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Abstract

Typical memory systems have used a synchronous random access memory (SRAM), a dy-

namic random access memory (DRAM), and a NAND flash in a cache, main memory, and

storage, respectively. However, these traditional memory devices have limitations such as

volatility, low density, and high leakage power. Therefore, emerging non-volatile memory

(NVM) technologies such as phase change memory (PCM), spin-torque transfer random

access memory (STT-RAM), and resistive random access memory (RRAM) are considered

as an alternative of traditional memory devices due to its non-volatility, high density, and

low-power. These numerous benefits of emerging NVMs motivate researchers to investi-

gate the adoption of NVMs to the memory hierarchy.

Low power double data rate 2 non-volatile memory (LPDDR2-NVM) has been deemed

the standard interface to connect NVMs because the characteristics of emerging NVMs are

different to the traditional memory devices. The operation of LPDDR2-NVM is not same as

the conventional DRAM, but most of the previous literature does not consider or overlook

this standard interface.

This dissertation proposes system-level optimization methods to maximize the per-

formance of memory system with LPDDR2-NVM. To this end, we first implement an

LPDDR2-NVM prototype to extract parameters of memory system, and then we implement
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a system-level simulator that reflects the realistic parameters. Second, we analyze the effect

of row buffer architecture on the performance of the memory system though the intensive

evaluation. Based on clues from evaluation, we propose a system-level method that im-

proves performance memory system by reforming the way of interfacing LPDDR2-NVM.

We also present the limitation of static row buffer architecture and propose a system-level

method that mimics reconfigurable row buffer architecture.

Keywords: LPDDR2-NVM, memory system, performance optimization

Student number: 2006-23166
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Chapter 1

Introduction

1.1 Motivation

For several decades, the density of transistor and operation frequency increase as process

technology shrinks. However, the power wall, seemingly intractable obstacle until now,

has led architects to explore the instruction-level parallelism (ILP) in the last few years.

The results of this paradigm shift marked the beginning of the multicore era. Chip Multi-

processors (CMPs) now employ arrays of lightweight processing cores. This abundance

of on-chip computational resources puts an enormous strain on the memory systems. The

desire to feed the beast necessitates both higher memory bandwidth and increased memory

capacities.

In the typical memory systems, synchronous random access memory (SRAM), dy-

namic random access memory (DRAM), and NAND flash have been used as main compo-

nents of the memory systems. SRAM operates at high frequency while it struggles under

the low density and high leakage power due to its intrinsic cell structure. DRAM has a

high read/write performance, relatively large capacity where as it requires refresh opera-
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tions which consume significant energy to keep the data. Moreover, DRAM fails to satisfy

the demand for additional memory capacity because DRAM technology is hard to scale

down to less than 20nm [7]. NAND flash has a high density and non-volatility while it does

not support byte access and in-place update. These limitations of the traditional memory

devices prompt researchers to intensively investigate the feasibility of innovative memory

devices.

Several new non-volatile memory (NVM) technologies are emerged to address some of

the shortcomings of the traditional memory devices. Phase change memory (PCM), spin-

torque transfer random access memory (STT-RAM), and resistive random access memory

(RRAM) offer high performance, byte-addressability, and large capacity. They consume

low standby power due to its non-volatility. Therefore, they are expected to be a good

candidate for DRAM replacement in the main memory system and flash replacement in the

storage system [8, 9]. Moreover, the advantages of emerging NVMs even opens an option

to unify the main memory and the storage system, and thus, many researchers investigate

the feasibility of storage class memories [10, 11].

The undisputed benefits and huge potential of emerging NVMs justify the signifi-

cant effort in researching the adoption of the emerging NVMs to the memory hierarchy

by reinforcing the advantages of emerging NVMs and overcoming the shortcomings of

them. However, we found that many parameters and assumptions from research papers in

academia do not reflect recent technology trends in the industry, although their contribu-

tions are significant. Most designs concentrated on increasing system performance by re-

ducing the number of memory accesses or optimizing the internal operations within emerg-

ing NVM devices, and this is due to the assumption that NVMs would use as similar archi-

tecture DRAM devices we using [12, 13]. This assumption is partially true, but they over-

looked the time consuming interface operation in real industry NVM prototypes equipped

2



with low power double data rate 2 non-volatile memory (LPDDR2-NVM) [14, 15]. For

NVMs, LPDDR2-NVM is the state-of-the-art standard of Joint Electron Device Engineer-

ing Council (JEDEC). In addition, most research assume too optimistic write operations,

which is also far from the industry prototype. These non-realistic and optimistic assump-

tions in academia make it difficult to realize the many proposed ideas in real industry NVM

prototypes.

1.2 Research Contributions

The main contribution of this dissertation is system-level performance optimization of

memory system with LPDDR2-NVM by investigating the difference of conventional DRAM

and LPDDR2-NVM. More specifically, this dissertation focuses on the way of interfacing

with LPDDR2-NVM.

Contributions of this dissertation are summarized as follows.

• An LPDDR2-NVM prototype implementation in order to extract actual parameters

of memory system using LPDDR2-NVM.

• A cycle-accurate system-level simulator implementation for evaluating the perfor-

mance of memory interface technique for a LPDDR2-NVM based system.

• Design space exploration of the row buffer management policy and row buffer con-

figuration in the LPDDR2-NVM for performance optimization.

• Propose a system-level performance optimization method for memory system with

LPDDR2-NVM by utilizing the existing resources defined in the LPDDR2-NVM

standard.
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• Propose a proactive row buffer management method that mimics a reconfigurable row

buffer architecture to optimize the performance of memory system with LPDDR2-

NVM in system-level.

1.3 Organization of Dissertation

Chapter 2 discusses the background and related work on adopting emerging NVMs to

the memory hierarchy. Chapter 3 introduces the LPDDR2-NVM platform to explore the

relation between addressing architecture and system-level performance. Chapter 4 intro-

duces experimental results and discusses the row buffer management policy and row buffer

configuration. Chapter 5 introduces our system-level performance optimization effort for

LPDDR2-NVM memory system. Chapter 6 concludes this dissertation.
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Chapter 2

Background

NVM is a resistive memory that uses a difference of the resistance to store data, and the

characteristics of the NVM come from the storage elements. We present the basics of NVM

in this chapter. We discuss the LPDDR2-NVM standard that is the state-of-the-art industrial

standard for NVM. It has a different architecture and addressing mechanism to that of

conventional DRAM. We focus on these differences. We also review the previous work for

adopting the NVMs to memory hierarchies in this chapter.

2.1 Basics of Non-Volatile Memory

Emerging NVM technologies are based on the new type of storage elements. The STT-

RAM uses a magnetic tunnel junction (MTJ) as a storage element, as shown in Figure 2.1(a).

The orientation of magnetic layers determine the resistance of MTJ. A current of polarized

electrons changes the orientation of free layer [16]. The RRAM consists of two metallic el-

ements that sandwich a thin dielectric layer, as shown in Figure 2.1(b). An external voltage

with specified polarity, magnitude, and duration changes the resistance of the RRAM [17].
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ware between NVM and CM to achieve a balanced read/write
performance. However, these approaches are typically de-
signed for specific memory levels (e.g., cache and main mem-
ory) and do not e�ectively leverage applications’ data access
characteristics.

We study the read/write asymmetry as a generic prob-
lem of various NVMs used in di�erent levels of the memory
hierarchy including scratchpad memories, caches and main
memory. In this paper, we propose SPD (software dispatch),
a cross-layer solution including the compiler and OS (oper-
ating system) that captures applications’ data access char-
acteristics to guide the hardware and distribute data among
hybrid memories1 for optimized performance and power con-
sumption. We evaluate our approach on a case study hybrid
memory system and demonstrate that software dispatch en-
sures that 88.5% of writes are handled in CM, which only
comprises 3% of the total cache capacity. Through software
dispatch we achieve over 5% performance improvement and
nearly 10% power saving compared to the state-of-the-art
runtime technique.

2. UTILIZING HYBRID MEMORIES
The availability of various memory technologies brings the

potential for building a rich set of hybrid memory systems
that trade o� among performance, power and density. Due
to the relatively high penalty of write accesses, systems uti-
lizing NVMs typically need to incorporate certain amount
of CM for data that is write intensive. The methodology
for including CM to form hybrid memory systems could be
di�erent, depending on scenarios.

One typical organization of hybrid memories is using CM
as a bu�er for NVM. For example, the entire secondary stor-
age can be constructed using one type of the NVMs with
a small block of CM serving as a write bu�er. The SSDs
discussed in Section 1 (Figure 1) is one type of such hy-
brid memory systems. Another example is using PCRAM
as main memory with a DRAM bu�er [11].

Hybrid memories can be also utilized for building scal-
able, high density and low power on-chip caches with write
through policy [16, 14], which is supported by various com-
mercial CPU products including Intel Pentium, Sandy/Ivy
Bridge, UltraSparc, etc. For future CMPs with large number
of cores, write-through caches are becoming more attractive
as they greatly simplify the cache coherence protocol, which
could be extremely complex with numerous transient states.
Unfortunately, a write-through policy defeats the CM bu�er
for NVM, exposing write intensive behavior to lower levels in
the memory hierarchy that are candidates to utilize NVMs
such as last level cache. Thus, a scalable and e�cient cache
architecture can be built by employing hybrid memories in

1Di�erent NVMs can comprise hybrid memories. In this
paper we restrict the term hybrid memories to the systems
where both NVMs and conventional memories are used.

which each cache set contains a mixture of NVM blocks and
CM blocks, as depicted in Figure 5(a). Since the NVM is
typically write-hostile and the CM is write-friendly, it is de-
sirable that write intensive data be dynamically migrated or
swapped from the NVM to the CM. A common hardware
approach is to keep track of a short history of write accesses
using a counter and migrate/swap a data block from the
write-hostile memory to the write-friendly memory if the
counter indicates the data block is write intensive. This ap-
proach however, is easily misled by unpredictable runtime
data access behavior. Significant mispredictions can incur
an expensive penalty of serving accesses in the wrong type
of memory (e.g., write frequent accesses occurring in NVM)
as well as large migration/swap overhead. In contrast, a
software mechanism has the advantages of taking actions
preemptively to hide the migration/swap latency from the
critical path and detecting data access patterns more accu-
rately compared to simple run-time approaches.

Figure 5: Utilizing hybrid memories at di�erent lev-
els (a): hybrid memories for caches (b): hybrid
memories for main memory

Building main memory using NVM and CM has also been
studied [9]. One typical organization for hybrid main mem-
ory separates NVM and CM into independently addressed
memory regions (e.g., high address region (HAR) versus low
address region (LAR)), as shown in Figure 5(b). Data with
a certain read/write characteristic is allocated or mapped
onto a specific address region so that it can be served by an
appropriate type of memory. For example, the OS can map
a read-only virtual page to a physical page served by the
write-hostile NVM to leverage its non-volatility, low leakage
and large capacity benefits without bringing negative perfor-
mance or power impact. To achieve this, the OS needs to be
aware of the physical address regions comprised by hybrid
memories as well as the application’s data access character-
istics at the page granularity.

As can be seen from the above discussions, hybrid memory
systems can be e�ectively assisted and optimized by software
mechanisms, which will be detailed in the next section.
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Building main memory using NVM and CM has also been
studied [9]. One typical organization for hybrid main mem-
ory separates NVM and CM into independently addressed
memory regions (e.g., high address region (HAR) versus low
address region (LAR)), as shown in Figure 5(b). Data with
a certain read/write characteristic is allocated or mapped
onto a specific address region so that it can be served by an
appropriate type of memory. For example, the OS can map
a read-only virtual page to a physical page served by the
write-hostile NVM to leverage its non-volatility, low leakage
and large capacity benefits without bringing negative perfor-
mance or power impact. To achieve this, the OS needs to be
aware of the physical address regions comprised by hybrid
memories as well as the application’s data access character-
istics at the page granularity.

