition 2 (k-NN Graph Construction) Given a set of vectors V , the

k-NN graph construction returns for every vector vi ∈ V , argmaxkvj∈V ∧vi 6=vj
(sim(vi, vj)),

where argmaxk returns the k arguments that give the highest values.

k-NN graph construction is the process of finding (approximate) k-nearest

neighbors among the vectors in V for every vector in V . It is also one of the

primitives operations in data mining, information retrieval, recommender sys-

tems and machine learning [24, 12, 25, 4, 26, 11, 13, 27, 28, 29, 30]. Figure 2.3

shows the simplest approach for constructing a k-NN graph: first, given a set of

vectors, we calculate all of the similarities between vectors and store them in a

matrix (or maintain a set of k-NN lists for reducing the memory requirement of

this process). Then we identify the k-nearest neighbors for every vector based

on the matrix. Since this brute-force approach requires the significant amount

of time, there have been proposed four types of algorithms for fast approximate
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k-NN graph construction: 1) LSH-based Approach, 2) clustering or hyperplane-

based algorithms, 3) heuristic-based algorithms, and 4) similarity join or top-k

similarity join algorithms.

2.2.1 LSH-based Approach

One naive way to construct a k-NN graph is to execute a LSH-based k-NN

search algorithm for every vector in V . However, the algorithms for k-NN search

in the bulk execution setting is usually outperformed by the existing k-NN graph

construction algorithms [24, 25] in that they do not reuse the information that

can be obtained through the search task of the other vectors. In order to cope

with this problem, the method of Zhang et al. [29] exploit the heuristic that the

2-hop neighbors of a vector v could be similar to v. It also applies the random

projections to the compound hash functions g1(v), g2(v), ..., gL(v), which is one

variation of LSB-tree and LSB-forest.

2.2.2 Clustering-based Approach

Clustering-based algorithms are the most simplest methods. The intuition be-

hind these algorithms is that the vectors in the same clusters have a high prob-

ability that they are the k-nearest neighbors of each other. It is known that

k-means clustering and canopy clustering based algorithms [31] are a little bit

faster than brute-force search while keeping the high level of accuracy. Wang et

al. [28] found that the iterative execution of 2-means clustering is more effective

in finding k-NN graph. Recursive Lanczos bisection [12] uses a hyperplane in

order to make clusters: first, it draws a hyperplane that splits the set of vec-

tors V such that it maximizes the sum of squared distances between v ∈ V to

the hyperplane that passes through the centroid. Second, it (recursively) divide

the vectors in V into two overlapping clusters using the hyperplane. Figure 2.5

shows an example of recursive Lanczos bisection. Similarly, the method of Wang

et al. [27] uses random hyperplanes to divide the set of vectors V . Note that
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Figure 2.5: An illustrative example of recursive Lanczos bisection

A randomly generated graph Iteration 1 Iteration 2 (converged)

Figure 2.6: An illustrative example of NN-Descent

the clustering algorithms exploit the abovementioned 2-hop neighbors heuristic

to improve the accuracy.

2.2.3 Heuristic-based Approach

NN-Descent [24] exploit the 2-hop neighbors heuristic but in a more efficient

way. It first randomly selects the k-nearest neighbors for every vector. Then for

each vector, it checks whether a neighbor of a neighbor of the vector is similar

to the vector and repeats until convergence. Figure 2.6 shows an example of

NN-Descent. It also uses a technique for avoiding many redundant distance

computations without the use of much memory, and a technique for slowing

down the convergence of the algorithm. The experimental results show that

although NN-Descent outperforms the other algorithms in terms of accuracy

and execution time, it does not perform well as the number of dimensions scales

up [24].
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2.2.4 Similarity Join

The k-NN graph construction is closely related to other fields, such as the sim-

ilarity join and top-k similarity join fields. First, we introduce the similarity

join problem as follows:

Definition 3 (Similarity Join) Given a set of vectors V and a similarity

threshold ε, a similarity join algorithm returns all possible pairs 〈vi ∈ V, vj ∈ V 〉

such that sim(vi, vj) ≥ ε.

Assume that we use cosine similarity as our similarity measure. The in-

verted index join algorithm [32] for similarity join builds inverted indices for

all dimensions and then exploits them to calculate the similarities. While it

performs much faster than the brute-force search algorithm for sparse datasets,

it still has to calculate all of the similarities between the vectors. On the other

hand, prefix filtering techniques [32, 33, 34] effectively reduce the search space.

They sort the elements of all vectors by their dimensions and set the prefixes

such that the similarity between two vectors is below a threshold when their

prefixes do not have a common dimension. As a result, we can easily prune

many vector pairs by only looking at their prefixes.

The top-k similarity join is identical to the similarity join with regards to

finding the most similar pairs. The difference is that it is based on a parameter

k instead of ε. The top-k similarity join is defined as follows:

Definition 4 (Top-k Similarity Join) Given a set of vectors V and a pa-

rameter k, a top-k similarity join algorithm returns argmaxk〈x∈V,y∈V 〉∧x 6=y (sim(x, y)) ,

where argmaxk returns the k arguments that give the highest values.

The most common strategy is to calculate the similarities of the most proba-

ble vector pairs first and then to iterate this step until a stop condition occurs.

For example, Kim et al. [35] estimates a similarity value ε corresponding to
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the parameter k, selects the most probable candidates, and continues to select

candidates until it can be guaranteed that all vector pairs excluding those that

were already selected as the candidates have similarity values of less than ε.

Similarly, Xiao et al. [10] stops its iteration when it can be guaranteed that the

similarity value of the next probable vector pair is not greater than that of any

candidate that has been selected.

Note that the problem definitions in related work are analogous to that of

k-NN graph construction such that the abovementioned solutions can also be

applied to constructing k-NN graphs. For example, if we know all of the simi-

larities between vectors by the inverted index join algorithm, we can obtain the

k-NN graph by taking the most similar k vectors for each vector and throwing

the rest away. However, these types of approaches do not perform well as the

number of nodes or dimensions is scaled up. In Chapter 3, we discuss these

issues in detail, present several ways to construct a k-NN graph based on the

algorithms of these fields, and analyze their performance results.

2.3 Summary

The limitations of the existing k-NN search algorithms are twofold: first, they

use data-independent LSH techniques (such as random projections) at the early

stage of the algorithms so that we could lose too much information about rel-

ative distances according to the types of datasets being used. For example,

the existing approaches do not achieve a high level of accuracy for the 500-

dimensional NUS-WIDE dataset using a small amount of time. Second, they

use data-independent candidate selection techniques. For example, they do not

consider which hash function is the best for selecting candidates in certain types

of datasets although some hash functions could play a more important role in

achieving the high level of accuracy. Our approach alleviates the above prob-

lems based on data-dependent LSH functions and our data-dependent signature

selection algorithms.
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The limitations of the existing k-NN graph construction algorithms are as

follows: first, the algorithms do not consider the data distributions in order to

speed up the elapsed time. Second, the algorithms do not effectively support

different types of k-NN computation tasks, such as partial k-NN graph con-

struction, which is defined as finding k-nearest neighbors among the vectors in

V for every vector v ∈ V ′ such that V ′ ⊂ V . Note this task can be used for

incremental k-NN graph construction.

Table 2.1 shows the summary of the all k-NN computation methods. Our

approaches are highlighted in boldface and italic. Note that the brute-force

approach is used as a baseline for dense datasets, and that the inverted in-

dex join-based algorithm is used as a baseline for sparse datasets. In practice,

inverted index join-based algorithm performs more than 10 times faster than

brute-force approach in sparse datasets. Figure 2.7 shows the comparison of

every k-NN computation process: 1) the baseline approaches directly compute

the k-nearest neighbors. 2) Most of the k-NN graph construction algorithms

try to efficiently find the candidate pairs, and then construct a k-NN graph by

calculating their similarities. 3) k-NN search algorithms reduce the dimension-

ality using locality-sensitive hashing, and find the candidate pairs based on the

generated signatures. 4) Finally, some approaches further convert the reduced

vectors into one-dimensional values and then find the candidate pairs. In the

following chapters, we will compare and analyze their performance in detail.
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Algorithms Tasks Data Types Similarity Measures Main Methods

Brute-force approach Search / graph Sparse / dense All Exhaustive search

Inverted index join Graph Sparse Cosine similarity Inverted index

k-means clustering Graph Sparse / dense Euclidean distance k-means clustering

Canopy clustering Graph Sparse / dense All Canopy clustering

Recursive Lanczos bisection Graph Dense Euclidean distance Spectral bisection

Zhang’s approach Graph Sparse / dense Popular LSH, projection

NN-Descent Graph Sparse / dense All Heuristic-based

Greedy Filtering Graph Sparse, TF-IDF Cosine similarity Data distribution-based

E2LSH Search Sparse / dense Euclidean distance LSH

C2LSH Search Sparse / dense Euclidean distance LSH

LSB-tree Search Sparse / dense Euclidean distance LSH, z-order curve

S2LSH Search / graph Sparse / dense Popular LSH

Table 2.1: Summary of the all k-NN computation methods. Our algorithms are highlighted in underlined boldface.
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Figure 2.7: Comparison of every k-NN computation process. Our algorithms are highlighted in boldface and italic.
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Chapter 3

Fast Approximate k-NN Graph
Construction

Finding the k-nearest neighbors for every node is one of the most important

data mining tasks as a primitive operation in the field of information retrieval

and recommender systems. However, existing approaches to this problem do

not perform as well when the number of nodes or dimensions is scaled up.

In this chapter, we present greedy filtering, an efficient and scalable algorithm

for finding an approximate k-nearest neighbor graph by filtering node pairs

whose large value dimensions do not match at all. In order to avoid skewness

in the results and guarantee a time complexity of O(n), our algorithm chooses

essentially a fixed number of node pairs as candidates for every node. We also

present a faster version of greedy filtering based on the use of inverted indices for

the node prefixes. We conduct extensive experiments in which we (i) compare

our approaches to the state-of-the-art algorithms in seven different types of

datasets, and (ii) adopt other algorithms in related fields (similarity join, top-k

similarity join and similarity search fields) to solve this problem and evaluate

them. The experimental results show that greedy filtering guarantees a high

level of accuracy while also being much faster than other algorithms for large
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amounts of high-dimensional data.

3.1 Introduction

Constructing a k-Nearest Neighbor (k-NN) graph is an important data mining

task which returns a list of the most similar k nodes for every node [30]. For

example, assuming that we constructed a k-NN graph whose nodes represent

users, we can quickly recommend items to user u by examining the purchase

lists of u’s nearest neighbors. Furthermore, if we implement an enterprise search

system, we can easily provide an additional feature that finds k documents most

similar to recently viewed documents.

We can calculate the similarities of all possible pairs of k-NN graph nodes

by a brute-force search, for a total of n(n − 1)/2. However, because there are

many nodes and dimensions (features) in the general datasets, not only does

calculating the similarity between a node pair require a relatively long execution

time, but the total execution time will be very large. The inverted index join

algorithm [32] is much faster than a brute-force search in sparse datasets. It is

one of the fastest algorithms among those producing exact k-NN graphs, but it

also requires O(n2) asymptotic time complexity and its actual execution time

grows exponentially.

Another way to construct a k-NN graph is to execute a k-nearest neighbor

algorithm such as locality sensitive hashing (LSH) iteratively. LSH algorithms

[36, 37, 19, 38] first generate a certain number of signatures for every node.

When a query node is given, the LSH compares its signatures to those of the

other nodes. Because we have to execute the algorithm for every node, the graph

construction time will be long unless one query can be executed in a short time.

As far as we know, NN-Descent [24] is the most efficient approach for con-

structing k-NN graphs. It randomly selects k-NN lists first before exploiting the

heuristic in which a neighbor of a neighbor of a node is also be a neighbor of

the node. This dramatically reduces the number of comparisons while retain-
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ing a reasonably high level of accuracy. Although the performance is adequate

as the number of nodes grows, it does not perform well when the number of

dimensions is scaled up.

In this chapter, we present greedy filtering, an efficient, scalable algorithm

for k-NN graph construction. This finds an approximate k-NN graph by filtering

node pairs whose large value dimensions do not match at all. In order to avoid

skewness in the results and guarantee a time complexity of O(n), our algorithm

selects essentially a fixed number of node pairs as candidates for every node.

We also present a faster version of greedy filtering based on the use of inverted

indices for the prefixes of nodes. We demonstrate the effectiveness of these

algorithms through extensive experiments where we compare various types of

algorithms and datasets. More specifically, our contributions are as follows:

• We propose a novel algorithm to construct a k-NN graph. Unlike exist-

ing algorithms, the proposed algorithm performs well as the number of

nodes or dimensions is scaled up. We also present a faster version of the

algorithm based on inverted indices (Section 3.3).

• We present several ways to construct a k-NN graph based on the top-k

similarity join, similarity join, and similarity search algorithms (Section

3.5.1). Additionally, we show their weaknesses by analyzing their experi-

mental results (Section 3.5.2).

• We conduct extensive experiments in which we compare our approaches to

existing algorithms in seven different types of datasets. The experimental

results show that greedy filtering guarantees a high level of accuracy while

also being much faster than the other algorithms for large amounts of high

dimensional data. We also analyze the properties of the algorithms with

the TF-IDF weighting scheme (Section 3.4 and 3.5.2).
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3.2 Problem Formulation

In this section, we redefine the k-NN graph construction as follows: let G be a

graph with n nodes and no edges, V be the set of nodes of the graph, and D be

the set of dimensions of the nodes. Each node v ∈ V is represented by a vector,

which is an ordered set of elements e1, e2, ..., e|v|−1, e|v| such that each has a pair

consisting of a dimension and a value, 〈di, rj〉, where d ∈ D and 0 ≤ rj ∈ R ≤ 1.

The values are normalized by L2-norm such that the following equation holds:

∑
〈di∈D,rj∈R〉∈V

r2j = 1. (3.1)

Definition 1 (k-NN Graph Construction) Given a set of vectors V , the

k-NN graph construction returns for each vector x ∈ V , argmaxky∈V ∧x 6=y (sim(x, y)),

where argmaxk returns the k arguments that give the highest values.

