creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

FopARL S

[¢] o
= =

gl

Write Avoidance Schemes for
Non-Volatile Memory based
Last-Level Cache

H 3Ed w22 7o) 2% Ad A E A
271 39 7|4

20164 24

ABSTRACT

Non-volatile memory (NVM) is considered to be a promising memory tech-
nology for last-level caches (LLC) due to its low leakage of power and high
storage density. However, NVM has some drawbacks including high dy-
namic energy when modifying NVM cells, long latency for write operations,
and limited write endurance. To overcome these problems, the thesis focuses
on two approaches: cache coherence and NVM capacity management policy

for hybrid cache architecture (HCA).

First, we review existing cache coherence protocols under the condi-
tion of NVM-based LLCs. Our analysis reveals that the LLCs perform un-
necessary write operations because legacy protocols have very pay little at-
tention to reducing the number of write accesses to the LLC. Therefore, a
write avoidance cache coherence protocol (WACC) is proposed to reduce

the number of write operations to the LL.C.

In addition, novel HCA schemes are proposed to efficiently utilize
SRAM in the thesis. Previous studies on HCA have concentrated on de-
tecting write-intensive blocks and placing them into the SRAM ways. How-
ever, unlike other studies, a dynamic way adjusting algorithm (DWA) and a
linefill-aware cache partitioning (LCP) calculate the optimal size of NVM
ways and SRAM ways in order to minimize the NVM write counts and as-

signing the corresponding number of NVM ways and SRAM ways to cores.

The simulation results show that WACC achieves a 13.2% reduction in
the dynamic energy consumption. For HCA schemes, the dynamic energy
consumption of DWA and LCP is reduced by 26.9% and 37.2%, respec-

tively.

Index Terms : Cache memories, Emerging technologies, Heterogeneous
(hybrid) memory systems , Low-power design, Cache coherence, Cache par-

titioning

Student Number : 2012-30234

ii

CONTENTS

L TIntroduction] 1
1.1 Purposeofthethesis| 1
1.2 Background| o000, 3
[L3 _Motivationl.o it 4
(.4 Contmbutions| o oL 5
[1.5 Organization of the thests| 8

IL _Relatedworkl 9
[2.1 Hybrnd cache architecture|. 9

[2.1.1 Write intensity prediction studies| 11

[2.1.2 Static approaches| 11

[2.1.3 Hybrid cache architecture for main memory|. 12

2.2 Cache partitioning schemes| 14

[[IT. Write avoidance cache coherence profocoll. 15
ii

[3.1 Limitation of existing cache coherence protocol|

[3.2 Write avoidance cache coherence protocoll 19
V. NVM capacity management policy for hybrid cache archi- |
Cfecturelo 22

4.1 NVM capacity management policy| 22

[4.1.1 Concept of NVM capacity management policy| . . . 23
[4.1.2 Feasibility of NVM capacity management policy| . . 27
4.2 Dynamic way adjusting| 37
“4.2.1 Maximum stack distancef L 37
[4.2.2 Adjusting the number of NVM ways|. 41
[4.2.3 Algorithm of dynamic way adjusting] 42
|4.3 Cache partitioning for hybrid cache architecture| 46
4.3.1 Linefill-aware cache partitioning| 49
[4.3.2 Metrics for cache partitioning| 50
[4.3.3 Algorithm for cache partitioning| 59
4.4 Overhead of NVM capacity management policy| 68

v

V. Experimentalresults|.

[5.1 Experimental environment|

[5.3 Dynamic energy consumption|

5.4 Tafetimel

5.5 Multi-core environment]

90

List of Figures

|Figure 1. Basic structure of hybrid cache architecture (HCA).| . .
|[Figure 2. Conventional cache coherence protocol|
|[Figure 3. Write avoidance cache coherence protocol (WACC).|

|[Figure 4. State transition diagrams for WACC.|
|Figure 5. Example for NVM capacity management policy.|. . . .
|Figure 6. Miss rates with various number of NVM ways.|
|Figure 7. Normalized total write counts of HCA|.
|[Figure 8. Normalized total write counts of NVM.|
|[Figure 9. Stack distance histogram.|.
|Figure 10. Overall structure of dynamic way adjusting (DWA).| . .
|Figure 11. Example of way shifting.|
|[Figure 12. Algorithm for DWA|
|[Figure 13. Examples of cache partitioning for HCA.|
|Figure 14. Example of stack property,|

vi

10

17

18

20

26

32

34

36

38

40

44

51

|[Figure 15.

Examples of miss counts change (AM) and write counts

change AW)| 56
|[Figure 16. Examples of NVM write counts change (ANVMW)|. . 59
|[Figure 17. Algorithm of linefill-aware cache partitioning (LCP).| . 60
|[Figure 18. Overall structure of LCP| 63
|Figure 19. Errorrates for LCP| 65
|[Figure 20. Missratesfor LCP| 67
|[Figure 21. Normalized write counts of WACC| 77
|[Figure 22. Normalized NVM write counts of DWA with STT-RAM.| 80
|[Figure 23. Normalized NVM write counts of DWA with PCM.| . . 81
|Figure 24. Normalized NVM write counts for LCP| 82
|Figure 25. Normalized dynamic energy consumption and lifetime |

of WACC o 84
|Figure 26. Normalized dynamic energy consumption of DWA with |

STT-RAMYJ o o 87
|Figure 2°/. Normalized dynamic energy consumption of DWA with |

PCM . . .o 88
|[Figure 28. Normalized dynamic energy consumption for LCP| . . 89

vii

|[Figure 29. Normalized lifetime of DWA with STT-RAM.| 91
|[Figure 30. Normalized lifetime of DWA with PCM.|. 92
|Figure 31. Miss rates with various DWA configurations with ST'T- |

RAM 94
|[Figure 32. Miss rates with various DWA configurations with PCM.| 95
|[Figure 33. DWA with STT-RAM 1n multi-core environment.| . . . 97
|[Figure 34. DWA with PCM in multi-core environment.| 98
|[Figure 35. IPC throughput for LCP| 100
|[Figure 36. Weighted speedup for LCPf 101
|[Figure 37. Fairnessfor LCP| 102

viii

g A

ey

ALl

List of Tables

|Table 1. Comparison of area, latency, and energy| 4
|Table 2. Summary of proposed schemes.|. 8
[Table 3. States and descriptions for write avoidance cache coher- |

ence protocol (WACC)| 19
[Table 4. Signals/actions and descriptions for WACC,| 21
[Table 5. Notation descriptions for metricsof LCP|. 50
[Table 6. Notation descriptions for algorithms of LCP| 61
[Table 7. Storage overhead.| 69
[Table 8. Timing overhead| 70
[Table 9. Processor configurations.| 73
[Table 10.Write counts per kilo-instructions for LCP| 75
(Iable 11.Multi-core workloads for LCPI 75
(Iable 12.Multi-core workloads for DWALJ. 76

ix

Chapter 1

Introduction

1.1 Purpose of the thesis

The purpose of the thesis is to reduce the write counts of LLC to overcome
drawbacks of NVM. To this end, three schemes are proposed in the thesis:
write avoidance cache coherence protocol (WACC), dynamic way adjusting

scheme (DWA), and linefill-aware cache partitioning (LCP).

Non-volatile memory (NVM) has been investigated as a resource to
replace volatile memories such as SRAM or DRAM since their tendency to
waste energy has grown to a substantial portion of total energy consumption
[2} 13) 14) 151 16]]. With conventional memory, static power is dissipated by
transistors even when they make no switching. On the contrary, NVM adopts
its own material as memory storage, instead of an electric charge, which

limits leakage power dissipation.

However, there are some drawbacks to be considered when employing
NVM as last level cache (LLC) directly: inefficient write operations and
limited write endurance. Changing values in NVM requires long operating

time and high level current. Thus, write operations generate long latency and

high dynamic energy consumption in the NVM cache system. Moreover,
an NVM cell is worn out after a limited number of writing. Therefore, the
lifetime of the NVM based cache is shorter than that of the SRAM cache

due to the write limitation.

To overcome these drawbacks, the thesis introduces a new cache co-
herence protocol to reduce the write operations of the LLC [7]]. The block
data of the LLC is updated only if the cache block is written-back from a

private cache, which leads to avoiding useless write operations in the LLC.

In addition, it is found that the previous researchers have overlooked
that the capacity of NVM is also one of important factors affecting the
number of write accesses to NVM. This discovery leads to the necessity
of NVM capacity management policy such that the size of NVM is dynam-
ically adjusted according to the demand of applications. To implement the
idea, we propose a dynamic way adjusting (DWA) algorithm which dynam-
ically monitors the optimal number of NVM ways using the stack property

and disabling the unnecessary NVM ways [8]].

Finally, the thesis proposes a cache partitioning scheme called linefill-
aware cache partitioning (LCP) mechanism, taking into account the NVM
linefill counts as well as the NVM write hit counts during cache partition-
ing. Most previous works have concentrated on managing write-intensive
blocks by allocation these blocks to SRAM to reduce the number of the
write operations to NVM. However, those schemes have not considered that

reducing the number of linefill operations to NVM is important to reduce the

total number of write operations to NVM. To overcome this weakness, an

algorithm for cache partitioning of LCP considers the NVM linefill counts.

The proposed schemes are simulated with the gem5 simulator [9] for
WACC and macsim [[10] for DWA and LCP. We used the PARSEC bench-
mark suite [[11] for evaluating WACC and SPEC CINT2006 and SPEC CFP2006
of the SPEC CPU2006 benchmark suite [[12]] for DWA and LCP. The exper-
itmental results show that WACC achieves a 13.2% reduction in the dynamic
energy consumption. For HCA schemes, the dynamic energy consumption

of DWA and LCP are reduced by 26.9% and 37.2%, respectively.

1.2 Background

According to the material used in NVM, several kinds of NVM [}, 2} 3| 14}
3. 6] have been introduced such as spin-torque transfer RAM (STT-RAM),
phase change memory (PCM), and ferroelectric RAM (FeRAM). Even though
their compositions are different, all NVM can be considered similar in terms
of cache architecture. First, they sustain their information without electric
power; this is the reason why they called non-volatile memory. Their main
advantage comes from their characteristics of extremely low leakage power
consumption. In addition, their density is much higher than that of SRAM
even that of DRAM for some kinds of NVM. Table [I] shows comparison
of parameters of SRAM and STT-RAM obtained from the modified CACTI

[[13}[14] in previous work [15].

Table 1: Comparison of area, latency, and energy [15]].

Parameters SRAM STT-RAM PCM
Cache Size 128KB 512KB 2MB
Area(mm?) 3.262 3.30 3.85
Read Latency(ns) 2.252 2.318 4.636
Write Latency(ns) 2.264 11.024 23.180
Read Energy(nJ) 0.895 0.858 1.732
Write Energy(nJ) 0.797 4.997 3.475
Static power(80°C)(W) 1.131 0.016 0.031
Write Endurance 1016 4% 10" 10°

1.3 Motivation

The thesis focuses on two approaches such as cache coherence protocol and
NVM capacity management policy for hybrid cache architecture (HCA).
For cache coherence protocol, the existing studies have not concentrated
on reducing the write operations because it does not matter in the SRAM-
based LLC. Since there is no drawback of write operation compared to read
operation, the number of write access is not taken into account. However,
reducing the write operations is an important issue in NVM-based LLC.
The dynamic energy consumption largely depends on the write operations,
because the dynamic energy of write operation is greater than that of read
operation. Moreover, the lifetime is inversely proportional to the number
of write access. Therefore, a new protocol for NVM to minimize the write

operations is needed.

In addition, it is found that there is a relationship between the capacity
of NVM in HCA and the write counts of NVM. The analysis implies the
necessity of efficient NVM capacity management policy: the HCA dynam-
ically manages the capacity of NVM according to the demand of applica-
tions. As the first step of realizing this idea, we use the number of active
NVM ways in a set as the measure of the capacity of NVM. The capacity of
NVM is expressed by the number of currently available NVM ways and the

demand of NVM is converted to the requested number of NVM ways.

1.4 Contributions

Firstly, the thesis introduces a new cache coherence protocol for NVM to
decrease the number of write access to the LLC [7]. In our protocol, the
data array of the LLC is not updated during the linefill operation, while the
tag array is changed to maintain the inclusion property. The data array is
modified only when the cache block is written-back from the private cache.
Our protocol reduces the number of write access to the LLC; thus, the dy-
namic energy consumption is reduced and the lifetime is enhanced in our

protocol.

* We investigate the existing cache coherence protocol for NVM and

reveal the drawback of them.

* We propose a cache coherence protocol for NVM, which avoids un-

necessary write operation in the LLC based on the analysis.

* We present experimental results of a write avoidance coherence pro-
tocol with number of write accesses to LLC, dynamic energy con-

sumption, and lifetime.

In addition, hybrid cache architecture (HCA) has been proposed to
overcome these limitations of NVM [16, [17, [18} [19, 20]. Most previous
works have concentrated on managing write-intensive blocks by storing
these blocks to SRAM to reduce the number of the write operations to NVM.
However, we show the concept of NVM capacity management policy for re-
ducing the number of write accesses to NVM and propose a dynamic way
adjusting algorithm [8]]. It dynamically resizes the number of active NVM
ways to improve the dynamic energy consumption and the lifetime. To ad-
just the number of NVM ways, the maximum stack distance is monitored

and rearranging the replaceable NVM ways is regularly performed.

* We investigate the relationship between the number of write opera-
tions and the capacity of NVM in HCA by performing both analysis

based on the devised analytical model and experiments.

* We find out that decreasing the number of active NVM ways can be
beneficial to reduce the number of write accesses to NVM ways, only

if it does not increase the miss rate significantly.

* We propose a dynamic way adjusting algorithm (DWA) to find the
optimal number of NVM ways and dynamically adjust active NVM

ways without physical change of the cache.

* We conduct a simulation to evaluate the effectiveness of the proposed
policy in terms of the reduction in the write counts of NVM, the decre-
ment of the dynamic energy consumption, the lifetime extension, and

the variation of the miss rate.

While previous studies focus on reducing NVM write counts due to
the write-intensive blocks, they have not considered the NVM write oper-
ation is also occurred by linefill operation to NVM. Reducing the NVM
write counts due to linefill operations are also very important for minimiz-
ing overall NVM write counts in chip-multiprocessor (CMP) environments.
The thesis proposes a cache partitioning scheme called a linefill-aware cache
partitioning (LCP) mechanism, taking into account the NVM linefill counts

as well as the NVM write hit counts during cache partitioning.

* We propose a linefill-aware cache partitioning scheme (LCP) for HCA,
which takes into account the reduction in the number of linefill oper-

ations to NVM to minimize the NVM write counts.

* We devise new metrics for LCP: write counts change (AW) and NVM
write counts change (ANVMW), which are based on the miss counts

change (AM).

* We propose an algorithm to make partitions by predicting metrics ac-

cording to the change of the number of allocated ways for each core.

Table 2: Summary of proposed schemes.

protocol (WACC)

Scheme Aim Description
Write avoidance | Reduction in the number | The data array is modi-
cache coherence | of write access to LLC fied only when the cache

block is written-back
from the private cache.

Dynamic way adjust-
ing algorithm (DWA)

Reduction in the number
of write access to NVM

The number of active
NVM ways is dynami-
cally resized.

Linefill-aware cache
partitioning (LCP)

Reduction in the number
of write access to NVM
and increase in the hit
rate of LLC

The NVM linefill counts
is taken into account as
well as the NVM write
hit counts during cache
partitioning.

* We present experimental results of LCP with the prediction accuracy,
number of write accesses to NVM, miss rates, performance for mul-

ticore workloads, and dynamic energy consumption.

The schemes in the thesis are summarized in Table

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 provides related
work about NVM. In Chapter 3, a new cache coherence protocol for NVM
called a write avoidance cache coherence protocol is proposed. Chapter 4
describes NVM capacity management policy for HCA. The conclusion is

given in Chapter 5.

Chapter 2

Related work

2.1 Hybrid cache architecture

Researchers have merged two types of memory into a single cache sys-
tem, which is called HCA, to reduce the number of write access to NVM
to alleviate the shortcomings of it especially related to a write operation
(L6l 17, 18 19, 21]. As described in above section, the shortcomings of
NVM come from write operation of NVM. In other terms, the number of
write access to NVM is the most important factor for both the dynamic
energy consumption and the lifetime. Since the write energy consumption
of NVM is much larger than read energy of NVM or dynamic energy of
SRAM, the write energy consumption of NVM is dominant for the total dy-
namic energy consumption. Furthermore, the lifetime is proportional to the
number of write access to NVM cells. Therefore, reducing the number of
write access to NVM is one of the most important methods to mitigate the
drawbacks of NVM. For this reason, a small number of SRAM ways are
used to accommodate heavily written blocks in the hybrid cache system as

depicted in Figure[I]

T ways T ways

f—A—\ A
e N
S ways N ways S ways N ways
A A A A
N -)’ ™
Tag Array e s Data Array « o o

[] SRAMway] NvMway

Figure 1: Basic structure of hybrid cache architecture (HCA).

First, swapping or migration schemes between SRAM and NVM in a
hybrid cache system were proposed. Wi et al. introduced the region based
cache architecture in [[16]]. They divided a single level of cache into two re-
gions: read region which consists of STT-RAM and write region which con-
sists of SRAM. If a block is predicted as write-intensive, the block is placed
or swapped to the write region. Besides the schemes, merging set schemes
were proposed [[17] and [18]. The authors noticed that non-uniformity of
write operations among sets. While some sets are frequently utilized, other
sets receive relatively small requests. Therefore, write-intensive blocks in
the highly utilized sets are forwarded to the idle sets. In addition, a predic-
tor was equipped to find the correlation between write intensive blocks and
addresses of trigger instructions [[19]. In summary, existing policies focused

on placing write-intensive blocks into the SRAM.

10

2.1.1 Write intensity prediction studies

Almost all papers on HCA have focused on devising methods to identify
write-intensive blocks and place them to SRAM ways. Wi et al. suggested
the region based cache architecture in [16]. They separated a single level of
cache into two regions: read and write regions. The read region is prepared
for non-write-intensive blocks composed of NVM, while the write region is
composed of SRAM for write-intensive blocks. When a block is considered
as write-intensive, the block is migrated or placed to the write region. On top
of these schemes, combining set schemes were proposed [17,, 22} 23]]. This
insight came from the fact that the write operations among sets are not uni-
formly distributed. While some sets receive relatively small write requests,
other sets are highly utilized. To take advantage of these characteristics,
some blocks in the frequently utilized sets are moved to the other sets. To
elaborate the prediction algorithm, Quan et al. introduced a prediction table
[18] containing the history of the write requests of the LLC. Another pre-
diction table is proposed to store the value of combining addresses of the
blocks and program counter of instructions [19]. What distinguishes these
works from our scheme is that they have not focused on the CMP environ-

ment.

2.1.2 Static approaches

Various methods utilizing the compiler have been proposed. Chen et al. [24]

proposed a scheme in which the compiler provides hints to find the write-

11

intensive block and the hardware is modified to correct the hints. Software
dispatch was presented to detect write reuse patterns in [25]]. In addition, the
migration-intensive blocks are loaded into the SRAM region with the com-
piler assistance in [26] to mitigate the burden of migration blocks. Moreover,
a loop retiming framework was proposed for loops with intensive data array
operations to relieve the migration overhead [27]]. Another study improves
the read performance and energy efficiency guided by the analysis of read
bottlenecks [28]]. They focused on the recompilation or profiling schemes,

while our proposed mechanism modifies the hardware structure and logics.

2.1.3 Hybrid cache architecture for main memory

As the write endurance problem has become important for the main mem-
ory, which is based on NVM, many methods have been proposed to prolong
its lifetime. They have employed DRAM as a cache for NVM. Qureshi et
al. firstly suggested the concept of a small DRAM cache to overcome the
latency gap between DRAM and PCM [29]. The mechanism exploits both
the short latency of DRAM and the large capacity of PCM by preventing un-
necessary access to PCM. They also have shown advanced approaches such
as write cancellation and write pausing policies [30] to mitigate the long
read access time due to the long write latency. Meanwhile, a scheme pro-
posed in Meza et al. [31]] stores the metadata for the last accessed rows into
a small buffer to manage the difficulty of fine-granularity DRAM caches. It
is found that row buffer misses generate long latencies, and a policy is de-

vised to exploit this observation [32]. They predict the data incurring a row

12

buffer miss and store it into a DRAM buffer by investigating the row buffer
miss counts in PCM. Writeback-aware partitioning offers a new perspective
on cache partitioning, taking into account the writeback information [33]]. It
is innovative in regard to reducing the amount of write access to the PCM

main memory by managing the cache partition.

Another approach for the hybrid cache architecture is based on OS
support. For PDRAM [34], the researchers introduced a hybrid solution re-
lated to software as well as hardware to extend the lifetime of the PCM
pages. They modified the OS-level page manager and added a small device
to contain the number of write requests for PCM at a page level granularity.
Ferreira et al. [35] also inserted a DRAM buffer to decrease the number of
read and write requests to PCM via page partitioning. Zhang and Li [36] im-
proved the write endurance and reduced write latency of PCM by exploiting
the workload characteristics as an aspect of an OS level paging. New page
migration schemes were proposed to track read-bound access NVM pages

[371].

All schemes described above are based on the physical features of
DRAM or characteristics of OS, thus they are inadequate applied to the

SRAM and NVM based LLC, which is the target of the thesis.

13

2.2 Cache partitioning schemes

To improve the cache efficiency, several methods using stack property have
been proposed. The number of cache hit counts of LRU position is mon-
itored to calculate the cache utility of each application or core. Based on
the information, the cache is partitioned to minimize the number of total
cache misses. Suh et al. [38] dynamically partitioned the LL.C and assigned
the guided number of cache ways to each application. Even though it suc-
cessfully raised the cache utility, there was a problem in that the utility in-
formation of an application was affected by other applications. To avoid
this drawback, Qureshi and Patt [39] introduced a separate utility monitor,
which counts the number of hits without interference by other applications.
An adaptive placement policy [40] was proposed to load a new block into
the local or remote cache for enhancing the efficiency of cache based on
stack distance profiling. In addition, compliers used the information to pre-
dict the memory behavior of the application [41]. For a real-time system,
Liu and Zhang [42] suggested the compilation technique, which improves
the worst case data cache performance using the stack distance approach.
Most papers on cache partitioning assumed that the LLC consists of SRAM

only, hence they do not consider the NVM write counts in their schemes.

14

Chapter 3

Write avoidance cache coherence

protocol

3.1 Limitation of existing cache coherence pro-

tocol

We review the legacy cache coherence protocols to get a new insight to re-
duce the write operations. There are useless write operations in the existing
protocol. Generally, memory systems of CMPs are composed of a shared
LLC and several private caches which are dedicated to cores [43]. In addi-
tion, the cache block is divided into two arrays: tag array and data array. Tag
array stores tag bits and cache coherence state, while data array stores block
data. When a linefill operation occurs, the requested block data is written
to the data array, and the tag bits and cache coherence state are updated to
the tag array. Then, the cache block is forwarded and linefilled to the private
cache. When a core tries to modify the cache block in the private cache,
an invalidation signal is sent to the shared LLC and other private caches to
maintain the cache coherence. Thus, the previous write access to the LLC
during the linefill operation is considered as the useless write operation, if

the cache block in the LLC has been never used until it is invalidated.

15

Figure 2| illustrates an example of write inefficiency in widely used
cache coherence protocols such as MESI or MOESI [44]]. In the example, we
assume that a core reads and writes a block data of the PC (Private Cache)
1. Table 3|lists the cache states in the figure and their descriptions. When the
core tries to read the block data, since the PC1 has no valid block data, the

cache controller sends the request for the block data to the LLC.

However, the LLC also has no valid copy; thus, the request is sent to
the external sources such as the main memory or other chipsets. When the
block data “ABCD” is arrived at the LLC, it is written into the LLC and the
state of the LL.C is changed to S state, which means the cache block is valid
and other private caches may have the same cache block. Then, the block

data “ABCD” is forwarded to the PCI.

‘When the block data is received in the PCl1, it is written into the PC1
and the state of the PC1 is changed to E state. After the linefill operation is
completed, if the core tries to modify the block data “ABCD” to “EFEF”,
an invalidation request is sent to the LLC to maintain cache coherence. The
purpose of the invalidation request is indicating that the block data of the
PC1 is modified and the cache block in the LLC should be invalidated. If
the block data “ABCD” in the LLC has not been used until it is invalidated,
writing the block data “ABCD” to the LLC during the linefill operation was

a useless write operation.

16

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request
to external sources

Private Cache 1 Private Cache 1
Tag|State| Data Tag|State| Data
000 | | XXXX 000| | XXXX

:
.
Data Request :
Shared LLC
Tag|State| Data
000| | XXXX

* Event :
- Data “ABCD” arrived

* Action :

1) Linefill “ABCD” to LLC

2) Change states(I->S) in LLC
3) Send data "ABCD" to PC1
4) Linefill data “ABCD” to PC1
5) Change states(I->E) in PC1

To
Main Memory or g cccccea
Other Chipsets Data Request
Private Cache 1 Private Cache 1
Tag |State| Data Tag|State| Data
KHXX >
000| I->E ABCD 000| | XXXX
A
)
Leccadecsccncaccas

000

Shared LLC

State

Data

1->S

ABCD

.
.
.
.
.
.
.
.
XK > |8
.
.
.
.
.
.
.
.

* Event :
- PC1 Write

* Action :

1) Write data “EFEF” to PC1

2) Change states(E->M) in PC1

3) Send Invalidation Request
to LLC

4) Change states(S—>P) in LLC

.
From H
Main Memory of cecccccaa Jocsacs .
Other Chipsets Data “ABCD"
Private Cache 1 Private Cache 1
Tag|State| Data Tag|State| Data
ABGB ->
000|E->M|"EFEC 000| | XXXX

States 000

“7! Invalidation
Request

Shared LLC

State

Data

S->P

Stale
ABCD «— Data

Figure 2: Conventional cache coherence protocol.

17

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request
to external sources

Main Memory or g eccc--
Other Chipsets

Private Cache 1 Private Cache 1
Tag|State| Data Tag|State| Data
000 | XXXX 000 | XXXX

'

.
Data Request :
Shared LLC

@ Tag|State| Data
000 | XXXX

To

Data Request

* Event :
- Data “ABCD” arrived

* Action :

1) Change states(I->P) in LLC
without Data Write

2) Send “ABCD” to PC1

3) Linefill “ABCD” to PC1

4) Change states(I->E) in PC1

Other Chipsets

Private Cache 1 Private Cache 1

Tag|State| Data Tag|State| Data
HKXHKK ->

000| I->E ABCD 000| | XXXX

Tag|State| Data
States /| 500 | 1P | xxxx

From
Main Memory of cecccecececes descece

A

Lecececdecccccccaa

Shared LLC

A

Data “ABCD”

U
><_7 No Data Write

* Event :
— PC1 Write

* Action :
1) Write data “EFEF” to PC1
2) Change states(E—>M) in PC1

Private Cache 1 Private Cache 1

Tag|State| Data Tag|State| Data
ABED ->

000 [E->M | 2220 000 1 | XXXX

Tag|State| Data
000 P XXXX

Shared LLC

ccccpeeNe+——

No

Invalidation
Request

Figure 3: Write avoidance cache coherence protocol (WACC).

18

Table 3: States and descriptions for write avoidance cache coherence proto-

col (WACCQC).

State Description

I(nvalid) The cache block is invalid

S(hared) The cache block has valid block data and other private caches
may have valid copy.

E(xclusive) The cache block has valid block data with exclusive permission
and other caches have no valid copy.

M(odified) The cache block has valid and modified block data. Other caches
have no valid copy. This state appears in the private cache only.

P(rivate cache) | The cache block in the LLC has no valid block data, but more
than one of the private caches has valid block data. This state
appears in the LLC only.

* P state is introduced due to keeping the inclusion property. Modern multiproces-
sors have employed the inclusive LLC to filter the cache coherence traffic from other
chipset or the main memory. Thus, it is needed that a state represents one of the private
caches has valid data even the LLC has no valid data.

3.2 Write avoidance cache coherence protocol

To deal with this problem, we suggest a new cache coherence protocol which

is called Write avoidance cache coherence (WACC) protocol. In our proto-

col, the block data of the cache block is not written into the LLC during

the linefill operation, while the tag bits and the cache coherence state are

updated. Since the block data is not placed in the LLC, one of the private

caches has responsibility to provide the valid block data. The block data

in the LLC is only updated when it is written-back from the private cache.

The writeback is initiated only when no other private cache has the block

data in WACC protocol. Therefore, we avoid useless write operation due to

modifications of the block data in the private cache.

19

—————— > Signal comes from Private Cache
——— Signal comes from External Devices

_____ Transition Signal / Action ~———3

Inv_Ext/= Inv_PC/- Inv_Ext/— Inv_PC/-
T o InveExt/= o Inv_Ext/— <

: N
! ! Recv_Ext/-
| |
1 |

Inv_PC/-

Inv_PC/-

Inv_Ext/- Inv_Ext/— WB_PC/Wr
\ \
Req_PC/Rd Req_PC/Rd
(a) Exisiting Procotol (b) WACC Procotol

Figure 4: State transition diagrams for WACC.

Figure[3|shows an example of WACC protocol. Unlike the conventional
protocols, when the block data ABCD is arrived at the LLC, it is not written
to the LLC. Instead, the state is changed to P state and the block data is for-
warded to the PC1. When the PC1 is modified to EFEF, there is no need to
send an invalidation request to the LLC for the block data ABCD is not writ-
ten to the LLC. Therefore, one write operation of the LLC and one request

for cache coherence is decreased compared to the baseline protocols.

We compare a simple version of the existing MOESI protocol with its
modified protocol in Figure [Table [d] shows the coherence signals and ac-
tions. The transition signal is divided into two parts: {signal}_{source} and
the action indicates the operation of the data array. For example, WB_PC/Wr
means that if the block is P state and receives the WB signal from a private

cache, the block data is written to the data array.

20

Table 4: Signals/actions and descriptions.

Signal | Description

Inv Invalidate the cache block if it is valid. This signal is generated
when another device tries to modify the block data.

Recv Provide the block data in the cache block. This signal is gener-
ated when a cache hit occurs.

Req Request the block data for read operation. This signal is gener-
ated when a cache miss occurs.

WB Writeback the block data to the LLC. This signal is generated
when a private cache evicts the cache block.

Action | Description

Wr Write the block data of the received cache block into the data
array.
Rd Read the block data and provide it with the requestor.

As shown in Figure ffa), when a new cache block is received in the
LLC, the state of the cache is transition to S state and the block data is writ-
ten to the data array in the existing protocol. On the contrary, the state is
transition to P state instead of S state in our protocol under the same con-
dition. Furthermore, the write operation is omitted as shown in Figure [(b).
This is because the block data is forwarded without write access to the data

array in WACC protocol.

Another point to be considered is that the protocol of the private cache
should be changed. The writeback operation is initiated if the cache block in
the private cache is modified and evicted in the existing protocols. However,
the cache block should be written-back to the LLC in WACC protocol when
it is evicted in the private cache regardless of whether the cache block is

dirty or not.

21

Chapter 4

NVM capacity management policy for

hybrid cache architecture

4.1 NVM capacity management policy

In this section, we propose two schemes for NVM capacity management
policy. First, we introduce a dynamic way adjusting algorithm (DWA) that
monitors the optimal number of NVM ways and dynamically adjust the
number of active NVM ways [8]]. In addition, we also propose a linefill-
aware cache partitioning scheme (LCP) to save the dynamic energy con-

sumption by efficiently allocating SRAM ways and NVM ways to cores.

The DWA keeps track of maximum stack distance (MSD), which means
the minimum number of ways to maintain the miss rate. If the number of the
current active NVM ways is not the optimal value, it is adjusted according to
the MSD. In addition, an efficient method to disable NVM ways is required
because it is impossible that NVM ways are physically added or removed
during execution. Thus, the DWA prevents deactivated NVM ways from
victim selection. A newly fetched block is prohibited to be loaded into the

disabled NVM ways, which has the effect of virtually deactivating them.

22

The basic idea of LCP comes from cache partitioning [38, [39, 401,
which has been a well-known scheme to improve the performance in CMP
systems. The key idea of the cache partitioning is that all cache ways should
be efficiently allocated for each application to maximize the hit rate of the
LLC. They have contributed the studies of the LLC. However, it is ineffi-
cient to apply them directly into HCA because their models assume that all
cache ways consist of the same memory type. Even though the cache misses
are minimized by the previous cache partitioning schemes, if the linefill op-
erations heavily occur in NVM ways, it fails to reduce the linefill counts of
NVM. Therefore, LCP assigns the SRAM ways and the NVM ways to each
core based on the change of the NVM linefill counts as well as the NVM

write hit counts according to partitioning.

4.1.1 Concept of NVM capacity management policy

This section presents an NVM capacity management policy that resizes the
number of NVM ways to fit the demand of applications. This policy comes
from the observation that reducing the size of NVM usually decreases the
write counts of NVM if the miss rate does not grow. The thesis will propose

an analytical model and perform a simulation to verify this observation.

Cache researchers have been investigating the relationship between the
size of cache and the miss rate [39]. For many programs, as the cache size
grows, the miss rate becomes small. On the contrary, the miss rates of some

programs are saturated or remain despite incremental growth of the cache

23

size. In addition, even the same program always does not require the fixed
size of cache. Therefore, the number of requested ways of the cache varies
during execution, and the unnecessary ways are disabled without perfor-

mance degradation.

