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Abstracts 
 

In unknown environments, multiple robots must have capabilities to sense and 

interpret their surroundings, and localize themselves before performing some 

missions such as exploring the mineral resources and rescuing people. It is 

usually called multi-robot simultaneous localization and mapping. To perform 

multi-robot SLAM more accurately, robots are required to build maps of their 

surroundings accurately. In addition, inter-robot measurements should be 

properly utilized in the SLAM process. 

In this dissertation, a novel Rao-Blackwellized particle filter based SLAM 

framework is presented using geometric information and inter-robot 

measurements for accurate multi-robot SLAM. For SLAM, a Rao-

Blackwellized particle filter (RBPF) is basically one of representative methods. 

It takes advantage of linear time-complexity which is linearly proportional to 

the number of features by factoring the full SLAM posterior into the product of 

a robot path posterior and landmark posteriors. Additionally, it deals with multi-

hypothesis data association using particles with their own data association. 

They makes it more robust than extended Kalman filter based SLAM. 

The proposed SLAM framework is divided into two major parts. First, the 

RBPF is improved using cooperation among particles in case of single robot 

SLAM, which is called Relational RBPF-SLAM. Here, the framework 



basically follows the process of the factored solution to SLAM using the 

unscented Kalman filter (UFastSLAM), which is an accurate instance of RBPF-

SLAM. A concept of particle to particle cooperation is considered in the 

importance weight step and the resampling step to increase the SLAM accuracy 

and solve some inherent problems such as the particle depletion problem and 

the data association problem. The particle depletion problem is almost 

eliminated using the formation maintenance of particles which is controlled 

without any rejection or replication of particles during the resampling step. In 

addition, to overcome the data association problem, the posterior distribution is 

estimated more accurately by compensating improperly assigned weights of 

particles. Secondly, to reduce the accumulated robot pose errors and feature 

errors, inter-robot measurements are utilized in the proposed RBPF-SLAM 

framework. They can be measured when a rendezvous between robots occurs 

or robots share common features. To deal with the inter-robot measurements, a 

Kalman consensus filter scheme is involved in the proposed RBPF-SLAM 

framework, which is robust than the covariance intersection method. Several 

simulations and experiments show significant improvements of the proposed 

RBPF-SLAM framework in both the accuracy of robot poses and map quality 

by comparing the state of the art techniques, i.e. FastSLAM 2.0, particle swarm 

optimization (PSO) based FastSLAM, UFastSLAM, particle fission based 

UFastSLAM and PSO based UFastSLAM. 
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Notation Description Chapter

 The ith particle 2 
[ ]i
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The ith particle’s pose 2,3,4 

[ ]
,

i
N t

 
The Feature mean of the ith particle 2 

[ ]
,

i
N t

 
The Feature covariance of the ith particle 2 

Nf The number of features 2 

N The number of particles 2 

1:tc  The set of data associations until time t 2 
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The measurement noise covariance 2,5,6 
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The control input noise covariance 2,5,6 
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tw  The weight of mth particle at t 2,3 

effN  The effective number of particles as an operation criteria 
for the resampling step 2 



iR  The ith robot 2,4,5 

iu  The information vector by the ith robot 2,4 

iU  
The information matrix by the ith robot 2,4 

,
,ˆt i

j kz  The prior estimate of the robot t with particle i to the jth 

landmark at time k 
2 

,
, 1

t i
j k  The updated jth landmark of the robot t with particle i until 

k-1 
2 

[ ]m
twc  

The compensation term in the weight equation 3 

[ ],
p
m iT  The ith expectation of a new likelihood for the mth particle 

after the p-th iteration 
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un
 A vector of unknown parameters 3 
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L  The means of normal distribution for the first cluster after L-

iteration 3 
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L  The means of normal distribution for the second cluster after 
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Tm The triangular configuration of the mth particle 3 
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1[ ]n
tx  The neighbor particle who has the shortest Euclidean 

distance from particle [ ]m
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2[ ]n
tx  

The neighbor particle that is determined to minimize the 
sum of two distances, i.e., the distance between [ ]m
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1[ ]n
tx  and the distance between 1[ ]n

tx  and 2[ ]n
tx . 
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[ ]k
tPw  the transformed weight for the kth particle to operate the 

PFM 
3 

n
a

 
The relative transformation vector 4 
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The reference robot 4,5 

iH The Jacobian of the observation model in Consensus 4 

'
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ab The fused information vector for Rf 4 
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aB The fused information matrix for Rf 4 

,( )
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a aP The merged covariance for Rf and Rn 4 
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twc The simple weight compensation term 5 

A parameter of the simple compensation scheme 5 

( )Pose t The robot pose error according to t 5 
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Pose The total errors of the robot poses 5 
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( )Avg t The average feature errors according to t 5 

I The line feature vector 6 

 

 



Chapter 1 

Introduction 

1.1 Background and motivations 

Localizing a robot while building a map of its surroundings, called 

Simultaneous Localization and Mapping (SLAM), is one of the most important 

capabilities that intelligent robots should have. To perform SLAM, there are 

three approaches, i.e. scan matching based SLAM [1-9], graph SLAM [10-22], 

and Bayesian filter based SLAM [23-40]. These approaches have pros and cons 

according to their purpose, the type of features, the type of data acquisition 

methods and the SLAM implementation. In case of scan matching based SLAM, 

it can be operated without the robot control inputs such as odometry 

information. To obtain all estimated robot poses and feature locations directly, 

called full SLAM, the graph approach is suitable for SLAM [96]. To estimate 

the current state and the current covariance based on the previous state and 



measurements, called online SLAM, the Bayesian filter based SLAM can be 

operated well and we handle this SLAM framework in detail in this dissertation. 

EKF-SLAM [23-25], as the oldest and the most popular approach, has 

served as the main approach to the SLAM problem for the last twenty years. 

However, EKF-SLAM is known to have two major well-known shortcomings: 

quadratic computational complexity and sensitivity to failures in data 

association. First, the computation of EKF-SLAM grows quadratically with the 

number of landmarks since observation-update step requires that all landmarks 

and the joint covariance matrix are updated every observation [33]. Second, it 

is especially difficult to deal with a loop closure problem, that is, when a robot 

returns to observe landmarks again after a large traverse. These shortcomings 

consequently make it difficult to apply EKF-SLAM in real and large 

environments. 

Murphy [27] and Doucet [28] introduced Rao-Blackwellized particle filters 

as an effective means to solve the SLAM problem. Each particle in a RBPF 

represents a potential trajectory of the robot and a map of its surrounding 

environment. FastSLAM, which is a specific instance of SLAM based on a 

Rao-Blackwellized particle filter (RBPF-SLAM), has been considered as an 

alternative solution to overcome the above mentioned problems [35, 36]. It 

takes advantage of linear time-complexity which is linearly proportional to the 

number of features by factoring the full SLAM posterior into the product of a 

robot path posterior and landmark posteriors. Additionally, it induces a multi-



hypothesis data association using multiple particles with its own data 

association, which makes it more robust than EKF-SLAM. However, there are 

some limitations in spite of the advantages of RBPF-SLAM when a finite 

number of particles is used. One issue is that the distinctive particles are 

decreased over time because low-weight particles are rejected and high-weight 

particles are replicated in the resampling step known as the particle depletion 

problem [41, 42]. In this way, RBPF-SLAM typically does not maintain 

multiple data association hypotheses. Another limitation is related to filter 

convergence. The weight of the particles can be assigned according to an 

improper proposal distribution, which can cause a failure in the approximation 

of the posterior distribution. Finally, the filter can be diverged. In addition, the 

resampling step can accelerate the degeneration of the convergence capability 

through rejection and replication using the particle weights. This dissertation 

deals with both the filter convergence and the particle depletion problems. In 

addition, another problem related to data association is suggested and 

concerned throughout this dissertation. 

When RBPF-SLAM is applied to a multi-robot system (MRS), the filter can 

consider the inter-robot measurements because these inter-robot measurements 

allow the robot state and the features to be accurately compensated. These 

measurements occur when two robots meet each other (Rendezvous event) or 

multiple robots share a common place or feature (Feature sharing event) as 

shown in Fig.1. When a feature sharing event occurs, their common features 



can be updated according to the scheme of a Kalman consensus information 

filtering (KCIF) [92]. The KCIF has more accurate and better convergence 

capability performance than covariance intersection (CI) for data fusion [93]. 

In case of a rendezvous event, which occurs more frequently than the feature 

sharing event in multi-robot systems, multi-robot poses can be estimated more 

accurately using inter-robot measurements between two robots at the 

rendezvous point. In this dissertation, the above situations are considered by 

combining the KCIF scheme and RBPF-SLAM framework. 

 
1.2 Related Work 

There are three categories for SLAM, i.e. scan matching based SLAM, 

graph SLAM and Bayesian filter based SLAM, which are described in Fig. 1.2. 

These are considered in Section 1.2.1, 1.2.2, and 1.2.3 in detail, respectively. In 

(a) Rendevous Event           (b) Feature Sharing Event 

Figure 1.1 Two cases for acquiring inter-robot measurements. Two robots meet each 

other in (a), which is called Rendezvous event. Multiple robots share a common feature 

or place, which denotes Feature sharing event  

 



addition, unknown initialization problem and data fusion for multi-robot SLAM 

are handled in Section 1.2.4.  

 
1.2.1 Scan Matching based SLAM 

For SLAM, scan matching methods estimate the pose of robots by using 

two consecutive scans, which are measurements obtained from range sensors. 

Scan matching methods can be divided into point-to-point matching, point-to-

line matching, point-to-plane matching and plane to plane matching. One of the 

most popular and the oldest scan matching methods is the iterative closest point 

(ICP) method [1-3]. The ICP method is a point-to-point method that find out 

the optimal transformation between two consecutive scans. The sum of the 

squared Euclidean distances between the corresponding points is minimized 

Figure 1.2 Research Areas for SLAM. 



iteratively according to its cost function. If the angle difference between two 

scans is small, the method is well operated. Otherwise, many points are not 

associated correctly, which results in incorrect data association and incorrect 

transformation. For this reason, iterative dual correspondence (IDC) 

alternatively and separately operates rotation and translation by minimizing the 

sum of the squared Euclidean distances [4]. Generalized-ICP (G-ICP) 

represents the cost function of the standard ICP as a single probabilistic 

framework [8]. It can represent the point-to-point and the point-to-plane ICP 

according to the projection matrix in the cost function. 

The property of the Hough domain is employed in Hough scan matching 

(HSM) [7]. HSM extracts spectrum which is the distribution of features from 

the geometric points. After the extraction step, the spectrums obtained at two 

consecutive time steps are matched according to their correlation. HSM 

computes a transformation without the iteration, which finds out the maximal 

correlation between the spectra of a current scan and a reference scan. Diosi 

and Kleeman [5] developed polar scan matching (PSM) which belongs to the 

family of point-to-point scan matching techniques. PSM not only takes the 

advantage of the structure of the sensor measurements but also eliminates an 

expensive search for corresponding points differently from the standard ICP. In 

addition, PSM is generally aided by a robot odometer for the sake of obtaining 

a possible angle. In [6], curvature functions are considered for dynamic 

environments in PSM. In scan data, the amount of dynamic objects is removed 



and compensated by the interpolation methods such as the linear interpolation, 

the nearest-neighbor interpolation, the polynomial interpolation. 

Another method for scan matching is the normal distributions transform 

(NDT), which was initially proposed as a 2-D scan matching method and was 

later extended to three dimensions [9]. The 3-D NDT is not a point-to-point 

approach which conducts scan matching between two scans using the closest 

points but is a point-to-distribution approach that carries out scan matching 

between the reference scan and a set of distributions in grids or voxels generated 

from the model scan. Because the NDT does not need to search for the closest 

points or store the raw data from the model scan, it can greatly reduce 

computational burden and the amount of required memory, especially in 3-D 

scan matching. In addition, the gradient vector and the Hessian matrix of its 

score function have analytic forms, allowing the simple use of standard 

nonlinear optimization methods such as Gauss-Newton and Levenberg-

Marquardt optimization to estimate the optimal transformation. 

 
1.2.2 Graph SLAM 

The graph-based SLAM is a full SLAM or off-line SLAM, which 

constructs a graph whose nodes represent robot poses or landmarks and in 

which an edge between two nodes encodes a sensor measurement that 

constrains the connected poses. The constraints denote spatial information, 

such as a rigid transformation and a Euclidean distance with a bearing angle. 



The graph-based SLAM was first formulated as a nonlinear optimization 

problem by Lu and Milios [10]. But it took many years to make this formulation 

popular due to the comparably high complexity of solving the error 

minimization problem using standard techniques. Subsequently, many 

algorithms, such as multi-level relaxation (MLR) [11], square root smoothing 

and mapping (SAM) [12], tree-based network optimizer (TORO) [13], general 

graph optimization (g2o) [14], and so on [17, 18, 19], have been recently 

proposed. Furthermore, some of them were extended to incremental versions 

[16, 17]. These approaches can be divided by full linear solvers using several 

decomposition methods and stochastic relaxation using Gauss-Seidel, 

Stochastic gradient descent, Gauss-Newton, Levenberg-Marquardt and so on. 

A heuristic approach is Explicit Loop Closing Heuristics (ELCH) that is a fast 

and very accurate solution [18]. It also can be easily combined with other 

optimization tools such as LUM, TORO. However, ELCH distributes the 

transformation vector over the SLAM graph locally, which only depends on the 

last node. As shown in Fig. 1.3, it is extended in [19] for multiple robots, which 

is extended ELCH. When a rendezvous between robots occurs or they share a 

common place, a loop is constructed and compensated according to the 

extended ELCH scheme.  

Most graph-based SLAM algorithms focus on back-end which optimizes 

the graph constructed in front-end composed of loop detection [20], scan 

matching [1], and so on. However, the back-end relies heavily on the 



information of the constructed graph, thus front-ends are critical for the 

performance of the graph-based SLAM. Hence, to overcome errors of graph 

from front-ends, robust graph-based SLAM approaches were proposed [21, 22]. 

In spite of that, because the robust algorithms still utilize the information of the 

edges judged as inliers, the significance of front-ends has not changed in order 

to guarantee the performance of the graph-based SLAM. 

 
1.2.3 Bayesian Filter based SLAM for Single Robot 

Unlike scan matching based SLAM and graph SLAM, as online SLAM, 

Bayesian filter based SLAM can recursively estimate the current robot pose and 

a map of its surroundings in unknown data association at each time step. One 

of popular and simple approaches is the extended Kalman filter based SLAM 

(EKF-SLAM), which assumes a motion and a measurement noise are 

distributed according to the Gaussian distribution, and motion models of robots 

Figure 1.3 Example of graphical model for extended ELCH (EELCH)

 



and measurement models of sensors are nonlinear [23, 24]. Until recently, it has 

been used due to its simple implementation for SLAM, but this approach has 

some limitations such as computational complexity and single hypothesis data 

association. As the above mentioned, the first drawback of the EKF as a 

solution to the SLAM problem is related to computational complexity [28, 57]. 

Both the computation time and memory required by the EKF scale 

quadratically with the number of landmarks in the map. SLAM algorithms 

based on the full EKF generally do not scale beyond a few hundred landmarks. 

However, millions of features are contained in reasonably large environment 

models. The second one is single-hypothesis data association. If a large number 

of readings are incorporated incorrectly into the EKF, the filter will diverge. To 

overcome the above two problems, the sparse extended information filter 

SLAM (SEIF-SLAM) [25, 26] was suggested by solving the scalable problem 

by sparsification of an information matrix. They assumed that most pairs of 

landmarks are nearly conditional independent of each other. Even though 

degrading its accuracy from the assumption, the SEIF-SLAM achieves that the 

time complexity per step and the space complexity are O(1) and O(N), where 

N is the number of landmarks. The unscented Kalman filter (UKF) is a more 

reliable estimator than EKF while the system model is highly nonlinear [30]. 

The past of the UKF is relatively short compared to EKF. By approximating the 

probability density function instead of the nonlinear function itself, UKF 

SLAM [30, 32, 95] received a considerable attention. To reduce the 



computational complexity, UKF SLAM adopts the square root of the 

covariance matrix [26]. In the simulations, it showed 20 percent decrease in 

computation time. However, it is required to improve the computational 

complexity for online SLAM. 