We use the cosine similarity as the similarity measure for k-NN graph con-

struction. The cosine similarity is defined as follows:

sim(vi ∈ V, vj ∈ V ) =
vi · vj
‖vi ‖‖ vj‖

= vi · vj . (3.2)

Example 1. In Figure 3.1, if we assume that the hidden elements (as de-

scribed by the ellipses) have a value of 0 and k = 2, the k-nearest neighbors of

v1 are v2 and v4, because sim(v1, v2), sim(v1, v3), sim(v1, v4), and sim(v1, v5)

are 0.42, 0.13, 0.34, 0.28, respectively. The k-NN graph is obtained by finding k-

nearest neighbors for every vector: {v2, v4} , {v4, v1} , {v2, v4} , {v2, v1} , {v1, v4}.

3.3 Constructing a k-Nearest Neighbor Graph

3.3.1 Greedy Filtering

Before presenting our algorithms, we introduce several distributions of datasets,

as follows: Figure 3.2(a) shows the value of each element of a vector v ∈ V , where

the value of the ith element is larger than that of (i+1)th element. Figure 3.2(b)

29



Figure 3.1: Example of greedy filtering: the prefixes of vectors are colored. We

assume that the hidden elements (as described by the ellipses) have a value of

0 and k = 2.
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Figure 3.2: Typical distributions after performing our preprocessing steps

shows the vector frequency of the ith element of a vector v ∈ V , where the vector

frequency of the ith element is smaller than that of (i+1)th element. Let dim(e)

be the dimension of element e. Then the vector frequency of the element e is

defined as the number of vectors that have the element of dimension dim(e).

An interesting finding is that regardless of the dataset used, the dataset

often follows distributions similar to those shown in Figure 3.2(a) and Figure

3.2(b) by performing some of the most common pre-processing steps. If we

sort the elements of each vector in descending order according to their values,

their value distributions will be similar to the distribution shown in Figure

3.2(a). Note that this pre-processing step does not change the similarity values
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between vectors. Furthermore, if we weigh the value of each element according

to a scheme that adds weights to the values corresponding to sparse dimensions,

such as IDF, TF-IDF, or BM25, then the vector frequency distributions will be

similar to the distribution shown in Figure 3.2(b). These weighting schemes

are widely used in information retrieval and recommender systems along with

popular similarity measures [40].

Let v′ and v′′ be the prefix and suffix of vector v ∈ V , respectively. The

prefix v′ consists of the first n elements and the suffix v′′ consists of the last

m elements such that |v| = n + m. Then sim(vi ∈ V, vj ∈ V ) = sim(v′i, v
′
j) +

sim(v′i, v
′′
j ) + sim(v′′i , v

′
j) + sim(v′′i , v

′′
j ). Our intuition is as follows: assuming

that the elements of each vector follows the distributions shown in Figure 2 and

that the prefix and suffix of each vector is determined beforehand, sim(vi, vj)

would not have a high value when sim(v′i, v
′
j) = 0 because, first, sim(v′i, v

′′
j )

would not have a high value; the vector frequencies of the elements in v′i are so

small that there is a low probability that v′i and v′′j have a common dimension.

Although there are some common dimensions in their elements, the values of

the elements in v′′j are so small that they do not increase the similarity value

significantly. For a similar reason, sim(v′′i , v
′
j) and sim(v′′i , v

′′
j ) would not have

a high value: The elements of high values have low vector frequencies and the

elements of high vector frequencies have low values. When sim(v′i, v
′
j) 6= 0, on

the other hand, sim(vi, vj) would have a relatively high value because v′i and

v′j have the highest values.

If we generalize this intuition, we can assert that two vectors are not one of

the k-nearest neighbors of each other if their prefixes do not have a single com-

mon dimension. That is to say, we would obtain an approximate k-NN graph

by calculating the similarities between vectors that have at least one common

dimension in their prefixes. Note that the vector frequencies of the prefixes are

so small that they usually do not have a common dimension. Thus we can prune

many vector pairs without computing the actual similarities. Because this ap-
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proach initially checks whether the dimensions of large values match, we call it

greedy filtering.

Definition 2 (Match) Let vi and vj be the vectors in V, and let ei and

ej be any of the elements of vi and vj , respectively. We hold that ei and ej

match if dim(ei) = dim(ej). We also say that vi and vj match if any ei ∈ vi

and ej ∈ vj match.

Definition 3 (Greedy Filtering) Greedy filtering returns for each vec-

tor x ∈ V , argmaxky∈V ∧x 6=y∧match(x,y) (sim(x, y)), where argmaxk returns the

k arguments that give the highest values, and match(x, y) is true if and only if

x and y match.

Example 2. Figure 3.1 shows an example of greedy filtering, where the

prefixes are colored. If we assume that the hidden elements (described by el-

lipses) have a value of 0 and k = 2, greedy filtering calculates the similarities

of 〈v1, v2〉, 〈v1, v3〉, 〈v1, v4〉, 〈v1, v5〉, 〈v2, v3〉, 〈v4, v5〉, and 〈v1, v4〉, filters out

〈v2, v4〉, 〈v2, v5〉, 〈v3, v4〉 and 〈v3, v5〉, and returns k-nearest neighbors for every

vector: {v2, v4} , {v3, v1} , {v2, v1} , {v5, v1} , {v4, v1} .

Note that the result of Example 2 is slightly different from that of Example

1, because greedy filtering is an approximate algorithm. If the dataset follows

the distributions similar to those of Figure 3.2, the algorithm will be more

accurate. In Section 3.4 and 3.5, we will justify our intuition in more detail.

3.3.2 Prefix Selection Scheme

If we set the prefix such that |v′i| = |vi| , ∀vi ∈ V , then greedy filtering generates

the exact k-NN graph though its execution time will be very long. On the other

hand, if we set the prefix such that |v′i| = 0,∀vi ∈ V , then greedy filtering

returns a graph with no edges while the algorithm will terminate immediately.

Note that the elapsed time of greedy filtering and the quality of the constructed
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graph depend on the prefix selection scheme. In general, there is a tradeoff

between time and quality.

Assume that greedy filtering can find the approximate k-nearest neighbors

for vi ∈ V if the number of matched vectors of vi is equal to or greater than a

small value µ. Then if for each vector vi we find v′i such that |v′i| is minimized

and the number of matched vectors of vi is at least µ, then we can expect a

rapid execution of the algorithm and a graph of good quality.

Algorithm 1 describes our prefix selection scheme, where ejvi denotes the

jth element of vector vi and dim(e) denotes the dimension of element e. In

line 2, we initially prepare an empty list for each dimension. Because one list

L[di] contains vectors that have the dimension of di in their prefixes, if any list

has the two different vectors vi and vj , then greedy filtering will calculate the

similarity between them. In lines 7-8, we insert the vectors in R into the lists,

meaning that we increase the prefixes of the vectors in R by 1. In lines 10-13,

we estimate the number of matched vectors, denoted by M , for each vi ∈ R. In

lines 14-16, we check the stop conditions for each vector and determine which

vectors will increase their prefixes again.

Note that Algorithm 1 sacrifices two factors for the performance and ease

of implementation. First, it allows the duplicate execution of the brute-force

search (lines 19-20 of Algorithm 1 and lines 3-5 of Algorithm 2). If the two vec-

tors v′i and v′j have the d number of dimensions that match, we will calculate

the d number of calculations of sim(vi, vj). Although we can avoid these redun-

dant computations by exploiting a hash table, this is not good for scalability

in general. Second, we overestimate the value µ for a similar reason: if the two

vectors v′i and v′j have d number of dimensions that match, then M increases

by d instead of 1. Also, we calculate the value of M only once per iteration;

this makes M slightly larger.

Example 3. Figure 3.1 shows the result of our prefix selection scheme when
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µ = 2. Let M(v) be the value M of the vector v. Initially, the prefix size of each

vector is 1: M(v1) = M(v2) = 1 and M(v3) = M(v4) = M(v5) = 0, because

only 〈v1, v2〉 match. As the next step, we increase the prefix sizes of all vectors

by 1, as M(vi) < µ,∀vi ∈ V. Then 〈v1, v5〉, 〈v2, v3〉 and 〈v4, v5〉 match. At this

point, M(v1) = M(v2) = M(v5) = 2 and M(v3) = M(v4) = 1. Thus we increase

the prefix sizes of v3 and v4. As we continue until the stop condition is satisfied,

our prefix selection scheme selects the colored elements shown in Figure 3.1.

Our prefix selection scheme has O(|V | |D|2) time complexity, and the brute-

force search has to compare each vector v to M number of other vectors. How-

ever, our preliminary results show that the prefix sizes are so small that we

can regard D as a constant. Furthermore, we set the variable M close to µ;

empirically, M is not twice as large as µ. Assuming that D is a constant and

M = 2µ, the total complexity of greedy filtering is O(|V |+ 2µ |V |) = O(|V |).

3.3.3 Optimization

Our algorithm uses a brute-force search a constant number of times for each

vector. Because the execution times of the brute-force search highly dependent

on the sizes of the vectors, it will take a relatively long time when a dataset

contains very large vectors. For instance, experimental results show that the

execution time of datasets whose vector sizes are relatively large, such as TREC

4-gram, is longer than that of other datasets.

We present one variation of greedy filtering, called fast greedy filtering.

The main idea of this approach is that if sim(v′i, v
′
j) is relatively high, then

sim(vi, vj) will also be relatively high. Then we can formulate an approximate

k-NN graph by calculating the similarities between prefixes. Algorithm 1 and

Algorithm 3 describe the process of this algorithm in detail: ejvi denotes the

jth element of vector vi, and dim(e) and value(e) denote the dimension and

value of element e, respectively. In Algorithm 1, we set the prefix of each vector

according to the abovementioned prefix selection scheme and invoke Algorithm
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Algorithm 1: Greedy-Filtering (V, µ)

Input: a set of vectors V , a parameter µ

Output: k-NN queues Q

1 begin

2 L[di]←− φ, ∀di ∈ D /* candidates */

3 C ←− 1 /* an iteration counter */

4 R←− V /* vectors to be processed */

5 repeat

6 /* find candidates */

7 for vi ∈ R do

8 add vi to L[dim(eCvi)]

9 /* check stop conditions */

10 for vi ∈ R do

11 M ←− 0

12 for j ← 1 to C do

13 M ←−M +
∣∣∣L[dim(ejvi)]

∣∣∣
14 if M ≥ µ or C ≥ |vi| then

15 P [vi]←− C

16 remove vi from R

17 C ←− C + 1

18 until |R| > 0

19 if default algorithm then

20 return Brute-force-search(L)

21 else

22 return Inverted-index-join(V, P )
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Algorithm 2: Brute-force-search (L)

Input: lists for dimensions L

Output: k-NN queues Q

1 begin

2 Q[vi]←− φ, ∀vi ∈ V /* empty queues */

3 for di ∈ D do

4 compare all vector pairs 〈vx, vy〉 in L[di]

5 update the priority queues, Q[vx] and Q[vy]

6 return Q

3. Then in lines 6-12 of Algorithm 3, we calculate the similarities between the

current vector vi ∈ V and the other vectors already indexed and update the

k-nearest neighbors of vi and the indexed vectors. In lines 14-15, we put the

current vector vi into the inverted indices. Unlike greedy filtering, the execution

time of fast greedy filtering is highly dependent on the number of dimensions

and the vector frequencies of the datasets rather than the vector sizes.

Definition 4 (Fast Greedy Filtering) For each vector x ∈ V , fast greedy

filtering returns argmaxky∈V ∧x 6=y∧match(x,y) (sim(x′, y′)) , where argmaxk re-

turns the k arguments that give the highest values, and where match(x, y) is

true if and only if x and y match.

Example 4. If we apply fast greedy filtering to the example in Figure 1, the

algorithm returns slightly different results: {v2, v5} , {v3, v2} , {v2, v1} , {v5, v1} ,

{v4, v5} when k = 2.

3.4 Theoretical Analysis

Greedy filtering constructs an approximate k-NN graph by calculating the sim-

ilarities between vectors that have at least one common ”rare” dimension. In
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Algorithm 3: Inverted-index-join (L,P )

Input: a set of vectors V , prefix sizes P

Output: k-NN queues Q

1 begin

2 Q[vi]←− φ, ∀vi ∈ V /* empty queues */

3 I[di]←− φ,∀di ∈ D /* empty indices */

4 for vi ∈ V do

5 /* verification phase */

6 C[vj ]←− 0,∀vj ∈ V /* sim(vi, vj) = 0 */

7 for l← 1 to P [vi] do

8 for 〈vj , rj〉 ∈ I[dim(elvi)] do

9 C[vj ]←− C[vj ] + rj ∗ value(elvi)

10 for vj ∈ V do

11 if C[vj ] > 0 then

12 update the queues, Q[vx] and Q[vy]

13 /* indexing phase */

14 for l← 1 to P [vi] do

15 add
〈
vi, value(e

l
vi)
〉

to I[dim(elvi)]

16 return Q

this section, we will show that this approach is effective for sparse datasets

where each vector component follows zipfian distribution and is weighted by

a TF-IDF weighting scheme, assuming that we use dot product as a similarity

measure. Because cosine similarity belong to a family of dot product similarity

measures, we can extend the following lemmas and theorem to those of cosine

similarity.
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Figure 3.3: The value and probability distributions of words

3.4.1 Preliminaries

Zipfian distribution. Let V be a set of N -dimensional vectors. Let wn be the

nth word in our vocabulary. We assume that vectors represent documents. Then

N indicates the number of words in our vocabulary, and the nth component

of vector v ∈ V represents the frequency of wn in v. We also assume that

frequency of words follows zipfian distribution. That is to say, for vectors in V ,

the normalized frequency of the nth word is as follows:

pn =
1/ns∑N

i=1(1/i
s)

(3.3)

Here, s is the parameter of the zipfian distribution. We set s = 1 in this disser-

tation.

TF-IDF weighting scheme. For vectors v ∈ V , we assume that the nth

component is weighted by the following TF-IDF weighting scheme:

TFv,n =


1, the nth word frequency in v > 0

0, otherwise

(3.4)

IDFn =
1

(pn)2
(3.5)

Figure 3.3 shows the distributions of words assuming that the words follow

the zipfian distribution and are weighted by TF-IDF. Note if we sort the ele-

ments in descending order of value, then we will see the distributions similar to
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words words

Figure 3.4: An illustrative example of the analysis of graph construction time

those of Figure 3.2.