The number of write accesses to the cache is strongly coupled with the
miss rate. Generally, the cache operations are divided into three categories:
read hit, write hit, and linefill. Among these operations, write hits and linefill
operations compose the write requests. If some read hits are changed to
cache misses due to the increasing miss rate, new linefill operations occur
as much as the removed read hits. This implies that the total number of write
operations are increased. Alternately, if the number of cache misses is not
increased, the number of write accesses to the cache remains because the hit

counts and miss counts is not changed.

Assume that we minimize the number of NVM ways without generat-
ing significant extra cache misses. In that case, the write operations which
originally occurred in the deactivated NVM ways are forwarded to SRAM
ways or other NVM ways. If a part of write accesses is sent to SRAM ways,
the number of write accesses to NVM ways is reduced. Therefore, partial
deactivating NVM ways with the stable miss rate highly tends to decrease

the write counts of NVM ways.

An illustration is provided in Figure[5]to aid in the understanding of this
concept. There are two caches in the example. One of the caches consists

of one SRAM and three NVM ways, and another cache is composed of one

24

SRAM and two NVM ways. The program in our example needs only three
ways. For the sake of convenience, suppose that all memory references are

write requests.

When the program starts, cache accesses are performed according to
the sequence in Figure [5] There is no difference between the two caches in
the first three accesses. However, when ~’d” miss is encountered, two caches
behave differently. While ”d” is placed in the fourth way in cache A, ~a” is
replaced with ”d” in cache B. Writing ”d” in the second iteration, SRAM
access is made instead of NVM access in cache B. As a result, the number
of write to NVM ways is reduced in cache B. The linefill operation of ”d” is

forwarded to a SRAM way, and thus one linefill operation and one write hit

of NVM ways is reduced.

25

L

Memory Reference Sequence: a, b, ¢, d, b, ¢, d

Cache A Cache B

Linefil_S (a) ED: Linefill_S (a)

Linefill_N (b) (a|b| |LinefilLN (b)

Linefill_N (c) | a| b [c | Linefil_N (c)

][]

Linefill_N (d) gn Linefill_S (d)

Write_Hit_ N (b) | |d | b | c | Write_Hit_N (b)

write_Hit N (c) | [a] b [c | write_Hit_N (c)

][]

Write_Hit N (d) | [d] b [c | write_Hit_S (d)

- SRAM Linefill 1 - SRAM Linefill 12
- SRAM Write Hit 0 - SRAM Write Hit 01
- NVM Linefill : 3 - NVM Linefill 12
- NVM Write Hit 3 - NVM Write Hit 12
- SRAM Total Write : 1 - SRAM Total Write :3
- NVM Total Write :6 - NVM Total Write :4
Linefill_S Linefill data into SRAM way
Linefill_N Linefill data into NVM way
Write_Hit_S Write data into SRAM way
Write_Hit_N Write data into NVM way

[] sSrRAMway [] NVMway

Figure 5: Example for NVM capacity management policy.

26 =

4.1.2 Feasibility of NVM capacity management policy

A metric, write intensity of a way (WI), is defined as the portion of write

accesses to the way over the write accesses to all ways. It is given by

id (1<i<T) (4.1)

WI; = <i<
l VVtotal

where W; is the number of write accesses to ith way and W,,,; means the
number of total write accesses to the cache, while T is the number of all
cache ways. This metric indicates the distribution of write requests among
the ways. If all ways have the same write intensity, the write requests are
evenly distributed. Unless, write operations occur more frequently in some

ways which have higher value than other ways.

Since the total number of write counts is calculated by summation of

write counts of each way, it is expressed as

T
Wioar = » Wi 4.2)
i=1

The above equation is expressed as form of W1 as follows

T

vvtozal — Z(Wlt * VVtotal)
i=1

a

= Wiotar* Y Wi, (4.3)
i=1

27

We rewrite the above equation as form of SRAM ways and NVM ways, and
it is given by

thotal = "Vsmm + anm

S T
= Wiorar * Y Wi+ Wigarx »_ WI; (4.4)
i=1 i=S+1
S
Woram = Wioral * ZWIi (4~5)
i=1
S+N T
anm = VVtotal * Z WIi = ‘/Vtotal * Z WIi (46)
i=S+1 i=S+1

where S is the number of SRAM ways and N is the number of NVM ways,
while W;,,,, means the number of write accesses to SRAM ways and W,
is the number of write accesses to NVM ways. We found that there are three
factors that influence the write counts of NVM ways: the number of total
counts (W;ya1), the write intensity per way (WI), and the number of NVM

ways (N =T —3S§).

So far, the main strategy for reducing the number of write counts of
NVM ways has been keeping average W1 of NVM ways lower than that of
SRAM ways. Throughout previous HCA research, W1 is thought as the only
important factor among the three factors. It is assumed that N is fixed and
Wiotar 18 not significantly changed. Therefore, they have focused on mini-
mizing W1 of NVM ways by detecting write intensive blocks and placing
them into SRAM ways. These approaches are successful to reduce write

accesses to NVM.

28

Different from previous approach, we consider N as a variable instead
of a constant value. When the number of NVM ways is reduced to N* (N’ <
N), W/ . W...m» and W, are defined as the number of write accesses to

total> "' sram>

the cache, SRAM ways, and NVM ways:

m/ — W/ + W/

otal sram nvm

“4.7)

In addition, we define the altered number of all ways as T* (T’ =S+
N’ < T), and Eq. [4.6]is transformed below:
T/

T
Wivm = Wroral * (Z WI; + Z WI,)
i=S+1 i=T"+1

T T
= WhsWigar+ Y WhixWia (4.8)
i=S+1 i=T"+1

The second term indicates the number of write accesses to the NVM ways
that will be removed. If we adjust the number of NVM ways to N’, the
remaining ways should absorb the write requests of the amount of second

term. For simplicity, this term substitute for X and Eq. [4.6]is expressed as

follows:
T
X=) WhixWoa 4.9)
i=T'+1
"Vtotal = Wsram + (anm - X) +X (410)
29

29,

i =

[A=t g

Hereby, we introduce a condition that the total write counts are not changed

(W, .1 = Wiotar)- Under the condition, W/ is given by

total —

Wrat = Waram + Woom — X) +X 4.11)

If we divide X into X4, and X, that are the write requests of the amount

of forwarded to SRAM ways and NVM ways, we obtain

‘/Vt/otal = Wyram + (anm - X) + Xsram + Xovm

= (Wsram +Xsram) + ((anm - X) +Xnvm) (412)
Because W, and W, are defined as the number of write accesses to

SRAM and NVM in the resized cache, they can be expressed by as fol-
lowing equation:

W, = Wyram + Xsram (4.13)

sram

!
anm

= anm -X +Xnvm (414)

Before advancing the discussion, we state that it is assumed that X4,
is greater than zero for the simplicity of the model. When the number of
ways is changed, the blocks are placed differently than they were. There is
a possibility that some write intensive blocks that were originally located in
SRAM ways are inserted into NVM ways. In that case, Xj,,,, could be zero
or minus value. To avoid this problem, we adopt a policy for placing write

intensive blocks into SRAM ways as presented [[16] to our scheme.

30

Since X is summation of X4, and Xpm, if Xsqm 1S greater than zero,
Xawm 18 given by
Xm < X (4.15)

By transforming Eq. [4.14] and substitution W,,,,, into Eq. .15 we ob-
tain

Wr:vm —Wam +X <X (416)
Worm < Wonm (4.17)

Thus, we conclude that fewer NVM ways causes lower write requests to

NVM if the miss rate does not grow.

We examined the impact of NVM capacity management on the miss
rate, the total write counts, and the write accesses to NVM ways. We as-
sume that the hybrid cache has 4 SRAM ways and 12 NVM ways and that
the number of NVM ways varies from 12 to 0. The results are sorted in
decreasing order by the number of NVM ways among each application. To
improve the readability, we abbreviate SRAM ways to ”S” and NVM ways
to ”N”. For example, 4S_2N in the figure means that 4 SRAM ways and 2

NVM ways are used during the simulation.

31

'skem INAN JO Joquinu SnOLIBA YIIM SOJBI SSTIA 19 InT1]

4
$ &
Y o 3
- o% $ & %o,v &
oove.yo,.%,o*%@

fas) _m_
(Runyisuag JoySiH) apis il em—kp (RaALISUBS JOMOT] 3PIS 2]

Spm NZStm Np Spm N9 Shr NS Spm NOT Spm NZI Stm

y & 9
3 A & 5 «% . O N
A &

@o
F o ¢ U
gy Yy Yo dN P

®

S

R \
N %e
N ,\% I

¥

%01
%0t
%0¢

%05
%09
%0L
%08
%06
%001

§TIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

§ A=t

-

B
¥
&

32

Figure|[6|represents the miss rates with various number of NVM ways to
show sensitivity of the miss rate to the size of NVM. We sort all applications
by geometric standard deviation (GSD), which represents the amount of
dispersion from the geometric mean. In Figure [6] the miss rates of the left
applications are not less influenced by the number of NVM ways, while
the right side applications are more sensitive to the number of NVM ways.
The miss rates of two left most applications such as namd and [bm remain
even when all NVM ways are removed. Part of NVM ways are unnecessary
for some left side applications: milc, bwaves, sjeng, GemsFDTD, dealll,
and zeusmp. On the contrary, the growth of the miss rates of the higher
sensitive applications is large. Especially, the miss rates of bzip2 and h264ref
is multiplied about three times and the miss rate of hmmer soars to 12.8

times.

Figure [7| shows normalized write accesses to the HCA with various
sizes of NVM. We find that the total write counts of the lower sensitive
applications are not greatly increased, while many higher sensitive applica-
tions show rapid growth. For the left side applications, only 2.8% of average
extra write operations occur. Especially, no change is detected through all
sizes of NVM in namd,lbm, and milc. The number of NVM ways can be
decreased to 2 without increasing write counts in bwaves and GemsFDTD.
Other benchmarks such as sjeng and zeusmp have the same values when
NVM ways varies from 12 to 8. On the other hand, the total write counts of

the right side applications increase by 29.4% on average.

33

"UOTIBZI[BULIOU JO PIEpUBIS oY ST N7~ St "SAem NAN JO Joquinu snoueA YOH JO SIUNOD 9L [B10) PIZI[eWION i/, 9ISy

0y L)

¢

% o@/ m@o %9
& N % R 0« % 4@

99 % K
/
o,@%@%,,,o«%

O)
o o &
o o% FF Py F

N
¢
%

#m::::: pppumppnn

z%/

N

Spm NZ S Ny Stm N9 Spr N8 St NOT Stm NI Spm

(=]

0

-l

~

1

81

§TIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

5 9 2

Ll
A
[=

34

The normalized write accesses to NVM ways with various number of
NVM ways is depicted in Figure [§] As we expected, reducing the number
of NVM ways decreases the write accesses to NVM ways in lower sensi-
tive applications. On the other hand, the reduction in the write counts of
NVM ways is not guaranteed by resizing the number of active NVM ways
in higher sensitive applications. Adjusting NVM ways even results in in-
creasing the write operations of NVM ways in gobmk, gcc, and h264ref.
Some applications such as gromacs, tonto, bzip2, and hmmer show the sim-

ilar pattern of the left applications, but their reduction ratios are small.

In summary, we find out that the number of write accesses to NVM
ways is usually reduced if resizing the number of active NVM ways does
not significantly increase the miss rate by adopting efficient NVM capacity

management policy.

35

"UOTBZI[EWLIOU JO PIEpUE)S A} ST NZ ™Sy "SAem AN AN JO JoqUINU SNOLIBA [JIM N AN JO SIUNOD JLIM PIZI[EWION] :§ 9INSL]

0
%9 dy N) ovo /@o)

¢

¢ 9

1
NZSym Ny Stm N9 Spm N§Sp NOT Stm NET Spm

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

2 A<

36

4.2 Dynamic way adjusting

We propose a dynamic way adjusting algorithm (DWA) to implement NVM
capacity management policy. To discover the optimal size of NVM, the max-
imum stack distance (MSD) is dynamically monitored. Using the MSD, the
DWA marks all NVM ways either as “replaceable way” or “non-replaceable
way” to realize adjusting the number of NVM ways. Replaceable ways are
regularly changed to prevent write requests from concentrating on a few
NVM ways. This section explains these key ideas and the operations of the

DWA.

4.2.1 Maximum stack distance

In order to find the minimum number of ways which sustain the miss rate,
we introduce the MSD based on the stack property [39]. It is well known that
the LRU replacement policy follows the stack property [45]], which means
that a cache of a size C always contains all blocks of the cache of size less
than C. Assume that the number of sets is a constant value. If a cache block
is in an N way cache, it is guaranteed that the block is in the cache, which has
more than N ways. A metric related to stack property is the “stack distance”.
When a cache hit regardless of a read hit or a write hit, the stack distance is
defined as the LRU order of the hit block. For example, the stack distance of
the block at MRU position is one, and that of the LRU position is N in the N
way cache. Figure[9] presents the stack distance histogram of a hypothetical

application. If the number of the ways is reduced to 3 from 8, the number of

37

i The Ratio of Hits ~ <#~The Ratio of Cumulative Hits
120%

100% 100% 100%

100% - N

80%

60%

40%

1 2 3 4 5 6 7 8
Stack Distance

40%
20%

0%

Figure 9: Stack distance histogram.

hits will be halved because the cumulative hits for stack distance 3 is 50%.
This means that the miss rate of three-way cache will be increased to 50% in
this case. However, if we use 6 ways instead of 8 ways, no additional cache
miss occurs. Therefore, the maximum value of the stack distance indicates

the minimum number of ways to maintain the hit rate.

We employ an auxiliary tag directory (ATD), a maximum stack dis-
tance register (MSDR), and a replaceable way size register (RWSR) to mon-
itor the MSD as shown in Figure [I0] The ATD is a separate storage con-
structed with the same associativity as the main tag array of the cache. It
keeps track of the LRU order information and tag bits. When an ATD hit
occurs, the MSDR is updated if LRU of the hit block is larger than the

current value of the MSDR. The RWSR is updated in two cases. First, if

38

2% A&yt

the MSDR exceeds the RWSR, the RWSR is increased to the MSDR. The
condition that the RWSR is smaller than the MSDR means that the current
working set needs more cache capacity. Thus additional NVM ways should
be replaceable ways by increasing the RWSR. Second, when the value of the
RWSR has been larger than that of the MSDR for a while, it is decreased to
the value of the MSDR. Keeping the situation in which the RWSR is larger
than the MSDR means that unnecessary NVM ways have been used. There-
fore, some NVM ways should be deactivated by decreasing the RWSR. To
detect this situation and initiate resizing the number of NVM ways, a resiz-
ing counter register (RCR) is added. The RCR is increased by 1 when the
RWSR is larger than RWSR during the ATD hit operation. Whenever the

RWSR is updated to the MSDR, the RCR is reset to 0.

Another consideration in adopting the ATD is the storage overhead. If
the ATD has tag information of all sets, the size of the tag array will be
doubled. Therefore, to reduce the storage overhead, we use a set sampling
policy [46]. The ATD is designed to have only a part of sets which is sam-
pled every 32nd in the proposed algorithm. It is verified that the sampled
sets are enough to correctly capture the stack distance value in [46] instead

of using all sets.

39

‘(VAQ) Sunsnfpe Kem oruweuAp Jo 21n3onns [[BIAQ 0] 3Ly

40

¥d1 buisn 1 0} : ...
SHG Y YSMY 4O Junowe ayj 336 - (¥0y) (4asw) sasibay —
Dorsuqy sy - | Poron saysifay sauno) Buizsay | | eduesig yess wnuixely
0 0 Y0y pue yasw 1asay - | 4 v 1
YASN 03 ¥SMY wumvab - Ay_m;mv ._wum_mwy_ N :
) > d
0y wmmw_uc_wm_m 3ZIS Ae d]qeade|day awsm__ose_o —
e] Asenxny .
YASIN 03 YSMy epdn - (4d1) :
0 03 YDy J9say - hwum_mwz :o_u_mom wmm._ [N \) '
¥d16uisn oy sngy (4SMY| MM aLy "o ' cee
- YQSIN) JO Junowe ay} 3as -) . o e
(YSMY < ¥asW) 4 Agd — ;
(41 01 yasw avepdn - 1013\ }1g 3jqeadeday A./.f fans . :
(4asw < ny1) o yfe e o]y { [S T S S
POg - H o N——
MU UM }0]q 1s3p[o ddeday - SSIN ALY skem N sem g m ’ ’
uomy Juang shem N ; shem N sfem g
uonesado yma uoneziuebig yMma ayae) [9Ad7 Ise]

4.2.2 Adjusting the number of NVM ways

Since physical NVM cells are not inserted or deleted according to the change
of the MSD, we devise a method to dynamically activate or deactivate NVM
ways. To disable unnecessary NVM ways, we introduce the concept of “re-
placeable way” and non-replaceable way” The replaceable way implies the
normal way that participates in all kinds of cache operations, such as read
access, write access, and replacement. The non-replaceable way means that
it is excluded from block replacement; thus, a new block is not placed into
the way. However, when a cache hit occurs, read access and write access are
performed, same as the replaceable way. All NVM ways in the DWA are

divided into replaceable ways and non-replaceable ways.

The role of the replaceable bit vector (RBV) in Figure[I0]is indicating
that each way is non-replaceable or not by controlling replaceable (R) bits.
Since each R bit is corresponded to each NVM way, the size of R bits is
identical to the number of NVM ways. The RBV is altered when the RWSR
is changed. If the RWSR is increased, additional R bits are set to 1. Unless,

all R bits are updated to rearrange non-replaceable ways.

The cache operation for non-replaceable ways should be different from
that for replaceable ways. When a cache hit is occurred to a non-replaceable
way, the LRU information is not updated. In the case of a cache miss, the
non-replaceable ways are not involved in the victim selection. A detailed

description of the management policy is as follows:

41

1. Cache hit in the replaceable way: If a requested block is in the re-
placeable ways, the cache operations do not differ from the conven-
tional cache. When a read hit occurs in the replaceable ways, the data
is sent to the requestor. In case of a write hit, the data is modified.

LRU information is updated in both cases.

2. Cache hit in the non-replaceable way: When the block is in the non-
replaceable way, the data is sent to the requestor or the data is written
the same as the replaceable way. However, no operation for updating
LRU bits occurs because the LRU information of the non-replaceable

way is useless in the DWA.

3. Cache Miss: A new block is only placed into the replaceable way.
When a cache miss occurs and a requested block arrives, the LRU

block in the replaceable ways is selected to load the requested block.

4.2.3 Algorithm of dynamic way adjusting

We rearrange the replaceable ways to avoid lifetime shortening when the
replaceable NVM ways are reduced. If some NVM ways are frequently se-
lected as replaceable way during execution, these ways will be worn out
earlier than other NVM ways. Thus, we shift the start point of replaceable
ways to allow write operations be performed as evenly as possible through
the ways. The basic concept is similar to the round robin policy. At the time
of selecting the replaceable ways, the NVM way next to the current replace-

able ways is chosen for the first replaceable way. The last position register

42

(LPR) remembers the current last replaceable way to support way shifting.

This policy is initiated when RCR is saturated.

Figure [T1] shows an example of how this policy works. Assume that
the number of the replaceable ways is five and the first three NVM ways
are assigned to the replaceable ways. Note that two SRAM ways are always
considered the replaceable ways. If the number of the replaceable ways is
increased to six, from the fourth NVM way to the sixth NVM way, then the

first NVM way is chosen as the replaceable ways.

Figure (12| presents the DWA in detail. When a cache access is con-
firmed to an ATD hit (line 1), the MSDR is updated if it is not the maxi-
mum LRU value (line 2-4). Then, we compare the RWSR with the MSDR
to check whether the current size of NVM ways is less than the minimum
size of NVM ways (line 5). If the MSDR exceeds the RWSR, some non-
replaceable NVM ways are changed to be replaceable from the last NVM
way of the current replaceable NVM ways. The amount of activated NVM
ways is the difference between the MSDR and the RWSR. The LPR is au-
tomatically updated during way adjusting within range from 0 to W,,,,, (line
6-9). After this adjustment, the RWSR is updated to the MSDR and the RCR
is reset to O (line 10-11). The replaceable NVM ways are rearranged when
the MSDR does not exceed RWSR when RCR is saturated (line 13). If the
MSDR is larger than the number of SRAM ways, the RWSR is updated to
MSDR (line 14-15). Unless, the RWSR is set to the number of SRAM ways
because all SRAM ways are replaceable (line 16-17). As a first step of shift-

ing replaceable ways, all R bits are set to 0 (line 19). Then, from the last

43

Way Shifting
RWSR =5 > RWSR =6

. L] .
Select 3 ways Select 4 ways
—_— - D
RBV o]0 T0] RBV
LPR LPR
|:] SRAM way - Replaceable NVM way

:] Non-replaceable NVM way

Figure 11: Example of way shifting.

replaceable NVM way, NVM ways of the amount of RWSR are assigned to
be replaceable (line 20-23). To keep track of the maximum stack distance
again, the MSDR is initialized to 0 and RCR is reset to O (line 24-25). If
RCR is smaller than the threshold, RCR is increased by 1 (line 27).

44

Algorithm : Adjust_Replaceable_Ways

Parameters:

RW SR: Replaceable way size register

MSDR: Maximum stack distance register
LPR: Last position register (1 < LPR < W,,)
RCR: Resizing counter register

R[x]: Replaceable bit at xth NVM way

Initial conditions:
RWSR + Wivm + Weram
MSDR «+ 1

LPR < Wy, —1

RCR <~ 0

AllR[x] « 1

During execution:

1 :if ATD hit then

2. if hit_block.LRU > MSDR then
3 MSDR < hit_block.LRU
4: endif

5: if MSDR > RW SR then
6: fori< 1 to (MSDR—RWSR) do
7 LPR + (LPR+1) % Wyym

8: R[LPR] + 1

9: end for

10: RWSR <+ MSDR

11: RCR «+ 0

12: else

13: if RCR is saturated then

14: if MSDR > Wy, then

15: RWSR < MSDR

16: else

17: RWSR + Wgam

18: end if

19: AllR[x] + O

20: fori< 1 to (RWSR—W,,,,) do
21: LPR + (LPR+1) % Wy
22: R[LPR] + 1

23: end for

24: MSDR «+ 0O

25: RCR <+ 0

26: else

27: RCR < RCR+1

28: end if

29: end if

30: end if

Figure 12: Algorithm for DWA.
45

4.3 Cache partitioning for hybrid cache archi-

tecture

Modern chip-multiprocessors (CMP) have employed multi-level on-chip
caches to address the memory wall problem that is caused by the differ-
ence between access latencies of the memory and the processor. Generally,
the last-level cache (LLC) occupies the largest area in the cache system and
consumes a significant static energy in the CMP. To reduce the area and
the leakage power, researchers have considered using non-volatile mem-
ory (NVM) [l 13, 5] as LLC. Unlike the SRAM-based LLC, the NVM-
based LLC consumes little leakage power and requires less area with higher
density than SRAM. While NVM has these advantages, they also suffer
from shortcomings such as longer latency to complete a write operation
and higher dynamic energy consumption for a write operation compared to
SRAM. Most researchers have focused on minimizing the write counts of
NVM because the number of write operations strongly affects the dynamic

energy consumption as well as performance.

Hybrid cache architectures (HCA) have been proposed [16, 17, 18|19}
47 to overcome these limitations of NVM. HCA mainly consists of NVM,
but some of them are replaced with SRAM to reduce the number of write
requests on NVM. Previous studies concerning HCA have attempted to de-
tect the write-intensive blocks, sets, or ways to allocate these to the SRAM.
However, their schemes have not usually focused on reducing the NVM

linefill counts, while the portion of NVM linefill operations is larger than

46

that of NVM write hit operations over the total of write operations to NVM
for many applications. In addition, there is no accurate prediction model to
estimate the change of the write counts of NVM when the number of SRAM
and NVM ways allocated to each core are changed in CMP environments.
Since the number of cache ways is closely related to the cache misses, as-
signing cache ways or releasing cache ways influences the miss rate of the
LLC. Even though the write intensity of NVM ways of a core is larger than
other cores, providing more SRAM ways with the core does not guarantee
reducing the NVM write counts. If a core which hands over SRAM ways
to other core generates much more cache misses with the reduced cache ca-
pacity, the write counts can be increased due to the extra linefill operations.

However, they have not considered this kind of side effects in their schemes.

We propose a novel cache partitioning that is called a linefill-aware
cache partitioning scheme (LCP) to reduce the dynamic energy consumption
by efficiently allocating SRAM ways and NVM ways to cores. To this end,
the thesis presents appropriate metrics and an algorithm for partitioning to
realize LCP. We introduce three metrics that represent change of miss counts
(AM), write counts (AW), and NVM write counts (ANVMW), respectively.
An algorithm for cache partitioning of LCP consists of two steps. First, the
number of cache ways for each core is determined in order to reduce the
miss counts. Next, the SRAM ways and the NVM ways are allocated to

cores to minimize write counts of NVM.

47

Memory Reference Sequence: R(A1),R(A2),W(A3),R(B1),R(B2),W(B3),R(A2),W(A3),W(B3)
(Cache blocks for Core A: A1,A2,A3 | Cache blocks for Core B : B1,82,B3)

CoreA CoreB CoreB Core A
A AN
ReadAl |[AL] | Junefisa) | [AL Lineil_S (A1) A | LinefiLN (A
Readi2 |[AT]A2] |uneiiNg2 |[AT]A2] Junemney | [A1 A2] Lineingao)
witeAs | [AT] A2 [a8 |unefiNy) | [MB]A2] Junemsay | [] A3 [A2] Linein g
Readt | [BA] A2 [A3 uneser) |[AS]A2[B1 |uneniner) | [BL] A3 [A2] LinefiLs B)
ReadB2 | [B1 [B2 [A3 |unefitnen) | [A3] A2 [B2 |uneiney | [B2] A3] A2 Liefils (B2)
WiteB3 || B1 | B2 | B3 |LinefiLN(B3) || A3] A2] B3 |Linefitn(es) | [B3[A3 [A2| Linefils (B3
ReadA2 || A2 B2 | B3 |Linefils(A2) || A3] A2 B3 |Read hitN(a2) |[B3]A3[A2| Read Hit N (A2
witeA3 | [A2] A3 83 | uinefiiN(as) | [A3] A2 [B3 | wite nitsas) | [B3] a3 | A2] wie_Hin (A3)
WiteB3 | | A2 [A3 | B3 | write_Hit N (83) | [A3 | A2 [B3 | wite it N(B3) | [B3] A3 | A2 | wite_HitS (B3)
\
“SRAM Linefil ;3 -SRAM Linefil ;2 -SRAM Linefll ;3
-SRAMWrte Hit ~ :0 SRAM Wrte Hit ~:1 -SRAM Wrte Kt~ :1
NMLinefll ~ :5 NMLinefil 4 NMLinefll :3
NMWiteHt 1 NMWite Hit 1 NMWite Hit 1
 SRAM Total Wit :3 SRAM Total Wit :3 SRAM Total Wit :4
NVM Total Wite 6 NVM Total Wiite 5 NVM Total Wiite ~:4
(a) No Partitioning (b) Partitioning without (c) Partitioning with
considering NVM Linefil considering NVM Linefill
[] sRAMway [] NVMway
Figure 13: (a) No partitioning is applied. (b) Partitioning without NVM line-
fill. (c) Partitioning with NVM linefill.
48
- o '::" q] = -I..
i L I —
28 A =t 8}

4.3.1 Linefill-aware cache partitioning

To optimize the NVM write counts in HCA, SRAM ways and NVM ways
should be efficiently allocated to cores. To help the understanding, we pro-
vide an illustration in Figure [I3] The cache in this example consists of one
SRAM way and two NVM ways. We assumed that there are two cores: core
A and core B. A1, A2, and A3 are cache blocks for core A, and B1, B2, and
B3 are cache blocks for core B. The cache accesses occur as the memory

reference sequence shown in the box of the top in Figure[13]

When there is no special care for the LLC, the total write for the SRAM
way is 3 (3 for SRAM linefill) and the NVM total write is 6 (5 for NVM
linefill and 1 for NVM write hit), as shown in Figure [13|a). If the cache
partitioning only considering the cache misses is applied [39], core A can
occupy two cache ways and only one cache way can be assigned to core
B (Figure [I3(b)). Even though this partitioning decreases two cache misses
and one NVM total write, the NVM write counts are not optimized. If a
partitioning algorithm can predict the NVM linefill counts as well as the
NVM write hit counts for every possible partitioning, the SRAM way should

be allocated to core B to minimize the NVM write counts, as shown in

Figure[13]c).

Therefore, a new scheme is required to reduce both the NVM write hit
counts and the NVM linefill counts, which saves dynamic energy consump-
tion of HCA. This paper devises new metrics to evaluate the effectiveness

of cache partitioning schemes and proposes a linefill-aware cache partition-

49

Table

5: Notation descriptions for metrics.

Notation Description

HIi] Hit counts of ith recency position

WHIi] Write hit counts of ith recency position

Mconr Conflict misses which are the number of cache misses due to
partitioning

MyoN coNF Non-conflict misses which are the number of cache misses re-
gardless of partitioning

H(N) Total cache hit counts when the number of allocated ways is N

M(N) Total cache misses when the number of allocated ways is N

W(N) Total write counts when the number of allocated ways is N

WH(N) Total write hit counts when the number of allocated ways is N

AM(N,N") Miss counts change when the number of allocated ways is
changed from N to N’

AW (N,N') Write counts change when the number of allocated ways is
changed from N to N’

ANV MW (Nsram, Ngahyss Nvvaes Nyyagr)
NVM write counts change when the number of allocated SRAM
ways is changed from Nsgap to NéR 437 and the number of allo-
cated NVM ways is changed from Nyyy; to Nzlvv u

ing scheme (LCP) based on these metrics. Table [5| provides a description of

notation we define in this section.

4.3.2 Metrics for cache partitioning

This section describes three metrics for a partitioning decision: Miss counts

change (AM), write counts change (AW), and NVM write counts change

(ANVMW). We newly devise AW and ANVMW and redefine AM by revis-

iting the concept of “the utility” in the previous work [39].

50

28 M=o st

more recently used
MRU —y—————————— LRU
s | e | 5 | =2 |
O Recency position

Hit counts of 4 way cache = 8+6+5+2 = 21
Hit counts of 2 way cache = 8+6 = 14

Hit |
Counter

Figure 14: Example of stack property.

* AM: the change of the number of cache misses according to adjusting
cache capacity for each core. This metric has been usually adopted
to decide the cache partition to improve the performance in previous

studies.

* AW: the change of the write counts for both the SRAM write counts

and the NVM write counts according to the change of cache capacity.

* ANV MW: the change of the NVM write counts. It is used for the HCA
when memory elements are heterogeneous, while two other metrics

can be applied in the cache consisting of the same memory element.

The concept of the utility [39]] is used to estimate the reduction in the
number of cache misses when a core has extra cache ways. The original
paper named this concept as the utility”, but we redefine it "AM”’ to clarify
its meaning. They noticed that LRU replacement policy followed the stack
property [45]. If a cache has the stack property, the cache having more cache
ways always contains all blocks of the cache having smaller cache ways

when the number of sets remains. Figure [14] presents the hit counts of each

51

recency position in a 4-way cache. In general, the recency position of the
block at MRU position is called position 1, and that of the LRU position is
called position 4. In this example, if the number of cache ways is reduced
to 2 from 4, we expect that the hit counts of the cache will decrease by

one-thirds without performing the experiments for a 2-way cache.

AM indicates the change of the miss counts with the change of the
number of allocated Waysﬂ Let H[i] denote the hit counts of ith recency
position of a core and H(N) be the total hit counts when the number of
allocated ways is N of the core. A relationship is established between two

metrics.

H(N)=> Hli] (4.18)

Since the increase in the miss counts is the same as the reduction in the hit
counts, when the number of allocated ways is changed from N to N’ of a
core, AM(N,N’) is given by

N

v
AM(N,N') = —(H(N")=H(N)) =Y H[i] -) HI] (4.19)
i=1 i=1

A new model is built to estimate the change of the number of write
operations with the change of the capacity in the cache. Since improving

the hit rate is the most important goal in previous studies, AM is the only

I'To clear the meaning of the terminology, the number of cache ways assigned for a core
are called ’the number of allocated cache ways of the core”

52

metric for cache partitioning in SRAM-based LLC in CMP environment.
However, minimizing the write counts should be considered as well as max-
imizing the overall hit counts in HCA. Thus, we define a new metric (AW)
for representing the change of the number of write accesses caused by the

change of partitioning.

The change of write counts over the change of the amount of allocated
ways is not easily determined, while AM is obtained by just accumulating
H{i]. A cache block of the LLC is updated by two cases. First, when a write
hit occurs in the LLC, the corresponding block is overwritten. In addition,
if a new block is loaded due to a cache miss, the contents of the block are
updated. Therefore, the write counts change (AW) is the sum of the write hit

counts and the linefill counts.

To find the total write hit counts, we define W H[i] as the write hit counts
for ith recency position. The write hit counts WH (N) is expressed in a sim-

ilar form as the hit counts.

WH(N) =Y WH]] (4.20)

Calculating the total linefill operations is more complicated than ob-
taining the total write hit counts because there are two kinds of cache misses
to be considered. The first category of the cache miss is called a conflict miss
(Mconr), which occurs when a core partially uses the LLC due to cache

partitioning. If all cache ways are allocated to the core, the amount of the

) [A= 8w

conflict miss becomes zero; thus, it varies across resizing the number of al-
located ways. On the other hand, there is another kind of cache miss, called
a non-conflict miss (Myon_conr), Which occurs regardless of partitioning.
In other words, when a core utilizes all cache ways, there is no Mcoyr in
the core, while Myon conr can occur. Note that the non-conflict miss is
composed of two kinds of misses, usually referred to as capacity and com-
pulsory misses [48]. In our proposal, we use a single term as a non-conflict

miss because there is no need to distinguish these misses.

