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Abstract

Fast Approximate Algorithms for k-NN
Search and k-NN Graph Construction

Youngki Park

School of Computer Science and Engineering
College of Engineering

The Graduate School

Seoul National University

Finding k-nearest neighbors (k-NN) is an essential part of recommeder systems,
information retrieval, and many data mining and machine learning algorithms.
However, there are two main problems in finding k-nearest neighbors: 1) Ex-
isting approaches require a huge amount of time when the number of objects
or dimensions is scale up. 2) The k-NN computation methods do not show
the consistent performance over different search tasks and types of data. In
this dissertation, we present fast and versatile algorithms for finding k-nearest
neighbors in order to cope with these problems. The main contributions are
summarized as follows: first, we present an efficient and scalable algorithm for
finding an approximate k-NN graph by filtering node pairs whose large value
dimensions do not match at all. Second, a fast collaborative filtering algorithm
that utilizes k-NN graph is presented. The main idea of this approach is to
reverse the process of finding k-nearest neighbors in item-based collaborative
filtering. Last, we propose a fast approximate algorithm for k-NN search by
selecting query-specific signatures from a signature pool to pick high-quality

k-NN candidates. The experimental results show that the proposed algorithms



guarantee a high level of accuracy while also being much faster than the other

algorithms over different types of search tasks and datasets.

Keywords: k-nearest neighbor search, k-nearest neighbor graph construction,
collaborative filtering, locality-sensitive hashing

Student Number: 2010-30219
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Chapter 1

Introduction

Finding k-nearest neighbors (k-NN) is one of the most important base opera-
tions in the field of recommender systems, information retrieval, data mining
and machine learning. With the exponentially increasing amount of data, ap-
proximate k-NN computations rather than exact computations have become
the predominant methods due to their lower computational cost. The aim is
to reduce the search space as much as possible while retaining an acceptable
level of accuracy. There are two main k-NN computation tasks: one is the k-NN
search, which finds the (approximate) k-nearest neighbors for a given query;
the other is k-NN graph construction, which finds the (approximate) k-nearest
neighbors of all of the objects. In this dessertation, we propose a set of fast

approximate algorithms for k-NN search and k-NN graph construction.

In this chapter, we begin by introducing our motivation and research prob-
lems in Section 1.1. In Section 1.2, we give an overview of our solutions to
efficiently find approximate k-nearest neighbors. In Section 1.3, we highlight
the contributions of the dissertation. We give an outline of the remaining chap-

ters in Section 1.4.



1.1 Motivation and Challenges

Finding k-nearest neighbors is an essential part of recommender systems: for
example, user-based [1] and item-based collaborative filtering [2] are two of the
most widely used techniques in recommender systems and the k-NN compu-
tations play a central role in their methods. Assuming that we want to rec-
ommend items to a user, we recommend the preferred items of his k-nearest
users in user-based collaborative filtering. In item-based collaborative filtering,
we recommend the k-nearest items of his preferred items. It is known that the
Amazon and YouTube recommender systems [3, 4] utilize CF-based algorithms,
and many modified versions of CF algorithms continue to be proposed for the

purpose of building context-aware recommender systems [5, 6, 7].

The k-NN computations are also very widely used in information retrieval:
for a given query, one powerful way of finding search results is to find its k-
nearest neighbors. For example, if we enter a short sequence of keywords as a
query, then a search engine can show the k£ documents closest the query [8].
Likewise, if we provide our own image as a query, a search engine can show the
k images closest to the query image [9]. This process is what we call search.
Note after obtaining search results, we can now browse the datasets in popular
search engines. If we select the ”similar” button of the document in Google,
then we can see its k-nearest documents [10]. Likewise, if we select any images
of the search results in Google Images, then we can see its k-nearest images in

the database. This process is what we call similarity browsing.

Many data mining and machine learning algorithms also exploit k-nearest
neighbors. For example: 1) k-NN classifier determines the category of a query
object based on the categories of its k-NN. 2) It is known that we can simulate
agglomerative clustering using all of the k-NN relationships between objects
in the database. The main idea of this approach is that instead of directly

finding the closest pairs among the clusters, selecting the closest pairs among
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the k-NN relationships is enough for clustering. 3) It is also known that we can
detect the outliers based on k-NN [11]. The basic idea of this algorithm is that
if there is an object o such that all of the other objects do not select o as a
k-NN, then we select o as an outlier. 4) Locally linear embedding (LLE) uses
all of the k-nearest neighbor relationships to reduce the dimensionality of data
[12]. Unlike principal component analysis (PCA), LLE well preserves the k-NN
relationships in reduced vectors.

Although there are many advantages and applications in finding k-nearest
neighbors, there are two main problems related to k-NN computations: the
first problem is that the exact k-NN computations require a hugh amount of
time when the number of objects or dimensions is scale up. Thus approximate
k-NN computations have become the predominant methods rather than exact
computations recently. In Section 1.1.1, we will discuss this issue in detail.
The second problem is that the existing approaches do not show the consistent
performance over different search tasks and types of data. Thus for some cases,
even the state-of-the-art approximate algorithms are not faster than the exact
calculation method while keeping the acceptable level of accuracy. In Section

1.1.2, we will discuss this issue in more detail.

1.1.1 Fast Approximation

The first problem in finding k-nearest neighbors is that the exact k-NN com-
putation method requires too much time. Let n be a number of objects and
d be a number of dimensions. Assuming that we use the cosine similarity as
our similarity measure, the exact k-NN computation for every object requires
the time complexity of O(n?d). Thus as the number of objects increases, the
computation time increases significantly. For example, Figure 1.1(a) shows the
amount of time required for the exact k-NN computation of every object using
the New York Times dataset. Because it takes more than 12 hours for 120,000
news articles in a single machine, it is impractical to use the exact calculation
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method for larger datasets, such as Wikipedia pages or YouTube videos.

Our aim is to develop fast and scalable algorithms for k-NN computation
while keeping the acceptable level of accuracy. In this dissertation, we set the
acceptable level to the accuracy of 90% defined in Section 3.5.1, because it is
known that at this level of accuracy the results of the collaborative filtering and
agglomerative clustering algorithms are nearly the same as the original results
[12, 13]: when we implement a recommender system based on the MovieLens
dataset, the k&-NN graph accuracy of more than 70% yields the similar recall to
the 100% case with a difference of at most 0.1 on average; when we implement
an agglomerative clustering algorithm based on the PIE face database, an 89%
accurate graph is much similar to the 100% graph. Obviously, it could be varied
depending on applications so that the k-NN computation method should also
be able to adjust the accuracy using its parameters. Figure 1.1 shows that NN-
Descent, which is one of the most efficient state-of-the-art algorithms, cannot
achieve the 90% accuracy although the algorithm outperforms the brute-force

approach significantly.

1.1.2 Versatility

The second problem in finding k-nearest neighbors is that the existing ap-
proaches do not show the consistent performance over different k-NN compu-
tation tasks and types of data. Thus we do not know in advance which algo-
rithm is best for given application. Furthermore, it is observed that for some
cases, none of the existing approaches is not faster than the exact computation
method while keeping the acceptable level of accuracy. Examples of those cases
are described in the following sections.

Typically, there are three types of k-NN computation tasks: k-NN compu-
tation for a single query (k-NN search), for every object in the database (k-NN
graph construction), for some of the objects in the database (partial k-NN graph
construction). An interesting thing is that although the k-NN graph construc-
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tion can be implemented by the iterative executions of k-NN search, the k-NN
search algorithms do not perform as well for k-NN graph construction, and vice
versa. It is because they do not reuse the information that can be obtained
from the k-NN computations of the other objects. Therefore, in cases where we
need two or three types of k-NN computation tasks (e.g., a search engine that
supports both search and similarity browsing), we have to find or develop an
effective algorithm for each task.

The existing algorithms are also significantly affected by the types of datasets
being used. For example, the existing approaches do not efficiently find the k-
nearest neighbors for text or log data, because they are usually represented
by very high-dimensional sparse vectors. Figure 1.2 shows that there is a sig-
nificant difference in dimensionality between text/log datasets and multimedia
datasets, more than an order of magnitude. As another example, even using the
same raw multimedia data, the performance of existing approaches significantly
varies depending on the types of feature extraction methods being used. Thus
in cases where we need two or more types of feature extraction methods (e.g.,
a search engine that uses facial features for facial images and global features
for the other images [14]), we have to find or develop an effective algorithm for

each feature extraction method.

1.2 Owur Solutions

In this section, we briefly introduce the fast approximate algorithms through our
k-NN computation framework as shown in Figure 1.3. In this framework, there
are 6 layers: data, weighting scheme, similariy measure, preprocessing, algorithm
and application. For each layer, the components can be divided into two groups:
one group is for sparse datasets (text and log data), and the other group is for
dense datasets (multimedia data). For implementing a speicifc application, we
can scan from the bottom to the top of this figure while selecting the components
we want to use in the application. For example, in order to construct a real-
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time recommender system, we can select log data as our data, TF-IDF as our
weighting scheme, cosine similarity as our similarity measure, Ls-normalization
and sorting by value/dimension as our preprocessing step, greedy filtering as our
k-NN computation method, and reversed CF as our recommendation algorithm.
Note as shown in Figure 1.4, greedy filtering does not support k-NN search
operation so that we have to use signature selection LSH instead when our
application needs k-NN search.

Among the various components described in Figure 1.3, our contribution
consists of three parts: greedy filtering (GF), signature selection LSH (S2LSH),
and reversed CF (RCF). Each part is described in the following subsections.

1.2.1 Greedy Filtering

GF can be used for both the k-NN graph construction and partial k&-NN graph
construction. The algorithms takes either text data or log data. This assumes
that we use TF-IDF as our weighing scheme, which is de facto standard in
text information retrieval and is also suitable for recommender systems. When
we weight vectors with TF-IDF, we can use many variants described in [15].
Although GF is originally developed for cosine similarity, this also supports at
least five representative similarity measures: cosine similarity, pearson corre-
lation coefficient, adjust cosine similarity, normalized Euclidean distance, and
Euclidean distance. We can use the first three similarity measures, because they
are based on dot products. We can also use the fourth similarity measure be-
cause the k-nearest neighbors based on normalized Euclidean distance are same
as those based on cosine similarity by the following formula: for normalized vec-
tors a and b, |a — b|*> = 2(1 — cos(a, b)). Finally, GF supports the fifth similarity
measure because the k-nearest neighbors of based on Eucliean distance are sim-
ilar to those based on cosine similarity when the dimension is high [16]. As a
pre-processing step, GF basically uses Lo-normalization and sorting by value

and dimension in order to enhance its performance.



The limitations of greedy filtering is that it is specialized for high dimen-
sional sparse datasets and k-NN graph construction. However, as shown in

Figure 1.4, S2LSH can replace this algorithm when appropriate.

1.2.2 Signature Selection LSH

S2LSH is a generalized algorithm that can perform all of the three k-NN compu-
tation tasks. Although the algorithm basically takes multimedia data, it can also
applied to text or log data if there is an efficient locality-sensitive hashing algo-
rithm for those data. It can use various types of feature extraction methods, such
as color features, texture features, and shape features. One main characteristics
of S2LSH is that it can support even the non-metric similarity measures, such
as Kullback-Leibler (KL) divergence, chamfer distance, dynamic time warping
(DTW) distance, and edit distance, because there are locality-sensitive hash-
ing algorithms for those similarity measures [17]. The locality sensitive hashing
algorithm is one of the most important component for S2LSH, which affects
the accuracy significantly. Thus we recommend to use the state-of-the-art LSH
algorithms, such as anchor graph hashing (AGH) [18] or spherical hashing (SH)
[9].

1.2.3 Reversed CF

RCF exploits log data to recommend items to users. The log data should be
weighted by the TF-IDF weighting scheme, because it decreases the k-NN graph
construction time significantly. Although all of the five similarity measures GF
supports are widely used in recommender systems, RCF uses the cosine similar-
ity measure in order to implement non-normalized cosine neighborhood. This
algorithm uses Lo-normalization and sorting by value/dimension as a prepro-
cessing step. RCF can select either GF and S2LSH, because it only requires k-
NN graph construction. However, we recommend to use GF rather than S2LSH
because the existing LSH algorithms for text/log datasets, such as random
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hyperplanes [19] and MinHash [38, 39] are not good as those for multimedia

datasets.
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Figure 1.1: Experimental results of the existing approaches. Brute-force ap-

proach takes much time to construct a k-NN graph, and NN-Descent cannot

construct a graph with a high level of quality for the New York Times dataset.
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high dimensions, whereas multimedia datasets (Shape, Audio and Corel) usu-

ally have high dimensions.
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Figure 1.4: Our k-NN computation methods

1.3 Contributions

The main contributions of this dissertation can be summarized as follows:

e We present greedy filtering (GF'), an efficient and scalable algorithm for

finding an approximate k-nearest neighbor graph by filtering node pairs

whose large value dimensions do not match at all. In order to avoid skew-

ness in the results and guarantee a linear time complexity, our algorithm

chooses essentially a fixed number of node pairs as candidates for every

node. We also present an optimized version of greedy filtering based on

the use of inverted indices for the node prefixes.

e We propose signature selection LSH (S2LSH), a novel algorithm for ap-

proximate k-NN search. We select query-specific signatures from a signa-

ture pool to pick high-quality k-NN candidates. The signatures are gen-

erated based on a data-dependent LSH algorithm to capture the global

topological features specific to the given dataset. We also incorporate

three additional optimization techniques to further improve the perfor-

mance of S2LSH in a bulk execution setting such as k-NN graph con-
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struction.

e A fast collaborative filtering algorithm based on a k-NN graph is intro-
duced. We call this algorithm as reversed CF (RCF), because the main
idea of this approach is to reverse the process of finding k neighbors; in-
stead of finding k similar neighbors of unrated items as in conventional
collaborative filtering, RCF finds the k-nearest neighbors of rated items.
Not only does this algorithm perform fewer predictions while filtering out

inaccurate results, but it also supports the rapid retrieval of similar items.

1.4 Outline

The rest of this dissertation is structured as follows. Chapter 2 discusses back-
ground and related work of k-NN search and k-NN graph construction. Chap-
ter 3 describes greedy filtering, a fast approximate k-NN graph construction
algorithm. Chapter 4 describes signature selection LSH (S2LSH), a fast ap-
proximate k-NN search algorithm. Its extension for k-NN graph construction
and partial k&-NN graph construction is also presented. Chapter 5 describes re-
versed CF (RCF), a fast collborative filtering algorithm based on GF. Chapter

6 concludes the dissertation.
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Chapter 2

Background and Related Work

This chapter describes the background knowledge by providing an overview of
the existing k-NN search and k-NN graph construction algorithms. In Section
2.1, the k-NN search algorithms are introduced. In Section 2.2, the algorithms
for k-NN graph construction are described while comparing with the algorithms

in Section 2.1. Section 2.3 summarizes this chapter.

2.1 k-NN Search

As shown in Figure 2.1, k-NN search finds the k-nearest neighbors of query gq.

Formally, it is defined as follows:

Definition 1 (k-INN Search) Given a set of data vectors V', a parameter
k and a query vector ¢, the similarity search returns argma:zfev (sim(v,q)),

where argmaz® returns the k arguments that give the highest values.

One of the main barriers to achieving fast approximate k-NN search is that
the data are usually represented by high-dimensional vectors: for example, 1)

documents and logs are usually represented by a huge number of words or items,
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@ 2-NN of g: {v,, vs}

Figure 2.1: An example of k-NN search

respectively; 2) we usually represent images and videos by a huge number of
extracted features. Although there have been proposed tree-like space parti-
tioning approaches such as kd-tree, quadtree and R-tree in order to speed up
this process, they all suffer from the curse of dimensionality [20].

Locality-sensitive hashing is one of the most effective techniques for find-
ing k-nearest neighbors in a high-dimensional space [21]. It converts high-
dimensional vectors into signatures while preserving the relative distances be-
tween them. Formally, a signature of a vector v consists of an ordered set of hash
values, each calculated by the corresponding LSH hash function h(v) : R — N,
Because the signatures are usually low-dimensional vectors, we can find similar
vectors with lower computational cost.