Dot product similarity measure. For vectors vi ∈ V and vj ∈ V , the dot

product similarity measure is defined as follows:

sim(vi, vj) = vi · vj (3.6)

3.4.2 Graph Construction Time

In this subsection, we prove that the greedy filtering significantly reduces the

number of candidates by showing that the probability of two random vectors

having any rare word in common is very low (Lemma 1 and Example 5). Figure

3.4 shows a conceptual example of two random vectors, where a shaded region

indicates that the corresponding word occurs at least once, and the vertical

length of each region indicates the probability that the corresponding word oc-

curs at least once.

Lemma 1. Let K1 and K2 be positive non-zero integers, and vi and vj be

vectors constructed by randomly generated K1 and K2 words, respectively. Let

T be an integer such that 1 ≤ T ≤ N . If wT , ..., wN are rare words and the

other words are not rare, then the probability that vi and vj have at least one

common rare word is

pmatch = 1−

(
1−

(
N∑

n=T

(
1− (1− pn)K1

)
pn

))K2

(3.7)
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words words

Figure 3.5: An illustrative example of the analysis of graph accuracy

Proof: The probability that wn is at least once appeared in vi is 1− (1− pn)K1 .

Hence the expected value of the sum of the probability of rare words at least

once appeared in vi is
∑N

n=T

(
1− (1− pn)K1

)
pn. Since the probability that vj

does not have any rare word in common with vi is
(

1−
(∑N

n=T

(
1− (1− pn)K1

)
pn

))K2

,

it follows that

pmatch = 1−

(
1−

(
N∑

n=T

(
1− (1− pn)K1

)
pn

))K2

(3.8)

Example 5. Given N , T , K1, and K2, we can calculate pmatch as follows:

• IfN = 100, 000, T = 90, 000,K1 = K2 = 1, 000, then pmatch = 0.00757009.

• If N = 100, 000, T = 80, 000,K1 = K2 = 1, 000, then pmatch = 0.0169509.

• If N = 100, 000, T = 90, 000,K1 = K2 = 2, 000, then pmatch = 0.0299255.

• IfN = 110, 000, T = 100, 000,K1 = K2 = 1, 000, then pmatch = 0.00610197.

3.4.3 Graph Accuracy

In this subsection, we show that if two random vectors have a rare word wo in

common as described in Figure 3.5, then the expected value of the similarity

between the vectors is much higher than that of another two random vectors

(Lemma 2, 3, Theorem 1 and Example 6).
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Lemma 2. Define cn = (IDFn)2. Then the expected value of the similarity

between two random vectors consisting of K1 and K2 words, respectively, is

EK1,K2 =
N∑

n=1

(
1− (1− pn)K1

)(
1− (1− pn)K2

)
· cn (3.9)

Proof. Let vi and vj be vectors constructed by randomly generated K1 and K2

words. That is to say, EK1,K2 = E[vi ·vj ]. Since each component of a vector has

its corresponding TF-IDF value, the expected value of the similarity between

vi and vj is

E[vi · vj ] = E

[
N∑

n=1

TFvi,n · TFvj ,n · cn

]
(3.10)

By linearity of expectation,

E

[
N∑

n=1

TFvi,n · TFvj ,n · cn

]
= E[TFvi,1 · TFvj ,1]c1 + ...+ E[TFvi,N · TFvj ,N ]cN

(3.11)

Since the probability that TFvi,n = 1 is (1 − (1 − pn)K1) and the probability

that TFvj ,n = 1 is (1− (1− pn)K2), it follows that

E[TFvi,n · TFvj ,n] =
(

1− (1− pn)K1

)(
1− (1− pn)K2

)
(3.12)

Hence,

E[vi · vj ] =

N∑
n=1

(
1− (1− pn)K1

)(
1− (1− pn)K2

)
· cn (3.13)

Lemma 3. Define ∆1 and ∆2 as follows:

∆1 =
N∑

n=1

pn(1− pn)K1−1 ·
(

1− (1− pn)K2−1
)
· cn (3.14)

∆2 =

N∑
n=1

pn(1− pn)K2−1 ·
(

1− (1− pn)K1

)
· cn (3.15)

Then,

EK1,K2 = EK1−1,K2−1 + ∆1 + ∆2 (3.16)
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Proof. Let v
′
i and v

′
j be vectors constructed by randomly generated K1−1 words

and K2 − 1 words, respectively. Note E[vi · vj ] = EK1−1,K2−1. If we insert one

random word into v
′
i, then the expected value is increased by

∆1 =
N∑

n=1

pn(1− pn)K1−1 ·
(

1− (1− pn)K2−1
)
· cn (3.17)

Then since v
′
i and v

′
j has K1 and K2 − 1 words, respectively, if we insert one

random word into v
′
j , then the expected value is increased by

∆2 =

N∑
n=1

pn(1− pn)K2−1 ·
(

1− (1− pn)K1

)
· cn (3.18)

Since the expected value of v
′
i · v

′
j before and after inserting the two words are

EK1−1,K2−1 and EK1,K2 , respectively, it follows that

EK1,K2 = EK1−1,K2−1 + ∆1 + ∆2 (3.19)

Theorem 1. For a given integer o such that 1 6= o 6= N , we assume that

wo is a rare word. Let ui and uj be vectors constructed by randomly generated

K1 and K2 words, respectively, such that they have non-zero oth components.

Then,

E[ui · uj ] = E[vi · vj ]− (∆1 + ∆2)− ε+ co (3.20)

Proof. Let v
′
i and v

′
j be vectors constructed by randomly generated K1−1 words

and K2−1 words, respectively. Since E[ui ·uj ] is the sum of co and the expected

value that can be additionally obtained by v
′
i · v

′
j , it follows that

E[ui · uj ] = co + E[v
′
i · v

′
j ]− (1− (1− po)K1−1)(1− (1− po)K2−1) · co (3.21)

Since wo is a rare word, 1− (1− po)K1−1)(1− (1− po)K2−1) · co � co. Since

E[v
′
i · v

′
j ] = EK1−1,K2−1, by Lemma 3, E[v

′
i · v

′
j ] = E[vi · vj ]− (∆1 + ∆2). Hence,

E[ui · uj ] = E[vi · vj ]− (∆1 + ∆2)− ε+ co (3.22)
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Example 6. Given N , K1, K2, and o, the ratio of the two expected values

is calculated as follows:

• If N = 100, 000,K1 = 1, 000,K2 = 1, 000, and o = 100, 000, then

E[ui·uj ]
E[vi·vj ] = 15.71.

• If N = 100, 000,K1 = 1, 000,K2 = 1, 000, and o = 90, 000, then

E[ui·uj ]
E[vi·vj ] = 12.91.

• If N = 110, 000,K1 = 1, 000,K2 = 1, 000, and o = 100, 000, then

E[ui·uj ]
E[vi·vj ] = 14.57.

• If N = 100, 000,K1 = 2, 000,K2 = 2, 000, and o = 100, 000, then

E[ui·uj ]
E[vi·vj ] = 4.69.

Note Example 6 shows that E[ui ·uj ] is much higher than E[vi ·vj ], because

∆1+∆2 is much smaller than co. Lemma 4 and Example 7 show the relationship

between ∆1 + ∆2 and co more clearly.

Lemma 4. If K = K1 = K2 and p1 ≤ 0.5, then

∆1 + ∆2 ≤ 0.75 · ln(N + 1) · N(N + 1)

2
(3.23)

Proof. Since x(1 − x) ≤ 0.25, 1/(1 − pn) ≤ 2, and the N th harmonic number

can be interpreted as a Riemann sum of the integral,
∫ N+1
1

1
xdx = ln(N + 1),
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the following inequalities holds:

∆1 =

N∑
n=1

pn(1− pn)K−1 · (1− (1− pn)K−1) · cn

=

N∑
n=1

(1− pn)K−1 · (1− (1− pn)K−1) · 1

pn

≤ 0.25 ·
N∑

n=1

1

pn

= 0.25 ·
N∑

n=1

∑N
i=1

1
i

1
n

= 0.25 ·
N∑
i=1

1

i
·

N∑
n=1

n

= 0.25 · ln(N + 1) · N(N + 1)

2

(3.24)

∆2 =
N∑

n=1

pn(1− pn)K−1 · (1− (1− pn)K) · cn

=
N∑

n=1

(1− pn)K · (1− (1− pn)K) · 1

1− pn
·

(∑N
i=1

1
i

1
n

)

≤ 0.25 · ln(N + 1) · N(N + 1))

2
· 1

1− p1

≤ 0.5 · ln(N + 1) · N(N + 1)

2

(3.25)

Hence,

∆1 + ∆2 ≤ 0.75 · ln(N + 1) · N(N + 1)

2
(3.26)

Example 7. If N = 100, 000 and o = 100, 000, then ∆1+∆2 ≤ 4.31740·1010

and co = 1.46172 · 1012. Thus ∆1 + ∆2 � co.

3.5 Experiments

3.5.1 Experimental Setup

Algorithms. We considered eight types of algorithms for a comparison. Three

algorithms among them adopt the similarity join (abbreviated by SIM) [32], the
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top-k similarity join (TOP) [41], and similarity search (LSH) [19] approaches.

Two algorithms among them are NN-Descent (DE1) and Fast NN-Descent

(DE2) [24], originally developed for the purpose of constructing k-NN graphs.

The other two algorithms are greedy filtering (GF1) and fast greedy filtering

(GF2) algorithms as proposed in this paper. Finally, we use the inverted in-

dex join (IDX) [32], which calculates all similarities with inverted indices, as a

baseline algorithm. In all experiments, we set the number of neighbors to 10

(k=10).

We adopted the similarity join algorithm for k-NN graph construction. First,

we implement the vector similarity join algorithm, MM-join [32], which outper-

forms the All-pairs algorithm [33] in various datasets. Then, we iterate the

execution of the algorithm while decreasing the threshold ε by δ until either at

least s% of vectors find k-nearest neighbors or until the elapsed time is higher

than that of inverted index join. We used the following values in the experi-

ments: ε = 1.00 (the initial value), δ = 0.05 and s = 30.

Adapting the top-k similarity join algorithm [41] for the k-NN graph con-

struction process is along the same lines as that of the similarity join algorithm,

except (1) we increase the parameter k at each iteration instead of decreasing

δ, and (2) because the top-k similarity join algorithm uses sets as data struc-

tures, we need to transform the data structures into vectors and set new upper

bounds for the suffixes of vectors using the prefix filtering and length filtering

conditions. We set s = 70 for the top-k similarity join algorithm.

We also adopted the similarity search algorithm for k-NN graph construc-

tion by executing the algorithm N times. We used random hyperplane-based

locality sensitive hashing for cosine similarity [19]. We cannot adopt other LSH

algorithms, such as those in Broder et al. [38] or Gionis et al. [36], as they

were originally developed for other similarity measures. We set the number of

signatures for each vector to 100.
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Table 3.1: Datasets and statistics

Dataset Statistics |V | |D| Avg. Size Avg. VF

DBLP 250,000 163,841 5.14 7.85

TREC 125,000 484,733 79.83 20.59

Last.fm 125,000 56,362 4.78 10.60

DBLP 4-gram 150,000 279,380 27.97 15.02

TREC 4-gram 50,000 731,199 509.20 34.82

Last.fm 4-gram 100,000 194,519 20.77 10.68

MovieLens 60,000 10,653 141.23 795.44

Datasets. We considered seven types of datasets for a comparison. There are

two document datasets (DBLP1 and TREC2), one text dataset that consists

of music metadata (Last.fm3), three artificial text datasets (DBLP 4-gram,

TREC 4-gram and Last.fm 4-gram), and one log dataset that consists of the

movie ratings of users (MovieLens4). Note DBLP 4-gram, TREC 4-gram, and

Last.fm 4-gram are derived from DBLP, TREC and Last.fm, respectively. We

remove whitespace characters in the original vectors and extracted the 4-gram

sequences from them. Table 3.1 shows their major statistics, where |V | denotes

the number of vectors and |D| is the number of dimensions, Avg. Size denotes

the average size of all vectors, and Avg. VF is defined as the average vector

frequencies of all dimensions.

Evaluation Measures. We use the execution time and the scan rate as the

measures of performance. The execution time is measured in seconds; it does not

include the data preprocessing time, which accounts for only a minor portion as

indicated in Figure 3.6. Since the preprocessing time comprises of the time for

1http://dblp.uni-trier.de/xml/
2http://trec.nist.gov/data/t9_filtering.html/
3http://www.last.fm/
4http://grouplens.org/datasets/movielens/
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Figure 3.6: Elapsed time for each task (greedy filtering, k-NN graph construc-
tion, and the New York Times dataset)

1) constructing a sparse matrix M , 2) TF-IDF weighting, 3) L2-normalization,

4) creating a copy, matrix M
′
, of matrix M , 5) sorting M by dimension and

6) sorting M
′

by value, the execution time only consists of the time for pre-

fix selection (finding candidates) and calculating similarities. The scan rate is

defined as follows:

Scan Rate =
# similarity calculations

|V | (|V | − 1)/2
(3.27)

The similarity calculation expresses the exact calculation of the similarity

between a pair. Thus, the brute-force search and the inverted index join always

have a scan rate of 1, as they calculate all of the similarities between vectors. On

the other hand, fast greedy filtering has a scan rate of 0 because this algorithm

only estimates the degrees of similarity.

We use the level of accuracy as the measure of quality. Assuming that an

algorithm returns k neighbors for each vector, the accuracy of the algorithm is

defined as follows:

Accuracy =
# correct k-nearest neighbors

k |V |
(3.28)
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Weighting Schemes. The value of each element can be weighted by the pop-

ular weighting scheme, such as TF-IDF. Let v be a vector in V and ei be an

element in v. Then, we define the TF-IDF as follows:

tf-idf(ei, v) =

(
0.5 +

0.5 ∗ value(ei)
max {value(ej) : ej ∈ v}

)
∗
(
log

|V |
V F (ei)

)
, (3.29)

Here, value(e) is the initial value of e. In the text datasets, the initial values

are the term frequencies; in the MovieLens dataset, the values are the ratings.

3.5.2 Performance Comparison

Comparison of All Algorithms. Figure 3.7 and Table 3.2 show the execution

time, accuracy, and scan rate of all algorithms with a small number of TREC

nodes. We do not specify the accuracy and scan rate of inverted index join in

Table 3.2, as its accuracy is always 1 and its scan rate is always 0. By the same

token, the scan rates of LSH and GF2 are left blank. We set µ = 300 for our

greedy filtering algorithms.