As can be seen from the above discussions, hybrid memory
systems can be e�ectively assisted and optimized by software
mechanisms, which will be detailed in the next section.
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ware between NVM and CM to achieve a balanced read/write
performance. However, these approaches are typically de-
signed for specific memory levels (e.g., cache and main mem-
ory) and do not e�ectively leverage applications’ data access
characteristics.
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lem of various NVMs used in di�erent levels of the memory
hierarchy including scratchpad memories, caches and main
memory. In this paper, we propose SPD (software dispatch),
a cross-layer solution including the compiler and OS (oper-
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acteristics to guide the hardware and distribute data among
hybrid memories1 for optimized performance and power con-
sumption. We evaluate our approach on a case study hybrid
memory system and demonstrate that software dispatch en-
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comprises 3% of the total cache capacity. Through software
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nearly 10% power saving compared to the state-of-the-art
runtime technique.
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The availability of various memory technologies brings the
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to the relatively high penalty of write accesses, systems uti-
lizing NVMs typically need to incorporate certain amount
of CM for data that is write intensive. The methodology
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1Di�erent NVMs can comprise hybrid memories. In this
paper we restrict the term hybrid memories to the systems
where both NVMs and conventional memories are used.
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Figure 2.1: Cell structure of NVMs [5]

PCM uses a small volume of phase change material as a storage element, as shown in Fig-

ure 2.1(c). Read operation on the PCM measures the resistance of the cell by passing a

current that is small enough not to change current state. It programs the cell by a proper

heating and cooling [18].

The difference of storage elements of NVMs makes the different characteristics of

NVMs. We compare the characteristics of emerging NVMs between the traditional mem-

ory device and NVMs, as shown in Table 2.1. The performance of DRAM is good while

it consumes significant energy. DRAM is a volatile device, and it meets the scaling limita-

tion. NAND has a high density due to its cell structure. However, it requires a complicate

management scheme due to out-of-place update, limited write endurance, and poor write

performance. STT-RAM has high performance and consumes low energy. Write endurance

of STT-RAM is good, but it has relatively low density than other NVMs [16]. RRAM has

high performance, high density, and low energy consumption, but it is still under the de-

velopment. PCM has received considerable attention as a promising next generation NVM

because of its scalability, fast byte access capability, low-power consumption and no re-

quirement for erase-before-program [19]. However, write operation on PCM incurs high

latency and high energy consumption, and write endurance is still not enough [14, 15].
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Table 2.1: Comparison of memory device characteristics [1, 2, 3, 4].

Memory type DRAM NAND flash STT-RAM RRAM PCM

Cell structure 1T1C 1T 1T1MTJ 1T1R 1T1R

Cell area 6⇠8F2 4⇠6F2 6⇠20F2 4⇠10F2 4F2

Read time ⇠10ns 20⇠100µs 1⇠10ns 5⇠10ns 10⇠40ns

Write time ⇠10ns 100⇠800µs 2⇠20ns 10⇠20ns 50⇠120ns

Read energy medium low low low low

Write energy medium high low low high

Write endurance 1015 103⇠105 1016 108 108

2.2 LPDDR2-NVM

LPDDR2-NVM has been deemed the standard interface to connect NVMs. PCM prototypes

from several manufacturers have been announced with an LPDDR2-NVM interface [14,

15]. LPDDR2-NVM standard somewhat similar to conventional DRAM, but at the same

time, has different features due to the differences between conventional DRAM and NVMs

including asymmetric read and write operations. The representative features of LPDDR2-

NVM compared to the conventional DDR interface are:

• No precharge operation because of the non-destructive operation of non-volatile

memory devices.

• Three-phase addressing mechanism for supporting large size of memory (up to 32Gb).

• No multi-bank architecture.

• Multiple row address buffers (RABs) and row data buffers (RDBs) which are selected
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by the memory controller regardless of the physically accessed address.

• Smaller unit size of RDB (typically 32 bytes) than that of the conventional DRAMs.

• Indirect write operations via overlay window.

• Multiple partition architecture.

• Dual operation that enables read in other partition during cell programming.

We study the details of LPDDR2-NVM standard including architecture and the overlay

window operations, and discuss the difference between conventional DRAM and LPDDR2-

NVM in the following subsections.

2.2.1 Architecture

Figure 2.2 shows the functional block diagram of LPDDR2-NVM standard-compatible

memory device. In LPDDR2-NVM standard, address and commands are transferred through

command/address (CA) pins while conventional DRAM has dedicated 12 to 16 pins for

transferring the address and command separately. LPDDR2-NVM specifies 10 bits of CA

pins and they are used with DDR architecture even for the address phase. This indicates

that the memory controller transfers up to 20 bits of command and address bits together per

a memory clock cycle.

LPDDR2-NVM standard requires a longer row address to support large memory sizes

of up to 32Gb. The longer row address cannot be transferred in a single operation due to

the limited number of CA pins. Therefore, LPDDR2-NVM device has RABs that store the

upper part of row address.

The cell programming in NVMs takes longer time than read usually. This asymmetric

read and write operation led to use different mechanism for reading and programming mem-
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Figure 2.2: Functional block diagram of an LPDDR2-NVM compatible memory device.

ory array. LPDDR2-NVM standard-compatible device has an embedded micro-controller

and overlay window registers to alleviate the problems cause by the long cell programming

time, as shown in Figure 2.2.

2.2.2 Operation of overlay window

The process of read operation of LPDDR2-NVM is very similar to conventional DRAM.

However, write operation – strictly speaking non-volatile cell programming – is completely

different from conventional DRAM. Write operation is done indirectly through the special

registers called overlay window similar to the method used for accessing NOR flash, as

shown in Figure 2.3.

The overlay window consists of memory-mapped registers to control an LPDDR2-

NVM device. It contains the command address register, the command code register, the

command execution register, the program buffer, and so on. The size of overlay window is

4KB, and the location overlaps the address space of an LPDDR2-NVM device, as shown in
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Figure 2.3: Comparison of read and write operation.

Figure 2.3. Mode registers enable or disable the overlay window, and set its location. Read

operation to the address space overlapped by the overlay window accesses the contents of

overlay window registers when the overlay window is enabled.

An LPDDR2-NVM standard supports several commands which make use of the overlay

window, such as single word overwrite, buffered overwrite, suspend, and so on. A write

operation should be translated into a sequence of overlay window accesses, as shown in

Figure 2.4. Therefore, it incurs significant time overhead to interface with LPDDR2-NVM

device, whereas a write operation in conventional DRAM uses the same interface of read

operation.
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Figure 2.4: Flowchart of buffered overwrite [6].

2.2.3 Comparison to conventional DRAM

2.2.3.1 Row buffer architecture

LPDDR2-NVM has RABs to store the part of row address, and which do not exist in con-

ventional DRAM. It also has RDBs that store a data like a row buffer in conventional

DRAM. The RABs and RDBs are used as a pair in addressing mechanism. The BA signals

are used to select a row buffer pair in LPDDR2-NVM while it is used to select a bank

in the conventional DRAM. Figure 2.5(a) shows the address components of the conven-

tional DRAM which has 8 banks. The address consists of bank address, row address, and

column address, so the BA signals are used to select bank according to the physically ac-

cessed array address. On the other hand, the address of LPDDR2-NVM does not contain

BA signals, as shown in Figure 2.5. BA signals are only intended to select a row buffer pair

not a physical bank address of the memory array. The memory controller selects a proper
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(a) Conventional DRAM
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7 bits 15 bits 4 bits

(b) LPDDR2-NVM

Figure 2.5: Comparison of address composition.

RAB and/or RDB by controlling these BA signals regardless of the physically accessed

memory address. The least significant column address, C0, is implied to be zero and is not

transmitted [6].

The conventional DRAM should close an open row within a timing constraint, tRAS,

using a precharge command. It also should close the open row before accessing other row

in the same bank. The precharge operation invalidates the data in the row buffer. However,

LPDDR2-NVM does not need a precharge command because it uses a current sense am-

plifier instead of voltage sense amplifier. The data in RDB is valid until the power is off,

so the timing constraint between activate and read/write, tRCD, has only minimum value.

However, the data in RDB is not updated automatically when the contents of memory array

changes. It means that incoherency problem between the RDB and memory array is able to

happen. The memory controller should track the validity of RDBs to avoid this incoherency

problem.

In multi-bank architecture of conventional DRAM, rows in other banks can be activated

at the same time as long as it meets the timing constraints such as the minimum time interval

between Activate commands to different banks, tRRD, and four bank activate window, tFAW .
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The LPDDR2-NVM supports multiple (4 or 8) row buffers instead of multiple banks. The

timing constraints such as tRRD are applied to bank operations are applied to row buffer

operations in the LPDDR2-NVM. The memory controller is able to activate one row buffer

while the other row is activating if the timing constraints are satisfied.

2.2.3.2 Addressing mechanism

In LPDDR2-NVM, three-phase addressing mechanism is used to support larger size of

memory devices as opposed to conventional DRAM using two-phase address mechanism.

Three-phase addressing consists of preactive, activate, and read/write phases. Figure 2.6

shows the comparison of used pins and transferred information at each address phase.

LPDDR-NVM and conventional DRAM have same density, 1 Gb, and data width, 8 bits.

As described in the Section 2.2.1, CA pins use DDR architecture in LPDDR2-NVM. In

preactive phase, command information and BA signals used to select RAB transferred at

the rising edge of the clock, and upper row address is transferred at the falling edge of

the clock. Command information, BA signals to select RAB and RDB, and part of lower

row address are transferred at the rising edge of the clock in activate phase. At the falling

edge of the clock in activate phase, the remaining lower row address are transferred. In

read/write phase, command information, BA signals to select RDB, and part of column ad-

dress are transferred at the rising edge of the clock, and then the remaining column address

is transferred at the falling edge of the clock.

Figure 2.7 shows the detailed behavior of three-phase read operation. In preactive

phase, only upper 3 to 12 bits of the row address are transferred and this partial row address

is stored into the designated RAB. The BA signals are used to select a designated RAB.

In activate phase, remaining row address is transferred. The entire row address after com-

bining it with the upper row address stored in the RAB is select row of the memory array,
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Figure 2.6: Comparison of address and command pins and transferred information.

and then the corresponding row data is transferred from the memory array to the designated

RDB. The RAB and RDB pair is selected by BA signals. The data is transferred from the

RDB selected by BA signals to the memory controller at the last phase. The size of upper

row bits, lower row bits, and column bits are determined by the density of device and the

unit size of RDB.

It is possible to operate several read and/or write access at the same time if it uses

different RAB and RDB pairs and satisfy timing constraints. It is similar to interleaving

operation of conventional DRAM. Like an open-page policy in conventional DRAM, the

preactive phase or activate phase of three-phase addressing can be omitted if the RAB or

RDB has valid data.
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Figure 2.7: Operation of three-phase read operation [6].

2.2.3.3 Dual operation

The NVMs usually has a low write performance due to a long cell program time. This

long cell program time also degrades read performance when a write access blocks read

access. Multiple partition architecture and dual operation are introduced to alleviate this

read performance degradation in LPDDR2-NVM.

Dual operation allows read operation in other partition while programming or erasing in

one partition. The read operation should be postponed if it tries to access the partition that

is programming cells. This dual operation increases the performance of LPDDR2-NVM

although programing in other partition is not allowed during programming or erasing in

one partition. This is a distinctive feature of LPDDR2-NVM because conventional DRAM

does not allow read operation during write operation.
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2.3 Related Work

In this section, we review the related work on adopting NVMs to the memory hierarchies.

We discuss what the weakness of the traditional memory device is and how NVMs cover

that by focusing on the architectural perspectives of the previous work.

Cache There is a performance gap between a processor and a main memory. Usually,

cache is used to reduce this performance gap, so cache requires high performance. SRAM

is main component of the cache thanks to its high performance. Cache size affects sys-

tem performance significantly because larger cache can hold more data and reduce cache

misses. The size of SRAM cache is limited due to large footprint. SRAM cache consumes

large leakage power because of non-volatility of SRAM. Therefore, system performance

increases and energy consumption is reduced if the new memory device which has high

performance, small footprint, and non-volatility is used in the cache instead of SRAM.