In a work by Murphy [33] and Doucet [34], Rao-Blackwellized particle 

filters (RBPF) have been introduced as an effective means to solve the SLAM 

problem. It consists of a particle filter for robot pose estimation and an optimal 

filter for feature estimation. Each particle in a RBPF represents a possible robot 

trajectory and a map. An instance of RBPF-SLAM is FastSLAM [35, 36] where 

the particle filter is used for the mobile robot position estimation, and EKF is 

used for the feature update. The first version of FastSLAM is FastSLAM 1.0 

where the proposal distribution only relies on the motion estimate, and the 

second version of FastSLAM is FastSLAM 2.0 which considers the motion 

estimate and the most recent sensor measurement in the proposal distribution. 

Unlike EKF or UKF based approaches, RBPF-SLAM has two advantages that 

are linear time complexity and multi-hypothesis data association [35-37]. The 

time complexity is linearly proportional to the number of features. Multiple 

particles can estimate the true target well even though some particles fail to the 

estimation. In [54, 55], the motion model using cameras was applied to RBPF-

SLAM. They used visual odometry and vision-based sensing. Recently, 

keyframe based RBPF-SLAM has been applied to camera tracking and 3D 

mapping [56]. The keyframe is redefined if the percentage of features tracked 



by the KLT tracker is smaller than a pre-defined value. The camera poses and 

features at the keyframe are only estimated except ones at the non-keyframe. 

However, RBPF-SLAM also suffers from some drawbacks, namely, the 

particle depletion problem and the problems caused by the derivation of the 

Jacobian matrices and the linear approximations of the nonlinear functions.  

The particle depletion problem is that the number of distinctive particles is 

decreased over time which causes loss of multi-hypothesis data association 

property. It occurs when a finite number of particles is used in RBPF-SLAM 

and most of cases are involved. To overcome the problem, G. Grisetti et al. [37, 

53] proposed accurate proposals using scan matching and selective resampling 

technique using Neff, which is defined by the variance of the particle weights. If 

Neff drops below a given threshold N/2, particles are resampled according to the 

resampling scheme. In the importance weight step, the probability of the motion 

model is defined as a constant, which means the reduction of effect for the 

motion model. Scan matching technique is also involved for minimizing 

odometric errors during mapping in [59]. A probabilistic model of the residual 

errors of scan matching process is then used for resampling steps. In [38, 39], 

the concept of active loop closing is used for accurate SLAM using hierarchical 

map representation that consists of a topological map and an occupancy grid 

map. If the distances between the current area and the visited area in both the 

occupancy grid map and the occupancy grid map are quite different, a loop can 

be closed. By re-entering already visited areas, the robot can reduces its 



localization error and this way learns more accurate maps. For the particle 

depletion problem [42], several researchers considered geometric information 

of particles in RBPF-SLAM. The two categories are as follows: particle swap 

[40-42] and particle swarm optimization (PSO) [43-46]. The particles with 

relatively low weights and the particles with relatively high weights are highly 

rejected and replicated during the resampling step, respectively when a finite 

number of particles is used. It causes the particle depletion problem. To 

alleviate that problem, some particles are swapped toward area of high-weight 

particles. In terms of particle fission, particles whose importance weight is 

bigger than the mean of weights are selected and, then split up several particles. 

These generated particles obey normal state distribution with the mean of the 

original particle. The results show that the number of distinctive particles are 

not largely decreased overtime. The other approach, i.e. PSO, uses an idea that 

particles cooperate with one another to track a common target. PSO is a 

population-based technique, similar in some respects to evolutionary 

algorithms, except that potential solutions (particles) move and cooperate with 

one another, rather than evolve through the search space. The particle dynamics 

which govern the movement are inspired by models of swarming and flocking 

[90]. In some approaches, PSO is combined with FastSLAM in the sampling 

step and in the resampling step. PSO was carried out to congregate particles 

toward the target point and helped keep them from diverging. The  filter is 

considered with PSO in FastSLAM [45]. The  filter is used instead of EKF 



for overcoming the inaccuracy caused by the linear approximations of nonlinear 

functions and tends to be more robust in the system taking additional 

uncertainties. In several simulations, it operated more robust than FastSLAM 

2.0. To acquire the posterior distribution more precisely, particle weights are 

re-approximated in Monte Carlo frameworks [47, 48]. Doing this considerably 

reduces the number of errors occurred in the computation of proposal 

distribution during the sampling step. In addition, this method improves the 

posterior distribution by taking the continuity and smoothness of the 

distribution into account. It worked reasonably well, but the particle with the 

maximum or minimum weight was treated as a meaningless particle, which 

implies that the best or the worst information for a true robot pose was neglected 

in the re-approximation. 

The problems caused by the derivation of the Jacobian matrices and the 

linear approximations of the nonlinear functions have been studied in [31, 60, 

61, 64]. To solve these problems, Unscented FastSLAM (UFastSLAM) has 

been suggested in [60-61]. UFastSLAM overcomes the drawbacks caused by 

Jacobian matrices and the linear approximations in the FastSLAM framework. 

In UFastSLAM, the linearization process with Jacobian calculations is removed 

by applying the unscented transformation (UT) to the SLAM framework. In 

[60], a full version of the UFastSLAM algorithm was presented. In this work, 

unscented Kalman filter (UKF) is used to update the mean and covariance of 

the feature and to initialize new features. Also, the unscented particle filter 



technique was utilized in the prediction step of the vehicle state, and the 

unscented particle filter provides a better proposal distribution without the 

accumulation of linearization errors and without the need to calculate the 

Jacobian matrices in the measurement updates. These approaches make the 

filter converge close to a real robot pose and decrease the number of rejected 

and replicated particles in the resampling step. For the improvement of SLAM 

accuracy, UKF was iteratively used in the robot pose estimation and the feature 

estimation, which called iterated unscented Kalman filter (IUKF) [66]. In the 

simulations, it showed the enhanced results in terms of SLAM accuracy and 

consistency. But its time cost is higher than FastSLAM 2.0 and UFastSLAM. 

This is because calculating Jacobians in FastSLAM 2.0 is a more computational 

efficient linearization method than the SUT in the simulator. L. Liu et al. [69] 

proposed a vision-based semantic UFastSLAM framework. The concept of 

semantic topological metric map that employs the semantic relationships 

between the landmarks was considered in the robot pose estimation and the 

feature estimation steps. PSO is also adapted to optimize particles in [62, 65]. 

In [65], PSO caused the particle set to tend to the high probability region of the 

posterior before the weights are updated. In addition, computational loads are 

reduced using Cholesky factorization for the covariance matrix. In [62], PSO 

was involved in the UFastSLAM framework, which was performed after the 

resampling step. FastSLAM 2.0, UFastSLAM and PSO based UFastSLAM 

were compared in several simulations and real experiments using an 



autonomous underwater vehicle.  

In our previous works [49-52], the weights of particles are compensated by 

heuristic rules. In addition, the particles constitute formation by means of the 

generation of an adaptive triangular mesh [70, 71] in the resampling step. In 

[52], in particular, these two steps for the weight compensation and the particle 

formation maintenance are involved in the FastSLAM framework. In some tests, 

the proposed approach showed better SLAM performance, i.e. robot pose errors 

and feature errors, than FastSLAM 2.0, PSO based FastSLAM and 

UFastSLAM. However, since the basic framework is FastSLAM 2.0, the 

proposal distribution and the observation model are linearly approximated, 

which requires more accurate system modeling.  

 
1.2.4 Bayesian Filter based SLAM for Multiple Robots 

Rao-Blackwellized particle filters for a single robot can be extended for 

multiple robots, which implies multi-robot SLAM [72, 73]. Multi-robot SLAM 

has some advantages relative to single robot SLAM: (a) a massive amount of 

the measurements acquired from several robots; (b) saving computing power; 

(c) a variety of external information communicating with each other. 

A. Howard designs a MR-SLAM framework [72], assuming that the initial 

positions of all robots are unknown. In this decentralized approach, each robot’s 

previously stored observation sequences are combined in a single environment 

map when rendezvous occurs. A reference robot incrementally builds a map 



and localizes its poses. Other robots just accumulate their control input and 

observation obtained from equipped sensors. If they meet with the reference 

robot, they are initialized at that time, and their past and current poses and 

surrounding maps are estimated in the unified coordinate. Carlone et al. [73] 

produced a new decentralized method, based on RBPF similar to [72]. It 

considers limited communication taking into account the distance between 

robots and the original positions of the robots are unknown. The method uses 

cameras for robots' mutual detection and it only allows the partial maps 

alignment when rendezvous happens. The presented solution showed efficiency 

and robustness, successfully building a map of a real world environment. In 

[91], a cooperative decentralized SLAM system is examined, on which robots 

need to estimate the maps and the states of all the other robots assuming that 

the communication between them is limited and the connection is dynamic. It 

is mathematically proven that an estimation equivalent to a centralized system 

can be obtained by all robots in the network in a decentralized way. Besides, 

the robot only needs to consider its own information from the topological 

network in order to detect when the equivalent centralized system is obtained. 

Teresa A et al. concentrated the cooperation between aerial and ground robots 

[74, 75]. They consider some events between robots such as rendezvous, feature 

correspondences and absolute localization measurements for loop-closing. But 

they have an assumption that the robots know their pose relative to one another. 

In addition, a batch algorithm is performed in the optimization over the 



transformations, which requires heavy computational load. C. Yunfei et al. 

implemented a multi-robots cooperative online FastSLAM algorithm using the 

leader robot and the follower robot [78]. The leader robot was defined and 

measured as a Robot landmark (RL) by the follower robot. The RL’s posteriori 

estimation was used as the leader robot’s priori estimation for its next pose 

prediction. The performance of the algorithm was verified from the simulation 

results. 

S. M. Chen et al. in [92] presented a multi-robot FastSLAM algorithm by 

combining Kalman-Consensus Filter (KCF) to improve the accuracy of 

localization and mapping. Electromagnetism like mechanism algorithm is 

introduced to get a new batch of high quality particles which is similar to PSO. 

In the feature update part, the KCF is performed using information of multiple 

robots. However, they basically assumed known data association for features 

and the known initial condition in the simulation. The information filter and the 

information consensus filter are employed together in [93]. To investigate 

consensus effects, they compare the results from the information consensus 

filter and covariance intersection (CI). But the known conditions are still 

assumed in the simulation. 

A map merging technique was proposed by assuming that robots do not 

know their initial poses [89]. It generally increases the accuracy of map merging 

using one-way observation between robots. However, it does not consider the 

compensation of the map itself because it just focuses on the map alignment 



only. Besides, since robots cannot be suddenly emerged and manually 

controlled by human at the beginning, the given initial conditions are not critical 

issues anymore. In our previous work [76, 77, 79], we proposed a multi-robot 

SLAM framework. Under the unknown initial conditions, robots initialize their 

poses when the first rendezvous with the reference robot occurs. Subsequently, 

the poses and maps between the N-1th and the Nth rendezvous points are 

compensated. In addition, current poses for two robots are fused by covariance 

intersection (CI) [77] or a Kalman consensus information filter [79] at the Nth 

rendezvous point. However, our approaches does not consider the data 

consensus for common features when several robots share them. 

 
1.3 Contributions 

A cooperative RBPF-SLAM framework is proposed in this dissertation. It 

includes not only the improvements of RBPF-SLAM for single robot and the 

extension of RBPF-SLAM for multi-robot system. Especially, the proposed 

framework can deal with the geometric relation among particles and inter-robot 

measurements among robots, as shown in Fig.1.4. The conventional RBPF-

SLAM framework consists of four parts, i.e. sampling, measurement update, 

importance weight and resampling parts. In this dissertation, the sampling and 

measurement update parts are enhanced using the consensus scheme when 

inter-robot measurements are given. The importance weight and resampling 

parts are also improved by the weight compensation and particle formation 



maintenance which employ geometric information among particles. In addition, 

the proposed framework seeks to cope with the inherent problems of RBPF-

SLAM, i.e. a particle depletion problem and the data association problem when 

a finite number of particles is used in large environments. The improvements 

are described in detail as follows: 

 It uses the geometric relation among particles in calculating the 

importance weight and maintaining a particle formation, which 

denotes particle to particle cooperation in this dissertation. We assign 

more accurate weights to particles by clustering them using the 

clustering algorithms such as the k-means algorithm and the 

expectation-maximization algorithm according to a heuristic and 

piecewise weighted average compensation schemes. In addition, 

 
Figure 1.4 The proposed RBPF-SLAM framework. The sampling and measurement 

update parts are enhanced using the consensus scheme when inter-robot 

measurements are given. The importance weight and resampling parts are improved 

by the weight compensation and particle formation maintenance which employ 

geometric information among particles. 



particles constitute an adaptive triangular mesh formation to maintain 

multiple data association hypotheses without the rejection and 

replication of the original resampling step. Its outstanding 

accomplishments are verified on simulations using a formal simulator 

and tests using the Car park dataset, the Victoria Park dataset, the 

indoor dataset, and the outdoor dataset by comparing the standard 

FastSLAM 2.0, PSO based FastSLAM, UFastSLAM, particle fission 

based UFastSLAM and PSO based UFastSLAM. 

 The consensus scheme, i.e. the Kalman consensus information filter 

(KCIF) is also involved in the proposed RBPF-SLAM framework to 

deal with inter-robot measurements. The inter-robot measurement 

occurs when two robots meet each other, which is a rendezvous event. 

Their current poses are more correctly estimated via the KCIF, which 

results in an improvement of the sampling step in the proposed RBPF-

SLAM framework. When two robots share a common feature, the 

feature can also be more correctly estimated, which is called a feature 

sharing event. This correct estimation results in an enhancement of the 

feature update step in the proposed RBPF-SLAM framework. The 

accumulated SLAM errors are dramatically reduced from the above 

mentioned two events, which is said to be robot to robot cooperation. 

In several simulations and some experiments, the SLAM performance 

of the proposed framework is verified and is better than one of 



conventional solutions in terms of pose accuracy and feature accuracy. 

 
1.4 Organization 

This dissertation is organized as follows. The fundamental framework i.e. 

unscented Rao-Blackwellized particle filter based SLAM, called UFastSLAM 

and the required techniques such as the Kalman consensus information filter 

(KCIF) for data fusion are described in Chapter 2. Chapter 3 presents the 

proposed RBPF-SLAM framework to deal with the particle depletion problem, 

the data association problem and the filter convergence problem in terms of 

particle to particle cooperation. For the robot to robot cooperation, a consensus 

scheme based on the KCIF are presented and combined into the proposed 

framework in Chapter 4. To test the performance of core contents of the 

proposed framework, several simulations using the formal simulator [80] are 

performed in Chapter 5. The results from real indoor and outdoor experiments 

and some tests using a formal datasets, i.e. Car Park dataset and Victoria dataset, 

are represented in Chapter 6. Chapter 7 concludes this dissertation while briefly 

summarizing all of the chapters. 

 

 

 

 

 



 

Chapter 2 

Fundamental Techniques for Multi-
robot SLAM 

In this chapter, some fundamental issues for multi-robot SLAM are 

described. As a fundamental framework, a Rao-Blackwellized particle filter are 

introduced which takes advantages of the multi-hypothesis data association 

property and the linear computational complexity. In particular, unscented 

factored solution to SLAM (UFastSLAM) is explained in detail, which will be 

improved in the following chapters. To deal with the data fusion for the multiple 

robots, covariance intersection (CI) and the Kalman consensus filter (KCF) are 

described using the inter-robot measurement. 

 



2.1 Rao-Blackwellized Particle Filter based SLAM 

Rao-Blackwellized Particle Filter based SLAM has many advantages in 

terms of time-complexity and filter convergence compared to a traditional 

methods such as EKF-SLAM [28, 57]. Also, it was implemented as FastSLAM 

(Factored Solution to the SLAM problem), which has two standard versions 

with different the proposal distributions. In this dissertation, we consider the 

unscented FastSLAM (UFastSLAM) [60, 61], which is a robust and efficient 

solution to the SLAM problem by using unscented Kalman filters in both the 

sampling step and measurement update step. Like FastSLAM, it also shows a 

factored representation of the SLAM posterior over robot poses and maps, as 

follows: 
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Here  1:tx ,  1:tz  and 1:tu  are the robot pose, sensor observation and control 

input up to time t, respectively. Also, 1:tc  denotes the set of data associations 

until time t, in which each ct specifies the identity of the landmark observed at 

time t. M denotes the entire map consisting of Nf observed features. This 

factored representation means that if a path of the robot is given, each landmark 

can be independently estimated by its own EKF filter. Each particle i in 

UFastSLAM is denoted by [60], 

 [ ] [ ] [ ] [ ] [ ] [ ]
1, 1, , ,, , ,..., ,i i i i i i

t t t t N t N tX x ,           (2.2)



where [i] indicates the index of the particle, [ ]i
tx is the ith particle’s pose, and 

[ ]
,

m
N t and [ ]

,
m

N t  are the mean and the covariance of the Gaussian distribution 

representing the Nth feature location conditioned on the robot path. Altogether, 

these elements form the ith particle . Figure 2.1 represents the set of N 

particles. 