The experimental results show that the greedy filtering approaches (GF1

and GF2) outperform all other approximate algorithms in terms of the exe-

cution time, accuracy and scan rate. The second best algorithms behind GF1

and GF2 are the NN-Descent algorithms (DE1 and DE2). However, as already

descrbed in work by Dong et al., the accuracy of the algorithms significantly

decreases as the number of dimensions scales up. The other algorithms require

either a long execution time or return results that are not highly accurate.

The top-k similarity join and similarity join algorithms require a considerable

amount of time to construct k-NN graphs, and locality sensitive hashing based

on random hyperplanes requires many signatures (more than 1,000 signatures

in our experimental settings) to ensure a high level of accuracy.
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Figure 3.7: Execution time of all algorithms (TREC)

Table 3.2: Accuracy and scan rate of all algorithms

Node
Accuracy (TREC) Scan Rate (TREC)

SIM LSH TOP DE1 DE2 GF1 GF2 SIM LSH TOP DE1 DE2 GF1 GF2

10K 0.00 0.01 0.68 0.54 0.43 0.96 0.65 0.05 - 0.06 0.27 0.19 0.05 -

20K 0.00 0.01 0.76 0.50 0.38 0.95 0.63 0.07 - 0.08 0.15 0.11 0.03 -

30K 0.00 0.01 0.76 0.48 0.36 0.94 0.62 0.05 - 0.08 0.10 0.08 0.03 -

40K 0.00 0.01 0.78 0.47 0.34 0.93 0.61 0.08 - 0.08 0.08 0.06 0.02 -

50K 0.00 0.01 0.79 0.46 0.33 0.93 0.59 0.05 - 0.08 0.07 0.05 0.02 -

4
9



Comparison of All Datasets. Table 3.3 shows the comparison results of the

two outperformers, greedy filtering and NN-Descent, over the seven types of

datasets with the TF-IDF weighting scheme. The results of their optimized

versions are specified within the parentheses. In this table, we define a new

measure, time, as the execution time divided by the execution time of inverted

index join. We set the parameters µ such that the accuracy of GF1 is at least

90%. The experimental results show that GF1 outperforms the NN-Descent

algorithms in all of the datasets except for DBLP and MovieLens. Although

the execution time of GF1 is slower than the times required by the the NN-

Descent algorithms for the two datasets, its accuracy is much higher.

Note that while fast greedy filtering exploits inverted index join instead of

brute-force searches, it is not always faster than greedy filtering. Fast greedy fil-

tering can be more effective in a dataset for which the vector sizes are relatively

large and the number of dimensions and the vector frequencies are relatively

small. For example, fast greedy filtering outperforms the other algorithms in

the TREC 4-gram datasets, which have the largest average size.

Performance Analysis. Recall that before executing the greedy filtering algo-

rithm, we utilize some of the most common pre-processing steps, as described in

Section 3.3. First, we weigh the value of each element according to a weighting

scheme, and then we sort the elements of each vector in descending order ac-

cording to their values. Figure 3.8 shows the distributions of all of our datasets

after performing these pre-processing steps. Note that the distributions after

pre-processing are similar to those in Figure 3.2. Note also that Figure 3.8 and

the experimental results are in accord with our intuition as presented in Sec-

tion 3.3: for example, the distributions of DBLP 4-gram, Last.fm, and TREC

in Figure 3.8 are very similar to those shown in Figure 3.2; moreover, the ex-

perimental results in Table 3.3 show that their execution time is better than

those of the other datasets. As another example, the distributions of Movie-
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Lens with TF-IDF are relatively less similar to those shown in Figure 3.2 in

that the element position does not greatly affect the vector frequency. Thus,

their performance is slightly worse than the performance levels of the other

datasets.

3.6 Summary

In this chapter, we present greedy filtering, an efficient and scalable algorithm

for finding an approximate k-nearest neighbor graph by filtering node pairs

whose large value dimensions do not match at all. In order to avoid skewness

in the results and guarantee a linear time complexity, our algorithm chooses

essentially a fixed number of node pairs as candidates for every node. We also

present fast greedy filtering based on the use of inverted indices for the node

prefixes. We demonstrate the effectiveness of these algorithms through extensive

experiments in which we compare various types of algorithms and datasets.

The limitation of our approaches is that they are specialized for high di-

mensional sparse datasets, weighting schemes that add weight to the values

corresponding to sparse dimensions, and cosine similarity measure. In chapter

5, we present more generalized algorithms using locality-sensitive hashing.
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Table 3.3: Comparison of all datasets

Datasets (TF-IDF)
DE1 (DE2) GF1 (GF2)

Time Accuracy Scan Rate Time Accuracy Scan Rate

DBLP 0.015 (0.013) 0.14 (0.11) 0.005 (0.004) 0.242 (0.076) 0.98 (0.90) 0.102 (-)

TREC 0.190 (0.140) 0.43 (0.27) 0.030 (0.021) 0.030 (0.009) 0.90 (0.56) 0.007 (-)

Last.fm 0.322 (0.189) 0.69 (0.68) 0.014 (0.008) 0.063 (0.149) 0.98 (0.80) 0.003 (-)

DBLP 4-gram 0.066 (0.046) 0.52 (0.34) 0.019 (0.011) 0.004 (0.006) 0.93 (0.59) 0.001 (-)

TREC 4-gram 0.228 (0.163) 0.60 (0.42) 0.066 (0.047) 0.106 (0.003) 0.90 (0.48) 0.035 (-)

Last.fm 4-gram 1.207 (0.800) 0.65 (0.65) 0.013 (0.008) 0.139 (0.204) 0.90 (0.59) 0.001 (-)

MovieLens 0.244 (0.161) 0.55 (0.38) 0.046 (0.028) 0.302 (0.013) 0.90 (0.19) 0.073 (-)
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Figure 3.8: Distributions of all datasets
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Chapter 4

Fast Collaborative Filtering

User-based and item-based collaborative filtering (CF) methods are two of the

most widely used techniques in recommender systems. While these algorithms

are widely used in both industry and academia owing to their simplicity and

acceptable level of accuracy, they require a considerable amount of time to find

k similar neighbors (items or users) and predict user preferences of unrated

items. In this chapter, we present Reversed CF (RCF), a rapid CF algorithm

which utilizes a k-nearest neighbor (k-NN) graph. One main idea of this ap-

proach is to reverse the process of finding k neighbors; instead of finding k

similar neighbors of unrated items, RCF finds the k-nearest neighbors of rated

items. Not only does this algorithm perform fewer predictions while filtering

out inaccurate results, but it also enables the use of fast k-NN graph construc-

tion algorithms such as greedy filtering. The experimental results show that

our approach outperforms traditional user-based/item-based CF algorithms in

terms of both the pre-processing time and the query processing time without

sacrificing the level of accuracy.
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4.1 Introduction

User-based and item-based collaborative filtering (CF) methods are two of the

most widely used techniques in recommender systems. When a user requests a

recommendation, the user-based CF algorithm [1] predicts the user’s preferences

for all of the unrated items based on similar user preferences for those items. In

a similar way, the item-based CF algorithm [2] predicts the preferences of the

user for all unrated items based on the preference levels of similar items for the

user.

Earlier studies in these areas indicated that CF algorithms produce movie

recommendations of a higher quality compared to baseline algorithms, which

only recommend the most popular movies or highly rated movies [50]. Although

there have been proposed more efficient algorithms, such as those that use singu-

lar vector decomposition [51] or a random walk [50][51], CF algorithms are still

widely used in both industry and academia owing to their simplicity and accept-

able levels of accuracy. For example, the Amazon and YouTube recommender

systems [52][3] utilize CF-based algorithms, and many modified versions of CF

algorithms continue to be proposed for the purpose of building context-aware

recommender systems [4][5].

One of the main drawbacks of CF algorithms is that predictions are neces-

sary for all unrated items. While such an approach facilitates evaluations of the

accuracy of various algorithms using the root-mean-square error (RMSE), this

method consumes a significant amount of recommendation time. Moreover, the

pre-processing time is also long, especially for a user-based CF algorithm, as it

has to calculate all of the similarity values between users.

In this chapter, we present Reversed CF (RCF), a fast CF algorithm using

a k-nearest neighbor (k-NN) graph. One main idea of this approach is that it

reverses the process of finding k neighbors. Not only does this algorithm perform

fewer predictions while filtering out inaccurate results, but it also enables the
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use of fast k-NN graph construction algorithms, such as greedy filtering. More

specifically, the contributions of this paper are as follows:

• We present RCF, a fast CF algorithm which uses a k-NN graph. Because

RCF performs fewer rating predictions, the recommendation time (query

processing time) is dramatically reduced compared to that of a user-based

or an item-based CF algorithm.

• We apply a fast k-NN graph construction algorithm known as greedy fil-

tering to reduce the RCF pre-processing time significantly. We also apply

the TF-IDF weighting scheme to our dataset before executing the greedy

filtering algorithm for further improvements.

• We conduct experiments with different parameter settings and show that

RCF outperforms traditional user-based/item-based CF algorithms in

terms of both the pre-processing time and the recommendation time with-

out sacrificing the level of accuracy.

The rest of this paper is structured as follows. In Section 4.2, we review user-

based/item-based CF algorithms and their general optimization techniques. In

Section 4.3, we present RCF, a fast collaborative filtering algorithm. In Section

4.4, we show experimental results comparing our approach to the traditional

CF algorithms. Finally, we conclude this chapter and present future research

directions in Section 4.5.

4.2 Related Work

[6] classified existing recommender systems into six categories based on the

types of recommendation approach (content-based filtering, collaborative fil-

tering, and hybrid approach), and the types of recommendation techniques

(heuristic-based approach and model-based approach) for the rating estima-

tion. Although the traditional collaborative and heuristic-based approaches are
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outperformed by the different types of recommender systems, especially the

model-based approaches such as one using matrix factorization introduced by

[54], singular vector decomposition presented by [59], or random walk proposed

by [51] and [52], in terms of prediction accuracy, [58] state that the traditional

approaches are still widely used due to their simplicity, justifiability, efficiency

and stability. For example, according to [3] and [4], the Amazon and YouTube

recommender systems exploit the collaborative and heuristic-based approaches.

In this paper, we focus on the item-based CF and user-based CF algorithms,

which are two of the most popular approaches among them.

User-based CF algorithms predict the preferences of all items unrated by

the user based on similar user preferences for those items. According to [1], the

predicted rating for active user a for item i is defined as follows:

pa,i = ra +

∑
n∈N(a)(rn,i − rn) ∗ sim(a, n)∑

n∈N(a) |sim(a, n)|
, (4.1)

where N(a) denotes the set of k-nearest neighbors of a among the users that

have rated item i; rn,i denotes the rating of item i by user n; ra and rn are the

average ratings of user a and neighbor n, respectively; sim(a, n) is the similarity

between a and n. We use the Pearson correlation coefficient as the similarity

measure for the user-based CF algorithm:

sim(a, n) =

∑
i∈Ci(ra,i − ra)(rn,i − rn)√∑

i∈Ci(ra,i − ra)2
√∑

i∈Ci(rn,i − rn)2
, (4.2)

where Ci denotes the set of co-rated items.

[1] and [58] state that there are common optimization techniques for the

user-based CF algorithm, such as significance weighting, variance weighting,

and selecting neighborhoods. The first two techniques are used to adjust the

similarity values between users. If two users had fewer than 50 commonly rated

items, significance weighting devalues the similarity between them by (1 - #

commonly rated items / 50) * 100%; variance weighting decreases the influence

of items with low variance, such as “Titanic.” The third technique selects only
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k neighbors when predicting the ratings of unrated items in that the use of less

similar users may have a negative impact on the quality of recommendations.

Item-based CF algorithms predict the preferences of items unrated by the

user based on the preference levels of similar items for the user. According to

[2], the predicted rating for active user a for unrated item i is defined as follows:

pa,i =

∑
n∈N(i) ra,n ∗ sim(i, n)∑

n∈N(i) |sim(i, n)|
, (4.3)

where N(i) denotes the set of k-nearest neighbors of i among the items that

have been rated by active user a. In order to find N(i) efficiently, the algorithm

first constructs a l-nearest neighbor graph, which represents the l-nearest neigh-

bor relationships between items. Then we can find the k number of neighbors

based on this pre-computed l-NN graph instead of calculating the item-by-item

similarity matrix when a recommendation is requested. In this equation, we use

the adjusted cosine similarity as the similarity measure:

sim(i, n) =

∑
u∈Cu(ru,i − ru)(ru,n − ru)√∑

u∈Cu(ru,i − ru)2
√∑

u∈Cu(ru,n − ru)2
, (4.4)

where Cu denotes the set of co-raters. ru is the average rating of user u.

[50] and [51] indicate that CF algorithms produce movie recommendations of

a high quality compared to baseline algorithms, which only recommend the most

popular movies or highly rated movies. Although more efficient algorithms have

been proposed, CF algorithms are still widely used in industry and academia

due to their simplicity and acceptable levels of accuracy. However, there are sev-

eral barriers preventing the realization of rapid recommendations when using

existing approaches. First, it is necessary to find different neighbors depending

on the active users. Specifically, the user-based CF algorithm finds the k-nearest

users from among all users who have rated a certain unrated item i when pre-

dicting the rating of i, whereas the item-based CF algorithm finds the k-nearest

items from among all items that have been rated by active user u. Second, it

is necessary to predict all of the unrated items when a recommendation is re-

57



quested by a user. This procedure is somewhat inefficient in that according to

[50] and [7], we usually need only the top-N recommendation results in real-

world scenarios. While CF algorithms would provide rapid recommendations

if there were not too many recommendation requests in a short time frame,

it would not be easy for commercial recommender systems in which numerous

recommendations are being requested by numerous users to provide real-time

recommendations. Although there have been a few approaches to reduce the rec-

ommendation time, such as the work of [2], [57], and [56], either the performance

gain is not significant or the approaches are not based on user-based/item-based

collaborative filtering.

4.3 Fast Collaborative Filtering

Our approach consists of two main steps: first, we approximately construct a

k′-nearest neighbor graph (k′-NN graph) as a preprocessing step based on our

previous work of [30] and [25] (Section 4.3.1). Here, we usually set k′ such that

l � k′ > k. Second, we find the k neighbors of unrated items based on the

k′-NN graph. Then we recommend items to users using the k neighbors and

our revised version of the non-normalized cosine neighborhood (Section 4.3.2).

