

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

An Incremental Genetic Algorithm
for Graph Optimization Problems

그래프최적화문제를위한점진적유전알고리즘

2016년 8월

서울대학교대학원

전기·컴퓨터공학부

김진현

An Incremental Genetic Algorithm for Graph
Optimization Problems

by

Jinhyun Kim

Department of Electrical Engineering & Computer Science

Seoul National University

2016

Abstract

A combinatorial optimization problem is an optimization problem hav-

ing a discrete solution space. Lots of the graph problems belong to this cat-

egory as graphs are discrete objects. Graphs are widely used in the various

field and there are lots of real world combinatorial optimization problems

which take the graphs as their input. For some of these problems, the mag-

nitude of the solution space is exponential to the size of the problem, and

thereby efficient space search algorithms are required to deal with them.

Genetic algorithms are widely used to solve combinatorial optimiza-

tion problems, and incremental genetic algorithms could be used to effi-

ciently solve graph optimization problems. We define subproblems and solve

them step by step instead of tackling the problems directly. A subproblem

solved by an incremental genetic algorithm deals with a restriction of the

original graph structure. The subproblems are solved in the intermediate

i

steps and the size of the subproblem is gradually increased. We apply the

same genetic algorithm to each subproblem, and it is initialized with the

evolved population of the previous step.

We propose incremental genetic algorithms for two different combina-

torial optimization problems; the subgraph isomorphism problem and graph

cut optimization problem. We devise an optimal substructure on the sub-

problem sequence and explain how it is related to the optimality of the pro-

cess, along with other related factors. We present graph expansion method-

ologies and vertex reordering schemes to define an appropriate sequence of

subproblems. We combine the proposed incremental approach with a hy-

brid genetic algorithm for the subgraph isomorphism problem, and the al-

gorithm was further developed for nearly perfect results. Based on our anal-

ysis, we also propose an incremental genetic algorithm to solve graph cut

optimization problems. We tested the implementation of the algorithm on

benchmark graph instances for the graph partitioning problem and the max-

imum cut problem. Through experiments, we investigate and analyze how

the sequence of subproblems affects the search space landscape. The perfor-

mance of a genetic algorithm makes an improvement when the incremental

approach is applied with respect to an appropriate sequence of subproblems.

Keywords : Incremental genetic algorithm, graph optimization problems,

subgraph isomorphism problem, graph partitioning problem, maximum cut

problem

Student Number : 2008–20860

ii

Contents

Abstract . i

Contents . iii

List of Figures . vi

List of Tables . viii

I. Introduction . 1

II. Incremental Genetic Algorithm 6

2.1 Overview and Traditional Applications 6

2.2 Application on Graph Optimization Problems 9

2.2.1 Formalization of the Incremental Process 9

2.2.2 Theoretical Background 12

2.2.3 Sequence of Subproblems 15

III. Subgraph Isomorphism Problem 19

3.1 Introduction . 19

3.2 The Proposed Algorithm 21

3.2.1 The Structure of the Incremental Genetic Algorithm 21

3.2.2 Design Issues . 25

3.2.3 Genetic Framework 28

3.3 Experimental Results . 31

iii

3.3.1 Dataset and Evaluation 31

3.3.2 Results and Discussions 33

3.3.3 Overall Results . 39

3.4 Further Improvement . 42

3.4.1 New Operators . 43

3.4.2 Improvements by New Operators 45

3.4.3 Overall Result . 46

IV. Graph Cut Optimization Problems 50

4.1 Introduction . 50

4.2 The Proposed Algorithm 51

4.2.1 Subproblem Structure 51

4.2.2 Reordering Schemes 54

4.2.3 Genetic Framework 55

4.3 Experimental Results . 57

4.3.1 Dataset and Evaluation 57

4.3.2 Results on Graph Partitioning Problem 58

4.3.3 Results on Maximum Cut Problem 66

4.3.4 Results on Problem Variants 70

V. Related Applications . 75

5.1 Measuring Source Code Similarity with an Incremental Ge-

netic Algorithm . 75

5.1.1 Introduction . 75

5.1.2 The Proposed System 76

5.1.3 Experimental Results 80

iv

5.1.4 Discussion . 88

5.2 Linear Ordering Problem and an Approximate Fitness Eval-

uation . 88

5.2.1 Introduction . 88

5.2.2 The Proposed Method 89

5.2.3 Experimental Results 91

VI. Conclusions . 94

v

List of Figures

Figure 1. An overview of an incremental genetic algorithm for

a graph problem . 10

Figure 2. Three methods of expanding a graph 16

Figure 3. An example of the incremental genetic algorithm process 24

Figure 4. Representation of a chromosome 29

Figure 5. The original problem and two subproblems of graph

partitioning problem 53

Figure 6. The minimum cut size found by the algorithms at each

generation for two large graph instances 63

vi

List of Tables

Table 1. Results of a traditional hybrid genetic algorithm 32

Table 2. Results of vertex reordering 34

Table 3. Results of partially random initialization 35

Table 4. Results of changing stopping criterion 36

Table 5. Results of changing expansion size 38

Table 6. Overall results of the proposed hybrid incremental ge-

netic algorithm compared to a traditional hybrid genetic

algorithm . 40

Table 7. Running time analysis of the two GAs 42

Table 8. Results of improved operators 45

Table 9. Results of the improved hybrid incremental genetic al-

gorithm with various expansion size 47

Table 10.Overall results of the improved hybrid incremental ge-

netic algorithm . 48

Table 11.Performance of the tested GA and IGAs for the GPP . . . 59

Table 12.Running time of the tested GA and IGAs for the GPP . . 61

Table 13.Relative performance of a GA and an M-IGA with BFS

ordering which runs for more number of generaions . . . 64

Table 14.Performance of an M-IGA using a BFS ordering and a

strategy to dynamically change the number of generations 65

Table 15.Performance of the tested GA and IGAs for the MCP . . 67

Table 16.Running time of the tested GA and IGAs for the MCP . . 69

vii

Table 17.Results on the 4-way graph partitioning problem 71

Table 18.Results on weighted maximum cut problem 73

Table 19.The size of the codes in the GPLAG dataset 81

Table 20.Results of the plagiarism detection experiment 81

Table 21.Similarity between the graph algorithms 83

Table 22.Histogram of similarity between the generated codes and

codes in malware database 85

Table 23.the five cases with the highest chance of error for each

set of codes . 86

Table 24.Accuracy of our malware detection system with two dif-

ferent threshold values, a system from a previous work,

and known anti-virus programs 87

Table 25.Comparing the performance of the algorithms in terms

of fitness and time . 92

viii

Chapter 1

Introduction

A combinatorial optimization problem is an optimization problem that

has a discrete, or sometimes even a finite solution space [CCPS98, Sch03].

Permutations and/or sets of the objects are commonly used to represent the

elements of such spaces. Graphs are representative discrete data structures

and most of the graph optimization problems belong to combinatorial op-

timization problems. For the graph problems that are classified as NP-hard

problems, we need to examine an extreme number of combinations to find

a good solution. Even worse, the discreteness of the solution space makes it

hard to escape from bad local optima. Genetic algorithms (GAs), and other

stochastic approaches are widely used to deal with this difficulty.

In contrast to NP-hard graph problems, there exist polynomial time al-

gorithms for some of the graph problems in P class. Minimum spanning

tree problems and shortest path problems are well-known examples fre-

quently appearing in algorithm textbooks [CSRL01, HH13]. The algorithms

for these problems are based on either a greedy method or a dynamic pro-

gramming algorithm. Both of them rely on the optimal substructure of the

problem, which is a property that optimal solutions of subproblems could

be extended to an optimal solution of the original problem.

The idea of utilizing an optimal substructure could be applied to solve

NP-hard graph problems, by means of an incremental genetic algorithm.

1

An incremental genetic algorithm is an evolutionary computation model to

solve a problem that dynamically changes over time [MAEf06, WYJ+04].

The algorithm initializes the population only once at the beginning. And it

reuses the population even when the problem has been changed, by evolving

the population with respect to the new problem.

To solve a graph optimization problem with an incremental genetic al-

gorithm, it begins with solving a small subproblem and the problem is grad-

ually expanded to the original problem. Lots of graph optimization problems

could be tackled in this manner if the structure of the subproblems is care-

fully designed. When the subproblems are expanded in an appropriate way,

which is the way that best reflects the optimal substructure of the problem,

the incremental genetic algorithm could bring a significant performance im-

provement upon the ones without the incremental approach.

This thesis investigates the mechanism of an incremental genetic algo-

rithm for graph optimization problems through empirical analysis. We first

formalize the underlying structure and the process of the algorithm. Then

we analyze the property of the subproblems dealt during the incremental

process, and discuss how it is related to the overall space search behavior.

Based on our analysis, we propose an IGA applied to two kinds of graph

problems; one of them is the subgraph isomorphism problem [CYM12],

and the other is the graph cut optimization problem [KHKM11, WWL15].

We use the natural subproblem structure defined by the subset of the ver-

tices or the subset of the edges, and we seek methodologies to build up a

fine sequence of subproblems. The proposed algorithms are implemented

and tested through various experiments. Results of the experiments to ver-

2

ify our analysis are provided with discussions. For both of the problems,

using an incremental approach in an appropriate way has brought a perfor-

mance improvement. It was driven by solving the problem with respect to

a sequence of subproblems which has an optimal substructure and controls

the difficulty of the space search accordingly, which is defined in terms of

the number of optimal solutions of the subproblem.

The main contributions of this thesis are as follows.

• We have applied an incremental genetic algorithm to solve graph op-

timization problems.

An incremental genetic algorithm is an evolutionary approach to spe-

cific problems. We have applied the algorithm to solve seemingly un-

related graph problems, by introducing a notion of subproblem. We

formally define the process in terms of subproblems, and a sequence

of subproblems. The methodologies and schemes to define the se-

quence of subproblems are systemically organized as well. Although

there are a tremendous number of possible subproblem sequences,

only a few of them are actually suitable for an incremental approach.

We inspect this property in terms of optimal substructure and provide

a guideline for defining the subproblem structure that works well.

• We propose a high-performance incremental genetic algorithm dedi-

cated to solving the subgraph isomorphism problem.

Several evolutionary approaches have been proposed to tackle the

subgraph isomorphism problem. However, even the best known one

fails to solve the problem in specific cases. We had applied an incre-

3

mental approach to this problem in various ways, and some of the

algorithms outperformed previous ones. We have further improved

the performance with two more operators.

• We provide experimental results on an incremental genetic algorithm

for graph cut optimization problems.

We propose an incremental genetic algorithm for graph cut optimiza-

tion problems and analyze the properties through experiments. The

structures of these problems are non-trivial and optimal substructures

are only found in a few specific subproblem sequences. We seek for

useful substructures and investigate how these structures are related

to the behavior of the search algorithm.

• We introduce the related applications of the incremental genetic algo-

rithm.

Even if we deal with specific problems in our empirical study, the in-

cremental approach is not restricted to these problems. We introduce

an application of the subgraph isomorphism problem, an incremental

genetic algorithm with an approximate fitness evaluation for a differ-

ent problem.

Some portions of the work discussed in this thesis have been presented

in [CKM14, KCYM16, KM14, KYM16].

The rest of this thesis is organized as follows. In the next chapter, we

first review the incremental genetic algorithm and formally define the pro-

cess to solve the graph optimization problems. We also provide the proper-

4

ties of the algorithm. We then propose incremental genetic algorithms for

the subgraph isomorphism problem and graph cut optimization problems

in Chapters 3 and 4, respectively. The result of an analysis on their struc-

tures, including experimental results is provided as well. Chapter 5 intro-

duces some related applications, and we make conclusions in Chapter 6.

5

Chapter 2

Incremental Genetic Algorithm

2.1 Overview and Traditional Applications

A genetic algorithm (GA) is an optimization algorithm inspired by evo-

lution process in nature. It is a search algorithm which tries to evolve a set of

solutions, called population, to solve an optimization problem [BBM93]. At

each iteration, called generation, two parent solutions are chosen from the

population. The crossover operator recombines the properties of two par-

ents and creates a new solution called offspring, and the mutation operator

slightly modifies the offspring. The offspring replaces one of the solution

in the population based on a replacement strategy. For example, the worst

solution in the population could be replaced. Through an enough number of

generations, the solutions in the population evolve and converge to certain

solutions. The algorithm returns the best solution found during the evolu-

tionary process.

When solving an optimization problem, GAs and other evolutionary

approaches use one single fixed evaluation function. This function is also

called a fitness function and it evaluates how good the solution is. The di-

rection of the evolution is to maximize the fitness of the solutions in the pop-

ulation. However, there are lots of real world optimization problems which

use a dynamic fitness function [BKSS00]. The value of a solution is not

6

fixed and it may change over time. These problems are called dynamic opti-

mization problems. For these problems, the fitness is defined to be a function

that depends not only on the solution itself, but also on time [CGP11]. The

problem becomes much more difficult as we cannot control the time param-

eter.

Even if other optimization algorithms are not directly applicable to

these problems, evolutionary approaches are still effective on them. As evo-

lution in nature occurs without explicitly being aware of the dynamic envi-

ronment, the algorithms follow the similar property as well and are known

to be effective [NYB12]. Lots of algorithms have been proposed and tested

on real world problems [CGP11, JB05].

Maintaining a population also plays a key role in solving a dynamic

optimization problem. A good solution or partial schemata of it may be

found in the populations of past generations, and it is more likely to hap-

pen when there are more solutions in the population. The simplest way is

to use the same population, and this property is a rationale behind popu-

lation reusing. Some of the algorithms also maintain an archive of good

solutions and reuse them afterward [JB05]. Controlling the diversity of the

solutions is another issue. The algorithms maintain the diversity by inserting

newly generated solutions (random immigrants), by slowing down the con-

vergence, and by using classical approaches, such as sharing and/or crowd-

ing [JB05, NYB12]. Maintaining more than one subpopulation is another

approach, and they are called multipopulation approaches [BKSS00, JB05].

An incremental genetic algorithm (IGA) is one example of an algo-

rithm for dynamic optimization. It is an adaptive GA dealing with the situ-

7

ation when the problem has been changed during the evolutionary process.

GAs usually solve the same problem from the beginning to the end of the

algorithm. However, the problem instance, the characteristic of the problem,

or even the problem itself might be changed during evolution. In such situa-

tion, the IGA uses the same GA, with the same operators and parameters, to

solve the changed problem. Moreover, instead of re-initializing the popula-

tion at that moment, the IGA reuses the solutions evolved during solving the

prior problem. When the alteration in the problem is minor, the saved solu-

tions significantly reduced the running time of the algorithm [MAEf06]. It

is known that for a GA, the quality of the solutions in the initial population

greatly affects the quality of the final solution [SL12]. The reused solutions

help the re-optimization in this respect.

Some previous works intentionally changed the problem to guide the

space search in a certain direction. In an incremental approach to multipro-

cessor scheduling problem, the length of the solutions to be rewarded was

increased over the generations [WYJ+04]. Allowing shorter valid sequences

in the earlier generations helped with finding longer valid sequences.

For GA based classification models, updating the model is required

after a large number of new data are added [BBK11]. The update is essen-

tial when the current model fails to reflect the characteristics of the new

data [VN]. Variants of incremental approaches are applied to this case as

well, and they are called incremental learning algorithms [NYB12].

8

2.2 Application on Graph Optimization Prob-
lems

2.2.1 Formalization of the Incremental Process

In this section, we propose an IGA for graph optimization problems.

Basically, graph optimization problems are not dynamic and thus an IGA is

not directly applicable to them. For an efficient space search, we intention-

ally define the subproblems of the given graph optimization problem and

solve them sequentially with an IGA. To the best of our knowledge, it is the

first application of an IGA on graph optimization problem in this context.

We first define the subproblem of the target problem in terms of the

substructure of the target graph. Then we solve the problem with increasing

the size of the subproblem step by step. The graph for which we solve is

gradually expanded from the empty structure to the entire one. We apply

a GA to each subproblem, initialized with the evolved population of the

previous step. Note that the actual problem we are dealing with does not

change over time; we instead define virtual subproblems and solve them

step by step. Also, as the last subproblem equals the original problem, the

final solutions found by an IGA are the solutions of the original problem as

well.

We then formalize the IGA for graph problems. We define a graph

problem to be an optimization problem which takes a graph G = (V,E) as

the input. Since graph is a discrete structure, we can easily obtain a sub-

structure of G by taking the subset of V or E. The former one is called a

subgraph, and the latter one is called a spanning graph. When the input

9

Figure 1: An overview of an incremental genetic algorithm for a graph
problem

graph of the same problem is changed to the one having a substructure, we

say that the new problem is a subproblem of the original one. Note that a

subproblem is a kind of a restricted problem, as the input graph consists of

a partial structure of the original graph.

To solve a graph problem more efficiently, we use an IGA to consecu-

tively solve the subproblems. As the actual problem to be solved stays the

same, we identify each subproblem with its input graph. Consider a finite

sequence of subproblems {G1, G2, . . . , GS}, where Gi is a subproblem of

the original problem G. We must set GS to be as same as G, and we may

set G1 to be a sufficiently small graph. The rest of the graphs are obtained

by expanding the structure of the previous graph, which means that Gi is a

subproblem of Gi+1.