Recently, several NVM technologies such as PCM, STT-RAM, and RRAM are con-

sidered as alternative of SRAM in the cache, but these NVMs also do not meet the all

of the ideal cache requirements. STT-RAM has a high read speed, but a relatively large

footprint [16]. PCM has small footprint comparable to DRAM and less leakage power

consumption thanks to its non-volatility [20]. High write latency, write energy and limited

write endurance incurs a problem when we use PCM as a cache. Slower read performance

of PCM than that of SRAM degrades system performance. However, its small footprint

and, in turn, large capacity compensates this performance degradation in some cases.

Cache memory requires high performance, but long write latency of STT-RAM pre-

vents wide adoption in cache. However, the write latency of STT-RAM can be reduced by

relaxing the data retention time of STT-RAM. This volatile STT-RAM requires refresh op-
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eration to prevent data loss, but it still reduces the energy consumption [21, 22, 23]. Some

researches have been dedicated to solve the problem of PCM as a cache memory. The hy-

brid cache architecture that consists of small SRAM and large PCM has been proposed

to reduce leakage energy in L1 instruction cache and L2 unified cache [24]. A trade-off

between performance and power was reported in the several hybrid non-uniform cache ar-

chitecture (NUCA) under the same area constraints. These hybrid cache architecture use

cache line allocation and migration policy that considers the different characteristics of

SRAM and PCM. High density and low leakage power consumption of PCM enables ad-

ditional L4 cache layer with negligible overhead [25]. Write reduction and distribution

technique has been proposed to enhance energy reduction and prolong lifetime of pure L2

cache [20].

Main Memory Traditionally, main memory consists of DRAM, as shown in Figure 2.8(a).

DRAM consumes significant amount of standby power due to its 1T1C cell structure and

non-volatility. DRAM also meets the limitation in scaling as explained in Chapter 1. NVM,

especially PCM, is considered as alternative of DRAM which is shown in Figure 2.8(b) be-

cause it has high density, byte-accessibility, low static power, and non-volatility [26, 13, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Write latency and energy consumption

of PCM is higher than DRAM because it requires higher current and longer time to change

its phase. This high write latency increases an effective read latency when read operation

is blocked by write operation. It degrades system performance significantly. A limited en-

durance also prevents adopting PCM as a main memory. Hybrid architectures with DRAM

have been proposed to alleviate performance degradation and short lifetime of PCM. Ar-

chitecture uses small size of DRAM as cache to hide write latency and reduce write activ-

ity, as shown in Figure 2.8(c) [12, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].
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Figure 2.8: Comparison of the main memory architecture.

In the other hybrid architecture, DRAM is in the same level as NVM, as shown in Fig-

ure 2.8(d) [56, 57, 58, 59, 60, 61].

NVM-only main memory is introduced to reduce energy consumption by utilizing its

zero leakage power in memory cell [26]. NVM-only main memory can reduce the access

latency due to page fault because it has more capacity to hold most of the pages those are

needs during program execution. However, the endurance of PCM is not enough for the

main memory. It requires a technique to reduce the number of write to utilize the advan-

tage of NVM-only main memory. First of all, system performance increases and energy

consumption is reduced if the bit change decreases.

PCM is slower than DRAM especially in write, and it increases memory access latency.

It also has limited write cycles compares to DRAM. Therefore, DRAM used as a buffer for

PCM main memory to reduce a write operation [12]. Some approaches have been proposed

to reduce PCM write through the DRAM cache. First, multiple dirty bits technique is pro-
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posed. Multiple dirty bits keep the changes of a divided cacheline. It helps reducing write

operation when a line is evicted from DRAM cache by writing only changed parts back

to PCM main memory [12, 45, 46]. Second, PCM write is avoided by an additional status

bit, present bit, in the DRAM cache [12]. Unlike usual operation, the data is only written

to DRAM when missed page fetched from the storage. Present bit indicates the existence

of page in the PCM. The data is only written to the PCM when present bit is clear or dirty

bit is set at the eviction. Last, DRAM cache replacement algorithm reduces PCM write by

considering the characteristics of PCM. Cache uses a least recently used (LRU) policy to

increase hit ratio usually. It does not consider the asymmetry between read and write opera-

tion of PCM. N-chance algorithm prefers clean victim when it select a victim in the DRAM

cache [45]. It first selects the oldest clean line among the N least recently used lines. It uses

a LRU policy if such a line does not exist.

Another way to address the issues of PCM is a heterogeneous main memory architec-

ture that consists of DRAM and PCM. It is important to utilize the different characteristics

of DRAM and PCM. Performance enhancement, lifetime extension, and energy reduction

can be archived by a proper data allocation and migration. DRAM is a write friendly device

but incurs high energy consumption while PCM is a write hostile device. Write operation

can be reduced if DRAM contains a frequently updated data, hot-data, and PCM contains

an occasionally updated data, cold-data. This hot-cold separation can be done when data is

evicted from cache, data allocation, or when write count on the segment exceeds threshold,

data migration. The hot-cold separation mechanism can be implemented in the controller

level [59] or by modifying OS virtual memory management scheme [57, 56, 58, 60]. The

access pattern is monitored in the controller [57, 59] or the page table [58, 60]. In some

case, the individual page can be migrated continuously. This Ping-Pong migration can be

resolved by the adaptive page grouping (APG) based on the physical page frame number.
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This hybrid main memory architecture is also used in application-specific DSP sys-

tem. In the DSP system, variable partitioning and instruction scheduling problem is impor-

tant because it determines system performance and energy consumption. These objectives,

which are in the trade-off relation, can be efficiently tacked in the compilation time by

jointly considering the power consumption and the number of write on PCM [61].

Storage System Recently, NAND flash is widely used as storage device thanks to its

high density and lower read latency than a hard-disk drive. The NAND flash requires out-

of-place update because erase operation must be done before program operation. The unit

of erase operation is a block while the unit of read and program operation is a page. This

mismatch requires a complicate mapping table to track the location of pages and, in turn,

flash translation layer (FTL). A part of mapping table, metadata, keeps in the main memory

during the system operation due to frequent updates. The remaining of the mapping table

is stored in the NAND flash because the main memory is an expensive resource [62, 63].

The conventional storage architecture of the embedded system consists of DRAM,

NOR flash, and NAND flash [64]. NOR flash is used as code storage because it supports

execute-in-place (XIP). Metadata and user data are stored in the NAND flash. The density

of PCM is close to NAND while it supports random access and in-place update [65]. The

hybrid storage architecture with PCM and NAND has been proposed. It uses a PCM as

metadata storage to improve the system performance and lifetime of NAND flash [64, 66,

67, 62, 68, 69]. The hybrid storage separates metadata of the filesystem and FTL metadata

such as page mapping table, physical NAND block information, bad block management in-

formation, and so on. Similar approach that uses PCM as metadata storage in the solid-state

disk (SSD) has been proposed [65, 63]. Filesystem that considers the hybrid architecture of

storage such as PFFS and PFFS2 also has been proposed [66, 67, 62].
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The metadata is stored in the DRAM in conventional storage architecture. It should be

moved to NAND flash when a sudden power failure occurs. Otherwise, the system loses

important mapping data and, in turn, the reliability of the system decreases [67, 70]. Mov-

ing data from DRAM to NAND flash requires a significant energy due to a power hungry

NAND operation. The system reliability increases if the page mapping table is stored in the

PCM [67] or a part of PCM is reserved for a sudden power failure [70]. In those cases, mov-

ing data from DRAM to NAND is not required, so the design of power failure protection

mechanism can be simple [67].

High density of PCM makes it as NAND flash replacement in the storage. However,

this is not widely accepted concept because PCM main memory is possible due to its byte-

accessibility. MLC capability of PCM helps the adoption in storage system while MLC

capability comes with a performance and a lifetime penalty. Run-time MLC/SLC reconfig-

uration mechanism has been proposed to compensate these penalties. PCM based SSD that

connects with the host via PCIe also has been proposed [71].
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Chapter 3

Implementation of LPDDR2-NVM

Platform

The previous chapter has shown that a LPDDR2-NVM has a different architecture and

operation from a conventional DRAM. Therefore, LPDDR2-NVM platform is necessary to

evaluate and optimize the performance of memory system that uses LPDDR2-NVM as a

main memory.

This chapter focuses on implementation of LPDDR2-NVM platform. The LPDDR2-

NVM platform is made up of a LPDDR2-NVM prototype and a system-level simulator.

LPDDR2-NVM prototype verifies the operation of memory system with LPDDR2-NVM,

and it is used to extract parameters of memory system with LPDDR2-NVM. We imple-

ment a system-level simulator with the extracted parameters because of LPDDR2-NVM

prototype’s limited capability due to lack of flexibility.
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Figure 3.1: Block diagram of an LPDDR2-NVM control SoC.

3.1 LPDDR2-NVM Prototype

LPDDR2-NVM prototype consists of a control system-on-chip (SoC), an LPDDR2-NVM

small outline dual in-line memory modules (SODIMMs), and a FPGA board. We use a

PCM device with LPDDR2-NVM interface to implement a real LPDDR2-NVM memory

system.

The control SoC includes a MicroBlaze processor, our customized LPDDR2-NVM

controller, and many other conventional components, as shown in Figure 3.1. It uses Ad-

vance eXtensible Interface 4 (AXI4) as a system bus. All components are implemented in

a field-programmable gate array (FPGA). Application and overlay window management

code operate at the MicroBlaze processor. The customized LPDDR2-NVM controller in-

terfaces with a LPDDR2-NVM SODIMM. The timer measures memory access time to

evaluate the performance of memory system. The processor operates at 100 MHz, and the

LPDDR2-NVM SODIMM operates at LPDDR2-400.

We implemented an FPGA board with a Xilinx XC7K325T-2FFG900C that contains

two DDR3 SODIMM sockets, as shown in Figure 3.2. This FPGA board enable to evaluate
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Figure 3.2: FPGA board for an LPDDR2-NVM prototype.

the performance of LPDDR2-NVM when it uses for main memory system and storage

system because it has a 128MB NOR flash and supports PCIe Gen2 8-lane and10/100/1000

tri-speed ethernet. The FPGA board supports power consumption measurement of power

domains.

We develop a console program that supports memory dump, memory copy, and pro-

gramming PCM. It operates at the control SoC and verifies the operation of prototype. The

operation of this prototype is also verified by using conventional memory test routines such

as walking-0, walking-1, incremental address, inverse address, and fixed patterns.

3.1.1 LPDDR2-NVM controller

Figure 3.3 shows the block diagram of the customized LPDDR2-NVM memory controller.

The controller consists of an AXI4 interface, several state machines to guarantee the timing

constraints, and the physical layer (PHY) to support DDR architecture. The state machine

of the LPDDR2-NVM controller is different from that of conventional DRAM controllers
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Figure 3.3: Block diagram of an LPDDR2-NVM controller.

because the LPDDR2-NVM uses three-phase addressing and does not require precharge

and refresh operations.

The row buffer management module controls the command flow, decides start address

phase and row buffer pair, and manages validity of row buffer pair. The rank machine

module manages tRRD and write to read delay constraint. The row machine manages the

memory access from the addressing phase decided by the row buffer management module.

It manages tRCD, tRAS, and tRP. The customized LPDDR2-NVM memory controller has

several row machines, as shown in Figure 3.3. These several row machines enable that

the memory controller manages several accesses simultaneously. DQ bus and data transfer

is controlled by the column machine. PHY module converts data rate to interface with

LPDDR2-NVM and initiates the LPDDR2-NVM devices after the power-up sequence.
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Figure 3.4: LPDDR2-NVM SODIMM board.