Particle

Particle

Particle

Robot path Landmark #1 Landmark #2 Landmark #Nf

 

Figure 2.1 A particle set in UFastSLAM. A particle in the set consists of a path estimates 

and a set of estimates of individual landmark locations with associated covariances. 

 
2.1.1 Sampling Strategy 

At first, the state vector [ ]m
tx is augmented with a control input and the 

observation, as follows: 
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where [ ]
1

a m
tx  and [ ]

1
a m

tP  are the augmented vector for the state and the 

augmented covariance matrix, respectively. tQ  and tR  are the control input 

noise covariance and the measurement noise covariance, respectively. 



UFastSLAM deterministically extracts sigma points from the Gaussian and 

passes these points through the nonlinear function. A symmetric set of 2L + 1 

sigma points [ ][ ]
1

a i m
t  for the augmented state vector with L = 7 can be 

computed by 
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where subscript i means the ith column of a matrix. The λ is computed by 

2 ( )L L . As two parameters, α and  are determined by 0.002 and 

0, respectively.  

The motion model of the robot f is characterized by a nonlinear function, 

and the set of sigma points [ ][ ]
1

a i m
t  is transformed by the motion model using 

the current control [ ]m
tu  with the added control noise component [ ][ ]u i m

t  of 

each sigma point as follows: 
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The first two moments of the predicted vehicle state are computed by a linear 

weighted regression of the transformed sigma points [ ][ ]i m
t : 
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where [ ]i
gw and [ ]i

cw are weights in the equation. These are computed by 
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Here, the parameter  is used to incorporate the knowledge of the higher 

order moments of the posterior distribution. In fact, 2 . The estimated 

mean and its covariance of the vehicle state at time t are calculated by
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The measurement sigma points [ ][ ]i m
tN  are calculated in (8) using the 

observation model h, characterized by a nonlinear function, with the added 

measurement noise component [ ][ ]z i m
t . [ ]ˆ m

tn  is the predicted measurement. 

[ ]m
tK  is the Kalman gain in the measurement update. The estimated mean and 

its covariance of the vehicle state at time t are calculated by 

[ ] [ ] [ ] [ ]
l 1 ˆ   m m m m

t t t t t tx x K z n , (2.11)

2
[ ] [ ] [ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ]

l 1
0

ˆ ˆ
TL Tm m m i i m m i m m m

t t t t c t t t t t
i

P P K w N n N n K , (2.12) 

From the Gaussian distribution generated by the estimated mean and covariance 

of the vehicle, the state of each particle is sampled: 

[ ] [ ] [ ]~ ( , )m m m
t t tx N x P . (2.13) 



2.1.2 Feature State Estimation 

The feature update defines the sigma points using the previously registered 

mean and covariance of the feature.

[0][ ] [ ]
1 , 1

[ ][ ] [ ] [ ]
1 , 1 , 1

[ ][ ] [ ] [ ]
1 , 1 , 1

( )         ( 1,..., )

( )      ( 1,..., 2 )

t

t t

t t

m m
t n t

i m m m
t n t n t

i

i m m m
t n t n t

i n

n i n

n i L n

 ,       (2.14)

where [ ]
, 1t

m
n t is the mean of the tn th feature that is registered in feature 

initialization step. [ ]
, 1t

m
n t is the covariance matrix of the tn th feature. In this 

case, 2 ( )n n , and 2 ( )n n and 0.001 and 0

are appropriate for estimating the feature state. The predicted measurement 

[ ]ˆ m
tz  and the Kalman gain [ ]m

tK  are computed by  

[ ][ ] [ ][ ] [ ],     ( 0,...,2 )i m i m m
t tZ h x i n , (2.15)

2
[ ] [ ] [ ][ ]

0

ˆ
n

m i i m
t g t

i
z w Z , (2.16)

2
[ ] [ ] [ ][ ] [ ] [ ][ ] [ ]

0

ˆ ˆ
n Tm i i m m i m m

t c t t t t t
i

S w Z z Z z R ,        (2.17) 

where [ ][ ]i m
tZ  is the transformed sigma points of the mth particle. [ ]m

t  

determines the cross-covariance between state and observation, which is used 

to compute the Kalman gain [ ]m
tK as follows:  

2
[ ] [ ] [ ][ ] [ ] [ ][ ] [ ]

, 1
0

ˆ
t

L Tm i i m m i m m
t c t n t t t

i
w Z z , (2.18) 

1[ ]m m m
t t tK S , (2.19) 



Finally, the mean [ ]
,t

m
n t and the covariance [ ]

,t

m
n t of the tn th feature are updated 

as follows:  

[ ] [ ] [ ] [ ]
, , 1 ˆ

t t

m m m m
n t n t t t tK z z , (2.20)

[ ] [ ] [ ] [ ] [ ]
, , 1t t

Tm m m m m
n t n t t t tK S K , (2.21) 

where tz  is the true measurement. The Cholesky factorization is used in this 

feature update to make the algorithm more stable numerically. 

 

2.1.3 Calculating Importance Weight and Resampling Strategy 

To assign the weight to each particle, the importance weight [ ]m
tw  can be 

denoted by 

[ ]

,[ ]

1,[ ] 1 1 1 [ ] 1,[ ]

target distribution
proposal distribution

(  , , )
       =

(  , , ) (  ,  , , )

m
t

t m t t t

t m t t t m t m t t t
t

w

p s z u c

p s z u c p s s z u c

 

Like FastSLAM 2.0, the importance weight of UFastSLAM can be computed 

by considering the most recent observations, and it is given as follows:        

1 1[ ] [ ] [ ] [ ] [ ]2 1 ˆ ˆ2 exp ( ) ( )
2

m m m T m m
t t t t tw L z z L z z ,     (2.22) 

1[ ] , [ ] [ ] , [ ] [ ]Tm x n m m x n m m
t t t t tL P S ,           (2.23) 

where , [ ]x n m
t , [ ]m

tP  and [ ]m
tS  are the cross-covariance, the covariance and 

the innovation covariance of the mth particle, respectively. [ ]ˆ m
tz z  is the 

innovation vector. Suppose that there is a feature in a map. Each particle should 

estimate the feature. However, if data association is failed, some particles can 



estimate two or more wrong features, which is the data association problem. It 

may cause that wrong weights are assigned to the particles according to their 

innovation vector and even lead to filter divergence.  

In the resampling step, the death or life of particles is up to the score of the 

importance factor. Some particles with relatively large mismatches with their 

target, called bad particles, are rejected and another particles with relatively 

small mismatches with the target, called good particles, are replicated according 

to the resampling scheme. Most resampling techniques used the effective 

number of particles as an operation criteria, which is computed by,  

2[ ]
1

1
ˆ

eff N m
m t

N
w

, (2.24)

where N is the total number of particles and [ ]ˆ m
tw  is the normalized weight of 

the mth particle. If the variance of the importance weights increases, the effN  

decreases. However, when a finite number of particles is used for SLAM, 

distinctive particles are decreased over time because this resampling scheme 

consists of the rejection and replication of particles, which is called the particle 

depletion problem. The variation of distinct particles over time was 

experimentally represented by various resampling methods such as RSR - 

residual systematic resampling, RBR - rank-based resampling and PR - partial 

resampling [42]. Though the depletion rates of those approaches were different, 

they could undergo the particle depletion problem. The multiple data 

association hypotheses, representing one of the powerful capabilities of 



UFastSLAM, becomes weaker due to this problem, which is particularly 

remarkable in a large map, in particular. To maintain multiple data association 

hypotheses, UFastSLAM should eliminate the rejection and replication 

drawbacks. In addition, if a particle with a relatively low weight which 

represents a target well is rejected during the resampling process, the filter can 

be wrongly converged. The problem regarding convergence also worsens the 

SLAM performance of UFastSLAM, and even it can be diverged. To deal with 

the filter divergence, the importance weight which is approximately and 

individually calculated, should be more correctly estimated. 

 
2.2 Covariance Intersection (CI) and Kalman Consensus 

Information Filter (KCIF) in RBPF-SLAM 

In multi-robot systems (MRSs), multiple robots can be sharing their 

information one another and measure the other robot’s information. Covariance 

intersection (CI) and the Kalman consensus information filter (KCIF) are 

algorithms for combining two or more estimates of state variables. Suppose that 

two robots, 1R  and 2R , detect a common feature ‘ a ’. The estimated feature 

state obtained from the robots are 
1

a
R and

2

a
R , respectively. In addition, its 

covariance information can be represented by 
1

a
R and 

2

a
R . Here, the CI 

method is applied to the information fusion as follows: 

 
1 2

1 11 (1 )a a
new R Rw w , (2.25)

1 1 2

1 11
2(1 )a a a a

new new R R R Rw w , (2.26)



where new and new  are the fused state and covariance. These variables are 

used in the next step. If we adopt the KCIF, the information fusion is operated 

according to Algorithm 1. As we can see, the information vector and 

information matrix as well as state variables are required in the KCIF. The 

information vector and information matrix depends on the measurement. In 

MRSs, Ni is the set of neighbors around the ith robot iR , which is defined 

according to the communication range in practice. In terms of the optimality, 

stability, and performance, the KCIF is better than the CI method. In addition, 

CI does not consider the covariance and sets weights heuristically. The 

comparison was studied in [93]. In RBPF-SLAM, the Kalman consensus filter 

that is not the information form can be applied for landmark consistency 

correction as follows: 

, , ,
, , 1ˆ ( , ),t i t i t i

j k j k kz h x                      (2.27) 

where ( )h  is the observation model. ,
,ˆt i

j kz is the prior estimate of the robot t 

with particle i to the jth landmark at time k. ,
, 1

t i
j k  is the updated jth landmark 

of the robot t with particle i until k-1. It is assumed that the detected landmarks 

are stationary; then their prior estimate values are themselves at time . 

Landmark location update step by consensus-based filtering is thus given by 

, 1

, , , , , ,max ,
, , 1 , , , , 1 , 1ˆ( )

j k

t i t i t j t i t i n t i
j k j k j k j k j k j k j k

n N
K z z , (2.28)

1
, , , , , , , , ,
, , 1 , 1 , 1 , 1

T Tt i t i t i t i t i t i t i i t i t i
j k j k j k j j j k j j j kH H H R H , (2.29) 

where is the step size, , 1j kN is the number of robots to take the same 



observed landmark j at time k-1, and ,max
, 1

n
j k denotes the feature by the jth 

feature with the maximum weight of the nth robot at time k-1. Notice that, in 

(2.28), this method only requires prior estimates exchange between robots 

which observe the same landmarks. The Kalman gain ,
,

t j
j kK is given by 

1
, , , , , ,
, , 1 , 1

T Tt j t j t i t i t j t i t
j k j k j j j k j kK H H H R (2.30) 

In practical applications, by considering the limited network communication 

broadband, packet-dropping, delay, and other sorts of interference, the 

algorithm may be of weak anti-interference and poor robustness, if there was 

too much information exchange between robots. In addition, rendezvous 

situations can also be dealt with by the Kalman consensus filter because inter-

robot measurements occur more often in this case than in case of common 

feature detection.  

 

 

 

 

 

 

 

 

 

 



 
TABLE 2.1  

ALGORITHM FOR KALMAN-CONSENSUS INFORMATION FILTER  

Algorithm 1. Kalman-Consensus Information Filter 

Given 0i , 0i  at time 0k , and messages 

{ , , }; { }j j j j i im u U x j J N i  

1:  Obtain measurement iz  with covariance iR  

2:  Compute information vector and matrix of node i 

1 1,T T
i i i i i i i iu H R z U H R HiU HiiU  

3: Broadcast message { , , }j j j jm U x  to neighbors. 

4: Receive messages from all neighbors 

5: Fuse information matrices and vectors 

,
i i

i j i j
j J j J

y u S U  

6: compute the Kalman-Consensus state estimate 

ˆ ( ) ( )
i

i i i i i i j i
j N

M y S  

11
i i iM S  

1
21 , ( )( T

i X tr X X  

7: Update the state of the local information filter 

T T
i iAM A BQB , ˆi ix Ax  

 



 

Chapter 3 

Particle-to-Particle Cooperation in 
RBPF-SLAM 

To overcome the particle depletion problem and data association problem 

as mentioned in the previous section, the particle cooperation can be 

geometrically and statistically considered in the Rao-Blackwellized particle 

filter based SLAM framework, which is called relational Rao-Blackwellized 

particle filter based SLAM [52]. The main process is divided into two parts. 

One is to improve the accuracy of individually calculated weights such that the 

posterior distribution is approximated more precisely. In this part, geometric 

information and the weights of particles are merged probabilistically. In 

addition, weights are adaptively computed under the merged information. 

Based on the enhanced weights of particles, they constitute a particle formation 

and keep the formation without the rejection or replication existing in the 



traditional resampling step. Here, an adaptive triangular mesh structure is used 

for the particle formation [70, 71]. It makes relational RBPF-SLAM converge 

more correctly and retain the multiple data association hypotheses, which is 

strong property for RBPF-SLAM estimation. In the following sections, we will 

discuss the structure of relational RBPF-SLAM in detail. 
 

3.1 Weight Compensation using Particle Cooperation 

RBPF-SLAM produces the weights of particles using the ratio between 

target distribution and the proposal distribution, as determined by (2.22). 

Although the measurement and the control input are also involved in the 

proposal distribution, it is impossible to calculate the weight precisely due to 

the unknown target distribution, measurement noise, and especially unknown 

Sampling Measurement Update Importance Weight

Neighbor Selection

Weight Compensation

Triangular 
ConfigurationTarget Calculation

Particle Formation Maintenance

UFastSLAM

 

Figure 3.1 Block diagram for the proposed RBPF-SLAM using particle to particle 

cooperation. The resampling step is removed, and weight compensation and particle 

formation maintenance consisting of four steps are added to UFastSLAM.  

 



correspondence. The problem of unknown correspondence is serious because it 

is related to data association as shown in Fig. 3.2. If some particles estimate a 

feature accurately, relatively high weights are assigned to them. However, if the 

mth particle detects a feature that is generated from the failure of data 

association, relatively high weight is also assigned to the particle by the 

innovation term, [ ]ˆ m
tz z , in the weight computation equation, which is the 

problem of unknown data association. Thus, the weight [ ]m
tw should be 

formulated as follows: 

Failure of data 
association

particle with 
low weight

particle with high weight

particles with high 
weights

pa
llllo

hihighighghghhhhh 

True 
feature

F

True 
pose

 

Figure 3.2 Relation between unknown correspondence and the weight assignment. 
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,  (3.1) 

where ,[ ]t mc  is the correspondence of the mth particle. Until now, this term has 

not been considered. To reduce the data association error from ,[ ]t mc , we add 

compensation term [ ]m
twc  to (2.22) as follows: 

[ ]

1 1[ ] [ ] [ ] [ ] [ ] [ ]2 1 ˆ ˆ2 exp ( ) ( )
2

m
t

m m m T m m m
t t t t t t

w

w L z z L z z wc
2

, (3.2) 

where the added term is used to assign more accurate weights to particles; it is 

hard to compute this term as a closed form. But it can be obtained from the 

post-processing step after the importance weight step. The geometric 

relationship between the particles can be considered to alleviate the problem 

because the conventional weight for each particle is individually calculated in 

RBPF-SLAM. 

For the compensation, the weight was recalculated using support vector 

regression which resulted in a smoothed posterior density [47, 48]. During the 

regression, the particle with the maximum weight or the minimum weight was 

regarded as a hindrance to the approximation of the true posterior distribution. 