There are two types of challenges for LSH-based k-NN search: 1) improving

the quality of LSH itself, and 2) finding the k-nearest neighbors using a given
LSH algorithm.

2.1.1 Locality Sensitive Hashing

In order to improve the quality of LSH, there have been proposed various types
of LSH functions. As shown in Figure 2.2(a), one of the most popular LSH func-

tions is based on random projections [36, 21], which project a high-dimensional
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vector onto a small line segment as follows:

hap(v) = { (2.1)

a-v+b
r

Here, v denotes a query vector (or a data vector); a is a vector where each
component is drawn independently from a p-stable distribution; r is a constant;
b is a constant chosen uniformly from the range [0, r]. By randomly selecting a
and b the H number of times, we can obtain H hash functions h1, ho, ..., hg and
corresponding signatures of length H. There are also many popular variants of
the random projections, such as random hyperplanes for cosine similarity [19]
shown in Figure 2.2(b) or random-permutations based MinHash for jaccard

similarity [20].

2.1.2 LSH-based k-NN Search

If we have a signature for every data vector v and a query g, then we need a
way to find candidates for a given query q. One simplest way is to calculate
the distances between the signatures of ¢ and that of every data vector v, and
select the k clostest data vectors as the k-nearest neighbors of ¢. However,
this approach is not sufficient for many applications because of the following
reasons: 1) if we have short signatures (for example, a length of 100), even
the state-of-the-art data-dependent LSH algorithms do not achieve the level
of MAP@100 higher than 15% for large amounts of datasets [9]; 2) if we have
long signatures, it takes much time to calculate the similarities between the
signatures. To cope with this problem, Ezact Euclidean LSH (E2LSH) [21, 20]
constructs compound hash functions g;(v), g2(v), ..., gr.(v), each consisting of
an equal number of hash functions. Then if a query vector ¢ and a data vector
v have a same compound hash value, i.e., g;(q) = g;(v) for some i, we consider
v as a candidate for the k-nearest neighbors of q. LSB-tree and LSB-forest [22]
further convert every low-dimensional vector g(v) into one-dimensional value
using z-order curve. Given a query vector ¢, they select a vector that has a
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v, = (10, 20,30, 40,50, ...)
v, = (5,7,9,10,20, ...)
vs = (10,25, 30, 45,55, ...)

High-dimensional
vectors

sig(vy) = (2,3) Low-dimensional
sig(v,) = (1,1) vectors
sig(vs) = (2,4) (signatures)

(a) Random projections

U1
(@) sig(vy) = (+1,+1,+1,-1)
V2 sig(vy) = (+1,+1,+1,+1)
. sig(vy) = (—1,+1,+1,+1)
U3
@)

(b) Random hyperplanes

Figure 2.2: Illustrative examples of two of the most popular locality-sensitive

hashing schemes

z-order value with the greatest LLCP (length of longest common prefix) as a
candidate for q. Collision Counting LSH (C2LSH) [23] counts the number of
collisions between a query vector ¢ and data vectors v using the hash functions
h1, ho, ..., hg, and if the collision counts is equal to or greater than pre-specified

threshold [, then it selects v as a candidate for q.

2.2 k-NN Graph Construction

As shown in Figure 2.2, k-NN graph construction finds the k-nearest neighbors

for every node. Formally, it is defined as follows:
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2-NN of vs: {v,, vg}
2-NN of vg: {ve, v}

Figure 2.3: An example of k-NN graph construction

didydsdyds
151 1 4
V2 2
U3 |4 3
Va 2
Vs 1

(Input) A set of vectors Similarity Matrix k-NN Graph

—-

Figure 2.4: An example of brute-force approach for k-NN graph construction

Definition 2 (k-NN Graph Construction) Given a set of vectors V, the
. k .
k-NN graph construction returns for every vector v; € V, argmazy. v np,tv; (sim(vs, v5)),

where argmaz® returns the k arguments that give the highest values.

k-NN graph construction is the process of finding (approximate) k-nearest
neighbors among the vectors in V' for every vector in V. It is also one of the
primitives operations in data mining, information retrieval, recommender sys-
tems and machine learning [24, 12, 25, 4, 26, 11, 13, 27, 28, 29, 30]. Figure 2.3
shows the simplest approach for constructing a k-NN graph: first, given a set of
vectors, we calculate all of the similarities between vectors and store them in a
matrix (or maintain a set of k-NN lists for reducing the memory requirement of
this process). Then we identify the k-nearest neighbors for every vector based
on the matrix. Since this brute-force approach requires the significant amount
of time, there have been proposed four types of algorithms for fast approximate
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k-NN graph construction: 1) LSH-based Approach, 2) clustering or hyperplane-
based algorithms, 3) heuristic-based algorithms, and 4) similarity join or top-k

similarity join algorithms.

2.2.1 LSH-based Approach

One naive way to construct a k-NN graph is to execute a LSH-based k-NN
search algorithm for every vector in V. However, the algorithms for k-NN search
in the bulk execution setting is usually outperformed by the existing k-NN graph
construction algorithms [24, 25] in that they do not reuse the information that
can be obtained through the search task of the other vectors. In order to cope
with this problem, the method of Zhang et al. [29] exploit the heuristic that the
2-hop neighbors of a vector v could be similar to v. It also applies the random
projections to the compound hash functions g1 (v), g2(v), ..., gr.(v), which is one

variation of LSB-tree and LSB-forest.

2.2.2 Clustering-based Approach

Clustering-based algorithms are the most simplest methods. The intuition be-
hind these algorithms is that the vectors in the same clusters have a high prob-
ability that they are the k-nearest neighbors of each other. It is known that
k-means clustering and canopy clustering based algorithms [31] are a little bit
faster than brute-force search while keeping the high level of accuracy. Wang et
al. [28] found that the iterative execution of 2-means clustering is more effective
in finding £-NN graph. Recursive Lanczos bisection [12] uses a hyperplane in
order to make clusters: first, it draws a hyperplane that splits the set of vec-
tors V such that it maximizes the sum of squared distances between v € V' to
the hyperplane that passes through the centroid. Second, it (recursively) divide
the vectors in V into two overlapping clusters using the hyperplane. Figure 2.5
shows an example of recursive Lanczos bisection. Similarly, the method of Wang
et al. [27] uses random hyperplanes to divide the set of vectors V. Note that
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Figure 2.5: An illustrative example of recursive Lanczos bisection

A randomly generated graph Iteration 1 Iteration 2 (converged)

Figure 2.6: An illustrative example of NN-Descent

the clustering algorithms exploit the abovementioned 2-hop neighbors heuristic

to improve the accuracy.

2.2.3 Heuristic-based Approach

NN-Descent [24] exploit the 2-hop neighbors heuristic but in a more efficient
way. It first randomly selects the k-nearest neighbors for every vector. Then for
each vector, it checks whether a neighbor of a neighbor of the vector is similar
to the vector and repeats until convergence. Figure 2.6 shows an example of
NN-Descent. It also uses a technique for avoiding many redundant distance
computations without the use of much memory, and a technique for slowing
down the convergence of the algorithm. The experimental results show that
although NN-Descent outperforms the other algorithms in terms of accuracy
and execution time, it does not perform well as the number of dimensions scales

up [24].
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2.2.4 Similarity Join

The k-NN graph construction is closely related to other fields, such as the sim-
tlarity join and top-k similarity join fields. First, we introduce the similarity

join problem as follows:

Definition 3 (Similarity Join) Given a set of vectors V and a similarity
threshold €, a similarity join algorithm returns all possible pairs (v; € V,v; € V)

such that sim(v;,v;) > e.

Assume that we use cosine similarity as our similarity measure. The in-
verted index join algorithm [32] for similarity join builds inverted indices for
all dimensions and then exploits them to calculate the similarities. While it
performs much faster than the brute-force search algorithm for sparse datasets,
it still has to calculate all of the similarities between the vectors. On the other
hand, prefix filtering techniques [32, 33, 34] effectively reduce the search space.
They sort the elements of all vectors by their dimensions and set the prefixes
such that the similarity between two vectors is below a threshold when their
prefixes do not have a common dimension. As a result, we can easily prune

many vector pairs by only looking at their prefixes.

The top-k similarity join is identical to the similarity join with regards to
finding the most similar pairs. The difference is that it is based on a parameter

k instead of €. The top-k similarity join is defined as follows:

Definition 4 (Top-k Similarity Join) Given a set of vectors V and a pa-

rameter k, a top-k similarity join algorithm returns argmaa:]& EVyeV) Aty (sim(z,y)),

where argmaz® returns the k arguments that give the highest values.

The most common strategy is to calculate the similarities of the most proba-
ble vector pairs first and then to iterate this step until a stop condition occurs.

For example, Kim et al. [35] estimates a similarity value e corresponding to
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the parameter k, selects the most probable candidates, and continues to select
candidates until it can be guaranteed that all vector pairs excluding those that
were already selected as the candidates have similarity values of less than e.
Similarly, Xiao et al. [10] stops its iteration when it can be guaranteed that the
similarity value of the next probable vector pair is not greater than that of any
candidate that has been selected.

Note that the problem definitions in related work are analogous to that of
k-NN graph construction such that the abovementioned solutions can also be
applied to constructing k-NN graphs. For example, if we know all of the simi-
larities between vectors by the inverted index join algorithm, we can obtain the
k-NN graph by taking the most similar k vectors for each vector and throwing
the rest away. However, these types of approaches do not perform well as the
number of nodes or dimensions is scaled up. In Chapter 3, we discuss these
issues in detail, present several ways to construct a k-NN graph based on the

algorithms of these fields, and analyze their performance results.

2.3 Summary

The limitations of the existing k-NN search algorithms are twofold: first, they
use data-independent LSH techniques (such as random projections) at the early
stage of the algorithms so that we could lose too much information about rel-
ative distances according to the types of datasets being used. For example,
the existing approaches do not achieve a high level of accuracy for the 500-
dimensional NUS-WIDE dataset using a small amount of time. Second, they
use data-independent candidate selection techniques. For example, they do not
consider which hash function is the best for selecting candidates in certain types
of datasets although some hash functions could play a more important role in
achieving the high level of accuracy. Our approach alleviates the above prob-
lems based on data-dependent LSH functions and our data-dependent signature

selection algorithms.

]
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The limitations of the existing k-NN graph construction algorithms are as
follows: first, the algorithms do not consider the data distributions in order to
speed up the elapsed time. Second, the algorithms do not effectively support
different types of k-NN computation tasks, such as partial k-NN graph con-
struction, which is defined as finding k-nearest neighbors among the vectors in
V for every vector v € V' such that V' C V. Note this task can be used for
incremental k-NN graph construction.

Table 2.1 shows the summary of the all k-NN computation methods. Our
approaches are highlighted in boldface and italic. Note that the brute-force
approach is used as a baseline for dense datasets, and that the inverted in-
dex join-based algorithm is used as a baseline for sparse datasets. In practice,
inverted index join-based algorithm performs more than 10 times faster than
brute-force approach in sparse datasets. Figure 2.7 shows the comparison of
every k-NN computation process: 1) the baseline approaches directly compute
the k-nearest neighbors. 2) Most of the k-NN graph construction algorithms
try to efficiently find the candidate pairs, and then construct a k-NN graph by
calculating their similarities. 3) k-NN search algorithms reduce the dimension-
ality using locality-sensitive hashing, and find the candidate pairs based on the
generated signatures. 4) Finally, some approaches further convert the reduced
vectors into one-dimensional values and then find the candidate pairs. In the

following chapters, we will compare and analyze their performance in detail.
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Ve

Algorithms

Tasks

Data Types

Similarity Measures

Main Methods

Brute-force approach

Search / graph

Sparse / dense

All

Exhaustive search

Inverted index join Graph Sparse Cosine similarity Inverted index
k-means clustering Graph Sparse / dense Euclidean distance k-means clustering
Canopy clustering Graph Sparse / dense All Canopy clustering
Recursive Lanczos bisection Graph Dense FEuclidean distance Spectral bisection
Zhang’s approach Graph Sparse / dense Popular LSH, projection
NN-Descent Graph Sparse / dense All Heuristic-based
Greedy Filtering Graph Sparse, TF-IDF Cosine similarity Data distribution-based
E2LSH Search Sparse / dense Euclidean distance LSH

C2LSH Search Sparse / dense Euclidean distance LSH

LSB-tree Search Sparse / dense Euclidean distance LSH, z-order curve
S2LSH Search / graph Sparse / dense  Popular LSH

Table 2.1: Summary of the all k-NN computation methods. Our algorithms are highlighted in underlined boldface.
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» Recursive Lanczos Bisection
High-dimensional vectors ——N-Descent
-Greedy Filtering

Candidate pairs

Locality-sengitive hashing

Low-dimensional vectors Similarity dalculations
. Brutéffqrce approach

z-ordey curve . Inverted‘”fngex Join

Zhang’s approach ™ A k-NN Graph
» LSB-tree

One-dimensional values

Figure 2.7: Comparison of every k-NN computation process. Our algorithms are highlighted in boldface and italic.



Chapter 3

Fast Approximate k-NN Graph
Construction

Finding the k-nearest neighbors for every node is one of the most important
data mining tasks as a primitive operation in the field of information retrieval
and recommender systems. However, existing approaches to this problem do
not perform as well when the number of nodes or dimensions is scaled up.
In this chapter, we present greedy filtering, an efficient and scalable algorithm
for finding an approximate k-nearest neighbor graph by filtering node pairs
whose large value dimensions do not match at all. In order to avoid skewness
in the results and guarantee a time complexity of O(n), our algorithm chooses
essentially a fixed number of node pairs as candidates for every node. We also
present a faster version of greedy filtering based on the use of inverted indices for
the node prefixes. We conduct extensive experiments in which we (i) compare
our approaches to the state-of-the-art algorithms in seven different types of
datasets, and (ii) adopt other algorithms in related fields (similarity join, top-k
similarity join and similarity search fields) to solve this problem and evaluate
them. The experimental results show that greedy filtering guarantees a high

level of accuracy while also being much faster than other algorithms for large
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amounts of high-dimensional data.

3.1 Introduction

Constructing a k-Nearest Neighbor (k-NN) graph is an important data mining
task which returns a list of the most similar k& nodes for every node [30]. For
example, assuming that we constructed a k-NN graph whose nodes represent
users, we can quickly recommend items to user u by examining the purchase
lists of u’s nearest neighbors. Furthermore, if we implement an enterprise search
system, we can easily provide an additional feature that finds & documents most
similar to recently viewed documents.

We can calculate the similarities of all possible pairs of k-NN graph nodes
by a brute-force search, for a total of n(n — 1)/2. However, because there are
many nodes and dimensions (features) in the general datasets, not only does
calculating the similarity between a node pair require a relatively long execution
time, but the total execution time will be very large. The inverted index join
algorithm [32] is much faster than a brute-force search in sparse datasets. It is
one of the fastest algorithms among those producing exact k-NN graphs, but it
also requires O(n?) asymptotic time complexity and its actual execution time
grows exponentially.

Another way to construct a k-NN graph is to execute a k-nearest neighbor
algorithm such as locality sensitive hashing (LSH) iteratively. LSH algorithms
[36, 37, 19, 38] first generate a certain number of signatures for every node.
When a query node is given, the LSH compares its signatures to those of the
other nodes. Because we have to execute the algorithm for every node, the graph
construction time will be long unless one query can be executed in a short time.

As far as we know, NN-Descent [24] is the most efficient approach for con-
structing k-NN graphs. It randomly selects k-NN lists first before exploiting the
heuristic in which a neighbor of a neighbor of a node is also be a neighbor of
the node. This dramatically reduces the number of comparisons while retain-
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ing a reasonably high level of accuracy. Although the performance is adequate
as the number of nodes grows, it does not perform well when the number of

dimensions is scaled up.