Combining the two cache misses, the miss counts (M(N)) can be writ-

ten as follows:

M(N) = Mconr + Mnon_conr

= H(Narr) — H(N) + Myon conr (4.21)
Narr N

= Z Hli] — Z H[i] +Myon_conF
i=1

i=1

where Ny is the number of total cache ways in the LLC.

To put it all together, W (N) is expressed as

W(N) = WH(N)+M(N) (4.22)

Since AW (N,N’) means the change of the write counts, we reach the

following equation:

AW (N,N') = (WH(N')+M(N')) — (WH(N)+M(N)) (4.23)

k [A= 8w

From Eq.[#.20/and Eq.[4.21] we transform Eq.[4.23|into the following:

Narr N

W(N,N'") = ZWH +ZH ZH[I'] +Mnon conr)
i—1

(4.24)

NALL N
Z WHI[i] + Z H(i] ZH [i] + MnoN_.conF)
i=1
This can be written in this form:
N
o) =SS+
i=1 =1 (4.25)

Narr Narr

+ (O _H[i = H[i]) + (Myon.conr — Myon.conr)

H(Narr) and Myon_conr in the above equation are removed because
they do not change with the number of allocated ways. Therefore, after sim-
plifying Eq.[4.23] this becomes

Nl

AW(N,N') = (WHIi| - H[i]) = > (WH[i] - H[i]) (4.26)

i=1 i=1

To aid the understanding of the equation, we provide illustrations in
Figure T3] In this figure, Eq. #.26]is applied to find the write counts change,
while Eq.[.19)is used to calculate the miss counts change. When the amount
of allocated ways is increased to 3 from 2 (N =2 and N’ = 3), AM(2,3) is
-5and AW (2,3) is -3.

55

2 A=t 5w

LT

5T

MRU LRU
HitCounts| 10 | 6 [5 | 3

AM(2,3) = — (ZH(3) — ZH(2))
= (10+6+5) — (10+6) = — 5

(a) Miss counts difference

MRU LRU
HitCounts| 10 [6 | 5 | 3 |
e 2 T =12 T 7]
AW(2,3) = (ZWH(3) — ZH(3)) — (ZWH(2) — ZH(2))

((2+4+2) — (10+6+5)) — ((2+4) — (10+6))

(b) Write counts difference

Figure 15: Examples of (a) miss counts change (AM) and (b) write counts
change (AW).

This section describes the NVM write counts change (ANVMW) used
for calculating the variation of the write accesses to NVM in HCA. In the
above section, we showed that the write counts are changed, but it is only
applied in the LLC, which has one memory type. Thus, another metric is
required to measure the change of NVM write counts. Note that ANVMW
has four kinds of parameters because two types of memory elements are
considered in this model. N is divided into Nggraps and Nyy s, which are the
number of allocated SRAM ways and NVM ways before new partitioning
is initiated, respectively. Instead of N’, N¢g,,, and Ny, are used to in-
dicate how many SRAM ways and NVM ways are allocated to a specific
core based on the new partitioning. Therefore, this metric is expressed as

ANVMW(NSRAM,Né‘RAM’NNVM7N1/\/VM)'

56

We propose a new method to measure the variation of the write counts
of NVM because the methods on the stack property cannot calculate the ex-
act change of the write counts of NVM. For example, when a certain NVM
way receives five write requests, removing the NVM way does not decrease
the write counts of NVM by five. Since the concept of recency position is
independent to the order of way, every way can have any recency position
and the position usually changes after every cache access. When the num-
ber of allocated ways is changed, the blocks are stored into different ways
from they were, and the hit counts of each way are not reserved. Therefore,
it is impossible to exactly predict the change of the write counts of NVM or

SRAM when the number of the allocated cache ways is changed.

Instead, we use a statistical approach to find the NVM write counts.
In general, every way has the same probability of receiving write requests,
which means write requests are statistically evenly distributed among the
ways. Therefore, the portion of the NVM write counts over the all write
counts is assumed to be proportional to the ratio of the number of NVM

ways over the total number of cache ways.

NVMW (Nsgap, Nnvm) =

4.2
Nyvm .27

W (Nsgam +Nyvp) ¥ —————
() Nspam +Nyvm

57

Therefore, ANVMW is calculated as follows:

ANV MW (Nsram, Nsgaprs Nnvaes Nyy)

= NVMW (Nunss Ny ar) — NVMW (Nsgass, Nyvar) (4.28)

Nyvm

=W(N')* Wi —W(N) x N

N’

Nl
= (WH(N') +M(N') +Myon conr) x —2M

NN’ (4.29)
—(WH(N)+M(N) + Myon_conr) * %/M
Narp N!
:(ZWH[i]—i— Z H[i] +Myon conr) *]]\GjM
. '7N/ 1
i N + (430)
ALL NNVM
ZWH + Z H[i]+Myon conF) * N
=1 i=N+1

Figure [16] shows the procedure of calculation of the equation. On top
of the write hit counters, a non-conflict miss counter is inserted. A cache
in the example is composed of two SRAM ways and two NVM ways. We
assume that a core takes one SRAM way and one NVM way at first. If one
more way is assigned to the core, there are two options; the core gets either
an extra NVM way or SRAM way. For former case, we add an NVM way to
the core, ANVMW is increased by 1. On the contrary, the latter case shows

that ANVMW becomes -4.

58 -
2% M &)

LT

7

MRU LRU

HitCounts| 10 | 6 | 5 | 3 | CapacityMisseslII
e 2 [& [2 [1]

ANVMW(1,1,1,2) = SNVMW(1,1) - SNVMW(1,2)
= (2XWH(2) + 2M(2)) * (1/2) - (ZWH(3) + XM(3)) *(2/3)
=((2+4) + (5+3+4)) * (1/2) - ((2+4+2) + 3 +4)* (2/3) =-1

(a) An NVM way is added (1S1N -> 1S2N)

ANVMW(1,1,1,2) = SNVMW(1,1) - SNVMW(2,1)
= (ZWH(2) + XM(2)) * (1/2) = (ZWH(3) + >M(3)) * (1/3)
=((2+4) + (10+6+4)) * (1/2) - ((2+4+2) +6+4)*(1/3)=-4
(b) An SRAM way is added (1S1N -> 2S1N)
Figure 16: Examples of NVM write counts change (ANVMW). Initially, a
core owns an SRAM way and an NVM way (1S1N). (a) The core acquires

one more NVM way (1S2N). (b) The core acquires one more SRAM way
(2S1IN).

4.3.3 Algorithm for cache partitioning

The algorithm for LCP consists of two steps to optimize the NVM write
counts without increasing cache misses, as shown in Figure The first
step is finding the best partitions for optimizing the linefill counts. LCP
utilizes AM to search for the optimal size of partition in this step. After that,
the SRAM partition and NVM partition of each core are determined within
its budget determined by the first step, based on AW and ANV MW . Table[6]

lists the description of notation we define in this section.

To make our algorithms more efficient, we employ the concept of the

marginal utility approach introduced in UCP [39]. Since prior studies of

K [A= 8w

Algorithm 1 : Linefill-aware Cache Partitioning

Step 1 : finding the number of allocated cache ways

1
2
3
4
5:
6
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:

18
19

:Uarr <= Tarr - Tcore
: foreach i < all cores do

Agrrli] <1

:end if

while Uy, > 0 do
min_MU < o
foreach i < all cores do
for w < 1to Uy do
MU — AM (A [il,Aarclil+w) / w
if MU < min_.MU do
min_ MU < MU
Ccore <1
Req <+ w
end if
end for
end foreach
AarLlCcore] < AarrlCcore] + Req
: Uazr < Uarr - Req
: end while

Step 2 : finding the number of allocated NVM ways

20
21

22:

23
24

25:
26:
27:
28:
29:
30:
31:

44.
45:
46:
47:

48

: Usram < Tsram
: foreach i < all cores do
Anvumlil < Aarrlil
: end foreach
: while Uggapy > 0 do
foreach i < all cores do
min_ MU < o
if Usray > AALL[i] then
w’ < Ayrrlil
else
w’ < Ugspay
end if
for w + 1 tow' do
if USRAM ==0and ASRAM [l] ==0do
MU <+ AW(Ayymlil,Anvmlil + w) /' w
else

end if
if MU < min_MU do
min_ MU < MU
Ccore + 1
Req +—w
end if
end for

end foreach
Asram[Ccore] < Asram[Ccore] + Req
AnvmlCcore]l < AarrlCcorel - Asram[Ccore]
Usras < Usram - Req

: end while

MU < ANVMW (Asram[il,Aspam[i] + w, Ayvpm iLANvmi] - w) /' w

Figure 17: Algorithm of linefill-aware cache partitioning (LCP).

60

Table 6: Notation descriptions for algorithms.

Notation Description

TarL Number of total cache ways in the LLC
Tsram Number of total SRAM ways in the LLC
Tnvm Number of total NVM ways in the LLC
TcorE Number of total cores

UarLL Number of unallocated ways

Usram Number of unallocated SRAM ways

Unviu Number of unallocated NVM ways

Aarpli] Number of allocated ways per ith core
Asramli] Number of allocated SRAM ways for ith core
Anvumli] Number of allocated NVM ways for ith core
MU Marginal utility of metrics

min- MU Minimum value of marginal utility

Req Number of requesetd ways to get min MU
CcoRE A specific core gaining extra cache ways

NVM-based CMP used the greedy algorithm [49, I50]], there is a risk of
reaching to a suboptimal partitioning, which commonly occurs in greedy
algorithms. To avoid this problem, LCP uses the marginal utility. Therefore,
our algorithm uses a value which is divided by the number of allocated ways
instead of the value directly obtaining from the calculation. For example, if
AW is -4 and the number of allocated ways is 2, the marginal utility (MU)
of AW is -2 (= -4/ 2). In addition, the partitioning algorithm is designed to
perform the cache repartitioning every 1M cycles because it shows the best

efficiency compared with other periods.

Step 1 starts initializing Uy, which is a key variable of the first loop

(line 1). Since each core has at least one way, Uz has the difference be-

61

tween the number of total cache ways in the LLC and the number of cores
(line 2-4). Step 1 is executed until all ways are assigned to cores (line 5).
When each iteration begins, min_MU is initialized to infinity; in reality, it
has the maximum integer value that a system allows (line 6). For every core,
AM per way are calculated by varying the number of allocated cache ways
(line 7-9). If MU is smaller than the currently minimum value of MU (line
10), min_MU is updated (line 11), and the current core is tentatively indi-
cated as the target core to be allocated more cache ways (line 12). Req has
the current number of allocated ways (line 13). When the loop ends, the re-
quested ways are allocated to the target core (line 17) and Uyyy is updated
as well (line 18). Note that this step is performed based on the UCP [39],
which is known as one of the best partitioning schemes. Because this step
is orthogonal to second step, other partitioning schemes can be used if they

provide the better partitioning efficiency.

Step 2 works similar to step 1, but a key variable of the loop becomes
Usran substituting Usr;, and ANVMW and AW are used instead of AM be-
cause SRAM ways are distributed among cores in this step. At first, Usram
has the number of SRAM cache ways (line 20). The number of the allocated
NVM ways for each core is temporarily the number of allocated cache ways,
which is determined by the previous step (line 22-24). Another difference
from step 1 is that a loop for finding the min_MU is iterated when the candi-
date number of cache ways is from 1 to the maximum value between A4y i
and Usgapr (line 27-31). This is because each core cannot have more ways

than Aap.[i]. ANVMW is basically used to find the value of MU (line 36),

62

Last Level Cache .

S ways N ways ‘ Core 1 Monitor
R, N N —

Core 0 Monitor

S ways N ways

NC

Auxiliary Tag Directory
(ATD)

N

HEN |] Hit Counter
HEE [] write Hit Counter

:] Capacity Miss Counter

1 SRAMway [1 NMMway i i i Sample Set

Figure 18: Overall structure of LCP.

however AW is applied for simplicity if it is guaranteed that no SRAM way
involves calculation (line 34). In this algorithm, the number of NVM ways
are simply calculated; we obtain it by subtracting Aazr[i] to Asgam|i] (line

46).

We extend the conventional utility monitor [39] and utilize a cache par-
titioning logic of UCP to implement our proposal. Therefore, storage over-
head is estimated as less than 1%. The traditional utility monitor contains
an auxiliary tag directory (ATD) and hit counters. On top of that, two ad-
ditional counters are added which are a write hit counter and a non-conflict
miss counter, as depicted in Figure [I8] As many write hit counters as the

number of cache ways are needed, and only a single counter is required for

63

25 4 &0 o

accumulating the non-conflict misses.

The role of the ATD is keeping track of the recency positions of blocks
for each core. Using the ATD, the hit counter indicates the hit counts of
each recency position. Similar to the hit counter, the write hit counters store
the number of write hit for the corresponding position. The associativity
of the hit counter and the write hit counter is the same as the LLC. The
non-conflict miss counter is inserted to obtain the total non-conflict miss
counts. If a cache miss occurs in the ATD, the non-conflict miss counter is
increased by one, while the hit counter is increased when a cache hit occurs

in the corresponding recency position.

Assuming that the LLC has 16-way associativity and the size of each
counter is 32 bits, the total storage overhead of the LCP is (16 + 1) * 32 bits
= 68 bytes. Considering the capacity of the LL.C is 2MB in our system, it is

obvious that the storage overhead is not significant.

64

_L- e
..ﬁ._l =
s
5
ol =
.zoﬁ (0)] MO~ Eo.@ ﬁoﬁom wﬁﬁﬁoﬁu.amo.ﬂ msoﬁm\w Sﬁg Sajel .HO.Em ”mﬁ o.:_wﬁm f _ M
~ 0
a8esane ST XIW ¥T XIN €T XIW ZT XIN TT XIW OT XIN 6 XIN 8 XIN £ XIN 9 XIN S XIN v XIN € XIN T XIN T XIN ._.FI.,..J
%0 et)
%S
%0T
%ST
%02 8

®
[Te)
«~

91ey Jouau3z

X
o
@

%SE

%0v

%SY
WOT=¥= NT=—¢= NO0T—0— MNOT-=—

We start by analyzing how accurate the proposed algorithm predicts the
NVM write counts. Whenever the cache partitioning is done, the expected
NVM write counts during the execution period is accumulated. At the end
of the program execution, the difference between the predicted value and
the measured value is used to calculate the error value of the algorithm. In

this way, we estimate the error rate of our algorithms as follows:

|Predicted NVM Writes — Measured NVM Writes|]
*

00
Predicted NVM Writes

ErrorRate =

(4.31)

Figure[T9|summarizes error rates of our algorithm with various sizes of
repartitioning periods from 10K to 10M. LCP utilizes the statistics of each
period to predict the behavior of the next. If a previous period has a sim-
ilar access pattern of the following period, this approach will be effective.
Unfortunately, if partitioning occurs in the middle of transition of working
sets in the program, the information gathered by the ATD during the current
period does not represent the next period. In this case, the accuracy of hit
counts, write hit counts, and cache misses will decrease. Thus, we have ex-
perimented with several repartitioning periods and the consequential change
of the accuracy. The proposed LCP with the 1M period cycle shows that the
error rate is 4.3%, which is meaningfully lower than the error rate of other
period sizes. Therefore, we choose 1M as the repartitioning period for our

proposal.

66

"SQWIAYOS INOJ YIIM $JeI SSIA ()7 IS

abesane STXIN ¥T XIN €T XIW Z1 XIW TTXIN OTXIN 6 XIN 8XIN LXIN 9XIW SXIN ¥ XIN €XIN ZXIW TXIW

dd8: dOMVs dN= dION=

%0

%0¢

%07

%09

%08

%001

2leyd SSIIN

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

A=

67

The miss rates for all workloads are given in Figure for NoCP,
BSABM, AWCP, and LCP. AWCP shows the worst miss rate for all bench-
mark programs because the number of cache ways for each core is adjusted
according to its NVM write intensity. Even though this approach is bene-
ficial to reducing the number of write counts, it is not helpful to improve
the total hit counts. The miss rate of BSABM is the nearly same as NoCP
because they use a similar replacement policy. The miss rate of LCP is de-
creased by 4.3% over NoCP, and the difference between average miss rate of
AWCP and LCP is 13.7%. While the efficiency of LCP varies significantly
depending on characteristics of workload, the miss rates of all applications
are decreased. For MIX_4, the miss rate of LCP is lower than that of AWCP
by 21.9%.

4.4 Overhead of NVM capacity management pol-

icy

Table[/|shows the storage overhead of the DWA. We assume that the system
uses a 40-bit physical address space. To keep track of the MSD, an entry of
the ATD has a separate tag and LRU bits. The each ATD has 64 entries and
256 entries because the number of sample sets is 64 and 256 respectively.
The size of R bits is 12 as the number of NVM ways is 12. The DWA also
needs three kinds of 4-bit registers and a 2-bit resizing counter register. Both
HCAs have about less than 1% extra area. With a low hardware overhead,

our proposal achieved the dynamic energy saving and write endurance en-

68

Table 7: Storage overhead.

Component HCA with STT-RAM HCA with PCM

ATD entry LRU + Tag + Valid =4 + 22 | LRU + Tag + Valid =4 + 20
+ 1 =27 bits + 1 =25 bits
27 bits * 16 way = 54 bytes | 25 bits * 16 way = 50 bytes

ATD 54 bytes * 64 sets = 3.8KB 50 bytes * 256 sets =

12.5KB

R bits 12 bits 12 bits

LPR 4 bits 4 bits

MSDR 4 bits 4 bits

RWSR 4 bits 4 bits

RCR 2 bits 2 bits

Overhead for | (16 + 1) * 32 bits = 68 bytes | (16 + 1) * 32 bits = 68 bytes

LCP

Total about 4KB (0.1%) about 13KB (0.31%)

hancement. For the LCP, as we discussed earlier, the total storage overhead
of the LCP is (16 + 1) * 32 bits = 68 bytes on top of the extra storage of the

DWA. Therefore, the storage overhead of both schemes is not significant.

Another consideration for cache partitioning is the timing overhead of
obtaining the optimal value. To investigate the timing overhead, we calcu-
lated the latencies of the algorithm in detail as shown in Table 8. According
to Eq. [4.19]one iteration of the main loop of step 1 requires one addition,
one subtraction, one division, one comparison, and one assignment. The la-
tencies of an adder and a comparator are one cycle and the latency of a
divider is thirteen cycles in modern processors [43], thus one iteration takes

17 cycles (we assume that each register captures the value in a cycle). Ac-

69

Table 8: Timing overhead.

Component Cycles

Step1 Initialization (line 1-4) 2 cycles

Stepl Main loop (line 6-16) 17 cycles

Stepl Result assigning (line 17-18) 2 cycles

Step2 Initialization (line 20-23) 3 cycles

Step2 Main loop preparation (line 24-31) 2 cycles

Step2 Main loop (line 32-44) 36 cycles

Step2 Result assigning (line 45-47) 3 cycles

Total 851 cycles (0.9%)

cording to Eq. [4.30] one iteration of the main loop of the step 2 requires
three additions, one multiplication, two divisions, one comparison, and one
assignment. The latency of a multiplier is five cycles in modern processors

[43]], thus one iteration takes 36 cycles.

The initialization steps are executed once for every partitioning. The
main loop in step one of LCP is iterated 24.95 times and the main loop
in step two is iterated 10.21 times. The other parts of the algorithm are
executed 4.57 times and 2.31 times for each step respectively. Therefore,
the algorithm takes 851 cycles to identify the average of the partitioning
(2+17%25+42%543+2*%3+36*11+3*3 = 851). Considering that the period of
partitioning is 1M, the latency of the algorithm does not have an influence

on the overall performance.

70

Chapter 5

Experimental results

5.1 Experimental environment

We simulated our approach with PARSEC benchmark suite [[11]] for evalu-
ating WACC. The gem5 simulator is used to evaluate the normalized energy
and normalized lifetime of our protocol [9]. The overall simulation parame-
ters are shown in Table[9] We assume that the cache coherence protocol is a
MOESI protocol. In addition, LLC is composed of STT-RAM because STT-
RAM is considered as the right alternative among several types of NVM

[51]]. The power value of STT-RAM is derived from the previous work [52].

For DWA, a simulation was performed using Macsim [[10] which is a
trace-driven and cycle level simulator. It is designed to thoroughly model the
detailed microarchitectural behavior, including pipeline stages and memory
systems. Our baseline system has a three level cache hierarchy. The L1 and
L2 caches are composed of the SRAM memory. Table[9] shows our baseline
processor configurations in detail. Since STT-RAM and PCM are widely
studied among several kinds of NVM, the LL.C has two hybrid cache con-
figurations: STT-RAM with SRAM, PCM with SRAM. We examined our

proposal on multi core configuration which has 4 cores as well. We used

71

SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006 benchmark
suite [12]. Because the benchmark programs with the reference input set
take a very long time to run, we simulated 500M instructions of the re-
gion selected by Pinpoints [53), 154] which is a well-known tool to find the
representative regions. To compare our proposal with previous studies, we
also conducted the experiments with prediction table based cache line re-
placement and management policy (PTHCM) [[18]. For multi core system
simulation, we generated ten workloads by mixing six applications as listed

in Table

In addition, the standard of normalization in our results is the baseline
hybrid cache, which is operated as a conventional cache except that it con-
sists of both SRAM and STT-RAM cells. Thus, the baseline hybrid cache
has no special policy such as the DWA or the PTHCM. For DWA, note
that write intensity block migration policy is always applied. Finally, we as-
sume that cache hierarchy maintains inclusion property in our proposal as
like many modern processors such as the Intel 17 processor [43] or ARM

CORTEX-A57 processor [55].

We have performed experiments to evaluate the proposed cache par-
titioning scheme with Macsim [10] for LCP. Table 9 presents the system
parameters used for the simulation. It has four cores and a two-level cache
hierarchy. The capacity of the L1 instruction and data caches are 32KB, and
they are 4-way associative caches. The LLC (L2) cache is a 2MB 16-way
cache, which is composed of 4-way SRAM and 12-way NVM. The line size

of all caches is 64B.

72

Table 9: Processor configurations.

WACC

Cores

4

L1 Inst / Data
Cache

64KB, 2-way, 64B line

L2 Unified Cache

2MB, 16-way, 64B line

Memory

64bit bus width , 4 read/write ports

Function Units

6 IALU, 2 IMULT, 4 FPALU, 2 FPMULT

DWA
Core Type x86, out-of-order, 2GHz
Core Count 1/4
INT/MEM/FP | 4/4/4
Branch Predictor | gshare predictor, 16 history length
ROB Size 256
I/D Cache 16KB, 4-way, 64B blocks, 1-cycle latency
L2 Cache 512KB, 8-way, 64B blocks, 5-cycle latency
Hybrid LLC with | 4MB(4-way SRAM and 12-way STT-RAM), 64B
STT-RAM blocks

SRAM: 10-cycle latency
STT-RAM: 10-cycle (read) and 45-cycle (write) la-
tency

Hybrid LLC with
PCM

16MB(4-way SRAM and 12-way PCM), 64B blocks

SRAM: 10-cycle latency
PCM: 19-cycle (read) and 93-cycle (write) latency

Memory Latency

200 cycles

LCP
Core Type x86, out-of-order, 2GHz
Core Count 4
INT/MEM/FP | 4/4/4
Branch Predictor | gshare predictor, 16 history length
ROB Size 256
1/D Cache 32KB, 4-way, 64B blocks, 2-cycle latency
Hybrid LLC 2MB(4-way SRAM and 12-way STT-RAM), 64B

blocks

Memory Latency

200 cycles

73

We used SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006
benchmark suite for the simulation [[12] for LCP. To evaluate the efficiency
of our proposal across write intensive and non-write intensive applications,
workloads are created based on write counts per kilo-instructions (WBKI).
At first, we sorted the applications by increasing the order based on WBKI
as shown in Table [10[and divided them into three categories: such as low,
mid, and high. Mixing four benchmarks from the three categories, we gen-
erated 15 workloads as listed in Table [T1] (The number of combination of
selecting 4 applications from 3 categories with repetitions is 15 and appli-
cations in each category are randomly selected.) Each trace is collected by

Pinpoints [53]], which is widely used to extract the representative regions.

There are four schemes tested in our simulation: the baseline which
uses no partitioning scheme (NoCP), block swapping and active block mi-
gration (BSABM) [49], access-aware cache partitioning policy (AWCP) [50]],
and LCP proposed in the thesis. NoCP has no partitioning scheme and fol-
lows the LRU replacement. To compare the previous studies with our pro-
posal, BSABM and AWCP, which are available for the HCA-based LLC in

CMP, are included for the experiment.

To fairly compare the results of our proposal and previous studies, we
used the same parameters of STT-RAM that were used in the previous study
[S0]]; the dynamic energy consumption of cache operation for an SRAM
cache bank 0.609nJ, while the read energy for an STT-RAM cache bank is

0.598nJ and the write energy is 4.375n].

74

Table 10: Write counts per kilo-instructions for LCP.

Type Benchmark WPKI | Type Benchmark WPKI
dealll 0.90 zeusmp 30.92
gamess 1.04 Mid cactusADM 41.78
gromacs 1.79 gcc 51.96
Low povray 2.31 omnetpp 65.46
perlbench 2.38 milc 75.94
h264ref 4.13 wrf 92.29
calculix 7.56 libquantum 114.29
xalancbmk 8.10 High GemsFDTD 133.44
gobmk 11.20 leslie3d 138.10
Mid hmmer 12.99 soplex 145.47
tonto 13.53 Ibm 221.45
bzip2 15.75 mcf 228.77
Table 11: Multi-core workloads for LCP.
Workload Benchmarks
MIX_1 deallI(L), gamess(L), calculix(L), xalancbmk(L)
MIX_ 2 gamess(L), gromacs(L), h264ref(L), cactusADM(M)
MIX_3 deallI(L), povray(L), xalancbmk(L), Ilbm(H)
MIX 4 gromacs(L), povray(L), gcc(M), omnetpp(M)
MIX_5 povray(L), perlbench(L), cactusADM(M), libquan-
tum(H)
MIX_6 deallI(L), gamess(L), soplex(H), Ibm(H)
MIX_7 xalancbmk(L), gobmk(M), cactusADM(M), omnetpp(M)
MIX_8 deallI(L), gcc(M), omnetpp(M), mcf(H)
MIX_9 povray(L), zeusmp(M), wrf(H), Ibm(H)
MIX_10 povray(L), libquantum(H), Ibm(H), mcf(H)
MIX_11 gobmk(M), hmmer(M), gcc(M), omnetpp(M)
MIX_12 gobmk(M), tonto(M), omnetpp(M), Ibm(H)
MIX_13 hmmer(M), bzip2(M), leslie3d(H), Ibm(H)
MIX_14 hmmer(M), GemsFDTD(H), leslie3d(H), mcf(H)
MIX_15 milc(H), wrf(H), Ibm(H), mcf(H)

75

Table 12: Multi-core workloads for DWA.

Workload Benchmarks

MIX_1 bwaves, calculix, wrf, gromacs
MIX_ 2 bwaves, calculix, wrf, hmmer
MIX_3 bwaves, calculix, wrf, h264ref
MIX 4 bwaves, calculix, gromacs, hmmer
MIX_5 bwaves, calculix, gromacs, h264ref
MIX_6 bwaves, calculix, hmmer, h264ref
MIX_7 bwaves, wrf, gromacs, hmmer
MIX_8 bwaves, wrf, gromacs, h264ref
MIX 9 bwaves, wrf, hmmer, h264ref
MIX_10 bwaves, gromacs, hmmer, h264ref
MIX_11 calculix, wrf, gromacs, hmmer
MIX_12 calculix, wrf, gromacs, h264ref
MIX_13 calculix, wrf, hmmer, h264ref
MIX_14 calculix, gromacs, hmmer, h264ref
MIX_15 wrf, gromacs, hmmer, h264ref

76

‘[oo0301d [SHOIA 2y} 01 pareduwiod [000101d DYV JO DT 03 SSA00' Y JO JoqUINU PIZI[BULION] : [NS

a8esane suopdems poTX [eauue) dnpap ojewiuepiny pendpog Jajsnpweans S9[O4ISYIElq

1 1 1 1 -Q
A4
Al
1

YORGRMIM UIBSeg W YOEGRMM IYM B [I4ouT unaseg m

t
s
S

o
o
D171 01 SS90V S1LIAA PSZIleWION

~
—

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

2 A=

77

5.2 Write access to NVM

Figure [21| presents the normalized number of the read and write access to
LLC in our protocol compared to the baseline MOESI protocol. Note that
write access is divided into writeback access and linefill access. As a result,
13.2% of the write operations were decreased on average. The noticeable
result is that the number of the writeback access was increased, while there
were no linefill operation. When a cache block is evicted in a private cache,
the writeback operation is not required in the existing protocols if the cache
block is not modified. This is because the LLC already has the valid block
data if the cache block is clean. On the contrary, the writeback operation
should be initiated if no other private cache has the valid copy during cache
replacement in WACC protocol. This difference generates the extra write-
back operations. However, the total number of the write access in WACC
protocol is smaller than that of other protocols because the reduction in the
linefill operation is much larger than the increment in the writeback opera-

tion.

We first examined the write counts of NVM ways as depicted in Fig-
ure 22| and Figure About 75.4% reduction and 77.2% reduction in the
number of write accesses is achieved on average in the DWA for HCAs with
STT-RAM and PCM, respectively, while the decrement on the number of

write accesses to NVM ways of PTHCM are about 5.7% and 11.0%.

From the two figures, we discover that the write access reduction ratio

of the DWA follows the sensitivity of the miss rate to the number of NVM

78

ways. First, low sensitive applications require a small number of NVM
ways; therefore, the number of write accesses to NVM is largely reduced.
On the contrary, highly sensitive applications show only a little change of
write access because they have very little room for the DWA. To show this
trend clearly, we calculate the reduction ratio of each category. For the left
side applications, 92.2% reduction and 88.3% reduction in the write counts
of STT-RAM and PCM ways is achieved on average, while 22.6% reduction
and 55.6% reduction in the number of write accesses is achieved on average

for the right side applications.

Furthermore, we combined the PTHCM with the DWA to check that
it is orthogonally effective with other HCA algorithms. Since our proposal
does not affect the fundamentals of operation of other HCA algorithms, the
DWA can create a synergy effect. The results show that the PTHCM with
the DWA (PTHCM_DWA) achieved the best results among four HCA algo-
rithms as it showed 77.6% reduction and 80.0% reduction in write counts
of NVM ways. Combining PTHCM with DWA reduces the write access
to NVM more 8.9% when only DWA is applied for STT-RAM. In addition,
PTHCM_DWA shows the lower NVM write counts by 11.0%. Therefore, we
conclude that merging two algorithms takes advantage of both algorithms

successfully.

79

AVI-LLS WM YA JO SIUNO0D)M NAN PIZI[EUWLION 7T dINSL]

96

+ oy &)
0 6 /@ V) 2
¢ A\ R 0 Yo &8 &y &
Y N 0 S SO
I 8L SETEE ¢ ¢ of%%{ $
A SR S AR R R R o,owo,,,;
- l-
|
YMA@ WOHLdE WOHLd® Ymam aulesegm

0
(4]

“paZIjlewlaoN

<

]
S o
NN

80'S

9314

sjuno

97

80

WO WM VM JO SIUN0d)Lim AN PIZI[RULION (€7 2InS1g

F oy

0 0 ¥ &9

3 O\ o 0 Yo SN &Yy o
R) NN Sy D

O R eoe@/ooo,&,ya

& AN ¢ & & & P o,,

%%&e.%%%z%% Sy o ,~%

VMO WOHLdE WDHLd

VM@= auljesegm

§

9
% 8 & %@

o« T

N\
\ ¥
%, %

|
o
AN~ pP3zZijewioN

0 2

g

o
S3IUNOD 93N

4
vl

Ty

B

Pe

']

[WE
IvC

[e12
=1,

A&
ECRIL MATICRAL LM

T

Y

A

12

81

"SOUWIAYOS JNOJ YA SIUNOD ALIM JNAN POZI[EULION] 47 9InT1]

abesane STXIN 1 XIN €T XIW 2T XIN TTXIN OTXIN 6 XIN 8XIN LXIW 9XIN SXIN ¥ XIN €XIN TXIN TXIN

I49UIT WAN D8 [I43UIT WAN dDMVw [143UIT WAN NGYSEm [143urT INAN dDON &
YH SIM INAN dOg = HH 33U INAN dDMY 5 MH @34M INAN INGYSE s HH 93M WAN dJON

N 1
— o

SIUNOD 314M INAN PazZilewloN

SE

A=
CHIL MATIORAL 1

9

-
— I
i

-
=g
e
-

I

82

Next, we analyze the NVM write counts of BSABM, AWCP, and LCP
normalized to NoCP as depicted in Figure [24] The average value in the fig-
ure indicates the geometric mean of all workloads. BSABM and AWCP
decreased the NVM write counts by 2.6% and 6.7%, respectively. LCP
achieved a 46.9% reduction in the NVM write counts, which is the much
better than previous studies. To investigate these results further, we divide
the total NVM write counts into the NVM write hit counts and the NVM
write linefill counts. At first, we found that the linefill operation occupies a
significant portion of the NVM write counts. While the portion of the write
hit counts is 16.5% on average, the portion of the NVM linefill counts is
83.5%. BSABM, AWCP, and LCP reduced the NVM write hit counts by
21.7%, 26.4%, and 39.2%, respectively. LCP shows the best results, and
the previous schemes for HCA also achieved the meaningful reduction in
the NVM write hit counts. On the contrary, the reduction ratio of the NVM
linefill counts of BSABM and AWCP are only 4.3% and 2.8%, while LCP
reduced the NVM linefill counts by 47.4%. These results confirm that LCP
accomplishes the reduction in the NVM write counts by reducing the NVM

linefill counts significantly as we intended.