We use an IGA to solve the subproblems in S steps, as illustrated in

Figure 1. The same evolutionary process is applied to solve each of the

subproblems, and the evolved population of the ith step is used as the initial

population for the next (i+1)th step. The graph is expanded at each step,

10

and the solutions are extended before the beginning of each step to become

solutions of the changed problem. Graph optimization problems are usually

to find an optimal permutation or an optimal subset. The extension is to

change the solution to a permutation with more elements, or to a subset

of a set with more elements, respectively. Furthermore, recalculation of the

fitness is required after the extension.

The rationale behind the incremental process is that high-quality so-

lutions of the previous step may provide good starting points of the current

step. Previous works on IGA commonly suggest similar properties [BBK11,

MAEf06, VN, WYJ+04], and they are called memory-based approaches to

dynamic optimization problem [JB05]. Furthermore, it is easier to solve the

subproblem as Gi is smaller than Gi+1. Sufficiently good solutions for the

easier previous subproblem are likely to be found by the algorithm.

Providing good initial solutions to a GA is widely used technique, par-

ticularly in a context of a memetic algorithm [VS02, SL12]. A memetic

algorithm is a variant of a GA which locally optimizes the solution when-

ever a new one is generated. It searches the space consisting of local optima,

instead of searching the solution space directly. Furthermore, as there are a

large number of local optima for most of the problems, the population of the

solutions of a memetic algorithm is likely to be diverse. An IGA is another

algorithm which starts the process with good solutions, and it uses relatively

small computational cost compared to a memetic algorithm. And it is more

flexible so that other techniques, including local optimization, are applicable

to IGAs. One example of such hybridization will be discussed in Chapter 3.

11

2.2.2 Theoretical Background

The key notion of a greedy method or a dynamic programming algo-

rithm is an optimal substructure. We say that the graph optimization problem

has an optimal substructure, if optimal solutions of the subproblems could

be combined into an optimal solution of the original problem [CSRL01]. In

other words, it is the case when an optimal solution contains optimal solu-

tions of the subproblems inside.

Suppose that we are to find a shortest path to a vertex v in a graph G. Di-

jkstra’s algorithm and Bellman-Ford’s algorithm are well known algorithms

for this problem, and each of them is a greedy method and a dynamic pro-

gramming algorithm, respectively. The algorithms search for shortest paths

to intermediate vertices. When a path to an intermediate vertex u is found,

the algorithms combine the path with an edge (u,v), or another path from u

to v to construct a new path to v. They are relying on an optimal substructure

of the problem, which is a property that a shortest path to v contains a short-

est path to u. Note that the number of shortest paths could be greater than

one, and any one of them could be chosen by the algorithms. Furthermore,

the numbers of the subproblems are polynomial functions in the size of the

graph.

The generalization of this notion could be applied to an NP-hard graph

optimization problem. Some of the graph problems are solvable by a greedy

method or a dynamic programming algorithm. For example, there exists a

dynamic programming algorithm for the traveling salesman problem (TSP),

the best known NP-hard problem [HH13]. However, these algorithms are

12

much more computationally expensive than the ones for P problems. They

have to either maintain a large number of optimal solutions to each of the

subproblems, or solve a large number of subproblems. The amount of the

computation is usually exponential to the size of the problem.

We can say that an IGA has an optimal substructure. More precisely,

when a sequence of subproblems is given, we say that the sequence has an

optimal substructure, in NP-hard perspective, if one of the optimal solutions

of each subproblem could be extended to an optimal solution of the next sub-

problem. Existence of an optimal substructure conceptually explains that we

can solve the original problem by enumerating all of the optimal solutions

for each of the subproblems. We have to remark that the number of opti-

mal solutions could be exponential to the size of the graph. However, as GA

maintains multiple solutions but not a single solution, the algorithm may

find an extendable solution with a higher chance. We expect the utilization

of this optimal substructure in an IGA to be highly effective.

However, existence of an optimal substructure does not guarantee that

an IGA can always find an optimal solution; it only suggests that it is highly

probable. Not every sequence having an optimal substructure leads to a good

solution. The IGA expects the subproblem of the previous step is completely

solved beforehand, but it is not guaranteed if there exist a large number of

optimal solutions for intermediate subproblems, and only a few of them are

extendable to optimal solutions for the original problem. Then, intermediate

GAs will hardly find promising solutions. This suggests that we need to de-

liberately set the difficulty of some earlier subproblems to be high, in order

to reduce the search space by reducing the number of optimal solutions.

13

For the SIP tackled by an IGA in Chapter 3, any sequence of the sub-

graphs has an optimal substructure because the subgraph relation is tran-

sitive, i.e., if GA is a subgraph of GB and GB is a subgraph of GC, then

GA is a subgraph of GC. But an experimental result shows that only degree

based vertex reordering scheme is actually effective. Consecutive subprob-

lems should be highly related in order to promote the utilization of the previ-

ous population. In addition, selecting a vertex with the highest degree adds

the largest number of edges to the graph. This makes a strong constraint

which reduces the number of intermediate optimal solutions as well.

Even worse, the IGA is more likely to fail if there exists no subproblem

sequence with an optimal substructure. This property does not hold for some

specific problems, and the traveling salesman problem (TSP), the problem

to find a shortest tour of the given graph, is one of the examples. When we

choose a vertex and remove it from the graph to obtain a subproblem, the

solution to the subproblem could be entirely different. An IGA may find

a reasonable solution through the evolutionary process in the last step, but

the initial solutions may not play any role in an efficient search. Note that

the TSP is to find an optimal permutation of vertices. For the problems of

finding an optimal subset of vertices, an IGA is more likely to work well on

the problem. We will examine two example problems in Chapters 3 and 4.

Using an incremental approach has another advantage. When calcu-

lating the fitness function value for a subproblem, only part of the original

graph is used and it approximates the original fitness. When an approximate

fitness evaluation is used with a GA, it helps to prevent the GA from falling

in bad local optima. Another previous work used similar mechanism, and it

14

increased the probability of finding a valid solution [WYJ+04]. For graph

problems, some part of the graph may mislead the space search [HKY15].

We could avoid this situation by solving a subproblem which does not have

a misleading part in earlier steps. This presents another perspective in con-

structing the sequence of subproblems.

2.2.3 Sequence of Subproblems

As described in the previous subsection, an IGA is defined when a se-

quence of subproblems is built. We first set the virtual 0th subproblem to be

a graph having no edges. The rest of the subproblems, from the first one to

the last one, are obtained by adding some edges to the previous graph. The

subproblems are determined by the number of the steps, the number of the

edges to be added at each step, and the order of the edges to be added. The

first two determine ‘how’ the edges are added, and the third one determines

‘which’ edges are added. In this thesis, we propose three different graph

expansion methods in determining the ‘how’ part, and propose four differ-

ent reordering schemes in determining the ‘which’ part. Note that the best

method and scheme depend on the problem, and choosing the most suitable

ones is an important design issue. The methods and schemes will be briefly

outlined, and then a design guideline will be provided.

The three graph expansion methods are illustrated in Figure 2 for an

example case. All of the methods expand the graph through three steps, and

the steps are presented from left to right. The original graph consists of three

vertices and three edges, as shown in the rightmost part of the figure. The

edges to be added at each step, and the vertices considered at each step are

15

(a) Edge-wise expansion

(b) Vertex-wise expansion

(c) Mixed expansion

Figure 2: Three methods of expanding a graph

drawn with thicker lines. Note that the number of vertices or edges to be

added at each step may differ. The details are as follows.

• Edge-wise expansion: As shown in Figure 2(a), an edge is added to

the previous graph at each step. The number of the steps equals the

number of the edges.

• Vertex-wise expansion: As shown in Figure 2(b), a vertex is consid-

ered at each step. The incident edges connected to a vertex that has

already been considered in the previous step are added to the graph.

This method is conceptually identical to adding the considered vertex

at each step. This method may either actually or conceptually add a

vertex to the previous graph. When vertices are added conceptually,

16

the set of the vertices remains the same and corresponding edges are

added. The number of the steps equals the number of the vertices.

• Mixed expansion: As shown in Figure 2(c), a vertex is considered

at each step and all of the incident edges are added to the previous

graph. The philosophies of the two above methods are mixed in this

one. The number of the steps equals the number of the vertices.

We call IGAs based on each of the three graph expansion methods an

edge-wise IGA (E-IGA), a vertex-wise IGA (V-IGA), and a mixed IGA (M-

IGA), respectively.

We also propose various reordering schemes to find a good sequence

of subproblems. As optimal substructures of the problems may differ, the

suitable reordering scheme differs as well. Therefore, we provide the details

of the schemes in Chapters 3 and 4, as well as the structural overview of the

corresponding problem.

To find one of the best reordering schemes for the given problem, we

first have to examine the optimal substructure of the problem. For an IGA to

be effective, the subproblem sequence should have an optimal substructure.

To determine whether a subproblem sequence has the property, it is recom-

mended to check whether an optimal solution to the original problem retains

its optimality on the subproblems. If this property holds, it means that there

exists an extendable optimal solution, which is the one we have checked,

for all of the subproblems. The problem is that we may conceptually check

the optimality of the solution, but we cannot find the actual solution before

solving the problem. If the subproblem sequence is hardly induced with-

17

out knowing an optimal solution a priori, then we have to find the sequence

which indirectly reflects the optimal substructure. Using a greedy based ap-

proach would be helpful in those cases.

The second principle is to reduce the number of optimal solutions of

intermediate subproblems. If more than one subproblem sequences are ex-

pected to have an optimal, or a near-optimal substructure, then using the one

having relatively easy subproblems is better than the others. Adding more

number of edges or vertices in the earlier generation is also a useful strategy

in this context. Even if a large number of elements are added, the entire size

of the graph is small and it is easier to solve such a problem.

More details on selecting an appropriate reordering scheme will be pro-

vided in Chapters 3 and 4.

18

Chapter 3

Subgraph Isomorphism Problem

3.1 Introduction

Graphs are useful, universal and pervasive data representation mod-

els in various fields. There are lots of interesting problems defined in terms

of graphs including the subgraph isomorphism problem. Finding a com-

mon structure in two given graphs is an important and general form of pat-

tern matching, and a common structures is often established by an isomor-

phism or a subgraph isomorphism. These problems arise in a number of

real world applications such as pattern recognition [RP94], computer-aided

design [OEGS93], image processing [LL01], bioinformatics [BB02], and

cheminfomatics [IWM00].

Given two graphs G1 and G2, the subgraph isomorphism problem is

to determine whether G2 contains a subgraph that is isomorphic to G1. It

is a generalization of the maximum clique problem, and is a well-known

NP-hard problem [Coo71]. The generalization of the subgraph isomorphism

problem is the maximum common subgraph isomorphism problem, which

is to find the largest subgraph of two given graphs that are isomorphic to

each other. This problem is also known to be NP-hard [GJ90].

Suppose that two graphs G1 = (V1,E1), G2 = (V2,E2) are given as the

input graphs of the problem to determine whether G1 is isomorphic to a

19

subgraph of G2. Instead of tackling the problem directly, an optimization

version of the problem is often solved. This problem asks to find a subgraph

of G2 which has the least number of different edges with G1, or a subgraph

which has the most number of common edges with G1 [BJWG94, KM10,

ZWL+11]. If the graph found is the same as G1, then it is a solution to the

decision version of the problem. In this thesis, we use the decision version

and the optimization version of the problem interchangeably.

Many algorithms have been proposed for the subgraph isomorphism

problem. But usually, these algorithms can solve the problem only for small-

sized graphs or for those with notable restrictions [Epp95, Luk82, RWH+10,

Ull76]. The recursive backtracking algorithm proposed by Ullmann [Ull76]

is one of the most commonly used for exact graph matching, which has ex-

ponential time complexity in general. Some approaches reduced the overall

computational complexity by setting some limitations on the graphs [Epp95,

Luk82] or adopting domain specific knowledge [RWH+10]. Messmer and

Bunke [MB00] studied a modified problem that detects subgraph isomor-

phisms from a number of a priori known graphs, so-called model graphs.

They matched the decomposed model graphs onto the given input, and the

subgraph isomorphisms for the complete graphs are obtained by recombin-

ing this results.

For real world applications, genetic algorithms were also used to solve

the problem. Brown et al. [BJWG94] used GA in 2D chemical structure

matching. Zhong et al. [ZWL+11] applied GA for the subgraph isomor-

phism problem to compute resource assignment in real time digital simula-

tors. Kim and Moon [KM10] proposed a malware detection system using a

20

hybrid GA. They represented a malware as a directed dependency graph and

transformed the malware detection problem into the subgraph isomorphism

problem.

Some previous works used evolutionary approaches for the problem

[BJWG94, KM10, ZWL+11]. Among them, the one using a multi-objective

approach proposed by Choi et al. showed notable performance [CYM12].

They suggested a multi-objective GA with a local search heuristic for this

problem. Comparing the degrees of each vertex of two graphs that are mapped,

they counted the number of mismatched vertices. Mapping a vertex v of G1

to w of G2 is mismatched if either ingoing or outgoing degree of v is greater

than that of w. They combined it with a commonly used fitness function. The

function counts the number of mismatched edges, which equals the number

of edges in G1 but not in G2 plus the number of edges in G2 but not in

G1. The combined fitness function was f = 0.1 · f1 + 0.9 · f2 where f1 and

f2 denote the number of mismatched edges and vertices, respectively. They

showed that the new fitness function is more globally convex than that of

previous studies and thereby improved the performance and efficiency.

3.2 The Proposed Algorithm

3.2.1 The Structure of the Incremental Genetic Algo-
rithm

The subgraph isomorphism problem has a huge problem space, as it

is an NP-hard problem. However, this problem has a good property which

could be utilized for an efficient search. If a graph G1 = (V1,E1) is iso-

21

morphic to a subgraph of G2 = (V2,E2), then any subgraph of G1 is also

isomorphic to a subgraph of G2. This means that if we first search for a

small subgraph of G1 in G2, then the solutions could be used in finding G1

in G2. A solution of a large size problem contains those of subproblems,

and a solution of a subproblem may contain many good components which

could be evolved to a high-quality solution to the bigger problem.

The IGA takes advantage of this structure. We start from a subproblem

of small size in the first step of the IGA and gradually expands the prob-

lem size. In each step, the results of smaller problems in the previous step

constitute an initial population of a hybrid GA in the current step. Through

applying this step over and over, the final result, an isomorphic subgraph of

the original size, is obtained.

Algorithm 1: Incremental Approach for Subgraph Isomorphism
Problem (SIP)

Input: G1 = (V1,E1), G2 = (V2,E2)
Output: A injective function g : V1→V2

1: n← the number of steps
2: for i← 1 to n do
3: mi← expansion size of i-th step
4: end for
5: V ′← Reordering(V1)
6: G1,0←∅
7: P0← random initial solutions of SIP(G1,0,G2)
8: for i← 1 to n do
9: Vcurr←{V ′1, . . . ,V ′mi

}
10: V ′←V ′−Vcurr

11: G1,i← G1,i−1∪Vcurr //adding mi vertices
12: Pi← initial solutions generated by Pi−1
13: Pi← hybrid GA(Pi)
14: end for
15: return the best in Pn

22

Algorithm 1 presents the IGA for the subgraph isomorphism problem.

First, the number of steps n (1 ≤ i ≤ n) and the problem expansion size

mi (
∑

i mi = |V1|) are determined. Then the vertices in G1 are rearranged

to decide the order of problem expansion. The incremental approach starts

from the problem SIP(G1,0, G2) with an empty graph G1,0 = ∅. For every

ith step, the graph G1,i to be matched is made up from expanding the graph

of the previous step G1,i−1 by adding mi vertices. The problem to be solved

at this moment is to find a subgraph of G2 which is isomorphic to G1,i. As

vertices are added, G1,i−1 is a subgraph of G1,i, and this suggests that the so-

lutions of the previous problem SIP(G1,i−1, G2) could efficiently evolve to

the solutions of the current problem SIP(G1,i, G2). The results of the previ-

ous step are expanded to compose an initial population, and a hybrid genetic

algorithm, with a help of a local optimization algorithm, evolves this popu-

lation over generations for matching G1,i to G2. This process is repeated for

n steps.

Figure 3 shows how the IGA works. Consider two graphs in Figure

3(a). In this case, the number of steps n is 3 and the expansion size for every

step mi is 1. Figure 3(b) describes the state after running the 2nd step. In

this step, the incremental GA solves the subproblem SIP(G1,2, G2) and gets

solutions P2. Figure 3(c) shows the beginning state of the 3rd step. Graph

G1,2 expands into G1,3 and the initial population of this step P3 is initialized

by P2 and extra mapping for a newly added node 3. After expansion, the GA

evolves P3 to solve SIP(G1,3, G2).

We use this incremental GA framework to solve the optimization ver-

sion of the subgraph isomorphism problem. Even if the problem is to find a

23

2

3

1

1

2

3
4

5

6

(a)

2

1

1

2

3
4

5

6

P1
2 P2

2 P3
2 · · ·

1→ 2 1→ 6 1→ 4 · · ·
2→ 3 2→ 1 2→ 2

(b)

2

3

1

1

2

3
4

5

6

P1
3 P2

3 P3
3 · · ·

1→ 2 1→ 6 1→ 4
· · ·2→ 3 2→ 1 2→ 2

3→ 4 3→ 5 3→ 3

(c)

Figure 3: An example of the incremental genetic algorithm process

24

similar subgraph, but not exactly the same one, the subgraph structure still

could be used for an efficient evolution.