In this chapter, we present greedy filtering, an efficient, scalable algorithm
for k-NN graph construction. This finds an approximate k-NN graph by filtering
node pairs whose large value dimensions do not match at all. In order to avoid
skewness in the results and guarantee a time complexity of O(n), our algorithm
selects essentially a fixed number of node pairs as candidates for every node.
We also present a faster version of greedy filtering based on the use of inverted
indices for the prefixes of nodes. We demonstrate the effectiveness of these
algorithms through extensive experiments where we compare various types of

algorithms and datasets. More specifically, our contributions are as follows:

e We propose a novel algorithm to construct a k-NN graph. Unlike exist-
ing algorithms, the proposed algorithm performs well as the number of
nodes or dimensions is scaled up. We also present a faster version of the

algorithm based on inverted indices (Section 3.3).

e We present several ways to construct a k-NN graph based on the top-k
similarity join, similarity join, and similarity search algorithms (Section
3.5.1). Additionally, we show their weaknesses by analyzing their experi-

mental results (Section 3.5.2).

¢ We conduct extensive experiments in which we compare our approaches to
existing algorithms in seven different types of datasets. The experimental
results show that greedy filtering guarantees a high level of accuracy while
also being much faster than the other algorithms for large amounts of high
dimensional data. We also analyze the properties of the algorithms with

the TF-IDF weighting scheme (Section 3.4 and 3.5.2).
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3.2 Problem Formulation

In this section, we redefine the k-NN graph construction as follows: let G be a
graph with n nodes and no edges, V' be the set of nodes of the graph, and D be
the set of dimensions of the nodes. Each node v € V is represented by a vector,
which is an ordered set of elements e, ea, ..., €|, 1, €|, such that each has a pair
consisting of a dimension and a value, (d;,r;), whered € D and 0 <r; € R < 1.

The values are normalized by Lo-norm such that the following equation holds:

oo =1 (3.1)

(dieD,r;€ER)eV

Definition 1 (k-NN Graph Construction) Given a set of vectors V, the
k-NN graph construction returns for each vector x € V, argmaxflev“#y (sim(z,y)),

where argmaz® returns the k arguments that give the highest values.

We use the cosine similarity as the similarity measure for k-NN graph con-
struction. The cosine similarity is defined as follows:

v,--vj

Sim(vi S V,Uj S V) = W =
g J

Ui - V5. (32)

Example 1. In Figure 3.1, if we assume that the hidden elements (as de-
scribed by the ellipses) have a value of 0 and k = 2, the k-nearest neighbors of
vy are vy and vy, because sim(vy,va), sim(vi,vs), sim(vi,vs), and sim(vy,vs)
are 0.42, 0.13, 0.34, 0.28, respectively. The k-NN graph is obtained by finding k-

nearest neighbors for every vector: {va, va}, {vg, v1}, {va, va}, {va, v1}, {v1,v4}.

3.3 Constructing a k-Nearest Neighbor Graph

3.3.1 Greedy Filtering

Before presenting our algorithms, we introduce several distributions of datasets,
as follows: Figure 3.2(a) shows the value of each element of a vector v € V', where

the value of the i** element is larger than that of (i+1)" element. Figure 3.2(b)
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Figure 3.1: Example of greedy filtering: the prefixes of vectors are colored. We
assume that the hidden elements (as described by the ellipses) have a value of

0 and k£ = 2.

prefix|suffix

I prefix|suffix

1 v
Element Position Element Position

(a) Value Distribution (b) Vector Frequency Distribution

Figure 3.2: Typical distributions after performing our preprocessing steps

shows the vector frequency of the it element of a vector v € V, where the vector
frequency of the i*” element is smaller than that of (i+1)" element. Let dim(e)
be the dimension of element e. Then the vector frequency of the element e is
defined as the number of vectors that have the element of dimension dim(e).
An interesting finding is that regardless of the dataset used, the dataset
often follows distributions similar to those shown in Figure 3.2(a) and Figure
3.2(b) by performing some of the most common pre-processing steps. If we
sort the elements of each vector in descending order according to their values,
their value distributions will be similar to the distribution shown in Figure

3.2(a). Note that this pre-processing step does not change the similarity values
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between vectors. Furthermore, if we weigh the value of each element according
to a scheme that adds weights to the values corresponding to sparse dimensions,
such as IDF, TF-IDF, or BM25, then the vector frequency distributions will be
similar to the distribution shown in Figure 3.2(b). These weighting schemes
are widely used in information retrieval and recommender systems along with

popular similarity measures [40].

Let v' and v” be the prefix and suffix of vector v € V, respectively. The
prefix v’ consists of the first n elements and the suffix v” consists of the last
m elements such that [v] = n +m. Then sim(v; € V,v; € V) = sim(v],v}) +
sim(vj,v?) + sim(v],v}) + sim(v{,v]). Our intuition is as follows: assuming
that the elements of each vector follows the distributions shown in Figure 2 and
that the prefix and suffix of each vector is determined beforehand, sim(v;,v;)
would not have a high value when sim(vj,v;) = 0 because, first, sim(v;,v})
would not have a high value; the vector frequencies of the elements in v} are so
small that there is a low probability that v} and vé-’ have a common dimension.
Although there are some common dimensions in their elements, the values of
the elements in v}’ are so small that they do not increase the similarity value
"

significantly. For a similar reason, sim(v!,v) and sim(v/,v"

0 Y J) would not have

a high value: The elements of high values have low vector frequencies and the
elements of high vector frequencies have low values. When sim(v;, 1)3) # 0, on

the other hand, sim(v;,v;) would have a relatively high value because v and

v; have the highest values.

If we generalize this intuition, we can assert that two vectors are not one of
the k-nearest neighbors of each other if their prefixes do not have a single com-
mon dimension. That is to say, we would obtain an approximate k-NN graph
by calculating the similarities between vectors that have at least one common
dimension in their prefixes. Note that the vector frequencies of the prefixes are
so small that they usually do not have a common dimension. Thus we can prune

many vector pairs without computing the actual similarities. Because this ap-
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proach initially checks whether the dimensions of large values match, we call it

greedy filtering.

Definition 2 (Match) Let v; and v; be the vectors in V, and let e; and
ej be any of the elements of v; and vj;, respectively. We hold that e; and e;
match if dim(e;) = dim(e;). We also say that v; and v; match if any e; € v;

and e; € v; match.

Definition 3 (Greedy Filtering) Greedy filtering returns for each vec-

tor x € V, argmax (sim(z,y)), where argmax® returns the

k
yeV Az£yAmatch(z,y)
k arguments that give the highest values, and match(x,y) is true if and only if

x and y match.

Example 2. Figure 3.1 shows an example of greedy filtering, where the
prefixes are colored. If we assume that the hidden elements (described by el-
lipses) have a value of 0 and k = 2, greedy filtering calculates the similarities
of (v1,v2), (vi,v3), (v1,v4), (V1,v5), (V2,v3), (v4,v5), and (vy,vy), filters out
(v2,v4), (v2,v5), (v3,v4) and (vs, v5), and returns k-nearest neighbors for every

vector: {vg, v}, {vs,v1}, {ve,v1}, {vs,v1}, {v4,v1}.

Note that the result of Example 2 is slightly different from that of Example
1, because greedy filtering is an approximate algorithm. If the dataset follows
the distributions similar to those of Figure 3.2, the algorithm will be more

accurate. In Section 3.4 and 3.5, we will justify our intuition in more detail.

3.3.2 Prefix Selection Scheme

If we set the prefix such that |v}| = |v;],Vv; € V, then greedy filtering generates

(2

the exact k-NN graph though its execution time will be very long. On the other
hand, if we set the prefix such that |v]] = 0,Vv; € V, then greedy filtering
returns a graph with no edges while the algorithm will terminate immediately.

Note that the elapsed time of greedy filtering and the quality of the constructed

1] O 1]
1
_-|I
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graph depend on the prefix selection scheme. In general, there is a tradeoff

between time and quality.

Assume that greedy filtering can find the approximate k-nearest neighbors
for v; € V if the number of matched vectors of v; is equal to or greater than a
small value p. Then if for each vector v; we find v] such that |v}| is minimized
and the number of matched vectors of v; is at least p, then we can expect a

rapid execution of the algorithm and a graph of good quality.

Algorithm 1 describes our prefix selection scheme, where e{;i denotes the
4§ element of vector v; and dim(e) denotes the dimension of element e. In
line 2, we initially prepare an empty list for each dimension. Because one list
L[d;] contains vectors that have the dimension of d; in their prefixes, if any list
has the two different vectors v; and v;, then greedy filtering will calculate the
similarity between them. In lines 7-8, we insert the vectors in R into the lists,
meaning that we increase the prefixes of the vectors in R by 1. In lines 10-13,
we estimate the number of matched vectors, denoted by M, for each v; € R. In
lines 14-16, we check the stop conditions for each vector and determine which

vectors will increase their prefixes again.

Note that Algorithm 1 sacrifices two factors for the performance and ease
of implementation. First, it allows the duplicate execution of the brute-force
search (lines 19-20 of Algorithm 1 and lines 3-5 of Algorithm 2). If the two vec-
tors v} and vg- have the d number of dimensions that match, we will calculate
the d number of calculations of sim(v;,v;). Although we can avoid these redun-
dant computations by exploiting a hash table, this is not good for scalability
in general. Second, we overestimate the value p for a similar reason: if the two
vectors v; and v} have d number of dimensions that match, then M increases
by d instead of 1. Also, we calculate the value of M only once per iteration;

this makes M slightly larger.

Example 3. Figure 3.1 shows the result of our prefix selection scheme when
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= 2. Let M (v) be the value M of the vector v. Initially, the prefix size of each
vector is 1: M(v1) = M(v2) = 1 and M(v3) = M(vs) = M(vs) = 0, because
only (vi,ve) match. As the next step, we increase the prefix sizes of all vectors
by 1, as M(v;) < p,Vv; € V. Then (v1,vs), (ve,v3) and (v4,vs) match. At this
point, M (v1) = M(vy) = M (vs) = 2 and M (v3) = M (v4) = 1. Thus we increase
the prefix sizes of v3 and v4. As we continue until the stop condition is satisfied,
our prefix selection scheme selects the colored elements shown in Figure 3.1.
Our prefix selection scheme has O(|V||D|?) time complexity, and the brute-
force search has to compare each vector v to M number of other vectors. How-
ever, our preliminary results show that the prefix sizes are so small that we
can regard D as a constant. Furthermore, we set the variable M close to u;
empirically, M is not twice as large as p. Assuming that D is a constant and

M = 2y, the total complexity of greedy filtering is O(|V'| 4+ 2u|V]) = O(|V]).

3.3.3 Optimization

Our algorithm uses a brute-force search a constant number of times for each
vector. Because the execution times of the brute-force search highly dependent
on the sizes of the vectors, it will take a relatively long time when a dataset
contains very large vectors. For instance, experimental results show that the
execution time of datasets whose vector sizes are relatively large, such as TREC
4-gram, is longer than that of other datasets.

We present one variation of greedy filtering, called fast greedy filtering.
The main idea of this approach is that if sim(v;,v}) is relatively high, then
sitm(v;, vj) will also be relatively high. Then we can formulate an approximate
k-NN graph by calculating the similarities between prefixes. Algorithm 1 and
Algorithm 3 describe the process of this algorithm in detail: e{,i denotes the
4% element of vector v;, and dim(e) and value(e) denote the dimension and
value of element e, respectively. In Algorithm 1, we set the prefix of each vector
according to the abovementioned prefix selection scheme and invoke Algorithm

3 hy 1
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Algorithm 1: Greedy-Filtering (V, u)

Input: a set of vectors V, a parameter
Output: £-NN queues
1 begin
2 L[d;] +— ¢,Vd; € D /* candidates */
3 C <+— 1 /% an iteration counter */

4 R +—V /* vectors to be processed */

5 repeat

6 /* find candidates */

7 for v; € R do

8 L add v; to L[dim(eg)]

9 /* check stop conditions */
10 for v; € R do

11 M<+——0

12 for j < 1 to C do

13 M« M+ ‘L[dim(eii)])
14 if M > p or C > |v;| then
15 Plv;] «+— C

16 remove v; from R

17 C+—C+1

18 until |[R| >0
19 if default algorithm then
20 L return Brute-force-search(L)

21 else

22 L return Inverted-indez-join(V, P)
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Algorithm 2: Brute-force-search (L)
Input: lists for dimensions L

Output: £-NN queues @
1 begin
2 Q[vi] «— ¢,Yv; € V /* empty queues */
3 for d; € D do

4 compare all vector pairs (vg, vy) in L[d;]
5 update the priority queues, Q[v,] and Qv,]
6 return @

3. Then in lines 6-12 of Algorithm 3, we calculate the similarities between the
current vector v; € V and the other vectors already indexed and update the
k-nearest neighbors of v; and the indexed vectors. In lines 14-15, we put the
current vector v; into the inverted indices. Unlike greedy filtering, the execution
time of fast greedy filtering is highly dependent on the number of dimensions

and the vector frequencies of the datasets rather than the vector sizes.

Definition 4 (Fast Greedy Filtering) For each vector x € V| fast greedy

k

filtering returns argmazx sim(z',y')) , where argmax”® re-

k
yeV Az#yAmatch(z,y) (
turns the k arguments that give the highest values, and where match(z,y) is

true if and only if z and y match.

Example 4. If we apply fast greedy filtering to the example in Figure 1, the
algorithm returns slightly different results: {vo, vs}, {vs, v2}, {ve,v1}, {vs,v1},

{v4,v5} when k = 2.

3.4 Theoretical Analysis

Greedy filtering constructs an approximate k-NN graph by calculating the sim-

ilarities between vectors that have at least one common ”rare” dimension. In
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Algorithm 3: Inverted-index-join (L, P)
Input: a set of vectors V, prefix sizes P

Output: £-NN queues @)

1 begin

2 Q[vi] «— ¢,Yv; € V /* empty queues */

3 I[d;] «— ¢,V¥d; € D /* empty indices */

4 for v; € V do

5 /* verification phase */

6 Clvj] «— 0,Yv; € V /x sim(v;,v;) =0 */
7 for [ + 1 to P[v;] do

8 for (vj,r;) € Ildim(el,)] do

9 L Clvj] «— Clu;] + rj * value(el,)
10 for v; € V do
11 if Clvj] > 0 then

12 L update the queues, Q[v;] and Q[vy]
13 /* indexing phase */

14 for [ + 1 to P[v;] do
15 L add (v;,value(el,)) to I[dim(el,)]

16 return Q)

this section, we will show that this approach is effective for sparse datasets
where each vector component follows zipfian distribution and is weighted by
a TF-IDF weighting scheme, assuming that we use dot product as a similarity
measure. Because cosine similarity belong to a family of dot product similarity
measures, we can extend the following lemmas and theorem to those of cosine

similarity.
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Figure 3.3: The value and probability distributions of words

3.4.1 Preliminaries

Zipfian distribution. Let V' be a set of N-dimensional vectors. Let w,, be the
n* word in our vocabulary. We assume that vectors represent documents. Then
N indicates the number of words in our vocabulary, and the n** component
of vector v € V represents the frequency of w, in v. We also assume that
frequency of words follows zipfian distribution. That is to say, for vectors in V',
the normalized frequency of the n** word is as follows:
1/n®
S (1)

Here, s is the parameter of the zipfian distribution. We set s = 1 in this disser-

tation.

TF-IDF weighting scheme. For vectors v € V, we assume that the n'*
component is weighted by the following TF-IDF weighting scheme:

1, the n'* word frequency in v > 0
TF,, = (3.4)

0, otherwise
1

(pn)?
Figure 3.3 shows the distributions of words assuming that the words follow

IDF, = (3.5)

the zipfian distribution and are weighted by TF-IDF. Note if we sort the ele-

ments in descending order of value, then we will see the distributions similar to
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v; (K, words) v; (K, words)

WN—

Figure 3.4: An illustrative example of the analysis of graph construction time

those of Figure 3.2.