83

A
Ty

i
-
ol £
=z
=
ol =
"n
‘[020301d [SHOIA QUI[aseq 3y} 03 paredwiod DHVAA JO WNQJI[pue uondwinsuod A3IQU SMWUBUAP PIZI[BUWLION] :GZ 2INTL] __...ﬂ_ W
AN
abessne suopdems pozx [eauue) dnpap @jewuepiny penkpoq Jeisnjpwieals ssjoyIsyReq fﬂmm :
m.o N 1 1 1 1 1 1 1 1 L o =
Z
°
3 N
21T 8 %
0 g
: :
CTT b
0
: Y :
0] m.._”) _.u_._
0
. . Q
V1 {1 <

W3y pazijewoN g AB1ou3 oeqEliM pmm ABI5U3 PERY gy

5.3 Dynamic energy consumption

We show the normalized dynamic energy consumption and lifetime in Fig-
ure[25] Since the dynamic energy in write operation dominates the dynamic
energy consumption in read operation, the reduction of the write opera-
tions leads to reducing the total dynamic energy consumption. Our protocol
achieves 27.1% energy savings at maximum and 10.8% energy savings on
average. In addition, WACC protocol also extends the lifetime of the LLC
because the lifetime of STT-RAM is inversely proportional to the number
of write access to the LLC. The improvement of average write endurance in

WACC protocol is 26.3% at maximum and 9.3% on average.

We investigated the normalized dynamic energy consumption com-
pared to the baseline hybrid cache as shown in Figure [26| and Figure
which also present the portion of the write energy consumption of NVM
over the total dynamic energy consumption. The results of HCA with STT-
RAM show that the DWA achieved 26.4% reduction in the total dynamic en-
ergy consumption. The dynamic energy consumption of the PTHCM and the
PTHCM_DWA was saved 2.3% and 28.4% over the baseline hybrid cache,
respectively. For HCA with PCM, the DWA saved 27.4% of dynamic en-
ergy consumption, while the PTHCM and the PTHCM_DWA reduced the
dynamic energy consumption by 2.7% and 30.0%. The trend of reduction is
similar to that of reduction in the write accesses. This is because the dynamic

energy consumption is mainly affected by the write accesses to STT-RAM.

85

Based on the observation of these figures, the write energy consump-
tion of NVM occupies a significant portion of the total dynamic energy con-
sumption. In the baseline hybrid cache, 78.6% and 56.0% of the dynamic
energy was consumed due to the write accesses to STT-RAM and PCM
ways. Therefore, we conclude that the number of write accesses to NVM
ways is the most important factor for dynamic energy consumption. The
results show that the portion of write dynamic energy of NVM ways was
reduced to 32.8% and 14.7% in the DWA. The dynamic energy consump-
tion of NVM write operations of the PTHCM occupies 74.3% and 48.8%
of the total dynamic energy consumption. For the PTHCM_DWA, the por-
tion is reduced to 30.0% and 14.1%. The reduction trend is also similar to
that of the write access reduction. Therefore, the reduction in the dynamic
energy consumption mainly comes from the reduction of the write energy

consumption of NVM.

86

TAVI-LLS UM VAL Jo uondwnsuod A3I10ua SIURUAP PIZI[RWION 97 9IS

F oy L o)
0 o & &L ¥
¥ e ov o %o%%o%/ 9
@oz%e @%oez%/o%& & o %0«4%@/%

SIS $ESFEESSTEr I E8F e o
__ 0 3
v
— = 00§
0
_ __ IR T "y
_ v
_ 90 S
V]
I —- _ I v
—— AN NN nn ._“_D
m
3
s
Q
<

M WAN YMA WOHLd M AN WOHLd M WAN YMa M AN 3uljaseq
€301 YMA WOHLd m €301 OHLd & e101 Yman [e30L"duljaseq

‘:} -
Sk kT
ECUL MATIOMAL |BNERSTY

Z

87

TADd BIM YA Jo uondwnsuod A310u9 OIWUBUAP PIZI[BWLION] /7 INTL]

by L 2l
0 fod e a &
F P S o § L5 e e & $
M Q¢ %90%%90@&%9// O/o%/o
%v%va,%.o;%%%b/%%@+oa,~%///o«oo%qozz9% m
0 3
3
| ______
_;w
- 1 90 3
)
7 80 3
o]
____.. 1
3
1 8
Q
<

UM WAN YMA WOHLd UM NAN WOHLd AWM AN YMaA UM NANdulaseq =
€301 ¥MQ JHLd B €301 INDHLd ® [e30L yman [eoLauljaseq m

88

‘dDON 01 pareduwiod uondwnsuod AZI10UQ STWRUADP PAZI[BWION Q7 2IN31]

HE
Tor 2
oF
o
3

afiesane STXIN T XIN €T XIN ZTXIN TTXIN OTXIN 6 XIW 8XIW LXIW 9XIW SXIW ¢ XIW E€XIW XIW TXIW

T pazilewlaoN
89

S1weu/lq

1

ABisaug

A"
ddd: dMYs NE8YSEs dIONm

The normalized dynamic energy consumption of four schemes are pre-
sented in Figure @ LCP saved 37.2%, 36.6%, and 34.1% of dynamic en-
ergy consumption over NoCP, BSABM, and AWCP, respectively. The trends
of the dynamic energy reduction are similar to those of the normalized NVM
write counts, while the variation is small. For MIX_12, the dynamic energy
consumption is reduced by nearly 60% compared to AWCP at maximum,
while the difference between AWCP and LCP is less than 1% for MIX_1.
The reason for this similarity is that the NVM write counts is a main con-
tributor to the total energy consumption; thus, reducing the number of NVM
write accesses to the LLC highly influenced the total dynamic energy con-

sumption.

5.4 Lifetime

We estimated the normalized lifetime as shown in Figure [29|and Figure
There is a general consensus among researchers that PCM has a limited
lifetime. However, opinions are different about the write endurance of STT-
RAM. Many studies assume that its write endurance is high enough, and
thus they set aside the lifetime problem. On the other hand, another group
argues that the assumption is unrealistic [[19, [56]]. Since determining the
correctness of their claims is not the focus in the thesis, the results of both

types of NVM are presented.

90

NVI-LLS W% VM JO SWNIJI PIZIEULION 167 2InS1]

F oy P 2
0 0 IR g
RN N) «o%/«@%a/ N

O AN o & o f ¥ 9,% o oo%@@)
o Q> 2 ¢9oz%9 »/ AN ARSI
$ % ¢ ¥ ooe A A @ &. ,N Y N &N %

VMO WOHLd " WOHLd® YMmam

5'0-

50

§1

Y/

(@1e>s HoT)2w1a417 pPaZIjewdoN

91

D WM VA JO SWNRJI[PAZI[BULION :0€ dIn31L]

¢ R o © o %+ % o% ¥ A y %o o

R y N 2 2 9
PIFPP s o 8T FILETE FRIF oo ¢
PRV IS FFTET VT O N9 Q

R |

VMO ADHLd© IDHLd® vmam

g0

o

50

i

§1

57

(91e>s Ho1)awnaI] paZIijewdoN

92

Notice that the results of two figures are presented in log scale because
the lifetime of some applications were extended significantly. Especially, the
write endurance of namd and [bm was increased by more than 300 times. For
these applications, the number of replaceable ways was almost always less
than the number of SRAM ways. Since NVM ways were rarely used in the
DWA, the lifetime soared up. The PTHCM_DWA extended the lifetime by

10.9 times and 11.3 times for HCAs with STT-RAM and PCM, respectively.

To confirm that our proposal does not increase the miss rate signifi-
cantly, we present the miss rates of each HCA configuration compared to
the baseline hybrid cache in Figure [31] and Figure 32| The miss rate of the
DWA was increased only by 1.8% and 1.9% for HCAs with STT-RAM and
PCM, respectively, while the PTHCM decreased the miss rate by 1%. Since
the PTHCM did not improve the miss rate meaningfully, the miss rate of the
PTHCM_DWA followed the miss rate of the DWA. Therefore, the miss rates
of the DWA and the PTHCM_DWA are very similar and the PTHCM_DWA
increased the miss rate by 1.9% and 1.9% on average which are the same
values of the DWA. As expected, this result confirms that our proposed al-

gorithm does not significantly increase the miss rate.

93

-

ol =

T

o

ol =

‘NVE-LLS UYam suoneniguod VY OH SNOLIBA M SIBI SSIIA [€ O.:\—mﬂm 1__|_..h”.|. m

Py @ o e

0 6 A\) Y ? ,.._l.......m_

J 3\ R AR L 4 N Tl

Oy 0 P SN LY ¢) o Ead

2 N 0 N 0 9 R
& %z & o &8 %,. gL %,.y PN & & «o« § & & & %o
PRV N T PN IV TH VLN Q

94

%08
%09
%0L
%08
%06
%001

- %0

—_ I re —_ __ ol | N P —- —= ——— —- _7 7— —- 7_ %01
9%0C

%0¢€

wmoe

(26)@31ed ssIN

VMO WOHLdE WOHLd® YMQm uipsegm

TADd WM suoneIn3yuod YA SNOLIBA Y3 SIeI SSTIA] (7€ 931

0 Fy L)
OO I, 0 00 S F &y g
& & @ogo«oz%o@ & &
%%A%%oa%%%% o&o,o,/ oya%
’ Fpdddy s aSd$y ,N%o, R

- pm - mm
—- —_ 11 —- rm - —- e __ r 7_ __ 7_ - —-

YMQ NDHLd® WOHLd~ YMAm aulssegm

)
%/ %

N

%0
%01
%01
%0€
%00
%09
%09
%0L
%08
%06
%001

(2%)23ey ssIN

95

5.5 Multi-core environment

We investigated several metrics for multi-core environments as shown in
Figure [33] and Figure [34] For multi core system simulation, we generated
ten workloads by mixing six applications as listed in Table [[2] The two
benchmarks for low sensitivity are bwaves and calculix, while hmmer and
h264ref represent high sensitivity. Other two benchmarks such as wrf and

gromacs are selected as the middle range of sensitive programs.

First of all, a significant reduction in the write accesses was achieved
in both HCA configurations. The DWA removed 80.7% of write accesses
on average, while the average write reduction ratio of six benchmarks is
61.3% for HCA with STT-RAM in single-core environments. This result
means that our proposal has the extendibility for the multi-core system. In
case of HCA with PCM, the average reduction ratio of multi-core results is
59.4%, while each application removed 76.3% of write accesses on average.
Even though the results of HCA with PCM are less impressive compared to
HCA with STT-RAM, our proposal still removed a great deal of unneces-
sary NVM write operations. The results of dynamic energy consumption
are consistent with the trend of the write accesses to NVM. For HCAs with
STT-RAM and PCM, 55.5% and 33.7% of dynamic energy consumption
were saved, respectively. The lifetime was prolonged by 1.76 times and 1.35

times on average.

96

‘SpeROIoM
QI02-N[NW Y} YIM NV H-LLS PM YDH Jo awmaji| pue ‘uondwnsuod A310Ua OTWeuAp ‘SS900€ 9JLIM PAZI[RULION] ¢ ¢ 9In31

NYY-LLS YM YOH

abesane STXIN PIXIN ETXIN CIXIN TIXIW OTXIN 6XIN SXIN LXIN 9XIW SXIN ¢XIN EXIN ZXIN TXIN

LA

AN g £618u3 IWeUAQ p §5920Y MM s

i

o

A=

97

‘SpeRO[IoM
2I00-N[NW AP YIM ANDd PIs YOH Jo awnay pue ‘uondwnsuod A3IoUa OIWBUAP ‘SSQ00B QILIM PIZI[BULION :{¢ 9In31q

WOd YIM ¥OH
abesane ST XIW ¥T XIW €T XIN Z1 XIN TUXIN OTXIN 6 XIN 8XIN LXIW 9XIW SXIN ¢ XIN €XIN ZXIN TXIW

CIITHETT) H- £B618u3 d1WRUAQ gy §5920Y M

A=

98

To represent the performance improvement in a multi-core environ-
ment, three metrics usually are presented — nstruction per cycle (IPC) through-
put, weighted speedup, and fairness — which have their own purposes [S7].

They usually are defined as follows:

n
IPC throughput =) " IPC; (5.1)
i=1
n
1pcMP
Weighted Speedup = ! (5.2)
; IPC?
Fairness = +€‘S” (5.3)

> 1PCITP
where IPCiSP is the IPC of ith program under single program mode (SP)
and IPCM? is the TPC under multi-program mode (MP). IPC throughput is
simply and intuitively defined as the sum of the IPCs of the all applications.
The weighted speedup is proposed to equalize the contribution of programs
using normalized IPCs [58]]. Luo et al. argued that harmonic mean is more

suitable to represent the fairness than weighted speedup [59].

99

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

"sowayds 1oy Ym ndysnoryy DJr :G¢ 3Ly

[y
o
T

afesane STXIW #T XIW €T XIN ZTXIN TTXIN OTXIN 6 XIN 8 XIN LXIN 9XIN SXIN vXIW E€XIW CXIW TXIW

1 Odl

100

indybnouay

dd8: OMYs WNEYSdm dIONm

"NoCP "BSABM "AWCP “BCP

dnpaads™ paiybiam

101

g ge

MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 MIX7 MIX8 MIX 9 MIX_10 MIX 11 MIX_12 MIX_13 MIX_14 MIX_15 avera

Figure 36: Weighted speedup with four schemes.

"NoCP "BSABM "AWCP "BCP

ssauldleH

102

. ge

MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 MIX7 MIX8 MIX9 MIX 10 MIX_11 MIX_12 MIX_13 MIX_14 MIX_15avera

Figure 37: Fairness with four schemes.

Nt

SECRIL WATCeLAL |IMNVERSTY

Therefore, we plot three metrics in Figure [35] Figure[36] and Figure
for different schemes. LCP outperforms NoCP and AWCP by 5.0% and
14.3% in terms of IPC throughput as depicted in Figure [33] In addition,
our scheme improved the weighted speedup by 5.6% and 11.4% for NoCP
and AWCP as shown in Figure [36] Finally, Figure [37)compares the fairness
improvement for four schemes; the fairness of LCP is improved to 0.93,
while NoCP and AWCP have 0.89 and 0.83, respectively. The IPC through-
put improvement is maximized for MIX_3, whereas MIX _2 shows the best
weighted speedup improvement compared to AWCP. The fairness of the ap-

plications of MIX_12 is most increased.

103 -
2% M &)

LT

7

Chapter 6

Conclusion

6.1 Conclusion

In the thesis, three proposals have been provided to compensate for identi-
fied weaknesses of NVM: write avoidance cache coherence protocol (WACC),
dynamic way adjusting scheme (DWA), and linefill-aware cache partition-

ing (LCP).

We proposed a novel cache coherence protocol to eliminate useless
write operations of LLC for a multi-core system. Based on the analysis of
the existing protocols, it was found that they generated useless write ac-
cesses to the LLC during the linefill operation. Thus, our protocol,which
is called WACC, modifies the cache states without storing the block data
during linefill. This write policy reduced the number of write access at-
tempts to the LLC, which led to improvements in the energy consumption
and lifetime. The simulation result showed that the reduction of maximum
energy consumption in WACC protocol is 27.1% and the lifetime extension

18 26.3% at maximum in STT-RAM based LLC.

104

The thesis introduced the concept of an NVM capacity management
policy for reducing the number of write accesses to NVM. This policy is
implemented by two methods called dynamic way adjusting scheme (DWA)
and linefill-aware cache partitioning (LCP). DWA dynamically resized the
number of active NVM ways to improve the dynamic energy consumption
and the lifetime of the components. To adjust the number of NVM ways,
the maximum stack distance is dynamically monitored and rearranging of
the replaceable NVM ways is regularly performed. The proposed policy re-
duced the number of write accesses to STT-RAM by about 77.6% and PCM
by 79.6%. The results also showed that HCAs with STT-RAM and PCM
achieves 30.0% reduction and 28.4% in dynamic energy consumption. The
lifetime of the two HCAs was prolonged by 10.9 times and 11.3 times over
a conventional hybrid cache system. Both HCAs can achieve these improve-
ments without any meaningful miss rate increment. While the portion of the
NVM linefill operations, over the write counts, is about 83.5% in our exper-
imental results, previous studies have not considered the linefill operations

to NVM in CMP environments during partitioning.

We also proposed LCP, to minimize the NVM write counts, in consid-
eration of the NVM linefill counts, as well as the NVM write hit counts. In
the thesis, three kinds of metrics were introduced to analyze the efficiency
of adjusting the cache partitioning; if a core gets or loses ways, how many
the miss counts, write counts, and NVM write counts are changed. A cache
partitioning algorithm for LCP is proposed to provide the best partitioning

through a two-step approach based on these metrics. We have shown that

105

the proposed LCP predicts the NVM write counts with less than a 5% er-
ror rate and reduces the dynamic energy consumption by 34.1% on average

with improved performance.

6.2 Future work

We will extend the findings of thesis in two ways. First, we plan to combine
our proposal with schemes for non-uniformity of write operations among
sets which are inspired that the write varies across different cache sets.
They separated the physical mapping and logical mapping of cache sets and
stored data between sets. The key idea is decent, but there is a pitfall to sim-
ply merge LCP with the inter-set variation wear leveling scheme (ISWLs).
Since the data is possible to be placed in a different set, they violate the stack
property which our scheme is based on. Keeping track of all recency posi-
tion of remapped blocks would not be a feasible method because it needs a
significant area overhead and consumes a lot of dynamic energy. Hence, we

are developing a new method to efficiently bond LCP and ISWLs.

In addition, we will consider combining data bypassing techniques to
the proposed scheme. Even though cache bypassing techniques are appar-
ently promising schemes for NVM, they cannot be directly applied to our
mechanism because the inclusion property is not maintained in most of their
schemes. We will investigate a new scheme that both keeps inclusion prop-

erty and utilizes the bypass schemes.

106

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Bibliography

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, et al., “A novel
nonvolatile memory with spin torque transfer magnetization switch-

ing: Spin-ram,” in Proceedings of IEEE International Electron Devices
Meeting, pp. 459—462, IEEE, 2005.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceed-
ings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-
phase transitions of gete-sb2te3 pseudobinary amorphous thin films for
an optical disk memory,” Journal of Applied Physics, vol. 69, no. 5,
pp. 2849-2856, 1991.

A. Driskill-Smith, S. Watts, D. Apalkov, D. Druist, X. Tang, Z. Diao,
X. Luo, A. Ong, V. Nikitin, and E. Chen, “Non-volatile spin-transfer
torque ram (stt-ram): An analysis of chip data, thermal stability and
scalability,” in Proceedings of IEEE International Memory Workshop,
pp- 1-3, IEEE, 2010.

T. Sumi, Y. Judai, K. Hirano, T. Ito, T. Mikawa, M. Takeo, M. Azuma,
S.-i. Hayashi, Y. Uemoto, K. Arita, et al., “Ferroelectric nonvolatile

memory technology and its applications,” Japanese Journal of Applied
Physics, vol. 35, no. 2S, p. 1516, 1996.

H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12,
pp. 2237-2251, 2010.

J. H. Choi, J. W. Kwak, and C. S. Jhon, “Write avoidance cache

coherence protocol for non-volatile memory as last-level cache in

107

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

chip-multiprocessor,” IEICE Transactions on Information and Sys-
tems, vol. 97, no. 8, pp. 2166-2169, 2014.

J. H. Choi and G. H. Park, “Demand-aware nvm capacity management
policy for hybrid cache architecture,” Computer Journal, advance on-
line publication, 2015, doi:10.1093/comjnl/bxv103.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 2, pp. 1-7, 2011.

H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and
T. Pho, “Macsim: A cpu-gpu heterogeneous simulation framework

user guide,” Georgia Institute of Technology, 2012.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings

of International Conference on Parallel Architectures and Compilation
Techniques, pp. 72-81, ACM, 2008.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:

A tool to model large caches,” HP Laboratories, pp. 22-31, 2009.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level per-
formance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994-1007, 2012.

S. Lee, K. Kang, and C.-M. Kyung, “Runtime thermal management
for 3-d chip-multiprocessors with hybrid sram/mram 12 cache,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 23, no. 3,
pp- 520-533, 2014.

108

[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie, “Power and perfor-
mance of read-write aware hybrid caches with non-volatile memories,”

in Proceedings of International Conference on Design, Automation
and Test in Europe, pp. 737-742, IEEE, 2009.

J. Li, L. Shi, C. J. Xue, C. Yang, and Y. Xu, “Exploiting set-level write
non-uniformity for energy-efficient nvm-based hybrid cache,” in Pro-

ceedings of International Symposium on Embedded Systems for Real-
Time Multimedia, pp. 19-28, IEEE, 2011.

B. Quan, T. Zhang, T. Chen, and J. Wu, “Prediction table based man-
agement policy for stt-ram and sram hybrid cache,” in Proceedings of
International Conference on Computing and Convergence Technology,
pp- 1092-1097, IEEE, 2012.

J. Ahn, S. Yoo, and K. Choi, “Write intensity prediction for energy-
efficient non-volatile caches,” in Proceedings of International Sympo-
sium on Low Power Electronics and Design, pp. 223-228, IEEE, 2013.

X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hy-
brid cache architecture with disparate memory technologies,” in ACM
SIGARCH Computer Architecture News, vol. 37, pp. 3445, ACM,
20009.

J. H. Choi, J. W. Kwak, S. T. Jhang, and C. S. Jhon, “Adaptive cache
compression for non-volatile memories in embedded system,” in Pro-
ceedings of International Conference on Research in Adaptive and
Convergent Systems, pp. 52-57, ACM, 2014.

A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance and
performance-efficient design of hybrid cache architectures through
adaptive line replacement,” in Proceedings of International Sympo-
sium on Low Power Electronics and Design, pp. 79-84, IEEE, 2011.

J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i 2 wap: Improving

non-volatile cache lifetime by reducing inter-and intra-set write vari-

109

[24]

[25]

[26]

[27]

(28]

[29]

[30]

ations,” in Proceedings of International Symposium on High Perfor-
mance Computer Architecture, pp. 234-245, IEEE, 2013.

Y.-T. Chen, J. Cong, H. Huang, C. Liu, R. Prabhakar, and G. Reinman,
“Static and dynamic co-optimizations for blocks mapping in hybrid

caches,” in Proceedings of International Symposium on Low Power
Electronics and Design, pp. 237-242, ACM, 2012.

Y. Li, Y. Chen, and A. K. Jones, “A software approach for combat-
ing asymmetries of non-volatile memories,” in Proceedings of Inter-
national Symposium on Low Power Electronics and Design, pp. 191—
196, ACM, 2012.

Q. Li, M. Zhao, C. J. Xue, and Y. He, “Compiler-assisted preferred
caching for embedded systems with stt-ram based hybrid cache,” ACM
SIGPLAN Notices, vol. 47, no. 5, pp. 109-118, 2012.

K. Qiu, M. Zhao, C. Fu, L. Shi, and C. J. Xue, “Migration-aware loop
retiming for stt-ram based hybrid cache for embedded systems,” in
Proceedings of International Conference on Application-Specific Sys-

tems, Architectures and Processors, pp. 83-86, IEEE, 2013.

Y. Li, Y. Zhang, H. Li, Y. Chen, and A. K. Jones, “Clc: A configurable,
compiler-guided stt-ram 11 cache,” ACM Transactions on Architecture
and Code Optimization, vol. 10, no. 4, p. 52, 2013.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory technol-
ogy,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3,
pp- 24-33, 20009.

M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montafio, “Im-
proving read performance of phase change memories via write cancel-
lation and write pausing,” in Proceedings of International Symposium
on High Performance Computer Architecture, pp. 1-11, IEEE, 2010.

110

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity dram

cache management,” Computer Architecture Letters, vol. 11, no. 2,
pp. 61-64, 2012.

H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,
“Row buffer locality aware caching policies for hybrid memories,”
in Proceedings of International Conference on Computer Design,
pp- 337-344, IEEE, 2012.

M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé, “Writeback-
aware partitioning and replacement for last-level caches in phase
change main memory systems,” ACM Transactions on Architecture
and Code Optimization, vol. 8, no. 4, p. 53, 2012.

G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and dram
main memory system,” in Proceedings of Internaional Conference on
Design Automation Conference, pp. 664—669, IEEE, 2009.

A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and
D. Mossé, “Increasing pcm main memory lifetime,” in Proceedings of
Internaional Conference on Design, Automation and Test in Europe,
pp- 914-919, IEEE, 2010.

W. Zhang and T. Li, “Exploring phase change memory and 3d die-
stacking for power/thermal friendly, fast and durable memory archi-
tectures,” in Proceedings of International Conference on Parallel Ar-

chitectures and Compilation Techniques, pp. 101-112, IEEE, 2009.

H. Seok, Y. Park, and K. H. Park, “Migration based page caching al-
gorithm for a hybrid main memory of dram and pram,” in Applied

Computing, International Symposium on, pp. 595-599, ACM, 2011.

G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of
shared cache memory,” The Journal of Supercomputing, vol. 28, no. 1,
pp- 7-26, 2004.

111

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” in Microarchitecture, IEEE/ACM International Symposium
on, pp. 423-432, IEEE Computer Society, 2006.

A. Samih, Y. Solihin, and A. Krishna, “Evaluating placement poli-
cies for managing capacity sharing in cmp architectures with private
caches,” ACM Transactions on Architecture and Code Optimization,
vol. 8, no. 3, p. 15, 2011.

C. CaBcaval and D. A. Padua, “Estimating cache misses and locality
using stack distances,” in Proceedings of International Conference on
Supercomputing, pp. 150-159, ACM, 2003.

Y. Liu and W. Zhang, “Exploiting stack distance to estimate worst-case
data cache performance,” in Proceedings of International Symposium
on Applied Computing, pp. 1979-1983, ACM, 20009.

“The intel 64 and ia-32 architectures software developer’s manual.”
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-system-

programming-manual-325384.pdf. accessed 3-Mar-2014.

D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory con-
sistency and cache coherence,” Synthesis Lectures on Computer Archi-
tecture, vol. 6, no. 3, pp. 1-212, 2011.

R. L. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,
pp- 78-117, 1970.

M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for
mlp-aware cache replacement,” ACM SIGARCH Computer Architec-
ture News, vol. 34, no. 2, pp. 167-178, 2006.

Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie, “Adaptive place-
ment and migration policy for an stt-ram-based hybrid cache,”

112

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-

tative approach. 2011.

J. Li, C. J. Xue, and Y. Xu, “Stt-ram based energy-efficiency hybrid
cache for cmps,” in Proceedings of International Conference on VLSI
and System-on-Chip, pp. 31-36, IEEE, 2011.

S.-M. Syu, Y.-H. Shao, and L.-C. Lin, “High-endurance hybrid cache
design in cmp architecture with cache partitioning and access-aware

policy,” in Proceedings of International Conference on Great Lakes
Symposium on VLSI, pp. 19-24, ACM, 2013.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for stt-
ram using early write termination,” in Proceedings of International
Conference on Computer-Aided Design-Digest of Technical Papers,
pp- 264-268, IEEE, 2009.

G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture
of the 3d stacked mram 12 cache for cmps,” in Proceedings of In-

ternational Symposium on High Performance Computer Architecture,

pp. 239-249, TEEE, 2009.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel® itanium® pro-
grams with dynamic instrumentation,” in Proceedings of International
Symposium on Microarchitecture, pp. 81-92, IEEE Computer Society,
2004.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-
gram analysis tools with dynamic instrumentation,” in ACM Sigplan
Notices, vol. 40, pp. 190-200, ACM, 2005.

“Arm cortex-aS7 processor.” “http://www.
arm.com/products/processors/cortex—a/

cortex-a57-processor.php’ (accessed 1-Sep-2015).

113

http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php

[56]

[57]

[58]

[59]

J. Wang, Y. Tim, W.-F. Wong, Z.-L. Ong, Z. Sun, and H. H. Li, “A co-
herent hybrid sram and stt-ram 11 cache architecture for shared mem-
ory multicores.,” in Proceeding of Asia and South Pacific Design Au-
tomation Conference, pp. 610-615, IEEE, 2014.

L. Eeckhout, “Computer architecture performance evaluation meth-
ods,” Synthesis Lectures on Computer Architecture, vol. 5,no. 1, pp. 1—-
145, 2010.

A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simul-
taneous mutlithreading processor,” ACM SIGPLAN Notices, vol. 35,
no. 11, pp. 234-244, 2000.

K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and
fairness in smt processors.,” in Performance Analysis of Systems and
Software, International Symposium on, pp. 164-171, IEEE, 2001.

114

£

H 2E7g w2l 7o) 2% A AfAE AT 27
sj=] 71y

HF W m el e ATt 4 A 1Y angolehs E40R

Qo) 2% I8 AN AGE7]] ST 7SR HemT ek Tt
HFP R 7] A2 1) B AT AS ARk, A7

Ao A 7] S45 Zo]7] Yot 7N A DA A (Write avoidance cache
coherence protocol)2 A A} 11, o= 7 A] F-Z(Hybrid cache architec-
tre) o4 7] 8155 2 48}5}7] 9182712 7198 Algkatsck. A
71HL NVM way-2 4072 XA5H= HhAlo]™(Dynamic way adjust-
ing), TF2 7|H-& linefill 1183t 7fA] ESF 7] H (Linefill-aware cache

partitioning)©] t}.

o2 o|F A 72 A stol A BIgEg mRe e 271E Al
gote] 227] 848 Eole 7IM= ARt ol F AA 2= HISIEA
H2 o] dRE FA 2]l SRAME WA|ste] 7 71| 72 v
27} shte] Aol EAsHE F2olt. TAH o= B $EAd v 2] o
way o] H|-go] gropd 5 04| 2271 2hfof| A vl d/g w2 E] o] 227] 2

Aol vl T AXA Aot I RE 2 o] A A WS

278Hs 212 ofth m2] webA B Aa A7k thebA w
2o] ARete o 78 v e 1 Aol Wag wha vs

A | 2e S ARSIE S vre| o] 27|15 Aetthd %o 25} glo]

HIFA R o] 27] S5 F9 4 ek
EQ B =R AL ofF A4 FE2E AHESHE Be 2o A

oA HIFA wlmelo] 7] 858 2 48ksHe A4 B Cache parti-
tioning) & A|QHGHTF. 71 20] A BP FASE FUA W el S 41§
5% A4 FEE A7) el 2} ojo] BT waye] St At
Shth. et o) A4 FEAAE 2 017k ALG T A way©] S
g obue} 519 olse] waye] 45k $194 e way] 55 whE
Folok gtk @A) ghowl P Wm el waysh HEEH O Fojo]
w0l AA A H)54 vlme o] 27] 847} 157 o
webd, B = Rol Al AT F7]ute A4 B AL ko] 7haA
HIFA R O] 27] 8158 | okshe A B 1L Fobdit,

4549t A1}, Write avoidance cache coherence protocol-2 %

= =
L5H T A ARZS 13.2%7}F 71451, Dynamic way adjusting

@} Linefill-aware cache partitioning2 2-85}= 3¢ 2+7F A& AR o]

26.9%%} 37.2% 7+ A5FATt.

116

@creative
common

C O M O N § E E D
& X EAI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= F R0l 86tH HFSA
o Ol HH=ES =M, BHE, HE, HAl, SH & S = ASsLIT

XS Metok §LICh

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. Adt= 0 M &

e Fot=, 0l &2 MOIZO0ILE HIES H2, 0l &2 H2E 0/86/2fX2
S YEGHA LIEHLH O OF LI CH.
o NEAXNZREH YUEO GIIE &t 0|26t ZHE2 HEE X LSLICH
N=AYH OE ol AH2le /2 WEo 26t g8sS 2HA ZFSLICH
01212 0I=205] & 72 (Legal Code)S Olaoliot| & H st A lLCh
Disclaimerl:l._'l
T
Collection
o]
A=

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

FopARL S

[¢] o
= =

gl

Write Avoidance Schemes for
Non-Volatile Memory based
Last-Level Cache

H 3Ed w22 7o) 2% Ad A E A
271 39 7|4

20164 24

ABSTRACT

Non-volatile memory (NVM) is considered to be a promising memory tech-
nology for last-level caches (LLC) due to its low leakage of power and high
storage density. However, NVM has some drawbacks including high dy-
namic energy when modifying NVM cells, long latency for write operations,
and limited write endurance. To overcome these problems, the thesis focuses
on two approaches: cache coherence and NVM capacity management policy

for hybrid cache architecture (HCA).

First, we review existing cache coherence protocols under the condi-
tion of NVM-based LLCs. Our analysis reveals that the LLCs perform un-
necessary write operations because legacy protocols have very pay little at-
tention to reducing the number of write accesses to the LLC. Therefore, a
write avoidance cache coherence protocol (WACC) is proposed to reduce

the number of write operations to the LL.C.

In addition, novel HCA schemes are proposed to efficiently utilize
SRAM in the thesis. Previous studies on HCA have concentrated on de-
tecting write-intensive blocks and placing them into the SRAM ways. How-
ever, unlike other studies, a dynamic way adjusting algorithm (DWA) and a
linefill-aware cache partitioning (LCP) calculate the optimal size of NVM
ways and SRAM ways in order to minimize the NVM write counts and as-

signing the corresponding number of NVM ways and SRAM ways to cores.