3.1.2 LPDDR2-NVM SODIMM

NVMs have limited write endurance, so we have to replace NVMs if it wears out. It is a

reasonable approach to use a SODIMM instead of discrete components because it enable us

to replace the wear-out NVMs easily without soldering. However, there is no JEDEC stan-

dard for an LPDDR2-NVM SODIMM, so we adopt a JEDEC DDR3 SODIMM standard

to implement an LPDDR2-NVM SODIMM, as shown in Figure 3.4. An LPDDR2-NVM

SODIMM contains four industry prototype PCM chips with an LPDDR2-NVM interface.

The total capacity of an LPDDR2-NVM SODIMM is 512MB and the data width is 64 bits.

Our SODIMM operates at LPDDR2-400.
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Figure 3.5: Address space of an LPDDR2-NVM SODIMM.

The prototype of PCM with LPDDR2-NVM interface uses 1.8V and 1.2V as a core

power supply and 1.2V as an input buffer and I/O buffer power supply. It also uses 0.6V

as a reference voltage. 1.2V and 0.6V are supplied to LPDDR2-NVM SODIMM through

pins of SODIMM, but 1.8V is supplied by on-board regulator located on the backside of

SODIMM, as shown in Figure 3.4(b). LPDDR2-NVM SODIMM operates at high speed,

so it should be designed with consideration for the signal integrity. We applied line length

rule for clock signals, DQ signals group, and control signal group. We swap the bits in the

data byte group to reduce routing complexity.

The LPDDR2-NVM SODIMM widens the data width by placing PCM chips in parallel,

as shown in Figure 3.5. This incurs an address mapping problem for write operation through

overlay window because the overlay window uses a different address space from the address

space of the processor. We implement an address mapping scheme for overlay window

accesses.
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Figure 3.6: Block diagram of a system-level LPDDR2-NVM simulator.

3.2 System-Level Simulator

3.2.1 Architecture

We develop a cycle-accurate trace-driven SystemC simulator that evaluates the memory

access time including bus transaction time. Figure 3.6 shows a block diagram of a system-

level LPDDR2-NVM simulator. It uses an AMBA AHB bus as a system bus that supports

multiple master environments. The component parameters such as clock period of system

bus and IPs, latency of memories, and initial data of memories are configurable through the

parameter files.

The processor module emulates the operation of processor using the trace from other

simulator. The bus monitor module logs details of bus transaction. DMA module supports

fast data move, and we can simulate a multiple master situation using a DMA module.

28



Table 3.1: Configuration of the emulated processor.

System 8 cores in-order processor

Processor UltraSPARC-III+, 2GHz

L1 cache (Private) I- and D-cache: 64KB, 4-way 64B block

L2 cache (Shared) 1MB, 4-way 64B block

Main memory 1GB

LPDDR2-NVM controller module emulates the behavior of LPDDR2-NVM controller

in the LPDDR2-NVM prototype, and LPDDR2-NVM module emulates the behavior of

LPDDR2-NVM SODIMM.

3.2.2 Processor modeling

The processor module uses a trace to emulate an 8-core in-order processor system that

operates at 2GHz clock frequency. Table 3.1 shows the details of the emulated processor

configurations. The processor module generates a burst AHB transaction using the memory

access information from the trace. It uses the processor clock cycle information to generate

idle cycles between burst transactions. Idle bus cycles is calculated from the clock period

of bus and processor. The processor module passes the calculated cycles after it completes

the previous memory transaction.

The traces have been extracted from the Simics full-system simulator [72]. For trace

extraction, we select thirteen multi-threaded benchmarks from the PARSEC benchmark

suite [73]. Table 3.2 summarizes the characteristics of the each benchmark in terms of the

ratio of read operations normalized to the write operations and the frequency of the memory

accesses.
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Table 3.2: Memory access characteristics of the benchmark applications.

Application R/W ratio Memory accesses / 1k CPU cycles

blackscholes 5.96 0.23

bodytrack 5.96 0.83

canneal 1.84 12.62

dedup 1.39 4.74

facesim 6.58 0.22

ferret 1.52 0.91

fluidanimate 1.39 4.74

freqmine 1.55 1.63

raytrace 27.54 0.27

streamcluster 8.24 0.15

swaptions 11.11 0.58

vips 1.32 1.64

x264 1.78 2.32

3.2.3 LPDDR2-NVM modeling

The simulator configures the parameters of LPDDR2-NVM controller and memory de-

vices such as operation speed, density, and timing parameters a through configuration file.

We assume that the emulated system uses an LPDDR2-NVM SODIMM that contains 4

LPDDR2-NVM chips. The data width of the LPDDR2-NVM SODIMM is 64 bits, and

4 chips in the LPDDR2-NVM SODIMM operates simultaneously. The cell program time

of a commercial PCM device with an LPDDR2-NVM interface is 20µs [14], while the

very optimistic cell program time presented in the research prototype is 150ns [15]. Our

LPDDR2-NVM model considers this varying cell program time. It supports multiple parti-
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Figure 3.7: RDB configuration in an LPDDR2-NVM SODIMM.

tion architecture and dual operation.

The performance of memory system with LPDDR2-NVM varies on the RDB configu-

ration, the unit size of RDB and the number of RDBs. We use the notation like [the number

of RDBs]⇥[unit size of RDB] to indicate RDB configuration. Note that the unit size of

RDB implies the unit size of RDB in a LPDDR2-NVM SODIMM. For example, figure 3.7

shows the 4⇥128 bytes RDB configurations. Each LPDDR2-NVM chip has four 32 bytes

RDBs, so the unit size of RDB is 128 bytes.

The most important thing in a cycle-accurate modeling is managing timing constraints

correctly. The LPDDR2-NVM model manages timing constraints using several counters.

The LPDDR2-NVM model manages several memory accesses simultaneously to emulate

the prototype accurately. Specific data structures are also used to track the status of RDBs

and DQ.
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Chapter 4

Design Space Exploration of Row

Buffer Architecture in

LPDDR2-NVM

This chapter discusses the effect of row buffer management policy and configuration on

the performance of memory system with LPDDR2-NVM. The RDB hit ratio affects the

performance of memory system, and the RDB hit ratio varies according to the row buffer

management policy and configuration.

We evaluate the performance using the system-level simulator with the benchmark de-

scribed in section 3.2. The parameters used in the evaluation are summarized in Table 4.1.

4.1 Row Buffer Management Policy

As described in Section 2.2, the memory controller selects a row buffer in the LPDDR2-

NVM like a fully-associative cache while the row buffer selection in conventional DRAM
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Table 4.1: Configuration of the simulated LPDDR2-NVM.

LPDDR2-NVM main memory 1GB, LPDDR2-800, 64-bit wide

Preactive to Activate (tRP) 3 tCK
1

Activate to Read/Write (tRCD) 120ns

Read latency (RL) 6 tCK
1

Write latency (WL) 3 tCK
1

Burst length (BL) 8

Cell program time (tprogram) 150ns

The number of partitions 16

1tCK is a memory clock cycle (2.5ns at LPDDR2-800)

is fixed by the internal architecture of DRAM similar to a directed-mapped cache. This

architecture in the LPDDR2-NVM enables us to choose a proper row buffer management

policy. The difference of management policy causes a different RDB hit ratio during read

and write operations and this, in turn, leads to different memory access time.

Figure 4.1 shows the comparison of the memory access time between a direct-mapped

policy and a fully-associative mapping policy. We evaluate two RDB configurations: 4⇥128

bytes RDBs configuration and 8⇥16,384 bytes RDBs configuration, respectively. The mem-

ory access time of the fully-associative mapping policy is normalized to that of the direct-

mapped policy. The commercial LPDDR2-NVM device has 4⇥128 bytes RDBs configu-

ration while the 8⇥16,384 bytes RDBs configuration is the largest capable RDB configu-

ration in the LPDDR2-NVM standard. Table 4.2 shows the RDB hit ratio of read access,

rRD, and overlay window access, rOW , when a direct-mapped policy or a fully associative

mapping policy is used.
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Figure 4.1: Memory access time of the fully-associative mapping policy normalized to the

direct-mapped policy (lower is better).
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Table 4.2: Comparison of the RDB hit ratio.

Application

4⇥128 bytes RDBs 8⇥16,384 bytes RDBs

Direct-mapped Fully-associative Direct-mapped Fully-associative

rRD rOW rRD rOW rRD rOW rRD rOW

blackscholes 9.2 25.0 15.1 70.2 22.8 99.2 41.8 99.6

bodytrack 30.0 25.0 28.7 64.4 74.5 99.2 87.2 99.9

canneal 0.2 25.0 0.2 47.0 1.9 99.9 4.3 99.9

dedup 19.2 25.0 13.8 60.6 49.3 99.7 88.3 99.9

facesim 28.3 25.0 36.7 59.1 62.0 82.9 92.9 99.6

ferret 35.8 25.0 38.8 76.5 78.1 96.1 95.1 99.9

fluidanimate 4.2 25.0 4.9 56.7 17.5 99.7 87.1 99.9

freqmine 35.1 25.0 35.0 72.3 74.3 99.6 88.2 99.9

raytrace 15.5 25.0 28.7 45.4 49.0 88.7 87.5 97.1

streamcluster 30.2 25.0 35.9 62.1 65.9 99.2 85.4 99.7

swaptions 37.2 25.0 44.5 61.1 76.5 75.8 95.0 99.8

vips 25.6 25.0 25.7 69.9 65.5 99.2 89.6 99.9

x264 16.6 25.0 18.5 58.5 57.5 98.8 84.7 99.9

Overall, the fully-associate mapping policy outperforms the direct-mapped policy in all

applications and configurations. In LPDDR2-NVM devices, one write operation requires

several consecutive accesses to the control registers located in the overlay window where

the row address of control registers are closed each other. Therefore, in direct-mapped

policy, only one RDB is allocated to the entire address space of the overlay window and

this RDB is continuously selected as a victim. This happens even though the other RDBs

are available like a conflict miss in a cache. On the other hand, the conflict miss is sel-

dom happen in the fully-associative mapping policy because several RDBs are allocated
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for the address space of overlay window. This indicates almost no conflict miss during a

write operation and only a capacity miss is happened in a fully-associative mapping policy.

Therefore, rOW of direct-mapped policy is only 25.0% while rOW of fully-associative policy

is on average 61.8% in 4⇥128 bytes RDBs configuration.

The performance gaps between two management policies are reduced when the unit

size of RDB and the number of RDBs are increased, as shown in Figure 4.1(b). One 16KB

RDB can hold entire space of the overlay window even in the direct-mapped policy. rOW

of the direct-mapped policy in 8⇥16,384 bytes RDBs configuration is close to that of the

fully-associative policy in all applications, as shown in Table 4.2. However, rRD of the

direct-mapped policy is lower than that of the fully-associative policy due to the conflict

miss, and it makes the difference in the memory access time.

We do not explorer the victim selection policy of the row buffer management because

we found very small variations though we changed the victim selection policy to round

robin, least recently used (LRU), and other conventional ones. Therefore, LRU is used for

the rest of this dissertation unless otherwise stated.

4.2 Row Buffer Configuration

4.2.1 Unit size of row data buffer

We evaluate the effect of unit size of RDB on the memory access time, as shown in Fig-

ure 4.2. The plots with different markers and lines represent the results from the different

application traces. The unit size of each RDB varies from 128 to 16,384 bytes while the

number of RDBs is fixed to 4 for all configurations. We measure the memory access time

using latency at the processor. We normalize the memory access time of each configuration

to the baseline configuration (4⇥128 bytes RDBs).
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Figure 4.2: Memory access time varying on a unit size of RDB. The number of RDBs is set

to four for all configurations. The values of each memory access time are normalized to the

memory access time of 4⇥128 bytes RDBs configuration.

The comparison result shows that the effect of unit size of RDB varies on the behaviors

of memory accesses. For instance, blackscholes – open circle with solid line – is almost not

affected by the unit size of RDB. The reason is that increasing the unit size of RDB does

not increase the hit ratio in RDBs significantly for blackscholes because the access pattern

of the blackscholes is random. On the other hand, the memory access time of swaptions

– open square with dash line – is reduced significantly as the unit size of RDB increases

because the access pattern of swaptions is sequential.