Dot product similarity measure. For vectors v; € V and v; € V, the dot

product similarity measure is defined as follows:

sim(v;, vj) = v; - vj (3.6)

3.4.2 Graph Construction Time

In this subsection, we prove that the greedy filtering significantly reduces the
number of candidates by showing that the probability of two random vectors
having any rare word in common is very low (Lemma 1 and Example 5). Figure
3.4 shows a conceptual example of two random vectors, where a shaded region
indicates that the corresponding word occurs at least once, and the vertical
length of each region indicates the probability that the corresponding word oc-

curs at least once.

Lemma 1. Let K7 and K3 be positive non-zero integers, and v; and v; be
vectors constructed by randomly generated K; and Ks words, respectively. Let
T be an integer such that 1 < T < N. If wp,...,wy are rare words and the
other words are not rare, then the probability that v; and v; have at least one
common rare word is

N Ko
Pmatch = 1- (1 - (Z (1 - (1 _pn)K1> pn)) (37)

n=T
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w, O /||

Figure 3.5: An illustrative example of the analysis of graph accuracy

Proof: The probability that w, is at least once appeared in v; is 1 — (1 — pn)Kl.
Hence the expected value of the sum of the probability of rare words at least
once appeared in v; is Zg::r (1 —(1- pn)Kl) Pn. Since the probability that v;
does not have any rare word in common with v; is (1 - (ZQZZT (1 —(1- pn)K1> pn))KQ,

it follows that

N K2
Pmatch = 1- (1 - (Z (1 - (1 - pn)K1> pn)) (38)

n=T

Example 5. Given N, T, K1, and K5, we can calculate p,,q:cn as follows:

If N =100,000,7 = 90,000, K; = K2 = 1,000, then py,qtcr, = 0.00757009.

If N =100,000,7 = 80,000, K1 = Ko = 1,000, then py,qtcn = 0.0169509.

If N = 100,000, T = 90,000, K1 = K5 = 2,000, then paren = 0.0299255.

If N = 110,000, T = 100,000, K; = K5 = 1,000, then piaten, = 0.00610197.

3.4.3 Graph Accuracy

In this subsection, we show that if two random vectors have a rare word w,, in
common as described in Figure 3.5, then the expected value of the similarity
between the vectors is much higher than that of another two random vectors

(Lemma 2, 3, Theorem 1 and Example 6).
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Lemma 2. Define ¢, = (IDF,)?. Then the expected value of the similarity

between two random vectors consisting of K7 and Ky words, respectively, is

B =Y (1-0-p) ) (1= -p)") e (3.9)

n=1
Proof. Let v; and v; be vectors constructed by randomly generated K and Ko
words. That is to say, Ex, k, = E[v;-vj]. Since each component of a vector has
its corresponding TF-IDF value, the expected value of the similarity between

v; and vj is

E[UZ' 'Uj] =F

N
Z TFvi,n ’ Tij,n : Cn] (310)

n=1

By linearity of expectation,

N
E ZTFn TFy,n-cn| = E[TF,1 TF,1le1 + ... + E[TF, n - TF,, ylcn
n=1

(3.11)
Since the probability that TF,,, = 1is (1 — (1 — p,)%1) and the probability
that TF,, , = 1is (1 — (1 — pn)52), it follows that

E[TFy - TF, ] = (1 —(1- pn)Kl) (1 —( —pn)KZ) (3.12)

Hence,
Elv; - v;] = i (1 —(1- pn)Kl) (1 -~ —pn)K2> en (3.13)
n=1

Lemma 3. Define A1 and Ay as follows:

N
Al = an(l — pn)Kl_l . (1 — (1 _pn)K271> o (314)
n=1
N
Ag = an(l _pn)K271 : <1 - (1 —pn>K1) - Cp, (315)
n=1
Then,
EKl,KQ = EK1—1,K2—1 + A1+ Ay (3.16)
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Proof. Let v; and v;- be vectors constructed by randomly generated K7 —1 words
and Ky — 1 words, respectively. Note Ev; - vj] = Ex,_1 K,—1. If we insert one

random word into v;, then the expected value is increased by
N
Al - an(l - pn)Kl_l . (1 - (1 _pn)K2_1> “Cn (317)
n=1

. / / . . .
Then since v; and v; has K1 and K — 1 words, respectively, if we insert one

random word into v;, then the expected value is increased by

N
B = pa(l=p) 7 (1= (1= p)) e (3.18)

n=1
Since the expected value of v; . v;» before and after inserting the two words are

Erx,—1,K,—1 and Fg, g,, respectively, it follows that
Bk i = Exi—1,K-1+ A1+ Ay (3.19)

Theorem 1. For a given integer o such that 1 # o # N, we assume that
w, is a rare word. Let u; and u; be vectors constructed by randomly generated

K, and K, words, respectively, such that they have non-zero o'"

components.
Then,

E[uz . Uj] = E[’UZ‘ . ’Uj] — (Al + AQ) — €+ Co (3.20)

Proof. Let v; and v;- be vectors constructed by randomly generated K1 —1 words
and Ky —1 words, respectively. Since Efu;-u;] is the sum of ¢, and the expected

value that can be additionally obtained by v; : U;., it follows that

Elu; - us] = o + E[U; : U;] — (1= (1 =p)" (1 = (1 =po)** )¢, (3:21)

Since w, is a rare word, 1 — (1 — p,)5171)(1 — (1 — po)%271) - ¢, < ¢,. Since

Elv, v;] = Ex,1.K,1, by Lemma 3, E[v, v;] = E[v; - vj] — (A1 + Ay). Hence,

E[uz . Uj] = E[’UZ‘ . ’Uj] — (Al + Ag) — €+ Co (3.22)
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Example 6. Given N, K, Ks, and o, the ratio of the two expected values

is calculated

o If N =

BElui-uy]
Elv;-vj]

o If N =

Elu;-uj]
E[”L)Z'"U]']

o If N =

Elu;-uj]
Elv;-vj]

o If N =

Elvi-vy]

as follows:

100,000, K1 = 1,000, K5 = 1,000, and o = 100, 000, then
= 15.71.

100,000, K1 = 1,000, K5 = 1,000, and o = 90, 000, then
= 12.91.

110,000, K1 = 1,000, K5 = 1,000, and o = 100, 000, then
= 14.57.

100,000, K1 = 2,000, Ko = 2,000, and o = 100, 000, then
= 4.69.

Note Example 6 shows that Efu; - u;] is much higher than E[v; - v;], because

A1+ Ay is much smaller than ¢,. Lemma 4 and Example 7 show the relationship

between A1 + As and ¢, more clearly.

Lemma 4. If K = K; = K5 and p; < 0.5, then

NN +1)

(3.23)

Proof. Since z(1 — ) < 0.25, 1/(1 — p,) < 2, and the N** harmonic number

can be interpreted as a Riemann sum of the integral, leH %dw = In(N +1),
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the following inequalities holds:

N
S ol —p)S (1= (1 =p) ) e

A =
n=1
N 1
= Z(l —p) T -1 —p) ) —
— Pn
N o
<0.25- Z -
n=1 P (3.24)
al 1
=025 Z’jl :
n=1 n
N 1 N
—-025-) =.
>4
=1 n=1
N(N +1)

=0.25-In(N +1)-

As pn(l _pn)Kil : (1 - (1 _pn)K) *Cn

Il
M

N
=

I
E

N
(L= p) (1= (L= p)) - — (Z'Tl

) (3.25)

n=1 ‘1_pn.
N(N +1)) 1
<0.25-In(N+1)- .
<0.25-In(N +1) 2 1=
N(N +1
§0.5-ln(N+1)-(2+)
Hence,
N(N +1)

2
Example 7. If N = 100,000 and o = 100, 000, then A +Ay < 4.31740-10'°
and ¢, = 1.46172 - 10'2. Thus A; 4+ Ay < c,.

3.5 Experiments
3.5.1 Experimental Setup

Algorithms. We considered eight types of algorithms for a comparison. Three

algorithms among them adopt the similarity join (abbreviated by SIM) [32], the

-+
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top-k similarity join (TOP) [41], and similarity search (LSH) [19] approaches.
Two algorithms among them are NN-Descent (DE1) and Fast NN-Descent
(DE2) [24], originally developed for the purpose of constructing k-NN graphs.
The other two algorithms are greedy filtering (GF1) and fast greedy filtering
(GF2) algorithms as proposed in this paper. Finally, we use the inverted in-
dex join (IDX) [32], which calculates all similarities with inverted indices, as a
baseline algorithm. In all experiments, we set the number of neighbors to 10
(k=10).

We adopted the similarity join algorithm for k-NN graph construction. First,
we implement the vector similarity join algorithm, MM-join [32], which outper-
forms the All-pairs algorithm [33] in various datasets. Then, we iterate the
execution of the algorithm while decreasing the threshold e by § until either at
least s% of vectors find k-nearest neighbors or until the elapsed time is higher
than that of inverted index join. We used the following values in the experi-
ments: € = 1.00 (the initial value), § = 0.05 and s = 30.

Adapting the top-k similarity join algorithm [41] for the k-NN graph con-
struction process is along the same lines as that of the similarity join algorithm,
except (1) we increase the parameter k at each iteration instead of decreasing
0, and (2) because the top-k similarity join algorithm uses sets as data struc-
tures, we need to transform the data structures into vectors and set new upper
bounds for the suffixes of vectors using the prefix filtering and length filtering
conditions. We set s = 70 for the top-k similarity join algorithm.

We also adopted the similarity search algorithm for k-NN graph construc-
tion by executing the algorithm N times. We used random hyperplane-based
locality sensitive hashing for cosine similarity [19]. We cannot adopt other LSH
algorithms, such as those in Broder et al. [38] or Gionis et al. [36], as they
were originally developed for other similarity measures. We set the number of

signatures for each vector to 100.

-1
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Table 3.1: Datasets and statistics

Dataset Statistics \4 | D] Avg. Size | Avg. VF
DBLP 250,000 | 163,841 5.14 7.85
TREC 125,000 | 484,733 79.83 20.59
Last.fm 125,000 56,362 4.78 10.60

DBLP 4-gram 150,000 | 279,380 27.97 15.02

TREC 4-gram 50,000 | 731,199 | 509.20 34.82

Last.fm 4-gram 100,000 | 194,519 20.77 10.68
MovieLens 60,000 10,653 141.23 795.44

Datasets. We considered seven types of datasets for a comparison. There are
two document datasets (DBLP! and TREC?), one text dataset that consists
of music metadata (Last.fm3), three artificial text datasets (DBLP 4-gram,
TREC 4-gram and Last.fm 4-gram), and one log dataset that consists of the
movie ratings of users (MovieLens*). Note DBLP 4-gram, TREC 4-gram, and
Last.fm 4-gram are derived from DBLP, TREC and Last.fm, respectively. We
remove whitespace characters in the original vectors and extracted the 4-gram
sequences from them. Table 3.1 shows their major statistics, where |V| denotes
the number of vectors and |D| is the number of dimensions, Avg. Size denotes
the average size of all vectors, and Avg. VF is defined as the average vector

frequencies of all dimensions.

Evaluation Measures. We use the execution time and the scan rate as the
measures of performance. The execution time is measured in seconds; it does not
include the data preprocessing time, which accounts for only a minor portion as

indicated in Figure 3.6. Since the preprocessing time comprises of the time for

"http://dblp.uni-trier.de/xml/
’http://trec.nist.gov/data/t9_filtering.html/
Shttp://www.last.fm/
‘http://grouplens.org/datasets/movielens/
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Figure 3.6: Elapsed time for each task (greedy filtering, k&-NN graph construc-
tion, and the New York Times dataset)

1) constructing a sparse matrix M, 2) TF-IDF weighting, 3) Lo-normalization,
4) creating a copy, matrix M ', of matrix M, 5) sorting M by dimension and
6) sorting M ' by value, the execution time only consists of the time for pre-
fix selection (finding candidates) and calculating similarities. The scan rate is

defined as follows:

# similarity calculations
VI(VI-1)/2

Scan Rate = (3.27)

The similarity calculation expresses the exact calculation of the similarity
between a pair. Thus, the brute-force search and the inverted index join always
have a scan rate of 1, as they calculate all of the similarities between vectors. On
the other hand, fast greedy filtering has a scan rate of 0 because this algorithm
only estimates the degrees of similarity.

We use the level of accuracy as the measure of quality. Assuming that an
algorithm returns k& neighbors for each vector, the accuracy of the algorithm is

defined as follows:

# correct k-nearest neighbors

Accuracy = RV

1 3
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Weighting Schemes. The value of each element can be weighted by the pop-
ular weighting scheme, such as TF-IDF. Let v be a vector in V and e; be an
element in v. Then, we define the TF-IDF as follows:

tfidf(e;, v) = (0.5 4 05xvaluefe;) ) " (z V] > . (3.29)

max {value(e;) : ej € v} OgVF(ei)

Here, value(e) is the initial value of e. In the text datasets, the initial values

are the term frequencies; in the MovieLens dataset, the values are the ratings.
3.5.2 Performance Comparison

Comparison of All Algorithms. Figure 3.7 and Table 3.2 show the execution
time, accuracy, and scan rate of all algorithms with a small number of TREC
nodes. We do not specify the accuracy and scan rate of inverted index join in
Table 3.2, as its accuracy is always 1 and its scan rate is always 0. By the same
token, the scan rates of LSH and GF2 are left blank. We set u = 300 for our
greedy filtering algorithms.

The experimental results show that the greedy filtering approaches (GF1
and GF2) outperform all other approximate algorithms in terms of the exe-
cution time, accuracy and scan rate. The second best algorithms behind GF1
and GF2 are the NN-Descent algorithms (DE1 and DE2). However, as already
descrbed in work by Dong et al., the accuracy of the algorithms significantly
decreases as the number of dimensions scales up. The other algorithms require
either a long execution time or return results that are not highly accurate.
The top-k similarity join and similarity join algorithms require a considerable
amount of time to construct k-NN graphs, and locality sensitive hashing based
on random hyperplanes requires many signatures (more than 1,000 signatures

in our experimental settings) to ensure a high level of accuracy.

1 3
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Figure 3.7: Execution time of all algorithms (TREC)

Table 3.2: Accuracy and scan rate of all algorithms

Node Accuracy (TREC) Scan Rate (TREC)

SIM | LSH | TOP | DEL | DE2 | GF1 | GF2 || SIM | LSH | TOP | DEI | DE2 | GF1 | GF2
10K || 0.00 | 0.01 | 0.68 | 0.54 | 0.43 | 0.96 | 0.65 || 0.05 - 0.06 | 0.27 | 0.19 | 0.05 -
20K || 0.00 | 0.01 | 0.76 | 0.50 | 0.38 | 0.95 | 0.63 || 0.07 - 0.08 | 0.15 | 0.11 | 0.03 -
30K || 0.00 | 0.01 | 0.76 | 0.48 | 0.36 | 0.94 | 0.62 || 0.05 - 0.08 | 0.10 | 0.08 | 0.03 -
40K || 0.00 | 0.01 | 0.78 | 0.47 | 0.34 | 0.93 | 0.61 || 0.08 | - 0.08 | 0.08 | 0.06 | 0.02 | -
50K || 0.00 | 0.01 | 0.79 | 0.46 | 0.33 | 0.93 | 0.59 || 0.05 | - 0.08 | 0.07 | 0.05 | 0.02 | -




Comparison of All Datasets. Table 3.3 shows the comparison results of the
two outperformers, greedy filtering and NN-Descent, over the seven types of
datasets with the TF-IDF weighting scheme. The results of their optimized
versions are specified within the parentheses. In this table, we define a new
measure, time, as the execution time divided by the execution time of inverted
index join. We set the parameters p such that the accuracy of GF1 is at least
90%. The experimental results show that GF1 outperforms the NN-Descent
algorithms in all of the datasets except for DBLP and MovieLens. Although
the execution time of GF1 is slower than the times required by the the NN-

Descent algorithms for the two datasets, its accuracy is much higher.