The simulation results show that WACC achieves a 13.2% reduction in
the dynamic energy consumption. For HCA schemes, the dynamic energy
consumption of DWA and LCP is reduced by 26.9% and 37.2%, respec-

tively.

Index Terms : Cache memories, Emerging technologies, Heterogeneous
(hybrid) memory systems , Low-power design, Cache coherence, Cache par-

titioning

Student Number : 2012-30234

ii

CONTENTS

L TIntroduction] 1
1.1 Purposeofthethesis| 1
1.2 Background| o000, 3
[L3 _Motivationl.o it 4
(.4 Contmbutions| o oL 5
[1.5 Organization of the thests| 8

IL _Relatedworkl 9
[2.1 Hybrnd cache architecture|. 9

[2.1.1 Write intensity prediction studies| 11

[2.1.2 Static approaches| 11

[2.1.3 Hybrid cache architecture for main memory|. 12

2.2 Cache partitioning schemes| 14

[[IT. Write avoidance cache coherence profocoll. 15
ii

[3.1 Limitation of existing cache coherence protocol|

[3.2 Write avoidance cache coherence protocoll 19
V. NVM capacity management policy for hybrid cache archi- |
Cfecturelo 22

4.1 NVM capacity management policy| 22

[4.1.1 Concept of NVM capacity management policy| . . . 23
[4.1.2 Feasibility of NVM capacity management policy| . . 27
4.2 Dynamic way adjusting| 37
“4.2.1 Maximum stack distancef L 37
[4.2.2 Adjusting the number of NVM ways|. 41
[4.2.3 Algorithm of dynamic way adjusting] 42
|4.3 Cache partitioning for hybrid cache architecture| 46
4.3.1 Linefill-aware cache partitioning| 49
[4.3.2 Metrics for cache partitioning| 50
[4.3.3 Algorithm for cache partitioning| 59
4.4 Overhead of NVM capacity management policy| 68

v

V. Experimentalresults|.

[5.1 Experimental environment|

[5.3 Dynamic energy consumption|

5.4 Tafetimel

5.5 Multi-core environment]

90

List of Figures

|Figure 1. Basic structure of hybrid cache architecture (HCA).| . .
|[Figure 2. Conventional cache coherence protocol|
|[Figure 3. Write avoidance cache coherence protocol (WACC).|

|[Figure 4. State transition diagrams for WACC.|
|Figure 5. Example for NVM capacity management policy.|. . . .
|Figure 6. Miss rates with various number of NVM ways.|
|Figure 7. Normalized total write counts of HCA|.
|[Figure 8. Normalized total write counts of NVM.|
|[Figure 9. Stack distance histogram.|.
|Figure 10. Overall structure of dynamic way adjusting (DWA).| . .
|Figure 11. Example of way shifting.|
|[Figure 12. Algorithm for DWA|
|[Figure 13. Examples of cache partitioning for HCA.|
|Figure 14. Example of stack property,|

vi

10

17

18

20

26

32

34

36

38

40

44

51

|[Figure 15.

Examples of miss counts change (AM) and write counts

change AW)| 56
|[Figure 16. Examples of NVM write counts change (ANVMW)|. . 59
|[Figure 17. Algorithm of linefill-aware cache partitioning (LCP).| . 60
|[Figure 18. Overall structure of LCP| 63
|Figure 19. Errorrates for LCP| 65
|[Figure 20. Missratesfor LCP| 67
|[Figure 21. Normalized write counts of WACC| 77
|[Figure 22. Normalized NVM write counts of DWA with STT-RAM.| 80
|[Figure 23. Normalized NVM write counts of DWA with PCM.| . . 81
|Figure 24. Normalized NVM write counts for LCP| 82
|Figure 25. Normalized dynamic energy consumption and lifetime |

of WACC o 84
|Figure 26. Normalized dynamic energy consumption of DWA with |

STT-RAMYJ o o 87
|Figure 2°/. Normalized dynamic energy consumption of DWA with |

PCM . . .o 88
|[Figure 28. Normalized dynamic energy consumption for LCP| . . 89

vii

|[Figure 29. Normalized lifetime of DWA with STT-RAM.| 91
|[Figure 30. Normalized lifetime of DWA with PCM.|. 92
|Figure 31. Miss rates with various DWA configurations with ST'T- |

RAM 94
|[Figure 32. Miss rates with various DWA configurations with PCM.| 95
|[Figure 33. DWA with STT-RAM 1n multi-core environment.| . . . 97
|[Figure 34. DWA with PCM in multi-core environment.| 98
|[Figure 35. IPC throughput for LCP| 100
|[Figure 36. Weighted speedup for LCPf 101
|[Figure 37. Fairnessfor LCP| 102

viii

g A

ey

ALl

List of Tables

|Table 1. Comparison of area, latency, and energy| 4
|Table 2. Summary of proposed schemes.|. 8
[Table 3. States and descriptions for write avoidance cache coher- |

ence protocol (WACC)| 19
[Table 4. Signals/actions and descriptions for WACC,| 21
[Table 5. Notation descriptions for metricsof LCP|. 50
[Table 6. Notation descriptions for algorithms of LCP| 61
[Table 7. Storage overhead.| 69
[Table 8. Timing overhead| 70
[Table 9. Processor configurations.| 73
[Table 10.Write counts per kilo-instructions for LCP| 75
(Iable 11.Multi-core workloads for LCPI 75
(Iable 12.Multi-core workloads for DWALJ. 76

ix

Chapter 1

Introduction

1.1 Purpose of the thesis

The purpose of the thesis is to reduce the write counts of LLC to overcome
drawbacks of NVM. To this end, three schemes are proposed in the thesis:
write avoidance cache coherence protocol (WACC), dynamic way adjusting

scheme (DWA), and linefill-aware cache partitioning (LCP).

Non-volatile memory (NVM) has been investigated as a resource to
replace volatile memories such as SRAM or DRAM since their tendency to
waste energy has grown to a substantial portion of total energy consumption
[2} 13) 14) 151 16]]. With conventional memory, static power is dissipated by
transistors even when they make no switching. On the contrary, NVM adopts
its own material as memory storage, instead of an electric charge, which

limits leakage power dissipation.

However, there are some drawbacks to be considered when employing
NVM as last level cache (LLC) directly: inefficient write operations and
limited write endurance. Changing values in NVM requires long operating

time and high level current. Thus, write operations generate long latency and

high dynamic energy consumption in the NVM cache system. Moreover,
an NVM cell is worn out after a limited number of writing. Therefore, the
lifetime of the NVM based cache is shorter than that of the SRAM cache

due to the write limitation.

To overcome these drawbacks, the thesis introduces a new cache co-
herence protocol to reduce the write operations of the LLC [7]]. The block
data of the LLC is updated only if the cache block is written-back from a

private cache, which leads to avoiding useless write operations in the LLC.

In addition, it is found that the previous researchers have overlooked
that the capacity of NVM is also one of important factors affecting the
number of write accesses to NVM. This discovery leads to the necessity
of NVM capacity management policy such that the size of NVM is dynam-
ically adjusted according to the demand of applications. To implement the
idea, we propose a dynamic way adjusting (DWA) algorithm which dynam-
ically monitors the optimal number of NVM ways using the stack property

and disabling the unnecessary NVM ways [8]].

Finally, the thesis proposes a cache partitioning scheme called linefill-
aware cache partitioning (LCP) mechanism, taking into account the NVM
linefill counts as well as the NVM write hit counts during cache partition-
ing. Most previous works have concentrated on managing write-intensive
blocks by allocation these blocks to SRAM to reduce the number of the
write operations to NVM. However, those schemes have not considered that

reducing the number of linefill operations to NVM is important to reduce the

total number of write operations to NVM. To overcome this weakness, an

algorithm for cache partitioning of LCP considers the NVM linefill counts.

The proposed schemes are simulated with the gem5 simulator [9] for
WACC and macsim [[10] for DWA and LCP. We used the PARSEC bench-
mark suite [[11] for evaluating WACC and SPEC CINT2006 and SPEC CFP2006
of the SPEC CPU2006 benchmark suite [[12]] for DWA and LCP. The exper-
itmental results show that WACC achieves a 13.2% reduction in the dynamic
energy consumption. For HCA schemes, the dynamic energy consumption

of DWA and LCP are reduced by 26.9% and 37.2%, respectively.

1.2 Background

According to the material used in NVM, several kinds of NVM [}, 2} 3| 14}
3. 6] have been introduced such as spin-torque transfer RAM (STT-RAM),
phase change memory (PCM), and ferroelectric RAM (FeRAM). Even though
their compositions are different, all NVM can be considered similar in terms
of cache architecture. First, they sustain their information without electric
power; this is the reason why they called non-volatile memory. Their main
advantage comes from their characteristics of extremely low leakage power
consumption. In addition, their density is much higher than that of SRAM
even that of DRAM for some kinds of NVM. Table [I] shows comparison
of parameters of SRAM and STT-RAM obtained from the modified CACTI

[[13}[14] in previous work [15].

Table 1: Comparison of area, latency, and energy [15]].

Parameters SRAM STT-RAM PCM
Cache Size 128KB 512KB 2MB
Area(mm?) 3.262 3.30 3.85
Read Latency(ns) 2.252 2.318 4.636
Write Latency(ns) 2.264 11.024 23.180
Read Energy(nJ) 0.895 0.858 1.732
Write Energy(nJ) 0.797 4.997 3.475
Static power(80°C)(W) 1.131 0.016 0.031
Write Endurance 1016 4% 10" 10°

1.3 Motivation

The thesis focuses on two approaches such as cache coherence protocol and
NVM capacity management policy for hybrid cache architecture (HCA).
For cache coherence protocol, the existing studies have not concentrated
on reducing the write operations because it does not matter in the SRAM-
based LLC. Since there is no drawback of write operation compared to read
operation, the number of write access is not taken into account. However,
reducing the write operations is an important issue in NVM-based LLC.
The dynamic energy consumption largely depends on the write operations,
because the dynamic energy of write operation is greater than that of read
operation. Moreover, the lifetime is inversely proportional to the number
of write access. Therefore, a new protocol for NVM to minimize the write

operations is needed.

In addition, it is found that there is a relationship between the capacity
of NVM in HCA and the write counts of NVM. The analysis implies the
necessity of efficient NVM capacity management policy: the HCA dynam-
ically manages the capacity of NVM according to the demand of applica-
tions. As the first step of realizing this idea, we use the number of active
NVM ways in a set as the measure of the capacity of NVM. The capacity of
NVM is expressed by the number of currently available NVM ways and the

demand of NVM is converted to the requested number of NVM ways.

1.4 Contributions

Firstly, the thesis introduces a new cache coherence protocol for NVM to
decrease the number of write access to the LLC [7]. In our protocol, the
data array of the LLC is not updated during the linefill operation, while the
tag array is changed to maintain the inclusion property. The data array is
modified only when the cache block is written-back from the private cache.
Our protocol reduces the number of write access to the LLC; thus, the dy-
namic energy consumption is reduced and the lifetime is enhanced in our

protocol.

* We investigate the existing cache coherence protocol for NVM and

reveal the drawback of them.

* We propose a cache coherence protocol for NVM, which avoids un-

necessary write operation in the LLC based on the analysis.

* We present experimental results of a write avoidance coherence pro-
tocol with number of write accesses to LLC, dynamic energy con-

sumption, and lifetime.

In addition, hybrid cache architecture (HCA) has been proposed to
overcome these limitations of NVM [16, [17, [18} [19, 20]. Most previous
works have concentrated on managing write-intensive blocks by storing
these blocks to SRAM to reduce the number of the write operations to NVM.
However, we show the concept of NVM capacity management policy for re-
ducing the number of write accesses to NVM and propose a dynamic way
adjusting algorithm [8]]. It dynamically resizes the number of active NVM
ways to improve the dynamic energy consumption and the lifetime. To ad-
just the number of NVM ways, the maximum stack distance is monitored

and rearranging the replaceable NVM ways is regularly performed.

* We investigate the relationship between the number of write opera-
tions and the capacity of NVM in HCA by performing both analysis

based on the devised analytical model and experiments.

* We find out that decreasing the number of active NVM ways can be
beneficial to reduce the number of write accesses to NVM ways, only

if it does not increase the miss rate significantly.

* We propose a dynamic way adjusting algorithm (DWA) to find the
optimal number of NVM ways and dynamically adjust active NVM

ways without physical change of the cache.

* We conduct a simulation to evaluate the effectiveness of the proposed
policy in terms of the reduction in the write counts of NVM, the decre-
ment of the dynamic energy consumption, the lifetime extension, and

the variation of the miss rate.

While previous studies focus on reducing NVM write counts due to
the write-intensive blocks, they have not considered the NVM write oper-
ation is also occurred by linefill operation to NVM. Reducing the NVM
write counts due to linefill operations are also very important for minimiz-
ing overall NVM write counts in chip-multiprocessor (CMP) environments.
The thesis proposes a cache partitioning scheme called a linefill-aware cache
partitioning (LCP) mechanism, taking into account the NVM linefill counts

as well as the NVM write hit counts during cache partitioning.

* We propose a linefill-aware cache partitioning scheme (LCP) for HCA,
which takes into account the reduction in the number of linefill oper-

ations to NVM to minimize the NVM write counts.

* We devise new metrics for LCP: write counts change (AW) and NVM
write counts change (ANVMW), which are based on the miss counts

change (AM).

* We propose an algorithm to make partitions by predicting metrics ac-

cording to the change of the number of allocated ways for each core.

Table 2: Summary of proposed schemes.

protocol (WACC)

Scheme Aim Description
Write avoidance | Reduction in the number | The data array is modi-
cache coherence | of write access to LLC fied only when the cache

block is written-back
from the private cache.

Dynamic way adjust-
ing algorithm (DWA)

Reduction in the number
of write access to NVM

The number of active
NVM ways is dynami-
cally resized.

Linefill-aware cache
partitioning (LCP)

Reduction in the number
of write access to NVM
and increase in the hit
rate of LLC

The NVM linefill counts
is taken into account as
well as the NVM write
hit counts during cache
partitioning.

* We present experimental results of LCP with the prediction accuracy,
number of write accesses to NVM, miss rates, performance for mul-

ticore workloads, and dynamic energy consumption.

The schemes in the thesis are summarized in Table

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 provides related
work about NVM. In Chapter 3, a new cache coherence protocol for NVM
called a write avoidance cache coherence protocol is proposed. Chapter 4
describes NVM capacity management policy for HCA. The conclusion is

given in Chapter 5.

Chapter 2

Related work

2.1 Hybrid cache architecture

Researchers have merged two types of memory into a single cache sys-
tem, which is called HCA, to reduce the number of write access to NVM
to alleviate the shortcomings of it especially related to a write operation
(L6l 17, 18 19, 21]. As described in above section, the shortcomings of
NVM come from write operation of NVM. In other terms, the number of
write access to NVM is the most important factor for both the dynamic
energy consumption and the lifetime. Since the write energy consumption
of NVM is much larger than read energy of NVM or dynamic energy of
SRAM, the write energy consumption of NVM is dominant for the total dy-
namic energy consumption. Furthermore, the lifetime is proportional to the
number of write access to NVM cells. Therefore, reducing the number of
write access to NVM is one of the most important methods to mitigate the
drawbacks of NVM. For this reason, a small number of SRAM ways are
used to accommodate heavily written blocks in the hybrid cache system as

depicted in Figure[I]

T ways T ways

f—A—\ A
e N
S ways N ways S ways N ways
A A A A
N -)’ ™
Tag Array e s Data Array « o o

[] SRAMway] NvMway

Figure 1: Basic structure of hybrid cache architecture (HCA).

First, swapping or migration schemes between SRAM and NVM in a
hybrid cache system were proposed. Wi et al. introduced the region based
cache architecture in [[16]]. They divided a single level of cache into two re-
gions: read region which consists of STT-RAM and write region which con-
sists of SRAM. If a block is predicted as write-intensive, the block is placed
or swapped to the write region. Besides the schemes, merging set schemes
were proposed [[17] and [18]. The authors noticed that non-uniformity of
write operations among sets. While some sets are frequently utilized, other
sets receive relatively small requests. Therefore, write-intensive blocks in
the highly utilized sets are forwarded to the idle sets. In addition, a predic-
tor was equipped to find the correlation between write intensive blocks and
addresses of trigger instructions [[19]. In summary, existing policies focused

on placing write-intensive blocks into the SRAM.

10

2.1.1 Write intensity prediction studies

Almost all papers on HCA have focused on devising methods to identify
write-intensive blocks and place them to SRAM ways. Wi et al. suggested
the region based cache architecture in [16]. They separated a single level of
cache into two regions: read and write regions. The read region is prepared
for non-write-intensive blocks composed of NVM, while the write region is
composed of SRAM for write-intensive blocks. When a block is considered
as write-intensive, the block is migrated or placed to the write region. On top
of these schemes, combining set schemes were proposed [17,, 22} 23]]. This
insight came from the fact that the write operations among sets are not uni-
formly distributed. While some sets receive relatively small write requests,
other sets are highly utilized. To take advantage of these characteristics,
some blocks in the frequently utilized sets are moved to the other sets. To
elaborate the prediction algorithm, Quan et al. introduced a prediction table
[18] containing the history of the write requests of the LLC. Another pre-
diction table is proposed to store the value of combining addresses of the
blocks and program counter of instructions [19]. What distinguishes these
works from our scheme is that they have not focused on the CMP environ-

ment.

2.1.2 Static approaches

Various methods utilizing the compiler have been proposed. Chen et al. [24]

proposed a scheme in which the compiler provides hints to find the write-

11

intensive block and the hardware is modified to correct the hints. Software
dispatch was presented to detect write reuse patterns in [25]]. In addition, the
migration-intensive blocks are loaded into the SRAM region with the com-
piler assistance in [26] to mitigate the burden of migration blocks. Moreover,
a loop retiming framework was proposed for loops with intensive data array
operations to relieve the migration overhead [27]]. Another study improves
the read performance and energy efficiency guided by the analysis of read
bottlenecks [28]]. They focused on the recompilation or profiling schemes,

while our proposed mechanism modifies the hardware structure and logics.

2.1.3 Hybrid cache architecture for main memory

As the write endurance problem has become important for the main mem-
ory, which is based on NVM, many methods have been proposed to prolong
its lifetime. They have employed DRAM as a cache for NVM. Qureshi et
al. firstly suggested the concept of a small DRAM cache to overcome the
latency gap between DRAM and PCM [29]. The mechanism exploits both
the short latency of DRAM and the large capacity of PCM by preventing un-
necessary access to PCM. They also have shown advanced approaches such
as write cancellation and write pausing policies [30] to mitigate the long
read access time due to the long write latency. Meanwhile, a scheme pro-
posed in Meza et al. [31]] stores the metadata for the last accessed rows into
a small buffer to manage the difficulty of fine-granularity DRAM caches. It
is found that row buffer misses generate long latencies, and a policy is de-

vised to exploit this observation [32]. They predict the data incurring a row

12

buffer miss and store it into a DRAM buffer by investigating the row buffer
miss counts in PCM. Writeback-aware partitioning offers a new perspective
on cache partitioning, taking into account the writeback information [33]]. It
is innovative in regard to reducing the amount of write access to the PCM

main memory by managing the cache partition.

Another approach for the hybrid cache architecture is based on OS
support. For PDRAM [34], the researchers introduced a hybrid solution re-
lated to software as well as hardware to extend the lifetime of the PCM
pages. They modified the OS-level page manager and added a small device
to contain the number of write requests for PCM at a page level granularity.
Ferreira et al. [35] also inserted a DRAM buffer to decrease the number of
read and write requests to PCM via page partitioning. Zhang and Li [36] im-
proved the write endurance and reduced write latency of PCM by exploiting
the workload characteristics as an aspect of an OS level paging. New page
migration schemes were proposed to track read-bound access NVM pages

[371].

All schemes described above are based on the physical features of
DRAM or characteristics of OS, thus they are inadequate applied to the

SRAM and NVM based LLC, which is the target of the thesis.

13

2.2 Cache partitioning schemes

To improve the cache efficiency, several methods using stack property have
been proposed. The number of cache hit counts of LRU position is mon-
itored to calculate the cache utility of each application or core. Based on
the information, the cache is partitioned to minimize the number of total
cache misses. Suh et al. [38] dynamically partitioned the LL.C and assigned
the guided number of cache ways to each application. Even though it suc-
cessfully raised the cache utility, there was a problem in that the utility in-
formation of an application was affected by other applications. To avoid
this drawback, Qureshi and Patt [39] introduced a separate utility monitor,
which counts the number of hits without interference by other applications.
An adaptive placement policy [40] was proposed to load a new block into
the local or remote cache for enhancing the efficiency of cache based on
stack distance profiling. In addition, compliers used the information to pre-
dict the memory behavior of the application [41]. For a real-time system,
Liu and Zhang [42] suggested the compilation technique, which improves
the worst case data cache performance using the stack distance approach.
Most papers on cache partitioning assumed that the LLC consists of SRAM

only, hence they do not consider the NVM write counts in their schemes.

14

Chapter 3

Write avoidance cache coherence

protocol

3.1 Limitation of existing cache coherence pro-

tocol

We review the legacy cache coherence protocols to get a new insight to re-
duce the write operations. There are useless write operations in the existing
protocol. Generally, memory systems of CMPs are composed of a shared
LLC and several private caches which are dedicated to cores [43]. In addi-
tion, the cache block is divided into two arrays: tag array and data array. Tag
array stores tag bits and cache coherence state, while data array stores block
data. When a linefill operation occurs, the requested block data is written
to the data array, and the tag bits and cache coherence state are updated to
the tag array. Then, the cache block is forwarded and linefilled to the private
cache. When a core tries to modify the cache block in the private cache,
an invalidation signal is sent to the shared LLC and other private caches to
maintain the cache coherence. Thus, the previous write access to the LLC
during the linefill operation is considered as the useless write operation, if

the cache block in the LLC has been never used until it is invalidated.

15

Figure 2| illustrates an example of write inefficiency in widely used
cache coherence protocols such as MESI or MOESI [44]]. In the example, we
assume that a core reads and writes a block data of the PC (Private Cache)
1. Table 3|lists the cache states in the figure and their descriptions. When the
core tries to read the block data, since the PC1 has no valid block data, the

cache controller sends the request for the block data to the LLC.

However, the LLC also has no valid copy; thus, the request is sent to
the external sources such as the main memory or other chipsets. When the
block data “ABCD” is arrived at the LLC, it is written into the LLC and the
state of the LL.C is changed to S state, which means the cache block is valid
and other private caches may have the same cache block. Then, the block

data “ABCD” is forwarded to the PCI.

‘When the block data is received in the PCl1, it is written into the PC1
and the state of the PC1 is changed to E state. After the linefill operation is
completed, if the core tries to modify the block data “ABCD” to “EFEF”,
an invalidation request is sent to the LLC to maintain cache coherence. The
purpose of the invalidation request is indicating that the block data of the
PC1 is modified and the cache block in the LLC should be invalidated. If
the block data “ABCD” in the LLC has not been used until it is invalidated,
writing the block data “ABCD” to the LLC during the linefill operation was

a useless write operation.

16

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request
to external sources

Private Cache 1 Private Cache 1
Tag|State| Data Tag|State| Data
000 | | XXXX 000| | XXXX

:
.
Data Request :
Shared LLC
Tag|State| Data
000| | XXXX

* Event :
- Data “ABCD” arrived

* Action :

1) Linefill “ABCD” to LLC

2) Change states(I->S) in LLC
3) Send data "ABCD" to PC1
4) Linefill data “ABCD” to PC1
5) Change states(I->E) in PC1

To
Main Memory or g cccccea
Other Chipsets Data Request
Private Cache 1 Private Cache 1
Tag |State| Data Tag|State| Data
KHXX >
000| I->E ABCD 000| | XXXX
A
)
Leccadecsccncaccas

000

Shared LLC

State

Data

1->S

ABCD

.
.
.
.
.
.
.
.
XK > |8
.
.
.
.
.
.
.
.

* Event :
- PC1 Write

* Action :

1) Write data “EFEF” to PC1

2) Change states(E->M) in PC1

3) Send Invalidation Request
to LLC

4) Change states(S—>P) in LLC

.
From H
Main Memory of cecccccaa Jocsacs .
Other Chipsets Data “ABCD"
Private Cache 1 Private Cache 1
Tag|State| Data Tag|State| Data
ABGB ->
000|E->M|"EFEC 000| | XXXX

States 000

“7! Invalidation
Request

Shared LLC

State

Data

S->P

Stale
ABCD «— Data

Figure 2: Conventional cache coherence protocol.

17

* Event :
- PC(Private Cache) 1 Read

* Action :
1) PC1 miss occurs
2) Send data request to LLC
3) LLC miss occurs
4) Send data request
to external sources

Main Memory or g eccc--
Other Chipsets

Private Cache 1 Private Cache 1
Tag|State| Data Tag|State| Data
000 | XXXX 000 | XXXX

'

.
Data Request :
Shared LLC

@ Tag|State| Data
000 | XXXX

To

Data Request

* Event :
- Data “ABCD” arrived

* Action :

1) Change states(I->P) in LLC
without Data Write

2) Send “ABCD” to PC1

3) Linefill “ABCD” to PC1

4) Change states(I->E) in PC1

Other Chipsets

Private Cache 1 Private Cache 1

Tag|State| Data Tag|State| Data
HKXHKK ->

000| I->E ABCD 000| | XXXX

Tag|State| Data
States /| 500 | 1P | xxxx

From
Main Memory of cecccecececes descece

A

Lecececdecccccccaa

Shared LLC

A

Data “ABCD”

U
><_7 No Data Write

* Event :
— PC1 Write

* Action :
1) Write data “EFEF” to PC1
2) Change states(E—>M) in PC1

Private Cache 1 Private Cache 1

Tag|State| Data Tag|State| Data
ABED ->

000 [E->M | 2220 000 1 | XXXX

Tag|State| Data
000 P XXXX

Shared LLC

ccccpeeNe+——

No

Invalidation
Request

Figure 3: Write avoidance cache coherence protocol (WACC).

18

Table 3: States and descriptions for write avoidance cache coherence proto-

col (WACCQC).

State Description

I(nvalid) The cache block is invalid

S(hared) The cache block has valid block data and other private caches
may have valid copy.

E(xclusive) The cache block has valid block data with exclusive permission
and other caches have no valid copy.

M(odified) The cache block has valid and modified block data. Other caches
have no valid copy. This state appears in the private cache only.

P(rivate cache) | The cache block in the LLC has no valid block data, but more
than one of the private caches has valid block data. This state
appears in the LLC only.

* P state is introduced due to keeping the inclusion property. Modern multiproces-
sors have employed the inclusive LLC to filter the cache coherence traffic from other
chipset or the main memory. Thus, it is needed that a state represents one of the private
caches has valid data even the LLC has no valid data.

3.2 Write avoidance cache coherence protocol

To deal with this problem, we suggest a new cache coherence protocol which

is called Write avoidance cache coherence (WACC) protocol. In our proto-

col, the block data of the cache block is not written into the LLC during

the linefill operation, while the tag bits and the cache coherence state are

updated. Since the block data is not placed in the LLC, one of the private

caches has responsibility to provide the valid block data. The block data

in the LLC is only updated when it is written-back from the private cache.

The writeback is initiated only when no other private cache has the block

data in WACC protocol. Therefore, we avoid useless write operation due to

modifications of the block data in the private cache.

19

—————— > Signal comes from Private Cache
——— Signal comes from External Devices

_____ Transition Signal / Action ~———3

Inv_Ext/= Inv_PC/- Inv_Ext/— Inv_PC/-
T o InveExt/= o Inv_Ext/— <

: N
! ! Recv_Ext/-
| |
1 |

Inv_PC/-

Inv_PC/-

Inv_Ext/- Inv_Ext/— WB_PC/Wr
\ \
Req_PC/Rd Req_PC/Rd
(a) Exisiting Procotol (b) WACC Procotol

Figure 4: State transition diagrams for WACC.

Figure[3|shows an example of WACC protocol. Unlike the conventional
protocols, when the block data ABCD is arrived at the LLC, it is not written
to the LLC. Instead, the state is changed to P state and the block data is for-
warded to the PC1. When the PC1 is modified to EFEF, there is no need to
send an invalidation request to the LLC for the block data ABCD is not writ-
ten to the LLC. Therefore, one write operation of the LLC and one request

for cache coherence is decreased compared to the baseline protocols.

We compare a simple version of the existing MOESI protocol with its
modified protocol in Figure [Table [d] shows the coherence signals and ac-
tions. The transition signal is divided into two parts: {signal}_{source} and
the action indicates the operation of the data array. For example, WB_PC/Wr
means that if the block is P state and receives the WB signal from a private

cache, the block data is written to the data array.

20

Table 4: Signals/actions and descriptions.

Signal | Description

Inv Invalidate the cache block if it is valid. This signal is generated
when another device tries to modify the block data.

Recv Provide the block data in the cache block. This signal is gener-
ated when a cache hit occurs.

Req Request the block data for read operation. This signal is gener-
ated when a cache miss occurs.

WB Writeback the block data to the LLC. This signal is generated
when a private cache evicts the cache block.

Action | Description

Wr Write the block data of the received cache block into the data
array.
Rd Read the block data and provide it with the requestor.

As shown in Figure ffa), when a new cache block is received in the
LLC, the state of the cache is transition to S state and the block data is writ-
ten to the data array in the existing protocol. On the contrary, the state is
transition to P state instead of S state in our protocol under the same con-
dition. Furthermore, the write operation is omitted as shown in Figure [(b).
This is because the block data is forwarded without write access to the data

array in WACC protocol.

Another point to be considered is that the protocol of the private cache
should be changed. The writeback operation is initiated if the cache block in
the private cache is modified and evicted in the existing protocols. However,
the cache block should be written-back to the LLC in WACC protocol when
it is evicted in the private cache regardless of whether the cache block is

dirty or not.

21

Chapter 4

NVM capacity management policy for

hybrid cache architecture

4.1 NVM capacity management policy

In this section, we propose two schemes for NVM capacity management
policy. First, we introduce a dynamic way adjusting algorithm (DWA) that
monitors the optimal number of NVM ways and dynamically adjust the
number of active NVM ways [8]]. In addition, we also propose a linefill-
aware cache partitioning scheme (LCP) to save the dynamic energy con-

sumption by efficiently allocating SRAM ways and NVM ways to cores.

The DWA keeps track of maximum stack distance (MSD), which means
the minimum number of ways to maintain the miss rate. If the number of the
current active NVM ways is not the optimal value, it is adjusted according to
the MSD. In addition, an efficient method to disable NVM ways is required
because it is impossible that NVM ways are physically added or removed
during execution. Thus, the DWA prevents deactivated NVM ways from
victim selection. A newly fetched block is prohibited to be loaded into the

disabled NVM ways, which has the effect of virtually deactivating them.

22

The basic idea of LCP comes from cache partitioning [38, [39, 401,
which has been a well-known scheme to improve the performance in CMP
systems. The key idea of the cache partitioning is that all cache ways should
be efficiently allocated for each application to maximize the hit rate of the
LLC. They have contributed the studies of the LLC. However, it is ineffi-
cient to apply them directly into HCA because their models assume that all
cache ways consist of the same memory type. Even though the cache misses
are minimized by the previous cache partitioning schemes, if the linefill op-
erations heavily occur in NVM ways, it fails to reduce the linefill counts of
NVM. Therefore, LCP assigns the SRAM ways and the NVM ways to each
core based on the change of the NVM linefill counts as well as the NVM

write hit counts according to partitioning.

4.1.1 Concept of NVM capacity management policy

This section presents an NVM capacity management policy that resizes the
number of NVM ways to fit the demand of applications. This policy comes
from the observation that reducing the size of NVM usually decreases the
write counts of NVM if the miss rate does not grow. The thesis will propose

an analytical model and perform a simulation to verify this observation.

Cache researchers have been investigating the relationship between the
size of cache and the miss rate [39]. For many programs, as the cache size
grows, the miss rate becomes small. On the contrary, the miss rates of some

programs are saturated or remain despite incremental growth of the cache

23

size. In addition, even the same program always does not require the fixed
size of cache. Therefore, the number of requested ways of the cache varies
during execution, and the unnecessary ways are disabled without perfor-

mance degradation.

The number of write accesses to the cache is strongly coupled with the
miss rate. Generally, the cache operations are divided into three categories:
read hit, write hit, and linefill. Among these operations, write hits and linefill
operations compose the write requests. If some read hits are changed to
cache misses due to the increasing miss rate, new linefill operations occur
as much as the removed read hits. This implies that the total number of write
operations are increased. Alternately, if the number of cache misses is not
increased, the number of write accesses to the cache remains because the hit

counts and miss counts is not changed.

Assume that we minimize the number of NVM ways without generat-
ing significant extra cache misses. In that case, the write operations which
originally occurred in the deactivated NVM ways are forwarded to SRAM
ways or other NVM ways. If a part of write accesses is sent to SRAM ways,
the number of write accesses to NVM ways is reduced. Therefore, partial
deactivating NVM ways with the stable miss rate highly tends to decrease

the write counts of NVM ways.

An illustration is provided in Figure[5]to aid in the understanding of this
concept. There are two caches in the example. One of the caches consists

of one SRAM and three NVM ways, and another cache is composed of one

24

SRAM and two NVM ways. The program in our example needs only three
ways. For the sake of convenience, suppose that all memory references are

write requests.