Another observation is that memory time reduction by increasing the unit size of RDB

is limited after the 2,048 bytes in most cases. Even in the most sensitive application, swap-
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tions, the memory access time decreases just 4.3% when we change the unit size of RDB

from 2,048 bytes to 16,384 bytes. The memory access time decreases significantly when

the unit size of RDB changes from 8,192 to 16,384 bytes in some applications. We analyze

that accessing overlay window causes frequent RDB misses in those applications when the

unit size of RDB is less than 16,384 bytes. However, the number of misses is reduced when

the unit size of RDB is the same as the size of overlay window. The experimental results

imply that there are a lot of possibilities to optimize the row buffer space if we adequately

consider the behaviors of the memory accesses.

4.2.2 Number of row data buffers

We perform another design space exploration by changing the number of RDBs, as shown

in Figure 4.3. Instead of increasing the unit size of RDB, we change the number of RDBs

from 2 to 128. In this analysis, the unit size of RDB is fixed to 128 bytes for all con-

figurations. We normalize the memory access time of each configuration to the baseline

configuration (4⇥128 bytes RDBs).

Similar to the results of design space exploration by varying the unit size of RDB, the

number of RDBs also affects the memory system performance depending on the applica-

tions’ memory access behaviors. Among all applications, dedup, x264, and fluidanimate

are more sensitive than swaptions, streamcluster, and raytrace because the R/W ratios of

them are lower than others. As described in Section 4.1, more write operations occupy more

RDBs which mean the RDBs occupied from the read operations are evicted frequently. In

our analysis, single write operation occupies up to 3 RDBs due to overlay window opera-

tions.

Overall, changing the number of RDBs shows relatively less effect on the memory

access time compared to changing the unit size of RDB. We analyze that the cache captures
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Figure 4.3: Memory access time varying on the number of RDBs. The unit size of RDB

is fixed to 128 bytes for all configurations. The values of each memory access time are

normalized to the memory access time of 4⇥128 bytes RDBs configuration.

the random memory accesses effectively.

4.2.3 Unit size of row data buffer vs the number of row data buffers

We explore the design space of row buffer by increasing the unit size of RDB while the

number of RDBs is fixed and changing the number of RDBs while the unit size of RDB

is fixed in the previous subsections. We focus on the relation of memory access time and

other design parameters such as RDB configuration, the number of cores, and the size of

L2 cache in this section.

Figure 4.4 shows the memory access time varying on the RDB configurations. We select
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the two applications which are the representative application of random and sequential

behaviors among the all other applications. We change the unit size of RDB from 128 to

16,384 bytes and the number of RDBs from 2 to 128. We normalize the memory access

time of each configuration to the baseline configuration (4⇥128 bytes RDBs).

canneal has more random access pattern than sequential access pattern, so the RDB

configuration that has higher number of RDBs shows less memory access time than the

RDB configuration that has larger unit size of RDB if the total number of bytes for RDB is

same, as shown in Figure 4.4(a). On the other hand, swaptions has more sequential access

pattern than random access pattern. Figure 4.4(b) shows that increasing the unit size of RDB

reduces more memory access time than increasing the number of RDBs for swaptions.

The memory access time decreases if we use more resources on row buffer, but it in-

creases cost. Since the silicon area and the performance enhancement are not exchangeable,

we derive a Pareto optimum under the same area constraint, which implies the maximum

performance gain with a given constraint. We use the total number of bytes for RDBs to

present the silicon area overhead where the complexity of the control logic is expected to

be proportional to the unit size of RDB and the number of RDBs in general.

Figure 4.5 shows the variation of the memory access time with different RDB config-

urations under the same area constraint for two representative applications. We change the

total number of bytes for RDBs from 256 bytes to 2,097,152 bytes. We normalize the mem-

ory access time of each benchmark with the different unit size and number of RDBs to the

4⇥128 bytes RDBs configuration.

The result presented in Figure 4.5 clearly shows that there are the Pareto optima of RDB

configurations under the same area constraint. For instance, with 2,048 bytes of RDBs,

16⇥128 bytes configuration and 4⇥512 bytes configuration are Pareto optimum for can-

neal (Figure 4.5(a)) and swaption (Figure 4.5(b)), respectively. This analysis clearly shows
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that the performance of the memory system is varying on the design of row buffer configu-

ration even under the same area constraint. In our evaluation, we observed that the properly

designed row buffer configuration enhances the memory performance up to 61.8% compare

to the improperly designed row buffer configuration.

Figure 4.6 shows the extra performance gain per additional byte for two representative

applications. The open inverted triangle with dash line in Figure 4.6 represents the Pareto

optima row buffer configurations under the same area constraint. The closed circle with

solid line represents the extra gain per additional byte if we choose the Pareto optima RDB

configurations under the same area constraint. It shows the point that additional byte do not

significantly affect the performance. Two applications have a different knee point because

the memory access pattern is different.

We evaluate the memory access time variation according to the RDB configuration. The

optimum RDB configuration varies on the memory access pattern of the applications. There

are many design parameters that affect the memory access pattern of the applications but

we focus on the number of cores and the size of shared L2 cache. We change the unit size

of RDB from 128 to 16,384 bytes and the number of RDBs from 2 to 128. We normalize

the memory access time of each configuration to the baseline configuration (4⇥128 bytes

RDBs).

Figure 4.7 shows the normalized memory access time variation according to the number

of cores. We select two representative applications, anneal and swaptions, and evaluate the

memory access time with 4 cores, 8 cores, and 16 cores. We allocate a thread of application

to each core. The number of memory access is proportional to the number of cores because

the size of cache is fixed.

The memory access pattern of canneal with different number of cores changes signifi-

cantly, as shown in Figure 4.7(a). The memory access time reduction with 4 cores does not
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have knee point, and it is proportional to the unit size of RDB and the number of RDBs.

The increment of total number of bytes for RDB does not reduce the memory access time

with 8 cores significantly after the total number of bytes for RDBs exceeds 32,768 bytes.

The memory access time with 16 cores reduces significantly when the unit size of RDB

changes from 2,048 to 4,096 bytes and the number of RDBs changes from 32 to 64. The

memory access time reduction of swaptions with 8 cores is not sensitive to the number of

RDBs change, but that of swaptions with 4 cores and 16 cores are sensitive to the number

of RDBs change, as shown in Figure 4.7(b). The number of cores variation changes the

memory access pattern as similar as application changes.

The size of cache is another factor that can change the memory access pattern of the

applications. We change the size of shared L2 cache from 1MB to 2MB and 4MB while

keeping the number of way and the block size as same. The number of memory accesses

decreases as the size of shared L2 cache increases. We analyze the variation of the memory

access time reduction with two representative applications, canneal and swaptions.

The size of L2 cache does not change the memory access pattern of application sig-

nificantly, as shown in Figure 4.8. The memory access time reduction due to increment of

the number of RDBs affects more than that is caused by increasing the unit size of RDB as

the size of shared L2 cache increases. As a result, the slope of surface is a little changed.

Figure 4.8 also shows that the memory access time reduction decreases slightly as the size

of shared L2 cache increases.
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Chapter 5

System-Level Performance

Optimization

This chapter proposes system-level performance optimization based on the clues from

Chapter 4. First, we improves performance of memory system by reforming the way of

interfacing LPDDR2-NVM. The memory controller omits the part of three-phase address-

ing if RAB or RDB has valid data. Second, we show the limitation of static row buffer

architecture and propose a method that mimics reconfigurable row buffer architecture by

managing row buffers proactively.

5.1 Address Phase Skipping

5.1.1 Motivation

In LPDDR2-NVM standard, the preactive phase or activate phase can be skipped if the

RAB or RDB has valid data, as shown in Figure 5.1. Figure 5.1(a) shows a full addressing

sequence. Without valid data in the RAB and RDB, the memory controller should perform
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memory array to RDB
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(a) Without APS
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RL WL
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memory array to RDB
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RD done WR done

RL WL

(c) APS - RDB hit

Access data 
from/to RDB

RD done WR done

RL WL

tRP

tRCD tRCD

Figure 5.1: Operation of address phase skipping.

all three addressing phases. Figure 5.1(b) shows the case of a RAB hit. The addressing

sequence can start from the activate phase, and we save the time from the preactive to the

activate command, tRP. This address phase skipping (APS) method has the largest time

savings when the RDB already contains valid data, as shown in Figure 5.1(c). With valid

data, time consuming activate-to-read/write command period, tRCD, would be removed [74].

The incoming memory accesses due to cache misses in the processor makes a RDB hit

because the unit size of RDB is bigger than the size of a single cacheline in the proces-

sor. The proposed method skips the part of the address phase when we observe RAB hits.

This RAB hit is only applicable for the main memory system using LPDDR2-NVM. The

proposed method does not require significant overhead because it utilizes the existing row

buffers in LPDDR2-NVM.

5.1.2 Address phase and row buffer decision

We need an algorithm to manage row buffers to exploit the time advantage with APS

because LPDDR2-NVM has different row buffer architecture compared to conventional
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Algorithm 1: Address phase and address of row buffer decision algorithm
Data: access address

Result: address phase, address of row buffer

if Both RAB and RDB are valid, and lower row hit then
Address phase READ/WRITE

Address of row buffer hit RDB
else if RAB is valid, and upper row hit then

Address phase ACTIVATE

Address of row buffer LRU among hit RABs

else
Address phase PREACTIVE

if invalid RDB exist then
Address of row buffer invalid RDB

else
Address of row buffer LRU among RDBs

DRAM, as described in Chapter 2. We propose a row buffer management method that

consists of an address phase and row buffer decision algorithm plus a row buffer status

management algorithm.

The memory controller should track the row buffer contents to decide that the part of

addressing phase is skipped. The proposed method uses a content-addressable memory to

store the address of the row buffer contents. When a new memory access comes, the mem-

ory controller determines the starting point of the addressing phase based on this informa-

tion, as shown in Algorithm 1. We do not need the row buffer contents itself to determine

the starting point of the addressing point, so the overhead of the APS is not significant.

To utilizing the row buffer to efficiently skip the addressing phase, we need a row buffer

replacement policy similar to the cache, where the number of the row buffer is limited to
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Algorithm 2: Row buffer status management algorithm
Data: access type, access address, access data

Result: row address buffer, RABs status, RDBs status

if access is accepted then
Row address buffer row address of access

Status of selected RAB valid

if access is read in memory array then
Status of selected RDB valid

else if access is write in overlay window then
if access starts cell programming, and the programming data is stored in the

valid RDB then
Status of selected RDB invalid

4 or 8 in the LPDDR2-NVM standard. We select a victim based on the least recently used

(LRU) algorithm, as described in Algorithm 1.

5.1.3 Row buffer status management

An activated row in conventional DRAM should be precharged before accessing a different

row in the same bank, and thus the valid period of row buffer contents is determined from

the state of DRAM. However, LPDDR2-NVM does not require a precharge operation to

access a different row. The contents of RABs and RDBs are valid as long as power is

supplied, so the validity of RABs RDBs should be tracked. The contents in the RDB are

not valid any more when the write request updates the data in the memory array because

the contents in the RDB are not updated automatically until the updated row is activated

again. Algorithm 2 prevents this inconsistency problem by invalidating RDB while the part
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Table 5.1: LPDDR2-NVM SODIMM parameters.

Capacity 512MB

Speed bin LPDDR2-400

Preactive to Activate (tRP) 3 tCK
1

Activate to Read/Write (tRCD) 80ns

Read latency (RL) 3 tCK
1

Write latency (WL) 1 tCK
1

Burst length (BL) 8

Cell program time (tprogram) 20,000ns

The number of RDBs 4

The unit size of RDB 128 bytes

1tCK is a memory clock cycle (5ns at LPDDR2-400)

of the row address in RAB remains valid.