Note that while fast greedy filtering exploits inverted index join instead of
brute-force searches, it is not always faster than greedy filtering. Fast greedy fil-
tering can be more effective in a dataset for which the vector sizes are relatively
large and the number of dimensions and the vector frequencies are relatively
small. For example, fast greedy filtering outperforms the other algorithms in

the TREC 4-gram datasets, which have the largest average size.

Performance Analysis. Recall that before executing the greedy filtering algo-
rithm, we utilize some of the most common pre-processing steps, as described in
Section 3.3. First, we weigh the value of each element according to a weighting
scheme, and then we sort the elements of each vector in descending order ac-
cording to their values. Figure 3.8 shows the distributions of all of our datasets
after performing these pre-processing steps. Note that the distributions after
pre-processing are similar to those in Figure 3.2. Note also that Figure 3.8 and
the experimental results are in accord with our intuition as presented in Sec-
tion 3.3: for example, the distributions of DBLP 4-gram, Last.fm, and TREC
in Figure 3.8 are very similar to those shown in Figure 3.2; moreover, the ex-
perimental results in Table 3.3 show that their execution time is better than
those of the other datasets. As another example, the distributions of Movie-
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Lens with TF-IDF are relatively less similar to those shown in Figure 3.2 in
that the element position does not greatly affect the vector frequency. Thus,
their performance is slightly worse than the performance levels of the other

datasets.
3.6 Summary

In this chapter, we present greedy filtering, an efficient and scalable algorithm
for finding an approximate k-nearest neighbor graph by filtering node pairs
whose large value dimensions do not match at all. In order to avoid skewness
in the results and guarantee a linear time complexity, our algorithm chooses
essentially a fixed number of node pairs as candidates for every node. We also
present fast greedy filtering based on the use of inverted indices for the node
prefixes. We demonstrate the effectiveness of these algorithms through extensive
experiments in which we compare various types of algorithms and datasets.
The limitation of our approaches is that they are specialized for high di-
mensional sparse datasets, weighting schemes that add weight to the values
corresponding to sparse dimensions, and cosine similarity measure. In chapter

5, we present more generalized algorithms using locality-sensitive hashing.
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Table 3.3: Comparison of all datasets

44

DE1 (DE2) GF1 (GF2)

Datasets (TF-IDF) Time \ Accuracy \ Scan Rate Time \ Accuracy \ Scan Rate
DBLP 0.015 (0.013) 0.14 (0.11) 0.005 (0.004) 0.242 (0.076) 0.98 (0.90) 0.102 (-)
TREC 0.190 (0.140) | 0.43 (0.27) | 0.030 (0.021) || 0.030 (0.009) | 0.90 (0.56) | 0.007 (-)
Last.fm 0.322 (0.189) | 0.69 (0.68) | 0.014 (0.008) 0.063 (0.149) | 0.98 (0.80) | 0.003 (-)

DBLP 4-gram 0.066 (0.046) | 0.52 (0.34) | 0.019 (0.011) 0.004 (0.006) | 0.93 (0.59) | 0.001 (-)
TREC 4-gram 0.228 (0.163) | 0.60 (0.42) | 0.066 (0.047) || 0.106 (0.003) | 0.90 (0.48) | 0.035 (-)
Last.fm 4-gram 1.207 (0.800) | 0.65 (0.65) | 0.013 (0.008) 0.139 (0.204) | 0.90 (0.59) | 0.001 (-)
MovieLens 0.244 (0.161) | 0.55 (0.38) | 0.046 (0.028) || 0.302 (0.013) | 0.90 (0.19) | 0.073 (-)
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Figure 3.8: Distributions of all datasets




Chapter 4

Fast Collaborative Filtering

User-based and item-based collaborative filtering (CF) methods are two of the
most widely used techniques in recommender systems. While these algorithms
are widely used in both industry and academia owing to their simplicity and
acceptable level of accuracy, they require a considerable amount of time to find
k similar neighbors (items or users) and predict user preferences of unrated
items. In this chapter, we present Reversed CF (RCF), a rapid CF algorithm
which utilizes a k-nearest neighbor (k-NN) graph. One main idea of this ap-
proach is to reverse the process of finding k neighbors; instead of finding k
similar neighbors of unrated items, RCF finds the k-nearest neighbors of rated
items. Not only does this algorithm perform fewer predictions while filtering
out inaccurate results, but it also enables the use of fast k-NN graph construc-
tion algorithms such as greedy filtering. The experimental results show that
our approach outperforms traditional user-based/item-based CF algorithms in
terms of both the pre-processing time and the query processing time without

sacrificing the level of accuracy.
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4.1 Introduction

User-based and item-based collaborative filtering (CF) methods are two of the
most widely used techniques in recommender systems. When a user requests a
recommendation, the user-based CF algorithm [1] predicts the user’s preferences
for all of the unrated items based on similar user preferences for those items. In
a similar way, the item-based CF algorithm [2] predicts the preferences of the
user for all unrated items based on the preference levels of similar items for the

user.

Earlier studies in these areas indicated that CF algorithms produce movie
recommendations of a higher quality compared to baseline algorithms, which
only recommend the most popular movies or highly rated movies [50]. Although
there have been proposed more efficient algorithms, such as those that use singu-
lar vector decomposition [51] or a random walk [50][51], CF algorithms are still
widely used in both industry and academia owing to their simplicity and accept-
able levels of accuracy. For example, the Amazon and YouTube recommender
systems [52][3] utilize CF-based algorithms, and many modified versions of CF
algorithms continue to be proposed for the purpose of building context-aware

recommender systems [4][5].

One of the main drawbacks of CF algorithms is that predictions are neces-
sary for all unrated items. While such an approach facilitates evaluations of the
accuracy of various algorithms using the root-mean-square error (RMSE), this
method consumes a significant amount of recommendation time. Moreover, the
pre-processing time is also long, especially for a user-based CF algorithm, as it

has to calculate all of the similarity values between users.

In this chapter, we present Reversed CF (RCF), a fast CF algorithm using
a k-nearest neighbor (k-NN) graph. One main idea of this approach is that it
reverses the process of finding k£ neighbors. Not only does this algorithm perform

fewer predictions while filtering out inaccurate results, but it also enables the
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use of fast k-NN graph construction algorithms, such as greedy filtering. More

specifically, the contributions of this paper are as follows:

e We present RCF, a fast CF algorithm which uses a k-NN graph. Because
RCF performs fewer rating predictions, the recommendation time (query
processing time) is dramatically reduced compared to that of a user-based

or an item-based CF algorithm.

e We apply a fast k-NN graph construction algorithm known as greedy fil-
tering to reduce the RCF pre-processing time significantly. We also apply
the TF-IDF weighting scheme to our dataset before executing the greedy

filtering algorithm for further improvements.

e We conduct experiments with different parameter settings and show that
RCF outperforms traditional user-based/item-based CF algorithms in
terms of both the pre-processing time and the recommendation time with-

out sacrificing the level of accuracy.

The rest of this paper is structured as follows. In Section 4.2, we review user-
based/item-based CF algorithms and their general optimization techniques. In
Section 4.3, we present RCF, a fast collaborative filtering algorithm. In Section
4.4, we show experimental results comparing our approach to the traditional
CF algorithms. Finally, we conclude this chapter and present future research

directions in Section 4.5.
4.2 Related Work

[6] classified existing recommender systems into six categories based on the
types of recommendation approach (content-based filtering, collaborative fil-
tering, and hybrid approach), and the types of recommendation techniques
(heuristic-based approach and model-based approach) for the rating estima-

tion. Although the traditional collaborative and heuristic-based approaches are
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outperformed by the different types of recommender systems, especially the
model-based approaches such as one using matrix factorization introduced by
[54], singular vector decomposition presented by [59], or random walk proposed
by [51] and [52], in terms of prediction accuracy, [58] state that the traditional
approaches are still widely used due to their simplicity, justifiability, efficiency
and stability. For example, according to [3] and [4], the Amazon and YouTube
recommender systems exploit the collaborative and heuristic-based approaches.
In this paper, we focus on the item-based CF and user-based CF algorithms,
which are two of the most popular approaches among them.

User-based CF algorithms predict the preferences of all items unrated by
the user based on similar user preferences for those items. According to [1], the
predicted rating for active user a for item i is defined as follows:

ZneN(a) (rn,i — Tn) * sim(a,n)

2_neN(a) Isim(a, n)]

Pai =Ta + , (4.1)

where N(a) denotes the set of k-nearest neighbors of a among the users that
have rated item ¢; 7, ; denotes the rating of item ¢ by user n; ¥, and 7, are the
average ratings of user a and neighbor n, respectively; sim(a, n) is the similarity
between a and n. We use the Pearson correlation coefficient as the similarity

measure for the user-based CF algorithm:

sim(a,n) = Liec,(Tai ~Ta)(rni —Tn) , (4.2)

- \/ZieCi (Tai — ﬁy\/ZieCi (Tn,i —Tn)?

where C; denotes the set of co-rated items.

[1] and [58] state that there are common optimization techniques for the
user-based CF algorithm, such as significance weighting, variance weighting,
and selecting neighborhoods. The first two techniques are used to adjust the
similarity values between users. If two users had fewer than 50 commonly rated
items, significance weighting devalues the similarity between them by (1 - #
commonly rated items / 50) * 100%; variance weighting decreases the influence
of items with low variance, such as “Titanic.” The third technique selects only
T |
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k neighbors when predicting the ratings of unrated items in that the use of less
similar users may have a negative impact on the quality of recommendations.
Item-based CF algorithms predict the preferences of items unrated by the
user based on the preference levels of similar items for the user. According to
[2], the predicted rating for active user a for unrated item i is defined as follows:

> _neN(i) Tan * sim(i, n)

ZneN(i) ‘Sim(iv n)‘

paﬂ' = (4.3)

where N (i) denotes the set of k-nearest neighbors of ¢ among the items that
have been rated by active user a. In order to find N (i) efficiently, the algorithm
first constructs a [-nearest neighbor graph, which represents the I-nearest neigh-
bor relationships between items. Then we can find the & number of neighbors
based on this pre-computed [-NN graph instead of calculating the item-by-item
similarity matrix when a recommendation is requested. In this equation, we use

the adjusted cosine similarity as the similarity measure:

ZUEC (ru i )(ru n — ﬁ)
\/Zuecu Ut T \/Zuecu m)2’

where C, denotes the set of co-raters. 7, is the average rating of user w.

sim(i,n) (4.4)

[50] and [51] indicate that CF algorithms produce movie recommendations of
a high quality compared to baseline algorithms, which only recommend the most
popular movies or highly rated movies. Although more efficient algorithms have
been proposed, CF algorithms are still widely used in industry and academia
due to their simplicity and acceptable levels of accuracy. However, there are sev-
eral barriers preventing the realization of rapid recommendations when using
existing approaches. First, it is necessary to find different neighbors depending
on the active users. Specifically, the user-based CF algorithm finds the k-nearest
users from among all users who have rated a certain unrated item ¢ when pre-
dicting the rating of ¢, whereas the item-based CF algorithm finds the k-nearest
items from among all items that have been rated by active user u. Second, it

is necessary to predict all of the unrated items when a recommendation is re-
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quested by a user. This procedure is somewhat inefficient in that according to
[50] and [7], we usually need only the top-N recommendation results in real-
world scenarios. While CF algorithms would provide rapid recommendations
if there were not too many recommendation requests in a short time frame,
it would not be easy for commercial recommender systems in which numerous
recommendations are being requested by numerous users to provide real-time
recommendations. Although there have been a few approaches to reduce the rec-
ommendation time, such as the work of [2], [57], and [56], either the performance
gain is not significant or the approaches are not based on user-based /item-based

collaborative filtering.

4.3 Fast Collaborative Filtering

Our approach consists of two main steps: first, we approximately construct a
K'-nearest neighbor graph (k’-NN graph) as a preprocessing step based on our
previous work of [30] and [25] (Section 4.3.1). Here, we usually set &’ such that
Il > k' > k. Second, we find the k neighbors of unrated items based on the
k’'-NN graph. Then we recommend items to users using the k neighbors and

our revised version of the non-normalized cosine neighborhood (Section 4.3.2).

4.3.1 Nearest Neighbor Graph Construction

The construction of a k’-NN graph is a task which involves finding the &’ nodes
most similar to each node. Although other tasks, such as k-NN search pre-
sented by [20] and [23], reverse k-NN search proposed by [55], similarity join
introduced by [32] and top-k similarity join presented by [60] and [35], can be
used for recommender systems, we use the k’-NN graph because it is one of the
most appropriate data structure for our algorithm. One of the easiest ways to
construct a k’-NN graph is to calculate the similarities between all of the nodes
and extract the nodes most similar to each node. In spite of its simplicity, this
brute-force approach requires quadratic time complexity, which is burdensome
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Figure 4.1: Example of greedy filtering

when used in conjunction with large amounts of data. An alternative way to
cope with this problem is to use inverted indices given the fact that item-by-
user matrices are usually very sparse. However, according to [13], this approach
is also not appropriate for handling large amounts of high-dimensional data.
Our main idea is to construct an approximate k’-NN graph based on greedy
filtering presented by [30] and [25] in order to speed up this process. It is known
that greedy filtering outperforms other k’-NN graph construction algorithms,
such as NN-Descent proposed by [24] or kNN-Owverlap presented by [12], for
high-dimensional sparse datasets. If there is no decline in the quality of recom-
mendations when we use approximate graphs, we do not have to spend much
time on building an exact k’-NN graph. The accuracy of the k’-NN graph is

defined as follows:

# correct k'-nearest neighbors
#nodes - k'

Accuracy = (4.5)

Figure 4.1 shows an example of how greedy filtering constructs an approxi-
mate k’-NN graph. In this figure, there are five items and ten users; the values
in the matrix indicate the ratings, each corresponding to its item and user. The
main idea of greedy filtering is to filter item pairs whose ”large value dimen-
sions” (the shaded portions in the figure) do not overlap at all. In this figure, i,
and i9 share a common large value dimension. Hence, we calculate the similar-
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ity between 41 and io. In contrast, is and 74 do not have a common large value
dimension; accordingly, we do not calculate the similarity between io and i4.
[25] describe in detail the manner in which large value dimensions are selected
for each item. In an actual implementation of this method, we use adjacency
lists instead of adjacency matrices. The empirical time complexity of greedy
filtering is O(|Z]), where Z is a set of items.

According to [25], this algorithm performs much better when we apply the
TF-IDF weighting scheme and this process does not decrease the quality of
recommendations significantly. Thus we adjust the values in the input matrix

based on the TF-IDF weighting scheme:

0.5 M; ;
M. =1o0. nJ
J <O 5+ max{ M,y : u € L{})

(7).

where M; ; denotes the original value of the matrix corresponding to the ith

(4.6)

item and the j** user; U denotes a set of users; F (uj) denotes the number of
items that have values corresponding to the users u,;.

For example, suppose that we use the cosine similarity with the TF-IDF
weighting scheme and that there are two items 7; and 9 in a dataset. In such a
case, greedy filtering would calculate their level of similarity if they are highly
rated by at least one certain inactive user. Otherwise, it would filter out those

item pairs.
4.3.2 Fast Recommendation Algorithm

Recall that the two main drawbacks of user-based or item-based CF algorithms
are that they have to find different neighbors depending on active users and
that they have to predict all of the unrated items. Our novel algorithm, RCF,
solves these problems. Let B[i] be a k-NN list of item ¢, which was already
calculated in Section 4.3.1. Let Z,, and Z, be sets of unrated items and rated

items of an active user a, respectively. Then RCF works as follows:
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Figure 4.2: Example of reversed CF

1. For every item i € Z,,, prepare an empty set S[i].

2. For every item i € Z, and every item such that j € Z,, and j € BJ[i], add
i to S[j].

3. For every item i € Z,, if |S[i]| > k, then delete all except for the most

similar k; items from S[i].

4. Then, predict the ratings for all items ¢ such that i € Z,, and |S[i]| = k,

Pasi = Ti + Z Tan — Tn) * sim(i, n) (4.7)
nes|i

Here, sim(i,n) is the cosine similarity between i and n. It is defined as follows:

ZCEC TeiTen

\/Zcecu Te,i) \/Zcecu Ten)?