When the program starts, cache accesses are performed according to
the sequence in Figure [5] There is no difference between the two caches in
the first three accesses. However, when ~’d” miss is encountered, two caches
behave differently. While ”d” is placed in the fourth way in cache A, ~a” is
replaced with ”d” in cache B. Writing ”d” in the second iteration, SRAM
access is made instead of NVM access in cache B. As a result, the number
of write to NVM ways is reduced in cache B. The linefill operation of ”d” is

forwarded to a SRAM way, and thus one linefill operation and one write hit

of NVM ways is reduced.

25

L

Memory Reference Sequence: a, b, ¢, d, b, ¢, d

Cache A Cache B

Linefil_S (a) ED: Linefill_S (a)

Linefill_N (b) (a|b| |LinefilLN (b)

Linefill_N (c) | a| b [c | Linefil_N (c)

][]

Linefill_N (d) gn Linefill_S (d)

Write_Hit_ N (b) | |d | b | c | Write_Hit_N (b)

write_Hit N (c) | [a] b [c | write_Hit_N (c)

][]

Write_Hit N (d) | [d] b [c | write_Hit_S (d)

- SRAM Linefill 1 - SRAM Linefill 12
- SRAM Write Hit 0 - SRAM Write Hit 01
- NVM Linefill : 3 - NVM Linefill 12
- NVM Write Hit 3 - NVM Write Hit 12
- SRAM Total Write : 1 - SRAM Total Write :3
- NVM Total Write :6 - NVM Total Write :4
Linefill_S Linefill data into SRAM way
Linefill_N Linefill data into NVM way
Write_Hit_S Write data into SRAM way
Write_Hit_N Write data into NVM way

[] sSrRAMway [] NVMway

Figure 5: Example for NVM capacity management policy.

26 =

4.1.2 Feasibility of NVM capacity management policy

A metric, write intensity of a way (WI), is defined as the portion of write

accesses to the way over the write accesses to all ways. It is given by

id (1<i<T) (4.1)

WI; = <i<
l VVtotal

where W; is the number of write accesses to ith way and W,,,; means the
number of total write accesses to the cache, while T is the number of all
cache ways. This metric indicates the distribution of write requests among
the ways. If all ways have the same write intensity, the write requests are
evenly distributed. Unless, write operations occur more frequently in some

ways which have higher value than other ways.

Since the total number of write counts is calculated by summation of

write counts of each way, it is expressed as

T
Wioar = » Wi 4.2)
i=1

The above equation is expressed as form of W1 as follows

T

vvtozal — Z(Wlt * VVtotal)
i=1

a

= Wiotar* Y Wi, (4.3)
i=1

27

We rewrite the above equation as form of SRAM ways and NVM ways, and
it is given by

thotal = "Vsmm + anm

S T
= Wiorar * Y Wi+ Wigarx »_ WI; (4.4)
i=1 i=S+1
S
Woram = Wioral * ZWIi (4~5)
i=1
S+N T
anm = VVtotal * Z WIi = ‘/Vtotal * Z WIi (46)
i=S+1 i=S+1

where S is the number of SRAM ways and N is the number of NVM ways,
while W;,,,, means the number of write accesses to SRAM ways and W,
is the number of write accesses to NVM ways. We found that there are three
factors that influence the write counts of NVM ways: the number of total
counts (W;ya1), the write intensity per way (WI), and the number of NVM

ways (N =T —3S§).

So far, the main strategy for reducing the number of write counts of
NVM ways has been keeping average W1 of NVM ways lower than that of
SRAM ways. Throughout previous HCA research, W1 is thought as the only
important factor among the three factors. It is assumed that N is fixed and
Wiotar 18 not significantly changed. Therefore, they have focused on mini-
mizing W1 of NVM ways by detecting write intensive blocks and placing
them into SRAM ways. These approaches are successful to reduce write

accesses to NVM.

28

Different from previous approach, we consider N as a variable instead
of a constant value. When the number of NVM ways is reduced to N* (N’ <
N), W/ . W...m» and W, are defined as the number of write accesses to

total> "' sram>

the cache, SRAM ways, and NVM ways:

m/ — W/ + W/

otal sram nvm

“4.7)

In addition, we define the altered number of all ways as T* (T’ =S+
N’ < T), and Eq. [4.6]is transformed below:
T/

T
Wivm = Wroral * (Z WI; + Z WI,)
i=S+1 i=T"+1

T T
= WhsWigar+ Y WhixWia (4.8)
i=S+1 i=T"+1

The second term indicates the number of write accesses to the NVM ways
that will be removed. If we adjust the number of NVM ways to N’, the
remaining ways should absorb the write requests of the amount of second

term. For simplicity, this term substitute for X and Eq. [4.6]is expressed as

follows:
T
X=) WhixWoa 4.9)
i=T'+1
"Vtotal = Wsram + (anm - X) +X (410)
29

29,

i =

[A=t g

Hereby, we introduce a condition that the total write counts are not changed

(W, .1 = Wiotar)- Under the condition, W/ is given by

total —

Wrat = Waram + Woom — X) +X 4.11)

If we divide X into X4, and X, that are the write requests of the amount

of forwarded to SRAM ways and NVM ways, we obtain

‘/Vt/otal = Wyram + (anm - X) + Xsram + Xovm

= (Wsram +Xsram) + ((anm - X) +Xnvm) (412)
Because W, and W, are defined as the number of write accesses to

SRAM and NVM in the resized cache, they can be expressed by as fol-
lowing equation:

W, = Wyram + Xsram (4.13)

sram

!
anm

= anm -X +Xnvm (414)

Before advancing the discussion, we state that it is assumed that X4,
is greater than zero for the simplicity of the model. When the number of
ways is changed, the blocks are placed differently than they were. There is
a possibility that some write intensive blocks that were originally located in
SRAM ways are inserted into NVM ways. In that case, Xj,,,, could be zero
or minus value. To avoid this problem, we adopt a policy for placing write

intensive blocks into SRAM ways as presented [[16] to our scheme.

30

Since X is summation of X4, and Xpm, if Xsqm 1S greater than zero,
Xawm 18 given by
Xm < X (4.15)

By transforming Eq. [4.14] and substitution W,,,,, into Eq. .15 we ob-
tain

Wr:vm —Wam +X <X (416)
Worm < Wonm (4.17)

Thus, we conclude that fewer NVM ways causes lower write requests to

NVM if the miss rate does not grow.

We examined the impact of NVM capacity management on the miss
rate, the total write counts, and the write accesses to NVM ways. We as-
sume that the hybrid cache has 4 SRAM ways and 12 NVM ways and that
the number of NVM ways varies from 12 to 0. The results are sorted in
decreasing order by the number of NVM ways among each application. To
improve the readability, we abbreviate SRAM ways to ”S” and NVM ways
to ”N”. For example, 4S_2N in the figure means that 4 SRAM ways and 2

NVM ways are used during the simulation.

31

'skem INAN JO Joquinu SnOLIBA YIIM SOJBI SSTIA 19 InT1]

4
$ &
Y o 3
- o% $ & %o,v &
oove.yo,.%,o*%@

fas) _m_
(Runyisuag JoySiH) apis il em—kp (RaALISUBS JOMOT] 3PIS 2]

Spm NZStm Np Spm N9 Shr NS Spm NOT Spm NZI Stm

y & 9
3 A & 5 «% . O N
A &

@o
F o ¢ U
gy Yy Yo dN P

®

S

R \
N %e
N ,\% I

¥

%01
%0t
%0¢

%05
%09
%0L
%08
%06
%001

§TIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

§ A=t

-

B
¥
&

32

Figure|[6|represents the miss rates with various number of NVM ways to
show sensitivity of the miss rate to the size of NVM. We sort all applications
by geometric standard deviation (GSD), which represents the amount of
dispersion from the geometric mean. In Figure [6] the miss rates of the left
applications are not less influenced by the number of NVM ways, while
the right side applications are more sensitive to the number of NVM ways.
The miss rates of two left most applications such as namd and [bm remain
even when all NVM ways are removed. Part of NVM ways are unnecessary
for some left side applications: milc, bwaves, sjeng, GemsFDTD, dealll,
and zeusmp. On the contrary, the growth of the miss rates of the higher
sensitive applications is large. Especially, the miss rates of bzip2 and h264ref
is multiplied about three times and the miss rate of hmmer soars to 12.8

times.

Figure [7| shows normalized write accesses to the HCA with various
sizes of NVM. We find that the total write counts of the lower sensitive
applications are not greatly increased, while many higher sensitive applica-
tions show rapid growth. For the left side applications, only 2.8% of average
extra write operations occur. Especially, no change is detected through all
sizes of NVM in namd,lbm, and milc. The number of NVM ways can be
decreased to 2 without increasing write counts in bwaves and GemsFDTD.
Other benchmarks such as sjeng and zeusmp have the same values when
NVM ways varies from 12 to 8. On the other hand, the total write counts of

the right side applications increase by 29.4% on average.

33

"UOTIBZI[BULIOU JO PIEpUBIS oY ST N7~ St "SAem NAN JO Joquinu snoueA YOH JO SIUNOD 9L [B10) PIZI[eWION i/, 9ISy

0y L)

¢

% o@/ m@o %9
& N % R 0« % 4@

99 % K
/
o,@%@%,,,o«%

O)
o o &
o o% FF Py F

N
¢
%

#m::::: pppumppnn

z%/

N

Spm NZ S Ny Stm N9 Spr N8 St NOT Stm NI Spm

(=]

0

-l

~

1

81

§TIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

5 9 2

Ll
A
[=

34

The normalized write accesses to NVM ways with various number of
NVM ways is depicted in Figure [§] As we expected, reducing the number
of NVM ways decreases the write accesses to NVM ways in lower sensi-
tive applications. On the other hand, the reduction in the write counts of
NVM ways is not guaranteed by resizing the number of active NVM ways
in higher sensitive applications. Adjusting NVM ways even results in in-
creasing the write operations of NVM ways in gobmk, gcc, and h264ref.
Some applications such as gromacs, tonto, bzip2, and hmmer show the sim-

ilar pattern of the left applications, but their reduction ratios are small.

In summary, we find out that the number of write accesses to NVM
ways is usually reduced if resizing the number of active NVM ways does
not significantly increase the miss rate by adopting efficient NVM capacity

management policy.

35

"UOTBZI[EWLIOU JO PIEpUE)S A} ST NZ ™Sy "SAem AN AN JO JoqUINU SNOLIBA [JIM N AN JO SIUNOD JLIM PIZI[EWION] :§ 9INSL]

0
%9 dy N) ovo /@o)

¢

¢ 9

1
NZSym Ny Stm N9 Spm N§Sp NOT Stm NET Spm

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

2 A<

36

4.2 Dynamic way adjusting

We propose a dynamic way adjusting algorithm (DWA) to implement NVM
capacity management policy. To discover the optimal size of NVM, the max-
imum stack distance (MSD) is dynamically monitored. Using the MSD, the
DWA marks all NVM ways either as “replaceable way” or “non-replaceable
way” to realize adjusting the number of NVM ways. Replaceable ways are
regularly changed to prevent write requests from concentrating on a few
NVM ways. This section explains these key ideas and the operations of the

DWA.

4.2.1 Maximum stack distance

In order to find the minimum number of ways which sustain the miss rate,
we introduce the MSD based on the stack property [39]. It is well known that
the LRU replacement policy follows the stack property [45]], which means
that a cache of a size C always contains all blocks of the cache of size less
than C. Assume that the number of sets is a constant value. If a cache block
is in an N way cache, it is guaranteed that the block is in the cache, which has
more than N ways. A metric related to stack property is the “stack distance”.
When a cache hit regardless of a read hit or a write hit, the stack distance is
defined as the LRU order of the hit block. For example, the stack distance of
the block at MRU position is one, and that of the LRU position is N in the N
way cache. Figure[9] presents the stack distance histogram of a hypothetical

application. If the number of the ways is reduced to 3 from 8, the number of

37

i The Ratio of Hits ~ <#~The Ratio of Cumulative Hits
120%

100% 100% 100%

100% - N

80%

60%

40%

1 2 3 4 5 6 7 8
Stack Distance

40%
20%

0%

Figure 9: Stack distance histogram.

hits will be halved because the cumulative hits for stack distance 3 is 50%.
This means that the miss rate of three-way cache will be increased to 50% in
this case. However, if we use 6 ways instead of 8 ways, no additional cache
miss occurs. Therefore, the maximum value of the stack distance indicates

the minimum number of ways to maintain the hit rate.

We employ an auxiliary tag directory (ATD), a maximum stack dis-
tance register (MSDR), and a replaceable way size register (RWSR) to mon-
itor the MSD as shown in Figure [I0] The ATD is a separate storage con-
structed with the same associativity as the main tag array of the cache. It
keeps track of the LRU order information and tag bits. When an ATD hit
occurs, the MSDR is updated if LRU of the hit block is larger than the

current value of the MSDR. The RWSR is updated in two cases. First, if

38

2% A&yt

the MSDR exceeds the RWSR, the RWSR is increased to the MSDR. The
condition that the RWSR is smaller than the MSDR means that the current
working set needs more cache capacity. Thus additional NVM ways should
be replaceable ways by increasing the RWSR. Second, when the value of the
RWSR has been larger than that of the MSDR for a while, it is decreased to
the value of the MSDR. Keeping the situation in which the RWSR is larger
than the MSDR means that unnecessary NVM ways have been used. There-
fore, some NVM ways should be deactivated by decreasing the RWSR. To
detect this situation and initiate resizing the number of NVM ways, a resiz-
ing counter register (RCR) is added. The RCR is increased by 1 when the
RWSR is larger than RWSR during the ATD hit operation. Whenever the

RWSR is updated to the MSDR, the RCR is reset to 0.

Another consideration in adopting the ATD is the storage overhead. If
the ATD has tag information of all sets, the size of the tag array will be
doubled. Therefore, to reduce the storage overhead, we use a set sampling
policy [46]. The ATD is designed to have only a part of sets which is sam-
pled every 32nd in the proposed algorithm. It is verified that the sampled
sets are enough to correctly capture the stack distance value in [46] instead

of using all sets.

39

‘(VAQ) Sunsnfpe Kem oruweuAp Jo 21n3onns [[BIAQ 0] 3Ly

40

¥d1 buisn 1 0} : ...
SHG Y YSMY 4O Junowe ayj 336 - (¥0y) (4asw) sasibay —
Dorsuqy sy - | Poron saysifay sauno) Buizsay | | eduesig yess wnuixely
0 0 Y0y pue yasw 1asay - | 4 v 1
YASN 03 ¥SMY wumvab - Ay_m;mv ._wum_mwy_ N :
) > d
0y wmmw_uc_wm_m 3ZIS Ae d]qeade|day awsm__ose_o —
e] Asenxny .
YASIN 03 YSMy epdn - (4d1) :
0 03 YDy J9say - hwum_mwz :o_u_mom wmm._ [N \) '
¥d16uisn oy sngy (4SMY| MM aLy "o ' cee
- YQSIN) JO Junowe ay} 3as -) . o e
(YSMY < ¥asW) 4 Agd — ;
(41 01 yasw avepdn - 1013\ }1g 3jqeadeday A./.f fans . :
(4asw < ny1) o yfe e o]y { [S T S S
POg - H o N——
MU UM }0]q 1s3p[o ddeday - SSIN ALY skem N sem g m ’ ’
uomy Juang shem N ; shem N sfem g
uonesado yma uoneziuebig yMma ayae) [9Ad7 Ise]

4.2.2 Adjusting the number of NVM ways

Since physical NVM cells are not inserted or deleted according to the change
of the MSD, we devise a method to dynamically activate or deactivate NVM
ways. To disable unnecessary NVM ways, we introduce the concept of “re-
placeable way” and non-replaceable way” The replaceable way implies the
normal way that participates in all kinds of cache operations, such as read
access, write access, and replacement. The non-replaceable way means that
it is excluded from block replacement; thus, a new block is not placed into
the way. However, when a cache hit occurs, read access and write access are
performed, same as the replaceable way. All NVM ways in the DWA are

divided into replaceable ways and non-replaceable ways.

The role of the replaceable bit vector (RBV) in Figure[I0]is indicating
that each way is non-replaceable or not by controlling replaceable (R) bits.
Since each R bit is corresponded to each NVM way, the size of R bits is
identical to the number of NVM ways. The RBV is altered when the RWSR
is changed. If the RWSR is increased, additional R bits are set to 1. Unless,

all R bits are updated to rearrange non-replaceable ways.

The cache operation for non-replaceable ways should be different from
that for replaceable ways. When a cache hit is occurred to a non-replaceable
way, the LRU information is not updated. In the case of a cache miss, the
non-replaceable ways are not involved in the victim selection. A detailed

description of the management policy is as follows:

41

1. Cache hit in the replaceable way: If a requested block is in the re-
placeable ways, the cache operations do not differ from the conven-
tional cache. When a read hit occurs in the replaceable ways, the data
is sent to the requestor. In case of a write hit, the data is modified.

LRU information is updated in both cases.

2. Cache hit in the non-replaceable way: When the block is in the non-
replaceable way, the data is sent to the requestor or the data is written
the same as the replaceable way. However, no operation for updating
LRU bits occurs because the LRU information of the non-replaceable

way is useless in the DWA.

3. Cache Miss: A new block is only placed into the replaceable way.
When a cache miss occurs and a requested block arrives, the LRU

block in the replaceable ways is selected to load the requested block.

4.2.3 Algorithm of dynamic way adjusting

We rearrange the replaceable ways to avoid lifetime shortening when the
replaceable NVM ways are reduced. If some NVM ways are frequently se-
lected as replaceable way during execution, these ways will be worn out
earlier than other NVM ways. Thus, we shift the start point of replaceable
ways to allow write operations be performed as evenly as possible through
the ways. The basic concept is similar to the round robin policy. At the time
of selecting the replaceable ways, the NVM way next to the current replace-

able ways is chosen for the first replaceable way. The last position register

42

(LPR) remembers the current last replaceable way to support way shifting.

This policy is initiated when RCR is saturated.

Figure [T1] shows an example of how this policy works. Assume that
the number of the replaceable ways is five and the first three NVM ways
are assigned to the replaceable ways. Note that two SRAM ways are always
considered the replaceable ways. If the number of the replaceable ways is
increased to six, from the fourth NVM way to the sixth NVM way, then the

first NVM way is chosen as the replaceable ways.

Figure (12| presents the DWA in detail. When a cache access is con-
firmed to an ATD hit (line 1), the MSDR is updated if it is not the maxi-
mum LRU value (line 2-4). Then, we compare the RWSR with the MSDR
to check whether the current size of NVM ways is less than the minimum
size of NVM ways (line 5). If the MSDR exceeds the RWSR, some non-
replaceable NVM ways are changed to be replaceable from the last NVM
way of the current replaceable NVM ways. The amount of activated NVM
ways is the difference between the MSDR and the RWSR. The LPR is au-
tomatically updated during way adjusting within range from 0 to W,,,,, (line
6-9). After this adjustment, the RWSR is updated to the MSDR and the RCR
is reset to O (line 10-11). The replaceable NVM ways are rearranged when
the MSDR does not exceed RWSR when RCR is saturated (line 13). If the
MSDR is larger than the number of SRAM ways, the RWSR is updated to
MSDR (line 14-15). Unless, the RWSR is set to the number of SRAM ways
because all SRAM ways are replaceable (line 16-17). As a first step of shift-

ing replaceable ways, all R bits are set to 0 (line 19). Then, from the last

43

Way Shifting
RWSR =5 > RWSR =6

. L] .
Select 3 ways Select 4 ways
—_— - D
RBV o]0 T0] RBV
LPR LPR
|:] SRAM way - Replaceable NVM way

:] Non-replaceable NVM way

Figure 11: Example of way shifting.

replaceable NVM way, NVM ways of the amount of RWSR are assigned to
be replaceable (line 20-23). To keep track of the maximum stack distance
again, the MSDR is initialized to 0 and RCR is reset to O (line 24-25). If
RCR is smaller than the threshold, RCR is increased by 1 (line 27).

44

Algorithm : Adjust_Replaceable_Ways

Parameters:

RW SR: Replaceable way size register

MSDR: Maximum stack distance register
LPR: Last position register (1 < LPR < W,,)
RCR: Resizing counter register

R[x]: Replaceable bit at xth NVM way

Initial conditions:
RWSR + Wivm + Weram
MSDR «+ 1

LPR < Wy, —1

RCR <~ 0

AllR[x] « 1

During execution:

1 :if ATD hit then

2. if hit_block.LRU > MSDR then
3 MSDR < hit_block.LRU
4: endif

5: if MSDR > RW SR then
6: fori< 1 to (MSDR—RWSR) do
7 LPR + (LPR+1) % Wyym

8: R[LPR] + 1

9: end for

10: RWSR <+ MSDR

11: RCR «+ 0

12: else

13: if RCR is saturated then

14: if MSDR > Wy, then

15: RWSR < MSDR

16: else

17: RWSR + Wgam

18: end if

19: AllR[x] + O

20: fori< 1 to (RWSR—W,,,,) do
21: LPR + (LPR+1) % Wy
22: R[LPR] + 1

23: end for

24: MSDR «+ 0O

25: RCR <+ 0

26: else

27: RCR < RCR+1

28: end if

29: end if

30: end if

Figure 12: Algorithm for DWA.
45

4.3 Cache partitioning for hybrid cache archi-

tecture

Modern chip-multiprocessors (CMP) have employed multi-level on-chip
caches to address the memory wall problem that is caused by the differ-
ence between access latencies of the memory and the processor. Generally,
the last-level cache (LLC) occupies the largest area in the cache system and
consumes a significant static energy in the CMP. To reduce the area and
the leakage power, researchers have considered using non-volatile mem-
ory (NVM) [l 13, 5] as LLC. Unlike the SRAM-based LLC, the NVM-
based LLC consumes little leakage power and requires less area with higher
density than SRAM. While NVM has these advantages, they also suffer
from shortcomings such as longer latency to complete a write operation
and higher dynamic energy consumption for a write operation compared to
SRAM. Most researchers have focused on minimizing the write counts of
NVM because the number of write operations strongly affects the dynamic

energy consumption as well as performance.

Hybrid cache architectures (HCA) have been proposed [16, 17, 18|19}
47 to overcome these limitations of NVM. HCA mainly consists of NVM,
but some of them are replaced with SRAM to reduce the number of write
requests on NVM. Previous studies concerning HCA have attempted to de-
tect the write-intensive blocks, sets, or ways to allocate these to the SRAM.
However, their schemes have not usually focused on reducing the NVM

linefill counts, while the portion of NVM linefill operations is larger than

46

that of NVM write hit operations over the total of write operations to NVM
for many applications. In addition, there is no accurate prediction model to
estimate the change of the write counts of NVM when the number of SRAM
and NVM ways allocated to each core are changed in CMP environments.
Since the number of cache ways is closely related to the cache misses, as-
signing cache ways or releasing cache ways influences the miss rate of the
LLC. Even though the write intensity of NVM ways of a core is larger than
other cores, providing more SRAM ways with the core does not guarantee
reducing the NVM write counts. If a core which hands over SRAM ways
to other core generates much more cache misses with the reduced cache ca-
pacity, the write counts can be increased due to the extra linefill operations.

However, they have not considered this kind of side effects in their schemes.

We propose a novel cache partitioning that is called a linefill-aware
cache partitioning scheme (LCP) to reduce the dynamic energy consumption
by efficiently allocating SRAM ways and NVM ways to cores. To this end,
the thesis presents appropriate metrics and an algorithm for partitioning to
realize LCP. We introduce three metrics that represent change of miss counts
(AM), write counts (AW), and NVM write counts (ANVMW), respectively.
An algorithm for cache partitioning of LCP consists of two steps. First, the
number of cache ways for each core is determined in order to reduce the
miss counts. Next, the SRAM ways and the NVM ways are allocated to

cores to minimize write counts of NVM.

47

Memory Reference Sequence: R(A1),R(A2),W(A3),R(B1),R(B2),W(B3),R(A2),W(A3),W(B3)
(Cache blocks for Core A: A1,A2,A3 | Cache blocks for Core B : B1,82,B3)

CoreA CoreB CoreB Core A
A AN
ReadAl |[AL] | Junefisa) | [AL Lineil_S (A1) A | LinefiLN (A
Readi2 |[AT]A2] |uneiiNg2 |[AT]A2] Junemney | [A1 A2] Lineingao)
witeAs | [AT] A2 [a8 |unefiNy) | [MB]A2] Junemsay | [] A3 [A2] Linein g
Readt | [BA] A2 [A3 uneser) |[AS]A2[B1 |uneniner) | [BL] A3 [A2] LinefiLs B)
ReadB2 | [B1 [B2 [A3 |unefitnen) | [A3] A2 [B2 |uneiney | [B2] A3] A2 Liefils (B2)
WiteB3 || B1 | B2 | B3 |LinefiLN(B3) || A3] A2] B3 |Linefitn(es) | [B3[A3 [A2| Linefils (B3
ReadA2 || A2 B2 | B3 |Linefils(A2) || A3] A2 B3 |Read hitN(a2) |[B3]A3[A2| Read Hit N (A2
witeA3 | [A2] A3 83 | uinefiiN(as) | [A3] A2 [B3 | wite nitsas) | [B3] a3 | A2] wie_Hin (A3)
WiteB3 | | A2 [A3 | B3 | write_Hit N (83) | [A3 | A2 [B3 | wite it N(B3) | [B3] A3 | A2 | wite_HitS (B3)
\
“SRAM Linefil ;3 -SRAM Linefil ;2 -SRAM Linefll ;3
-SRAMWrte Hit ~ :0 SRAM Wrte Hit ~:1 -SRAM Wrte Kt~ :1
NMLinefll ~ :5 NMLinefil 4 NMLinefll :3
NMWiteHt 1 NMWite Hit 1 NMWite Hit 1
 SRAM Total Wit :3 SRAM Total Wit :3 SRAM Total Wit :4
NVM Total Wite 6 NVM Total Wiite 5 NVM Total Wiite ~:4
(a) No Partitioning (b) Partitioning without (c) Partitioning with
considering NVM Linefil considering NVM Linefill
[] sRAMway [] NVMway
Figure 13: (a) No partitioning is applied. (b) Partitioning without NVM line-
fill. (c) Partitioning with NVM linefill.
48
- o '::" q] = -I..
i L I —
28 A =t 8}

4.3.1 Linefill-aware cache partitioning

To optimize the NVM write counts in HCA, SRAM ways and NVM ways
should be efficiently allocated to cores. To help the understanding, we pro-
vide an illustration in Figure [I3] The cache in this example consists of one
SRAM way and two NVM ways. We assumed that there are two cores: core
A and core B. A1, A2, and A3 are cache blocks for core A, and B1, B2, and
B3 are cache blocks for core B. The cache accesses occur as the memory

reference sequence shown in the box of the top in Figure[13]

When there is no special care for the LLC, the total write for the SRAM
way is 3 (3 for SRAM linefill) and the NVM total write is 6 (5 for NVM
linefill and 1 for NVM write hit), as shown in Figure [13|a). If the cache
partitioning only considering the cache misses is applied [39], core A can
occupy two cache ways and only one cache way can be assigned to core
B (Figure [I3(b)). Even though this partitioning decreases two cache misses
and one NVM total write, the NVM write counts are not optimized. If a
partitioning algorithm can predict the NVM linefill counts as well as the
NVM write hit counts for every possible partitioning, the SRAM way should

be allocated to core B to minimize the NVM write counts, as shown in

Figure[13]c).

Therefore, a new scheme is required to reduce both the NVM write hit
counts and the NVM linefill counts, which saves dynamic energy consump-
tion of HCA. This paper devises new metrics to evaluate the effectiveness

of cache partitioning schemes and proposes a linefill-aware cache partition-

49

Table

5: Notation descriptions for metrics.

Notation Description

HIi] Hit counts of ith recency position

WHIi] Write hit counts of ith recency position

Mconr Conflict misses which are the number of cache misses due to
partitioning

MyoN coNF Non-conflict misses which are the number of cache misses re-
gardless of partitioning

H(N) Total cache hit counts when the number of allocated ways is N

M(N) Total cache misses when the number of allocated ways is N

W(N) Total write counts when the number of allocated ways is N

WH(N) Total write hit counts when the number of allocated ways is N

AM(N,N") Miss counts change when the number of allocated ways is
changed from N to N’

AW (N,N') Write counts change when the number of allocated ways is
changed from N to N’

ANV MW (Nsram, Ngahyss Nvvaes Nyyagr)
NVM write counts change when the number of allocated SRAM
ways is changed from Nsgap to NéR 437 and the number of allo-
cated NVM ways is changed from Nyyy; to Nzlvv u

ing scheme (LCP) based on these metrics. Table [5| provides a description of

notation we define in this section.

4.3.2 Metrics for cache partitioning

This section describes three metrics for a partitioning decision: Miss counts

change (AM), write counts change (AW), and NVM write counts change

(ANVMW). We newly devise AW and ANVMW and redefine AM by revis-

iting the concept of “the utility” in the previous work [39].

50

28 M=o st

more recently used
MRU —y—————————— LRU
s | e | 5 | =2 |
O Recency position

Hit counts of 4 way cache = 8+6+5+2 = 21
Hit counts of 2 way cache = 8+6 = 14

Hit |
Counter

Figure 14: Example of stack property.

* AM: the change of the number of cache misses according to adjusting
cache capacity for each core. This metric has been usually adopted
to decide the cache partition to improve the performance in previous

studies.

* AW: the change of the write counts for both the SRAM write counts

and the NVM write counts according to the change of cache capacity.

* ANV MW: the change of the NVM write counts. It is used for the HCA
when memory elements are heterogeneous, while two other metrics

can be applied in the cache consisting of the same memory element.

The concept of the utility [39]] is used to estimate the reduction in the
number of cache misses when a core has extra cache ways. The original
paper named this concept as the utility”, but we redefine it "AM”’ to clarify
its meaning. They noticed that LRU replacement policy followed the stack
property [45]. If a cache has the stack property, the cache having more cache
ways always contains all blocks of the cache having smaller cache ways

when the number of sets remains. Figure [14] presents the hit counts of each

51

recency position in a 4-way cache. In general, the recency position of the
block at MRU position is called position 1, and that of the LRU position is
called position 4. In this example, if the number of cache ways is reduced
to 2 from 4, we expect that the hit counts of the cache will decrease by

one-thirds without performing the experiments for a 2-way cache.

AM indicates the change of the miss counts with the change of the
number of allocated Waysﬂ Let H[i] denote the hit counts of ith recency
position of a core and H(N) be the total hit counts when the number of
allocated ways is N of the core. A relationship is established between two

metrics.

H(N)=> Hli] (4.18)

Since the increase in the miss counts is the same as the reduction in the hit
counts, when the number of allocated ways is changed from N to N’ of a
core, AM(N,N’) is given by

N

v
AM(N,N') = —(H(N")=H(N)) =Y H[i] -) HI] (4.19)
i=1 i=1

A new model is built to estimate the change of the number of write
operations with the change of the capacity in the cache. Since improving

the hit rate is the most important goal in previous studies, AM is the only

I'To clear the meaning of the terminology, the number of cache ways assigned for a core
are called ’the number of allocated cache ways of the core”

52

metric for cache partitioning in SRAM-based LLC in CMP environment.
However, minimizing the write counts should be considered as well as max-
imizing the overall hit counts in HCA. Thus, we define a new metric (AW)
for representing the change of the number of write accesses caused by the

change of partitioning.

The change of write counts over the change of the amount of allocated
ways is not easily determined, while AM is obtained by just accumulating
H{i]. A cache block of the LLC is updated by two cases. First, when a write
hit occurs in the LLC, the corresponding block is overwritten. In addition,
if a new block is loaded due to a cache miss, the contents of the block are
updated. Therefore, the write counts change (AW) is the sum of the write hit

counts and the linefill counts.

To find the total write hit counts, we define W H[i] as the write hit counts
for ith recency position. The write hit counts WH (N) is expressed in a sim-

ilar form as the hit counts.

WH(N) =Y WH]] (4.20)

Calculating the total linefill operations is more complicated than ob-
taining the total write hit counts because there are two kinds of cache misses
to be considered. The first category of the cache miss is called a conflict miss
(Mconr), which occurs when a core partially uses the LLC due to cache

partitioning. If all cache ways are allocated to the core, the amount of the

) [A= 8w

conflict miss becomes zero; thus, it varies across resizing the number of al-
located ways. On the other hand, there is another kind of cache miss, called
a non-conflict miss (Myon_conr), Which occurs regardless of partitioning.
In other words, when a core utilizes all cache ways, there is no Mcoyr in
the core, while Myon conr can occur. Note that the non-conflict miss is
composed of two kinds of misses, usually referred to as capacity and com-
pulsory misses [48]. In our proposal, we use a single term as a non-conflict

miss because there is no need to distinguish these misses.

Combining the two cache misses, the miss counts (M(N)) can be writ-

ten as follows:

M(N) = Mconr + Mnon_conr

= H(Narr) — H(N) + Myon conr (4.21)
Narr N

= Z Hli] — Z H[i] +Myon_conF
i=1

i=1

where Ny is the number of total cache ways in the LLC.

To put it all together, W (N) is expressed as

W(N) = WH(N)+M(N) (4.22)

Since AW (N,N’) means the change of the write counts, we reach the

following equation:

AW (N,N') = (WH(N')+M(N')) — (WH(N)+M(N)) (4.23)

k [A= 8w

From Eq.[#.20/and Eq.[4.21] we transform Eq.[4.23|into the following:

Narr N

W(N,N'") = ZWH +ZH ZH[I'] +Mnon conr)
i—1

(4.24)

NALL N
Z WHI[i] + Z H(i] ZH [i] + MnoN_.conF)
i=1
This can be written in this form:
N
o) =SS+
i=1 =1 (4.25)

Narr Narr

+ (O _H[i = H[i]) + (Myon.conr — Myon.conr)

H(Narr) and Myon_conr in the above equation are removed because
they do not change with the number of allocated ways. Therefore, after sim-
plifying Eq.[4.23] this becomes

Nl

AW(N,N') = (WHIi| - H[i]) = > (WH[i] - H[i]) (4.26)

i=1 i=1

To aid the understanding of the equation, we provide illustrations in
Figure T3] In this figure, Eq. #.26]is applied to find the write counts change,
while Eq.[.19)is used to calculate the miss counts change. When the amount
of allocated ways is increased to 3 from 2 (N =2 and N’ = 3), AM(2,3) is
-5and AW (2,3) is -3.