4.3.1 Nearest Neighbor Graph Construction

The construction of a k′-NN graph is a task which involves finding the k′ nodes

most similar to each node. Although other tasks, such as k-NN search pre-

sented by [20] and [23], reverse k-NN search proposed by [55], similarity join

introduced by [32] and top-k similarity join presented by [60] and [35], can be

used for recommender systems, we use the k′-NN graph because it is one of the

most appropriate data structure for our algorithm. One of the easiest ways to

construct a k′-NN graph is to calculate the similarities between all of the nodes

and extract the nodes most similar to each node. In spite of its simplicity, this

brute-force approach requires quadratic time complexity, which is burdensome
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𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 𝑢8 𝑢9 𝑢10 

𝑖1 0.52 0.37 0.31 0.33 0.23 

𝑖2 0.73 0.55 0.1 0.37 0.05 

𝑖3 0.25 0.4 0.27 0.29 0.1 

𝑖4 0.25 0.27 0.3 0.35 0.8 

𝑖5 0.48 0.32 0.37 0.34 0.2 

Items 

Users 

Figure 4.1: Example of greedy filtering

when used in conjunction with large amounts of data. An alternative way to

cope with this problem is to use inverted indices given the fact that item-by-

user matrices are usually very sparse. However, according to [13], this approach

is also not appropriate for handling large amounts of high-dimensional data.

Our main idea is to construct an approximate k′-NN graph based on greedy

filtering presented by [30] and [25] in order to speed up this process. It is known

that greedy filtering outperforms other k′-NN graph construction algorithms,

such as NN-Descent proposed by [24] or kNN-Overlap presented by [12], for

high-dimensional sparse datasets. If there is no decline in the quality of recom-

mendations when we use approximate graphs, we do not have to spend much

time on building an exact k′-NN graph. The accuracy of the k′-NN graph is

defined as follows:

Accuracy =
# correct k′-nearest neighbors

#nodes · k′
(4.5)

Figure 4.1 shows an example of how greedy filtering constructs an approxi-

mate k′-NN graph. In this figure, there are five items and ten users; the values

in the matrix indicate the ratings, each corresponding to its item and user. The

main idea of greedy filtering is to filter item pairs whose ”large value dimen-

sions” (the shaded portions in the figure) do not overlap at all. In this figure, i1

and i2 share a common large value dimension. Hence, we calculate the similar-
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ity between i1 and i2. In contrast, i2 and i4 do not have a common large value

dimension; accordingly, we do not calculate the similarity between i2 and i4.

[25] describe in detail the manner in which large value dimensions are selected

for each item. In an actual implementation of this method, we use adjacency

lists instead of adjacency matrices. The empirical time complexity of greedy

filtering is O(|I|), where I is a set of items.

According to [25], this algorithm performs much better when we apply the

TF-IDF weighting scheme and this process does not decrease the quality of

recommendations significantly. Thus we adjust the values in the input matrix

based on the TF-IDF weighting scheme:

M ′i,j =

(
0.5 +

0.5 ·Mi,j

max{Mi,k : uk ∈ U}

)
∗ log

(
|U|
F (uj)

)
,

(4.6)

where Mi,j denotes the original value of the matrix corresponding to the ith

item and the jth user; U denotes a set of users; F (uj) denotes the number of

items that have values corresponding to the users uj .

For example, suppose that we use the cosine similarity with the TF-IDF

weighting scheme and that there are two items i1 and i2 in a dataset. In such a

case, greedy filtering would calculate their level of similarity if they are highly

rated by at least one certain inactive user. Otherwise, it would filter out those

item pairs.

4.3.2 Fast Recommendation Algorithm

Recall that the two main drawbacks of user-based or item-based CF algorithms

are that they have to find different neighbors depending on active users and

that they have to predict all of the unrated items. Our novel algorithm, RCF,

solves these problems. Let B[i] be a k-NN list of item i, which was already

calculated in Section 4.3.1. Let Iu and Ir be sets of unrated items and rated

items of an active user a, respectively. Then RCF works as follows:
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Figure 4.2: Example of reversed CF

1. For every item i ∈ Iu, prepare an empty set S[i].

2. For every item i ∈ Ir and every item such that j ∈ Iu and j ∈ B[i], add

i to S[j].

3. For every item i ∈ Iu, if |S[i]| > k, then delete all except for the most

similar k1 items from S[i].

4. Then, predict the ratings for all items i such that i ∈ Iu and |S[i]| = k,

pa,i = ri +
∑

n∈S[i]

(ra,n − rn) ∗ sim(i, n) (4.7)

Here, sim(i, n) is the cosine similarity between i and n. It is defined as follows:

sim(i, n) =

∑
c∈Cu rc,i · rc,n√∑

c∈Cu(rc,i)2
√∑

c∈Cu(rc,n)2
(4.8)

If an unrated item does not have the list of k1 number of items, RCF does not

predict its rating.

Figure 4.2 shows an illustrative example of our approach. In this example,

we set k and k′ to 2 and 2, respectively. Thus we find 2-nearest neighbors for

each rated item. An edge from a rated item i to an unrated item j indicates

that j is one of the 2-nearest neighbors of i. The first unrated item has three

incoming edges and the similarities between this item and the rated items are

61



0.9, 0.8 and 0.7 respectively. Because k is 2 in this example, we discard the edge

labeled with 0.7, and predict the ratings of the item based on the remaining

edges. On the other hand, the second unrated item has just one incoming edge

so that we do not predict the rating of the item.

The intuition behind this algorithm is that if one of the nearest neighbors

of rated item i is unrated item j, there would be a high probability that one

of the nearest neighbors of unrated item j is rated item i. This is why the

proposed algorithm is termed Reversed CF. One of the main characteristics of

RCF is that it does not predict the preferences of all unrated items of a user.

This approach does not sacrifice the level of recommendation quality for two

reasons. First, if the rating of an unrated item is predicted by RCF, RCF and

the item-based CF algorithm select the same neighbors for predicting the item

in many cases. Second, if the rating of an unrated item is not predicted by RCF,

the average similarity value of the k-nearest neighbors of the unrated item is

usually lower than that of another item predicted by RCF, which is the case

when it is difficult for the item-based CF algorithm to predict accurate ratings.

In Section 4.4, we will discuss this in more detail.

62



Table 4.1: Summary of the recommendation algorithms

Algorithm Phase Task

UserCF Preprocessing Similarity matrix construction
Significance weighting

Recommendation Selecting k users that have rated the item
All rating predictions

ItemCF Preprocessing l-NN graph construction (l� k)
Recommendation Selecting k items that have been rated by an active user

All rating predictions
RCF Preprocessing k′-NN graph construction (k′ > k)

Recommendation Selecting k items
Fewer rating predictions

RCF+TFIDF+GF Preprocessing k′-NN graph construction using GF (k′ > k)
Recommendation Selecting k items

Fewer rating predictions

6
3



4.4 Experiments

4.4.1 Experimental Setup

Dataset and Algorithms. We use the MovieLens dataset1 for comparisons:

there are 1, 000, 209 ratings, 3, 952 movies, and 6, 040 users; each user rates at

least 20 number of items; the rating scale ranges from 1 to 5 in which higher

ratings indicate greater preference. We considered four types of algorithms for a

comparison: UserCF implements the work by [1]; ItemCF implements the work

by [2]; RCF implements only the fast recommendation algorithm presented in

Section 3.2; RCF+TFIDF+GF implements the fast recommendation algorithm

presented in both Section 4.3.1 and 4.3.2. We set the default parameters k, k′,

and l to 10, 20, and 300, respectively. Table 4.1 summarizes the abovementioned

recommendation algorithms and their related parameters.

Quality Evaluation. We follow the testing methodology of a recommender

system introduced by [50]. We divide the ratings into two groups. One group of

data consisting of 986, 206 ratings (98.6% of ratings) is used for our training set,

and the other group of data consisting of 14, 003 ratings (1.4% of the ratings) is

1http://grouplens.org/datasets/movielens/
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used for the probe set. The test set consists of all of the five-star ratings (1, 661

ratings) of 3, 719 unpopular movies (99.65% of the movies) in the probe set.

Then, for each rating of movie m rated by user u in the test set, we randomly

select 1, 000 movies unrated by u and recommend the top-N movies from among

the 1, 001 movies (the 1, 000 items selected in addition to m); if we recommend

m, we refer to this as a hit. Finally, we measure the degree of recall using the

following equation:

recall =
# hits

|test set|
(4.9)

Performance Evaluation. We measure both the preprocessing time and the

recommendation time for each algorithm. In UserCF, the preprocessing time is

the overall time needed to construct the user-by-user similarity matrix plus the

time for significance weighting. For ItemCF, we measure the l-nearest neighbor

(l-NN) graph construction time as the preprocessing time. We use the inverted

index-based method to calculate the l-NN graph, as it is one of the fastest

algorithms for constructing an exact nearest neighbor graph. Similarly, the pre-

processing time of RCF consists of only the time needed to construct the k′-NN

graph; we construct this graph using inverted indices. The preprocessing time

of RCF+TFIDF+GF is identical to that of RCF, except it uses greedy filtering

to construct the k′-NN graph. The recommendation time is the total time to

produce top-N recommendations for all 6, 040 users, because according to [4],

it is common to precompute all of the recommendation results in commercial

systems.

4.4.2 Overall Comparison

Figure 4.3 shows the recall of the abovementioned algorithms while varying the

number of recommended items. In this result, RCF outperforms both UserCF

and ItemCF, which means that fewer rating predictions yield better results.

When we apply the TF-IDF weighting scheme and use the approximate k′-
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Figure 4.3: Comparison of all algorithms (recall)

NN graph with 80% accuracy instead of an exact k′-NN graph, the recall is

decreased slightly, though this method still outperforms UserCF and ItemCF.

There are two main reasons why RCF outperforms ItemCF despite the fact

that RCF simulates ItemCF. First, ItemCF usually predicts the ratings of un-

rated items based on fewer similar items. Second, rating predictions based on

less similar items are less accurate than those based on similar items. Table 4.2

provides evidence of these assertions. First, we divided the items into two sub-

sets, where one subset contains unrated items whose ratings are predicted by

RCF and the other subset contains other unrated items. Then, for each subset,

we measured the average similarity of selected neighbors, MAE, and RMSE af-

ter executing ItemCF. The average similarity value supports the first assertion,

and MAE and RMSE support the second assertion. Note MAE and RMSE of

user u are defined as follows:

MAE(u) =

∑
i∈IS |pu,i − p̂u,i|
|IS |

(4.10)

RMSE(u) =

√∑
i∈IS (pu,i − p̂u,i)2

|IS |
, (4.11)

where p̂u,i denotes the predicted rating of item i by u, pu,i denotes its corre-

sponding actual rating, and IS denotes an item set, which can be a set of either
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items selected by RCF or items not selected by RCF.

Table 4.2: Comparison of prediction accuracy with two different item sets

Item Set Avg. Sim. Avg. MAE Avg. RMSE

Items selected by RCF 0.1954 0.6475 0.8361
Items NOT selected by RCF 0.1300 0.7353 0.9300

One limitation of RCF is that the algorithm cannot recommend many items

if the parameter k′ is not large enough. Because of this limitation, as shown in

Figure 4.3, the recall of RCF and the RCF variant does not increase significantly

when N is large enough. Although [2] and [7] state that we usually need only

a small number of recommendations in real-world scenarios, if there is a need

for a very large number of recommendations, the performance of RCF would

be similar to that of ItemCF.

Figure 4.4 shows the pre-processing time and recommendation time of the

abovementioned algorithms on a log scale: (1) UserCF is the slowest algorithm

among these four algorithms. As a preprocessing step, this algorithm constructs

a user-by-user similarity matrix and applies the significance weighting to the

similarity matrix, which takes quadratic time complexity in total. It also con-

sumes a considerable amount of recommendation time when a query is re-

quested, because for each unrated item, it selects k users who have rated the

item and predicts the rating of the item. (2) ItemCF is faster than UserCF in

that it does not need to calculate a similarity matrix or complete the signif-

icance weighting step. Instead, it constructs a l-NN graph in which l greatly

exceeds k. Although l is a large constant, we reduce the time to construct the

graph using inverted index join, which is one of the fastest algorithms among

all exact k-NN graph construction algorithms. (3) While the preprocessing time

of RCF is similar to that of ItemCF, this algorithm significantly outperforms

ItemCF in terms of recommendation time for two reasons. First, it does not

take much time to select the neighbors of each unrated item in that it only

checks the set size of each unrated item and then deletes all except for the most
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similar k items. Second, it calculates fewer item ratings, which dramatically

decreases the recommendation time. (4) RCF+TFIDF+GF is the fastest algo-

rithm among these four algorithms. While its recommendation time is similar

to that of RCF, it outperforms RCF in terms of preprocessing time, as it con-

structs an approximate k′-NN graph by means of greedy filtering. In Section

4.4.3, we demonstrate even faster recommendations by changing the greedy

filtering parameters.

4.4.3 Effects of Parameter Changes

We identified several important factors that affect the quality and performance

of the algorithms: the parameters k,k′,l, and the k′-NN graph accuracy. Because

the parameters k and l were analyzed in the work of [1] and [2], we only analyze

k′ and the k′-NN graph accuracy in this paper. Figure 4.5 shows the recall of

RCF variants with different parameter k′, varying the number of recommended

items. Note k′ is directly related to the number of rating predictions performed

by RCF. When we increase the parameter from 10 to 20 or from 20 to 30, the

recommendation quality is improved because we can consider more items for

the top-N recommendation. However, when we increase the parameters from 30

to 70, the recommendation quality is not improved for the reasons given in the

previous subsection. Figure 4.6(a) and 4.6(b) show that the parameter k′ is also
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related to the recommendation time and the percentage of rating predictions,

respectively. Because we can improve the execution time by setting k′ to a low

value, it would be desirable to set k′ to 20 or 30.
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Figure 4.6: Effect of different k′ parameters

Similarly, Figure 4.7 and Figure 4.8 show the recall and pre-processing time

of RCF variants with different graph accuracy levels, varying the number of

recommended items. There are two interesting findings in these figures: first, the

recall is the highest when k′-NN graph accuracy is 70%. We can see this result

because we cannot guarantee that we will always prefer the items more similar

to the preferred items. Similar results are shown in the work of [12], where an

approximate k-NN graph is used for fast agglomerative clustering. Second, the

elapsed time of RCF is the highest when k′-NN graph accuracy is 90%, because

69



0

0.05

0.1

0.15

0.2

0.25

0.3

1 5 10 15 20

R
e

ca
ll

# Recommended Items

100%

90%

80%

70%

60%

50%

40%

k'-NN Graph

Accuracy

Figure 4.7: Recall of RCF variants with different k′-NN graph accuracy levels

0

2

4

6

8

10

12

100% 90% 80% 70% 60% 50% 40%

P
re

p
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

k'-NN Graph Accuracy

Figure 4.8: Elapsed time of RCF variances with different graph accuracy levels

we use inverted index join instead of greedy filtering when we construct the

exact k′-NN graph. Generally, however, the quality of recommendations slightly

drops off when we decrease the graph accuracy, whereas the pre-processing time

is significantly reduced. We can infer that these RCF variants perform even

better in terms of preprocessing time as the number of nodes or dimensions

scales up due to the scalability gained when using greedy filtering.