The particles, however, has a very important meaning. It can determine whether 

or not the target exists nearby, which implies that the particle demonstrates a 

higher or lower possibility for the target to exist than others. By reflecting this 



fact, we construct two clusters consisting of an area in which the target is highly 

involved and another area in which the target most likely does not belong. For 

clustering, there are two algorithms, i.e. expectation maximization (EM) and 

standard k-means algorithms. In case of EM, the expected value of the 

likelihood is calculated at the expectation step as follows: 

[ ]

[ ],
[ ]

1

( ; , )     1,..., ,
( ; , )

p m p p
p i t i i
m i k

p m p p
j t j j

j

f xT m N
f x

(3.3) 

where [ ],
p
m iT  is the ith expectation of a new likelihood for the mth particle after 

the pth iteration, and k denotes the number of multivariate normal distributions. 

In fact, 2k . N is the number of sampled particles. ( )f is the probability 

 
Figure 3.3 Illustration of the weight compensation. In two clusters, improperly assigned 

particle’s weights are compensated for according to the adaptive weight compensation 

scheme. 



density function of a multivariate normal. In addition, a set of unobserved latent 

data is a set of clusters. A vector of unknown parameters θ is defined by 

1 2 1 2, , , ,un , (3.4) 

where 1  and 2  are the means of normal distributions. Their covariances 

are represented by 1  and 2 . If the ith particle is involved in a cluster, then 

the probability is can be represented as All elements of the parameter 

vector θ are updated during the maximization step as follows: 

[ ] [ ]
[ ] , 1 [ ] , 2

( 1 ) ( 1 )1 1
1 2

[ ],1 [ ],2
1 1

,      

N N
p m p m
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p p
m m

i i

T x T x

T T
, (3.5) 
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N N
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i i
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, (3.6) 
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1 11 1

1 2,       

N N
p p
m m

t ti i
T T

N N
,              (3.7) 

These maximized values affects the expectation step, and these steps are 

performed iteratively until the parameters are converged. After the iteration, 

particles constitute two clusters using GMM 1 1( , )N  and 2 2( , )N , as 

we know that EM may converge to a local maximum of the observed data 

likelihood function because it depends strongly on the initial values. In this 

dissertation, consists of constant values and covariance matrices are defined 



by the 2x2 identity matrix. Also, the initial points 0
1  and 0

2  are designed 

as follows:  

1 2[ ] [ ]0 0
1 2,   m m

t tx x , (3.8) 

where [ ]
1 argmax  m

t
m

m w  and [ ]
2 argmin  m

t
m

m w , which implies that each 

mean of the clusters is highly affected by the particle with the maximum or 

minimum weight. They move according to the geometric distribution of the 

particles during EM iterations. After the Lth iteration, the most recently updated 

parameter θL which consists of 1
L , 2

L , 1
L , 2

L  and 1,2
L  are generated and 

all particles are included in two clusters constructed by the parameter. If the 

above mentioned process should be performed quickly, k-means clustering can 

be adopted, which tends to find clusters of comparable spatial extent. It is 

usually similar to the EM algorithm for mixtures of Gaussian distributions via 

an iterative refinement approach. Additionally, it uses cluster centers to model 

the data. It has two steps, i.e. assignment step and update step. In the assignment 

step, each particle is assigned to exactly one pS as follows: 
2 2[ ] [ ] [ ]{ :  ,1 }p m m p m p

i t t i t jS x x x j j k , (3.9) 

where, 2k , 1 2i . p
i is the mean of the ith set after the pth iteration. 

Using the set pS , the new means to be the centroids of the observations in the 

new clusters are calculated by  

[ ]

1 [ ]1
pm

t i

p m
i tp

x Si

x
S

,                     (3.10) 

After the L-iteration, 1
L , 2

L , 1
LS  and 2

LS  can be obtained. These variables 



work just like results of the EM algorithm, i.e. 1
L , 2

L , 1
L  and 2

L . Figure 

3.3 illustrates grouped particles using the mean and variance of clusters. One 

cluster has a higher probability for containing a robot and the other cluster has 

a higher probability for not containing the robot. Two sets of particles which 

are involved in those clusters, are represented as Sh and Sl. Based on these sets, 

the particles to be compensated are selected. If any particles have relatively low 

weights in Sh, those are chosen for the compensation. Likewise, in Sl, those with 

relatively high weights are selected. Shvar and Slvar denote the sets of selected 

particles in each cluster. These are also illustrated in Fig.3.3. Because particles 

for the weight compensation are taken from Shvar and Slvar, the compensation 

term in the weight calculation is updated by the following adaptive scheme: 

[ ] [ ]
var  var

[ ] [ ] [ _ ] [ ] [ ]
var var

[ ] [ _ ]

   0                                ,where  
1(1 ) + ,where   

1                       , where  not exist

m m
t h t l

m m m near m m
t t t t l t h

m m near
t t

x S and x S

wc w w x S or x S

w x

, (3.11) 

 

where α and β are factors which serve to compute the weighted average between 

[ ]m
tw  and [ _ ]m near

tw . [ _ ]m near
tw  denotes the weight of the closest particle from 

the mth particle which is not to be compensated. If there is no [ _ ]m near
tx  around 

[ ]m
tx , [ ]m

tw  is directly compensated by γ. In var  hS , γ is empirically assigned 

as . Otherwise,  is .  

The above mentioned adaptive process, called piecewise average based 



weight compensation scheme, is summarized in Algorithm 2. After the weights 

of all particles are calculated, 0
1  and 0

2  are selected according to (3.8). 

Subsequently, a GMM can be obtained and four sets Shvar, Slvar, Sh, and Sl are 

determined. Lastly, the weights of all particles are compensated using (3.11). 

 
 TABLE 3.1  

ALGORITHM FOR WEIGHT COMPENSATION  

Algorithm 2. Piecewise Average based Weight Compensation 

Given [ ]m
tw  for all particles  

1: Determine the initial states 0
1  and 0

2  according to (3.8) 

2: Obtain GMM 1 1( , )N  and 2 2( , )N  according to (3.5) and 

(3.6) 

3: Set up four sets Shvar, Slvar, Sh, and Sl  

4: Compensate the weights of all particles according to (3.11) 

 

3.2 Applicability of Particle Formation Maintenance 

The weights of particles can be more properly assigned to particles through 

the weight compensation technique. Although the wrong rejection and wrong 

replication of particles are reduced and the particle filter may converge more 

accurately, the particle depletion problem inevitably occurs over time in a large 

environment. This phenomenon does not disappear as long as particles with 

relatively low weights and particles with relatively high weights are rejected or 



replicated, respectively.  

They can be eliminated by considering the particle swarm characteristics, 

i.e. a particle formation maintenance technique (PFM) that is proposed in this 

paper. The basic structure is generated by the adaptive triangular mesh approach. 

It was originally utilized with a swarm of robots [71, 72]. It has some 

advantages of the fact that, among all the possible types of n-polygons, the 

triangular mesh is highly scalable, and less influenced by the number of 

neighboring robots. Likewise, it can also be adaptively applied to the formation 

of particles and to prevent filter divergence for the following reasons. In terms 

of the particle properties, each particle includes the robot pose, which is denoted 

by 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

, , , 1, 1, , , , , ,{ , , , , , , , } { , , }
f f

m m m m m m m m
t x t y t t t t N t N t t x t y t tX x x x R R R R (3.12) 

where [ ]m
t  and [ ]m

t  denote the mean and the covariance of the observed 

features for the mth particle at a time t, respectively. In addition, ,x tx , ,y tx  and 

,tx  represent the pose of the mth particle and tR  means robot pose at a time 

t. This indicates that the adaptive triangular mesh structure can be geometrically 

carried out to maintain the formation of particles. Also, the objectives are very 

similar to each other. In case of robot swarms, they enclose a source of 

contamination according to their contamination density to prevent the 

contamination from spreading out. The particles with different weights should 

estimate a real robot pose well by maintaining multiple data association 

hypotheses. Another fact which is immutable is the mean pose of the particles 



before and after performing the PFM. Essentially, the mean of particles is the 

most accurate representation for an estimated robot pose as well as the mean 

and the variance of the observed features [94]. While carrying out the PFM, 

keeping the consistency regarding the mean of the particles implies that 

particles to be diverged are simply adjusted toward it. For these reasons, PFM 

based on the triangular mesh structure can be adaptively applied to 

UFastSLAM. 

 

3.3 Particle Formation Maintenance 

In this section, the process of PFM is described in detail. Figure 3.4 shows 

a comparison between the conventional resampling scheme and the proposed 

resampling scheme. Some particles with high-weight are replicated and some 

particles with low-weight are rejected in the conventional resampling scheme. 

Unlike the conventional resampling scheme, all particles are aligned with 

respect to the proposed resampling scheme. 

The detailed process can be described as follows. Triangular configuration 

Tm is initially built and composed of the pose of the mth particle [ ]m
tx  and its 

two neighbors, 1[ ]n
tx  and 2[ ]n

tx 1[ ]n
tx  has the shortest Euclidean distance 

from particle [ ]m
tx . In addition, 2[ ]n

tx  is determined to minimize the sum of 

two distances, i.e., the distance between [ ]m
tx  and 2[ ]n

tx  and the distance 

between 1[ ]n
tx  and 2[ ]n

tx  as follows: 

2 2 1 2

2

[ ] [ ] [ ] [ ][ ]

[ ]
arg min , ,n n n nm

t t t t t
n

x d x x d x x ,      (3.13) 



where ,d A B  is the distance function between pose A and pose B. The 

weight of Tm, written by 
mTW , is determined as follows: 

[ ]

[ ]1 ,    1, ,
3m

m
t m

m
T t

x T

W Pw m N, N, ,             (3.14) 

[ ] [ ]

[ ]
[ ]

1 ,      1, ,
1

k k
t t

k k
t k

t
k

w w
Pw k N

N w
, N, , (3.15) 

where [ ]k
tPw  is the transformed weight for the kth particle to operate the PFM. 

Based on the centroid Rct and 
mTW , the target of the mth particle [ ]m

tx  can be 

calculated by 

[ ]
, ._ target cos( / 2) 3

m

m
x t ct x T mx x k d ,         (3.16)  

[ ]
, ._ target sin( / 2) 3

m

m
y t ct y T mx x k d ,         (3.17) 

High weight-particle Low weight-particle

Replication
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Low weight-particleHigh weight-particle

Formation

(a) Conventional Resampling           (b) Proposed Resampling 

Figure 3.4 Comparison between the conventional resampling scheme and the proposed 

resampling scheme. Unlike the conventional resampling scheme, all particles are 

aligned with respect to the proposed resampling scheme without the particle rejection 

and replication. 



where .ct xx and .ct yx  are the x-y pose for the center of gravity of triangular 

configuration Tm which consists of 1[ ]n
tx , 2[ ]n

tx  and [ ]m
tx . 1[ ]n

tx  and 2[ ]n
tx  are 

the nearest neighbors of [ ]m
tx .  represents the angle which is perpendicular 

to the line passing through 1[ ]n
tx  and 2[ ]n

tx . 
mTk  is the average weight factor 

of Tm. If it is given a constant large value, the filter can be diverged. In this 

dissertation, we define this factor as follows: 
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Figure 3.5 Illustration of PFM process. In (a), the neighbors of each particle are 

selected and triangular configuration is performed during (b). From the centroid of the 

triangle, the target where the i-th particle will be moved is calculated in (c). (d) shows 

the PFM after repeated performances from (a) to (c). 
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where the reasoning behind the selection of dm is that the PFM is sequentially 

constructed from a particle close to the mean to a particle far from the mean. 

The orientation of the target is determined by the average of Tm. 

The angle of the target, [ ]
,_ target m
tx , is determined by the average of three 

angles in Tm. From the target pose, the final pose of the mth particle, 

[ ] [ ] [ ] [ ]
, , ,, ,m m m m

t x t y t tx x x x , is given by 

[ ] [ ] [ ] [ ] [ ]
, , , ,_ targetm m m m m

x t x t x t x tx x k x x ,           (3.19) 

[ ] [ ] [ ] [ ] [ ]
, , , ,_ targetm m m m m

y t y t y t y tx x k x x ,           (3.20) 

[ ] [ ] [ ] [ ] [ ]
, , , ,_ targetm m m m m
t t t tx x k x x ,           (3.21) 

where [ ]mk  is the weight factor of the mth particle that is computed by  
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                       (3.22) 

The weight factor ranges from 0 to 1. If [ ]mk  is equal to 0, the particle has been 

stopped at its current pose. Otherwise, the particle approaches to the target pose.  

Since [ ]mk  is proportional to the uncertainty of the mth particle, large 

uncertainty in the pose of the particle can be compensated after the particle 

formation maintenance. The process of the PFM is graphically illustrated in Fig. 

3.5. Each particle has its two neighbor particles and the triangular configuration 

is established using three particles. For the triangular structure, particles are 

selected one by one according to the order of the N-dimension distance array. 



It is obtained by the distance between the mth particle and the center of the 

particles that is given by  

 
2 2

[ ] [ ] [ ] [ ] [ ]
, , , ,

1 1m i m i m
x t x t y t y t

i i
dist x x x x

N N
, (3.23)

If a particle is selected from the above process, the average weight of the 

triangular configuration Tm is calculated by taking the average weight of those 

particles. The target position of the particle is also calculated based on the 

centroid of the triangular configuration and the weight. Lastly, all particles 

concurrently move toward their target based on their weights and form a 

triangular mesh structure.  
   

TABLE 3.2 

ALGORITHM FOR PARTICLE FORMATION MAINTENANCE  

Algorithm 3 Particle Formation Maintenance 

1: for i = 1 : N 

2: Selection of neighbors (3.13)  

3: Triangular configuration 

4: Target calculation (3.16) and (3.17) 

5: Final pose calculation (3.19) and (3.21) 

6: end for 

 



3.4 Overview of Relational RBPF-SLAM 

We examined the cooperation between particles to improve some parts of 

the UFastSLAM. Algorithm 4 describes the procedure of relational RBPF-

SLAM. Sampling, the update of observed feature(s) and the calculation of the 

importance weight for each particle are performed according to the procedure 

of UFastSLAM, as described in [60]. To assign the weight more accurately, we 

divide two probabilistic regions using the particle relationship. The weight of 

each particle is compensated for by the adaptive compensation scheme in each 

region. Triangular configurations for all particles are constructed through the 

connection between neighbors after the weight compensation process. In 

addition, the weight of each triangular configuration is calculated by averaging 

the compensated weights of the particles which constitute a triangular 

formation. At the end of this process, the formation based on the triangular 

mesh structure is completed and the particles readily retain their formation over 

TABLE 3.3  

ALGORITHM FOR RELATIONAL RBPF-SLAM  

Algorithm 4 Relational RBPF-SLAM 

1: Sample particles (2.3) – (2.13) 

2: Update features (2.14) – (2.21) 

3: Compute the weights of particles according to (2.22) 

4: Compensate the weights of particles (Algorithm 2) 

5: Maintain the particle formation (Algorithm 3) 



time.  

 
3.5 Complexity of Relational RBPF-SLAM 

Let us suppose that N and Nf are the number of particles and landmarks, 

respectively. In FastSLAM or Unscented FastSLAM (UFastSLAM), the 

complexities of the parts for sampling, measurement update and importance 

weight are O(N). The resampling part has a complexity level of O(N∙Nf) [or 

O(NlogNf), if the landmarks are represented by a binary tree]. In relational 

RBPF-SLAM, the weight compensation part requires O(N∙L) where L is the 

number of iterations, as determined by the user. The complexity for particle 

formation maintenance is O(N∙N) [or O(NlogN), if the poses of particles are 

represented by a binary tree]. Thus, the complexity of relational RBPF-SLAM 

depends on N, Nf and L. If Nf is larger than N and L, the computational 

complexity of the relational RBPF-SLAM is identical to that of FastSLAM and 

UFastSLAM, which occurs in most large datasets, including the Victoria Park 

dataset. 

 



 

Chapter 4 

Robot to Robot Cooperation in 
RBPF-SLAM 

Two robots are exploring an environment from distant (and unknown) 

initial locations. After a while, the robots encounter one another and measure 

their relative poses. At this time, a compensation filter is initialized using the 

current robot poses and their measurements. Subsequently, measurements 

obtained from the two robots are fed to the filter, and thereby fused into a 

common map. A series of the above mentioned process is considered in Section 

4.1. When a rendezvous between two robots occurs or two robots are sharing a 

common feature, they can exchange their information, i.e. inter-robot 

measurements. Subsequently, their pose errors and feature errors are largely 

reduced using the Kalman consensus information filter. These are described in 



Section 4.2 and Section 4.3. Section 4.4 summarizes the proposed RBPF-

SLAM framework. 