If an unrated item does not have the list of k1 number of items, RCF does not

sim(i,n) (4.8)

predict its rating.

Figure 4.2 shows an illustrative example of our approach. In this example,
we set k and k' to 2 and 2, respectively. Thus we find 2-nearest neighbors for
each rated item. An edge from a rated item ¢ to an unrated item j indicates
that j is one of the 2-nearest neighbors of i. The first unrated item has three

incoming edges and the similarities between this item and the rated items are
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0.9, 0.8 and 0.7 respectively. Because k is 2 in this example, we discard the edge
labeled with 0.7, and predict the ratings of the item based on the remaining
edges. On the other hand, the second unrated item has just one incoming edge
so that we do not predict the rating of the item.

The intuition behind this algorithm is that if one of the nearest neighbors
of rated item 7 is unrated item j, there would be a high probability that one
of the nearest neighbors of unrated item j is rated item ¢. This is why the
proposed algorithm is termed Reversed CF. One of the main characteristics of
RCF is that it does not predict the preferences of all unrated items of a user.
This approach does not sacrifice the level of recommendation quality for two
reasons. First, if the rating of an unrated item is predicted by RCF, RCF and
the item-based CF algorithm select the same neighbors for predicting the item
in many cases. Second, if the rating of an unrated item is not predicted by RCF,
the average similarity value of the k-nearest neighbors of the unrated item is
usually lower than that of another item predicted by RCF, which is the case
when it is difficult for the item-based CF algorithm to predict accurate ratings.

In Section 4.4, we will discuss this in more detail.

62 -":er -I_I' 1_-“



€9

Table 4.1: Summary of the recommendation algorithms

Algorithm Phase Task
UserCF Preprocessing Similarity matrix construction
Significance weighting
Recommendation Selecting k users that have rated the item
All rating predictions
ItemCF Preprocessing [-NN graph construction (I > k)
Recommendation Selecting k items that have been rated by an active user
All rating predictions
RCF Preprocessing E'-NN graph construction (k' > k)
Recommendation Selecting k items
Fewer rating predictions
RCF+TFIDF+GF  Preprocessing E'-NN graph construction using GF (k' > k)

Recommendation Selecting k items
Fewer rating predictions




4.4 Experiments

4.4.1 Experimental Setup

Dataset and Algorithms. We use the MovieLens dataset! for comparisons:
there are 1,000, 209 ratings, 3,952 movies, and 6,040 users; each user rates at
least 20 number of items; the rating scale ranges from 1 to 5 in which higher
ratings indicate greater preference. We considered four types of algorithms for a
comparison: UserCF implements the work by [1]; ItemCF implements the work
by [2]; RCF implements only the fast recommendation algorithm presented in
Section 3.2; RCF+TFIDF+GF implements the fast recommendation algorithm
presented in both Section 4.3.1 and 4.3.2. We set the default parameters k, &/,
and [ to 10, 20, and 300, respectively. Table 4.1 summarizes the abovementioned

recommendation algorithms and their related parameters.

Quality Evaluation. We follow the testing methodology of a recommender
system introduced by [50]. We divide the ratings into two groups. One group of
data consisting of 986, 206 ratings (98.6% of ratings) is used for our training set,

and the other group of data consisting of 14,003 ratings (1.4% of the ratings) is

"http://grouplens.org/datasets/movielens/
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used for the probe set. The test set consists of all of the five-star ratings (1,661
ratings) of 3,719 unpopular movies (99.65% of the movies) in the probe set.
Then, for each rating of movie m rated by user w in the test set, we randomly
select 1,000 movies unrated by u and recommend the top-N movies from among
the 1,001 movies (the 1,000 items selected in addition to m); if we recommend
m, we refer to this as a hit. Finally, we measure the degree of recall using the

following equation:
# hits

recall = ——
|test set|

(4.9)

Performance Evaluation. We measure both the preprocessing time and the
recommendation time for each algorithm. In UserCF, the preprocessing time is
the overall time needed to construct the user-by-user similarity matrix plus the
time for significance weighting. For ItemCF, we measure the [-nearest neighbor
(I-NN) graph construction time as the preprocessing time. We use the inverted
index-based method to calculate the [-NN graph, as it is one of the fastest
algorithms for constructing an exact nearest neighbor graph. Similarly, the pre-
processing time of RCF consists of only the time needed to construct the k'-NN
graph; we construct this graph using inverted indices. The preprocessing time
of RCF+TFIDF+GF is identical to that of RCF, except it uses greedy filtering
to construct the k’-NN graph. The recommendation time is the total time to
produce top-N recommendations for all 6,040 users, because according to [4],
it is common to precompute all of the recommendation results in commercial

systems.

4.4.2 Overall Comparison

Figure 4.3 shows the recall of the abovementioned algorithms while varying the
number of recommended items. In this result, RCF outperforms both UserCF
and ItemCF, which means that fewer rating predictions yield better results.

When we apply the TF-IDF weighting scheme and use the approximate k’-
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Figure 4.3: Comparison of all algorithms (recall)

NN graph with 80% accuracy instead of an exact k’-NN graph, the recall is
decreased slightly, though this method still outperforms UserCF and ItemCF.

There are two main reasons why RCF outperforms ItemCF despite the fact
that RCF simulates [temCF. First, [temCF usually predicts the ratings of un-
rated items based on fewer similar items. Second, rating predictions based on
less similar items are less accurate than those based on similar items. Table 4.2
provides evidence of these assertions. First, we divided the items into two sub-
sets, where one subset contains unrated items whose ratings are predicted by
RCF and the other subset contains other unrated items. Then, for each subset,
we measured the average similarity of selected neighbors, MAE, and RMSE af-
ter executing ItemCF. The average similarity value supports the first assertion,
and MAE and RMSE support the second assertion. Note MAE and RMSE of
user u are defined as follows:

ZieIS ’pu,i - ﬁu,z|
|Zs|

MAE(u) = (4.10)

P— ~ . 2
RM%M:%ZH#Z|MJ, (4.11)

where p,; denotes the predicted rating of item 4 by u, p,; denotes its corre-

sponding actual rating, and Zg denotes an item set, which can be a set of either
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items selected by RCF or items not selected by RCF.

Table 4.2: Comparison of prediction accuracy with two different item sets

Item Set Avg. Sim. Avg. MAE Avg. RMSE
Items selected by RCF 0.1954 0.6475 0.8361
Items NOT selected by RCF  0.1300 0.7353 0.9300

One limitation of RCF is that the algorithm cannot recommend many items
if the parameter k' is not large enough. Because of this limitation, as shown in
Figure 4.3, the recall of RCF and the RCF variant does not increase significantly
when N is large enough. Although [2] and [7] state that we usually need only
a small number of recommendations in real-world scenarios, if there is a need
for a very large number of recommendations, the performance of RCF would
be similar to that of ItemCF.

Figure 4.4 shows the pre-processing time and recommendation time of the
abovementioned algorithms on a log scale: (1) UserCF is the slowest algorithm
among these four algorithms. As a preprocessing step, this algorithm constructs
a user-by-user similarity matrix and applies the significance weighting to the
similarity matrix, which takes quadratic time complexity in total. It also con-
sumes a considerable amount of recommendation time when a query is re-
quested, because for each unrated item, it selects k£ users who have rated the
item and predicts the rating of the item. (2) ItemCF is faster than UserCF in
that it does not need to calculate a similarity matrix or complete the signif-
icance weighting step. Instead, it constructs a I[-NN graph in which [ greatly
exceeds k. Although [ is a large constant, we reduce the time to construct the
graph using inverted index join, which is one of the fastest algorithms among
all exact k-NN graph construction algorithms. (3) While the preprocessing time
of RCF is similar to that of ItemCF, this algorithm significantly outperforms
ItemCF in terms of recommendation time for two reasons. First, it does not
take much time to select the neighbors of each unrated item in that it only
checks the set size of each unrated item and then deletes all except for the most
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Figure 4.4: Comparison of all algorithms (elapsed time)

similar k items. Second, it calculates fewer item ratings, which dramatically
decreases the recommendation time. (4) RCF+TFIDF+GF is the fastest algo-
rithm among these four algorithms. While its recommendation time is similar
to that of RCF, it outperforms RCF in terms of preprocessing time, as it con-
structs an approximate k’-NN graph by means of greedy filtering. In Section
4.4.3, we demonstrate even faster recommendations by changing the greedy

filtering parameters.
4.4.3 Effects of Parameter Changes

We identified several important factors that affect the quality and performance
of the algorithms: the parameters k,k’,l, and the ¥’-NN graph accuracy. Because
the parameters k and [ were analyzed in the work of [1] and [2], we only analyze
k' and the k’-NN graph accuracy in this paper. Figure 4.5 shows the recall of
RCF variants with different parameter &', varying the number of recommended
items. Note &’ is directly related to the number of rating predictions performed
by RCF. When we increase the parameter from 10 to 20 or from 20 to 30, the
recommendation quality is improved because we can consider more items for
the top-N recommendation. However, when we increase the parameters from 30
to 70, the recommendation quality is not improved for the reasons given in the

previous subsection. Figure 4.6(a) and 4.6(b) show that the parameter £’ is also
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Figure 4.5: Recall of RCF variants with different k' parameters

related to the recommendation time and the percentage of rating predictions,
respectively. Because we can improve the execution time by setting k&’ to a low

value, it would be desirable to set &’ to 20 or 30.
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Figure 4.6: Effect of different k¥’ parameters

Similarly, Figure 4.7 and Figure 4.8 show the recall and pre-processing time
of RCF variants with different graph accuracy levels, varying the number of
recommended items. There are two interesting findings in these figures: first, the
recall is the highest when &-NN graph accuracy is 70%. We can see this result
because we cannot guarantee that we will always prefer the items more similar
to the preferred items. Similar results are shown in the work of [12], where an
approximate k-NN graph is used for fast agglomerative clustering. Second, the

elapsed time of RCF is the highest when k’-NN graph accuracy is 90%, because
) o =] —
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we use inverted index join instead of greedy filtering when we construct the
exact k’-NN graph. Generally, however, the quality of recommendations slightly
drops off when we decrease the graph accuracy, whereas the pre-processing time
is significantly reduced. We can infer that these RCF variants perform even
better in terms of preprocessing time as the number of nodes or dimensions
scales up due to the scalability gained when using greedy filtering.
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4.5 Summary

This chapter presents RCF, a fast CF algorithm which utilizes a &'-NN graph.
Not only does this algorithm perform fewer predictions while filtering out
inaccurate results, but it also supports the rapid retrieval of similar users.
The experimental results show that our approach outperforms traditional user-
based/item-based CF algorithms in terms of both preprocessing time and query
processing time without sacrificing the level of accuracy when we set k and &’
to 10 and 20, respectively. While much of the recent work, such as [56] and
[52], focuses on improving the recommendation quality, the main aim of our
approach is to reduce the elapsed time required for recommendation.

The limitations of our approach are twofold: first, RCF is not appropriate
for the case where we have to predict the ratings for all of the unrated items.
In future work, we would like to present a novel algorithm for coping with this
problem. Second, the performance of greedy filtering depends on the dataset so
that the algorithm could be slower than inverted index join in the worst case.
Thus we are currently developing a novel k’-NN graph construction algorithm

that always guarantees high level of quality and performance.
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Chapter 5

Fast Approximate k-NN Search

k-Nearest Neighbor (k-NN) search aims at finding & points nearest to a query
point in a given dataset. k-NN search is important in various applications, but it
becomes extremely expensive in high dimensional space with a number of data
points. In response to this performance issue, locality-sensitive hashing (LSH) is
suggested as a method of probabilistic dimension reduction while preserving the
relative distances between points. Through experiments with various feature
extraction methods, we observed that none of the existing LSH-based k-NN
search methods showed consistent performance superiority, each exhibiting poor
performance in some of the datasets.

In this chapter, we target on generating k-NN search results efficiently re-
gardless of properties of a given dataset. In this regard, we present a novel algo-
rithm called Signature Selection LSH (S2LSH), where we select query-specific
signatures from a signature pool to pick high-quality £-NN candidates. First,
we construct a highly diversified signature pool consisting of various signatures.
The signatures are generated based on a data-dependent LSH algorithm to cap-
ture the global topological features specific to the given dataset. Then, for a

given query point, we select multiple query-specific signatures from the signa-
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ture pool in order to find high-quality £-NN candidates of the query vector. We
also incorporate three additional optimization techniques to further improve the
performance of S2LSH in a bulk execution setting such as k-NN graph construc-
tion. Extensive experiments show that our approach consistently outperforms
the state-of-the-art LSH algorithms across various types of datasets. Further-
more, our approach in a bulk execution setting is comparable to or faster than

the algorithms carefully designed for efficient £-NN graph construction.

5.1 Introduction

Typically, there are three types of k-NN computation tasks: k-NN computation
for a single query (k-NN search), for every object in the database (k-NN graph
construction), and for some of the objects in the database (partial k&-NN graph
construction). For example, the k-NN search is an essential part of Google im-
age search and k-NN classification; k-NN graph construction is important in the
YouTube video recommendation system and agglomerative clustering; partial
k-NN graph construction can be used for incremental k-NN graph construc-
tion. An interesting thing is that although the k-NN graph construction can be
implemented by the iterative executions of k-NN search, the k-NN search algo-
rithms do not perform as well for k&-NN graph construction (and vice versa). It
is because they do not reuse the information that can be obtained from the k-
NN computations of the other objects. Therefore, in cases where we need two or
three types of k-NN computation tasks (e.g., a search engine that supports both
search and similarity browsing), we have to find an effective algorithm for each
task. If there is no such algorithm, then we have to use brute-force approach
instead. Another interesting thing is that even using the same raw multime-
dia data, the performance of existing approaches significantly varies depending
on the types of feature extraction methods being used. Thus in cases where we
need two or more types of feature extraction methods (e.g., a search engine that
uses facial features for facial images and global features for the other images),
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we have to find an efficient algorithm for each feature extraction method if any.
In this paper, we present a novel algorithm, called signature selection LSH

(S2LSH). The main contributions of this paper can be summarized as follows:

e We present a novel k-NN computation algorithm where we select query-
specific signatures from a signature pool to pick high-quality k-NN can-

didates (Section 5.2 and 5.3).

e We incorporate three additional optimization techniques to further im-
prove the performance of S2LSH in a bulk execution setting such as k-NN

graph construction (Section 5.2.4 and 5.3.3).

e Through the extensive experiments, we show that our approach consis-
tently outperforms the state-of-the-art algorithms across various types of

kE-NN computation tasks and datasets (Section 5.5).

5.2 Signature Selection LSH

Let V be a set of vectors in a d-dimensional space. We refer to the vectors in V'
as data vectors in this paper. Without loss of generality, we assume Euclidean
distance as a distance measure. Then we define approximate k-NN search as a
process of finding approximate k-nearest neighbors among the vectors in V for
a query vector g in a d-dimensional space.

Our approach consists of four main steps: 1) data-dependent locality sensi-
tive hashing, 2) signature pool generation, 3) signature selection, and 4) finding
k-nearest neighbors based on signature selection. The fourth step is highly cou-

pled with the third step so that we will describe them in one subsection.
5.2.1 Data-dependent LSH

We assume that we generate the H number of LSH hash functions. Then the

signature of length H for vector v can be generated by the following equation:

s(v) = (hi(v), ha(v), ..., A (v)) (5.1)
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(a) Spherical Hashing (b) E2LSH+ (c) C2LSH+ (d) S2LSH

Figure 5.1: An illustrative example of S2LSH. In order to find the 2-NN of E,
namely D and F, S2LLSH only selects three candidates whereas E2LSH+ and
C2LSH+ selects five candidates.

Here, h;(v) denotes the i*" hash function as described in Chapter 2. If the
functions are based on random projections, they are determined by the selected
a and b.