5.1.4 Experiments

We first verify the operation of the APS and evaluate memory access time reduction with

LPDDR2-NVM SODIMM by using synthetic workloads, such as sequential read, sequen-

tial write, random read, and random write accesses. Each synthetic workload consists of

1,000,000 accesses of 32 bits read or write. We increase the address by 4 to generate

the sequential workload. The XORShift32 is used to generate random workload. The syn-

thetic workload operates at MicroBlaze without cache. The parameters of LPDDR2-NVM

SODIMM are summarized in Table 5.1.

Table 5.2 shows the measured memory access time of the synthetic workloads. The
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Table 5.2: Comparison of the measured memory access time.

Workload without APS (ms) with APS (ms) Reduction (%)

Sequential read 189.99 82.81 56.41

Random read 190.00 189.38 0.33

Sequential write 25,237.58 25,198.58 0.15

Random write 26,163.62 26,103.17 0.23

APS does not show the significant memory access time reduction with sequential write

and random write. The APS reduces memory access time by reducing the time spent on

the interface. However, the cell program time of the PCM device used in LPDDR2-NVM

SODIMM is about a hundred times longer than the interfacing time, in turn, the cell pro-

gram time hides the effect of APS. The APS shows significant memory access time reduc-

tion with sequential read because 3.1% and 96.9% of sequential read occur RAB hit and

RDB hit, respectively. The RAB hit and the RDB hit reduces about 3.3% and 56.7% of

memory access time, respectively. The high RDB hit ratio in the sequential read leads to

significant memory access time reduction. The memory access time reduction with random

read is negligible because 3.1% of random read hits RAB, and the rest of memory accesses

miss RABs and RDB.

The memory controller with APS has to keep the address of contents in RDBs to judge

a RDB hit or miss. It also need to implement Algorithm 1 and 2. We implement those algo-

rithms with combinational logic, so APS is implemented in the memory controller without

additional time overhead. The memory controller uses a content-addressable memory to

store the address of contents in RDBs, but the number of RDBs is only four and it requires

row address only. Therefore, the APS is implemented with small area overhead. Table 5.3
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Table 5.3: Comparison of memory controller area.

without APS with APS Overhead (%)

Number of slice registers 11,647 11,850 1.74

Number of slice LUTs 10,787 11,165 3.50

Number of fully used LUT-FF pairs 4,792 4,966 3.63

shows the area comparison of memory controller without APS and APS. We use Kintex-7

XC7K325T-2FFG900.

We also evaluate memory access time with realistic trace using a system-level simulator

described in Section 3.2. We use the trace of the PARSEC benchmark [73] from a Simics

full-system simulator [72]. Table 5.4 shows the details of the simulated system. The pa-

rameter of LPDDR2-NVM SODIMM is used as the parameters of LPDDR2-NVM module

except the cell program time. We use four types of cell program time: 20µs, 10µs, 1µs and

150ns. This assumption on the cell program time is not an optimistic because a research

prototype from the industry takes 150ns to program a cell [15].

Figure 5.2 shows the memory access time reduction when the APS is applied. We as-

sume that write access completes when the cell programming ends. We also assume that

the NVM does not support a dual operation. All the values are normalized to the memory

access time without the APS on each application.

The spatial locality and temporal locality of read access significantly affect the row

buffer hit ratio, and this finally results in the memory access time reduction. The RAB and

RDB hit ratio of read accesses, rRD.RAB and rRD.RDB, varies from 9.3% to 69.2% and from

0.1% to 42.6%, respectively, as shown in Table 5.5. On the other hand, memory access of

write access is not affected by the spatial locality of it because of the asymmetric charac-
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Table 5.4: Configuration of the simulated system.

System 8 cores in-order processor

Processor UltraSPARC-III+, 2GHz

L1 cache (Private) I- and D-cache: 64KB, 4-way 64B block

L2 cache (Shared) 1MB, 4-way 64B block

LPDDR2-NVM main memory 1GB, LPDDR2-400, 64-bit wide

Preactive to Activate (tRP) 3 tCK
1

Activate to Read/Write (tRCD) 80ns

Read latency (RL) 3 tCK
1

Write latency (WL) 1 tCK
1

Burst length (BL) 8

Cell program time (tprogram) 150 ⇠ 20,000ns

The number of RDBs 4

The unit size of RDB 128 bytes

1tCK is a memory clock cycle (5ns at LPDDR2-400)

teristic of accessing flow. The row buffer hit ratio during the overlay window access for a

write operation is kept almost high regardless of the locality. The reason is that write ac-

cess of NVM is translated into the several consecutive overlay window accesses under the

LPDDR2-NVM standard, and the address of overlay window does not change. The RAB

and RDB hit ratio of overlay window accesses, rOW.RAB and rOW.RDB, varies from 17.9% to

33.9% and from 36.2% to 78.4%, respectively, as shown in Table 5.5. This implies that the

proposed APS method works more efficiently for write accesses regardless of the applica-

tion. The simulation results also show that the effect of cell programming time variation on
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Table 5.5: The RAB and RDB hit ratio of read and write accesses with APS.

Application rRD.RAB rRD.RDB rOW.RAB rOW.RDB

blackscholes 36.8 13.2 20.7 54.2

bodytrack 39.6 27.2 23.4 68.3

canneal 9.3 0.1 33.9 36.2

dedup 28.5 13.0 27.6 63.3

facesim 58.0 34.5 23.3 68.1

ferret 43.9 37.6 17.9 78.4

fluidanimate 29.1 4.8 31.4 58.8

freqmine 39.6 34.0 19.7 75.1

raytrace 69.2 20.6 26.2 38.6

streamcluster 51.7 33.5 24.3 58.5

swaptions 54.2 42.6 20.8 75.9

vips 44.5 25.0 21.2 75.5

x264 27.8 17.2 27.6 57.3

the RAB and RDB hit ratio is negligible.

The enhancement of APS is not significant in Figure 5.2(a)–20µs programming time–

because the relatively long cell program time hides the effect of the proposed method,

although we observe an average 65.8% and 91.0% row buffer hit ratio on read accesses and

overlay window accesses, respectively. The effect of the proposed method increases up to

41.8% where the cell program time reduces to 150ns, as shown in Figure 5.2(b), 5.2(c),

and 5.2(d). The applications with high R/W ratio such as facesim, raytrace, streamcluster,

and swaptions show significant memory access time reduction when the cell programming
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Figure 5.2: Memory access time of the APS normalized to memory access time without

APS on each application.
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time is 1µs, as shown in Figure 5.2(c). The cell program time in these applications does not

dominate memory access time because high R/W ratio means that these applications have

much read accesses than write accesses.

The proposed APS method reduces about 70% of single memory access time when

the RDB hit occurs during read and overlay window access. The overlay window access

time becomes similar to the cell program time if the cell program time becomes 150 ns.

In such a case, a single write access takes about 7 times longer than a read access without

the proposed APS method, whereas write access time with the APS method reduces to 5

times the read access time. This contributes to reduce the memory access time significantly.

Figure 5.2(d) shows that the APS reduces the memory access time of the applications with

low R/W ratio such as bodytrack, dedup, ferret, fluid animate, freemen, vips, and x264

significantly.

Figure 5.3 shows the effect of APS on the total execution time. The blue part of the

bar is the CPU execution time and the green part of the bar is the memory access time. The

proposed APS does not reduce the CPU execution time. The total execution time is reduced

up to 2.1% if the cell program time is 20µs, as shown in Figure 5.3(a). The effect of APS

increases up to 25.5% as the cell program time is reduced, as shown in Figure 5.3(b), 5.3(c),

and 5.3(d).

We analyze the potential of the proposed methodology with respect to the variation

of PCM cell program time, as shown in Figure 5.4. We use two applications (raytrace

and vips) that are read dominant and write dominant among all the applications. In both

applications, our APS method dramatically reduces the memory access time if the PCM

cell program time is reduced. The reduced memory access times of raytrace and vips with

the APS are, respectively, 18.4% and 44.9% of the memory access time without the APS at

150ns cell program time. In addition, the APS shows more effect on write access than on
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on each application.
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The values of each time parameter are normalized to the memory access time without APS.

read access if the PCM cell program time is reduced.

5.2 Proactive Row Buffer Management

5.2.1 Motivation

As described in Chapter 2, the row buffer architecture of LPDDR2-NVM is different from

that in conventional DRAMs where the row buffer architecture is fixed at the design time.

On the other hand, the LPDDR2-NVM standard specifies more flexibility in designing

and managing the row buffer architecture. For example, LPDDR2-NVM compatible device

can have several row buffers which are not tightly coupled with the address. In addition,

the memory controller may use any row buffer among several row buffers for any array

location. This flexible architecture enables us to design various row buffer management

policies considering the access patterns of the applications.

In designing row buffer architecture, determining the unit size of RDB and the number

of RDBs are as important as determining the total number of bytes for RDB. Figure 5.5
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shows a motivational example of this work. We simply compare the number of RDB hits

on the three different configurations; (a) The largest-RDB configuration, (b) The highest-

number-of-RDB configuration, and (c) reconfigurable-RDB configuration. In the figure,

the box with thick solid line means one physical RDB and one physical RDB consists of

one(or more) basic units – the box with dotted line. The size of one basic unit is equal to the

size of one cacheline. The largest-RDB configuration has only one RDB which consists of

4 basic units while the highest-number-of-RDB configuration has four RDBs where each

RDB size is equal to one basic unit. The example memory access patterns are showed on

the top of the figure. The first half of memory access pattern is sequential while the second

half of pattern is random. A grayed-box and horizontally-lined-box represents a RDB hit

and a RDB miss, respectively. For fair comparison, all three configurations start with same

initial state – Cachelines 4, 5, 6, and 7 are stored in the RDBs.

In the largest-RDB configuration, the request of Cacheline 0 incurs a RDB miss at time

T0. This RDB miss evicts all cachelines in the RDB, and then Cachelines 0 to 3 are fetched

from the NVM array, as shown in Figure 5.5(a). Since the next three memory accesses are

sequential, all three requests incur RDB hits. However, remaining memory access pattern at

time T4 to T7 incurs RDB misses again because of only one RDB. In total, 5 RDB misses

and 3 RDB hits are occurred during the memory accesses.

In contrast, the highest-number-of-RDB configuration handles a random memory ac-

cess pattern efficiently because one RDB has only one cacheline. However, it is very weak

to sequential memory access pattern. The requests of Cachelines 0 to 3 continuously incur

RDB misses at time T0 to T3, as shown in Figure 5.5(b). In total, we observe 6 RDB misses

and 2 RDB hits.

Both the largest-RDB configuration and the highest-number-of-RDB configuration pro-

vide limited capability to the given memory access pattern in the motivational example.
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Each configuration has advantages and disadvantages according to the characteristics of

memory access pattern. The characteristics of memory access pattern changes if operat-

ing application changes and/or time goes. Changing the RDB configuration dynamically

increases RDB hit with any kind of memory access pattern, as shown in Figure 5.5(c). It

reduces RDB misses by reconfiguring the row buffer as one RDB with four cacheline size

and replacing it with four consecutive cachelines at T0. It makes the next three memory ac-

cesses as RDB hits. The reconfigurable-RDB configuration modifies its RDB configuration

as one RDB with size of two cacheline and two RDB with size of one cacheline at T4. This

reconfiguration turns the remains of random memory accesses from T5 to T7 as RDB hit,

as shown in Figure 5.5(c). In total, 2 RDB misses and 6 RDB hits are occurred.

This dynamic reconfiguration shows the best RDB hit ratio with information of incom-

ing memory access pattern. It is important to predict the characteristics of memory access

accurately because reconfiguring RDB architecture with wrong information is possible to

incur more RDB misses.

5.2.2 Proactive row buffer control policy

The dynamic reconfiguration of row buffer enable us to increase RDB hit ratio by chang-

ing its RDB configuration based on the information of incoming memory access pattern.

However, the RDB configuration is fixed at the design time, and it does not support recon-

figuration usually. We propose a method that works in the memory controller to mimic a

reconfigurable RDB architecture. It predicts the characteristics of incoming memory access

pattern to increase RDB hit ratio.