3.2.2 Design Issues

As adding vertices in any order guarantees the optimal substructure,

we decided to use a V-IGA in our design. And for a faster computation, we

actually add the vertices to the previous graph. The V-IGA thereby solves

the subproblems with a different number of vertices at each step. We met

four design issues in this algorithm. The primary design issue was to reorder

the vertices to build a sequence of subproblems, as explained in Section

2.2.3. The other three issues are the population inheritance, the stopping

criterion for each step, and the expansion size of each step. The details of

them are explained below.

Vertex Reordering

As any reordering scheme leads to a subproblem sequence with an op-

timal substructure, the key point is to use the one that provides diversity

and proper search direction. The selection of vertices for the problem de-

termines the search direction of the next step and affects the connection

between solutions of each step. If vertices far away from the current sub-

graph are selected, the previous results are not very useful in the next step.

Thus it makes sense to select vertices highly related to the current subgraph.

A graph search algorithm and vertex adjacency were used to measure

the relation [HKM06]. In addition, selecting an appropriate vertex in earlier

25

steps may prune unnecessary searches. The degree of vertex plays a key role

in pruning the search space of the problem [CG70].

We applied three different schemes for reordering the vertices of G1,

as well as a randomized reordering which provides a baseline. The details

of the reordering schemes are as follows:

• Max-degree reordering.

We sort the vertices in non-increasing order of degree. The degree of

a vertex is the sum of both ingoing and outgoing degrees.

• BFS reordering.

We randomly select a starting vertex, and then run the breadth-first

search on G1. When the graph is disconnected and not all of the ver-

tices are visited, we randomly choose another unvisited vertex and

continue the procedure.

• Max-adjacency reordering.

We randomly select a starting vertex, and repeatedly select one of the

most attractive vertex in a greedy manner. The attractiveness of a ver-

tex v is the number of adjacent vertices that are already ordered. Two

vertices are adjacent to each other if there is an edge in any direction.

Population Inheritance

At the beginning of each step of the IGA, we reuse the population from

the previous step. In some previous works on IGA, population reusing does

not necessarily mean 100% inheritance. They only copied a certain portion

26

of the population and fill the rest with randomly initialized solutions. This

is mainly due to the characteristic of the problem in previous works; the old

and new problems may not share similar structures. However, as we use the

subproblems which are highly related to their previous subproblem, reusing

the entire population would be helpful. We tested IGAs which randomly

initialize some chromosomes to verify this property.

Stopping criterion

Basically, we used a fixed number of generations for all of the steps.

But this may lead to an excessive number of generations in earlier steps, be-

cause hybrid GA may converge very fast for relatively simple graphs. More-

over, keeping some solutions that are not converged in the population may

preserve solution diversity. Both the quality and the diversity of solutions in

the previous step have a decisive effect on the next step.

We terminate each step if the population is sufficiently converged. We

regard the number of the generations as the unit of time and distributed

totally 100 generations equally to each step. Before starting each step, we

redistributed the remaining generations equally to the remaining steps. By

this procedure, more time is assigned to the later steps.

Expansion size

The number of vertices to be added at each step also determines the

subproblem of each step. A naive way is to add a single vertex at each step.

But it is a waste of time to run a GA when the expanded graph is too simple,

27

for example, when an isolated vertex is added. Adding more vertices at that

time enables efficient space search, but an immoderate expansion size may

generate an excessively complicated graph. It is required to strike a balance

between efficiency and difficulty by selecting a moderate expansion size.

3.2.3 Genetic Framework

The hybrid genetic algorithm we used in the incremental approach for

the subgraph isomorphism problem is described below.

• Representation

Given two graphs G1 = (V1,E1) and G2 = (V2,E2) where |V1| ≤ |V2|,

a chromosome represents a permutation of V2 as an integer array. A

subgraph isomorphism g : V1 → V2, a solution of SGIP(V1, V2), is

decoded by first |V1| genes in the chromosome. A vertex v1,i ∈ V1

is mapped to v2,p[i] ∈ V2 and an edge (v1,i,v1, j) ∈ E1 is mapped to

(v2,p[i],v2,p[j]) ∈ E2. Figure 4 shows an example. Each vertex i in G1

is mapped by a vertex p[i] in G2, drawn by dashed lines. The main

advantage of this representation is the flexibility toward the problem

size expansion. Since a chromosome already has a full permutation of

V2, we can easily extend the mapping at each step without changing

values of the genes.

• Fitness Function

We use the function introduced in [CYM12]. It is defined to be f =

0.1 · f1 + 0.9 · f2, where f1 denotes the number of mismatched edges

and f2 denotes the number of mismatched vertices.

28

2

3

1

1

2

3
4

5

6

P[i] 1 4 6 3 5 2
i 1 2 3 4 5 6

Figure 4: Representation of a chromosome

• Population

The population size in each step of the incremental approach is 100.

When GA starts, it takes the population evolved in the previous step

as an initial population of the current step.

• Selection

The tournament selection is used. We pick two chromosomes ran-

domly and return the better one with 80 percent of a chance, and oth-

erwise return the worse one.

• Crossover

We used cycle crossover [OSH87].

• Mutation

We select a number of genes to shuffle them in random order. Each of

the genes independently has 40 percent of a mutational chance.

29

• Local optimization algorithm

We hybridize the local optimization algorithm with the incremental

GA, by applying it to the initial population at the beginning, and to

the offspring after crossover and mutation. We randomly swap two

vertices when there is an improvement; this is repeated until there is

no way to improve. The details are described in Algorithm 2.

Algorithm 2: Vertex swap local optimization algorithm
Input: A chromosome C of SGIP(G1, G2)

1: L←{(i, j) | 1≤ i≤ |V1|, i < j ≤ |V2|}
2: repeat
3: f lag← f alse
4: for all (i, j) ∈ L in random order do
5: swap (C[i],C[j])
6: calculate the difference
7: if improved then
8: f lag← true
9: else

10: swap(C[i],C[j]) // cancel
11: end if
12: end for
13: until flag

• Replacement

We generate 50 offspring per generation and take 100 best solutions

out of the existing solutions and the offspring.

• Stopping Criterion

The hybrid GA stops when a certain ratio of the population becomes

the optimal solutions to the subproblem of the ith step. We use the ratio

values of 1%, 50% and 100%. In the last step, when the subproblem is

30

the same as the original one, the algorithm stops if an optimal solution

is found. The fitness value of an optimal solution in the last step is

always zero.

3.3 Experimental Results

3.3.1 Dataset and Evaluation

We randomly generated 200 pairs of graphs by following a widely-used

graph generation process [CYM12, CFV07, FSV01]. We first generated a

larger graph G2. Exactly η|V2|2 directed edges are randomly generated with-

out any other constraint, where η denotes the edge density. The graph may

contain self-loops, and there may be two edges in both directions between

two vertices. The smaller graph G1 is generated from a subgraph of G2. We

randomly selected |V1| vertices from G2, and the induced subgraph is taken

as G1. This means that there is always a subgraph isomorphism from G1 to

G2 and the optimal fitness function value is always zero.

We used 4 different values for η and 5 different values for |V1| to gen-

erate 20 classes of graphs. For each of 20 classes, 10 pairs of graphs are

independently generated. This means that we used 200 pairs of graph in-

stances in our experiments. We used 0.01, 0.05, 0.1, and 0.5 for η, and 10,

30, 50, 70, and 90 for |V1|. The number of vertices in the larger graph |V2| is

fixed to 100. These are the parameters used in previous work [CYM12].

We conducted 1,000 runs for each of 200 pairs of graphs to test the

algorithms, which means 200,000 runs in total. For each class, we averaged

the results of 10 pairs of graphs. This is 10,000 runs for each of the class.

31

Table 1: Results of a traditional hybrid genetic algorithm

|V1| η f average Ratio

10

0.01 0.0000 100.00%
0.05 0.0000 100.00%
0.1 0.0005 99.46%
0.2 0.0566 62.02%

30

0.01 0.0000 100.00%
0.05 0.4995 50.06%
0.1 0.7271 84.14%
0.2 0.0499 99.56%

50

0.01 0.0088 91.52%
0.05 0.0050 99.93%
0.1 0.0000 100.00%
0.2 0.0000 100.00%

70

0.01 0.0079 92.66%
0.05 0.0000 100.00%
0.1 0.0000 100.00%
0.2 0.0000 100.00%

90

0.01 0.0000 100.00%
0.05 0.0000 100.00%
0.1 0.0000 100.00%
0.2 0.0000 100.00%

We measured the average fitness function value, the average running time,

and the proportion of runs where an optimal solution was found. We wrote

the program in C++ language and compiled it using g++ 4.8.4 with an O3

option. We executed the program on servers with Intel Xeon CPU E5-2660

v3 @ 2.60GHz and 1GB memory. We measured only the real running time

of GA part of the program.

32

3.3.2 Results and Discussions

Baseline Results

We tested a traditional hybrid genetic algorithm without using an in-

cremental approach, to obtain a baseline result. Table 1 shows the average

fitness value and the ratio of finding an optimal solution in percentage.

The baseline algorithm is an improved version of the multi-objective

GA proposed by Choi et al. [CYM12]. We modified some of the genetic op-

erators and parameters in order to improve the performance. The operators

and parameters we used are explained in Section 3.2.3. When compared to

experimental results in [CYM12], the ratio of finding an optimal solution

slightly decreased for 2 out of twenty classes, and considerably increased

for 8 classes. It did not change for the rest 10 classes.

For more than half of the classes, the GA found an optimal solution at

every trial. Only 8 out of 20 classes were relatively difficult, and the results

of these classes are marked in bold. Most of the difficult classes were when

|V1| was not too small and not too big. For the later experiments, only these

8 classes will be used.

Effect of Vertex Reordering

Table 2 shows the average fitness function value of hybrid IGA with

four different reordering schemes mentioned. The expansion size of each

step was 1, which means that a single vertex was added at each step. The

schemes are random reordering (RAND), Max-degree reordering (MD),

BFS reordering (BFS), and Max-adjacency reordering (MA). The result of

33

Table 2: Results of vertex reordering

|V1| η BASE RAND MD BFS MA
10 0.1 0.0005 0.0027 0.0001 0.0010 0.0006
10 0.2 0.0566 0.0865 0.0434 0.0644 0.0575
30 0.05 0.4995 0.8999 0.2160 0.3992 0.2876
30 0.1 0.7271 1.2843 0.4205 0.9276 0.4124
30 0.2 0.0499 0.4251 0.0376 0.4164 0.1353
50 0.01 0.0088 0.1145 0.0053 0.0104 0.0099
50 0.05 0.0050 0.2398 0.0036 0.0990 0.0291
70 0.01 0.0079 0.1242 0.0049 0.0121 0.0123

the traditional hybrid GA is also shown as the baseline (BASE). We high-

lighted the results when there was an improvement compared to the base-

line. Adding an incremental approach to the hybrid GA with randomized

vertex reordering degraded the performance in all of the 8 classes. But this

could be overcome by using proper vertex reordering schemes in most of the

cases. The incremental approach using the most appropriate scheme, namely

max-degree reordering (MD), even showed a better performance than that

of the baseline. We therefore use this reordering scheme in the rest of our

experiments.

Effect of Partially Random Initialization

At the beginning of each step, we randomly initialized a certain num-

ber of chromosomes in the population. We used 0, 10, 20, 30, 40, and 50

for the values. Table 3 shows the ratio of finding an optimal solution in per-

centage. For most of the cases, random initialization degraded the quality of

solutions, and the quality decreased more when there was more randomness.

The results suggest that we used an adequate sequence of subproblems. We

34

Table 3: Results of partially random initialization

|V1|, η
Ratio

0 10 20 30 40 50
10, 0.1 99.92% 99.79% 99.91% 99.87% 99.88% 99.79%
10, 0.2 71.54% 71.29% 72.04% 70.60% 69.74% 68.26%
30, 0.05 71.39% 63.87% 54.40% 40.40% 27.79% 21.85%
30, 0.1 91.05% 91.52% 89.53% 85.55% 80.62% 74.18%
30, 0.2 99.67% 99.78% 99.70% 99.45% 99.26% 98.63%
50, 0.01 94.79% 83.61% 70.77% 58.95% 46.81% 35.16%
50, 0.05 99.95% 99.79% 98.20% 95.09% 92.00% 88.56%
70, 0.01 96.14% 83.24% 59.10% 28.41% 16.09% 10.95%

therefore decided to reuse all of the solutions in the population from the

previous step.

Effect of Changing Stopping Criterion

Table 4 shows the average fitness function value of the hybrid incre-

mental GAs with different stopping criteria for each step. Each of the step is

terminated when the count of optimal solutions in the population reaches a

certain threshold. We used 100, 50, and 1 for the threshold value. The stop-

ping criterion is applied to the algorithm with max-degree reordering and

the algorithm with random reordering. For each reordering scheme, we also

showed the result of an algorithm without stopping criterion, which runs for

a fixed number of generations for each step, as the baseline. We marked the

best result for each case in bold.

In general, reducing the threshold value gave better results for both

schemes. In the case with max-degree reordering, using the lowest threshold

value of one gave the best result in only three out of eight classes. However,

35

Ta
bl

e
4:

R
es

ul
ts

of
ch

an
gi

ng
st

op
pi

ng
cr

ite
ri

on

|V
1|

η
W

ith
m

ax
-d

eg
re

e
re

or
de

ri
ng

R
an

do
m

re
or

de
ri

ng
B

as
e

10
0

50
1

B
as

e
10

0
50

1
10

0.
1

0.
00

01
0.

00
00

0.
00

00
0.

00
01

0.
00

27
0.

00
92

0.
00

73
0.

00
48

10
0.

2
0.

04
34

0.
03

64
0.

03
19

0.
03

36
0.

08
65

0.
72

95
0.

66
49

0.
55

50
30

0.
05

0.
21

60
0.

17
12

0.
16

22
0.

14
64

0.
89

99
7.

84
36

7.
51

26
6.

94
22

30
0.

1
0.

42
05

0.
39

09
0.

38
75

0.
33

85
1.

28
43

12
.8

21
1

12
.5

18
0

11
.6

31
8

30
0.

2
0.

03
76

0.
03

80
0.

03
50

0.
03

62
0.

42
51

4.
85

71
4.

57
77

4.
83

45
50

0.
01

0.
00

53
0.

00
38

0.
00

44
0.

00
56

0.
11

45
0.

68
08

0.
60

49
0.

37
15

50
0.

05
0.

00
36

0.
00

57
0.

00
51

0.
00

48
0.

23
98

1.
54

04
1.

39
50

1.
32

29
70

0.
01

0.
00

49
0.

00
53

0.
00

50
0.

00
50

0.
12

42
1.

25
39

1.
25

85
1.

03
44

36

the overall results from this threshold value were most similar to the best

results. And for the case with random reordering, only one case was ex-

ceptional. Since reducing the threshold value increases population diversity,

focusing on exploration in intermediate steps seems to be more helpful than

focusing on exploitation. Instead of evolving from a population full of local

optima, it was better to evolve from a diverse population where only one of

the solutions is locally optimal.

Effect of Changing Expansion Size

Table 5 shows the average fitness function value and the average run-

ning time of hybrid incremental GAs with different expansion size values.

Since there are classes of graphs with |V1| = 10, we used expansion sizes

less than or equal to five. We used max-degree reordering and stopping cri-

terion with a threshold value of one. Correlation coefficients between the

averages and the expansion size are also calculated and presented. Among

the five different cases, the best result for each class is marked in bold.

Generally, increasing the number of vertices to be added at each step

was better in terms of fitness function value. However, the values do not have

a consistent and strong correlation with the expansion size. By measuring

the relative error, we found that the expansion size of 4 is the best. Large

expansion size was also good in terms of average running time, and there

was a consistent and strong correlation. Changing the expansion size from

1 to 2 had the largest gap of running time, and the gap decreased afterward.

Therefore, it seems better to use a large expansion size since increasing the

size reduces the running time without losing the solution quality.

37

Ta
bl

e
5:

R
es

ul
ts

of
ch

an
gi

ng
ex

pa
ns

io
n

si
ze

|V
1|

η
A

ve
ra

ge
fit

ne
ss

fu
nc

tio
n

va
lu

e
A

ve
ra

ge
ru

nn
in

g
tim

e
in

se
co

nd
s

1
2

3
4

5
C

or
r.

1
2

3
4

5
C

or
r.

10
0.

1
0.

00
01

0.
00

02
0.

00
02

0.
00

02
0.

00
04

0.
95

14
0.

18
0.

11
0.

12
0.

10
0.

11
-0

.7
62

9
10

0.
2

0.
03

36
0.

03
89

0.
04

05
0.

04
38

0.
05

12
0.

97
29

0.
75

0.
78

0.
83

0.
84

1.
02

0.
89

98
30

0.
05

0.
14

64
0.

13
80

0.
14

00
0.

13
93

0.
14

28
-0

.2
76

9
4.

11
3.

12
2.

87
2.

99
2.

89
-0

.7
80

2
30

0.
1

0.
33

85
0.

31
27

0.
29

35
0.

30
55

0.
26

86
-0

.9
06

3
4.

04
2.

65
2.

16
2.

13
1.

77
-0

.8
99

1
30

0.
2

0.
03

62
0.

03
06

0.
02

96
0.

02
37

0.
02

63
-0

.8
91

7
4.

50
3.

00
2.

36
2.

23
1.

78
-0

.9
26

9
50

0.
01

0.
00

56
0.

00
53

0.
00

56
0.

00
59

0.
00

54
0.

17
19

8.
05

5.
06

4.
30

3.
93

3.
43

-0
.8

96
2

50
0.