Although random projections like data-independent LSH schemes are widely
used in industry and academia, their performance significantly varies depending
on datasets in that they do not consider their data distributions. In recent years,
there have been proposed various types of data-dependent LSH techniques, such
as spectral hashing [42], anchor graph hashing [18], and spherical hashing [9].
Let d(-,-) be the distance between two vectors. Then the data-dependent LSH

aims at satisfying the following properties:
o d(vi,v2) < d(v1,vs) if and only if d(s(v1),s(v2)) < d(s(v1), s(v3))
e For all i and j such that i # j and 1 <4,j < H, >, hi(v)h;(v) =0.

o>  s(v)=0.

Satisfying the first property is the primary purpose of all of the LSH algorithms.
The second and third properties are important because the large amounts of dis-
tance information should be represented by compact signatures: they indicates
the the independence between hashing functions and the balanced partitioning

of vectors for each hash function, respectively.
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(a) Diagram 1 (b) Diagram 2 (c) Diagram 3 (d) Diagram 4

Figure 5.2: An illustrative example of signature pool generation. Based on spher-
ical hashing, hash functions are represented by spheres, and each signature is
represented by a region.

As far as we know, spherical hashing is one of the most efficient data-
dependent LSH techniques. Conceptually, it draws H number of spheres for
a small number of training samples such that 1) the spheres are not too close or
too far apart for the second property, and 1) each sphere contains about a half
of the training samples for the third property. Then if a vector v is inside the
ith circle, the hash function h; maps v to +1 (and —1 otherwise). Figure 1(a)
shows an example of spherical hashing: in this figure, the signature of vector A
is represented by (41, +1,—1,—1), and the signature of vector B is represented
by (—1,+1,—1,+1). In the rest of this paper, we use spherical hashing as our
LSH scheme. Because it is a binary code embedding technique, we also assume
that we use binary signatures. However, our approach is also effective when us-
ing other types of binary hashing methods, because we do not use any features

that are dependent on spherical hashing. In Section 5.5.3, we will discuss this

issue in more detail.

5.2.2 Signature Pool Generation

We now have the H hash functions so that we can generate the signature
of length H using equation (5.1). However, it is not easy to find k-nearest
neighbors efficiently using these signatures because the first property of data-

dependent LSH described in Section 5.2.1 does not hold in many cases. Figure
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Figure 5.3: Mean Average Precision for spherical hashing (SH) and anchor graph
hashing (AGH) based on 100-bit signatures in the 500D NUS-WIDE dataset

5.3 shows that MAP@10, MAP@100 and MAP@1000 of spherical hashing are
not higher than 0.15 in the 500-dimensional NUS-WIDE dataset. Our solution
is to generate a huge number of different signatures based on the H functions
and then select the most effective ones for a given query vector. The intuition
behind this solution is that for each query vector v, there would be a set of
signatures more effective than s(v).

In this subsection, we focus on generating a pool of signatures for every
vector based on the H number of hash functions. The process is as follows:
first, given integers m; and ma (1 < m; < mg < H), we set M to a random
integer ranged from m; and mg. Second, we randomly generate M integers rq,
ro, ..., T each ranged from 1 and H, and generate the signature for every

vector v as follows:

Si(”) = <hT1 (U)7 b, (U)7 vy Py (U)> (5‘2)

Here, h; denotes the i*" hash function, where i is the iteration number. Given
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an integer L (1 < L), we repeat the above process L number of times. Then

the signature pool of vector v consists of L-dimensional vector as follows:

P(v) = (s1(v), $2(v), ..., sp.(v)) (5.3)

Note signatures with various lengths will be generated and each hash function
is selected with equal probability. This process aims to make the signatures as
diverse as possible because we do not know the query vectors in advance.

Conceptually, this process can be regarded as drawing multiple Venn Dia-
grams as shown in Figure 5.2: hash functions are represented by spheres, and
each signature is represented by a region, which is a distinct area determined by
the intersection of spheres in this figure. In this example, each vector has a pool
of 4 signatures. For query vector E, there is no vector whose first signature is
the same as that of E (as shown in Figure 5.2(a)), whereas there are two vectors
F and H that have the same third signatures as that of E (as shown in Figure
5.2(c)).

Recall there are four parameters in generating a pool of signatures, H, L, my
and mq. All of the parameters control the diversity of signatures. Obviously,
there is a tradeoff between diversity (quality) and cost: 1) if we set H to a
large constant, we can make various types of signatures by diversifying the
types of hash functions while it takes much time to make hash functions. In
our experimental settings, we set H = 300 or 1000. The optimal parameter
setting of H highly depends on the LSH scheme and dataset being used. 2) If
we set L to a large integer, we can also make various types of signatures using
different combinations of hash functions while it consumes much memory to
store signature pools. In our experimental settings, we set L = H/2, because if
H is a very small integer (e.g., 1), it is hard to make various types of signatures
even when L is a large integer. 3) If we set m; to a small integer or my to a large
integer, we can generate various types of signatures with different lengths while
also generating many inefficient signatures. In order to find the near-optimal
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parameters of m1 and msy, we can use the second and third properties of data-
dependent LSH discussed in Section 5.2.1. First, we know that each region of
Figure 2(a) contains approximately an equal number of vectors. In the ideal
case, each region contains N/2™ number of vectors. Here, N is the number
of vectors. Assuming that N = 100,000, each region contains approximately
3,000 vectors and 3 vectors when M = 5 and M = 15 respectively. In our
experimental settings, we set mq = 5 and mo = 15, because if m; is lower than
5 or mg is higher than 15, there would be a too small or too large number of

collisions.
5.2.3 Signature Selection

For a given vector v, our aim is to select the most effective signatures from P(v).
Assume that we will calculate the similarities between v and other vectors u
such that u has the same signature as that of v. If there are many vectors u that
are k-nearest neighbors of v, then the signature is effective in finding nearest
neighbors for v. On the other hand, it will waste a huge amount of time if there
are many vectors u that are not k-nearest neighbors of v. Thus we define the

effectiveness F of a signature as follows:

|ENN (v) Nc(s)]
lci(s)| =1

Ev,i(s € S) = (54)

Here, S denotes a set of all generated signatures. kN N (v) is a set of exact k-NN
of v. ¢i(s € §) is a set of vectors u such that s;(u) = s.

However, we do not know in advance the exact k-NN of v. In the following
sections, we present a way to estimate the effectiveness of each signature based

on feature selection.
Feature Selection

We have considered the eight types of features for k-NN search as follows:
signature length, the number of collisions, the number of one (or zero) hash

values, average radius of spheres that contain (or do not contain) a vector, and
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Figure 5.4: Four types of features for signature selection

average distance to the centers of spheres that contain (or do not contain) a
vector. Here, signature length indicates the number of dimensions in a signature.
For example, the signature length of 7101” is 3 and that of ”11” is 2. If two

vectors have the same signature, we say there is a collision between them.

Signature length. Long signatures would indicate relatively small regions.
Figure 5.4(a) shows an example of our intuition: the left signature has longer
signature length so that its corresponding region is relatively small. Because
the small region indicates that the vectors in the region are close to each other,
there would be a high probability that long signatures have high effectiveness.
Heo et al. [9] also show that the popular LSH algorithms achieve higher mean

average precision when using longer binary codes.

The number of collisions. Signatures with a small number of collisions would
have high effectiveness. For example, Figure 5.4(b) shows that the vectors of
the left figure are more close to each other than those of the right figure even

though they have the same signature length.

3 11 3
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The number of one (or zero) hash values. Signatures with many positive
hash values would have high effectiveness. If two vectors have positive hash
values in common for a hash function, then their distance is at most the radius
of the corresponding sphere. On the other hand, two vectors with negative hash
values in common does not always indicate that they are close to each other. For
example, if they do not have any positive hash values, all of the hyperspheres

could split them in the worst case.

Average radius of spheres that contain (or do not contain) a vector. If
a vector is inside a sphere and the radius of the sphere is small, then the region
containing the vector is small. Likewise, if a vector is outside a sphere and the
radius of the sphere is large, then the region containing the vector would be

small.

Average distance to the centers of spheres that contain (or do not
contain) a vector. If a vector is close to the center of the sphere that contains
the vector, then the distance to other vectors would be short. Likewise, if a
vector is far from the center of the sphere that does not contain the vector, then
the distance to other vectors would be short. Note when making the signatures
of all of the vectors, we calculate the distances from all of the vectors to all of

the centers of the spheres.

We observed that the first two features are very effective in all of our seven types
of datasets while the last six features are not always highly correlated with the

effectiveness. Thus in our algorithms, we only use the first two features.

Signature Selection

Our observation is that the longer the signature and the smaller the number of

collision counts, the greater the effectiveness. Based on our observation, we can
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estimate the effectiveness of a signature as follows:

0 if |ei(s)] =1
E (s€S)= (5.5)
’ len(s)

()] otherwise

Here, len(s) denotes the signature length of signature s.

Given a parameter u, our aim is to select the most effective signatures such
that query vector ¢ has approximately p number of candidates. Note if we select
the it signature for ¢, we will select all other vectors u that have the same 7"

signatures as candidates. The process of our signature selection consists of the

following three steps:

1. Select the most effective signature of ¢ among the unselected signatures.

2. Find all other vectors u such that s;(q) = s;(u) and select them as candi-

dates of q.

3. If ¢ has equal to or more than g number of candidates, then the algorithm

terminates. Otherwise, repeat the whole process.

The remaining process for k-NN search is to calculate the distances between
the candidates and ¢ and find the k£ closest vectors among the candidates.
For example, assume that we have a pool of signatures described in Figure
5.2. Our aim is to select the 2-NN of E, namely D and F. In diagram 1,
7.1(E) = 0 because there is no vector in the same region. In diagrams 2,
3and 4, B} 5(E) = 1/1, E 3(E) = 1/2, and E; ,(E) = 1/4 respectively. Thus
the most effective signature of E is the second signature of E, and D is selected
as a candidate. If we set the parameter p to 2, then p is larger than the number
of candidates so that we iterate this process. At the second iteration, we select
the third signature in which there are one k-nearest neighbor among the two
candidates. Now u is larger than the number of candidates, and we terminate

the signature selection process. Figure 5.1 shows that in this example, S2LSH
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selects fewer candidates compared with E2LSH+ and C2LSH+ while finding

the 2-nearest neighbors.

5.2.4 Optimization Techniques

In order to find the same signatures efficiently, we use bucket hashing that was
applied to the E2LSH package!. First, we build the L number of hash tables.
Then we define L number of hash functions b; such that the it" hash function
maps the i*" signatures into the specific positions of the i** hash table. When
signatures could map to the same positions even though they are not same, we
can distinguish them through making different buckets for each signature. Thus
we also define L number of hash functions by such that the it" hash function
maps the i*" signatures into the short hash codes, which corresponds to bucket

IDs of the it table. The hash functions b; and by are defined as follows:

M
bi(si()) = [ | Y rjhr, | mod2¥—5] modT (5.6)
j=1
M
ba(si(v)) = Zr;hrj mod 232 — 5 (5.7)
7j=1

Here, T is the size of the hash table. We set T"= 10,000 in our experiments.

Eliminating the duplicates is another important technique in our algorithm,
because we can select a number of signatures which can yield many duplicate
candidates. However, this problem can be easily solved by maintaining an array
of length |V| and marking which vectors were calculated already. For k-NN
graph construction, we need a more advanced way to deal with it. See Section

5.3.3 for more detail.

"http://www.mit.edu/ andoni/LSH/
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5.3 S2LSH for Graph Construction

5.3.1 Feature Selection

In this section, we propose our signature selection algorithm for k-NN graph
construction, called S2LSH-M (S2LSH in a bulk execution setting). Basically,
S2LSH-M executes the S2LSH algorithm the |V| number of times. In addition,
S2LSH-M considers the maximum, average, and minimum distances between

two vectors as additional features:

Maximum /average/minimum distance. If the maximum/average/minimum
distance between query vector ¢ and the other vectors that have the same 7"

signature is small, then the signature would have high effectiveness.

The maximum and average distances approximately indicate the distance
from the query vector to the boundary of the region. On the other hand, the
minimum distance indicates the possibility of the existence of k-nearest neigh-
bors. Our observation is that the maximum/average distances are more effec-
tive in finding k-nearest neighbors than minimum distance. Thus we use the

the maximum/average distances in our experiments.
5.3.2 Signature Selection

Note the distance features are different from signature length and the number of
collision counts in that they are personalized features: that is to say, two vectors
with the same signature have different feature values. The personalized features
are more effective than the non-personalized features in general. However, we
need a significant amount of time to calculate the feature values. One way to
cope with this problem is to sample a subset of training data to estimate the
feature value. Although this solution is effective when there is a small number
of signatures, this could make the algorithm even slower when there is a large
number of signatures.

Our idea is to reuse the distance information that can be obtained through
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the search task of the other vectors: when finding k-nearest neighbors of v,
we check whether the distance between v and other vectors u are calculated
beforehand. In our implementation, we do not store all of the previous distances
between vectors because they consume a significant amount of memory. Instead,
we only keep the maximum and average distances for each pair of a vector and
a signature. Now the effectiveness of a signature can be defined as follows:

Ey (s € S)=1/( max (d'(u,v)) + avg (d'(u,v))) (5.8)

u€c;(s) u€ci(s)

d(u,v) if precomputed
d (u,v) = (5.9)

00 otherwise
Note if all of the distances from query vector ¢ and the other vectors with
the same " signatures are not precomputed at all, then we use the features of

S2LSH, namely signature length and the collision counts.
5.3.3 Optimization Techniques

For S2LSH-M, we present two types of optimization techniques: the first tech-
nique is for eliminating duplicate calculations, and the second technique is for
refining an approximate k-NN graph. In practice, we cannot use the duplicate
elimination technique that was used in S2LSH because of memory limitation.
For example, if we allocate memory for an |V|* |V| matrix that stores all the
computed distances to avoid duplicate calculations, then we need to allocate
4TB of memory, assuming that there are 1M vectors and each element consumes
4 bytes. In order to alleviate this problem, recursive Lanczos bisection (RLB)
[12] uses a hash table to store the computed distances: in this solution, the it"
vector hashes to the i** position of the hash table. However, this solution allo-
cates about 200GB of memory if there are 1M vectors, each element consume
4 bytes, and there are only 10% of distance calculations. For this reason, the
duplicate elimination technique has not been applied to other algorithms, such

as the Zhang’s approach [29] and greedy filtering [25].
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Our simple algorithm removes all of the duplicate calculations while only
requiring O(|V'|) amount of memory. Assume that there is one bucket for each
signature and that vectors with the same signature reside in the same bucket.

For each vector v, it performs the following process:

1. Prepare a false-initialized array A of size |V]|.

2. For each bucket B that contains v, calculate the distance between v and
other vectors u such that they reside in the same bucket and Afu] = false,

and then set Au] to false and remove v from B.

Our second optimization technique is for increasing the accuracy of an ap-
proximate k-NN graph. We slightly modified the widely used technique, called
neighborhood propagation [12, 24, 29, 27| as follows: for each vector v, we cal-
culate the similarities between v and its 2-hop neighbors and 3-hop neighbors.
And then we update the k-nearest neighbor list of v. Even though we check
the 3-hop neighbors, relatively only a small number of distance calculations are
needed: we define the scan rate as the number of distance calculations of an algo-
rithm divided by the number of distance calculations performed by brute-force
approach. If the number of vectors is 100,000 and we refine a 10-NN graph, the
scan rate can be increased at most by 0.022 even without eliminating duplicate

calculations.
5.4 Theoretical Analysis

Formally, S2LLSH is an approximate algorithm for a k-NN cover problem, which

is defined as follows:

Definition 1 (k-NN Cover) Let U be a set of k-nearest neighbors ny, na, ..., ng

and S be a set of L candidate sets S1,Ss,...,Sr. A k-NN cover is a collection
of candidate sets from S satisfied that every k-nearest neighbor in U belongs

to at least one of the candidate sets. The cost of a k-NN cover is the sum of
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the costs of all of the candidate sets in the collection of selected candidate sets.

Then k-NN cover returns the collection of subsets that minimizes the cost.