  

4.1 Multi-Robot Initialization in the Unknown Initial 

Condition 

Under the unknown initial condition, the coordination of multiple robots 

should be unified in one frame. To tackle this problem simply, we put a 

reference robot fR  as described in [72]. fR  incrementally estimates its pose 

f
tx  (The particle indices are omitted) and map tm . Other robots just 

accumulate their control input tu  and sensor measurement tz over time. 

Although the state of the ith particle should be written by [ ]i
tx , i is omitted to 

simplify following expressions. Suppose that fR  meets an arbitrary robot nR  

at time t a . fR  measures the relative transformation vector n
a  between 

fR  and nR . In addition, the pose of nR  is initialized on the frame of fR as 

follows: 

t = a t = a'+(a'-a)

Rn

t
t = a+(a-b) t = a+(a-b)+bt = b t = a'

R

First 
Rendezvous (f-n)

Second
Rendezvous (f-n)

First 
Rendezvous (n-m)

Rf

Rm

R'n

R'm

R''nRRRRR''''nn

Path using causal filter
Compensated path

Path using acausal filter

 
Figure 4.1 An example to explain the proposed RBPF-SLAM framework in MRSs 



n n f
a a ax x  ,                    (4.1) 

where the operator indicates an appropriate 2D coordinate transform, and 

n
ax  is the initialized pose of Rn at t a . We assume that the uncertainty of 

n
a  is negligible. After the initialization, the past poses 1: 1

n
ax and maps 1: 1

n
am

of Rn are estimated using the accumulated control input 1:au  and sensor 

measurement 1:az . The current pose n
tx and map n

tm  of Rn are also estimated 

using the current control input ut and sensor measurement zt, simultaneously. In 

those estimations, two estimators are exploited, which are an acausal filter and 

a causal filter. The posterior for Rf and Rn is now represented as follows: 

1: 1: 1: 0: 1 0 1: 0: 1

1: 1: 1: 1 1: 1 1: 1: 1: 1: 0: 1, 0

1: 1 1: 1 0: 1 1: 1: : 1

( , , | , , , , , )

( | , , , , , ) ( | , )

( | , , , ) ( | , , , )

n f f f f n n n
t t t t t t a

f f n f n f f f f f
t t a a a t a t t t t

n n n f n n n n f n
a a a a a a t a t a t a a

p x x m z u x z u

p m x z x z x z p x z u x

p x z u x p x z u x

 ,    (4.2) 

where 1:
f
tz , 0: 1

f
tu , 1:

n
tz  and 0: 1

n
tu  are the measurements and the control inputs 

of fR , and the measurements and the control inputs of Rn until t, respectively. 

If Rn met another robot Rm at t b , Rm is also initialized using the estimated 

pose of Rn at ( )t a a b  as computed in (4.1). 

 
4.2 Pose Consensus at Rendezvous Events  

If a reference robot fR  meets an arbitrary robot Rn for the first time, Rn is 

initialized according to (4.1). As shown in Fig.4.2, if the second rendezvous 



occurs between them at 't a , the current states of two robots can be 

compensated more correctly. The Kalman consensus information filter (KCIF) 

is involved in the proposed SLAM framework for the pose compensation. At 

first, two robots exchange their prior/predicted state estimate 'l ' 1ˆi
a ax  each 

other. The prior/predicted state 'l ' 1ˆi
a ax  is given as the state of the maximum-

weight particles, which is computed by 

max,[ ] [ ]
'l ' 1 'l ' 1 max 'ˆ ˆ ,  where arg max    i ki j

a a a a a
j

x x k w          (4.3) 

Subsequently, their information vector '
i
av  and information matrix '

i
aV  are 

computed by 

' 1a T
i i i iv H R z , ' 1a T

i i i iV H R H                (4.4) 

Figure 4.2 Inter-robot measurements at rendezvous point 



where iz  is the inter-robot measurement obtained from the ith robot and Hi is 

the Jacobian of the observation model. They can be described as follows: 

2
i

i
i

z ,                        (4.5) 
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           (4.7) 

where ih  is the measurement model which is the 1x2 matrix. iz  and iH  are 

the 2x1 matrix and the 2x6 matrix, respectively. i  and i  are the observed 

relative distance and the observed relative orientation with Gaussian noise, 

respectively. Also, ( ix , iy ) is the estimated x-y pose of the ith robot and ( kx ,

ky ) is the prior/predicted x-y state of the kth robot. After the calculation, 'a
iv  

and 'a
iV  are transmitted to the other robot.  

In case of Rf, the information vectors and matrices are fused using the 

transmitted information of Rn as follows: 

' ' '
f f n

a a ab v v ,  ' ' '
f f n

a a aB V V ,                (4.7) 



where '
f

ab and '
f

aB are the fused information vector and the fused 

information matrix, respectively. Like (4.7), the fused information vector and 

matrix for Rn are calculated via the same procedure. To deal with the fused 

information vector and matrix, a new state ,( )
'| ' 1ˆ fn i

a ax  and a new covariance 

matrix are set to represent the ith particle’s state and covariance for Rf by 

involving the transmitted state ' ' 1ˆn
a lax  from the other robot Rn as follows: 

,( )
'| ' 1,( )

'| ' 1
' ' 1

ˆ
ˆ

ˆ

f i
a afn i

a a n
a la

x
x

x
,  

,( )
' ' 1,( )

'| ' 1

' ' 1

ˆ 0ˆ
ˆ0

f i
a lafn i

a a n
a la

P
P

P
        (4.8) 

where, ,( )
'| ' 1ˆ fn i

a ax  is the 6x1 vector and ,( )
'| ' 1

ˆ fn i
a aP  is the 6x6 matrix. Now, the state 

,( )
'| ' 1ˆ fn i

a ax  is updated as follows: 

,( ) ,( ) ,( ) ,( ) ,( )
'| ' '| ' 1 ' ' ' '| ' 1 '| ' 1 '| ' 1 '| ' 1

ˆˆ ( )fn i fn i f f f fn i fn i n fn i
a a a a a a a a a a a a a a ax x M b B x P x x , (4.9) 

where Kalman gain '
f

aM is determined by 
11,( )

' '| ' 1
ˆf fn i

a a aB P , consensus gain is 

represented by ,( )
'| ' 1

ˆ fn i
a aP , and  is defined by ,( )

'| ' 1
ˆ1 fn i
a aP .  is the 

parameter of the KCIF, which is defined as 0.3. In the consensus term, '| ' 1
n
a ax  

indicates the average state of particles, which is obtained from Rn. The state and 

the covariance of the ith particle are computed by choosing the upper part of 

the ,( )
'| 'ˆ fn i

a ax  and '
f

aM . Likewise, Rn is also updated as follows: 

,( ) ,( ) ,( ) ,( ) ,( )
'| ' '| ' 1 ' ' ' '| ' 1 '| ' 1 '| ' 1 '| ' 1

ˆˆ ( )nf i nf i n n n nf i nf i f nf i
a a a a a a a a a a a a a a ax x M b B x P x x   (4.10) 

where Kalman gain '
n
aM is determined by 

11,( )
' '| ' 1

ˆn nf i
a a aB P  and consensus 

gain is represented by ,( )
'| ' 1

ˆ nf i
a aP . In the consensus term, '| ' 1

f
a ax  denotes the 

average state of all particles transmitted from Rf. In addition, the state and the 



covariance of the ith particle are computed by choosing the upper part of the 

,( )
'| 'ˆnf i

a ax  and '
n
aM . Based on ,( )

'| 'ˆnf i
a ax  and ,( )

'| 'ˆ fn i
a ax , two acausal filters are 

generated, which are carried out from the second rendezvous point to the first 

rendezvous point. It also has map 1: 1:( , )f f
b bM z x  and 1: 1:( , )n n

b bM z x , 

which implies that the quality of the map around the first rendezvous point is 

relatively reliable. A reliability parameter  is defined to set a reliable range. 

After the update, these states are predicted according to the sampling process 

of the proposed RBPF-SLAM framework as shown in Section 2.1.1. Figure 4.3 

shows the pose compensation process for MRSs. Each robot basically estimates 

its pose and map by operating relational RBPF-SLAM. This filter has better 

performance than the extended Kalman filter due to multi-hypothesis data 

association and time complexity. At the first rendezvous with the reference 

robot, each robot is initialized in the frame of the reference robot. A causal filter 

and an acausal filter are generated to estimate its past poses and maps as well 

as its current pose and map. If the second or more rendezvous occurs, the 

current poses of two robots are promptly updated via the process of the KCF. 

Subsequently, two acausal filters with early maps around the first rendezvous 

point are generated for the pose compensation. Finally, these acausal filters are 

terminated when the pose at the previous rendezvous point is updated. In 

addition, the acausal filter, which is generated at the first rendezvous, is 

terminated when the pose and the map estimations at the start point of the robot 

are finished. 



 

4.3 Feature Consensus at Feature Sharing Events 

A reference robot fR  is looking at a feature i
tm  while an arbitrary robot 

Rn is also looking at the same feature i
tm , which is called a feature sharing 

event. Unlike the case of rendezvous, the feature state is just updated without 

the prediction because we assume that all features registered in the SLAM 

framework are stationary. Unlike the conventional approach (2.28) – (2.29), the 

feature mean and covariance are computed by 

, 1

, , , , , ,mean ,
, , 1 , , , , 1 , 1ˆ( )

j k

t i t i t j t i t i n t i
j k j k j k j k j k j k j k

n N
K z z       (4.11) 
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j k j k j j j k j kK H H H R           (4.13) 
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Figure 4.3 Compensation process in several rendezvous events 



where ,mean
, 1

n
j k  is the jth landmark of the robot n with the mean of all particles 

at k-1. Because the mean of particles for the jth landmark represents a true 

feature more accurately than other expressions, i.e. the feature mean of a 

particle with maximum weight and the feature mean with the weighted average  

 of all particles for the jth landmark. 

 
4.4 Overview of the Proposed RBPF-SLAM Framework 

To perform accurate RBPF-SLAM, particle to particle cooperation and 

robot to robot cooperation are considered, which is described in Chapter 3 and 

Chapter 4, respectively. By adopting the concept of particle to particle 

cooperation, the particle depletion problem, the data association problem and 

filter divergence problem which are described in Chapter 2 and Chapter 3 are 

overcome. In addition, it leads to improvements of the importance weight step 

and the resampling step of the RBPF-SLAM framework. The weights of 

particles are compensated using clustering tools and the particle formation 

maintains the capability of multi-hypothesis data association, which is the 

strong property of RBPF-SLAM. The sampling step and the feature estimation 

step of the RBPF-SLAM framework can also be enhanced using inter-robot 

measurements in multi-robot systems. In these steps, the Kalman consensus 

information filter, which is robust than the covariance intersection, is employed 

for data fusion. The proposed RBPF-SLAM framework is shown in Fig. 4.3. 

All steps of RBPF-SLAM is affected by the proposed schemes for robot pose 



consensus, feature consensus, weight compensation, and particle formation 

maintenance. The above mentioned process are described in Table 4.1. 

 
TABLE 4.1  

ALGORITHM FOR THE PROPOSED RBPF-SLAM FRAMEWORK 

Algorithm 5. Proposed RBPF-SLAM Framework 
Unscented FastSLAM 1( , , , , )t t t t tz u X Q R   
n = feature dimension; L = vehicle dimension 
Set SUT parameters ( , , , )  
Calculate SUT weights [ ] [ ]( , , 0 ~ 2 ( 2 ))i i

g cw w i n or L  
t auxX X  

For all particles 
Retrieve 1tX  
Predict mean and covariance of the vehicle (2.11) and (2.12) 
For all observations  

k̂ =compatibility test [ ] [ ]
, 1 , 1, ,m m

t k t k tz  
end for 
For k̂  = known feature 

Update mean and covariance of the vehicle (2.20) and (2.21) 
Refresh sigma points 

[ ] calculate importance weightm
tw (2.22) 

end for 
Sample from updated posterior (2.13) 

[ ]' m
tw =weight compensation (Algorithm 2)  

Data acquisition from neighbors ( '
n
av , '

n
aV 'l ' 1ˆn

a ax ) 
If Rendezvous event = on 

Update the robot pose (4.10) 
end if 
If k̂  = new feature 

Calculate new feature mean and covariance 
else 

Update mean and covariance of feature (2.20) and (2.21) 
end if 
For all shared features  

 Update mean and covariance of feature (4.11) and (4.12) 
End for  
For unobserved features 



 

 

 

 

[ ] [ ] [ ] [ ]
, , 1 , , 1,m m m m

k t k t k t k t  
end for 
add [ ] [ ] [ ] [ ]

, 1 , 1, , ,  to m m m m
t t k t k t auxx N X  

end for  
Resample from auxX  with probability [ ]m

tw  
Formation Maintenance from auxX  with probability [ ]' m

tw  (Algorithm 3) 
Add new particles to tX  
Return tX



 

Chapter 5 

Simulations 

This section shows the simulation results of the relational RBPF-SLAM 

which is explained in the above chapters. Since the purposes of the simulations 

are different one another, the simulation results are shown separately. To check 

the need for weight compensation, a simple simulation is performed by varying 

a parameter in Section 5.1. Section 5.2 shows the simulation results of 

FastSLAM [36], PSO based FastSLAM [46] and the proposed RBPF-SLAM in 

known data associations. The proposed RBPF-SLAM with unknown known 

data associations is performed and compared to FastSLAM and PSO based 

FastSLAM in the Section 5.3. To verify the SLAM performance by robot to 

robot cooperation, the proposed RBPF-SLAM is conducted in three simulations 

which are described in Section 5.4. 

 



5.1 Verification for Needs of Weight Compensation and 

Particle Formation Maintenance 

5.1.1 Simple Weight Compensation 

To find out the need for weight compensation, weights of particles are 

simply compensated according to their regions as follows: 

[ ] [ ]
var  var

[ ]
[ ] [ ]

var

[ ] [ ]
var

0        ,    

(1 )        ,   

( 1)       ,    

m m
t h t l

m
m mt

t t l

m m
t t h

x S and x S

wwc x S

w x S

  ,        (5.1) 

where the term [ ]m
twc  is simply defined according to , which is a parameter 

robot

unobserved 
features

way points

observed 
features

bb

 

Figure 5.1 A simulator made by Tim Bailey [80]. Thirty-two features (*, green) and 

17 way points (o, red) are illustrated in the simulator. 

 



of the simple compensation scheme. It is changed from 1 to 100 in the 

simulation. If  is defined as one, the compensation does not occur, which is 

the conventional approach. As shown in Fig.5.1, the simulator that was made 

by Tim Bailey [80] is used. It has 32 point features and 17 way points, and the 

robot follows these way points by observing the point features. In addition, the 

robot is operated at a speed of 3m/s and the control noise regarding translation 

and rotation is described as follows: 

Robot Pose Feature Location

Error

 
Figure 5.2 Robot pose errors and feature errors. The conventional approach implies 

that weights of particles are not compensated. The others are compensated according 

to the parameter.



2

2

0
0
V

G

Q                     (5.2) 

where 2
V and 2

G are the translation noise and the rotation noise, 

respectively.  

For the consistency, the simulations are performed during the two laps in 

every trial while changing the parameter . The results of robot pose errors and 

feature errors are shown in Fig.5.2. The conventional approach implies that 

weights of particles are not compensated and defined as 1 . In case of 

10 , the errors of the robot pose and the feature location are highly reduced. 

But the errors in 100  are more increased than ones in 10 , which 

means that the weights should be assigned by a proper value. Although the 

errors show different results in the several approaches, both robot pose errors 

and feature errors are more reduced than the conventional approach. It implies 

that weights of particles are incorrectly assigned over time from the data 

association problem described in Section 3.1 and should be compensated from 

the compensation scheme.  

 

5.1.2 Piecewise Average based Weight Compensation 

As simply described in the previous section, the data association problem 

cannot be evitable and the weight of each particle should be compensated. 

However, the approach using parameter  is very simple and quite heuristic. 