05
0.

00
48

0.
00

25
0.

00
13

0.
00

07
0.

00
23

-0
.6

76
0

10
.7

5
5.

96
4.

64
4.

01
3.

28
-0

.8
97

8
70

0.
01

0.
00

50
0.

00
33

0.
00

34
0.

00
35

0.
00

35
-0

.6
48

9
20

.7
9

12
.2

7
10

.1
6

8.
88

7.
87

-0
.8

91
4

38

3.3.3 Overall Results

We combined the best choices from the previous subsections in build-

ing our hybrid IGA. We used max-degree reordering, the stopping criterion

with a threshold value of one, and the expansion size value of four. All of

the 20 classes of graphs were tested by this algorithm and the result was

compared to that of the traditional hybrid GA without the incremental ap-

proach.

Table 6 shows the overall results. The average fitness function value,

the standard deviation (SD) of the values, the average running time in sec-

onds, and the proportion of runs in which an optimal solution has been

found, are shown in the table, respectively. The table also contains p-values

for each class computed by Welch’s t-test. The null hypothesis is that the

performance of the traditional algorithm is the same as that of the incre-

mental algorithm, where the performance is measured by the average fitness

function value. Therefore, the p-value roughly denotes the probability that

the incremental approach makes no improvement in its performance. Eleven

out of twenty classes are marked as NA, which means that both algorithms

always found an optimal solution and thus the p-value could not be defined.

For the eight relatively difficult classes, the performance was significantly

improved by the incremental approach. The minimum ratio of finding an

optimal solution was dramatically increased from 50.06% to 69.40%. The

result shows that using the incremental approach is significantly helpful to

improve the performance of a hybrid genetic algorithm. There was one ex-

ceptional case when |V1| = 50 and η = 0.1. The average fitness function

39

Ta
bl

e
6:

O
ve

ra
ll

re
su

lts
of

th
e

pr
op

os
ed

hy
br

id
in

cr
em

en
ta

l
ge

ne
tic

al
go

ri
th

m
co

m
pa

re
d

to
a

tr
ad

iti
on

al
hy

br
id

ge
ne

tic
al

go
ri

th
m |V

1|
η

Tr
ad

iti
on

al
hy

br
id

G
A

H
yb

ri
d

in
cr

em
en

ta
lG

A
p-

va
lu

e
f

av
er

ag
e

f
SD

Ti
m

e
R

at
io

f
av

er
ag

e
f

SD
Ti

m
e

R
at

io

10

0.
01

0.
00

00
0.

00
00

0.
00

10
0.

00
%

0.
00

00
0.

00
00

0.
05

10
0.

00
%

N
A

0.
05

0.
00

00
0.

00
00

0.
01

10
0.

00
%

0.
00

00
0.

00
00

0.
07

10
0.

00
%

N
A

0.
1

0.
00

05
0.

00
73

0.
10

99
.4

6%
0.

00
02

0.
00

47
0.

10
99

.7
8%

0.
00

02
0.

2
0.

05
66

0.
08

06
1.

10
62

.0
2%

0.
04

38
0.

07
29

0.
84

69
.4

0%
<

0.
00

01

30

0.
01

0.
00

00
0.

00
00

0.
09

10
0.

00
%

0.
00

00
0.

00
00

0.
61

10
0.

00
%

N
A

0.
05

0.
49

95
0.

59
07

7.
58

50
.0

6%
0.

13
93

0.
32

63
2.

99
80

.2
5%

<
0.

00
01

0.
1

0.
72

71
1.

67
99

6.
49

84
.1

4%
0.

30
55

1.
15

53
2.

13
93

.4
3%

<
0.

00
01

0.
2

0.
04

99
0.

75
22

2.
47

99
.5

6%
0.

02
37

0.
51

72
2.

23
99

.7
9%

0.
00

41

50

0.
01

0.
00

88
0.

02
95

7.
44

91
.5

2%
0.

00
59

0.
02

36
3.

93
94

.1
8%

<
0.

00
01

0.
05

0.
00

50
0.

18
98

3.
60

99
.9

3%
0.

00
07

0.
07

20
4.

01
99

.9
9%

0.
03

42
0.

1
0.

00
00

0.
00

00
2.

94
10

0.
00

%
0.

03
28

0.
84

50
5.

28
99

.8
5%

0.
00

01
0.

2
0.

00
00

0.
00

00
2.

49
10

0.
00

%
0.

00
00

0.
00

00
8.

36
10

0.
00

%
N

A

70

0.
01

0.
00

79
0.

02
92

15
.8

0
92

.6
6%

0.
00

35
0.

02
43

8.
88

97
.2

6%
<

0.
00

01
0.

05
0.

00
00

0.
00

00
0.

08
10

0.
00

%
0.

00
00

0.
00

00
7.

71
10

0.
00

%
N

A
0.

1
0.

00
00

0.
00

00
0.

20
10

0.
00

%
0.

00
00

0.
00

00
9.

37
10

0.
00

%
N

A
0.

2
0.

00
00

0.
00

00
0.

93
10

0.
00

%
0.

00
00

0.
00

00
13

.3
2

10
0.

00
%

N
A

90

0.
01

0.
00

00
0.

00
00

4.
50

10
0.

00
%

0.
00

00
0.

00
00

12
.4

0
10

0.
00

%
N

A
0.

05
0.

00
00

0.
00

00
0.

03
10

0.
00

%
0.

00
00

0.
00

00
14

.9
4

10
0.

00
%

N
A

0.
1

0.
00

00
0.

00
00

0.
04

10
0.

00
%

0.
00

00
0.

00
00

18
.1

8
10

0.
00

%
N

A
0.

2
0.

00
00

0.
00

00
0.

08
10

0.
00

%
0.

00
00

0.
00

00
23

.9
3

10
0.

00
%

N
A

40

value was increased and the corresponding p-value was 0.0001. This is the

case when the traditional hybrid GA could find an optimal solution in all of

the 10,000 runs. However, the incremental algorithm has failed in 15 out of

10,000 runs and recorded higher function value.

In an ideal case, the IGA should spend less time than the traditional

GA. It solves smaller problems in earlier steps which require less running

time. It might spend additional time in expanding the problem and extend-

ing the solutions, which are usually not dominating factors. However, the

average running time was not decreased by using the incremental approach

as shown in Table 6. We observed the running time decrease in only seven

classes. For relatively easy classes, the traditional GA found an optimal so-

lution in earlier generations and terminated. However, the incremental GA

must run for at least one generation for each step. The increase in running

time seemed to be caused by this basic cost of the IGA, which also made

the difference in the number of generations executed by the algorithms.

In Table 7, the average number of generations executed by two genetic

algorithms is presented. These are the algorithms with threshold (TH) value

of one. They are terminated when an optimal solution of zero cost is found.

As shown in the table, the incremental GA tends to run for more number of

generations for relatively easy classes, and less number of generations for

relatively difficult classes. We also tested the algorithms which use an infi-

nite threshold value. These are the algorithms which run for a fixed number

of generations. The results are presented in Table 7 as well, and the running

time of the IGA was shorter than the traditional GA for cases with |V1| ≤ 70.

The cases with |V1|= 90 are extremely easy cases and the populations of the

41

Table 7: Running time analysis of the two GAs

|V1| η
Generations (TH= 1) Time (TH= ∞)

GA IGA GA IGA

10

0.01 0.0000 3.0000 0.88 0.10
0.05 0.1484 3.0073 1.18 0.26
0.1 5.8462 4.8632 1.44 0.62
0.2 53.2016 43.5417 2.02 1.32

30

0.01 0.8870 8.0004 5.69 2.58
0.05 78.1283 51.2670 9.96 6.56
0.1 41.4299 26.9124 13.50 7.85
0.2 7.7737 14.7546 16.36 8.12

50

0.01 42.9123 30.7370 17.55 11.63
0.05 10.2969 22.0814 27.21 21.06
0.1 4.2882 19.6819 32.23 20.67
0.2 1.4239 19.2067 43.97 25.21

70

0.01 42.6622 33.6521 38.73 28.82
0.05 0.0000 18.0239 47.58 45.48
0.1 0.0002 18.1230 55.59 48.68
0.2 0.0180 18.5602 77.48 60.66

90

0.01 4.7247 23.0131 69.39 71.13
0.05 0.0000 23.0000 73.21 90.23
0.1 0.0000 23.0000 88.88 98.96
0.2 0.0000 23.0000 117.50 127.50

GAs are converged after a very few number of generations. The overhead

of the incremental approach was dominant for these cases. Nonetheless, the

results suggest that the IGA is basically an efficient approach.

3.4 Further Improvement

As shown in Table 6, the hybrid incremental approach with appropriate

schemes outperformed the previous works. However, for some of the graphs,

such as the ones with |V1|= 10 and η= 0.2, the success ratio of≈ 70% is not

42

satisfactory. We noticed that the ones recording relatively bad performance

were the ones with sparse G1. The algorithm has to be further developed to

deal with these cases. We devised new operators and tested them.

3.4.1 New Operators

Improved Reordering Scheme

Experimental results show that reordering the vertices in an appropriate

order plays a key role in an incremental GA. The best method was to sort

the vertices in the decreasing order of degree. However, this does not make

much sense for sparse graphs. Lots of the vertices have the same degree and

a tie-breaking rule is needed. We modify the reordering scheme; in a case

of a tie, the vertex having more adjacency to the previously ordered vertices

comes earlier in the ordering. This is a combination of the best and the

second best reordering schemes proposed in Section 3.2.3, and we expect

a synergy effect. We name this new vertex reordering scheme Max-degree-

adjacency (MDA) reordering.

Improved Local Optimization

The algorithms using an evolutionary computation in previous works

hybridized a genetic algorithm with a local optimization algorithm [CYM12,

KM10]. Two vertices are chosen at random, and they are interchanged if it

has a gain in fitness. But for sparse graphs, the local move is mostly likely to

produce a solution with the same fitness. This is called plateau phenomenon,

and it makes the search algorithm less effective.

43

Algorithm 3: GDA-like local optimization algorithm
Input: A solution X of SIP(G1, G2)

1: L←{(i, j) | 1≤ i≤ |V1|, i < j ≤ |V2|}
2: Level←C(X)
3: repeat
4: f lag← f alse
5: for all (i, j) ∈ L in random order do
6: swap (X [i],X [j])
7: evaluate the new cost C(X)
8: if C(X)< Level then
9: f lag← true

10: Level← Level−∆

11: else
12: swap(X [i],X [j]) // cancel
13: end if
14: end for
15: until flag

To escape from a plateau in a search space, we use a variant which

permits some local moves that do not improve the fitness. We adopt an idea

from the great deluge algorithm (GDA), which was reported to be effective

[Due93]. Any local move that makes the new fitness be above a certain

level is allowed, and the level is increased over time. The local optimization

algorithm we used is described in Algorithm 3. Note that C(X) denotes the

error correction cost of a solution X , but not the fitness of the solution.

For ∆, the amount of change in level, we use the cost of the initial

solution divided by 0.1×|L|. Here, |L| denotes the number of neighbors of

a solution. This means that the number of the local moves made is at most

0.1×|L|. The running time is increased when ∆ is smaller, and the quality

of the solution is degraded when ∆ is bigger. The value of ∆ is set to make a

good balance between the running time and the solution quality.

44

Table 8: Results of improved operators

|V1| η
Incremental GA Local optimization

MD MDA Prev. one New one
10 0.1 0.0001 0.0001 0.3179 0.2531
10 0.2 0.0434 0.0461 0.7216 0.6152
30 0.05 0.2160 0.1670 2.8218 2.6332
30 0.1 0.4205 0.4484 6.8694 6.5598
30 0.2 0.0376 0.0297 14.7564 14.6842
50 0.01 0.0053 0.0021 1.4857 1.4143
50 0.05 0.0036 0.0069 11.1004 10.7590
70 0.01 0.0049 0.0022 3.6902 3.4166

3.4.2 Improvements by New Operators

We first compare the new operators with the previous ones. The pro-

posed vertex reordering scheme and local optimization algorithm are tested

on the same graph instances from the previous subsection. We mainly used

the eight relatively difficult classes in our experiments. We compare the

new reordering scheme, Max-degree-adjacency reordering (MDA), with the

Max-degree reordering (MD). The details of the incremental GA framework

is the same as the ones in Section 3.2.3, for fair comparison. The new local

optimization algorithm is compared to the previous vertex-swap local op-

timization algorithm used in [CYM12, KM10] and Section 3.2.3. We con-

ducted 100 runs for each of the algorithms and averaged the results. Table

8 shows the average cost function values, and the better ones are marked in

bold. We compare the two IGAs using different vertex reordering methods,

and compare the old and the new local optimization algorithms.

For five out of eight classes, the performance of MDA was better than

or equal to MD. This result suggests that the combination of the two vertex

45

reordering schemes could bring a synergy effect. In addition, the new local

optimization was better than the previous one for all of the classes. Both of

the two proposed operators turned out to be effective. We used both of them

in the following experiments.

3.4.3 Overall Result

As both of the new operators showed performance improvement, we

combined them to build an improved hybrid IGA. Since two core parts of the

algorithm have been modified, we also tried to change other parameters. For

the stopping criterion, the threshold value of one was still the best. However,

for the expansion size, we found that the algorithm using a smaller value

produces the better results. We tested the expansion sizes ranging from one

to five again, and found that the value of one was the best. Table 9 shows

the result of the improved hybrid IGAs with five different expansion size

values. With expansion size of one, the success ratio was maximized for

seven out of eight classes. All of them recorded over 96%, and compared

to the result in Table 6, they were better than the previous hybrid IGA. The

average fitness function values were also smaller. In particular, for graphs

with |V1| = 10 and η = 0.2, the success ratio was increased by more than

28%, from 69.40% to 97.93%.

The hybrid IGA with expansion size one was tested on all of the 20

classes of graphs. The overall results are presented in Table 10. The average

fitness function value, the standard deviation (SD) of the values, the average

running time in seconds, and the proportion of runs in which an optimal so-

lution has been found, are shown in the table, respectively. The results were

46

Ta
bl

e
9:

R
es

ul
ts

of
th

e
im

pr
ov

ed
hy

br
id

in
cr

em
en

ta
lg

en
et

ic
al

go
ri

th
m

w
ith

va
ri

ou
s

ex
pa

ns
io

n
si

ze

|V
1|

η
A

ve
ra

ge
fit

ne
ss

fu
nc

tio
n

va
lu

e
A

ve
ra

ge
ru

nn
in

g
tim

e
in

se
co

nd
s

1
2

3
4

5
1

2
3

4
5

10
0.

1
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

2
0.

00
22

0.
00

46
0.

00
40

0.
00

29
0.

00
40

97
.9

3%
95

.7
5%

96
.2

9%
97

.2
1%

96
.3

6%
30

0.
05

0.
01

03
0.

11
48

0.
06

34
0.

05
06

0.
02

58
96

.2
2%

77
.4

2%
85

.8
5%

87
.0

9%
91

.5
8%

30
0.

1
0.

00
18

0.
00

32
0.

00
18

0.
00

09
0.

00
18

99
.9

6%
99

.9
3%

99
.9

6%
99

.9
8%

99
.9

6%
30

0.
2

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
50

0.
01

0.
00

05
0.

03
57

0.
02

20
0.

01
44

0.
00

54
99

.4
6%

70
.5

0%
79

.9
5%

86
.1

8%
94

.6
9%

50
0.

05
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

70
0.

01
0.

00
00

0.
02

17
0.

00
90

0.
00

34
0.

00
04

10
0.

00
%

85
.8

5%
93

.0
7%

97
.0

0%
99

.5
7%

47

Table 10: Overall results of the improved hybrid incremental genetic algo-
rithm
|V1| η f average f SD Time Ratio p-value

10

0.01 0.0000 0.0000 0.05 100.00% NA
0.05 0.0000 0.0000 0.07 100.00% NA
0.1 0.0000 0.0000 0.20 100.00% <0.0001
0.2 0.0022 0.0153 0.83 97.93% <0.0001

30

0.01 0.0000 0.0000 1.34 100.00% NA
0.05 0.0103 0.0592 5.35 96.22% <0.0001
0.1 0.0018 0.0875 5.19 99.96% <0.0001
0.2 0.0000 0.0000 4.63 100.00% <0.0001

50

0.01 0.0005 0.0073 11.78 99.46% <0.0001
0.05 0.0000 0.0000 15.34 100.00% 0.3173
0.1 0.0000 0.0000 12.13 100.00% 0.0001
0.2 0.0000 0.0000 13.97 100.00% NA

70

0.01 0.0000 0.0000 39.16 100.00% <0.0001
0.05 0.0000 0.0000 35.24 100.00% NA
0.1 0.0000 0.0000 29.79 100.00% NA
0.2 0.0000 0.0000 35.35 100.00% NA

90

0.01 0.0000 0.0000 114.82 100.00% NA
0.05 0.0000 0.0000 59.39 100.00% NA
0.1 0.0000 0.0000 60.77 100.00% NA
0.2 0.0000 0.0000 79.01 100.00% NA

48

compared to previous hybrid IGA in Section 3.2.3 and p-values computed

by Welch’s t-test are shown in the table. The hybrid IGA combined with

carefully designed operators and appropriate process showed an almost per-

fect result. The new IGA was effective for all of the cases and there was a

statistically significant improvement.