70



4.5 Summary

This chapter presents RCF, a fast CF algorithm which utilizes a k′-NN graph.

Not only does this algorithm perform fewer predictions while filtering out

inaccurate results, but it also supports the rapid retrieval of similar users.

The experimental results show that our approach outperforms traditional user-

based/item-based CF algorithms in terms of both preprocessing time and query

processing time without sacrificing the level of accuracy when we set k and k′

to 10 and 20, respectively. While much of the recent work, such as [56] and

[52], focuses on improving the recommendation quality, the main aim of our

approach is to reduce the elapsed time required for recommendation.

The limitations of our approach are twofold: first, RCF is not appropriate

for the case where we have to predict the ratings for all of the unrated items.

In future work, we would like to present a novel algorithm for coping with this

problem. Second, the performance of greedy filtering depends on the dataset so

that the algorithm could be slower than inverted index join in the worst case.

Thus we are currently developing a novel k′-NN graph construction algorithm

that always guarantees high level of quality and performance.
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Chapter 5

Fast Approximate k-NN Search

k -Nearest Neighbor (k -NN) search aims at finding k points nearest to a query

point in a given dataset. k -NN search is important in various applications, but it

becomes extremely expensive in high dimensional space with a number of data

points. In response to this performance issue, locality-sensitive hashing (LSH) is

suggested as a method of probabilistic dimension reduction while preserving the

relative distances between points. Through experiments with various feature

extraction methods, we observed that none of the existing LSH-based k -NN

search methods showed consistent performance superiority, each exhibiting poor

performance in some of the datasets.

In this chapter, we target on generating k -NN search results efficiently re-

gardless of properties of a given dataset. In this regard, we present a novel algo-

rithm called Signature Selection LSH (S2LSH), where we select query-specific

signatures from a signature pool to pick high-quality k -NN candidates. First,

we construct a highly diversified signature pool consisting of various signatures.

The signatures are generated based on a data-dependent LSH algorithm to cap-

ture the global topological features specific to the given dataset. Then, for a

given query point, we select multiple query-specific signatures from the signa-
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ture pool in order to find high-quality k -NN candidates of the query vector. We

also incorporate three additional optimization techniques to further improve the

performance of S2LSH in a bulk execution setting such as k -NN graph construc-

tion. Extensive experiments show that our approach consistently outperforms

the state-of-the-art LSH algorithms across various types of datasets. Further-

more, our approach in a bulk execution setting is comparable to or faster than

the algorithms carefully designed for efficient k -NN graph construction.

5.1 Introduction

Typically, there are three types of k-NN computation tasks: k-NN computation

for a single query (k-NN search), for every object in the database (k-NN graph

construction), and for some of the objects in the database (partial k-NN graph

construction). For example, the k-NN search is an essential part of Google im-

age search and k-NN classification; k-NN graph construction is important in the

YouTube video recommendation system and agglomerative clustering; partial

k-NN graph construction can be used for incremental k-NN graph construc-

tion. An interesting thing is that although the k-NN graph construction can be

implemented by the iterative executions of k-NN search, the k-NN search algo-

rithms do not perform as well for k-NN graph construction (and vice versa). It

is because they do not reuse the information that can be obtained from the k-

NN computations of the other objects. Therefore, in cases where we need two or

three types of k-NN computation tasks (e.g., a search engine that supports both

search and similarity browsing), we have to find an effective algorithm for each

task. If there is no such algorithm, then we have to use brute-force approach

instead. Another interesting thing is that even using the same raw multime-

dia data, the performance of existing approaches significantly varies depending

on the types of feature extraction methods being used. Thus in cases where we

need two or more types of feature extraction methods (e.g., a search engine that

uses facial features for facial images and global features for the other images),
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we have to find an efficient algorithm for each feature extraction method if any.

In this paper, we present a novel algorithm, called signature selection LSH

(S2LSH). The main contributions of this paper can be summarized as follows:

• We present a novel k-NN computation algorithm where we select query-

specific signatures from a signature pool to pick high-quality k-NN can-

didates (Section 5.2 and 5.3).

• We incorporate three additional optimization techniques to further im-

prove the performance of S2LSH in a bulk execution setting such as k-NN

graph construction (Section 5.2.4 and 5.3.3).

• Through the extensive experiments, we show that our approach consis-

tently outperforms the state-of-the-art algorithms across various types of

k-NN computation tasks and datasets (Section 5.5).

5.2 Signature Selection LSH

Let V be a set of vectors in a d-dimensional space. We refer to the vectors in V

as data vectors in this paper. Without loss of generality, we assume Euclidean

distance as a distance measure. Then we define approximate k-NN search as a

process of finding approximate k-nearest neighbors among the vectors in V for

a query vector q in a d-dimensional space.

Our approach consists of four main steps: 1) data-dependent locality sensi-

tive hashing, 2) signature pool generation, 3) signature selection, and 4) finding

k-nearest neighbors based on signature selection. The fourth step is highly cou-

pled with the third step so that we will describe them in one subsection.

5.2.1 Data-dependent LSH

We assume that we generate the H number of LSH hash functions. Then the

signature of length H for vector v can be generated by the following equation:

s(v) = 〈h1(v), h2(v), ..., hH(v)〉 (5.1)
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(a) Spherical Hashing (b) E2LSH+ (c) C2LSH+ (d) S2LSH

Figure 5.1: An illustrative example of S2LSH. In order to find the 2-NN of E,
namely D and F, S2LSH only selects three candidates whereas E2LSH+ and
C2LSH+ selects five candidates.

Here, hi(v) denotes the ith hash function as described in Chapter 2. If the

functions are based on random projections, they are determined by the selected

a and b.

Although random projections like data-independent LSH schemes are widely

used in industry and academia, their performance significantly varies depending

on datasets in that they do not consider their data distributions. In recent years,

there have been proposed various types of data-dependent LSH techniques, such

as spectral hashing [42], anchor graph hashing [18], and spherical hashing [9].

Let d(·, ·) be the distance between two vectors. Then the data-dependent LSH

aims at satisfying the following properties:

• d(v1, v2) < d(v1, v3) if and only if d(s(v1), s(v2)) < d(s(v1), s(v3))

• For all i and j such that i 6= j and 1 ≤ i, j ≤ H,
∑

v hi(v)hj(v) = 0.

•
∑

v s(v) = 0.

Satisfying the first property is the primary purpose of all of the LSH algorithms.

The second and third properties are important because the large amounts of dis-

tance information should be represented by compact signatures: they indicates

the the independence between hashing functions and the balanced partitioning

of vectors for each hash function, respectively.
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(a) Diagram 1 (b) Diagram 2 (c) Diagram 3 (d) Diagram 4

Figure 5.2: An illustrative example of signature pool generation. Based on spher-
ical hashing, hash functions are represented by spheres, and each signature is
represented by a region.

As far as we know, spherical hashing is one of the most efficient data-

dependent LSH techniques. Conceptually, it draws H number of spheres for

a small number of training samples such that 1) the spheres are not too close or

too far apart for the second property, and 1) each sphere contains about a half

of the training samples for the third property. Then if a vector v is inside the

ith circle, the hash function hi maps v to +1 (and −1 otherwise). Figure 1(a)

shows an example of spherical hashing: in this figure, the signature of vector A

is represented by (+1,+1,−1,−1), and the signature of vector B is represented

by (−1,+1,−1,+1). In the rest of this paper, we use spherical hashing as our

LSH scheme. Because it is a binary code embedding technique, we also assume

that we use binary signatures. However, our approach is also effective when us-

ing other types of binary hashing methods, because we do not use any features

that are dependent on spherical hashing. In Section 5.5.3, we will discuss this

issue in more detail.

5.2.2 Signature Pool Generation

We now have the H hash functions so that we can generate the signature

of length H using equation (5.1). However, it is not easy to find k-nearest

neighbors efficiently using these signatures because the first property of data-

dependent LSH described in Section 5.2.1 does not hold in many cases. Figure
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Figure 5.3: Mean Average Precision for spherical hashing (SH) and anchor graph
hashing (AGH) based on 100-bit signatures in the 500D NUS-WIDE dataset

5.3 shows that MAP@10, MAP@100 and MAP@1000 of spherical hashing are

not higher than 0.15 in the 500-dimensional NUS-WIDE dataset. Our solution

is to generate a huge number of different signatures based on the H functions

and then select the most effective ones for a given query vector. The intuition

behind this solution is that for each query vector v, there would be a set of

signatures more effective than s(v).

In this subsection, we focus on generating a pool of signatures for every

vector based on the H number of hash functions. The process is as follows:

first, given integers m1 and m2 (1 ≤ m1 ≤ m2 ≤ H), we set M to a random

integer ranged from m1 and m2. Second, we randomly generate M integers r1,

r2, ..., rM each ranged from 1 and H, and generate the signature for every

vector v as follows:

si(v) = 〈hr1(v), hr2(v), ..., hrM (v)〉 (5.2)

Here, hi denotes the ith hash function, where i is the iteration number. Given

77



an integer L (1 ≤ L), we repeat the above process L number of times. Then

the signature pool of vector v consists of L-dimensional vector as follows:

P (v) = 〈s1(v), s2(v), ..., sL(v)〉 (5.3)

Note signatures with various lengths will be generated and each hash function

is selected with equal probability. This process aims to make the signatures as

diverse as possible because we do not know the query vectors in advance.

Conceptually, this process can be regarded as drawing multiple Venn Dia-

grams as shown in Figure 5.2: hash functions are represented by spheres, and

each signature is represented by a region, which is a distinct area determined by

the intersection of spheres in this figure. In this example, each vector has a pool

of 4 signatures. For query vector E, there is no vector whose first signature is

the same as that of E (as shown in Figure 5.2(a)), whereas there are two vectors

F and H that have the same third signatures as that of E (as shown in Figure

5.2(c)).

Recall there are four parameters in generating a pool of signatures, H, L, m1

and m2. All of the parameters control the diversity of signatures. Obviously,

there is a tradeoff between diversity (quality) and cost: 1) if we set H to a

large constant, we can make various types of signatures by diversifying the

types of hash functions while it takes much time to make hash functions. In

our experimental settings, we set H = 300 or 1000. The optimal parameter

setting of H highly depends on the LSH scheme and dataset being used. 2) If

we set L to a large integer, we can also make various types of signatures using

different combinations of hash functions while it consumes much memory to

store signature pools. In our experimental settings, we set L = H/2, because if

H is a very small integer (e.g., 1), it is hard to make various types of signatures

even when L is a large integer. 3) If we set m1 to a small integer or m2 to a large

integer, we can generate various types of signatures with different lengths while

also generating many inefficient signatures. In order to find the near-optimal
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parameters of m1 and m2, we can use the second and third properties of data-

dependent LSH discussed in Section 5.2.1. First, we know that each region of

Figure 2(a) contains approximately an equal number of vectors. In the ideal

case, each region contains N/2M number of vectors. Here, N is the number

of vectors. Assuming that N = 100, 000, each region contains approximately

3, 000 vectors and 3 vectors when M = 5 and M = 15 respectively. In our

experimental settings, we set m1 = 5 and m2 = 15, because if m1 is lower than

5 or m2 is higher than 15, there would be a too small or too large number of

collisions.

5.2.3 Signature Selection

For a given vector v, our aim is to select the most effective signatures from P (v).

Assume that we will calculate the similarities between v and other vectors u

such that u has the same signature as that of v. If there are many vectors u that

are k-nearest neighbors of v, then the signature is effective in finding nearest

neighbors for v. On the other hand, it will waste a huge amount of time if there

are many vectors u that are not k-nearest neighbors of v. Thus we define the

effectiveness E of a signature as follows:

Ev,i(s ∈ S) =
|kNN(v) ∩ ci(s)|
|ci(s)| − 1

(5.4)

Here, S denotes a set of all generated signatures. kNN(v) is a set of exact k-NN

of v. ci(s ∈ S) is a set of vectors u such that si(u) = s.

However, we do not know in advance the exact k-NN of v. In the following

sections, we present a way to estimate the effectiveness of each signature based

on feature selection.

Feature Selection

We have considered the eight types of features for k-NN search as follows:

signature length, the number of collisions, the number of one (or zero) hash

values, average radius of spheres that contain (or do not contain) a vector, and
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(a) Signature length (b) # Collisions

(c) Maximum Distance (d) Average Distance

Figure 5.4: Four types of features for signature selection

average distance to the centers of spheres that contain (or do not contain) a

vector. Here, signature length indicates the number of dimensions in a signature.

For example, the signature length of ”101” is 3 and that of ”11” is 2. If two

vectors have the same signature, we say there is a collision between them.

Signature length. Long signatures would indicate relatively small regions.

Figure 5.4(a) shows an example of our intuition: the left signature has longer

signature length so that its corresponding region is relatively small. Because

the small region indicates that the vectors in the region are close to each other,

there would be a high probability that long signatures have high effectiveness.

Heo et al. [9] also show that the popular LSH algorithms achieve higher mean

average precision when using longer binary codes.

The number of collisions. Signatures with a small number of collisions would

have high effectiveness. For example, Figure 5.4(b) shows that the vectors of

the left figure are more close to each other than those of the right figure even

though they have the same signature length.
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The number of one (or zero) hash values. Signatures with many positive

hash values would have high effectiveness. If two vectors have positive hash

values in common for a hash function, then their distance is at most the radius

of the corresponding sphere. On the other hand, two vectors with negative hash

values in common does not always indicate that they are close to each other. For

example, if they do not have any positive hash values, all of the hyperspheres

could split them in the worst case.