In addition, we cannot find out proper  because it changes according to the 



situations and the distribution of particles. To update the weight not 

heuristically but adaptively, piecewise average based weight compensation 

scheme that was described in Section 3 is performed in the simulation. When a 

weight of a particle is compensated, it takes an average weight between the 

particle and its neighbor of which weights are correctly assigned in advance.  

 

 

 

 

(a)                               (b) 

 

 

 

 

 

 

 

(c) 

Figure 5.3 The effect of the weight compensation scheme. The robot pose error, the 

robot orientation error, and the feature location error are represented in (a), (b), and 

(c), respectively. From the results, piecewise average based weight compensation 

scheme is more robust than other approaches.  

 



As shown in Fig. 5.3., the result shows that the piecewise weight compensation 

scheme more correctly estimates the true proposal distribution than the 

conventional approach.  

 
5.1.3 Particle Formation Maintenance Test 

In this simulation, the same simulator conducted in the previous section is 

used. Several parameters related to control noise and measurement noise are 

the same as the previous ones. The simulation with known data association is 

done to check the effect of the weight compensation and to make a comparison 

 

Figure 5.4 Graphical results of simulation with known data association. (a) and (b) 

show the estimated maps using RBPF-SLAM and RBPF-SLAM with weight 

compensation, respectively. The proposed RBPF-SLAM makes a scattered map due to 

PFM as shown in (c). 



between the PFM and the resampling phase. To check the weight compensation 

and PFM effects, the proposed RBPF-SLAM is compared with  

and  with the weight compensation, concurrently. One hundred 

particles are used for this simulation, which is the proper number of particles to 

evaluate the property of the weight compensation and PFM. Figure 5.4 denotes 

the final map involving features estimated by each particle. Unlike 

 and  with weight compensation, the proposed framework 

estimates features from more scattered particles due to PFM. PFM makes the 

filter block the filter divergence and consistently maintains multiple data 

association hypotheses at each time step. Figure 5.5(a) graphically shows the 

variation of robot pose errors over time. Here, the errors is computed by  

,[ ] ,[ ]( ) / /
T

t i t i
Pose true true

i i
t x N x x N x    (5.3) 

where the pose error ( )Pose t  is calculated according to the difference between 

the average pose of all particles and the true pose of robot. The average pose of 

all particles is the best way to describe the true pose of the robot [94]. The error 

of the feature location _ ( )f Pose t  is also calculated by 

[ ] [ ]
, , , ,

,

/ /
( )

T
m m

i t i true i t i true
i m m

Feature
f t

N N
t

N
  (5.4) 



where ,f tN is the number of observed features at time t. The term 

[ ]
, /m

i t
m

N  is the average information of the ith feature and can be simply 

represented due to known data association. The variation of feature location 

errors over time is shown in Fig. 5.5(b). The graphical results show that the 

error of  with weight compensation is mostly lower than that of 

, except for a small portion at the beginning. This implies that the 

originally calculated weights of the particles are not correctly assigned and they 

are compensated correctly. In the case of the proposed RBPF-SLAM, the robot 

pose errors and the feature location errors are similar to ones of other methods 

at the beginning and at the end of journey, but other parts are more correctly 

estimated than others. In short, the proposed approach is comprehensively 

superior to the other methods. Table 5.1 quantitatively represents the root mean 

square (RMS) pose errors of the robot and the features obtained from 

  

(a)                           (b) 

Figure 5.5 SLAM error comparison. It shows the errors of the robot poses and features 

over time. The proposed framework (red solid line) has fewer errors than the others.  
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T

Pose
t

t T  and _
1

( ) /
T

f Pose
t

t T  for the three methods. Among them, the 

proposed RBPF-SLAM greatly reduces the robot pose errors as well as the 

errors of the feature location using the weight compensation and the PFM 

technique.  

 
5.2 Simulation with Unknown Data Association 

In the previous section, we confirm the performance of the proposed RBPF-

SLAM. Here, the proposed RBPF-SLAM is compared to two methods, i.e. 

FastSLAM [36] and PSO-based FastSLAM [46] on the simulator with an 

unknown data association as shown in Fig.5.6. This simulator is based on the 

simulator used in Section 5.1 and modified for different map test. Fifty features 

and particles are employed for the simulation. The robot takes a round to the 

simulator by following the wall. For data association, we adopt the maximum 

likelihood assignment procedure on a per-particle basis. Each particle selects 

the features maximizing the likelihood, given by  

TABLE 5.1  

TOTAL COMPARISON OF RMS POSITION 

 
RBPF-SLAM 

RBPF-SLAM with 

weight compensation 
Proposed 

RMS robot posi

tion error (m) 
2.4091 1.8657 1.3762 

RMS feature po

sition error (m) 
1.5350 1.0352 0.8017 



[ ] [ ]argmax ( | , , )t
t

y y
t t t tc

c
c p z x m c            (5.5) 

where [ ]y
tc  is the correspondence regarding the yth particle. 

Figure 5.7 shows the errors of the estimated robot pose and feature location. 

They are computed by the difference between true value and the estimated value 

as represented in (5.3) and (5.4). In case of FastSLAM and PSO based 

FastsLAM, the errors are highly oscillated due to the resampling scheme which 

causes the brutal rejection and replication of particles. This problem is a lack of 

multiple hypotheses, called the particle depletion problem. However, the 

proposed RBPF-SLAM keeps the errors down in the presence of an unknown 

robot

path

observed features

unobserved features

unknown data association

 
Figure 5.6 Simulator with an unknown data association. Fifty features and particles are 

used for the simulation. 



data association while maintaining multiple hypotheses. Here, PFM gives a 

positive effect to the proposed RBPF-SLAM using the geometric information 

between particles. In particular, the orientation is greatly reduced in the 

proposed RBPF-SLAM. The reduction of orientation error implies that several 

particles involved in their triangular structure estimates the true robot 

orientation concurrently and adaptively, which results in more correct 

estimation for the environment. The computational time per one step is 

described in Table 5.2. The gap in the execution time between FastSLAM and 

the proposed RBPF-SLAM, caused by the weight compensation and PFM, is 

less than 0.1 sec. It means that the effect of computational complexity in real 

operation is negligible. 

TABLE 5.2  

COMPUTATIONAL TIME PER ONE STEP (SEC) 

 UFastSLAM PSO-UFastSLAM Proposed 

Simulation 0.1482 0.1554 0.2319 



 
5.3 Simulations for Robot Pose Consensus and Feature 

Consensus  

To evaluate the performance of robot to robot cooperation, specifically for 

robot pose consensus, we also extend and refine the simulator made by Time 

 
Figure 5.7 Comparison of SLAM errors. The errors of the robot pose, orientation and 

feature location are shown over time in (a), (b) and (c), respectively. FastSLAM, PSO-

FastSLAM, the proposed RBPF-SLAM are denoted by the dashed line, the dashed-

dotted line and the solid line, respectively. (d), (e) and (f) represent errors as bar graph 

by accumulating the errors over time. 



Bailey [80]. In two different simulations, robots localize their poses and build 

maps by assuming the unknown initial condition. These robots move at a 

maximum speed of 3m/s. The period of the update for the control input is 0.5s. 

The period of the update for observation is 1.6s. In addition, they have non-

holonomic constraints (e.g. maximum steering angle: 30 degree and maximum 

rate of change in steer angle: 20 degree). Their control noise Q and observation 

noise R are defined as follows: 

0 0
,

0 0
V R

G B

Q     R ,                (5.6) 

where V , G , R  and B  are 0.33, 3rad, 0.1, 1rad, respectively. Ten 

particles are used to operate RBPF-SLAM. 
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Figure 5.8 The environment of the simulation I. The path of Rn is represented as the 

blue line. The path of Rf is represented as the red line. They move in opposition 

directions. There are 16 way points and 35 features.  



 
5.3.1 Robot Pose Consensus Test I 

In this simulation, there are 16 way points and 35 features as shown in Fig. 

5.8. A reference robot Rf and an arbitrary robot Rn move in opposition directions. 

During their journey, they meet two times. Until the first rendezvous point, the 

poses and maps of Rf are only estimated. The control input and the observations 

of Rn are just accumulated. After the first rendezvous, the past poses and maps 

of Rn are estimated through an acausal filter and its current pose and map is 

updated by a causal filter. The acausal filter is operated from the first 

rendezvous point to the start point of Rn. In this simulation, the time step t at 

the first rendezvous is about 200. A boundary constant of reliability  is 

Compensated 
path

Estimated 
path for Rn
(Acausal)

Estimated 
path for Rf

Estimated 
path for Rn

(Causal)

 

Figure 5.9 The result of the simulation I. The estimated acausal and causal paths for 

Rn are represented as red and blue. The estimated path for Rf is represented as black. 

The compensated paths of Rn and Rf are represented as the green lines.  



defined as 50, which implies that the map updated from 200t  to 250t  

is used for the compensation after the second rendezvous. When the second 

rendezvous occurs, the current poses of two robots are updated using the KCF. 

The accuracy for the poses is described in Table 5.3. The errors of both poses 

are reduced using the KCF. In addition, the covariance of both robots is 

decreased, which implies that the robot poses can be more correctly estimated. 

Subsequently, the poses and the map of each robot are also updated based on 

the compensated current pose. It is conducted between the first rendezvous 

point and the second rendezvous point. Figure 5.9 shows the final result of the 

simulation. The estimated path for Rf is represented as black. The estimated 

path for Rn is divided by a path obtained from the causal filter and a path 

obtained from the acausal filter. The compensated paths are described as green 

lines. As shown in this figure, the path of each robot estimated between the first 

rendezvous and the second rendezvous is sophisticatedly compensated. Total 

errors for the robot poses and features are computed by 

   

, [ ] , [ ]( ) ( )

 

T
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where N is the number of particles, [ ]i
tx  is the ith particle at t, ( )truex t is the 

true vehicle pose at t, The jth feature of the ith particle is defined as [ ]
,
i
j tm , and 

fN  is the number of features in the map. The robot pose and feature errors of 

the conventional approach and the proposed approach are described in Table 

5.4, respectively. The errors are correctly compensated in the proposed 

approach. If the constant parameter of the consensus gain CI,  is defined 

more properly, the errors can be more reduced. 

 
TABLE 5.3  

COMPARISON OF POSE ERRORS AT RENDEZVOUS 

 No fusion KCF fusion 

For Rn 1.7634 0.7936 

For Rf 0.4461 0.3871 

 

TABLE 5.4  

COMPARISON OF TOTAL ERRORS 

 
Conventional Proposed 

Pose Feature Pose Feature 

For Rn 3.8912 2.5185 1.9126 1.8414 

For Rf 2.8543 2.7269 1.7323 2.5085 



5.3.2 Robot Pose Consensus Test II 

As shown in Fig.5.10, two robots have different trajectories along their 

waypoints shaped like M. They meet two times that are described as 

Rendezvous I and Rendezvous II in the figure. In addition, they only 

communicate at two rendezvous points. Likewise with the previous simulation, 

the initialization of Rn is conducted at the first rendezvous with Rf. It occurs 

when the time is about 150. A boundary constant of reliability  is defined as 

20, which implies that the map updated from 150t  to 170t  is used 

during the compensation after the second rendezvous. The compensation and 

the fusion of information occur at the second rendezvous. The errors of the 

Rf

Rn

Waypoints

Features

Waypoints

Rendezvous I

Rendezvous II

 

Figure 5.10 The environment of the simulation II. The path of Rn is represented as 

the blue line. The path of Rf is represented as the red line. There are seven way points 

for each robot. 

 



fused pose for both Rf and Rn are described in Table 5.5. In the case of the 

proposed approach, the errors are remarkably reduced due to the KCIF, which 

affects subsequent compensation. The robot pose and feature errors of the 

conventional approach and the proposed approach are described in Table 5.6. 

Based on the compensation of the current pose for both Rn and Rf, the errors for 

the robot poses and features are more correctly compensated in the proposed 

approach. The graphical result of the simulation II is represented in Fig. 5.11. 

The path of Rf (black) is incrementally estimated since it starts. When the first 

rendezvous between Rf and Rn occurs, the paths of Rn are estimated by the causal 

filter (blue) and the acausal filter (red). In addition, its path and map are 

represented in the frame of Rf. After the second rendezvous, the paths and maps 

of Rf and Rn are compensated by the KCIF and backtracking. As shown in the 

figure, their paths and maps are compensated more accurately in the proposed 

framework. 

 

 
TABLE 5.5  

COMPARISON OF POSE ERRORS AT THE RENDEZVOUS EVENT 

 No filter KCIF fusion 

For Rn 5.6575 1.7399 

For Rf 2.1133 1.7678 

 

 

 



 

TABLE 5.6  

COMPARISON OF TOTAL ERRORS 

 
Conventional Proposed 

Pose Feature Pose Feature 

For Rn 1.4752 1.1585 1.1926 1.0441 

For Rf 1.3544 1.2296 1.3233 1.0885 

 

5.3.3 Feature Consensus Test 

A simulation for the feature sharing event is conducted in this section. As 

shown in Fig. 5.12, two robots and five features are used in this simulation. The 

robots move forward in a zig-zag pattern. At first, a reference robot Rf estimates 

Compensated 
path

Estimated 
path for Rn
(Acausal)

Estimated 
path for Rf

Estimated 
path for Rn

(Causal)

Figure 5.11 The result of the simulation II. The estimated acausal and causal paths 

for Rn are represented as red and blue. The estimated path for Rf is represented as 

black. The compensated paths of Rn and Rf are represented as the green line. The 

compensation is operated between the first rendezvous and the second rendezvous. 



its poses and a map of surroundings. Another robot Rn just collects its control 

and sensor signals. After a rendezvous between Rn and Rf, Rn also estimates its 

poses and map using the collected control and sensor signals. At the same time, 

they are sharing a common feature which is located in (30, 80). The Kalman 

consensus scheme as mentioned in the previous Chapter is operated to fuse the 

state of this feature. Here, the proposed consensus scheme is compared with no 

compensation approach and [92]. To measure the errors of each approaches, the 

simulation is performed one hundred times. Fig. 5.13 shows the average feature 

errors over time for Rn and Rf, which are computed by  

[ ] [ ]
, , , ,

( )

fN
Ti true i true

j t j t j t j t
K i j

Avg
f

m m m m
t

N N K
         (5.9) 

(a) In the Beginning               (b) After the Initialization 

Figure 5.12 Simulation for the feature sharing event. Two robots and five features are 

used in the simulation. After the initialization of Rn, they are sharing common features 

and reduce the errors of the estimated features by adopting the Kalman consensus 

scheme in the proposed RBPF-SLAM.



where K is the total iteration number, which is defined as 100. The total average 

errors are computed by dividing ( )Avg t  by total time, which is described in 

Table 5.7. In case of KCIF fusion using a particle with maximum weight, the 

feature errors are reduced for Rf but increase for Rn. However, the feature errors 

of both Rn and Rf are reduced by transmitting the average feature mean of 

particles for KCIF fusion.  

(a) Feature errors of Rf             (b) Feature errors of Rn 

Figure 5.13 Simulation result for the feature sharing event. The feature errors of both 

Rf and Rn are reduced using the average feature mean of particles in the proposed 

approach. 
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5.4 Discussions  

In the Section 5, several simulations are performed using the formal 

simulator made by Tim Bailey. Before the performance test, the verification for 

needs of weight compensation (WC) and particle formation maintenance (PFM) 

was carried out. In the weight compensation, two kinds of approach were tried, 

i.e. a heuristic weight compensation and piecewise average based weight 

compensation. The error results showed that RBPF-SLAM using the weight 

compensation schemes more correctly estimates the robot poses and feature 

locations than the conventional RBPF-SLAM. In terms of WC, the piecewise 

average based weight compensation scheme showed better performance, which 

was described in Section 5.1.1 and Section 5.1.2. Because the WC techniques 

have been proposed to assign more correct weights to particle even in failure of 

data association as mentioned in Section 3, the simulation results denote the 

weight of each particle is more correctly assigned using WC. Table 5.8 

summarizes the results of all simulations. In Section 5.1.3, PFM was also 

 

TABLE 5.7  

COMPARISON OF TOTAL FEATURE ERRORS 

 No filter 
KCIF fusion with 

Maximum Particle 

KCIF fusion with 

Average of Particles 

For Rn 1.3333 1.3459 1.2089 

For Rf 1.3439 1.3032 1.2556 



verified by comparing RBPF-SLAM and RBPF-SLAM with WC. The result 

showed that the robot pose and feature location error rates are decreased to 52 

percent and 57 percent, respectively, in the best case. Because PFM has been 

proposed to overcome the particle depletion problem, the results imply the 

problem is highly curbed throughout the simulation. When data association is 

unknown, each particle determines the feature using the maximum likelihood 

method as shown in Section 5.2. FastSLAM[36], PSO based FastSLAM[46] 

and the proposed were compared using 50 particles. In terms of robot poses and 

feature locations, the both errors are highly reduced in the proposed approach. 