In addition to that, write operation in LPDDR2-NVM incurs several overlay window

accesses, as described in Section 2.2. The memory access time reduces significantly if

RDB hit ratio of the overlay window accesses increases. We propose a simple method that
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increase RDB hit ratio with negligible overhead in the memory controller.

Prefetch technique in cache memories proactively moves a cacheline before it is re-

quested during the time interval of memory accesses. For the processor, it seems that the

size of one cacheline increases if the prefetch technique moves the successive cacheline to

the cache before it is requested. It means that the configuration of cache changes at runtime

without hardware modification. Similarly, we propose a row buffer prefetch technique that

moves data to RDB before it is requested during the idle time between memory accesses.

It works as increasing the unit size of RDB by reconfiguring the logical configuration of

RDB without physical modification.

Row buffer prefetch moves the data based on the prediction. It is implemented in the

memory controller. The memory controller predicts the characteristics of incoming memory

access pattern based on the history. If the memory controller predict that the characteristics

of incoming memory access pattern is a sequential, it inserts a row buffer prefetch command

to a command queue.

It is important to predict the characteristics of incoming memory access pattern cor-

rectly. Row buffer prefetch replaces data of one RDB due to limited number of RDB. It

may happen that the processor requests the abandoned data instead of the prefetched data if

the prediction fails. It turns a RDB hit to a RDB miss, thus increases memory access time.

The latency of memory access also increases if the row buffer prefetch does not finish until

the arrival of the memory access from the processor.

We do not consider priority of memory access from the processor, and give a high

priority to row buffer prefetch request than normal memory access. Row buffer prefetch

requires less time than normal memory access because it does not execute read/write phase

of three-phase addressing. It also have a chance to reduce the time consumption of incoming

memory access if the prediction is accurate.
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Some commercial DRAM controllers offer memory access reordering feature to in-

crease row buffer hit ratio. It changes the order of memory access in the memory controller

using reordering buffer, and returns the results to the processor as in-order. Reordering is

able to increase RDB hit ratio of LPDDR2-NVM. Reordering is effective when the com-

mand queue has a number of memory accesses while row buffer prefetch uses idle time of

the memory controller. Row buffer prefetch is orthogonal to reordering. However, we do

not consider reordering because we focuses on the relation between the characteristics of

memory access pattern and the RDB configuration.

We propose a system-level row buffer control policy that improve the memory system

with LPDDR2-NVM using row buffer prefetch through the rest of this section.

5.2.2.1 Tagged row buffer prefetch

The tagged row buffer prefetch, Tpre, is similar to a tagged prefetch in a cache. It sets a bit

on the RDB tracking table when a RDB is activated, as shown in Figure 5.6(a). This bit

is cleared when the RDB is first accessed, and then the row buffer prefetch is requested to

move the successive data to RDB, as shown in Figure 5.6(b). Tpre should evict one RDB

to prefetch data, and it selects a victim based on the same replacement policy that is used

when a RDB miss occurs.

Tpre moves data to the RDB aggressively. It is based on the assumption that memory

access pattern will be a sequential if RDB is accessed more than twice. This assumption is

justified by that the unit size of RDB is larger than the size of cacheline.

The row buffer prefetch is requested for read accesses only because a write memory

access is translated into several overlay window access in LPDDR2-NVM. The address of

overlay window does not change according to the address of the write memory access. This

address translation makes the write memory access as random memory access even though
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Figure 5.6: Operation of the tagged row buffer prefetch.

it is a part of sequential memory access pattern. Moreover, the overlay window accesses are

executed seamlessly without idle time, so the row buffer prefetch does not reduce memory

access time.

5.2.2.2 Multiple row buffer prefetch

Row buffer prefetch is initiated by a prediction, and accuracy of the prediction determines

the reduction of memory access time. Unnecessary row buffer prefetch increases memory

access time because it is possible to turn a RDB hit to a RDB miss and it blocks the memory

access from the processor until the row buffer prefetch is done. We propose a technique to

prevent unnecessary row buffer prefetches using two-bits saturating counter.

We use a two-bits saturating counter to predict the characteristics of incoming memory

access pattern. This saturating counter changes a mode according to the recent activity of

RDB, as shown in Figure 5.7. When a RDB hit occur, it decides that the incoming memory

66



RDB hit RDB miss

Sequential

Random

Allocated by 
processor

Allocated by 
proactivation

STRONG
SEQ

WEAK
SEQ

WEAK
RAND

STRONG
RAND

Figure 5.7: Mode transition and allocation of two-bit saturating counter for prediction of

incoming memory accesses.

access will be sequential memory access because the size of RDB is bigger than the size

of a single cacheline in the processor. It promotes the mode of saturating counter if it is

not saturated. On the other hand, it considers that the incoming memory access will be

random memory access if a RDB miss occurs. It demotes the mode of saturating counter.

It requests a row buffer prefetch when a RDB hit occurs and the incoming memory access

is sequential.

It is possible to use a global saturating counter for prediction, and it prevents unneces-

sary row buffer prefetches. However, a prediction of the global saturating counter is able to

fail because the global saturating counter changes its mode quickly. When the memory ac-

cess pattern is made up of sequential memory access patterns and random access patterns,

a RDB miss due to random access demotes the mode of the global saturating counter, in

turn, it predicts a sequential memory access as a random memory access. The global satu-

rating counter tracks only one sequential memory access pattern, so it does not works well

if several sequential memory access patterns are mixed.

Multiple row buffer prefetch, Mpre, uses multiple saturating counters as same as the

number of RDBs to avoid this miss prediction. Multiple saturating counters are able to
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track sequential memory access patterns up to the number of RDBs. When a RDB hit

occurs, Mpre promotes mode of saturating counter that tracks the hit RDB only. It does

not demote the mode of saturating counters that track other RDBs because it makes that a

saturating counter predicts a sequential memory access pattern as a random. A RDB miss

implies that it is not a part of sequential access patterns those are tracked by the saturating

counters. Mpre demotes mode of all saturating counters at once.

We have to decide an initial mode of the saturating counter when new data is allocated

to the RDB. RDB allocation is caused by the processor or a row buffer prefetch. The incom-

ing memory access will be sequential if a row buffer prefetch allocates RDB. Mpre assigns

WEAK SEQ mode to the tuple that tracks RDB allocated by the row buffer prefetch, as

shown in Figure 5.7. The other case, it assigns WEAK RAND mode to the tuple, as shown

in Figure 5.7. The memory access allocated by the processor misses all RDBs, so the in-

coming request will be a random memory access.

To skip the addressing phase, the memory controller should keep the address of data in

RDBs and validity of RDBs. The overhead of tracking the data in RDBs is not significant

because it is done by storing only row addresses. In addition to that, Mpre adds two-bits

saturating counters to the tracking table. The saturating counters predict the spatial corre-

lation between the stored data in each RDB and incoming memory access. This tracking

table also enables us to track the temporal correlation between the stored data in RDB and

incoming memory access. The row address of data in the RDB is evicted when the data

in each RDB is replaced by new memory access or row buffer prefetch. It means that the

evicted data does not have enough temporal correlation with incoming memory access.
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Figure 5.8: Row data buffer tracking table.

5.2.2.3 Multiple row buffer prefetch with overlay window pinning

As described in Chapter 2, the write memory access is translated into several overlay win-

dow accesses, and the address of overlay window is not altered according to the target

address of write access. Therefore, write memory access causes dense overlay window ac-

cesses which access specific address. If a memory access pattern consists of read access and

write access within a short period, RDBs contain overlay window have a high probability

of RDB hit. Thus, RDBs contain overlay window have less probability that to be selected

as victim by replacement policy, LRU, than RDBs contain memory array. However, it is

possible to happen that RDBs contain overlay window are selected as victim even though

incoming memory access pattern contains write access due to the limited number of RDBs.

To avoid this situation, we propose a simple method, overlay window pinning, that

proactively manages RDBs contains overlay window efficiently based on the prediction. It

dedicates RDBs for overlay window access if incoming memory access pattern has write

accesses. It uses a weighted moving average, Wmv.avg, for prediction. It has a negligible

area overhead because it needs a register with simple combinational logic and one bit for

each RDB in row data buffer tracking table to indicate that RDB is pinned, i.e., RDB is not

selected as victim, as shown in Figure 5.8.
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Algorithm 3: Proactive RDB control policy of Mpre +OW
Data: information of access

Result: address phase, mode, row buffer prefetch, P bit

if access is WRITE then
shift and evaluate Wmv.avg

if access is HIT on RDBi then

if access is READ then
promote MODE of RDBi if MODE of RDBi >= WEAK SEQ and next data is not

exist in RDB then
request row buffer prefetch

else

if Wmv.avg > WRITE THRESHOLD and access is not PROGRAM BUFFER then
P bit of RDBi  SET

else
P bit of RDBi  CLEAR

ADDRESS PHASE = READ\WRITE

else

for All RDBi do
demote MODE of RDBi

find RDBvictim that is not pinned based on LRU

allocate access to RDBvictim

ADDRESS PHASE PREACTIVE

MODE of RDBvictim  WEAK RAND

if Wmv.avg > WRITE THRESHOLD and access is not PROGRAM BUFFER then
P bit of RDBvictim  SET

else
P bit of RDBvictim  CLEAR

if row buffer prefetch is reqeusted then
find RDBvictim that is not pinned based on LRU

allocate access to RDBvictim

ADDRESS PHASE PREACTIVE

MODE of RDBvictim  WEAK SEQ
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The proposed method evaluates Wmv.avg with every memory access and pins a RDB for

overlay window when the value of Wmv.avg exceeds a predefined threshold, but it does not

pin all RDBs that contain overlay window. The evaluated system uses a buffered overwrite

command to program cells.Within the overlay window accesses, program buffer accesses

show a low RDB hit ratio because the address of program buffer access changes accord-

ing to the address of write access. Therefore, the proposed method does not pin the RDB

contains program buffer.

We study several proactive row buffer control policies. Tpre increases RDB hit ratio of

read access by making a larger effective unit size of RDB through row buffer prefetches.

Mpre reduces memory access time by preventing unnecessary row buffer prefetches. Over-

lay window pinning increases RDB hit ratio of overlay window access while it sacrifices

little RDB hit ratio of read access. These methods manage row buffer proactively based on

the prediction. We propose a heuristic that controls the row data buffers proactively with

combination of above methods, as shown in Algorithm 3. Multiple row buffer prefetch

with overlay window pinning, Mpre +OW , is implemented in the memory controller with-

out modification of the memory device.

5.2.3 Experiments

We evaluate the memory access time reduction of the proposed heuristic using a cycle-

accurate trace-driven SystemC simulator described in Chapter 3. We use the trace of the

PARSEC benchmark [73] from a Simics full-system simulator [72]. The details of the sim-

ulation setup are summarized in Table 5.6.

We compare the memory access time of static optimum RDB configuration, APS, Tpre,

Mpre, and Mpre + OW . We measure the memory access time using latency at the proces-

sor. The static optimum RDB configuration is that the RDB configuration has a minimum
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Table 5.6: Configuration of the simulated system.

System 8 cores in-order processor

Processor UltraSPARC-III+, 2GHz

L1 cache (Private) I- and D-cache: 64KB, 4-way 64B block

L2 cache (Shared) 1MB, 4-way 64B block

LPDDR2-NVM main memory 1GB, LPDDR2-800, 64-bit wide

Preactive to Activate (tRP) 3 tCK
1

Activate to Read/Write (tRCD) 120ns

Read latency (RL) 6 tCK
1

Write latency (WL) 3 tCK
1

Burst length (BL) 8

Cell program time (tprogram) 150ns

The number of partitions 16

1tCK is a memory clock cycle (2.5ns at LPDDR2-800)

memory access time among the possible RDB configurations. It is determined for each

application through the design space exploration. The proposed heuristics work as increas-

ing the effective unit size of RDB dynamically but not increasing the number of RDBs.