49

Chapter 4

Graph Cut Optimization Problems

4.1 Introduction

Given an undirected graph G = (V,E), we want to divide the vertices

into groups. Each group is called a partition, and the number of the groups

is usually set to be two. An edge connecting vertices from two different

partitions is called a cut edge, and a cut size of the partitioning is the number

of cut edges. The graph cut optimization problem is to find a partitioning that

either minimizes or maximizes the cut size.

The minimization version of the problem is called the graph partition-

ing problem (GPP) [KHKM11]. There is an additional constraint in this

problem; the sizes of the partitions have to be balanced and should not

differ by more than one. The problem becomes easier without this con-

straint and is solvable by a maximum flow algorithm [CSRL01]. GPP has

a number of applications in parallel computing, image processing, sparse

matrix factorization, and VLSI design [BMS+13, KHKM11]. Both exact

algorithms [DFG+15] and metaheuristics [CBM07] are used to solve this

NP-hard problem [GJ90]. Various genetic algorithms have been proposed as

well [BM96, HKY15, KHKM11, KM04]. Vertex reordering schemes [BM94],

normalization techniques [Las91], and hybridizations with local optimiza-

tion [vLM91] are relevant issues of this problem.

50

There is no constraint on the partition size for the maximization prob-

lem, and the problem is called the maximum cut problem (MCP). Though

this problem looks similar to the GPP, both of them have a distinctive char-

acteristic. The MCP is also an NP-hard problem [GJ90], and the application

domain includes VLSI design and statistical physics [SL12]. A Tabu-search

based metaheuristic [YHM14], a genetic algorithm based approach [SL12],

and a hybrid [WWL15] have been proposed.

4.2 The Proposed Algorithm

4.2.1 Subproblem Structure

The fitness function of the graph cut optimization problem is defined

in terms of the cut size. Since the size of a cut is defined to be the number

of edges satisfying a constraint, it is natural to construct the subproblem by

removing the edges from the original graph, or in other words, by gradually

adding the edges to an empty graph. However, the graph cut optimization

problem has more complicated subproblem structure compared to the sub-

graph isomorphism problem, and only a few particular sequences have the

optimal substructure.

We will explain the details with the GPP, the minimization version of

the problem. Let x∗ be an optimal solution of the original problem, and

Ecut(x∗) be the set of the cut edges formed by the solution x∗. Then, the

following propositions hold.

Proposition 1. If some of the cut edges in Ecut(x∗) are removed from the

graph, then x∗ is still an optimal solution for the corresponding subproblem.

51

Proof. Suppose that there exists a better solution x′ with less cut size. Then,

by adding up the number of the removed edges to the cut size of x′ with

respect to the subproblem, we obtain a value that is less than |Ecut(x∗)|. This

contradicts the assumption that x∗ is an optimal solution.

Proposition 2. If all of the cut edges in Ecut(x∗), and other non-cut edges

are removed from the graph, then x∗ is still an optimal solution for the cor-

responding subproblem.

Proof. For this subproblem, x∗ is a solution with cut size zero, as all of the

cut edges are removed. Since only non-cut edges are left in the graph, x∗

will stay as an optimal solution with cut size zero.

Therefore, from the above propositions, it follows that there exists a

sequence of subproblems having an optimal substructure. The sequence is

obtained by adding the non-cut edges before the cut edges. Note that as the

MCP is opposite to the GPP, a sequence of subproblems having an optimal

substructure for the MCP could be obtained by adding the cut edges before

the non-cut edges.

Figure 5 shows an example of an original problem, and two examples

of subproblems. In figure 5(a), the original graph G and the optimal solution

with one cut edge are shown. The vertices with the same color constitute

each partition. In figure 5(b), the cut edge and two non-cut edges are re-

moved from G. The removed edges are drawn with dashed lines. As shown

in Proposition 1 and 2, we can see that the optimal solution is the same, and

it also has cut size zero. However, in figure 5(c), the subproblem has a dif-

ferent optimal solution of cut size zero. In this case, only four non-cut edges

52

(a) A sample graph G

(b) A spanning graph of G which has the same
optimial solution as that of G

(c) A spanning graph of G which has a differ-
ent optimial solution from that of G

Figure 5: The original problem and two subproblems of graph partitioning
problem

53

are removed from the original graph. The above solution for G has one cut

edge, and thus it is not even one of the optimal solutions. If an IGA faces

this subproblem in the intermediate step, then the optimal solutions may not

be useful to find the optimal solution for the original problem.

The problem is that we cannot know the optimal solution prior to ac-

tually solving it. Even if we know the cut edges formed by the optimal so-

lution, the order of the non-cut edges, the order of the cut edges, and the

number of edges to be added at each step have to be determined as well.

Therefore, to find a good sequence of subproblems, we have to investigate

a heuristic method which indirectly reflects the optimal substructure. This

issue is discussed in detail in the next subsection.

4.2.2 Reordering Schemes

We also use three different ordering schemes to find a good sequence of

subproblems. As discussed in Section 2.2.3, the order of the edges is the key

part of an IGA. In an ideal ordering of the edges, the non-cut edges of the

optimal solution are needed to be placed earlier for the optimal substructure,

and cut edges could be placed in between non-cut edges to reduce the dif-

ficulty of the space search. The three schemes are chosen to approximately

satisfy this property. The details of each scheme and rationales behind them

are as follows.

• Randomized ordering: The entire edges are randomly ordered for

an E-IGA, and the vertices are considered in a randomized order for

a V-IGA and an M-IGA. It provides a baseline result.

54

• Degree based ordering: We sorted the edges by the degree of their

incident vertices for an E-IGA, and sorted the vertices by their degree

for a V-IGA and an M-IGA. We use a decreasing order and in a case

of a tie, we randomly choose one of the objects. The vertex with a

high degree value is likely to have more non-cut edges as its incident

edges than the one with a low degree value. Also, placing such vertex

in an earlier step may help to draw up an outline of the search space

landscape, as it complicates the search space when it is added to the

graph.

• BFS ordering: We randomly choose one vertex and run a breadth-

first-search (BFS) starting from that vertex. The adjacent vertices are

added to the queue in random order. For an E-IGA, we iterate the

vertices in BFS order and list the incident edges. And for a V-IGA

and an M-IGA, the vertices are considered in BFS order. We choose

this scheme to utilize the cluster inside the graph [BM96, HKM06,

HKY15]. If the vertices and edges in a cluster are added to the graph

almost consecutively, those vertices are likely to be assigned to the

same partition. Note that edges inside a cluster are non-cut edges, and

they are likely to be added earlier when this scheme is used.

4.2.3 Genetic Framework

As the algorithm for GPP and MCP are similar, we describe the algo-

rithm only for the GPP. We use a typical GA with and without the incremen-

tal approach in our experiment. Note that the proposed incremental approach

55

could be applied in combination with any other operators and techniques,

such as gene reordering [BM94], normalization [Las91], greedy repairing

schemes [BM96, HKM06], and local optimization algorithms [vLM91]. We

decide not to combine them with the incremental algorithm in our experi-

ment, to thoroughly observe the effect of using the incremental approach. In-

stead, we use the common operators that have been widely used [KHKM11].

The operators and parameters are as follows.

• Population management: The size of the population is 100. Twenty

new offspring are generated in each generation. The best 100 out of

120 chromosomes survive. The population is randomly initialized in

the first step of the IGA, and is reused in the rest of the steps. As we

keep the same set of vertices and add the edges only, we reuse the

chromosomes without extending them.

• Representation: We use a binary representation. If a chromosome

has a different number of 0s and 1s, we randomly repair it.

• Selection: We randomly select eight chromosomes and run a tourna-

ment. The better chromosome wins the match with probability 80%.

The best two chromosomes are finally selected.

• Crossover and Mutation: We use a uniform crossover and a random

mutation. Based on Hamming distance, we first normalize the chro-

mosomes before crossover. Each gene is inherited from one of the two

parents with equal probability, and is toggled afterward with 0.5% of

a chance.

56

• Stopping criterion: For a fair comparison, we use a fixed number

of generations. We use 105 for a traditional GA, and it is evenly dis-

tributed to each step for an IGA.

4.3 Experimental Results

4.3.1 Dataset and Evaluation

To test an IGA for the GPP, we use random graphs (Gn.d graphs) and

random geometric graphs (Un.d graphs) [JAMS89], which have been widely

used in literature [BM96, CBM07, DFG+15, HKY15, KM04]. They were

randomly generated to have n vertices and to have an average vertex degree

of d. The value of n is either 500 or 1000. For the values of d, 2.5, 5, 10,

and 20 are used for Gn.d graphs, and 5, 10, 20, and 40 are used for Un.d

graphs. Note that d is represented in percent. As one may infer from the

name of the graph, Un.d graphs have a geometric property; the vertices are

laid on a 2D Euclidean plane and two vertices are connected by an edge

if the Euclidean distance between them is under a certain threshold value.

And to test an IGA for the MCP, we use the graphs so-called G-set [HR00],

which have been widely used in literature [WWL15, YHM14]. These are a

variety of randomly generated graphs, and some of them have weights on

the edges. As we are considering a problem regarding the cut size, we only

use the ones without edge weights. And we could use the same incremental

framework for both of the problems if such graphs are selected. Eighteen

graphs are used in total, and they are G1 to G5, G14 to G17, G43 to G47,

and G51 to G54.

57

Each of the algorithms was performed 1000 times for each of the graph

instances, and the running environment was the same as the ones in previ-

ous Chapter 3. The best cut sizes found by the algorithms in each run are

averaged. To compare two algorithms, we have calculated the p-value of

Welch’s t-test.

4.3.2 Results on Graph Partitioning Problem

Performance of Incremental Genetic Algorithm

We implemented a traditional GA, and the result can be considered as a

baseline. There are nine combinations out of three graph expansion methods

and three reordering schemes; we tested all of them. Table 11 shows the

average cut size found by GA and IGAs. The value is marked in bold if it

is better than the traditional GA. Among the results of nine algorithms, the

minimum cut size for each graph is parenthesized by a square bracket.

Among the three graph expansion methods, the worst one is the edge-

wise expansion which results in relatively high cut size. An E-IGA adds one

edge to the graph at each step, and a required number of steps is equal to

the number of edges in the graph. As the number of steps is large compared

to other two kinds of IGAs, E-IGAs run for a relatively small number of

generations in each step.

On the other hand, the overall best method is mixed expansion method

used in M-IGAs. It shows performance improvement compared to the result

of traditional GA, for almost all cases except three ones. Moreover, M-IGAs

recorded the best results for 15 instances out of 16. The V-IGA, which also

58

Ta
bl

e
11

:P
er

fo
rm

an
ce

of
th

e
te

st
ed

G
A

an
d

IG
A

s
fo

rt
he

G
PP

G
ra

ph
G

A
E

-I
G

A
V

-I
G

A
M

-I
G

A
R

an
d.

D
eg

.
B

FS
R

an
d.

D
eg

.
B

FS
R

an
d.

D
eg

.
B

FS
G

50
0.

2.
5

80
.5

9
83

.0
9

77
.2

7
72

.7
6

76
.6

1
74

.1
4

73
.0

9
77

.5
2

73
.8

7
[7

1.
04

]
G

50
0.

05
26

7.
92

27
2.

79
26

4.
49

26
2.

52
26

4.
90

27
0.

52
26

0.
46

26
4.

28
25

9.
08

[2
58

.9
4]

G
50

0.
10

69
0.

47
69

5.
22

68
5.

59
68

4.
99

69
2.

06
69

0.
24

68
5.

34
68

3.
59

[6
78

.3
2]

68
0.

38
G

50
0.

20
18

36
.8

8
18

39
.5

8
18

29
.6

6
18

28
.8

3
18

37
.9

1
18

40
.9

9
18

32
.2

7
18

22
.1

4
[1

81
7.

65
]

18
19

.8
7

G
10

00
.2

.5
16

7.
85

18
5.

10
16

9.
46

14
5.

15
17

0.
42

14
5.

13
[1

40
.5

5]
16

5.
51

15
5.

14
14

1.
47

G
10

00
.0

5
55

2.
74

58
4.

30
56

5.
58

55
0.

55
56

5.
22

56
2.

16
54

5.
12

55
1.

89
53

9.
88

[5
35

.1
8]

G
10

00
.1

0
15

16
.4

7
15

66
.8

7
15

40
.6

4
15

29
.9

5
15

60
.6

7
15

59
.0

7
15

33
.2

4
15

16
.4

5
[1

50
2.

49
]

15
04

.7
7

G
10

00
.2

0
35

97
.1

8
36

83
.0

9
36

43
.4

1
36

37
.2

1
36

80
.1

8
36

82
.2

7
36

53
.9

9
36

06
.0

0
[3

59
1.

97
]

35
96

.9
6

U
50

0.
05

60
.0

5
58

.3
5

37
.0

0
13

.8
8

49
.2

3
35

.8
5

13
.6

4
55

.1
2

33
.9

5
[1

2.
82

]
U

50
0.

10
15

1.
15

14
5.

39
11

6.
33

63
.3

7
13

4.
58

11
9.

20
67

.8
4

13
9.

97
10

8.
55

[6
1.

87
]

U
50

0.
20

35
0.

70
33

3.
83

27
9.

18
24

1.
81

32
2.

13
29

3.
83

24
3.

14
33

2.
88

25
6.

95
[2

38
.7

1]
U

50
0.

40
67

3.
18

65
5.

60
65

3.
96

53
0.

77
59

3.
89

52
5.

69
53

8.
39

66
0.

84
54

8.
98

[5
23

.0
8]

U
10

00
.0

5
13

2.
12

15
0.

98
11

1.
03

38
.0

2
13

3.
90

89
.4

4
46

.1
7

12
8.

24
82

.7
6

[2
8.

31
]

U
10

00
.1

0
32

3.
25

35
8.

10
25

7.
07

10
5.

79
33

4.
14

24
5.

65
13

4.
56

32
1.

38
21

1.
90

[1
01

.6
4]

U
10

00
.2

0
72

7.
88

79
7.

12
60

0.
04

37
6.

02
76

4.
55

70
2.

54
40

2.
38

76
2.

64
52

4.
85

[3
72

.4
5]

U
10

00
.4

0
14

42
.9

8
15

23
.6

0
14

39
.1

3
10

54
.6

3
15

74
.4

9
15

83
.8

8
10

92
.5

8
15

22
.3

1
13

80
.0

4
[1

05
3.

74
]

59

adds multiple edges in expanding the graph, is not as effective as an M-

IGA. The main difference between them is that an M-IGA adds a number of

edges in early steps, and adds a few edges in later steps. Adding more edges

to the graph can be considered as adding more constraints on the solution,

and it reduces the number of optimal solutions. As a result, the number of

optimal solutions for the first few subproblems is small, and it has an effect

of pruning the search space in early steps. The result suggests that solving a

subproblem with adequate complexity in early steps is an essential part in a

successful space search.

Using a proper ordering scheme is another crucial factor. Among the

three vertex ordering schemes proposed, the best one was the BFS ordering

while the worst one was the randomized ordering. Most of the best IGAs for

each graph instances use BFS ordering. In particular, there were prominent

performance improvements for Un.d graphs. These graphs are known to

contain a cluster which heavily interrupts efficient space search [HKY15].

The edges inside a cluster are added with small time difference, and an M-

IGA effectively assigns them in the same partition. For Gn.d graphs, both

of degree based ordering and BFS ordering brought similar performance

improvement, because these graphs have less cluster-related properties than

Un.d graphs.

We also measured the running time of the algorithms in seconds as

shown in Table 12. The IGAs were faster than a GA, and the overhead of an

incremental process was not critical for these algorithms. Among the three

graph expansion methods, the fastest and slowest ones were V-IGAs and

E-IGAs, respectively. And the fastest and slowest reordering schemes were

60

Ta
bl

e
12

:R
un

ni
ng

tim
e

of
th

e
te

st
ed

G
A

an
d

IG
A

s
fo

rt
he

G
PP

G
ra

ph
G

A
E

-I
G

A
V

-I
G

A
M

-I
G

A
R

an
d.

D
eg

.
B

FS
R

an
d.

D
eg

.
B

FS
R

an
d.

D
eg

.
B

FS
G

50
0.

2.
5

19
.3

9
17

.8
5

17
.8

9
17

.6
6

17
.5

0
17

.9
9

17
.8

4
18

.2
1

18
.5

8
18

.0
4

G
50

0.
05

22
.0

5
19

.3
5

19
.3

1
18

.9
4

18
.3

3
18

.9
0

18
.6

4
19

.8
9

20
.4

9
19

.7
3

G
50

0.
10

28
.0

4
23

.0
6

22
.7

8
22

.2
3

19
.9

8
20

.7
3

20
.2

3
24

.0
3

25
.0

8
23

.8
6

G
50

0.
20

53
.5

2
37

.7
8

37
.1

0
35

.6
0

25
.7

9
27

.0
2

26
.0

3
40

.8
7

43
.5

9
40

.7
4

G
10

00
.2

.5
39

.0
9

35
.6

0
35

.7
1

35
.2

4
34

.6
5

35
.8

5
35

.4
0

36
.5

2
37

.3
8

36
.0

9
G

10
00

.0
5

46
.7

6
40

.3
5

40
.3

9
39

.4
8

37
.0

5
38

.5
4

37
.8

0
42

.0
4

43
.7

0
41

.6
1

G
10

00
.1

0
69

.0
4

55
.3

6
54

.9
2

53
.6

8
43

.2
6

45
.3

5
43

.9
1

58
.2

6
61

.6
6

58
.0

6
G

10
00

.2
0

12
4.