Average radius of spheres that contain (or do not contain) a vector. If

a vector is inside a sphere and the radius of the sphere is small, then the region

containing the vector is small. Likewise, if a vector is outside a sphere and the

radius of the sphere is large, then the region containing the vector would be

small.

Average distance to the centers of spheres that contain (or do not

contain) a vector. If a vector is close to the center of the sphere that contains

the vector, then the distance to other vectors would be short. Likewise, if a

vector is far from the center of the sphere that does not contain the vector, then

the distance to other vectors would be short. Note when making the signatures

of all of the vectors, we calculate the distances from all of the vectors to all of

the centers of the spheres.

We observed that the first two features are very effective in all of our seven types

of datasets while the last six features are not always highly correlated with the

effectiveness. Thus in our algorithms, we only use the first two features.

Signature Selection

Our observation is that the longer the signature and the smaller the number of

collision counts, the greater the effectiveness. Based on our observation, we can
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estimate the effectiveness of a signature as follows:

E′v,i(s ∈ S) =


0 if |ci(s)| = 1

len(s)
|ci(s)−1| otherwise

(5.5)

Here, len(s) denotes the signature length of signature s.

Given a parameter µ, our aim is to select the most effective signatures such

that query vector q has approximately µ number of candidates. Note if we select

the ith signature for q, we will select all other vectors u that have the same ith

signatures as candidates. The process of our signature selection consists of the

following three steps:

1. Select the most effective signature of q among the unselected signatures.

2. Find all other vectors u such that si(q) = si(u) and select them as candi-

dates of q.

3. If q has equal to or more than µ number of candidates, then the algorithm

terminates. Otherwise, repeat the whole process.

The remaining process for k-NN search is to calculate the distances between

the candidates and q and find the k closest vectors among the candidates.

For example, assume that we have a pool of signatures described in Figure

5.2. Our aim is to select the 2-NN of E, namely D and F. In diagram 1,

E′q,1(E) = 0 because there is no vector in the same region. In diagrams 2,

3 and 4, E′q,2(E) = 1/1, E′q,3(E) = 1/2, and E′q,4(E) = 1/4 respectively. Thus

the most effective signature of E is the second signature of E, and D is selected

as a candidate. If we set the parameter µ to 2, then µ is larger than the number

of candidates so that we iterate this process. At the second iteration, we select

the third signature in which there are one k-nearest neighbor among the two

candidates. Now µ is larger than the number of candidates, and we terminate

the signature selection process. Figure 5.1 shows that in this example, S2LSH
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selects fewer candidates compared with E2LSH+ and C2LSH+ while finding

the 2-nearest neighbors.

5.2.4 Optimization Techniques

In order to find the same signatures efficiently, we use bucket hashing that was

applied to the E2LSH package1. First, we build the L number of hash tables.

Then we define L number of hash functions b1 such that the ith hash function

maps the ith signatures into the specific positions of the ith hash table. When

signatures could map to the same positions even though they are not same, we

can distinguish them through making different buckets for each signature. Thus

we also define L number of hash functions b2 such that the ith hash function

maps the ith signatures into the short hash codes, which corresponds to bucket

IDs of the ith table. The hash functions b1 and b2 are defined as follows:

b1(si(v)) =

 M∑
j=1

r
′
jhrj

 mod 232 − 5

 mod T (5.6)

b2(si(v)) =

 M∑
j=1

r
′
jhrj

 mod 232 − 5

 (5.7)

Here, T is the size of the hash table. We set T = 10, 000 in our experiments.

Eliminating the duplicates is another important technique in our algorithm,

because we can select a number of signatures which can yield many duplicate

candidates. However, this problem can be easily solved by maintaining an array

of length |V | and marking which vectors were calculated already. For k-NN

graph construction, we need a more advanced way to deal with it. See Section

5.3.3 for more detail.

1http://www.mit.edu/ andoni/LSH/
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5.3 S2LSH for Graph Construction

5.3.1 Feature Selection

In this section, we propose our signature selection algorithm for k-NN graph

construction, called S2LSH-M (S2LSH in a bulk execution setting). Basically,

S2LSH-M executes the S2LSH algorithm the |V | number of times. In addition,

S2LSH-M considers the maximum, average, and minimum distances between

two vectors as additional features:

Maximum/average/minimum distance. If the maximum/average/minimum

distance between query vector q and the other vectors that have the same ith

signature is small, then the signature would have high effectiveness.

The maximum and average distances approximately indicate the distance

from the query vector to the boundary of the region. On the other hand, the

minimum distance indicates the possibility of the existence of k-nearest neigh-

bors. Our observation is that the maximum/average distances are more effec-

tive in finding k-nearest neighbors than minimum distance. Thus we use the

the maximum/average distances in our experiments.

5.3.2 Signature Selection

Note the distance features are different from signature length and the number of

collision counts in that they are personalized features: that is to say, two vectors

with the same signature have different feature values. The personalized features

are more effective than the non-personalized features in general. However, we

need a significant amount of time to calculate the feature values. One way to

cope with this problem is to sample a subset of training data to estimate the

feature value. Although this solution is effective when there is a small number

of signatures, this could make the algorithm even slower when there is a large

number of signatures.

Our idea is to reuse the distance information that can be obtained through
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the search task of the other vectors: when finding k-nearest neighbors of v,

we check whether the distance between v and other vectors u are calculated

beforehand. In our implementation, we do not store all of the previous distances

between vectors because they consume a significant amount of memory. Instead,

we only keep the maximum and average distances for each pair of a vector and

a signature. Now the effectiveness of a signature can be defined as follows:

E′′v,i(s ∈ S) = 1/( max
u∈ci(s)

(d′(u, v)) + avg
u∈ci(s)

(d′(u, v))) (5.8)

d′(u, v) =


d(u, v) if precomputed

∞ otherwise

(5.9)

Note if all of the distances from query vector q and the other vectors with

the same ith signatures are not precomputed at all, then we use the features of

S2LSH, namely signature length and the collision counts.

5.3.3 Optimization Techniques

For S2LSH-M, we present two types of optimization techniques: the first tech-

nique is for eliminating duplicate calculations, and the second technique is for

refining an approximate k-NN graph. In practice, we cannot use the duplicate

elimination technique that was used in S2LSH because of memory limitation.

For example, if we allocate memory for an |V | ∗ |V | matrix that stores all the

computed distances to avoid duplicate calculations, then we need to allocate

4TB of memory, assuming that there are 1M vectors and each element consumes

4 bytes. In order to alleviate this problem, recursive Lanczos bisection (RLB)

[12] uses a hash table to store the computed distances: in this solution, the ith

vector hashes to the ith position of the hash table. However, this solution allo-

cates about 200GB of memory if there are 1M vectors, each element consume

4 bytes, and there are only 10% of distance calculations. For this reason, the

duplicate elimination technique has not been applied to other algorithms, such

as the Zhang’s approach [29] and greedy filtering [25].
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Our simple algorithm removes all of the duplicate calculations while only

requiring O(|V |) amount of memory. Assume that there is one bucket for each

signature and that vectors with the same signature reside in the same bucket.

For each vector v, it performs the following process:

1. Prepare a false-initialized array A of size |V |.

2. For each bucket B that contains v, calculate the distance between v and

other vectors u such that they reside in the same bucket and A[u] = false,

and then set A[u] to false and remove v from B.

Our second optimization technique is for increasing the accuracy of an ap-

proximate k-NN graph. We slightly modified the widely used technique, called

neighborhood propagation [12, 24, 29, 27] as follows: for each vector v, we cal-

culate the similarities between v and its 2-hop neighbors and 3-hop neighbors.

And then we update the k-nearest neighbor list of v. Even though we check

the 3-hop neighbors, relatively only a small number of distance calculations are

needed: we define the scan rate as the number of distance calculations of an algo-

rithm divided by the number of distance calculations performed by brute-force

approach. If the number of vectors is 100, 000 and we refine a 10-NN graph, the

scan rate can be increased at most by 0.022 even without eliminating duplicate

calculations.

5.4 Theoretical Analysis

Formally, S2LSH is an approximate algorithm for a k-NN cover problem, which

is defined as follows:

Definition 1 (k-NN Cover) Let U be a set of k-nearest neighbors n1, n2, ..., nk

and S be a set of L candidate sets S1,S2, ...,SL. A k-NN cover is a collection

of candidate sets from S satisfied that every k-nearest neighbor in U belongs

to at least one of the candidate sets. The cost of a k-NN cover is the sum of
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the costs of all of the candidate sets in the collection of selected candidate sets.

Then k-NN cover returns the collection of subsets that minimizes the cost.

The k-NN cover problem is NP-hard, since the set cover problem is reducible

to the k-NN cover problem in a polynomial time. Hence, this indicates that we

need an approximate algorithm for the fast retrieval of k-nearest neighbors.

If we already know the k-NN of a query, then we can use the greedy set cover

algorithm to solve the k-NN cover problem. The greedy set cover algorithm

repeatedly picks a candidate set that minimizes the cost. According to [61], it

is a ln(k)-approximate algorithm for the set cover problem. Thus this indicates

that a good approximate algorithm can provide high quality results.

5.5 Experiments

5.5.1 Experimental Setup

In this section, we compare our approach with the state-of-the-art algorithms

in different k-NN computation tasks. For the experiments, we use various types

of datasets to which different types of feature extraction methods were applied.

k-NN computation tasks. We have considered three types of k-NN compu-

tation tasks: k-NN search, k-NN graph construction and partial k-NN graph

construction. For partial k-NN graph construction, we randomly select 20% of

vectors from the vectors in V .

Algorithms. For k-NN search, we compare S2LSH to E2LSH and C2LSH.

However, because E2LSH and C2LSH are not faster than the brute-force ap-

proach in many cases, we enhanced their performance by applying spherical

hashing instead of random projections. We will call their optimized versions as

E2LSH+ and C2LSH+, respectively. We do not consider LSB-tree as a candi-

date, because it is outperformed by C2LSH [23]. For k-NN graph construction,

we select the recursive Lanczos bisection (RLB) and NN-Descent (NND) as rep-
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Dataset |V | d Feature

Corel 300,000 14 Lv et al. [43]

NUS-WIDE (CH) 200,000 64 Color Histogram [44]

Audio 50,000 192 Marsyas [45]

NUS-WIDE (BoW) 100,000 500 SIFT [46]

Shape 25,000 544 SHD [47]

MNIST 60,000 784 Pixel [48]

GIST1M 100,000 960 GIST [49]

Table 5.1: Dataset summary

resentatives of hyperplane-based and heuristic-based algorithms, respectively.

However, NND does not achieve the high level of accuracy for some datasets,

because it is a heuristic-based approach. For example, it does not achieve the

accuracy of 90% for NUS-WIDE (BoW) dataset. Thus we enhance NND to

NND+, which iteratively execute the NND until achieving the accuracy of at

least 90%.

We do not consider the clustering-based algorithms in our experiments be-

cause in our preliminary experiments, they are outperformed by NN-Descent

or they show the inconsistent performance depending on input parameters.

Evaluation Measures. For k-NN search, we measure pre-processing time

and k-NN search time (query processing time) for every algorithm. The pre-

processing time consists of the time for signature generation and the time re-

quired for generating a pool of signatures. The k-NN search time is measured

by averaging over 1000 sample queries, and it does not comprise the time for

the preprocessing. For k-NN graph construction, we measure the total elapsed

time except for the data matrix construction time. Note as shown in Figure 5.5,

the task of similarity calculations takes most of the time.

The accuracy (quality) of the result is calculated as the following formula:

Accuracy =
# correct k-nearest neighbors

# queries ∗ k
(5.10)
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Figure 5.5: Elapsed time for each task (S2LSH, k-NN graph construction, and
the NUS-WIDE dataset (BoW))

Algorithm
Parameters

NUS-WIDE-CH NUS-WIDE-BoW

E2LSH+ H = 100, K = 8 H = 1000, K = 10

C2LSH+ H = 20, l = 15 H = 100, l = 60

RLB α = 0.07 α = 0.4

NND+
ρ = 0.3, δ = 0.001,

t = 0.9
ρ = 1.0, δ = 0.001,

t = 0.9

S2LSH
H = 100, L = 50,
m1 = 5, m2 = 15

H = 1000, L = 500,
m1 = 5, m2 = 15

Table 5.2: Our parameter settings of all algorithms in the NUS-WIDE datasets.

Datasets. We use seven types of datasets for comparisons. They are represented

by various types of feature vectors and different number of dimensions. Table

5.1 shows the summary of our datasets.
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Algorithm
Average Accuracy

k-NNS k-NNG Pk-NNG
CH BoW CH BoW CH BoW

E2LSH+ 0.93 0.85 0.94 0.85 0.94 0.85

C2LSH+ 0.92 0.91 0.92 0.91 0.93 0.92

RLB N/A N/A 0.89 0.85 0.89 0.89

NND+ N/A N/A 0.93 0.91 0.93 0.90

S2LSH 0.92 0.91 0.92 0.91 0.91 0.92

Table 5.3: Average accuracy of the five executions (from 10K to 50K vectors) in the NUS-WIDE datasets. We set the
parameters to achieve the similar level of accuracy.

Algorithm
Preprocessing Time (sec.)

NUS-WIDE-CH NUS-WIDE-BoW
10K 20K 30K 40K 50K 10K 20K 30K 40K 50K

E2LSH+ 1.48 1.86 2.41 2.69 3.16 189.41 230.19 258.82 270.52 302.20

C2LSH+ 0.21 0.30 0.41 0.51 0.60 7.24 9.77 12.2 15.09 18.08

S2LSH 1.74 2.45 3.05 3.71 4.32 197.02 227.82 265.02 293.84 310.32

Table 5.4: Comparison of the k-NN search algorithms in terms of pre-processing time. The pre-processing time depends on
parameter settings.
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5.5.2 Experimental Results

First, we compare all of the algorithms using the two NUS-WIDE datasets.

Table 5.2 represents our selected parameters in which all of the algorithms show

their best performance and achieve the similar level of accuracy shown in Table

5.3. Note the parameter H of C2LSH+ is much lower than those of E2LSH+

and S2LSH because if there are many hash functions, the process of collision

counting could be very slow. In other words, C2LSH+ needs a LSH algorithm

that can represent the original vectors as very compact hash codes. We newly

define the parameter t of NND+, which indicates the minimum accuracy that

should be achieved. Because this parameter can be used only when we already

calculated the answer set, the implementation of NND+ is not feasible in the

real world. We do not specify the parameter µ used by S2LSH, because they

are dependent on the number of data vectors.