55

2 A=t 5w

LT

5T

MRU LRU
HitCounts| 10 | 6 [5 | 3

AM(2,3) = — (ZH(3) — ZH(2))
= (10+6+5) — (10+6) = — 5

(a) Miss counts difference

MRU LRU
HitCounts| 10 [6 | 5 | 3 |
e 2 T =12 T 7]
AW(2,3) = (ZWH(3) — ZH(3)) — (ZWH(2) — ZH(2))

((2+4+2) — (10+6+5)) — ((2+4) — (10+6))

(b) Write counts difference

Figure 15: Examples of (a) miss counts change (AM) and (b) write counts
change (AW).

This section describes the NVM write counts change (ANVMW) used
for calculating the variation of the write accesses to NVM in HCA. In the
above section, we showed that the write counts are changed, but it is only
applied in the LLC, which has one memory type. Thus, another metric is
required to measure the change of NVM write counts. Note that ANVMW
has four kinds of parameters because two types of memory elements are
considered in this model. N is divided into Nggraps and Nyy s, which are the
number of allocated SRAM ways and NVM ways before new partitioning
is initiated, respectively. Instead of N’, N¢g,,, and Ny, are used to in-
dicate how many SRAM ways and NVM ways are allocated to a specific
core based on the new partitioning. Therefore, this metric is expressed as

ANVMW(NSRAM,Né‘RAM’NNVM7N1/\/VM)'

56

We propose a new method to measure the variation of the write counts
of NVM because the methods on the stack property cannot calculate the ex-
act change of the write counts of NVM. For example, when a certain NVM
way receives five write requests, removing the NVM way does not decrease
the write counts of NVM by five. Since the concept of recency position is
independent to the order of way, every way can have any recency position
and the position usually changes after every cache access. When the num-
ber of allocated ways is changed, the blocks are stored into different ways
from they were, and the hit counts of each way are not reserved. Therefore,
it is impossible to exactly predict the change of the write counts of NVM or

SRAM when the number of the allocated cache ways is changed.

Instead, we use a statistical approach to find the NVM write counts.
In general, every way has the same probability of receiving write requests,
which means write requests are statistically evenly distributed among the
ways. Therefore, the portion of the NVM write counts over the all write
counts is assumed to be proportional to the ratio of the number of NVM

ways over the total number of cache ways.

NVMW (Nsgap, Nnvm) =

4.2
Nyvm .27

W (Nsgam +Nyvp) ¥ —————
() Nspam +Nyvm

57

Therefore, ANVMW is calculated as follows:

ANV MW (Nsram, Nsgaprs Nnvaes Nyy)

= NVMW (Nunss Ny ar) — NVMW (Nsgass, Nyvar) (4.28)

Nyvm

=W(N')* Wi —W(N) x N

N’

Nl
= (WH(N') +M(N') +Myon conr) x —2M

NN’ (4.29)
—(WH(N)+M(N) + Myon_conr) * %/M
Narp N!
:(ZWH[i]—i— Z H[i] +Myon conr) *]]\GjM
. '7N/ 1
i N + (430)
ALL NNVM
ZWH + Z H[i]+Myon conF) * N
=1 i=N+1

Figure [16] shows the procedure of calculation of the equation. On top
of the write hit counters, a non-conflict miss counter is inserted. A cache
in the example is composed of two SRAM ways and two NVM ways. We
assume that a core takes one SRAM way and one NVM way at first. If one
more way is assigned to the core, there are two options; the core gets either
an extra NVM way or SRAM way. For former case, we add an NVM way to
the core, ANVMW is increased by 1. On the contrary, the latter case shows

that ANVMW becomes -4.

58 -
2% M &)

LT

7

MRU LRU

HitCounts| 10 | 6 | 5 | 3 | CapacityMisseslII
e 2 [& [2 [1]

ANVMW(1,1,1,2) = SNVMW(1,1) - SNVMW(1,2)
= (2XWH(2) + 2M(2)) * (1/2) - (ZWH(3) + XM(3)) *(2/3)
=((2+4) + (5+3+4)) * (1/2) - ((2+4+2) + 3 +4)* (2/3) =-1

(a) An NVM way is added (1S1N -> 1S2N)

ANVMW(1,1,1,2) = SNVMW(1,1) - SNVMW(2,1)
= (ZWH(2) + XM(2)) * (1/2) = (ZWH(3) + >M(3)) * (1/3)
=((2+4) + (10+6+4)) * (1/2) - ((2+4+2) +6+4)*(1/3)=-4
(b) An SRAM way is added (1S1N -> 2S1N)
Figure 16: Examples of NVM write counts change (ANVMW). Initially, a
core owns an SRAM way and an NVM way (1S1N). (a) The core acquires

one more NVM way (1S2N). (b) The core acquires one more SRAM way
(2S1IN).

4.3.3 Algorithm for cache partitioning

The algorithm for LCP consists of two steps to optimize the NVM write
counts without increasing cache misses, as shown in Figure The first
step is finding the best partitions for optimizing the linefill counts. LCP
utilizes AM to search for the optimal size of partition in this step. After that,
the SRAM partition and NVM partition of each core are determined within
its budget determined by the first step, based on AW and ANV MW . Table[6]

lists the description of notation we define in this section.

To make our algorithms more efficient, we employ the concept of the

marginal utility approach introduced in UCP [39]. Since prior studies of

K [A= 8w

Algorithm 1 : Linefill-aware Cache Partitioning

Step 1 : finding the number of allocated cache ways

1
2
3
4
5:
6
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:

18
19

:Uarr <= Tarr - Tcore
: foreach i < all cores do

Agrrli] <1

:end if

while Uy, > 0 do
min_MU < o
foreach i < all cores do
for w < 1to Uy do
MU — AM (A [il,Aarclil+w) / w
if MU < min_.MU do
min_ MU < MU
Ccore <1
Req <+ w
end if
end for
end foreach
AarLlCcore] < AarrlCcore] + Req
: Uazr < Uarr - Req
: end while

Step 2 : finding the number of allocated NVM ways

20
21

22:

23
24

25:
26:
27:
28:
29:
30:
31:

44.
45:
46:
47:

48

: Usram < Tsram
: foreach i < all cores do
Anvumlil < Aarrlil
: end foreach
: while Uggapy > 0 do
foreach i < all cores do
min_ MU < o
if Usray > AALL[i] then
w’ < Ayrrlil
else
w’ < Ugspay
end if
for w + 1 tow' do
if USRAM ==0and ASRAM [l] ==0do
MU <+ AW(Ayymlil,Anvmlil + w) /' w
else

end if
if MU < min_MU do
min_ MU < MU
Ccore + 1
Req +—w
end if
end for

end foreach
Asram[Ccore] < Asram[Ccore] + Req
AnvmlCcore]l < AarrlCcorel - Asram[Ccore]
Usras < Usram - Req

: end while

MU < ANVMW (Asram[il,Aspam[i] + w, Ayvpm iLANvmi] - w) /' w

Figure 17: Algorithm of linefill-aware cache partitioning (LCP).

60

Table 6: Notation descriptions for algorithms.

Notation Description

TarL Number of total cache ways in the LLC
Tsram Number of total SRAM ways in the LLC
Tnvm Number of total NVM ways in the LLC
TcorE Number of total cores

UarLL Number of unallocated ways

Usram Number of unallocated SRAM ways

Unviu Number of unallocated NVM ways

Aarpli] Number of allocated ways per ith core
Asramli] Number of allocated SRAM ways for ith core
Anvumli] Number of allocated NVM ways for ith core
MU Marginal utility of metrics

min- MU Minimum value of marginal utility

Req Number of requesetd ways to get min MU
CcoRE A specific core gaining extra cache ways

NVM-based CMP used the greedy algorithm [49, I50]], there is a risk of
reaching to a suboptimal partitioning, which commonly occurs in greedy
algorithms. To avoid this problem, LCP uses the marginal utility. Therefore,
our algorithm uses a value which is divided by the number of allocated ways
instead of the value directly obtaining from the calculation. For example, if
AW is -4 and the number of allocated ways is 2, the marginal utility (MU)
of AW is -2 (= -4/ 2). In addition, the partitioning algorithm is designed to
perform the cache repartitioning every 1M cycles because it shows the best

efficiency compared with other periods.

Step 1 starts initializing Uy, which is a key variable of the first loop

(line 1). Since each core has at least one way, Uz has the difference be-

61

tween the number of total cache ways in the LLC and the number of cores
(line 2-4). Step 1 is executed until all ways are assigned to cores (line 5).
When each iteration begins, min_MU is initialized to infinity; in reality, it
has the maximum integer value that a system allows (line 6). For every core,
AM per way are calculated by varying the number of allocated cache ways
(line 7-9). If MU is smaller than the currently minimum value of MU (line
10), min_MU is updated (line 11), and the current core is tentatively indi-
cated as the target core to be allocated more cache ways (line 12). Req has
the current number of allocated ways (line 13). When the loop ends, the re-
quested ways are allocated to the target core (line 17) and Uyyy is updated
as well (line 18). Note that this step is performed based on the UCP [39],
which is known as one of the best partitioning schemes. Because this step
is orthogonal to second step, other partitioning schemes can be used if they

provide the better partitioning efficiency.

Step 2 works similar to step 1, but a key variable of the loop becomes
Usran substituting Usr;, and ANVMW and AW are used instead of AM be-
cause SRAM ways are distributed among cores in this step. At first, Usram
has the number of SRAM cache ways (line 20). The number of the allocated
NVM ways for each core is temporarily the number of allocated cache ways,
which is determined by the previous step (line 22-24). Another difference
from step 1 is that a loop for finding the min_MU is iterated when the candi-
date number of cache ways is from 1 to the maximum value between A4y i
and Usgapr (line 27-31). This is because each core cannot have more ways

than Aap.[i]. ANVMW is basically used to find the value of MU (line 36),

62

Last Level Cache .

S ways N ways ‘ Core 1 Monitor
R, N N —

Core 0 Monitor

S ways N ways

NC

Auxiliary Tag Directory
(ATD)

N

HEN |] Hit Counter
HEE [] write Hit Counter

:] Capacity Miss Counter

1 SRAMway [1 NMMway i i i Sample Set

Figure 18: Overall structure of LCP.

however AW is applied for simplicity if it is guaranteed that no SRAM way
involves calculation (line 34). In this algorithm, the number of NVM ways
are simply calculated; we obtain it by subtracting Aazr[i] to Asgam|i] (line

46).

We extend the conventional utility monitor [39] and utilize a cache par-
titioning logic of UCP to implement our proposal. Therefore, storage over-
head is estimated as less than 1%. The traditional utility monitor contains
an auxiliary tag directory (ATD) and hit counters. On top of that, two ad-
ditional counters are added which are a write hit counter and a non-conflict
miss counter, as depicted in Figure [I8] As many write hit counters as the

number of cache ways are needed, and only a single counter is required for

63

25 4 &0 o

accumulating the non-conflict misses.

The role of the ATD is keeping track of the recency positions of blocks
for each core. Using the ATD, the hit counter indicates the hit counts of
each recency position. Similar to the hit counter, the write hit counters store
the number of write hit for the corresponding position. The associativity
of the hit counter and the write hit counter is the same as the LLC. The
non-conflict miss counter is inserted to obtain the total non-conflict miss
counts. If a cache miss occurs in the ATD, the non-conflict miss counter is
increased by one, while the hit counter is increased when a cache hit occurs

in the corresponding recency position.

Assuming that the LLC has 16-way associativity and the size of each
counter is 32 bits, the total storage overhead of the LCP is (16 + 1) * 32 bits
= 68 bytes. Considering the capacity of the LL.C is 2MB in our system, it is

obvious that the storage overhead is not significant.

64

_L- e
..ﬁ._l =
s
5
ol =
.zoﬁ (0)] MO~ Eo.@ ﬁoﬁom wﬁﬁﬁoﬁu.amo.ﬂ msoﬁm\w Sﬁg Sajel .HO.Em ”mﬁ o.:_wﬁm f _ M
~ 0
a8esane ST XIW ¥T XIN €T XIW ZT XIN TT XIW OT XIN 6 XIN 8 XIN £ XIN 9 XIN S XIN v XIN € XIN T XIN T XIN ._.FI.,..J
%0 et)
%S
%0T
%ST
%02 8

®
[Te)
«~

91ey Jouau3z

X
o
@

%SE

%0v

%SY
WOT=¥= NT=—¢= NO0T—0— MNOT-=—

We start by analyzing how accurate the proposed algorithm predicts the
NVM write counts. Whenever the cache partitioning is done, the expected
NVM write counts during the execution period is accumulated. At the end
of the program execution, the difference between the predicted value and
the measured value is used to calculate the error value of the algorithm. In

this way, we estimate the error rate of our algorithms as follows:

|Predicted NVM Writes — Measured NVM Writes|]
*

00
Predicted NVM Writes

ErrorRate =

(4.31)

Figure[T9|summarizes error rates of our algorithm with various sizes of
repartitioning periods from 10K to 10M. LCP utilizes the statistics of each
period to predict the behavior of the next. If a previous period has a sim-
ilar access pattern of the following period, this approach will be effective.
Unfortunately, if partitioning occurs in the middle of transition of working
sets in the program, the information gathered by the ATD during the current
period does not represent the next period. In this case, the accuracy of hit
counts, write hit counts, and cache misses will decrease. Thus, we have ex-
perimented with several repartitioning periods and the consequential change
of the accuracy. The proposed LCP with the 1M period cycle shows that the
error rate is 4.3%, which is meaningfully lower than the error rate of other
period sizes. Therefore, we choose 1M as the repartitioning period for our

proposal.

66

"SQWIAYOS INOJ YIIM $JeI SSIA ()7 IS

abesane STXIN ¥T XIN €T XIW Z1 XIW TTXIN OTXIN 6 XIN 8XIN LXIN 9XIW SXIN ¥ XIN €XIN ZXIW TXIW

dd8: dOMVs dN= dION=

%0

%0¢

%07

%09

%08

%001

2leyd SSIIN

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

A=

67

The miss rates for all workloads are given in Figure for NoCP,
BSABM, AWCP, and LCP. AWCP shows the worst miss rate for all bench-
mark programs because the number of cache ways for each core is adjusted
according to its NVM write intensity. Even though this approach is bene-
ficial to reducing the number of write counts, it is not helpful to improve
the total hit counts. The miss rate of BSABM is the nearly same as NoCP
because they use a similar replacement policy. The miss rate of LCP is de-
creased by 4.3% over NoCP, and the difference between average miss rate of
AWCP and LCP is 13.7%. While the efficiency of LCP varies significantly
depending on characteristics of workload, the miss rates of all applications
are decreased. For MIX_4, the miss rate of LCP is lower than that of AWCP
by 21.9%.

4.4 Overhead of NVM capacity management pol-

icy

Table[/|shows the storage overhead of the DWA. We assume that the system
uses a 40-bit physical address space. To keep track of the MSD, an entry of
the ATD has a separate tag and LRU bits. The each ATD has 64 entries and
256 entries because the number of sample sets is 64 and 256 respectively.
The size of R bits is 12 as the number of NVM ways is 12. The DWA also
needs three kinds of 4-bit registers and a 2-bit resizing counter register. Both
HCAs have about less than 1% extra area. With a low hardware overhead,

our proposal achieved the dynamic energy saving and write endurance en-

68

Table 7: Storage overhead.

Component HCA with STT-RAM HCA with PCM

ATD entry LRU + Tag + Valid =4 + 22 | LRU + Tag + Valid =4 + 20
+ 1 =27 bits + 1 =25 bits
27 bits * 16 way = 54 bytes | 25 bits * 16 way = 50 bytes

ATD 54 bytes * 64 sets = 3.8KB 50 bytes * 256 sets =

12.5KB

R bits 12 bits 12 bits

LPR 4 bits 4 bits

MSDR 4 bits 4 bits

RWSR 4 bits 4 bits

RCR 2 bits 2 bits

Overhead for | (16 + 1) * 32 bits = 68 bytes | (16 + 1) * 32 bits = 68 bytes

LCP

Total about 4KB (0.1%) about 13KB (0.31%)

hancement. For the LCP, as we discussed earlier, the total storage overhead
of the LCP is (16 + 1) * 32 bits = 68 bytes on top of the extra storage of the

DWA. Therefore, the storage overhead of both schemes is not significant.

Another consideration for cache partitioning is the timing overhead of
obtaining the optimal value. To investigate the timing overhead, we calcu-
lated the latencies of the algorithm in detail as shown in Table 8. According
to Eq. [4.19]one iteration of the main loop of step 1 requires one addition,
one subtraction, one division, one comparison, and one assignment. The la-
tencies of an adder and a comparator are one cycle and the latency of a
divider is thirteen cycles in modern processors [43], thus one iteration takes

17 cycles (we assume that each register captures the value in a cycle). Ac-

69

Table 8: Timing overhead.

Component Cycles

Step1 Initialization (line 1-4) 2 cycles

Stepl Main loop (line 6-16) 17 cycles

Stepl Result assigning (line 17-18) 2 cycles

Step2 Initialization (line 20-23) 3 cycles

Step2 Main loop preparation (line 24-31) 2 cycles

Step2 Main loop (line 32-44) 36 cycles

Step2 Result assigning (line 45-47) 3 cycles

Total 851 cycles (0.9%)

cording to Eq. [4.30] one iteration of the main loop of the step 2 requires
three additions, one multiplication, two divisions, one comparison, and one
assignment. The latency of a multiplier is five cycles in modern processors

[43]], thus one iteration takes 36 cycles.

The initialization steps are executed once for every partitioning. The
main loop in step one of LCP is iterated 24.95 times and the main loop
in step two is iterated 10.21 times. The other parts of the algorithm are
executed 4.57 times and 2.31 times for each step respectively. Therefore,
the algorithm takes 851 cycles to identify the average of the partitioning
(2+17%25+42%543+2*%3+36*11+3*3 = 851). Considering that the period of
partitioning is 1M, the latency of the algorithm does not have an influence

on the overall performance.

70

Chapter 5

Experimental results

5.1 Experimental environment

We simulated our approach with PARSEC benchmark suite [[11]] for evalu-
ating WACC. The gem5 simulator is used to evaluate the normalized energy
and normalized lifetime of our protocol [9]. The overall simulation parame-
ters are shown in Table[9] We assume that the cache coherence protocol is a
MOESI protocol. In addition, LLC is composed of STT-RAM because STT-
RAM is considered as the right alternative among several types of NVM

[51]]. The power value of STT-RAM is derived from the previous work [52].

For DWA, a simulation was performed using Macsim [[10] which is a
trace-driven and cycle level simulator. It is designed to thoroughly model the
detailed microarchitectural behavior, including pipeline stages and memory
systems. Our baseline system has a three level cache hierarchy. The L1 and
L2 caches are composed of the SRAM memory. Table[9] shows our baseline
processor configurations in detail. Since STT-RAM and PCM are widely
studied among several kinds of NVM, the LL.C has two hybrid cache con-
figurations: STT-RAM with SRAM, PCM with SRAM. We examined our

proposal on multi core configuration which has 4 cores as well. We used

71

SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006 benchmark
suite [12]. Because the benchmark programs with the reference input set
take a very long time to run, we simulated 500M instructions of the re-
gion selected by Pinpoints [53), 154] which is a well-known tool to find the
representative regions. To compare our proposal with previous studies, we
also conducted the experiments with prediction table based cache line re-
placement and management policy (PTHCM) [[18]. For multi core system
simulation, we generated ten workloads by mixing six applications as listed

in Table

In addition, the standard of normalization in our results is the baseline
hybrid cache, which is operated as a conventional cache except that it con-
sists of both SRAM and STT-RAM cells. Thus, the baseline hybrid cache
has no special policy such as the DWA or the PTHCM. For DWA, note
that write intensity block migration policy is always applied. Finally, we as-
sume that cache hierarchy maintains inclusion property in our proposal as
like many modern processors such as the Intel 17 processor [43] or ARM

CORTEX-A57 processor [55].

We have performed experiments to evaluate the proposed cache par-
titioning scheme with Macsim [10] for LCP. Table 9 presents the system
parameters used for the simulation. It has four cores and a two-level cache
hierarchy. The capacity of the L1 instruction and data caches are 32KB, and
they are 4-way associative caches. The LLC (L2) cache is a 2MB 16-way
cache, which is composed of 4-way SRAM and 12-way NVM. The line size

of all caches is 64B.

72

Table 9: Processor configurations.

WACC

Cores

4

L1 Inst / Data
Cache

64KB, 2-way, 64B line

L2 Unified Cache

2MB, 16-way, 64B line

Memory

64bit bus width , 4 read/write ports

Function Units

6 IALU, 2 IMULT, 4 FPALU, 2 FPMULT

DWA
Core Type x86, out-of-order, 2GHz
Core Count 1/4
INT/MEM/FP | 4/4/4
Branch Predictor | gshare predictor, 16 history length
ROB Size 256
I/D Cache 16KB, 4-way, 64B blocks, 1-cycle latency
L2 Cache 512KB, 8-way, 64B blocks, 5-cycle latency
Hybrid LLC with | 4MB(4-way SRAM and 12-way STT-RAM), 64B
STT-RAM blocks

SRAM: 10-cycle latency
STT-RAM: 10-cycle (read) and 45-cycle (write) la-
tency

Hybrid LLC with
PCM

16MB(4-way SRAM and 12-way PCM), 64B blocks

SRAM: 10-cycle latency
PCM: 19-cycle (read) and 93-cycle (write) latency

Memory Latency

200 cycles

LCP
Core Type x86, out-of-order, 2GHz
Core Count 4
INT/MEM/FP | 4/4/4
Branch Predictor | gshare predictor, 16 history length
ROB Size 256
1/D Cache 32KB, 4-way, 64B blocks, 2-cycle latency
Hybrid LLC 2MB(4-way SRAM and 12-way STT-RAM), 64B

blocks

Memory Latency

200 cycles

73

We used SPEC CINT2006 and SPEC CFP2006 of the SPEC CPU2006
benchmark suite for the simulation [[12] for LCP. To evaluate the efficiency
of our proposal across write intensive and non-write intensive applications,
workloads are created based on write counts per kilo-instructions (WBKI).
At first, we sorted the applications by increasing the order based on WBKI
as shown in Table [10[and divided them into three categories: such as low,
mid, and high. Mixing four benchmarks from the three categories, we gen-
erated 15 workloads as listed in Table [T1] (The number of combination of
selecting 4 applications from 3 categories with repetitions is 15 and appli-
cations in each category are randomly selected.) Each trace is collected by

Pinpoints [53]], which is widely used to extract the representative regions.

There are four schemes tested in our simulation: the baseline which
uses no partitioning scheme (NoCP), block swapping and active block mi-
gration (BSABM) [49], access-aware cache partitioning policy (AWCP) [50]],
and LCP proposed in the thesis. NoCP has no partitioning scheme and fol-
lows the LRU replacement. To compare the previous studies with our pro-
posal, BSABM and AWCP, which are available for the HCA-based LLC in

CMP, are included for the experiment.

To fairly compare the results of our proposal and previous studies, we
used the same parameters of STT-RAM that were used in the previous study
[S0]]; the dynamic energy consumption of cache operation for an SRAM
cache bank 0.609nJ, while the read energy for an STT-RAM cache bank is

0.598nJ and the write energy is 4.375n].

74

Table 10: Write counts per kilo-instructions for LCP.

Type Benchmark WPKI | Type Benchmark WPKI
dealll 0.90 zeusmp 30.92
gamess 1.04 Mid cactusADM 41.78
gromacs 1.79 gcc 51.96
Low povray 2.31 omnetpp 65.46
perlbench 2.38 milc 75.94
h264ref 4.13 wrf 92.29
calculix 7.56 libquantum 114.29
xalancbmk 8.10 High GemsFDTD 133.44
gobmk 11.20 leslie3d 138.10
Mid hmmer 12.99 soplex 145.47
tonto 13.53 Ibm 221.45
bzip2 15.75 mcf 228.77
Table 11: Multi-core workloads for LCP.
Workload Benchmarks
MIX_1 deallI(L), gamess(L), calculix(L), xalancbmk(L)
MIX_ 2 gamess(L), gromacs(L), h264ref(L), cactusADM(M)
MIX_3 deallI(L), povray(L), xalancbmk(L), Ilbm(H)
MIX 4 gromacs(L), povray(L), gcc(M), omnetpp(M)
MIX_5 povray(L), perlbench(L), cactusADM(M), libquan-
tum(H)
MIX_6 deallI(L), gamess(L), soplex(H), Ibm(H)
MIX_7 xalancbmk(L), gobmk(M), cactusADM(M), omnetpp(M)
MIX_8 deallI(L), gcc(M), omnetpp(M), mcf(H)
MIX_9 povray(L), zeusmp(M), wrf(H), Ibm(H)
MIX_10 povray(L), libquantum(H), Ibm(H), mcf(H)
MIX_11 gobmk(M), hmmer(M), gcc(M), omnetpp(M)
MIX_12 gobmk(M), tonto(M), omnetpp(M), Ibm(H)
MIX_13 hmmer(M), bzip2(M), leslie3d(H), Ibm(H)
MIX_14 hmmer(M), GemsFDTD(H), leslie3d(H), mcf(H)
MIX_15 milc(H), wrf(H), Ibm(H), mcf(H)

75

Table 12: Multi-core workloads for DWA.

Workload Benchmarks

MIX_1 bwaves, calculix, wrf, gromacs
MIX_ 2 bwaves, calculix, wrf, hmmer
MIX_3 bwaves, calculix, wrf, h264ref
MIX 4 bwaves, calculix, gromacs, hmmer
MIX_5 bwaves, calculix, gromacs, h264ref
MIX_6 bwaves, calculix, hmmer, h264ref
MIX_7 bwaves, wrf, gromacs, hmmer
MIX_8 bwaves, wrf, gromacs, h264ref
MIX 9 bwaves, wrf, hmmer, h264ref
MIX_10 bwaves, gromacs, hmmer, h264ref
MIX_11 calculix, wrf, gromacs, hmmer
MIX_12 calculix, wrf, gromacs, h264ref
MIX_13 calculix, wrf, hmmer, h264ref
MIX_14 calculix, gromacs, hmmer, h264ref
MIX_15 wrf, gromacs, hmmer, h264ref

76

‘[oo0301d [SHOIA 2y} 01 pareduwiod [000101d DYV JO DT 03 SSA00' Y JO JoqUINU PIZI[BULION] : [NS

a8esane suopdems poTX [eauue) dnpap ojewiuepiny pendpog Jajsnpweans S9[O4ISYIElq

1 1 1 1 -Q
A4
Al
1

YORGRMIM UIBSeg W YOEGRMM IYM B [I4ouT unaseg m

t
s
S

o
o
D171 01 SS90V S1LIAA PSZIleWION

~
—

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

2 A=

77

5.2 Write access to NVM

Figure [21| presents the normalized number of the read and write access to
LLC in our protocol compared to the baseline MOESI protocol. Note that
write access is divided into writeback access and linefill access. As a result,
13.2% of the write operations were decreased on average. The noticeable
result is that the number of the writeback access was increased, while there
were no linefill operation. When a cache block is evicted in a private cache,
the writeback operation is not required in the existing protocols if the cache
block is not modified. This is because the LLC already has the valid block
data if the cache block is clean. On the contrary, the writeback operation
should be initiated if no other private cache has the valid copy during cache
replacement in WACC protocol. This difference generates the extra write-
back operations. However, the total number of the write access in WACC
protocol is smaller than that of other protocols because the reduction in the
linefill operation is much larger than the increment in the writeback opera-

tion.

We first examined the write counts of NVM ways as depicted in Fig-
ure 22| and Figure About 75.4% reduction and 77.2% reduction in the
number of write accesses is achieved on average in the DWA for HCAs with
STT-RAM and PCM, respectively, while the decrement on the number of

write accesses to NVM ways of PTHCM are about 5.7% and 11.0%.

From the two figures, we discover that the write access reduction ratio

of the DWA follows the sensitivity of the miss rate to the number of NVM

78

ways. First, low sensitive applications require a small number of NVM
ways; therefore, the number of write accesses to NVM is largely reduced.
On the contrary, highly sensitive applications show only a little change of
write access because they have very little room for the DWA. To show this
trend clearly, we calculate the reduction ratio of each category. For the left
side applications, 92.2% reduction and 88.3% reduction in the write counts
of STT-RAM and PCM ways is achieved on average, while 22.6% reduction
and 55.6% reduction in the number of write accesses is achieved on average

for the right side applications.

Furthermore, we combined the PTHCM with the DWA to check that
it is orthogonally effective with other HCA algorithms. Since our proposal
does not affect the fundamentals of operation of other HCA algorithms, the
DWA can create a synergy effect. The results show that the PTHCM with
the DWA (PTHCM_DWA) achieved the best results among four HCA algo-
rithms as it showed 77.6% reduction and 80.0% reduction in write counts
of NVM ways. Combining PTHCM with DWA reduces the write access
to NVM more 8.9% when only DWA is applied for STT-RAM. In addition,
PTHCM_DWA shows the lower NVM write counts by 11.0%. Therefore, we
conclude that merging two algorithms takes advantage of both algorithms

successfully.

79

AVI-LLS WM YA JO SIUNO0D)M NAN PIZI[EUWLION 7T dINSL]

96

+ oy &)
0 6 /@ V) 2
¢ A\ R 0 Yo &8 &y &
Y N 0 S SO
I 8L SETEE ¢ ¢ of%%{ $
A SR S AR R R R o,owo,,,;
- l-
|
YMA@ WOHLdE WOHLd® Ymam aulesegm

0
(4]

“paZIjlewlaoN

<

]
S o
NN

80'S

9314

sjuno

97

80

WO WM VM JO SIUN0d)Lim AN PIZI[RULION (€7 2InS1g

F oy

0 0 ¥ &9

3 O\ o 0 Yo SN &Yy o
R) NN Sy D

O R eoe@/ooo,&,ya

& AN ¢ & & & P o,,

%%&e.%%%z%% Sy o ,~%

VMO WOHLdE WDHLd

VM@= auljesegm

§

9
% 8 & %@

o« T

N\
\ ¥
%, %

|
o
AN~ pP3zZijewioN

0 2

g

o
S3IUNOD 93N

4
vl

Ty

B

Pe

']

[WE
IvC

[e12
=1,

A&
ECRIL MATICRAL LM

T

Y

A

12

81

"SOUWIAYOS JNOJ YA SIUNOD ALIM JNAN POZI[EULION] 47 9InT1]

abesane STXIN 1 XIN €T XIW 2T XIN TTXIN OTXIN 6 XIN 8XIN LXIW 9XIN SXIN ¥ XIN €XIN TXIN TXIN

I49UIT WAN D8 [I43UIT WAN dDMVw [143UIT WAN NGYSEm [143urT INAN dDON &
YH SIM INAN dOg = HH 33U INAN dDMY 5 MH @34M INAN INGYSE s HH 93M WAN dJON

N 1
— o

SIUNOD 314M INAN PazZilewloN

SE

A=
CHIL MATIORAL 1

9

-
— I
i

-
=g
e
-

I

82

Next, we analyze the NVM write counts of BSABM, AWCP, and LCP
normalized to NoCP as depicted in Figure [24] The average value in the fig-
ure indicates the geometric mean of all workloads. BSABM and AWCP
decreased the NVM write counts by 2.6% and 6.7%, respectively. LCP
achieved a 46.9% reduction in the NVM write counts, which is the much
better than previous studies. To investigate these results further, we divide
the total NVM write counts into the NVM write hit counts and the NVM
write linefill counts. At first, we found that the linefill operation occupies a
significant portion of the NVM write counts. While the portion of the write
hit counts is 16.5% on average, the portion of the NVM linefill counts is
83.5%. BSABM, AWCP, and LCP reduced the NVM write hit counts by
21.7%, 26.4%, and 39.2%, respectively. LCP shows the best results, and
the previous schemes for HCA also achieved the meaningful reduction in
the NVM write hit counts. On the contrary, the reduction ratio of the NVM
linefill counts of BSABM and AWCP are only 4.3% and 2.8%, while LCP
reduced the NVM linefill counts by 47.4%. These results confirm that LCP
accomplishes the reduction in the NVM write counts by reducing the NVM

linefill counts significantly as we intended.

83

A
Ty

i
-
ol £
=z
=
ol =
"n
‘[020301d [SHOIA QUI[aseq 3y} 03 paredwiod DHVAA JO WNQJI[pue uondwinsuod A3IQU SMWUBUAP PIZI[BUWLION] :GZ 2INTL] __...ﬂ_ W
AN
abessne suopdems pozx [eauue) dnpap @jewuepiny penkpoq Jeisnjpwieals ssjoyIsyReq fﬂmm :
m.o N 1 1 1 1 1 1 1 1 L o =
Z
°
3 N
21T 8 %
0 g
: :
CTT b
0
: Y :
0] m.._”) _.u_._
0
. . Q
V1 {1 <

W3y pazijewoN g AB1ou3 oeqEliM pmm ABI5U3 PERY gy

5.3 Dynamic energy consumption

We show the normalized dynamic energy consumption and lifetime in Fig-
ure[25] Since the dynamic energy in write operation dominates the dynamic
energy consumption in read operation, the reduction of the write opera-
tions leads to reducing the total dynamic energy consumption. Our protocol
achieves 27.1% energy savings at maximum and 10.8% energy savings on
average. In addition, WACC protocol also extends the lifetime of the LLC
because the lifetime of STT-RAM is inversely proportional to the number
of write access to the LLC. The improvement of average write endurance in

WACC protocol is 26.3% at maximum and 9.3% on average.