41
10

0.
28

99
.3

5
97

.0
8

58
.0

1
60

.3
4

58
.6

2
97

.8
5

10
3.

91
97

.8
2

U
50

0.
05

21
.4

7
18

.8
5

18
.6

4
18

.4
5

18
.1

9
18

.9
9

18
.5

3
19

.3
2

19
.2

8
18

.4
4

U
50

0.
10

25
.7

7
21

.2
6

20
.6

5
20

.0
9

19
.5

7
20

.5
5

19
.9

9
21

.7
6

21
.5

6
19

.9
8

U
50

0.
20

34
.1

7
26

.9
0

25
.5

2
23

.8
5

22
.3

0
24

.1
6

23
.0

2
26

.7
9

25
.9

7
23

.3
1

U
50

0.
40

49
.6

2
40

.6
2

37
.4

3
33

.6
3

27
.1

9
29

.3
3

28
.6

5
36

.2
6

34
.4

6
30

.1
5

U
10

00
.0

5
42

.4
5

37
.8

4
37

.1
2

36
.3

7
35

.9
6

37
.3

7
36

.6
1

38
.5

0
38

.3
8

36
.2

6
U

10
00

.1
0

52
.1

7
44

.6
6

42
.2

5
40

.3
2

39
.2

1
40

.9
6

39
.6

8
44

.4
1

43
.2

1
39

.4
4

U
10

00
.2

0
71

.7
3

62
.3

3
55

.6
6

50
.5

8
45

.7
8

49
.2

3
46

.0
1

57
.0

8
53

.3
4

46
.4

0
U

10
00

.4
0

10
8.

40
10

8.
57

95
.4

2
80

.5
4

57
.9

3
64

.7
3

58
.8

0
81

.7
6

76
.5

6
62

.1
0

61

BFS based one and degree based one, respectively. When compared to the

traditional GA, relative running time and relative performance of the M-IGA

was 78.94% and 71.74%, respectively.

Prevention of Premature Convergence

Experimental result showed that combining an M-IGA with a BFS or-

dering was the best choice. The M-IGA narrows the search space in early

steps, and BFS ordering effectively separates cut edges from non-cut edges.

Moreover, the M-IGA has an ability to prevent premature convergence and

escape from bad local optima. Figure 6 shows the fitness of the best solution

found by the GA and the M-IGA in a single representative run. Figure 6(a) is

the result on the largest Gn.d graph, G1000.20, and Figure 6(b) is the result

on the largest Un.d graph, U1000.40. Note that for the M-IGA, we calculate

the cut size with respect to the original graph.

As shown in the figure, the GA converges to a bad local optimum after

few tens of thousands of generations. In contrast, the cut size found by an

M-IGA decreases slowly and consistently, and it is even increased at a few

points. In intermediate steps of the M-IGA, only part of the edges are used to

define the subproblem and it makes it easier to escape from bad local optima.

This is a key ability of the proposed incremental approach, and these figures

provide the evidence.

We also ran a traditional GA, and an M-IGA, which showed the best re-

sult, for more number of generations. We first calculated the relative cut size

|Ecut(xnew)|/|Ecut(xprev)| for each graph instance and averaged them over

1,000 runs. We then averaged the values over 16 graph instances. Table 13

62

0 20000 40000 60000 80000 100000

generation

3600

3800

4000

4200

4400

4600

4800

5000

m
in
im

u
m
 c
u
t
si
ze

GA

M-IGA

(a) G1000.20

0 20000 40000 60000 80000 100000

generation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

m
in
im

u
m
 c
u
t
si
ze

GA

M-IGA

(b) U1000.40

Figure 6: The minimum cut size found by the algorithms at each generation
for two large graph instances

63

Table 13: Relative performance of a GA and an M-IGA with BFS ordering
which runs for more number of generaions

#Generations GA
M-IGA
(BFS)

2×105 0.9923 0.9616
3×105 0.9889 0.9524
4×105 0.9870 0.9452
5×105 0.9879 0.9408

shows the result. In the result of the M-IGA, the improvement of cut size

was larger than in the result of GA. If more number of generations is given,

that is, more running time is available, an M-IGA with BFS ordering tends

to find better solutions, whereas the traditional GA tends to find similar so-

lutions. This also suggests that using a suitable incremental approach helps

GA not to converge to, and not to stay in a bad local optimum.

Changing Number of Generations

One drawback of the proposed IGA is that the number of generations is

evenly distributed to each step. IGA might waste time in early steps, when

the subproblems are trivial and easy to solve. Spending more time in the

later part of the process will help solve corresponding challenging and large

subproblems. We tested two IGAs using a strategy to put more generations

on later steps. One of them stops the intermediate GA when an optimal

solution of cut size zero is found. The remaining generations are evenly

distributed to the remaining steps. Another strategy is to linearly increase the

number of generations of each step. We use a parameter m, which denotes

the ratio of the number of generations of the last Sth step to the number of

64

Table 14: Performance of an M-IGA using a BFS ordering and a strategy to
dynamically change the number of generations

Graph
Early break Linear (m = 5)

Result p-value Result p-value
G500.2.5 70.89 0.4653 71.12 0.7088
G500.05 258.32 0.0718 258.20 0.0314
G500.10 680.13 0.6079 679.21 0.0136
G500.20 1820.99 0.1249 1819.03 0.2345

G1000.2.5 140.68 0.0070 140.69 0.0074
G1000.05 535.59 0.4312 533.56 0.0016
G1000.10 1503.92 0.2741 1496.40 <0.0001
G1000.20 3598.07 0.3278 3584.50 <0.0001
U500.05 13.55 0.0012 13.08 0.2252
U500.10 60.66 0.1265 61.50 0.6317
U500.20 238.39 0.8668 238.65 0.9773
U500.40 522.89 0.9594 524.79 0.6578
U1000.05 36.69 <0.0001 25.18 <0.0001
U1000.10 99.67 0.1400 100.51 0.3753
U1000.20 367.39 0.1064 368.14 0.1692
U1000.40 1041.43 0.1013 1029.10 0.0005

generations of the 1st step. We applied the two strategies to an M-IGA with

BFS ordering. We used m = 5 in our experiment.

Table 14 shows the average cut size and the p-value. The p-values in

the table are that of a comparison to the M-IGA without the strategy. We

call the two strategies ‘Early break’ and ‘Linear’, respectively. The results

are compared to the result of the M-IGA with BFS ordering in Table 11. We

marked the cut size in bold when it is decreased, and marked the p-value in

bold when it is less than 0.05.

In overall, the performance of the ‘Early break’ strategy was not sig-

nificantly different from the original M-IGA with BFS ordering, but slightly

improved for most of the cases. When this strategy is used, the evolutionary

65

process is immediately terminated even when only one optimal solution of

the subproblem is found. This degrades the reusability of the populations

in the next step. On the other hand, the performance of the ‘Linear’ strat-

egy was significantly improved for most of the Gn.d graphs. This strategy

not only spends more time on solving harder subproblems, but also pro-

vides sufficient amount of time to find diverse optimal solutions for easier

subproblems. It was particularly effective for Gn.d graphs.

4.3.3 Results on Maximum Cut Problem

We tested the algorithms with the MCP as well. As this problem is

to maximize the cut size, the role of the cut edges and non-cut edges is

interchanged. Starting from an empty graph, we first have to add the non-cut

edges to the graph and then add the cut edges in order to obtain a sequence

of subproblems having the optimal substructure. As both of the roles of

the edges and the fitness function are just reversed, we still can use the same

ordering schemes. Therefore, we used the same genetic framework as for the

GPP in our experiment, except the repairing scheme which is not necessary

for the MCP.

Table 15 shows the average cut size found by the algorithms. The aver-

age cut size is marked in bold if it is greater than the result of the traditional

GA. And for each of the graph instances, we parenthesized the value by a

square bracket if it is the best result.

Unlike the result on GPP, E-IGAs and M-IGAs were not effective for

almost all of the cases regardless of the ordering scheme used. It was re-

ported that falling in a bad local optimum is critical for the MCP, and most

66

Ta
bl

e
15

:P
er

fo
rm

an
ce

of
th

e
te

st
ed

G
A

an
d

IG
A

s
fo

rt
he

M
C

P

G
G

A
E

-I
G

A
V

-I
G

A
M

-I
G

A
R

an
do

m
D

eg
re

e
B

FS
R

an
do

m
D

eg
re

e
B

FS
R

an
do

m
D

eg
re

e
B

FS
1

11
41

1.
00

11
37

3.
20

11
29

0.
10

11
28

3.
90

11
40

4.
40

[1
14

11
.9

0]
11

40
8.

90
11

36
6.

40
11

40
0.

60
11

38
4.

70
2

11
41

6.
90

11
37

9.
00

11
24

9.
30

11
29

0.
20

11
40

9.
60

[1
14

17
.1

0]
11

41
5.

10
11

37
1.

50
11

39
2.

20
11

38
9.

20
3

11
41

2.
10

11
37

5.
60

11
32

5.
10

11
28

6.
50

11
40

4.
90

11
41

0.
10

11
40

9.
50

11
36

5.
70

[1
14

35
.3

0]
11

38
5.

30
4

11
42

5.
70

11
38

6.
00

11
27

1.
50

11
29

9.
00

11
42

3.
20

[1
14

42
.4

0]
11

42
5.

80
11

38
0.

10
11

41
3.

90
11

39
8.

50
5

11
41

7.
00

11
38

0.
40

11
25

8.
10

11
29

1.
00

11
41

4.
40

[1
14

50
.1

0]
11

41
8.

70
11

37
4.

50
11

37
9.

60
11

39
1.

20
14

29
83

.8
4

29
64

.9
7

29
64

.6
6

29
62

.0
3

29
89

.0
7

29
91

.8
9

[2
99

8.
08

]
29

71
.8

7
29

78
.9

1
29

82
.7

6
15

29
64

.7
5

29
46

.1
2

29
44

.2
3

29
44

.4
1

29
70

.8
6

29
73

.6
5

[2
97

9.
85

]
29

53
.2

2
29

54
.6

2
29

61
.2

8
16

29
69

.6
5

29
51

.1
5

29
46

.8
9

29
44

.1
8

29
74

.3
0

29
81

.3
2

[2
98

3.
94

]
29

57
.3

0
29

61
.9

9
29

65
.2

1
17

29
65

.1
5

29
46

.8
3

29
41

.0
5

29
43

.7
4

29
71

.3
1

29
73

.5
3

[2
98

0.
29

]
29

54
.0

7
29

58
.3

1
29

62
.5

6
43

64
66

.4
7

64
10

.7
7

63
79

.8
9

63
75

.7
1

64
53

.7
3

[6
47

4.
56

]
64

65
.1

8
64

23
.3

0
64

35
.2

1
64

43
.2

9
44

64
63

.1
9

64
08

.3
0

63
79

.0
5

63
70

.5
8

64
50

.2
9

[6
47

0.
49

]
64

61
.4

0
64

18
.6

4
64

57
.5

3
64

39
.8

6
45

64
62

.9
0

64
06

.7
8

63
76

.1
2

63
70

.4
5

64
48

.7
2

[6
46

9.
92

]
64

61
.2

5
64

19
.6

4
64

35
.6

9
64

40
.8

5
46

64
65

.3
3

64
10

.0
4

63
79

.0
9

63
72

.3
0

64
51

.8
5

[6
47

5.
64

]
64

62
.2

2
64

22
.3

6
64

41
.9

4
64

43
.2

8
47

64
70

.4
5

64
14

.2
9

63
76

.4
6

63
76

.9
1

64
57

.1
6

[6
47

5.
07

]
64

67
.7

0
64

26
.5

9
64

30
.6

4
64

48
.1

1
51

37
42

.5
4

37
10

.6
4

37
13

.0
8

36
98

.3
0

37
43

.3
1

37
50

.2
7

[3
75

7.
44

]
37

20
.9

5
37

17
.5

6
37

27
.7

2
52

37
46

.4
1

37
15

.0
3

37
15

.5
5

37
06

.6
9

37
47

.1
0

37
49

.5
1

[3
76

1.
92

]
37

25
.7

4
37

30
.7

9
37

37
.3

4
53

37
45

.2
1

37
12

.1
3

37
16

.2
8

37
04

.6
9

37
45

.7
2

37
48

.5
1

[3
75

8.
96

]
37

23
.8

5
37

29
.0

2
37

33
.0

4
54

37
45

.0
5

37
12

.7
0

37
10

.1
8

37
07

.0
8

37
44

.9
4

37
45

.1
0

[3
75

8.
62

]
37

24
.9

3
37

36
.5

4
37

35
.3

4

67

of the near state-of-the-art algorithms have a routine to avoid such situa-

tion [WWL15, YHM14]. Expanding the graph in an edge-wise way and in

a mixed way as proposed seem to reinforce this situation.

Moreover, there was no universally notable ordering scheme, and the

characteristic of the graph decides which scheme works best on that graph.

G1 to G5, and G43 to G47 are random graphs, and G14 to G17 and G51

to G54 are random planar graphs [HR00]. Basically, the vertex degree was

a key factor for random graphs, as degree based ordering showed the best

result. For the random planar graphs having geometric property, the BFS

ordering scheme seems to capture this property as it did on Un.d graphs of

the GPP. When used with an appropriate ordering scheme, the incremental

approach was effective for the MCP as well.

Table 16 shows the running time of the algorithms, which is measured

in second. The average cut size is marked in bold if it is greater than the

result of the traditional GA. The fastest and slowest ones were the same as

the result in Table 12. V-IGAs were the fastest ones, and their performance

was the best as well. Among the nine IGAs, the fasted one was the V-IGA

with randomized reordering. The relative running time was 44.30% of that

of a GA. However, the performance of this algorithm was worse than a GA

for about half of the graph instances. The better ones, V-IGAs with degree

based reordering and BFS based reordering, recorded 50.03% and 46.81%

relative running time, respectively. The IGA turned out to be effective in

terms of the cut size, and efficient in terms of the running time.

Note that for the MCP, only the vertex-wise expansion has brought a

performance improvement. If the edges are added to the subgraph by fol-

68

Ta
bl

e
16

:R
un

ni
ng

tim
e

of
th

e
te

st
ed

G
A

an
d

IG
A

s
fo

rt
he

M
C

P

G
G

A
E

-I
G

A
V

-I
G

A
M

-I
G

A
R

an
do

m
D

eg
re

e
B

FS
R

an
do

m
D

eg
re

e
B

FS
R

an
do

m
D

eg
re

e
B

FS
1

22
7.

18
21

0.
76

16
4.

79
11

5.
31

86
.7

7
95

.3
8

88
.4

0
11

1.
22

11
9.

23
10

8.
46

2
22

7.
21

21
0.

79
16

6.
50

11
5.

42
86

.7
3

95
.7

9
88

.4
1

11
1.

11
12

1.
19

10
8.

53
3

22
7.

23
21

0.
62

16
4.

88
11

5.
38

86
.7

1
95

.2
7

88
.4

8
11

1.
00

11
9.

06
10

8.
54

4
22

6.
76

21
0.

58
16

6.
25

11
5.

25
86

.6
3

95
.7

6
88

.3
7

11
1.

14
11

9.
86

10
8.

51
5

22
6.

85
21

0.
63

16
4.

14
11

5.
42

86
.6

2
95

.1
2

88
.4

4
11

1.
11

11
9.

15
10

8.
57

14
62

.8
7

43
.5

5
42

.0
4

39
.0

3
34

.2
2

40
.0

8
38

.1
5

43
.4

1
49

.8
0

46
.4

4
15

62
.4

9
43

.3
2

41
.7

6
38

.5
9

34
.1

2
39

.9
2

38
.0

4
43

.1
9

49
.0

4
46

.2
0

16
62

.7
4

43
.4

2
42

.1
2

38
.8

5
34

.1
5

40
.0

8
38

.1
2

43
.2

2
49

.3
1

46
.2

4
17

62
.6

3
43

.3
7

41
.6

4
38

.6
2

34
.1

4
39

.9
8

38
.1

5
43

.1
5

48
.4

3
46

.1
6

43
12

0.
73

90
.8

5
86

.7
3

68
.8

1
56

.2
5

62
.8

6
58

.3
3

78
.5

7
86

.4
0

75
.9

0
44

12
1.

15
90

.8
5

86
.2

0
68

.7
7

56
.2

4
62

.8
0

58
.2

9
78

.5
8

85
.2

8
75

.8
5

45
12

0.
91

90
.8

4
86

.3
1

68
.7

5
56

.2
1

62
.4

6
58

.2
4

78
.7

0
84

.9
1

75
.7

9
46

12
0.

77
90

.8
0

85
.4

6
68

.7
1

56
.2

0
62

.3
7

58
.1

4
78

.6
2

85
.2

4
75

.6
8

47
12

0.
93

90
.8

0
86

.5
5

68
.7

4
56

.2
3

62
.5

3
58

.1
8

78
.6

5
85

.6
2

75
.8

1
51

82
.8

9
57

.9
5

56
.5

2
51

.1
2

44
.4

5
52

.8
6

50
.3

9
56

.9
3

64
.3

0
61

.4
6

52
83

.0
0

58
.0

6
56

.0
1

51
.7

9
44

.4
0

52
.8

3
50

.2
8

57
.0

6
64

.4
2

61
.5

4
53

82
.8

9
58

.0
2

56
.1

5
51

.5
9

44
.4

3
52

.8
1

50
.3

5
56

.9
6

65
.5

8
61

.6
4

54
83

.0
2

58
.0

5
55

.3
9

51
.4

6
44

.4
5

52
.9

7
50

.3
8

57
.0

5
65

.7
2

61
.5

7

69

lowing this expansion method, the process is similar to adding a vertex to

the subgraph at each step. Moreover, there is no balance constraint on the

size of the partition for the MCP. With a help of these two properties, we can

build a subgraph only containing the vertices that have been selected, and

solve the subproblems defined on subgraphs. As the number of the vertices

of a subproblem in an intermediate step is less than before, the incremental

algorithm could be easily hybridized with a local optimization algorithm.