Because every algorithm now has the similar level of accuracy, our remaining

task is to compare their elapsed time. Table 5.4, Figure 5.6 and Figure 5.7 shows

the comparison results of k-NN search algorithms: 1) in terms of pre-processing

time, C2LSH+ is the fastest, and E2LSH+ is faster than S2LSH. However, their

difference does not have significant meaningis because the preprocessing step

is performed only once. Also, the difference of E2LSH+ and S2LSH indicates

that the pool generation time is only a small portion of preprocessing time.

In terms of k-NN search time, S2LSH outperforms both of the algorithms. 2)

An interesting finding is that although the C2LSH+ is the newer algorithm

than E2LSH+, C2LSH+ is slower than E2LSH+ when using the NUS-WIDE

dataset extracted by color histogram features. In the following experiments, we

can observe that E2LSH+ is better than C2LSH+ when using color histogram

features, and C2LSH+ is better than E2LSH+ when using SIFT features.

Figure 5.8 and 5.9 show the comparison results of k-NN graph construction

tasks. These figures show that S2LSH-M significantly outperforms the existing
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Figure 5.6: Comparsion results of all k-NN search algorithms over the NUS-
WIDE dataset (color histogram)

k-NN search algorithms because of the new distance features and optimization

techniques. Furthermore, S2LSH-M is even slightly faster than the state-of-the-

art k-NN graph construction algorithms. Another interesting finding is that

recursive Lanczos bisection is much slower than brute-force search in the dataset

represented by SIFT features while it is much faster than brute-force search

when using the color histogram features, respectively.

Figure 5.10 and 5.11 show the comparison results of partial k-NN graph

construction tasks. In these experiments, now S2LSH-M significantly outper-

forms all of the other algorithms over two different datasets. Note the elapsed

times of NN-Descent and RLB are the almost same as those for k-NN graph

construction, because they do not support these types of tasks. Because partial

k-NN graph construction is conceptually a combination of k-NN search and

k-NN graph construction, k-NN search algorithms could perform better than

k-NN graph construction algorithms in one dataset as shown in Figure 5.10,
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Figure 5.7: Comparison results of all k-NN search algorithms over the NUS-
WIDE dataset (SIFT)

whereas k-NN graph construction algorithms could perform better in another

dataset as shown in Figure 5.11.

Table 5.5 shows the k-NN search (or k-NN graph construction) time and

its corresponding accuracy of each algorithm over different types of datasets.

Note our approach outperforms the existing approaches in regardless of datasets

(feature extraction methods) and k-NN computation tasks.
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Figure 5.8: Comparison results of k-NN graph construction algorithms over the
NUS-WIDE dataset (color histogram)
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Figure 5.9: Comparison results of k-NN graph construction algorithms over the
NUS-WIDE dataset (SIFT)
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Figure 5.10: Comparison results of partial k-NN graph construction algorithms
over the NUS-WIDE dataset (color histogram)
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Figure 5.11: Comparison results of partial k-NN graph construction algorithms
over the NUS-WIDE dataset (SIFT)
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Dataset
k-NN Search

k-NN Graph
Construction

Partial k-NN
Graph Construction

Brute-
force

E2LSH+ C2LSH+ S2LSH
Brute-
force

NND+
S2LSH-

M
Brute-
force

NND+
S2LSH-

M

Corel
74ms
(1.00)

6ms
(0.96)

66ms
(0.85)

2ms
(0.97)

14215s
(1.00)

151s
(0.94)

199s
(0.91)

5066s
(1.00)

145s
(0.94)

136s
(0.94)

NUS-WIDE
(CH)

120ms
(1.00)

9ms
(0.91)

47ms
(0.82)

4ms
(0.92)

14116s
(1.00)

314s
(0.95)

240s
(0.95)

5007s
(1.00)

315s
(0.95)

94s
(0.90)

Audio
75ms
(1.00)

9ms
(0.89)

16ms
(0.87)

8ms
(0.92)

2044s
(1.00)

175s
(0.93)

82s
(0.94)

734s
(1.00)

116s
(0.90)

54s
(0.95)

NUS-WIDE
(BoW)

384ms
(1.00)

169ms
(0.88)

187ms
(0.90)

103ms
(0.91)

19774s
(1.00)

7185s
(0.90)

6262s
(0.92)

7017s
(1.00)

6844s
(0.90)

2006s
(0.90)

Shape
97ms
(1.00)

11ms
(0.90)

11ms
(0.90)

10ms
(0.93)

1314s
(1.00)

51s
(0.93)

48s
(0.94)

475s
(1.00)

51s
(0.93)

40s
(0.96)

MNIST
346ms
(1.00)

61ms
(0.92)

32ms
(0.81)

21ms
(0.94)

10993s
(1.00)

202s
(0.91)

189s
(0.94)

3878s
(1.00)

198s
(0.94)

67s
(0.97)

GIST1M
726ms
(1.00)

162ms
(0.92)

134ms
(0.82)

75ms
(0.92)

36610s
(1.00)

3830s
(0.91)

3411s
(0.91)

13068s
(1.00)

3805s
(0.91)

1862s
(0.92)

Table 5.5: Comparison of all datasets. The values outside the parentheses are k-NN search (or k-NN graph construction)
time, and the values inside the parentheses are the corresponding accuracies.
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5.5.3 Performance Analysis

Our approach consists of the three steps so that there are three factors that af-

fect that performance of our algorithm: 1) The performance of locality sensitive

hashing, 2) number of signatures in a signature pool, and 3) the effectiveness

of our selected features.

Figures 5.12 to 5.17 show that S2LSH also outperforms the existing ap-

proaches based on random hyperplane-based LSH, which is one of the most

popular LSH schemes. It was originally developed for cosine distance so that

we calculate the similarities between vectors based on the cosine similarity mea-

sure. Theoretically, for vectors u and v,

Pr[h(u) = h(v))] = 1− θ(u, v)

π
, (5.11)

where h(·) is a random hyperplane based hash function. Experimental results

show that while the performance of the existing approaches significantly varies

depending on the datasets being used, our approach delivers relatively consis-

tent performance.

Figure 5.18 indicates that as the number of signatures increases, the perfor-

mance (in terms of either accuracy or time) consistently increases. The result is

intuitive because if there are many signatures, then there is a high probability

that there will be more effective signatures. If we can select the effective sig-

natures in a large pool of signatures, the performance would be increased. The

S2LSH-OPT in this figure is the one variant of S2LSH that can always select

the most effective signatures. This is infeasible in a real-world scenario because

S2LSH-OPT knows the answer set in advance in order to optimally select the

signatures. Obviously, when we expand the size of the pool, the performance

gain of S2LSH-OPT would be higher than that of S2LSH.

Figure 5.19 represents that two S2LSH schemes with different signature se-

lection methods could produce significantly different results. Even though find-

ing the k-nearest neighbors in the 500-dimensional NUS-WIDE is difficult task,
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Figure 5.12: Comparison results of all k-NN search algorithms based on random
hyperplanes over the NUS-WIDE dataset (color histogram)

S2LSH-OPT significantly reduces the search space. In other words, if we find

a more advanced features, then we can expect a huge amount of performance

gain.

5.6 Summary

k-Nearest Neighbor (k -NN) search aims at finding k vectors nearest to a query

vector in a given dataset. In this chapter, we presented novel methods for gener-

ating k -NN search results efficiently regardless of properties of a given dataset.

In this method, we construct a highly diversified signature pool consisting of

various signatures. The signatures are generated based on a data-dependent

LSH algorithm to capture the global topological features specific to the given

dataset. Then, for a given query point, we select multiple query-specific signa-

tures from the signature pool in order to find high-quality k -NN candidates of

the query point. We also incorporated three additional optimization techniques
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Figure 5.13: Comparsion results of all k-NN search algorithms based on random
hyperplanes over the NUS-WIDE dataset (SIFT)

to further improve the performance of S2LSH in a bulk execution setting such

as k -NN graph construction.
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Figure 5.14: Comparison results of k-NN graph construction algorithms based
on random hyperplanes over the NUS-WIDE dataset (color histogram)
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Figure 5.15: Comparison results of k-NN graph construction algorithms based
on random hyperplanes over the NUS-WIDE dataset (SIFT)
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Figure 5.16: Comparison results of partial k-NN graph construction algorithms
based on random hyperplanes over the NUS-WIDE dataset (color histogram)

10K 20K 30K 40K 50K

200

400

600

800

1,000

1,200

# Data Vectors (NUS-WIDE, BoW)

P
k
-N

N
G

C
on

st
ru

ct
io

n
T

im
e

(s
ec

.)

Brute-force
E2LSH+
C2LSH+
NND+
S2LSH-M

Figure 5.17: Comparison results of partial k-NN graph construction algorithms
based on random hyperplanes over the NUS-WIDE dataset (SIFT)

101



200 400 600 800 1000

0.02

0.04

0.06

0.08

H

k
-N

N
S

ea
rc

h
T

im
e

(s
ec

.)

S2LSH
S2LSH-OPT

200 400 600 800 1000

0.85

0.9

0.95

H

A
cc

u
ra

cy

S2LSH
S2LSH-OPT

Figure 5.18: Effect of signature pool generation
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Figure 5.19: Effect of signature selection (NUS-WIDE, BoW). S2L2H-OPT sig-
nificantly outperforms S2LSH in terms of query processing time; the average
accuracy of brute-force search, S2LSH and S2LSH-OPT are 100%, 91% and
91% respectively.
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Chapter 6

Conclusion

k-NN search and k-NN graph construction are two of the most important prim-

itive operations in information retrieval, recommender systems and many algo-

rithms in data mining and machine learning. However, existing approaches re-

quire a huge amount time for finding k-nearest neighbors and the experimental

results do not show the consistent performance levels over different search tasks

and types of data. In this dissertation, we introduced two main algorithms to

solve these problems. Also, we introduced a fast collaborative filtering algorithm

based on a k-NN graph. The contributions of this dissertation are as follows: 1)

we developed an efficient and scalable algorithm for finding an approximate k-

nearest neighbor graph called greedy filtering. The main idea of this approach is

to filter node pairs whose large value dimensions do not match at all. In order to

avoid skewness in the results and guarantee a linear time complexity, our algo-

rithm chooses essentially a fixed number of nodes pairs as candidates for every

node. 2) We presented a novel algorithm for approximate k-NN search called

signature selection LSH. This approach selects query-specific signatures from a

signature pool to pick high-quality k-NN candidates. In order to increase the

performance, the signatures are generated based on spherical hashing, which is
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one of the most efficient data-dependent LSH algorithms. We also incorporated

three additional optimization techniques: bucket hashing, duplicate elimination,

and our modified neighborhood propagation method. 3) We introduced a fast

collaborative filtering algorithm based on a k-nearest neighbor graph, called

reversed CF. The main idea of this approach to reverse the process of finding

k-nearest neighbors in order to perform fewer predictions while filtering out in-

accurate results. The experimental results show that not only are the proposed

algorithms much faster than the existing approaches while retaining a high level

of accuracy, but also the algorithms consistently outperform the state-of-the-art

algorithms across various types of search tasks and datasets.
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초록

k-인접 이웃 계산은 추천 시스템, 검색 엔진, 그리고 많은 데이터 마이닝 및 기

계 학습 알고리즘에서 핵심적인 역할을 수행한다. 학계에서는 협업적 필터링,

검색 및 브라우징, 군집화, 분류, 이상치 탐지, 차원 축소 등 k-인접 이웃에 기

반한 다양한 알고리즘이 연구되고 있으며, 산업계에서는 YouTube 및 Amazon

추천 시스템, Google 검색 엔진 등 많은 상용 시스템들이 k-인접 이웃 정보를

활용하고 있다. 그러나 기존의 k-인접 이웃 계산 알고리즘들은 개체의 수 또는

차원의수가증가했을때상당한계산시간을필요로한다는문제점이있다.또,

계산 작업의 종류와 데이터셋에 따라 일관된 성능을 나타내지 못하기 때문에,

응용 분야에 따라서는 작은 데이터에 대해서도 빠르게 k-인접 이웃을 찾기가

어려울 수 있다.

본학위논문은위문제들을해결하기위해다목적고속근사알고리즘을제

시하고,관련된응용알고리즘을제안한다.본학위논문이기여한점은다음과

같다. 첫째, 텍스트 데이터에 대해 특화된, 확장성 있는 고속 k-인접 이웃 그

래프 생성 알고리즘(Greedy Filtering)을 제안하였다. 이 알고리즘은 데이터가

TF-IDF가중치가반영된벡터로표현되었다고가정하고,값이큰차원이일치

하지않을경우유사도계산을수행하지않는방식을사용한다.둘째,항목기반

추천 알고리즘을 변형하여, k-인접 이웃 그래프를 활용한 고속 협업적 필터링

알고리즘(Reversed CF)을 제시하였다. 본 알고리즘은 항목 기반 추천 알고리

즘의 k-인접 이웃을 찾는 과정을 개념적으로 뒤바꿈으로써 Greedy Filtering을

사용하여 빠른 추천이 가능하도록 설계되었다. 마지막으로, 텍스트, 로그, 멀

티미디어 데이터에 대해 모두 사용할 수 있는 고속 k-인접 이웃 검색 알고리즘

(Signature Selection LSH)을 제안하였다. 다양한 특징을 추출하고, 그 중에서

가장 검색에 효과적인 특징을 질의 의존적으로 선택하기 때문에 알고리즘의

성능이 데이터의 특성에 큰 영향을 받지 않는다. 특징 추출 방법을 변형하면,

k-인접 이웃 검색뿐만 아니라 k-인접 이웃 그래프의 일부분 또는 전체를 생성
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하는 데에도 효과적으로 사용될 수 있다. 위 알고리즘들은 이론적 분석 또는

실험적 검증을 통해, 기존 방법에 비해 훨씬 빠르면서 더 높은 정확도를 보장

한다는 것을 보였다. 또, 다양한 종류의 k-인접 이웃 계산 작업과 데이터셋에

대해 일관된 성능을 나타냈다.

주요어: k-인접 이웃 검색, k-인접 이웃 그래프 생성, 협업적 필터링

학번: 2010-30219
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