We investigated the normalized dynamic energy consumption com-
pared to the baseline hybrid cache as shown in Figure [26| and Figure
which also present the portion of the write energy consumption of NVM
over the total dynamic energy consumption. The results of HCA with STT-
RAM show that the DWA achieved 26.4% reduction in the total dynamic en-
ergy consumption. The dynamic energy consumption of the PTHCM and the
PTHCM_DWA was saved 2.3% and 28.4% over the baseline hybrid cache,
respectively. For HCA with PCM, the DWA saved 27.4% of dynamic en-
ergy consumption, while the PTHCM and the PTHCM_DWA reduced the
dynamic energy consumption by 2.7% and 30.0%. The trend of reduction is
similar to that of reduction in the write accesses. This is because the dynamic

energy consumption is mainly affected by the write accesses to STT-RAM.

85

Based on the observation of these figures, the write energy consump-
tion of NVM occupies a significant portion of the total dynamic energy con-
sumption. In the baseline hybrid cache, 78.6% and 56.0% of the dynamic
energy was consumed due to the write accesses to STT-RAM and PCM
ways. Therefore, we conclude that the number of write accesses to NVM
ways is the most important factor for dynamic energy consumption. The
results show that the portion of write dynamic energy of NVM ways was
reduced to 32.8% and 14.7% in the DWA. The dynamic energy consump-
tion of NVM write operations of the PTHCM occupies 74.3% and 48.8%
of the total dynamic energy consumption. For the PTHCM_DWA, the por-
tion is reduced to 30.0% and 14.1%. The reduction trend is also similar to
that of the write access reduction. Therefore, the reduction in the dynamic
energy consumption mainly comes from the reduction of the write energy

consumption of NVM.

86

TAVI-LLS UM VAL Jo uondwnsuod A3I10ua SIURUAP PIZI[RWION 97 9IS

F oy L o)
0 o & &L ¥
¥ e ov o %o%%o%/ 9
@oz%e @%oez%/o%& & o %0«4%@/%

SIS $ESFEESSTEr I E8F e o
__ 0 3
v
— = 00§
0
_ __ IR T "y
_ v
_ 90 S
V]
I —- _ I v
—— AN NN nn ._“_D
m
3
s
Q
<

M WAN YMA WOHLd M AN WOHLd M WAN YMa M AN 3uljaseq
€301 YMA WOHLd m €301 OHLd & e101 Yman [e30L"duljaseq

‘:} -
Sk kT
ECUL MATIOMAL |BNERSTY

Z

87

TADd BIM YA Jo uondwnsuod A310u9 OIWUBUAP PIZI[BWLION] /7 INTL]

by L 2l
0 fod e a &
F P S o § L5 e e & $
M Q¢ %90%%90@&%9// O/o%/o
%v%va,%.o;%%%b/%%@+oa,~%///o«oo%qozz9% m
0 3
3
| ______
_;w
- 1 90 3
)
7 80 3
o]
____.. 1
3
1 8
Q
<

UM WAN YMA WOHLd UM NAN WOHLd AWM AN YMaA UM NANdulaseq =
€301 ¥MQ JHLd B €301 INDHLd ® [e30L yman [eoLauljaseq m

88

‘dDON 01 pareduwiod uondwnsuod AZI10UQ STWRUADP PAZI[BWION Q7 2IN31]

HE
Tor 2
oF
o
3

afiesane STXIN T XIN €T XIN ZTXIN TTXIN OTXIN 6 XIW 8XIW LXIW 9XIW SXIW ¢ XIW E€XIW XIW TXIW

T pazilewlaoN
89

S1weu/lq

1

ABisaug

A"
ddd: dMYs NE8YSEs dIONm

The normalized dynamic energy consumption of four schemes are pre-
sented in Figure @ LCP saved 37.2%, 36.6%, and 34.1% of dynamic en-
ergy consumption over NoCP, BSABM, and AWCP, respectively. The trends
of the dynamic energy reduction are similar to those of the normalized NVM
write counts, while the variation is small. For MIX_12, the dynamic energy
consumption is reduced by nearly 60% compared to AWCP at maximum,
while the difference between AWCP and LCP is less than 1% for MIX_1.
The reason for this similarity is that the NVM write counts is a main con-
tributor to the total energy consumption; thus, reducing the number of NVM
write accesses to the LLC highly influenced the total dynamic energy con-

sumption.

5.4 Lifetime

We estimated the normalized lifetime as shown in Figure [29|and Figure
There is a general consensus among researchers that PCM has a limited
lifetime. However, opinions are different about the write endurance of STT-
RAM. Many studies assume that its write endurance is high enough, and
thus they set aside the lifetime problem. On the other hand, another group
argues that the assumption is unrealistic [[19, [56]]. Since determining the
correctness of their claims is not the focus in the thesis, the results of both

types of NVM are presented.

90

NVI-LLS W% VM JO SWNIJI PIZIEULION 167 2InS1]

F oy P 2
0 0 IR g
RN N) «o%/«@%a/ N

O AN o & o f ¥ 9,% o oo%@@)
o Q> 2 ¢9oz%9 »/ AN ARSI
$ % ¢ ¥ ooe A A @ &. ,N Y N &N %

VMO WOHLd " WOHLd® YMmam

5'0-

50

§1

Y/

(@1e>s HoT)2w1a417 pPaZIjewdoN

91

D WM VA JO SWNRJI[PAZI[BULION :0€ dIn31L]

¢ R o © o %+ % o% ¥ A y %o o

R y N 2 2 9
PIFPP s o 8T FILETE FRIF oo ¢
PRV IS FFTET VT O N9 Q

R |

VMO ADHLd© IDHLd® vmam

g0

o

50

i

§1

57

(91e>s Ho1)awnaI] paZIijewdoN

92

Notice that the results of two figures are presented in log scale because
the lifetime of some applications were extended significantly. Especially, the
write endurance of namd and [bm was increased by more than 300 times. For
these applications, the number of replaceable ways was almost always less
than the number of SRAM ways. Since NVM ways were rarely used in the
DWA, the lifetime soared up. The PTHCM_DWA extended the lifetime by

10.9 times and 11.3 times for HCAs with STT-RAM and PCM, respectively.

To confirm that our proposal does not increase the miss rate signifi-
cantly, we present the miss rates of each HCA configuration compared to
the baseline hybrid cache in Figure [31] and Figure 32| The miss rate of the
DWA was increased only by 1.8% and 1.9% for HCAs with STT-RAM and
PCM, respectively, while the PTHCM decreased the miss rate by 1%. Since
the PTHCM did not improve the miss rate meaningfully, the miss rate of the
PTHCM_DWA followed the miss rate of the DWA. Therefore, the miss rates
of the DWA and the PTHCM_DWA are very similar and the PTHCM_DWA
increased the miss rate by 1.9% and 1.9% on average which are the same
values of the DWA. As expected, this result confirms that our proposed al-

gorithm does not significantly increase the miss rate.

93

-

ol =

T

o

ol =

‘NVE-LLS UYam suoneniguod VY OH SNOLIBA M SIBI SSIIA [€ O.:\—mﬂm 1__|_..h”.|. m

Py @ o e

0 6 A\) Y ? ,.._l.......m_

J 3\ R AR L 4 N Tl

Oy 0 P SN LY ¢) o Ead

2 N 0 N 0 9 R
& %z & o &8 %,. gL %,.y PN & & «o« § & & & %o
PRV N T PN IV TH VLN Q

94

%08
%09
%0L
%08
%06
%001

- %0

—_ I re —_ __ ol | N P —- —= ——— —- _7 7— —- 7_ %01
9%0C

%0¢€

wmoe

(26)@31ed ssIN

VMO WOHLdE WOHLd® YMQm uipsegm

TADd WM suoneIn3yuod YA SNOLIBA Y3 SIeI SSTIA] (7€ 931

0 Fy L)
OO I, 0 00 S F &y g
& & @ogo«oz%o@ & &
%%A%%oa%%%% o&o,o,/ oya%
’ Fpdddy s aSd$y ,N%o, R

- pm - mm
—- —_ 11 —- rm - —- e __ r 7_ __ 7_ - —-

YMQ NDHLd® WOHLd~ YMAm aulssegm

)
%/ %

N

%0
%01
%01
%0€
%00
%09
%09
%0L
%08
%06
%001

(2%)23ey ssIN

95

5.5 Multi-core environment

We investigated several metrics for multi-core environments as shown in
Figure [33] and Figure [34] For multi core system simulation, we generated
ten workloads by mixing six applications as listed in Table [[2] The two
benchmarks for low sensitivity are bwaves and calculix, while hmmer and
h264ref represent high sensitivity. Other two benchmarks such as wrf and

gromacs are selected as the middle range of sensitive programs.

First of all, a significant reduction in the write accesses was achieved
in both HCA configurations. The DWA removed 80.7% of write accesses
on average, while the average write reduction ratio of six benchmarks is
61.3% for HCA with STT-RAM in single-core environments. This result
means that our proposal has the extendibility for the multi-core system. In
case of HCA with PCM, the average reduction ratio of multi-core results is
59.4%, while each application removed 76.3% of write accesses on average.
Even though the results of HCA with PCM are less impressive compared to
HCA with STT-RAM, our proposal still removed a great deal of unneces-
sary NVM write operations. The results of dynamic energy consumption
are consistent with the trend of the write accesses to NVM. For HCAs with
STT-RAM and PCM, 55.5% and 33.7% of dynamic energy consumption
were saved, respectively. The lifetime was prolonged by 1.76 times and 1.35

times on average.

96

‘SpeROIoM
QI02-N[NW Y} YIM NV H-LLS PM YDH Jo awmaji| pue ‘uondwnsuod A310Ua OTWeuAp ‘SS900€ 9JLIM PAZI[RULION] ¢ ¢ 9In31

NYY-LLS YM YOH

abesane STXIN PIXIN ETXIN CIXIN TIXIW OTXIN 6XIN SXIN LXIN 9XIW SXIN ¢XIN EXIN ZXIN TXIN

LA

AN g £618u3 IWeUAQ p §5920Y MM s

i

o

A=

97

‘SpeRO[IoM
2I00-N[NW AP YIM ANDd PIs YOH Jo awnay pue ‘uondwnsuod A3IoUa OIWBUAP ‘SSQ00B QILIM PIZI[BULION :{¢ 9In31q

WOd YIM ¥OH
abesane ST XIW ¥T XIW €T XIN Z1 XIN TUXIN OTXIN 6 XIN 8XIN LXIW 9XIW SXIN ¢ XIN €XIN ZXIN TXIW

CIITHETT) H- £B618u3 d1WRUAQ gy §5920Y M

A=

98

To represent the performance improvement in a multi-core environ-
ment, three metrics usually are presented — nstruction per cycle (IPC) through-
put, weighted speedup, and fairness — which have their own purposes [S7].

They usually are defined as follows:

n
IPC throughput =) " IPC; (5.1)
i=1
n
1pcMP
Weighted Speedup = ! (5.2)
; IPC?
Fairness = +€‘S” (5.3)

> 1PCITP
where IPCiSP is the IPC of ith program under single program mode (SP)
and IPCM? is the TPC under multi-program mode (MP). IPC throughput is
simply and intuitively defined as the sum of the IPCs of the all applications.
The weighted speedup is proposed to equalize the contribution of programs
using normalized IPCs [58]]. Luo et al. argued that harmonic mean is more

suitable to represent the fairness than weighted speedup [59].

99

RTIA

[e12
e

SECRIL WATCeLAL |IMNVERSTY

"sowayds 1oy Ym ndysnoryy DJr :G¢ 3Ly

[y
o
T

afesane STXIW #T XIW €T XIN ZTXIN TTXIN OTXIN 6 XIN 8 XIN LXIN 9XIN SXIN vXIW E€XIW CXIW TXIW

1 Odl

100

indybnouay

dd8: OMYs WNEYSdm dIONm

"NoCP "BSABM "AWCP “BCP

dnpaads™ paiybiam

101

g ge

MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 MIX7 MIX8 MIX 9 MIX_10 MIX 11 MIX_12 MIX_13 MIX_14 MIX_15 avera

Figure 36: Weighted speedup with four schemes.

"NoCP "BSABM "AWCP "BCP

ssauldleH

102

. ge

MIX1 MIX2 MIX3 MIX4 MIX5 MIX6 MIX7 MIX8 MIX9 MIX 10 MIX_11 MIX_12 MIX_13 MIX_14 MIX_15avera

Figure 37: Fairness with four schemes.

Nt

SECRIL WATCeLAL |IMNVERSTY

Therefore, we plot three metrics in Figure [35] Figure[36] and Figure
for different schemes. LCP outperforms NoCP and AWCP by 5.0% and
14.3% in terms of IPC throughput as depicted in Figure [33] In addition,
our scheme improved the weighted speedup by 5.6% and 11.4% for NoCP
and AWCP as shown in Figure [36] Finally, Figure [37)compares the fairness
improvement for four schemes; the fairness of LCP is improved to 0.93,
while NoCP and AWCP have 0.89 and 0.83, respectively. The IPC through-
put improvement is maximized for MIX_3, whereas MIX _2 shows the best
weighted speedup improvement compared to AWCP. The fairness of the ap-

plications of MIX_12 is most increased.

103 -
2% M &)

LT

7

Chapter 6

Conclusion

6.1 Conclusion

In the thesis, three proposals have been provided to compensate for identi-
fied weaknesses of NVM: write avoidance cache coherence protocol (WACC),
dynamic way adjusting scheme (DWA), and linefill-aware cache partition-

ing (LCP).

We proposed a novel cache coherence protocol to eliminate useless
write operations of LLC for a multi-core system. Based on the analysis of
the existing protocols, it was found that they generated useless write ac-
cesses to the LLC during the linefill operation. Thus, our protocol,which
is called WACC, modifies the cache states without storing the block data
during linefill. This write policy reduced the number of write access at-
tempts to the LLC, which led to improvements in the energy consumption
and lifetime. The simulation result showed that the reduction of maximum
energy consumption in WACC protocol is 27.1% and the lifetime extension

18 26.3% at maximum in STT-RAM based LLC.

104

The thesis introduced the concept of an NVM capacity management
policy for reducing the number of write accesses to NVM. This policy is
implemented by two methods called dynamic way adjusting scheme (DWA)
and linefill-aware cache partitioning (LCP). DWA dynamically resized the
number of active NVM ways to improve the dynamic energy consumption
and the lifetime of the components. To adjust the number of NVM ways,
the maximum stack distance is dynamically monitored and rearranging of
the replaceable NVM ways is regularly performed. The proposed policy re-
duced the number of write accesses to STT-RAM by about 77.6% and PCM
by 79.6%. The results also showed that HCAs with STT-RAM and PCM
achieves 30.0% reduction and 28.4% in dynamic energy consumption. The
lifetime of the two HCAs was prolonged by 10.9 times and 11.3 times over
a conventional hybrid cache system. Both HCAs can achieve these improve-
ments without any meaningful miss rate increment. While the portion of the
NVM linefill operations, over the write counts, is about 83.5% in our exper-
imental results, previous studies have not considered the linefill operations

to NVM in CMP environments during partitioning.

We also proposed LCP, to minimize the NVM write counts, in consid-
eration of the NVM linefill counts, as well as the NVM write hit counts. In
the thesis, three kinds of metrics were introduced to analyze the efficiency
of adjusting the cache partitioning; if a core gets or loses ways, how many
the miss counts, write counts, and NVM write counts are changed. A cache
partitioning algorithm for LCP is proposed to provide the best partitioning

through a two-step approach based on these metrics. We have shown that

105

the proposed LCP predicts the NVM write counts with less than a 5% er-
ror rate and reduces the dynamic energy consumption by 34.1% on average

with improved performance.

6.2 Future work

We will extend the findings of thesis in two ways. First, we plan to combine
our proposal with schemes for non-uniformity of write operations among
sets which are inspired that the write varies across different cache sets.
They separated the physical mapping and logical mapping of cache sets and
stored data between sets. The key idea is decent, but there is a pitfall to sim-
ply merge LCP with the inter-set variation wear leveling scheme (ISWLs).
Since the data is possible to be placed in a different set, they violate the stack
property which our scheme is based on. Keeping track of all recency posi-
tion of remapped blocks would not be a feasible method because it needs a
significant area overhead and consumes a lot of dynamic energy. Hence, we

are developing a new method to efficiently bond LCP and ISWLs.

In addition, we will consider combining data bypassing techniques to
the proposed scheme. Even though cache bypassing techniques are appar-
ently promising schemes for NVM, they cannot be directly applied to our
mechanism because the inclusion property is not maintained in most of their
schemes. We will investigate a new scheme that both keeps inclusion prop-

erty and utilizes the bypass schemes.

106

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Bibliography

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, et al., “A novel
nonvolatile memory with spin torque transfer magnetization switch-

ing: Spin-ram,” in Proceedings of IEEE International Electron Devices
Meeting, pp. 459—462, IEEE, 2005.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceed-
ings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-
phase transitions of gete-sb2te3 pseudobinary amorphous thin films for
an optical disk memory,” Journal of Applied Physics, vol. 69, no. 5,
pp. 2849-2856, 1991.

A. Driskill-Smith, S. Watts, D. Apalkov, D. Druist, X. Tang, Z. Diao,
X. Luo, A. Ong, V. Nikitin, and E. Chen, “Non-volatile spin-transfer
torque ram (stt-ram): An analysis of chip data, thermal stability and
scalability,” in Proceedings of IEEE International Memory Workshop,
pp- 1-3, IEEE, 2010.

T. Sumi, Y. Judai, K. Hirano, T. Ito, T. Mikawa, M. Takeo, M. Azuma,
S.-i. Hayashi, Y. Uemoto, K. Arita, et al., “Ferroelectric nonvolatile

memory technology and its applications,” Japanese Journal of Applied
Physics, vol. 35, no. 2S, p. 1516, 1996.

H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12,
pp. 2237-2251, 2010.

J. H. Choi, J. W. Kwak, and C. S. Jhon, “Write avoidance cache

coherence protocol for non-volatile memory as last-level cache in

107

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

chip-multiprocessor,” IEICE Transactions on Information and Sys-
tems, vol. 97, no. 8, pp. 2166-2169, 2014.

J. H. Choi and G. H. Park, “Demand-aware nvm capacity management
policy for hybrid cache architecture,” Computer Journal, advance on-
line publication, 2015, doi:10.1093/comjnl/bxv103.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 2, pp. 1-7, 2011.

H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and
T. Pho, “Macsim: A cpu-gpu heterogeneous simulation framework

user guide,” Georgia Institute of Technology, 2012.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings

of International Conference on Parallel Architectures and Compilation
Techniques, pp. 72-81, ACM, 2008.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:

A tool to model large caches,” HP Laboratories, pp. 22-31, 2009.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level per-
formance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994-1007, 2012.

S. Lee, K. Kang, and C.-M. Kyung, “Runtime thermal management
for 3-d chip-multiprocessors with hybrid sram/mram 12 cache,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 23, no. 3,
pp- 520-533, 2014.

108

[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

X. Wu, J. Li, L. Zhang, E. Speight, and Y. Xie, “Power and perfor-
mance of read-write aware hybrid caches with non-volatile memories,”

in Proceedings of International Conference on Design, Automation
and Test in Europe, pp. 737-742, IEEE, 2009.

J. Li, L. Shi, C. J. Xue, C. Yang, and Y. Xu, “Exploiting set-level write
non-uniformity for energy-efficient nvm-based hybrid cache,” in Pro-

ceedings of International Symposium on Embedded Systems for Real-
Time Multimedia, pp. 19-28, IEEE, 2011.

B. Quan, T. Zhang, T. Chen, and J. Wu, “Prediction table based man-
agement policy for stt-ram and sram hybrid cache,” in Proceedings of
International Conference on Computing and Convergence Technology,
pp- 1092-1097, IEEE, 2012.

J. Ahn, S. Yoo, and K. Choi, “Write intensity prediction for energy-
efficient non-volatile caches,” in Proceedings of International Sympo-
sium on Low Power Electronics and Design, pp. 223-228, IEEE, 2013.

X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hy-
brid cache architecture with disparate memory technologies,” in ACM
SIGARCH Computer Architecture News, vol. 37, pp. 3445, ACM,
20009.

J. H. Choi, J. W. Kwak, S. T. Jhang, and C. S. Jhon, “Adaptive cache
compression for non-volatile memories in embedded system,” in Pro-
ceedings of International Conference on Research in Adaptive and
Convergent Systems, pp. 52-57, ACM, 2014.

A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance and
performance-efficient design of hybrid cache architectures through
adaptive line replacement,” in Proceedings of International Sympo-
sium on Low Power Electronics and Design, pp. 79-84, IEEE, 2011.

J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i 2 wap: Improving

non-volatile cache lifetime by reducing inter-and intra-set write vari-

109

[24]

[25]

[26]

[27]

(28]

[29]

[30]

ations,” in Proceedings of International Symposium on High Perfor-
mance Computer Architecture, pp. 234-245, IEEE, 2013.

Y.-T. Chen, J. Cong, H. Huang, C. Liu, R. Prabhakar, and G. Reinman,
“Static and dynamic co-optimizations for blocks mapping in hybrid

caches,” in Proceedings of International Symposium on Low Power
Electronics and Design, pp. 237-242, ACM, 2012.

Y. Li, Y. Chen, and A. K. Jones, “A software approach for combat-
ing asymmetries of non-volatile memories,” in Proceedings of Inter-
national Symposium on Low Power Electronics and Design, pp. 191—
196, ACM, 2012.

Q. Li, M. Zhao, C. J. Xue, and Y. He, “Compiler-assisted preferred
caching for embedded systems with stt-ram based hybrid cache,” ACM
SIGPLAN Notices, vol. 47, no. 5, pp. 109-118, 2012.

K. Qiu, M. Zhao, C. Fu, L. Shi, and C. J. Xue, “Migration-aware loop
retiming for stt-ram based hybrid cache for embedded systems,” in
Proceedings of International Conference on Application-Specific Sys-

tems, Architectures and Processors, pp. 83-86, IEEE, 2013.

Y. Li, Y. Zhang, H. Li, Y. Chen, and A. K. Jones, “Clc: A configurable,
compiler-guided stt-ram 11 cache,” ACM Transactions on Architecture
and Code Optimization, vol. 10, no. 4, p. 52, 2013.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory technol-
ogy,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3,
pp- 24-33, 20009.

M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montafio, “Im-
proving read performance of phase change memories via write cancel-
lation and write pausing,” in Proceedings of International Symposium
on High Performance Computer Architecture, pp. 1-11, IEEE, 2010.

110

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity dram

cache management,” Computer Architecture Letters, vol. 11, no. 2,
pp. 61-64, 2012.

H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu,
“Row buffer locality aware caching policies for hybrid memories,”
in Proceedings of International Conference on Computer Design,
pp- 337-344, IEEE, 2012.

M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé, “Writeback-
aware partitioning and replacement for last-level caches in phase
change main memory systems,” ACM Transactions on Architecture
and Code Optimization, vol. 8, no. 4, p. 53, 2012.

G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and dram
main memory system,” in Proceedings of Internaional Conference on
Design Automation Conference, pp. 664—669, IEEE, 2009.

A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and
D. Mossé, “Increasing pcm main memory lifetime,” in Proceedings of
Internaional Conference on Design, Automation and Test in Europe,
pp- 914-919, IEEE, 2010.

W. Zhang and T. Li, “Exploring phase change memory and 3d die-
stacking for power/thermal friendly, fast and durable memory archi-
tectures,” in Proceedings of International Conference on Parallel Ar-

chitectures and Compilation Techniques, pp. 101-112, IEEE, 2009.

H. Seok, Y. Park, and K. H. Park, “Migration based page caching al-
gorithm for a hybrid main memory of dram and pram,” in Applied

Computing, International Symposium on, pp. 595-599, ACM, 2011.

G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of
shared cache memory,” The Journal of Supercomputing, vol. 28, no. 1,
pp- 7-26, 2004.

111

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” in Microarchitecture, IEEE/ACM International Symposium
on, pp. 423-432, IEEE Computer Society, 2006.

A. Samih, Y. Solihin, and A. Krishna, “Evaluating placement poli-
cies for managing capacity sharing in cmp architectures with private
caches,” ACM Transactions on Architecture and Code Optimization,
vol. 8, no. 3, p. 15, 2011.

C. CaBcaval and D. A. Padua, “Estimating cache misses and locality
using stack distances,” in Proceedings of International Conference on
Supercomputing, pp. 150-159, ACM, 2003.

Y. Liu and W. Zhang, “Exploiting stack distance to estimate worst-case
data cache performance,” in Proceedings of International Symposium
on Applied Computing, pp. 1979-1983, ACM, 20009.

“The intel 64 and ia-32 architectures software developer’s manual.”
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-system-

programming-manual-325384.pdf. accessed 3-Mar-2014.

D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory con-
sistency and cache coherence,” Synthesis Lectures on Computer Archi-
tecture, vol. 6, no. 3, pp. 1-212, 2011.

R. L. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,
pp- 78-117, 1970.

M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for
mlp-aware cache replacement,” ACM SIGARCH Computer Architec-
ture News, vol. 34, no. 2, pp. 167-178, 2006.

Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie, “Adaptive place-
ment and migration policy for an stt-ram-based hybrid cache,”

112

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-

tative approach. 2011.

J. Li, C. J. Xue, and Y. Xu, “Stt-ram based energy-efficiency hybrid
cache for cmps,” in Proceedings of International Conference on VLSI
and System-on-Chip, pp. 31-36, IEEE, 2011.

S.-M. Syu, Y.-H. Shao, and L.-C. Lin, “High-endurance hybrid cache
design in cmp architecture with cache partitioning and access-aware

policy,” in Proceedings of International Conference on Great Lakes
Symposium on VLSI, pp. 19-24, ACM, 2013.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for stt-
ram using early write termination,” in Proceedings of International
Conference on Computer-Aided Design-Digest of Technical Papers,
pp- 264-268, IEEE, 2009.

G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture
of the 3d stacked mram 12 cache for cmps,” in Proceedings of In-

ternational Symposium on High Performance Computer Architecture,

pp. 239-249, TEEE, 2009.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel® itanium® pro-
grams with dynamic instrumentation,” in Proceedings of International
Symposium on Microarchitecture, pp. 81-92, IEEE Computer Society,
2004.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-
gram analysis tools with dynamic instrumentation,” in ACM Sigplan
Notices, vol. 40, pp. 190-200, ACM, 2005.

“Arm cortex-aS7 processor.” “http://www.
arm.com/products/processors/cortex—a/

cortex-a57-processor.php’ (accessed 1-Sep-2015).

113

http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php

[56]

[57]

[58]

[59]

J. Wang, Y. Tim, W.-F. Wong, Z.-L. Ong, Z. Sun, and H. H. Li, “A co-
herent hybrid sram and stt-ram 11 cache architecture for shared mem-
ory multicores.,” in Proceeding of Asia and South Pacific Design Au-
tomation Conference, pp. 610-615, IEEE, 2014.

L. Eeckhout, “Computer architecture performance evaluation meth-
ods,” Synthesis Lectures on Computer Architecture, vol. 5,no. 1, pp. 1—-
145, 2010.

A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simul-
taneous mutlithreading processor,” ACM SIGPLAN Notices, vol. 35,
no. 11, pp. 234-244, 2000.

K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and
fairness in smt processors.,” in Performance Analysis of Systems and
Software, International Symposium on, pp. 164-171, IEEE, 2001.

114

£

H 2E7g w2l 7o) 2% A AfAE AT 27
sj=] 71y

HF W m el e ATt 4 A 1Y angolehs E40R

Qo) 2% I8 AN AGE7]] ST 7SR HemT ek Tt
HFP R 7] A2 1) B AT AS ARk, A7

Ao A 7] S45 Zo]7] Yot 7N A DA A (Write avoidance cache
coherence protocol)2 A A} 11, o= 7 A] F-Z(Hybrid cache architec-
tre) o4 7] 8155 2 48}5}7] 9182712 7198 Algkatsck. A
71HL NVM way-2 4072 XA5H= HhAlo]™(Dynamic way adjust-
ing), TF2 7|H-& linefill 1183t 7fA] ESF 7] H (Linefill-aware cache

partitioning)©] t}.

o2 o|F A 72 A stol A BIgEg mRe e 271E Al
gote] 227] 848 Eole 7IM= ARt ol F AA 2= HISIEA
H2 o] dRE FA 2]l SRAME WA|ste] 7 71| 72 v
27} shte] Aol EAsHE F2olt. TAH o= B $EAd v 2] o
way o] H|-go] gropd 5 04| 2271 2hfof| A vl d/g w2 E] o] 227] 2

Aol vl T AXA Aot I RE 2 o] A A WS

278Hs 212 ofth m2] webA B Aa A7k thebA w
2o] ARete o 78 v e 1 Aol Wag wha vs

A | 2e S ARSIE S vre| o] 27|15 Aetthd %o 25} glo]

HIFA R o] 27] S5 F9 4 ek
EQ B =R AL ofF A4 FE2E AHESHE Be 2o A

oA HIFA wlmelo] 7] 858 2 48ksHe A4 B Cache parti-
tioning) & A|QHGHTF. 71 20] A BP FASE FUA W el S 41§
5% A4 FEE A7) el 2} ojo] BT waye] St At
Shth. et o) A4 FEAAE 2 017k ALG T A way©] S
g obue} 519 olse] waye] 45k $194 e way] 55 whE
Folok gtk @A) ghowl P Wm el waysh HEEH O Fojo]
w0l AA A H)54 vlme o] 27] 847} 157 o
webd, B = Rol Al AT F7]ute A4 B AL ko] 7haA
HIFA R O] 27] 8158 | okshe A B 1L Fobdit,

4549t A1}, Write avoidance cache coherence protocol-2 %

= =
L5H T A ARZS 13.2%7}F 71451, Dynamic way adjusting

@} Linefill-aware cache partitioning2 2-85}= 3¢ 2+7F A& AR o]

26.9%%} 37.2% 7+ A5FATt.

116

	I. Introduction
	1.1 Purpose of the thesis
	1.2 Background
	1.3 Motivation
	1.4 Contributions
	1.5 Organization of the thesis

	II. Related work
	2.1 Hybrid cache architecture
	2.1.1 Write intensity prediction studies
	2.1.2 Static approaches
	2.1.3 Hybrid cache architecture for main memory

	2.2 Cache partitioning schemes

	III. Write avoidance cache coherence protocol
	3.1 Limitation of existing cache coherence protocol
	3.2 Write avoidance cache coherence protocol

	IV. NVM capacity management policy for hybrid cache architecture
	4.1 NVM capacity management policy
	4.1.1 Concept of NVM capacity management policy
	4.1.2 Feasibility of NVM capacity management policy

	4.2 Dynamic way adjusting
	4.2.1 Maximum stack distance
	4.2.2 Adjusting the number of NVM ways
	4.2.3 Algorithm of dynamic way adjusting

	4.3 Cache partitioning for hybrid cache architecture
	4.3.1 Linefill-aware cache partitioning
	4.3.2 Metrics for cache partitioning
	4.3.3 Algorithm for cache partitioning

	4.4 Overhead of NVM capacity management policy

	V. Experimental results
	5.1 Experimental environment
	5.2 Write access to NVM
	5.3 Dynamic energy consumption
	5.4 Lifetime
	5.5 Multi-core environment

	VI. Conclusion
	6.1 Conclusion
	6.2 Future work

	References
	Abstract in Korean

<startpage>12
I. Introduction 1
 1.1 Purpose of the thesis 1
 1.2 Background 3
 1.3 Motivation 4
 1.4 Contributions 5
 1.5 Organization of the thesis 8
II. Related work 9
 2.1 Hybrid cache architecture 9
 2.1.1 Write intensity prediction studies 11
 2.1.2 Static approaches 11
 2.1.3 Hybrid cache architecture for main memory 12
 2.2 Cache partitioning schemes 14
III. Write avoidance cache coherence protocol 15
 3.1 Limitation of existing cache coherence protocol 15
 3.2 Write avoidance cache coherence protocol 19
IV. NVM capacity management policy for hybrid cache architecture 22
 4.1 NVM capacity management policy 22
 4.1.1 Concept of NVM capacity management policy 23
 4.1.2 Feasibility of NVM capacity management policy 27
 4.2 Dynamic way adjusting 37
 4.2.1 Maximum stack distance 37
 4.2.2 Adjusting the number of NVM ways 41
 4.2.3 Algorithm of dynamic way adjusting 42
 4.3 Cache partitioning for hybrid cache architecture 46
 4.3.1 Linefill-aware cache partitioning 49
 4.3.2 Metrics for cache partitioning 50
 4.3.3 Algorithm for cache partitioning 59
 4.4 Overhead of NVM capacity management policy 68
V. Experimental results 71
 5.1 Experimental environment 71
 5.2 Write access to NVM 78
 5.3 Dynamic energy consumption 85
 5.4 Lifetime 90
 5.5 Multi-core environment 96
VI. Conclusion 104
 6.1 Conclusion 104
 6.2 Future work 106
References 107
Abstract in Korean 115
</body>