4.3.4 Results on Problem Variants

The problem we considered in this chapter is to divide the vertices of

an unweighted graph into two partitions. This is the most common version

of the problem, which has been studied most widely [KHKM11]. The gen-

eral version of the problem is to divide the vertices into multiple groups,

and to optimize the summation of the weights of the cut edges. These prob-

lem variants often arise in real world applications [MKYM07, WWL15].

We tested the IGA on two representative variants; the 4-way graph parti-

tioning problem and the weighted maximum cut problem. The same dataset

in Section 4.3.1 are used in our experiment.

4-way Graph Partitioning Problem

A k-way graph partitioning problem is a variant of GPP. The problem is

to divide the vertices into k partitions which minimize the cut size. The most

widely used value of k is two, as discussed in this chapter. When k is larger

than two, then the problem is called a multi-way GPP. The powers of two up

70

to 128 are often used for the value of k [MKYM07, SWC04]. The optimal

cut size and the difficulty of the problem tend to increase as k increases. We

use k = 4 in our experiment.

For the incremental approach on a multi-way GPP to be effective, we

have to find an ordering of the edges which leads to a subproblem sequence

with an optimal substructure. The same argument on 2-way GPP could be

applied to the cases when k > 2. If we order the non-cut edges before the cut

edges, then an optimal solution to the original problem will stay as an opti-

mal solution to each of the subproblems. The same strategies could be ap-

plied as well and we decided to use the M-IGA with BFS ordering scheme.

Table 17: Results on the 4-way graph partitioning problem

Graph GA M-IGA
G500.2.5 153.10 126.48
G500.05 463.32 440.70
G500.10 1127.06 1106.26
G500.20 2895.99 2879.88

G1000.2.5 314.99 261.22
G1000.05 949.43 913.57
G1000.10 2465.43 2455.63
G1000.20 5705.93 5722.02
U500.05 104.51 30.89
U500.10 258.70 143.27
U500.20 640.33 485.05
U500.40 1344.74 1160.31

U1000.05 235.30 136.02
U1000.10 571.48 356.87
U1000.20 1347.45 935.65
U1000.40 2752.43 2267.20

The average cut sizes found by GAs without and with the incremen-

tal approach are shown in Table 17. The smaller values for each graph in-

71

stances are marked in bold. The values are bigger than that of the 2-way

GPP, and the values obtained by M-IGAs were smaller in general. The p-

values of Welch’s t-test have been calculated, but they are presented in the

table as all of them was much smaller than 0.0001. Only one of the instances,

G1000.20, was an exceptional case, and the amount of the improvement for

Un.d graphs was greater than that of Gn.d graphs. This suggests that the

IGA is effective on multi-way GPP as well.

Weighted Maximum Cut Problem

The weighted MCP is a general version of MCP. In this case, the cut

size is defined to be the summation of the weights of the cut edges. The

unweighted version of the problem is a special case when all of the edges

have the same weight of one. As explained in Section 4.3.1, we used un-

weighted graph instances from the G-set [HR00] for the experiments on the

unweighted MCP. The dataset consists of weighted graphs as well, and we

used twelve graph instances from the dataset in our experiment. They are

G6 to G10, which are similar to G1 to G5, G11 to G13, which are toroidal

graphs, and G18 to G21, which are similar to G14 to G17.

As V-IGAs were the only effective IGAs for unweighted MCP, we used

them in our experiment. We exclude randomized ordering as it only pro-

vides a baseline. Instead, we tried another reordering scheme based on the

sum of the weights sum. For each vertex in the graph, We had calculated

the summation of the weights of incident edges and reordered the vertices

with decreasing order of the weights sum. This is a generalization of vertex

degree and it is likely to be suited for the weighted version of the problem.

72

Table 18: Results on weighted maximum cut problem

G GA
V-IGA

Degree BFS WS
6 1956.06 1959.17 [1959.23] 1952.62
7 1793.39 [1804.64] 1793.18 1783.90
8 1802.97 [1813.10] 1801.70 1793.29
9 1837.49 [1850.16] 1840.97 1829.99
10 1791.52 [1802.71] 1790.55 1776.41
11 498.92 508.75 [527.29] 510.35
12 491.89 502.19 [521.65] 502.99
13 515.20 525.99 [546.72] 526.88
18 887.43 912.66 [915.61] 874.47
19 800.22 820.83 [831.85] 796.81
20 828.98 858.47 [860.33] 848.42
21 824.13 849.59 [854.17] 810.55

Table 18 shows the average cut sizes found by the algorithms. The im-

proved ones are in bold, and the best one is parenthesized as before. The

incremental approach worked successfully on the weighted MCP, and the

characteristic of the instances influenced the result similarly to the result

on the unweighted problem. For random graphs (G6 to G10) and planar

graphs (G18 to G21), the best reordering scheme was degree based one

and BFS based one, respectively. They were the best schemes for the un-

weighted problem, as shown in Table 15. Toroidal graphs (G11 to G13) are

the new ones and they are almost planar graphs. Like the result on other

planar graphs, the BFS reordering scheme worked well on them.

Surprisingly, the V-IGA which reorders the vertices according to the

weights sum (WS) was not effective for most of the instances. It was even

worse than the one with degree based reordering. This result seems to be

caused by the characteristic of the dataset. For all of the weighted graphs in

73

the G-set, the weights are either −1 or 1, which means that the graphs have

edges with negative weights. If all of the edge weights are non-negative,

then we could apply the same argument on the unweighted MCP to build up

a subproblem sequence with an optimal substructure. But this does not hold

if there exists an edge with a negative weight. More specifically, suppose

that there exists an edge with negative weight in the cut edges of an optimal

solution of the original problem. Then an optimal solution of the subproblem

with this edge only is not to use it as a cut edge, as it will change the cut

size from a negative value to zero. Therefore, even if the weights sum based

reordering is expected to work well on the weighted problems, it does not

fit in with this dataset.

74

Chapter 5

Related Applications

5.1 Measuring Source Code Similarity with an
Incremental Genetic Algorithm

5.1.1 Introduction

The source code similarity is an important concept in the software

engineering field. It is related to determining whether two codes share a

similar property, or to finding duplicated code fragments in a large pro-

gram [WERC+07]. There are a huge number of real world applications

based on code similarity, including code plagiarism detection, code clone

detection, and malware detection.

A lot of methods for measuring the similarity have been proposed and

the methods could be categorized by the types of the data they mainly handle

with. Among text based methods, metric based methods, and graph based

methods, the best approach is known to be the graph based methods. They

transform a given program into a graph, and measuring code similarity is

modeled as a combinatorial optimization problem on these graphs.

One of the widely used graph structure is a program dependence graph

(PDG). A PDG is a graph generated from the source code which demon-

strates the flow of data and control [ASU86]. The logical connections be-

75

tween the code statements are also illustrated in PDGs. Among the graph

structures, PDGs are known to best reflect the logical structure of the code,

and most of the structural characteristics of the graph survive even when

the disguise techniques are applied to the code [RC07]. However, most of

the graph algorithms require a large amount of time in comparing PDGs.

Several heuristics to reduce the running time have been proposed and exper-

imental results show that PDG based methods are more effective than the

other ones [KM10, Kri01, LCHY06].

To avoid being detected by a code similarity detection tools, diverse

ways of disguise techniques are possible on the source code [Ayc06, KM10,

LCHY06]. While the semantics or functionality of the program is being

preserved, the appearance of the program is modified by these techniques.

The examples of the techniques include format alteration, identifier renam-

ing, code replacement, code reordering, code insertion, and subroutine in-

lining/outlining.

5.1.2 The Proposed System

A New Cost Function

First, we formulate the problem as follows. We measure the similarity

between two codes by solving an error correcting subgraph isomorphism

problem. Given two codes, we transform each of them into PDGs, namely

G1 and G2. For the problem to be well-defined, we choose the smaller one

that has a fewer number of vertices as G1. The task of the problem is to find

a subgraph of G2 which requires the least amount of error correction cost to

76

transform the subgraph into G1. In other words, it is to find a subgraph of G2

that is the most similar to G1. The difference between two codes is defined

to be the minimum error correction cost.

The error correction cost of the problem could be defined in terms of

both vertices and edges [Bun00, KM10]. Empirical studies showed that us-

ing the weighted sum of error correction costs for edges and vertices makes

the search space to be more globally convex, and thereby makes it easier

to find a better solution [CYM12]. However, as the error correction cost for

vertices used in the previous work is based on the degree condition of two

graphs, it could be only used to find an exactly matched subgraph. There-

fore, a different cost function should be investigated for the error correcting

subgraph isomorphism problem.

Let Cv and Ce denote the error correction costs for vertices and edges,

respectively. For Cv, we use the number of pairs of vertices that match even

when their colors are different. The color of the vertex represents the at-

tribute of the corresponding component of the source code. Thus match-

ing two vertices with different colors might not be good, and it is required

to minimize this case. For Ce, we use the number of edges which need to

be either added to or removed from the subgraph. For the error correction

cost C for the entire graph, we use the weighted sum of Cv and Ce. We use

C = 0.9 Cv +0.1 Ce in our system.

We define the similarity of two graphs to be (1−10 C)/|E1|. E1 is the

set of the edges of the smaller graph G1. This value roughly denotes the

portion of the common edges to the total number of edges. This value could

be negative, which means that the two graphs are totally different.

77

PDG Modification

A PDG of a source code is a data structure that reflects the logical

structure of the code [ASU86]. The statements in the code are transformed

into vertices of the graph. If a statement has a logical dependency on another

statement, they are connected with a directed edge. Both the flow of data and

flow of control are used to determine the dependency. Before trying to match

the PDGs, we preprocess the graphs by slightly modifying the structure.

We first color the vertices, according to the type of the corresponding

statement. If two statements are of different type, they are less likely to be

matched. The coloring technique was widely used in previous works in order

to prevent unnecessary computation [KKM+06, LCHY06].

We then remove some of the vertices from the graph. This is the tech-

nique used in a previous work to reduce the computational cost [KM10].

Four different kinds of reduction rules were introduced, but using all of them

runs a risk of destroying the distinctive structure of the code. We use only

two of them; we remove the vertices which have no connected edges, and

vertices that are used for variable declaration. We remove the edges con-

nected to these vertices as well.

GA Operators and Parameters

We use a genetic algorithm hybridized with the proposed local opti-

mization algorithm in each step of the incremental approach. For the genetic

operators and parameters, we use the best ones explained in Chapter 3.

78

PDG Generation

We tested the proposed system with the source codes written in C and

VBS (Visual Basic Script) language. The detailed information of the dataset

is presented in the next subsection with the experimental results.

For codes in C, we use Frama-C1 to generate PDGs. This program

performs a static value analysis first, and then generates the PDG for each

functional procedure in the source code. Some vertices indicating the start

and the end of the procedure are added to the graph. We found that Frama-C

adds these kinds of vertices at each time when a function call is made, and it

occasionally adds too many vertices for some procedures. These nodes are

removed from the graph, as they do not properly reflect the logical structure

inside the procedure. We use all the three types of dependency edges gen-

erated by Frama-C, including address, control, and data dependency edges.

The statements are classified by their types, and the corresponding vertices

are colored according to the type. The types used are goto labels, control

statements (goto, break, and continue), loops, assignment statements,

logical expressions, and the other kinds of statements.

For VBS language, we could not find an appropriate program. We used

a tokenizer and generated PDG-like graphs by ourselves instead. Each line

of the code, but not each statement, is represented as a vertex. If a variable

is used in a line, it is connected to the next line where the same variable is

used. And if there is a function call in a line, it is connected to the first line of

that functional procedure. The vertices are classified by the set of keywords

1http://frama-c.com/

79

http://frama-c.com/

used in the corresponding line of the code, and only the vertices with the

same keywords set are to be matched. The keywords are the reserved words

(dim, and, next, etc.) and the name of API and library functions.

5.1.3 Experimental Results

GPLAG Dataset

GPLAG, one of the best PDG based software plagiarism detection tool,

was tested on a real world source codes written in C language [LCHY06].

The source code of an open source Linux program join was plagiarized by

applying a number of plagiarism disguise techniques. Since both GPLAG

and the plagiarized code are not open in public, we applied the same set

of plagiarism operators to generate a modified code. For fairness, the codes

were modified independently.

We used the source code of version 8.23, and modified the functional

procedures listed in the previous work [LCHY06]. Since one of the proce-

dures was not found in the version we used, we instead used a procedure

with sufficient complexity. The procedures we plagiarized are add field list,

get line, join, keycmp, prjoin, and xfield. The size of the code and the PDG

are listed in Table 19. We name this GPLAG dataset. The lines of code

(LOC), the number of vertices |V |, and the number of edges |E| are listed in

the table.

We conducted an experiment of plagiarism detection on the GPLAG

dataset. Every pair of modified and original codes is compared and the sim-

ilarities between them are measured by the proposed system. Then, for each

80

Table 19: The size of the codes in the GPLAG dataset

Procedure
Original code Plagiarized code

LOC |V | |E| LOC |V | |E|
add field list 17 9 31 18 9 31

get line 27 17 26 27 17 26
join 132 112 1097 143 116 1134

keycmp 47 38 188 47 38 188
prjoin 58 26 96 57 26 96
xfield 33 44 602 43 39 510

Table 20: Results of the plagiarism detection experiment

Modified procedure 1st match 2nd match

mod add field list
add field list join

100.00% 93.55%

mod get line
get line keycmp

100.00% 69.23%

mod keycmp
keycmp get line
100.00% 69.23%

mod prjoin
prjoin add field list

100.00% 90.32%

mod join
join add field list

96.72% 93.55%

mod xfields
xfields join
99.80% 79.41%

of the modified codes, the best match with the highest similarity is found.

If the similarity is above a certain threshold value, then the two codes are

reported to be plagiarized. The best and the second best matched results are

listed in Table 20. The names of the matched procedure and the similarity

are shown in the table. For clarity, we used the prefix mod to denote that

the procedure is a modified, plagiarized one.

All of the six modified source codes are matched to the original ver-

sions of them with the highest similarity. This suggests that the proposed

81

system well measures the similarities between the code and its plagiarized

version, even when the disguised techniques are applied. The results of the

four codes recorded 100% similarity, and it means that the proposed sys-

tem found no difference between the matched codes. The other two codes

recorded the similarity over 95%. The codes were also tested on another

well-known plagiarism detection tool MOSS2. This tool reported that the

most similar pair has the similarity value of 25%, which is much lower than

the proposed system. The proposed system was able to cope with the dis-

guise techniques, whereas MOSS could not.

Since all of the codes were matched to their original version in the best

match, the second best match shows the similarity between two distinct pro-

cedures. These values are thus expected to be much lower than the previous

cases, but it was above 90% in half of the cases. As shown in Table 19 and

Table 20, these are the cases when there is a huge gap between the sizes of

the graphs. When the sizes differ greatly, it is more likely that G2 has a sub-

graph that is isomorphic to G1, even if the two programs are not logically

similar. We could avoid this by filtering these cases. If we skip the smallest

and biggest procedures, then the highest similarity dropped to 69.23% and

a negative similarity is obtained in more than half of the cases. The results

suggest that the proposed system comfortably detects the similarity; it is

high when two codes are similar, and low if they are distinctively different,

unless the sizes of two codes differ too much.
2http://theory.stanford.edu/˜aiken/moss/

82

http://theory.stanford.edu/~aiken/moss/

Table 21: Similarity between the graph algorithms

Code 1 Code 2 Similarity
Dijkstra Prim 96.71%

BF Dijkstra 87.27%
FW Kruskal 85.95%
BF Prim 82.91%
BF Kruskal 74.18%
BF FW 72.00%
FW Prim 70.57%

Dijkstra FW 67.22%
Dijkstra Kruskal 53.73%
Kruskal Prim 52.95%

Graph Algorithms Dataset

The dataset used in the previous subsection was the codes intention-

ally generated to be similar to each other. To test that the proposed system

is capable of measuring the general similarity between the codes, we im-

plemented five graph algorithms in C language and measured the similarity

between them. The algorithms are Kruskal’s and Prim’s algorithm for the

minimum spanning tree problem, and Bellman-Ford’s (BF), Dijkstra’s and

Floyd-Warshall’s (FW) algorithms for the shortest path problem. Table 21

shows the similarity between all the pairs of the codes measured by our sys-

tem, listed in decreasing order of the similarity. A routine for generating an

adjacent matrix was used in all of the codes, and this seems to make the

similarity be above 50%.

Interestingly, the most similar pair was turned out to be <Dijkstra,

Prim>. Even though they are for different problems, both of the two codes

have a routine for finding a vertex with the least distance, and it makes the

83

overall structures of the algorithms be similar. <BF, Dijkstra>, the pair of

the algorithms having a relaxation operator in common, and <FW, Kruskal>,

the pair of the algorithms transforming the given adjacent matrix into an-

other data structure, are the next two similar pairs. The similarity measured

by the proposed system seems to catch all these structural features of the

algorithms.