The k-NN cover problem is NP-hard, since the set cover problem is reducible
to the k-NN cover problem in a polynomial time. Hence, this indicates that we
need an approximate algorithm for the fast retrieval of k-nearest neighbors.

If we already know the k-NN of a query, then we can use the greedy set cover
algorithm to solve the k-NN cover problem. The greedy set cover algorithm
repeatedly picks a candidate set that minimizes the cost. According to [61], it
is a In(k)-approximate algorithm for the set cover problem. Thus this indicates

that a good approximate algorithm can provide high quality results.

5.5 Experiments

5.5.1 Experimental Setup

In this section, we compare our approach with the state-of-the-art algorithms
in different k-NN computation tasks. For the experiments, we use various types

of datasets to which different types of feature extraction methods were applied.

k-NN computation tasks. We have considered three types of k-NN compu-
tation tasks: k-NN search, k-NN graph construction and partial k-NN graph
construction. For partial k&-NN graph construction, we randomly select 20% of

vectors from the vectors in V.

Algorithms. For k-NN search, we compare S2LSH to E2LSH and C2LSH.
However, because E2LSH and C2LSH are not faster than the brute-force ap-
proach in many cases, we enhanced their performance by applying spherical
hashing instead of random projections. We will call their optimized versions as
E2LSH+ and C2LSH+, respectively. We do not consider LSB-tree as a candi-
date, because it is outperformed by C2LSH [23]. For k-NN graph construction,
we select the recursive Lanczos bisection (RLB) and NN-Descent (NND) as rep-
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Dataset \4 d Feature
Corel 300,000 | 14 Lv et al. [43]
NUS-WIDE (CH) | 200,000 | 64 | Color Histogram [44]
Audio 50,000 | 192 Marsyas [45]
NUS-WIDE (BoW) | 100,000 | 500 SIFT [46]
Shape 25,000 | 544 SHD [47]
MNIST 60,000 | 784 Pixel [48
GIST1M 100,000 | 960 GIST [49]

Table 5.1: Dataset summary

resentatives of hyperplane-based and heuristic-based algorithms, respectively.
However, NND does not achieve the high level of accuracy for some datasets,
because it is a heuristic-based approach. For example, it does not achieve the
accuracy of 90% for NUS-WIDE (BoW) dataset. Thus we enhance NND to
NND+, which iteratively execute the NND until achieving the accuracy of at
least 90%.

We do not consider the clustering-based algorithms in our experiments be-
cause in our preliminary experiments, they are outperformed by NN-Descent

or they show the inconsistent performance depending on input parameters.

Evaluation Measures. For k-NN search, we measure pre-processing time
and k-NN search time (query processing time) for every algorithm. The pre-
processing time consists of the time for signature generation and the time re-
quired for generating a pool of signatures. The k-NN search time is measured
by averaging over 1000 sample queries, and it does not comprise the time for
the preprocessing. For k-NN graph construction, we measure the total elapsed
time except for the data matrix construction time. Note as shown in Figure 5.5,
the task of similarity calculations takes most of the time.

The accuracy (quality) of the result is calculated as the following formula:

# correct k-nearest neighbors

A =
ceuracy # queriesx k
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Figure 5.5: Elapsed time for each task (S2LSH, k-NN graph construction, and
the NUS-WIDE dataset (BoW))

Parameters
NUS-WIDE-CH NUS-WIDE-BoW
E2LSH+ H =100, K =8 H =1000, K =10
C2LSH+ H=20,1=15 H =100, I =60

Algorithm

RLB a=0.07 a=04
p=0.3,0=0.001, | p=1.0,0 =0.001,
NND+ t=0.9 t=209
H =100, L =50, | H = 1000, L = 500,
S2LSH mp = 5, myo = 15 mi = 5, mo = 15

Table 5.2: Our parameter settings of all algorithms in the NUS-WIDE datasets.

Datasets. We use seven types of datasets for comparisons. They are represented
by various types of feature vectors and different number of dimensions. Table

5.1 shows the summary of our datasets.
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Average Accuracy
Algorithm k-NNS E-NNG PE-NNG
CH | BoW | CH | BoW | CH | BoW
E2LSH+ | 093 | 0.85 | 0.94 | 0.85 | 0.94 | 0.85
C2LSH+ | 092 | 091 | 0.92 | 0.91 | 0.93 | 0.92
RLB N/A | N/A | 0.89 | 0.85 | 0.89 | 0.89
NND+ N/A | N/A | 093 | 0.91 | 0.93 | 0.90
S2LSH 0.92 | 091 [0.92] 091 | 0.91 | 0.92

Table 5.3: Average accuracy of the five executions (from 10K to 50K vectors) in the NUS-WIDE datasets. We set the
parameters to achieve the similar level of accuracy.

Preprocessing Time (sec.)

Algorithm NUS-WIDE-CH NUS-WIDE-BoW

10K | 20K | 30K | 40K | 50K 10K | 20K 30K 40K 50K

E2LSH+ | 1.48 | 1.86 | 2.41 | 2.69 | 3.16 | 189.41 | 230.19 | 258.82 | 270.52 | 302.20

C2LSH+ | 0.21 | 0.30 | 0.41 | 0.51 | 0.60 | 7.24 | 9.77 12.2 15.09 | 18.08
S2LSH 174 1 245 | 3.05 | 3.71 | 4.32 | 197.02 | 227.82 | 265.02 | 293.84 | 310.32

Table 5.4: Comparison of the k-NN search algorithms in terms of pre-processing time. The pre-processing time depends on
parameter settings.



5.5.2 Experimental Results

First, we compare all of the algorithms using the two NUS-WIDE datasets.
Table 5.2 represents our selected parameters in which all of the algorithms show
their best performance and achieve the similar level of accuracy shown in Table
5.3. Note the parameter H of C2LSH+ is much lower than those of E2LSH+
and S2LSH because if there are many hash functions, the process of collision
counting could be very slow. In other words, C2LSH+ needs a LSH algorithm
that can represent the original vectors as very compact hash codes. We newly
define the parameter ¢ of NND+, which indicates the minimum accuracy that
should be achieved. Because this parameter can be used only when we already
calculated the answer set, the implementation of NND+ is not feasible in the
real world. We do not specify the parameter p used by S2LSH, because they

are dependent on the number of data vectors.

Because every algorithm now has the similar level of accuracy, our remaining
task is to compare their elapsed time. Table 5.4, Figure 5.6 and Figure 5.7 shows
the comparison results of k-NN search algorithms: 1) in terms of pre-processing
time, C2LSH+ is the fastest, and E2LSH+ is faster than S2LSH. However, their
difference does not have significant meaningis because the preprocessing step
is performed only once. Also, the difference of E2LSH+ and S2LLSH indicates
that the pool generation time is only a small portion of preprocessing time.
In terms of k-NN search time, S2LSH outperforms both of the algorithms. 2)
An interesting finding is that although the C2LSH+ is the newer algorithm
than E2LSH+, C2LSH+ is slower than E2LSH+ when using the NUS-WIDE
dataset extracted by color histogram features. In the following experiments, we
can observe that E2LSH+ is better than C2LSH+ when using color histogram
features, and C2LSH+ is better than E2LSH+ when using SIFT features.

Figure 5.8 and 5.9 show the comparison results of k-NN graph construction
tasks. These figures show that S2LSH-M significantly outperforms the existing
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Figure 5.6: Comparsion results of all k-NN search algorithms over the NUS-
WIDE dataset (color histogram)

k-NN search algorithms because of the new distance features and optimization
techniques. Furthermore, S2LSH-M is even slightly faster than the state-of-the-
art k-NN graph construction algorithms. Another interesting finding is that
recursive Lanczos bisection is much slower than brute-force search in the dataset
represented by SIFT features while it is much faster than brute-force search

when using the color histogram features, respectively.

Figure 5.10 and 5.11 show the comparison results of partial k-NN graph
construction tasks. In these experiments, now S2LSH-M significantly outper-
forms all of the other algorithms over two different datasets. Note the elapsed
times of NN-Descent and RLB are the almost same as those for k-NN graph
construction, because they do not support these types of tasks. Because partial
k-NN graph construction is conceptually a combination of k-NN search and
k-NN graph construction, k-NN search algorithms could perform better than

k-NN graph construction algorithms in one dataset as shown in Figure 5.10,
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Figure 5.7: Comparison results of all k-NN search algorithms over the NUS-
WIDE dataset (SIFT)

whereas k-NN graph construction algorithms could perform better in another

dataset as shown in Figure 5.11.

Table 5.5 shows the k-NN search (or k-NN graph construction) time and

its corresponding accuracy of each algorithm over different types of datasets.

Note our approach outperforms the existing approaches in regardless of datasets

(feature extraction methods) and A-NN computation tasks.
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Figure 5.8: Comparison results of k-NN graph construction algorithms over the
NUS-WIDE dataset (color histogram)
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Figure 5.9: Comparison results of k-NN graph construction algorithms over the
NUS-WIDE dataset (SIFT)
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Figure 5.10: Comparison results of partial k-NN graph construction algorithms
over the NUS-WIDE dataset (color histogram)
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Figure 5.11: Comparison results of partial k-NN graph construction algorithms
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k-NN Graph Partial k-NN

Dataset k-NN Search Construction Graph Construction
Brute | porsit | corst | sorsm | BTO | Nnpg | S2LSHE | Brutes | gy | S2LSH-

force force M force M

Corel 74ms 6ms 66ms 2ms 14215s 151s 199s 5066s 145s 136s
(1.00) (0.96) (0.85) (0.97) | (1.00) | (0.94) (0.91) (1.00) | (0.94) (0.94)

NUS-WIDE | 120ms 9ms 47ms 4ms 14116s 314s 240s 5007s 315s 94s
(CH) (1.00) (0.91) (0.82) (0.92) | (1.00) | (0.95) | (0.95) | (1.00) | (0.95) (0.90)

Audio 75ms 9ms 16ms 8ms 2044s 175s 82s 734s 116s 54s
(1.00) (0.89) (0.87) (0.92) | (1.00) | (0.93) | (0.94) | (1.00) | (0.90) (0.95)

NUS-WIDE | 384ms 169ms 187ms 103ms | 19774s | 7185s 6262s 7017s 6844s 2006s
(BoW) (1.00) (0.88) (0.90) (0.91) | (1.00) | (0.90) | (0.92) | (1.00) | (0.90) (0.90)

Shape 97ms 11ms 11ms 10ms 1314s ols 48s 4758 ols 40s
(1.00) (0.90) (0.90) (0.93) | (1.00) | (0.93) | (0.94) | (1.00) | (0.93) (0.96)

MNIST 346ms 61ms 32ms 21ms | 10993s 202s 189s 3878s 198s 67s
(1.00) (0.92) (0.81) (0.94) | (1.00) | (0.91) | (0.94) | (1.00) | (0.94) (0.97)

GIST1M 726ms 162ms 134ms 75ms | 36610s | 3830s 3411s | 13068s | 3805s 1862s
(1.00) (0.92) (0.82) (0.92) | (1.00) | (0.91) | (0.91) | (1.00) | (0.91) (0.92)

Table 5.5: Comparison of all datasets. The values outside the parentheses are k-NN search (or k-NN graph construction)

time, and the values inside the parentheses are the corresponding accuracies.




5.5.3 Performance Analysis

Our approach consists of the three steps so that there are three factors that af-
fect that performance of our algorithm: 1) The performance of locality sensitive
hashing, 2) number of signatures in a signature pool, and 3) the effectiveness
of our selected features.

Figures 5.12 to 5.17 show that S2LSH also outperforms the existing ap-
proaches based on random hyperplane-based LSH, which is one of the most
popular LSH schemes. It was originally developed for cosine distance so that
we calculate the similarities between vectors based on the cosine similarity mea-

sure. Theoretically, for vectors u and v,

Prih(u) = h(v))] =1 — : (5.11)

where h(-) is a random hyperplane based hash function. Experimental results
show that while the performance of the existing approaches significantly varies
depending on the datasets being used, our approach delivers relatively consis-
tent performance.

Figure 5.18 indicates that as the number of signatures increases, the perfor-
mance (in terms of either accuracy or time) consistently increases. The result is
intuitive because if there are many signatures, then there is a high probability
that there will be more effective signatures. If we can select the effective sig-
natures in a large pool of signatures, the performance would be increased. The
S2LSH-OPT in this figure is the one variant of S2LSH that can always select
the most effective signatures. This is infeasible in a real-world scenario because
S2LSH-OPT knows the answer set in advance in order to optimally select the
signatures. Obviously, when we expand the size of the pool, the performance
gain of S2LSH-OPT would be higher than that of S2LSH.

Figure 5.19 represents that two S2LSH schemes with different signature se-
lection methods could produce significantly different results. Even though find-

ing the k-nearest neighbors in the 500-dimensional NUS-WIDE is difficult task,
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Figure 5.12: Comparison results of all k-NN search algorithms based on random
hyperplanes over the NUS-WIDE dataset (color histogram)

S2LSH-OPT significantly reduces the search space. In other words, if we find
a more advanced features, then we can expect a huge amount of performance

gain.
5.6 Summary

k-Nearest Neighbor (k-NN) search aims at finding & vectors nearest to a query
vector in a given dataset. In this chapter, we presented novel methods for gener-
ating k-NN search results efficiently regardless of properties of a given dataset.
In this method, we construct a highly diversified signature pool consisting of
various signatures. The signatures are generated based on a data-dependent
LSH algorithm to capture the global topological features specific to the given
dataset. Then, for a given query point, we select multiple query-specific signa-
tures from the signature pool in order to find high-quality k-NN candidates of

the query point. We also incorporated three additional optimization techniques
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Figure 5.13: Comparsion results of all k-NN search algorithms based on random
hyperplanes over the NUS-WIDE dataset (SIFT)

to further improve the performance of S2LSH in a bulk execution setting such

as k-NN graph construction.
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Figure 5.14: Comparison results of k-NN graph construction algorithms based
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Figure 5.15: Comparison results of k-NN graph construction algorithms based
on random hyperplanes over the NUS-WIDE dataset (SIFT)
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Figure 5.16: Comparison results of partial k-NN graph construction algorithms
based on random hyperplanes over the NUS-WIDE dataset (color histogram)
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Figure 5.17: Comparison results of partial k-NN graph construction algorithms
based on random hyperplanes over the NUS-WIDE dataset (SIFT)
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Chapter 6

Conclusion

k-NN search and k-NN graph construction are two of the most important prim-
itive operations in information retrieval, recommender systems and many algo-
rithms in data mining and machine learning. However, existing approaches re-
quire a huge amount time for finding k-nearest neighbors and the experimental
results do not show the consistent performance levels over different search tasks
and types of data. In this dissertation, we introduced two main algorithms to
solve these problems. Also, we introduced a fast collaborative filtering algorithm
based on a k-NN graph. The contributions of this dissertation are as follows: 1)
we developed an efficient and scalable algorithm for finding an approximate k-
nearest neighbor graph called greedy filtering. The main idea of this approach is
to filter node pairs whose large value dimensions do not match at all. In order to
avoid skewness in the results and guarantee a linear time complexity, our algo-
rithm chooses essentially a fixed number of nodes pairs as candidates for every
node. 2) We presented a novel algorithm for approximate k-NN search called
signature selection LSH. This approach selects query-specific signatures from a
signature pool to pick high-quality k-NN candidates. In order to increase the
performance, the signatures are generated based on spherical hashing, which is
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one of the most efficient data-dependent LSH algorithms. We also incorporated
three additional optimization techniques: bucket hashing, duplicate elimination,
and our modified neighborhood propagation method. 3) We introduced a fast
collaborative filtering algorithm based on a k-nearest neighbor graph, called
reversed CF. The main idea of this approach to reverse the process of finding
k-nearest neighbors in order to perform fewer predictions while filtering out in-
accurate results. The experimental results show that not only are the proposed
algorithms much faster than the existing approaches while retaining a high level
of accuracy, but also the algorithms consistently outperform the state-of-the-art

algorithms across various types of search tasks and datasets.
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