For multi-robot SLAM, the performance verification using KCIF were 

conducted in case of rendezvous and feature sharing events. In Section 5.3.1 

and 5.3.2, robot poses are fused using the consensus scheme when two robots 

meet each other. The robot poses at the rendezvous point where more accurately 

estimated, which can be seen from the error results. It implies SLAM 

performance is highly enhanced using rendezvous events in the multi robot 

system. Especially, the sampling step for robot pose estimation is improved. In 

addition, features were more correctly updated when two robots share common 

features. The errors are reduced using the feature consensus scheme ranging 

from 4 percent to 10 percent. It leads to considerable enhancement of the 

measurement update part in the proposed SLAM framework.   

 



 

 

TABLE 5.8  

RESULTS OF SIMULATIONS 

Simulations 
Pose Error  

Reduction Rate 

Feature Error 

Reduction Rate 
Location 

Simulation I 
[36] [36] + WC [36] [36] + WC 

Section 5.1.3 
51% 25% 57% 43% 

Simulation 

II 

[36] [46] [36] [46] 
Section 5.2 

52% 51% 43% 20% 

Simulation 

III 

[89] [89] 
Section 5.3.1 

51% 27% 

Simulation 

VI 

[89] [89] 
Section 5.3.2 

20% 10% 

Simulation 

V 

[92] (For Rn) [92] (For Rf) 
Section 5.3.3 

10% 4% 



 

Chapter 6 

Experiment 

In this chapter, the SLAM performance of proposed framework is verified 

from experimental results. Line features that represent a map of surroundings 

of robots are extracted using the Hough transform in Section 6.1. The proposed 

approach was also tested in formal datasets, i.e. Car park dataset and Victoria 

park dataset, in Section 6.2 and Section 6.3. The estimated robot pose results 

from FastSLAM 2.0, PSO based FastSLAM, UFastSLAM, particle fission 

based UFastSLAM, PSO based UFastSLAM and the proposed RBPF-SLAM 

framework are compared with the GPS data while varying the number of 

particles. The robot poses obtained from the proposed RBPF-SLAM is 

remarkably consistent with GPS. In Section 6.4 and Section 6.5, the proposed 

SLAM approach was verified in the large indoor and outdoor environments. 

 



 
6.1 Line Feature Extraction  

In this dissertation, line features are extracted from the Hough transform, 

which is one of feature extraction techniques used in image analysis, computer 

vision, and digital image processing. Duda and Hart [82] proposed the use of a 

different pair of parameters, denoted r and θ, for the lines in the Hough 

transform. These two values, taken in conjunction, define a polar coordinate. 

The parameter r represents the algebraic distance between the line and the 

origin, while θ is the angle of the vector orthogonal to the line and pointing 

toward the half upper plane. If the line is located above the origin, θ is simply 

the angle of the vector from the origin to this closest point. Using this Hough 

transform, line features can be extracted when measurements are obtained from 

θ 

r

(a) Laser scan data         (b) Hough transform      (c) Extracted features 

Figure 6.1 Line feature extraction. Laser scan data is represented in (a). The data is 

transformed in a polar coordinate as shown in (b). After the Hough transform, several 

features are extracted and (c) shows the results. 



the laser range finder, which is shown in Fig.6.1. In this dissertation, a line 

feature vector consists of { , , ,( , ),( , )}s s t tl x y x yI = , which is depicted in Fig. 

6.2 [83]. To deal with this line feature, the measurement model is the projection 

function that maps the line features in the state vector from the world to the 

robot centered coordinate, described by:  

2 2

1
,

tan ( / )

k
r
k
r

z dx dy
z dy dx r

             (6.1) 

( cos sin )cos ,k k k k
x ydx r r            (6.2) 

( cos sin )sin ,k k k k
x ydy r r            (6.3) 

where 
T

z z denotes a projected location of kI  in the robot centered 

coordinate and 1tan ( / )dy dx r  returns the angle from the origin in the local 

θ 
(xs,ys)

(xt,yt)

l

ρ 

Measurements

 
Figure 6.2 Parameters of a line feature vector 



coordinate to a point ( , )dx dy . 

 
6.2 Tests using Car Park Dataset 

We also verify the proposed approach using the Car Park dataset, which is 

one of well-known datasets that has been used in [87]. The car was equipped 

with a horizontal scanning laser sensor with 80 meters observing radius and 180 

degrees field of view. Figure 6.3 shows the vehicle kinematic information. All 

vehicle kinematic variables, i.e. a, b, H, and L are defined by a = 3.78 m, b = 

0.5 m, H=0.76 m, L=2.83 m. The dead-reckoning noise, laser range and bearing 

noise and GPS noises are defined as follows: 
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    (6.4) 

where v , , r , , gx  and gy  are noise parameters which are 

defined as 0.7m, 7 rad, 0.10m, 1 rad, 0.05m, and 0.05m, respectively. The 

 

 

Figure 6.3 Vehicle Kinematic Information 



dataset is operated using the defined variables in a simulator, which is 

represented in the Fig. 6.4. GPS data, the true location of beacons, the estimated 

path, and laser data are illustrated in this figure. Especially 15 beacons are used 

for features which are obtained by laser data. The size of the environment is 

20m x 20m. In the test, a variety in the number of the particles was chosen, with 

minimum 3 particles and maximum 50 particles. The test was performed 

iteratively 50 times. Three methods, i.e. UFastSLAM, PSO based UFastSLAM 

and the proposed approach were compared in terms of errors of the robot pose 

and the map. Fig. 6.5 and Fig. 6.6 show the results of the estimated map and 

the estimated robot poses obtained from the methods. The robot pose xt is 

Figure 6.4 GUI for algorithm tests in car park dataset. 



represented by the average pose of all particles and the map Mt is represented 

using the estimated poses from all particles. UFastSLAM and PSO based 

UFastSLAM properly estimates the map and the robot poses but some points 

cannot be estimated well. These phenomenon can be affected by the particle 

depletion problem which is removed in the proposed approach. Unlike the 

conventional methods, the locations of the estimated beacons are scattered in 

the proposed approach. It implies that all particles constitute the triangular 

formation by maintaining the number of distinctive particles.  

TABLE 6.1  

COMPARISON OF AVERAGE POSE ERROR AND STANDARD DEVIATION OF 

POSE ERRORS  

Errors [60] [40] [62] Proposed 

Avg of Pose errors 

for 3particles 
0.7186 0.6779 0.6015 0.5402 

Std of Pose errors for 

3particles 
0.2993 0.3803 0.4808 0.1711 

Avg of Pose errors 

for 10particles 
0.4246 0.6661 0.3323 0.3521 

Avg of Pose errors 

for 10particles 
0.4246 0.6661 0.3323 0.3521 

Std of Pose errors for 

10particles 
0.3522 0.3622 0.2222 0.0808 

Avg of Pose errors 

for 50particles 
0.2301 0.3287 0.2664 0.2288 

Std of Pose errors for 

50particles 
0.0458 0.1232 0.0772 0.0587 



The robot pose errors of the three methods are also compared using the GPS 

data g
tx . Although GPS data does not mean the true robot poses, it is the best 

to use it in this experiment. For the comparison, the average pose error avge and 

its standard deviation errorS are computed as follows: 

(a) UFastSLAM 

 
(b) PSO based UFastSLAM 

Figure 6.5 Estimated beacons (red colored points) and robot poses (blue colored lines)
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where T is the total time step and N is the number of particles. These are 

described in Table 6.1. The proposed approach leads to lower errors than the 

other methods. It implies that the robot poses and the map are accurately 

estimated by the ability of the multi-hypothesis data association in the proposed 

approach.    

Figure 6.6 Estimated beacons (red colored points) and robot poses (blue colored lines) 

using the proposed approach. 



6.3 Tests using Victoria Park Dataset 

We also verify the Relational RBPF-SLAM using the Victoria Park dataset, 

which is well-known dataset that has been used in [81]. In addition, this dataset 

has 6898 odometry time steps, and it offers logged range/bearing measurements 

from a laser range sensor. Trees in a park are used as natural features, and they 

are detected by a tree detection algorithm [81]. The test was conducted on Intel® 

Core™ i5-2500 CPU 3.30-GHz. Figure 6.7(a) shows Victoria Park in Australia 

provided by Google Maps. Also, Fig. 6.7(b) and Fig. 6.7(c) represent the raw 

odometry robot poses and robot poses obtained from GPS, respectively. From 

the two trajectories, we can easily note that the odometry data are highly 

 
Figure 6.7 Victoria Park dataset. (a) shows Victoria Park on Google Maps. (b) and (c) 

represent robot trajectories obtained from odometry and GPS, respectively.  
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(b)
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corrupted by noise. Figure 6.8 shows the estimated robot pose results from the 

proposed RBPF-SLAM, FastSLAM 2.0 and PSO-based FastSLAM by 

overlapping the true robot trajectory obtained from GPS. In this test, ten 

particles are employed. In case of FastSLAM 2.0 and PSO-FastSLAM, the robot 

trajectories are similar to the GPS result until the middle of the journey. 

However, the latter part of the robot journey shows numerous differences 

between two trajectories. The estimated robot poses obtained from the proposed 

RBPF-SLAM is remarkably consistent with GPS, even in the latter part of the 

robot journey, meaning that the proposed RBPF-SLAM maintains multiple data 

association hypotheses using the weight compensation and particle formation 

maintenance while avoiding the particle depletion problem. We also operate 

UFastSLAM in the test, which improves FastSLAM using the unscented 

transform in sampling and measurement update parts. Although its SLAM 

performance is better than that of FastSLAM, it exhibits the same drawback 

over time. As shown in Table 6.2, the proposed RBPF-SLAM has a better 

average execution time than the other methods. Because proposed RBPF-SLA 

depends on the number of particles, the circumstances are more remarkable in 

the first simulation. However, the gap in the execution time between FastSLAM 

and proposed RBPF-SLA is less than 0.03 sec despite the increase in the number 

of features. 



Another test is conducted using three particles, which is the minimum 

number of particles to form a triangular mesh structure. In this test, the control 

noises are 1 /V m s  and 3G . The measurement noises are 0.5r m  

and 2 . Unlike the previous test, UFastSLAM [60], particle fission based 

UFastSLAM [40], PSO-based UFastSLAM [62] and the proposed RBPF-

SLAM are compared one another and the results are represented in Fig. 6.9 and 

Fig. 6.10. In case of UFastSLAM, the SLAM performance deteriorates over 

time because of the tiny number of particles. Particle fission based UFastSLAM 

Figure 6.8 SLAM test using the Victoria Park dataset. The results from FastSLAM 

2.0 (dotted line), PSO-based FastSLAM (dashed-doted line), the proposed RBPF-

SLAM (solid line), UFastSLAM (dashed line) and GPS (point) are represented in a 

single figure. The control noises are 0.5 /V m s  and 3G . The measurement 

noises are 0.05r m  and 0.3 . Ten particles are used in the test. 

TABLE 6.2  

AVERAGE COMPUTATIONAL TIME (SEC) 

 UFastSLAM PSO-UFastSLAM Proposed 

Victoria Park Dataset  0.0811 0.0837 0.104 



shows improvements for the robot poses and features. However, the SLAM 

performance also deteriorates at turning points. It is weak for rotation. The robot 

poses are more correctly estimated using PSO-based UFastSLAM and the 

proposed RBPF-SLAM. In case of PSO-based UFastSLAM, the estimation 

performance deteriorates around the last point. However, the estimated robot 

poses are remarkably consistent with GPS data in the proposed RBPF-SLAM. 

It means that when the odometry and measurements are highly corrupted, the 

proposed RBPF-SLAM is more robust than others. Especially, if a finite number 

of particles is used, the proposed RBPF-SLAM better results than others.  

 

 



 

 

 

 

 

 

 

 

 

 

(a) UFastSLAM 

 

 

 

 

 

 

 

 

 

(b) Particle Fission based UFastSLAM 

Figure 6.9 SLAM test using the Victoria Park dataset. The results from UFastSLAM 

and particle fission based UFastSLAM are represented, respectively. GPS results 

(black points) are also represented in two figures. The control noises are 1 /V m s  

and 3G . The measurement noises are 0.5r m  and 2 . Three particles 

are used in the test. 



 
(a) PSO based UFastSLAM 

 

 
(b) Proposed RBPF-SLAM 

Figure 6.10 SLAM test using the Victoria Park dataset. The results from PSO based 

UFastSLAM and the proposed RBPF-SLAM are represented, respectively. GPS results 

(black points) are also represented in two figures. The control noises are 1 /V m s  

and 3G . The measurement noises are 0.5r m  and 2 . Three particles 

are used in the test.  



 

6.4 Indoor Experiments 

The experiment is performed at 3 floors in Automation and Systems 

Research Institute in Seoul National University as an indoor environment as 

shown in Fig. 6.11. The size of the environment is 38m x 16m. There are many 

walls between doors and many objects in the office, which make the 

environment more complex. In many cases, data association can be failed. Each 

robot follows the wall according to the simple wall-following scheme with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Environmental maps and the predicted robot paths. There are many 

objects in the office and walls between doors. 

P5
P4

P6

P3

P2

P8

P1

P7

Robot2's path
Robot1's path



0.2m/s. It The Hokuyo URG-04LX-UG01 Laser Rangefinder and the Xtion Pro 

Camera are carried by each robot that is Pioneer 3DX as shown in Fig. 6.12. 

The detectable range of the laser scan sensor was 5m within . The 

structure of the surrounding environment and robots are observed by these 

sensors.  

UFastSLAM, PSO based UFastSLAM, and the proposed approach are 

applied to the above indoor dataset. In this test, three particles are used. Features 

are extracted using the Hough transform introduced in Section 6.1. For 

unknown data association, each line feature { , , ,( , ),( , )}s s t tl x y x yI =  is 

matched as follows: 
2 2

(1 1 (2k k
p r p rHD w xf w xf          (6.7) 

2 2
(1 1 (2 ,' 0.5k k

p r p r pH w xf w xfD w        (6.8) 

    2 2
1 3 (6) (7)k

r t tL l xf x xf y xf           (6.9) 
2

2
23 (4) (5)k

r t tL l xf x xf y xf           (6.10) 
2

1_ (2) 180 /k
rAngle diff xf pi             (6.11) 

(a) Robot hardware platform   (b) Initial conditions for two robots 

Figure 6.12 Robot hardware platform and initial conditions at the start point.  



2 1_ (360 _ )Angle diff abs Angle diff            (6.12) 

where xf is obtained from the measurement model, which is a 7x1 vector. 

'HD  and HD  are square root of the error terms for the distance and angle. 

pw  in HD  is defined as 0.8. 1L  and 2L  are the line length constraint. 

1_Angle diff  and 2_Angle diff  are the angle difference. 

From the above equations, we can find out the correspondence if the following 

condition is satisfied 

min min 1 2

1 1 2 1

( ' ' 0 0)
_ _ )

H HD thresh D thresh L L
Angle diff T Angle diff T

 or ) and (  or  and 
(  or 

 (6.13) 

where minthresh  and min'thresh  are defined as 60 and 30. 1T  is 60 in degree. 

(a) UFastSLAM            (b) Particle Fission based UFastSLAM 

 
(c) PSO based UFastSLAM                (d) Proposed  

Figure 6.13 The graphical results of indoor dataset. 



Figure 6.13 shows the SLAM results obtained by all methods. Specifically, the 

maps of R2 is drawn for performance comparison. In case of UFastSLAM, PSO-

UFastSLAM, the estimations of the robot poses are failed and the associated 

maps are constructed inaccurately. However, the proposed approach tracks the 

robot trajectory quite well and its associated map is constructed more accurately 

than others. Table 6.3 shows that the proposed approach more correctly 

estimates the robot pose than others. Here, the errors are computed by the 

difference between the estimated last robot pose and the true robot pose at end 

of its journey.  
TABLE 6.3  

ROBOT POSE ERROR COMPARISON 

 UFastSLAM 
Particle Fission 

based UFastSLAM 

PSO based 

UFastSLAM 
Proposed 

Pose Error 

(cm) 
1039.30 891.5572 274.58 149.29 

(a) Robot hardware platform         (b) Experimental environments 

Figure 6.14 Robot hardware platform and experimental environments.  