Therefore, the heuristics work with the-highest-number-of-RDB configuration in each to-

tal number of bytes for RDBs. Table 5.7 shows the physical RDB configuration of each

heuristics.

The memory controller has a write data queue so the processor ends write operation

when the data reaches the write data queue. We assume that the memory device supports

dual operation of LPDDR2-NVM. It enables read access in other partitions during cell pro-
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Table 5.7: Physical RDB configuration of each heuristic.

Static optimum RDB configuration 2⇥512, 4⇥256, or 8⇥128 bytes

APS 8⇥128 bytes

Tpre 8⇥128 bytes

Mpre 8⇥128 bytes

Mpre +OW 8⇥128 bytes

gramming in a partition. It avoids the increase of read latency due to the long cell program

time. However, the read latency increases when the processor try to read a partition that is

cell programming because the read access has to wait until the cell programming is done.

Figure 5.9 shows memory access time of APS, Tpre, Mpre and Mpre + OW . The mem-

ory access time of each configuration is normalized to the static RDB configuration. The

APS takes on average 9.2% more time than the static optimum RDB configuration. APS

reduces memory access time when a RAB or a RDB hit occurs. However, static RDB con-

figuration shows more RDB hit ratio than APS in the most of application because the RDB

configuration is optimized for RDB hit. Tpre usually takes more memory access time than

the static optimum configuration in the applications except bodytrack, facesim, swaptions,

and vips. The row buffer prefetch makes the effective unit size of RDB larger, in turn, it re-

duces memory access time with sequential memory access pattern. However, the heuristic

of Tpre prefetches a row buffer aggressively. It causes unnecessary row buffer prefetches,

in thus, increases memory access time on average 9.0%. Mpre prevents unnecessary row

buffer prefetches efficiently, so it reduces memory access time in the most applications

except fluidanimate and raytrace. The average memory time reduction of Mpre is 11.3%.

Figure 5.9 shows that Mpre + OW predicts the characteristics of incoming memory access
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Figure 5.9: Comparison of memory access time normalized to the static optimum RDB

configuration.

pattern more accurately. Mpre + OW shows on average 11.8% and up to 28.8% memory

access time reduction.

Table 5.8 shows the hit ratio comparison of the static optimum RDB configuration,

APS, Tpre, Mpre, and Mpre + OW . We distinguish the RDB hit ratio of read access, rRD,

and overlay window access, rOW . APS has not only a RDB hit, but also a RAB hit. We

uses rRD.RAB, rRD.RDB, rOW.RAB, and rOW.RDB to indicate the RAB hit ratio and RDB hit ratio

of read access and overlay windows access, respectively. rOW is higher than rRD usually

because overlay window access has a high spatial and temporal locality in LPDDR2-NVM.

Tpre shows higher rRD than that of the static optimum RDB configuration usually because

it prefetches row buffer aggressively. This aggressive row buffer prefetches decrease rOW

of Tpre. Mpre reduces the total number of row buffer prefetches and increases the accuracy

of prediction. Therefore, rRD of Mpre are lower than that of Tpre in applications with a
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sequential characteristic such as bodytrack, raytrace, streamcluster, and swaptions. rOW

of Mpre are higher than that of Tpre in all applications. Table 5.8 shows that Mpre + OW

increases rOW while sacrificing little rRD.

A RDB is allocated by a RDB miss or a row buffer prefetch. We define a ratio of row

buffer prefetch, rPF , as the number of RDB allocation caused by row buffer prefetches to

the total number of RDB allocation. A row buffer prefetch is unnecessary if a prefetched

RDB is not accessed until it is evicted. We define a good row buffer prefetch and a bad

row buffer prefetch to evaluate a prediction of the heuristics. We consider it as a good row

buffer prefetch if the prefetched RDB is accessed more than once before it is evicted and a

bad row buffer prefetch if it is not accessed until it is evicted. We also define a ratio of good

row buffer prefetch, rG.PF , as the number of good row buffer prefetches to the number of

total row buffer prefetches. The rPF and rG.PF are good indicators that show the prediction

accuracy of the heuristics.

Table 5.9 shows rPF and rG.PF of Tpre, Mpre, and Mpre +OW . Tpre prefetches row buffer

prefetch aggressively, in turn, rPF of Tpre is higher than that of other heuristics. rG.PF of Tpre

is also higher than other heuristics, but the number of bad row buffer prefetches is larger

than other heuristics. This results in memory access time increase in some applications such

as blackscholes, canneal, fluidanimate, and x264. Overlay window pinning of Mpre + OW

changes the victim selection. Mpre +OW selects a RDB that contains read data as a victim

instead of a RDB that contains overlay window when memory access pattern contains dense

write accesses. It increases a RDB hit probability, and it results in increase of rPF and rG.PF .

We evaluate the total execution time reduction of the proposed heuristic. Figure 5.10

shows the comparison of total execution time of heuristics normalized to the static optimum

RDB configuration on each application. APS takes on average 1.9% more time than the

static optimum RDB configuration on average because it has lower RDB hit ratio. The total
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Table 5.9: Comparison of the prefetch ratio and the good prefetch ratio.

Application
Tpre Mpre Mpre +OW

rPF rG.PF rPF rG.PF rPF rG.PF

blackscholes 50.3 16.7 14.3 11.7 14.4 11.8

bodytrack 41.1 47.9 27.7 22.5 28.2 23.0

canneal 35.6 0.2 0.1 0.0 0.1 0.0

dedup 36.6 22.8 14.1 9.8 14.2 9.9

facesim 57.8 61.5 46.4 43.5 47.1 44.1

ferret 34.6 44.3 29.9 25.8 30.1 26.0

fluidanimate 32.9 2.6 5.1 1.0 5.2 1.1

freqmine 34.1 37.7 23.2 20.2 23.5 20.4

raytrace 51.6 41.2 24.5 20.4 24.6 20.5

streamcluster 50.3 47.4 32.7 27.3 33.1 27.5

swaptions 71.7 81.6 66.2 64.2 66.8 64.7

vips 39.1 41.1 23.8 19.0 23.9 19.1

x264 38.8 30.8 20.1 15.6 20.5 16.0

execution time of Tpre is on average 6.2% more than that of the static optimum RDB config-

uration. The memory access time of canneal, dedup, fluidanimate, and x264 dominates the

total execution time, and Tpre causes significant time overhead in these applications. The

time reduction of Mpre is on average 1.9%. Mpre +OW reduces on average 2.2% and up to

4.4% of total execution time. The proposed heuristic does not alter the CPU execution time

but it shows significant total execution time reduction.

The cell program time is an important parameter of NVM. The dual operation of
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Figure 5.10: Comparison of total execution time normalized to the static optimum RDB

configuration.

LPDDR2-NVM is able to hide cell program time in some cases, but it determines the

performance of memory system usually. We use the cell program time of the optimistic

research prototype in the evaluation [15]. We analyze the effect of cell program time on

the memory access time reduction of the heuristics if the cell program time increases. Fig-

ure 5.11(a), 5.11(b), and 5.11(c) show the memory access time reduction when the cell

program time is 1µs, 10µs, and 20µs, respectively. The memory access time reduction of

the heuristic decreases as the cell program time increases because the cell program time

dominates the memory access time. Mpre + OW reduces up to 12.9%, 3.9%, and 2.9% of

memory access time with 1µs, 10µs, and 20µs cell program time, respectively.

The characteristics of memory access pattern determines the memory access time re-

duction of the proposed heuristic. The number of cores in system causes the variation on

the characteristics of memory access pattern. We analyze the potential of the proposed
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Figure 5.11: Memory access time varying on the program time. Memory access time is

normalized to the static optimum configuration.
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Figure 5.12: Sensitivity analysis of memory access time varying on the number of cores.

heuristics with respect to the variation of the number of cores, as shown in Figure 5.12.

We select two representative applications – canneal and swaptions because those have the

most random access pattern and sequential access pattern, respectively. The values of each

heuristics are normalized to the memory access time of the static optimum RDB configu-

ration. The number of cores variation is not related to the memory access time reduction of

the heuristics, but it works as a different application, as shown in Figure 5.12.

We also analyze the relation between L2 cache size and the memory access time re-

duction of the heuristics. The simulated system uses 1 MB shared L2 cache. The number

of memory access is reduced if the size of L2 cache increases, but the characteristics of

memory access pattern does not change significantly. The proposed heuristic changes the

logical RDB configuration according to the characteristics of memory access pattern, so the

size of L2 cache does not affect the memory access time reduction of the proposed heuristic

significantly.
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Chapter 6

Conclusions

SRAM, DRAM, and NAND flash are main components of the typical memory systems, but

these traditional memory devices have limitations such as volatility, low density, and high

energy consumptions. Several innovative NVM technologies have been researched over the

last few years to address the limitations of traditional memory devices. However, we found

that many research papers do not correctly reflect NVMs’ trends in the industry and over-

look the standard interface, LPDDR2-NVM, although their contributions are significant.

This dissertation discusses the difference between the conventional DRAM and LPDDR2-

NVM such as row buffer architecture, address mechanism, and asymmetric read/write op-

eration. These differences require a different system-level performance optimization for

the memory system using LPDDR2-NVM. We also review the previous work that adopting

emerging NVMs to the typical memory systems.

For system-level optimization, we implement an LPDDR2-NVM platform that is made

up of an LPDDR2-NVM prototype and a system-level simulator. The LPDDR2-NVM pro-

totype verifies the operation of memory system with LPDDR2-NVM and provides parame-

ters of LPDDR2-NVM to the system-level simulator. The system-level simulator is imple-
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mented in SystemC, so it evaluates the effect of the system-level performance optimization

cycle-accurately. There is no platform based on a real LPDDR2-NVM device. Therefore,

the implemented platform provides an accurate information and insight to the researchers

who work with NVMs.

The design space exploration shows the effect of row buffer management policy and

configuration on the performance of memory system using LPDDR2-NVM. We compare

the direct-mapped policy and fully-associate policy, and discuss the effect of replacement

policy. Memory access time reduction varies on the RDB configuration and memory access

pattern of applications. We analyze the effect of RDB configuration including other system

parameters such as the number of cores and the size of shared L2 cache. From the results

of the design space exploration, we concludes that RDB architecture is an key design factor

to optimize the performance of memory system using LPDDR2-NVM.

Three-phase addressing mechanism and row buffer architecture of LPDDR2-NVM give

us a way to optimize system performance. We propose a system-level method that improves

the performance of memory system by skipping unnecessary addressing phase of three-

phase addressing. We evaluate the effect of the proposed method by using LPDDR2-NVM

platform. The proposed method reduce up to 41.8% memory access time where the cell

program time reduces to 150ns. We also present the sensitivity analysis of memory access

time varying on the cell program time. It enables us to predict the potential of the proposed

method according to the cell program time variation.

The memory access pattern of application and the RDB configuration determines the

performance of memory system with LPDDR2-NVM. The memory access pattern changes

according to the application and/or time goes. We show the limitation of the static row

buffer architecture and propose a system-level method that mimics reconfigurable row

buffer architecture by managing row buffer proactively. The proposed method reduces the
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memory access time on average 11.8% and up to 28.8% than the static optimum RDB con-

figuration. We also analyze the relation between the memory access time reduction and the

cell program time of NVM.

We discuss the performance of memory system that uses LPDDR2-NVM as main mem-

ory in this dissertation. LPDDR2-NVM has different addressing mechanism and row buffer

architecture, so it requires different optimization method to improve the memory system

performance. The long cell program time of NVM prevents the adoption of NVM in a

memory system, but it is a promising DRAM replacement if the cell program time is re-

duced.

The following issues are remained for future research:

• Implementation of the LPDDR2-NVM controller that support a hybrid memory with

DRAM and LPDDR2-NVM.

• Optimization of LPDDR2-NVM compatible memory device architecture including

the size of partition.

• Cache write-back scheduling to reduce the latency of memory system using LPDDR2-

NVM.
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