6.5 Outdoor Experiments 

In an outdoor environment, i.e. a parking lot, an experiment is performed 

using the proposed RBPF-SLAM, UFastSLAM and PSO based UFastSLAM. 

The Hokuyo UTM-30LX Laser Rangefinder and Xtion Pro Cameras are carried 

by robots whose models are Pioneer 3DX as shown in Fig. 6.14(a). The 

detectable range of the laser scan sensor was 30m within . The structure 

of the surrounding environment and robots are observed by these sensors. The 

size of the environment is 40m x 50m which is located in the parking lot of 

Automation and Systems Research Institute in Seoul National University. There 

are three robots that have their waypoints and different start points as shown in 

Fig. 6.14(b). The robots move at 0.2m/s and turn to their start points. Here, the 

(a) Robot hardware platform         (b) Experimental environments 

Figure 6.14 Robot hardware platform and experimental environments.  

corrupted map 

features 

Robot poses using odometry  

Figure 6.15 The map (green-colored points) and the robot poses (red-colored lines) 

using only odometry data.



frontier based exploration technique [86] was used, which is based on the grid 

map consisting of ‘open’, ‘occupied’ and ‘unknown’. All grids are initially 

filled with 0.5 that means the ‘unknown’ state. If some grids are detected by 

laser range data, their conditions can be changed into open area using the prior 

probability and the occupancy probability. The frontier is defined as the 

boundary between open space and uncharted territory. The robots can follow 

the frontiers close to the predefined waypoints. 

 

6.5.1 Performance Comparison for Single Robot SLAM 

In case of R1, its estimated poses using its odometry and corresponding map 

are represented in Fig. 6.15. The odometry data of the robot is corrupted and 

the map is not represented accurately. To acquire the accurate robot poses and 

map, UFastSLAM, PSO based UFastSLAM and the proposed approach are 

applied to the R1 dataset using the robot odometry and laser measurements 

which are used to extract line features. Three approaches estimate the robot 

pose and the map by varying the number of particles. In the figures, the robot p 

and the map are represented by red-colored line and green-colored points. 

When incorrect data association frequently occurs, which means the particle 

depletion problems can be accelerated, UFastSLAM cannot be tracking the 

robot poses and the map accurately as shown in Fig.6.16 and Fig.6.17 even 

though one-hundred particles are used. It is due to the decreased number of 

distinctive particles. On the contrary, the proposed approach more accurately 



estimates the map and the robot pose than those of UFastSLAM. In case of ten 

or one-hundred particles, the map and the robot pose are estimated quite 

precisely. Because, each particle tracks the target consistently. In addition, the 

proposed approach more accurately estimates the map and the robot pose using 

only three particles compared to others. These are described in Fig. 6.18 and 

Fig. 6.19. As shown in these figures, the rotation of the map is gradually 

accurate according to the number of particles. It implies that each particle does 

not disappear or is not replicated after the resampling step but rather affects the 

target estimation. In short, from the result, the particle depletion problem is 

overcome in the proposed approach. 

 

Figure 6.16 Estimated map and robot poses using UFastSLAM with three particles. 

These are represented by green colored points and red colored lines. 



(a) Ten particles                   (b) One-hundred particles 

Figure 6.17 Estimated maps and robot poses using UFastSLAM with ten particles and 

one-hundred particles. Red lines and green points are the estimated robot poses and 

estimated map, respectively. 

Figure 6.18 Estimated maps and robot poses using the proposed approach with three 

particles. Red lines and green points are the estimated robot poses and estimated map, 

respectively. 



(a) Ten particles                   (b) One-hundred particles 

Figure 6.19 Estimated maps and robot poses using the proposed approach. Red lines 

and green points are the estimated robot poses and estimated map, respectively.  

(a) UFastSLAM 

 

(b) PSO based UFastSLAM 

Figure 6.20 Estimated maps and robot poses for R3. The odometry and the estimated 

poses are represented by the blue line and the red line, respectively. (a) and (b) are 

UFastSLAM and PSO based UFastSLAM, respectively.  



 

 
Figure 6.21 Estimated maps and robot poses for R3. The odometry and the estimated 

poses are represented by the blue line and the red line, respectively.  

 
Figure 6.22 Estimated maps and robot poses for R2 using UFastSLAM. The odometry 

and the estimated poses are represented by the blue line and the red line, respectively. 



TABLE 6.4  

POSE ERROR COMPARISON 

 UFastSLAM PSO based UFastSLAM Proposed 

R1 Error (cm) 431.96 58.29 55.09 

R2 Error (cm) 512.26 389.31 131.70 

R3 Error (cm) 391.60 50.56 43.81 

Avg Error 445.27 339.38 76.86 

 

The estimated maps and poses of other robots are also obtained using the 

above mentioned methods as shown in Fig.6.19, Fig.6.20 and Fig.6.22. The 

proposed approach gives better performance than others in terms of accuracy 

for the robot poses and the map as shown in Fig.6.23. In case of R2, the map 

using the proposed RBPF-SLAM is not better than one of PSO-UFastSLAM in 

terms of the rotation error because the raw sensor data is quite accurate using 

the sensor matching method. This case is the exceptional case because we 

assume that measurement noise is always smaller than one of odometry. The 

total merged maps are represented using the three methods as shown in Fig. 

6.24. The maps of R2 and R3 are involved in one of the reference robot R1. In 

some points, the maps obtained from the proposed RBPF-SLAM framework 

are more overlapped than other methods, which means that the map is more 

correctly estimated using weight compensation and particle formation 

maintenance schemes. The robot pose errors which are measured through 

comparison between the last estimated robot pose and its true pose are shown 



in Table 6.4. Since the problem of tires of R2 occurs, we can use not the 

odometry data but the result of scan matching. Here, the iterative closest point 

(ICP) algorithm is used for scan matching. 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Estimated maps and robot poses for R2 using the PSO-UFastSLAM and 

the proposed approach. The odometry and the estimated poses are represented by the 

blue line and the red line, respectively.  



 

(a) UFastSLAM 

 

 

 

 

 

 

 

(b) PSO-UFastSLAM  

 

 

 

 

 

 

 

(c) Proposed 

Figure 6.24 Total merged map using the UFastSLAM (a), PSO-UFastSLAM (b) and 

proposed approach (c). 



The results of the robot pose errors show that the proposed approach 

outperforms other methods. PSO based UFastSLAM has better performance 

than UFastSLAM but PSO may degenerate the filter at some points in the large 

environment. From the results, the proposed schemes, i.e. weight compensation 

and particle formation maintenance, are well operated during the journey of 

each robot.  

 

6.5.2 Performance Comparison for Data Consensus  

Three robots can meet (Rendezvous) or share several features (Feature-

Sharing) one another during their journeys. To meet other robots, each robot 

should detect other robots using its front vision sensor. Here, the multi-view of 

the robot was learned using binary descriptor, i.e. brisk features, in advance. 

The brisk features have some advantages which are fast computational speed 

using Hamming distance [85] and robust for blur and rotation [84]. The detected 

robots are represented in Fig.6.25 which are represented as the yellow box. 

After the detection, they can obtain the inter-robot measurements that are the 

distance and the angle between them. The acquired inter-robot measurements 

are used in the KCIF process in the proposed approach. 

In case of feature-sharing events, their line features or common places are 

shared and can be updated according to the KCIF update scheme. Figure 6.26 

shows the shared place between two robots. The detected times are different 

but the vast amount of information is shared at that place. In this experiment, 



the similarity score is set to zero point six. Using the above mentioned events, 

the initial pose of all robots are given and approximatively described in Table 

6.5.  

 

(a) Detected by R1                     (b) Detected by R2 

Figure 6.25 Rendezvous. The inter-robot measurements occur after robot detection.  

 

 

(a) Detected by R1                     (b) Detected by R2 

Figure 6.26 Feature-sharing event. The inter-robot measurements also occur. 
 

 

 

 



TABLE 6.5 

INITIAL POSE OF ALL ROBOTS 

 R1 R2 R3 

Robot Poses (0m, 0m, 0°) (22423.8m, 17494.9m, 
90°) 

(-16834m, 26127m, -
90°) 

 

Since robots cannot be suddenly emerged and manually controlled by 

human at the beginning, the given initial conditions are not critical issues 

anymore. From the initial conditions, the methods, i.e. the conventional 

approach and the proposed approach, can be applied to the outdoor dataset. 

Figure 6.27 represents the total maps obtained from the methods. In the total 

map obtained from the proposed RBPF-SLAM framework, the overlapped 

areas are more correctly estimated using inter-robot measurements than ones of 

the conventional approach. From Table 6.6, the proposed RBPF-SLAM 

framework estimates the final pose of the robot more accurately than one 

(a) Conventional Approach             (b) Proposed Approach 

Figure 6.27 Final merged map obtained from all robots. (a) and (b) are the total maps 

obtained from the conventional approach and the proposed approach, respectively. 



obtained from the conventional approach. It implies that the consensus scheme 

is operated pretty well.  

TABLE 6.6 

COMPARISON OF ROBOT POSE ERRORS 

 Conventional Proposed 

Average Robot x-y Pose Errors 99.06cm 68.05cm 

Average Robot orientation Errors 8.4° 5.9° 

 

6.6 Discussions  

In the Chapter 6, several tests are performed using the formal dataset, i.e. 

Car park dataset and Victoria park dataset, and indoor and outdoor real 

experiments. In the tests, the proposed SLAM framework was compared with 

UFastSLAM [60], PSO based UFastSLAM [62], particle fission based 

UFastSLAM. In case of particle fission based UFastSLAM, the concept of 

particle fission is applied to UFastSLAM, which was originally used in 

FastSLAM [40]. In most cases, three particles were used in RBPF-SLAM. In 

case of Car park dataset, each method was employed using different number of 

particles as well as three particles. In the graphical results, the distribution of 

particles in the proposed approach was more scattered than others because it 

steadily makes particles constitute a formation. The errors are measured using 

the difference between GPS data and estimated robot poses when GPS data is 



available. Overall, the proposed SLAM framework had better performance than 

others. Especially, when the small number of particles was used, the proposed 

approach showed better results than others. It reduced the errors up to 19 

percent. These are described in Section 6.2. The SLAM methods were also 

applied to the Victoria park dataset for graphical comparison. The tests were 

performed in different motion and measurement noise. The robot poses 

obtained from the proposed approach are more overlapped with GPS data than 

ones estimated by other methods even when the motion and measurements are 

highly corrupted. These are described in Section 6.3. In case of the indoor 

experiment, the experiment was performed at 3 floors in Automation and 

Systems Research Institute in Seoul National University whose size is 38m x 

16m. UFastSLAM and particle fission based UFastSLAM failed the estimation 

of the robot poses and maps from the wrong data association. However, PSO 

based UFastSLAM and the proposed SLAM approach estimated the robot 

poses and maps until the end. Among them, we can know that the proposed 

SLAM approach more accurately estimated the robot poses and maps than the 

PSO based UFastSLAM from the error result at the last robot pose. It is proper 

that errors at the last robot pose are compared because errors are accumulated 

in SLAM. By comparing UFastSLAM, the proposed SLAM approach reduced 

the error from 1039.30cm to 149.29cm, which are shown in Section 6.4. In an 

outdoor environment, i.e. a parking lot, an experiment was performed using the 

proposed RBPF-SLAM, UFastSLAM and PSO based UFastSLAM. Like the 



indoor experiment, the errors are measured at the last robot pose. In addition, 

the average errors from the results of three robots were computed and compared. 

In case of all cases, PSO based UFastSLAM is better performance than 

UFastSLAM. The proposed RBPF-SLAM framework showed better results in 

case of all robots than others. It means the proposed approach maintains the 

number of distinctive particles until the end. The PFM is operated more robustly 

than PSO. It implies that particles converge a wrong point at some points using 

PSO, which can cause the particle depletion problem. However, in case of R3, 

PSO based UFastSLAM showed more accurate rotation in the map than the 

proposed RBPF-SLAM framework. It is due to the exceptional case. Originally, 

RBPF-SLAM assume that measurement noise is always smaller than one of 

odometry. Since noise by the scan matching method is lower than the noise by 

the measurement in some cases, the assumption is broken. Therefore, PSO 

based UFastSLAM may better performance in this condition. These are 

described in Section 6.5.1. In Section 6.5.2, the consensus scheme are 

performed when two robots meet each other, i.e. the rendezvous event. As a 

conventional approach, map-merging algorithm was applied, which does not 

compensate the map itself. When several rendezvous occur, the consensus is 

consistently performed, which results in the robot poses are more correctly 

estimated and errors are reduced by 32 percent at the last pose. From the results, 

the enhancement of the sampling step in the RBPF framework is verified. These 

are described in Table 6.7. 



 

 

TABLE 6.7  

RESULTS OF SEVERAL TESTS 

Experiments Target Error Reduction Rate Location 

Car Park Dataset 
Single 

Robot 

[60] [40] [62] 
Section 6.2 

19% 33% 7% 

Victoria Park 

Dataset 

Single 

Robot 

Generate more 

overlapped map with 

GPS data 

Section 6.3 

Indoor Dataset 
Single 

Robot 

[60] [40] [62] 
Section 6.4 

86% 83% 46% 

Outdoor Dataset 
Single 

Robot 

[60] [62] 
Section 6.5 

83% 54% 

Outdoor Dataset 
Multiple 

Robots 

[89] 
Section 6.5 

31% 



 

Chapter 7 

Conclusions 

This dissertation presents a novel Rao-Blackwellized particle filter based 

SLAM (RBPF-SLAM) framework using geometric information among 

particles and inter-robot measurements. The conventional RBPF-SLAM 

framework is often degenerated in large environments due to the inherent 

problems, i.e. the particle depletion problem, the data association problem and 

the filter. These problems originally come from the improper weight 

assignment and brutal rejection and replication of particles. Thus, all parts of 

RBPF-SLAM, i.e. the sampling step, the feature estimation step, the importance 

weight step, and the resampling step are enhanced using particle to particle 

cooperation and robot to robot cooperation. The concepts of particle to particle 

cooperation are applied to the importance weight step and the resampling step. 

To find out some particles with the improperly assigned weight, two clusters 



are generated using the k-means algorithm and the EM algorithm, which 

denotes an area where the target is highly involved and the other area where the 

target is not located. In the two clusters, improperly assigned weights are 

corrected. To eliminate the rejection and the replication of the resampling step, 

particles form a triangular mesh structure and maintain this formation until the 

end of SLAM. These are verified from the formal simulations, tests using 

Victoria park dataset and Car park dataset and outdoor experiments, which are 

introduced in Section 5.2, Section 5.3, Section 6.2, Section 6.3 and Section 6.4. 

The estimated robot poses and estimated features obtained from the proposed 

RBPF-SLAM are compared with competitive methods, which are FastSLAM 

2.0, PSO based FastSLAM, PSO based UFastSLAM, particle Fission based 

UFastSLAM and UFastSLAM. 

For multi-robot systems, the consensus scheme is involved in the proposed 

RBPF-SLAM framework, which results in the enhancement of the sampling 

step and the feature estimation step. The estimated maps obtained from each 

robot are unified in the coordinates of reference robot Rf . When a rendezvous 

between two robots occurs, their poses are more correctly estimated using the 

consensus scheme, which gives an improvement in the sampling step of the 

RBPF-SLAM framework. Here, the proposed RBPF-SLAM framework adopts 

a Kalman filter based consensus scheme, which is robust than the covariance 

intersection method. When two robots share a common feature, this feature is 

more correctly estimated via the Kalman filter based consensus scheme, which 



results in an improvement of the feature estimation step. Here, the average 

particles information, not information of a particle with maximum weight, of 

one robot is transmitted to the other robot. Simulations to verify SLAM 

performance by robot to robot cooperation, is carried out in Section 5.4. The 

proposed approach is also verified in a large outdoor environment as described 

in Section 6.4. In this experiment, the results show the proposed approach 

outperforms other methods using the geometric information of particles and 

inter-robot measurements between robots.  
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