Malware Dataset

We also tested our system with the dataset used in malware detec-

tion [KM12]. The dataset includes original malicious codes, the variants

of the malware, and harmless codes all written in VBS language. We used

the variants that are generated by applying disguise techniques (generated

codes), and the harmless codes (benign codes). The total numbers of codes

in each set are 56 and 24, respectively. The purpose of the former codes is to

see if the similarity between two similar malware measured by the proposed

system is high, and the purpose of the latter codes is the opposite.

Similarly to the plagiarism detection experiment, each of the codes is

compared to all of the malware and the most similar match is found. If the

similarity is higher than a threshold, then the code is reported to be ma-

licious. Since there exists a great deal of original malware in the dataset,

we used 13 out of 359 codes in our experiment. The names of the mal-

ware are Agent.ay, Fuss, Ham, Hello, Jadra, Marata, Neves.a,

Neves.b, Quest, Sheep, Sock, Stress, Yabuka.a. We name the set

to be malware database. The selected malware samples are the ones used in

the generation of variants in the dataset.

84

Table 22: Histogram of similarity between the generated codes and codes
in malware database

Similarity 1st match 2nd match
100% 19 0

80% ∼ 100% 21 9
60% ∼ 80% 10 3
40% ∼ 60% 2 6
20% ∼ 40% 4 9
below 20% 0 29

As we did in experiments on GPLAG dataset, we found the best and

the second best matches for each of the generated code. Table 22 shows the

summary of the results. The results of the best and the second best matches

are shown. Since the number of cases is big, we present the result as a his-

togram. For the best match, 50 out of 56 cases recorded a similarity over

80%. Most of the generated variants were reported to be similar to their

original malware. For the second best match, the similarity dropped sharply.

Moreover, for 17 out of 18 cases with 2nd similarity higher than 40%, the

proposed system reported Neves.a and Neves.b to be the best and the

second best match. These two malware are similar to themselves and their

similarity was measured to be 82.14%. If they are compared to any other

malware, the similarity value was much lower than these cases. The mea-

sured similarity seems to be fairly reasonable for these source codes.

To find a suitable threshold value, we examined the five codes with the

lowest similarity for generated codes, and the five codes with the highest

similarity for the benign codes. The result is shown in Table 23. For gener-

ated codes, the five codes with the lowest similarity are listed. And for be-

nign codes, the five codes with the highest similarity are listed. The name of

85

Table 23: the five cases with the highest chance of error for each set of
codes

(a) Generated codes

Origin Matched to Similarity
Stress Sock 22.81%
Stress Sock 25.00%
Stress Stress 29.03%
Sock Sock 32.14%
Hello Hello 48.39%

(b) Benign codes

Matched to Similarity
Yabuka.a 28.57%
Yabuka.a 25.00%
Yabuka.a 22.73%

Fuss 22.22%
Yabuka.a 17.24%

the matched malware and the similarity are presented. For generated codes,

the name of the original malware is presented as well.

For the generated codes, the two cases with the lowest similarity were

matched to a wrong malware. These were the only two mismatched cases

in our experiment, and the correct malware was in their second best match.

We found that all of these 5 variants were generated by applying subroutine

outlining with other disguise techniques. If these techniques are applied, the

structure of the PDG is altered and this results in a decrease in similarity.

This technique was applied in 11 variants, and the average similarity to their

origins was 55.19%. Compared to the average of the other 45 cases, which

is 91.63%, a notable decrease in similarity is found if subroutine outlining

is applied. The structure of the graph seems to be revised to deal with these

disguise techniques.

For the benign codes, all of them were matched to either Yabuka.a

or Fuss. These two malware are relatively short and have relatively simple

logical structure. Due to the characteristics of the script languages, most

of the benign codes have simple, or even linear logical flow as well. And

86

Table 24: Accuracy of our malware detection system with two different
threshold values, a system from a previous work, and known anti-virus pro-
grams

Method Generated Benign
Threshold = 30% 94.64% 100.00%
Threshold = 25% 98.18% 95.83%

Previous work [KM12] 100.00% 95.83%
Anti-viruses [KM12] 43.34% 98.91%

this makes it harder to distinguish them. It seems that the relatively high

similarity was obtained by this property.

As shown in Table 23, the threshold values of malware detection sys-

tem have to be near 22.81% or 28.57%. We choose 25% and 30% as thresh-

old values, and the accuracy of the detection system is shown in Table 24.

The system was compared to results presented in [KM12], which includes

the detection system proposed in the previous work, and known anti-virus

programs. Our system missed two cases for both of the threshold value,

whereas the system in previous work misses only one case. Nevertheless, it

was much better than known anti-viruses. Note that we use a general code

similarity measurement system and the system in previous work uses do-

main specific knowledge. We may build a better system if we adopt problem-

specific knowledge on malware.

Among the three different kinds of dataset, the malware dataset con-

sists of the case which requires the longest running time. Measured on Intel

Core i7-3820 CPU @ 3.60GHz system, it took 141.23 seconds. For the en-

tire dataset used in our experiment, about half of the cases required less

than a second, and ninety percent of the cases took less than ten seconds.

87

This shows that the proposed system measures the code similarity in fairly

reasonable time, for most of the cases.

5.1.4 Discussion

The proposed system reported that some of the two unlike codes were

similar. This happens when there is a huge difference between the sizes of

the graphs. The false alarm could be avoided by only comparing the graphs

with a comparable size. However, this makes the system vulnerable to the

code insertion disguise technique. We may use a domain specific knowledge

or hybridize the system with other methods to handle these cases. We leave

it as future work.

The two missed cases are related to subroutine outline. If this disguise

technique is applied to a source code, the structure of the dependence graph

is altered and the similarity between the code and its original form is de-

creased. The PDGs hardly reflects the dependency if a function call is made

in the code. A better graph structure needs to be investigated to deal with

this case properly.

5.2 Linear Ordering Problem and an Approxi-
mate Fitness Evaluation

5.2.1 Introduction

Let G = (V,E) be a directed graph with N vertices and M edges, and

w(u,v) be the weight of an edge from vertex u to v. The linear ordering

problem (LOP) is to find a linear ordering of vertices ⟨v1,v2, . . . ,vN⟩ which

88

maximizes the fitness function

f (⟨v1,v2, . . . ,vN⟩) =
N∑

i=1

N∑
j=i+1

w(vi,v j).

If the graph is acyclic, then a topological ordering is an optimal solution; if

not, the problem is equivalent to the feedback arc set problem (FASP) which

tries to remove minimal edges from the graph to make it acyclic.

LOP, FASP, and several other related problems have been studied for a

long time [GJR84]. These problems have a number of applications in vari-

ous fields [SS05], and they are known to be NP-hard problems. Many meta-

heuristic approaches, including evolutionary approaches, have been pro-

posed to solve the problem efficiently [MRD12]. It is known that genetic

algorithms are suitable for solving combinatorial optimization problems.

But usually they are slow since a large number of candidate solutions are

generated and evaluated during the evolutionary process.

In this section, we propose a genetic algorithm for LOP which evalu-

ates an approximate fitness value. In the early generation of the GA, only a

portion of the edges are used to evaluate the fitness. We increase the number

of used edges from 0 to M over time. The proposed algorithm was tested

on well-known instances. Experimental results show that the proposed ap-

proach reduces the running time without losing the quality of the solutions.

5.2.2 The Proposed Method

We use a typical generational GA to solve the problem. The operators

and parameters are as follows.

89

• Population: The population consists of 100 permutations, each rep-

resenting a linear ordering of the vertices. We generate 20 offspring

in each generation. Among the 120 solutions, the best 100 solutions

form the population of the next generation.

• Selection: We randomly pick two solutions and return the better one

with probability 80%, and the worse one with probability 20%.

• Crossover: We use order based crossover [SS05]. First, each gene is

copied from one of the two parents. Then we pick some genes and

reorder them with respect to their order in the other parent. The prob-

ability for each gene to be picked is 50%.

• Mutation: Each gene has 1% chance of mutation, and the selected

genes are randomly shuffled.

• Stopping Criterion: The GA runs for a fixed number of generations

and stops. The number of generations K depends on the characteristic

of the instance.

To compute the fitness directly, all N2 pairs of vertices have to be con-

sidered. Buy by considering the edges of the graph, the fitness can be rewrit-

ten as ∑
(u,v)∈E

w(u,v)R(u,v).

R is a binary relation on V and R(u,v) is defined to be 1 if u comes before v

in the ordering, and 0 otherwise. The running time of the evaluation is linear

to the number of the edges.

90

To approximate the fitness, we use the subset E ′ ⊆ E which has M′

edges, and compute the summation only for (u,v) ∈ E ′. The accuracy of the

approximation is controlled by the size of E ′; it is more accurate if the size

is close to M. We set the size to be 0 in the first generation, and to be M in

the half-way point. During the first half of the GA, the size is gradually and

linearly increased as the generation progresses. In the second half, the GA is

the same as the one using exact fitness evaluation. The GA travels the search

space almost randomly in the earlier generations, and it gradually finds the

right direction.

The edges in E ′ need to be changed at each time of the fitness evalua-

tion. GA could easily be stuck in a local optimum, if E ′ has only few edges

in it and it is being kept similar for a while. However, it is inefficient to

randomly choose M′ edges all the time. It takes time to generate a random

number, and shuffling the set of edges diminishes the cache utilization. In-

stead, we only change some part of the elements in E ′. We first randomly

shuffle the list of edges, and the first M′ edges form the subset E ′. We ex-

change 0.005×M random pairs of edges at each time of evaluation; the

ith and the jth edges (i and j are randomly picked from {1,2, . . . ,M′} and

{1,2, . . . ,M},respectively).

5.2.3 Experimental Results

The proposed algorithm was tested on a widely used benchmark library

LOLIB [MRD12]. There are 485 instances, comprising both real world in-

stances and randomly generated ones. Among them, we selected the in-

stances with sizes N = 50,100,150,200, and 250, since there exist a suf-

91

Table 25: Comparing the performance of the algorithms in terms of fitness
and time

N
APPROX-K APPROX-2K
to EXACT-K to EXACT-2K

fitness time fitness time
50 0.9990 0.9819 1.0001 0.9821

100 1.0001 0.9426 1.0004 0.9446
150 0.9989 0.9595 0.9998 0.9595
200 1.0015 0.9346 1.0013 0.9342
250 0.9966 0.9905 0.9983 0.9907

ficient number of instances having those sizes. An instance having an error,

N-t65f11xx 150, was excluded.

The number of generations K was selected in order to guarantee that the

population is converged after K generations. We assume that the population

is converged if no change is made to the population for 100 generations.

An appropriate value of K for each instance was chosen after a sufficient

number of experiments.

We conducted experiments with 4 different kinds of GAs. Two of them

are the GA using exact fitness (EXACT-K) and the proposed GA using an

approximate fitness (APPROX-K). The other two GAs run for 2K genera-

tions, and each of them uses either exact (EXACT-2K) or approximate fit-

ness (APPROX-2K). We measured the fitness value of an optimal solution

found and the running time for each run. We conducted 100 runs for each

instance and each algorithm, and computed the average result.

Table 25 shows the comparison between APPROX-* algorithms and

EXACT-* algorithms. APPROX-K algorithms were compared to EXACT-K

algorithms, and APPROX-2K algorithms were compared to EXACT-2K al-

92

gorithms. For each instance, we compute the relative fitness and time. The

relative fitness is the ratio of the average fitness value obtained by the al-

gorithm with approximation to the average fitness value obtained by the

algorithm without approximation. The relative time is computed similarly.

Then, we averaged the relative values over the instances with the same size.

By using the approximate fitness evaluation, the running time was re-

duced for both of the cases with K and 2K. However, the quality of an opti-

mal solution found did not change significantly by using the approximation

scheme. In fact, it was even better for some of the instances.

The relative performance of APPROX-2K algorithms was slightly bet-

ter than that of APPROX-K algorithms. Note that the genetic algorithm was

converged in K generations. This suggests that, when running a genetic al-

gorithm with sufficiently large number of generations, the approximation

scheme helps to escape from a local optimum. Using the approximate fit-

ness evaluation gives a chance of accepting a worse solution, and the prob-

ability gradually decreases during the space search. The same idea is often

used in some metaheuristics, and the representative one of them is simulated

annealing.

93

Chapter 6

Conclusions

In this thesis, we proposed a new genetic algorithm with an incremen-

tal approach for graph optimization problems, including the subgraph iso-

morphism problem and graph cut optimization problems. The incremental

approach starts from solving a small-sized subproblem and it gradually ex-

pands the size of the problem. The prior results were used for an initial

population of a hybrid genetic algorithm for the following step.

For the subgraph isomorphism problem, we met several design issues

for the new algorithms. We observed that stopping criterion also had an in-

fluence on the performance. If we focus on exploration in intermediate steps,

it was better to evolve from a diverse population with few local optima. The

size of problem expansion did not have an effect on the performance as

much as a vertex reordering and stopping criterion did. However, increasing

the expansion size of each step showed a tendency to improve the running

time. By hybridizing a local optimization algorithm and maintaining mod-

erate diversity, the hybrid incremental approach with appropriate schemes

outperformed previous work in the experimental results. The performance

was further improved by newly designed operators, including a new vertex

ordering scheme and a new local optimization algorithm.

For the graph cut optimization problems, We first formally defined the

process of an incremental genetic algorithm for a graph problem in terms

94

of a subproblem sequence. The algorithm solves the subproblems according

to this sequence. To obtain a sequence having an optimal substructure, ap-

propriate vertices or edges are needed to be selected at an adequate step of

the process. Graph expansion methods, reordering schemes, and their com-

binations were proposed and tested. The incremental approach has brought

performance improvements for these problems as well.

Although we traced the design issues for the incremental approach,

there are still other issues that have to be figured out for a better perfor-

mance. Better genetic operators, and a local optimization algorithm can im-

prove the performance of the proposed algorithm. As memetic algorithms

spend large time in local optimization, an efficient graph expansion method

has to be developed as well. Moreover, the generalization of the incremental

approach on other graph optimization problems have to investigated as well.

95

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1986.

[Ayc06] John Aycock. Computer Viruses and Malware. Springer,

2006.

[BB02] C. Borgelt and M.R. Berthold. Mining molecular fragments:

finding relevant substructures of molecules. In Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International

Conference on, pages 51–58, 2002.

[BBK11] Gozde Bakirli, Derya Birant, and Alp Kut. An incremental

genetic algorithm for classification and sensitivity analysis of

its parameters. Expert Systems with Applications, 38(3):2609

– 2620, 2011.

[BBM93] D Beasley, D R Bull, and R R Martin. An overview of ge-

netic algorithms: Part 1, fundamentals. University Comput-

ing, 15(2):58–69, 1993.

[BJWG94] Robert D. Brown, Gareth Jones, Peter Willett, and Robert C.

Glen. Matching two-dimensional chemical graphs using ge-

netic algorithms. Journal of Chemical Information and Com-

puter Sciences, pages 63–70, 1994.

[BKSS00] Jürgen Branke, Thomas Kaussler, Christian Smidt, and Hart-

mut Schmeck. A Multi-population Approach to Dynamic Op-

timization Problems, pages 299–307. Springer London, Lon-

don, 2000.

[BM94] T. N. Bui and B.-R. Moon. A genetic algorithm for a special

class of the quadratic assignment problem. In the Quadratic

96

Assignment and Related Problems, volume 16 of DIMACS Se-

ries in Discrete Mathematics and Theoretical Computer Sci-

ence, pages 99–116. 1194.

[BM96] Thang Nguyen Bui and Byung Ro Moon. Genetic algorithm

and graph partitioning. Computers, IEEE Transactions on,

45(7):841–855, Jul 1996.

[BMS+13] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz.

Recent Advances in Graph Partitioning. ArXiv e-prints,

November 2013.

[Bun00] Horst Bunke. Graph Matching: Theoretical Foundations, Al-

gorithms, and Applications. In International Conference on

Vision Interface, pages 82–84, May 2000.

[CBM07] Pierre Chardaire, Musbah Barake, and Geoff P. McKeown.

A probe-based heuristic for graph partitioning. IEEE Trans.

Comput., 56(12):1707–1720, December 2007.

[CCPS98] William J. Cook, William H. Cunningham, William R. Pulley-

blank, and Alexander Schrijver. Combinatorial Optimization.

John Wiley & Sons, Inc., New York, NY, USA, 1998.

[CFV07] Donatello Conte, Pasquale Foggia, and Mario Vento. Chal-

lenging complexity of maximum common subgraph detection

algorithms: A performance analysis of three algorithms on a

wide database of graphs. Journal of Graph Algorithms and

Applications, 11(1):99–143, 2007.

[CG70] D. G. Corneil and C. C. Gotlieb. An efficient algorithm for

graph isomorphism. J. ACM, 17(1):51–64, January 1970.

[CGP11] Carlos Cruz, Juan R. González, and David A. Pelta. Op-

timization in dynamic environments: a survey on problems,

methods and measures. Soft Computing, 15(7):1427–1448,

2011.

97

[CKM14] HyukGeun Choi, JinHyun Kim, and Byung-Ro Moon. A hy-

brid incremental genetic algorithm for subgraph isomorphism

problem. In Proceedings of the 2014 Annual Conference on

Genetic and Evolutionary Computation, GECCO ’14, pages

445–452, New York, NY, USA, 2014. ACM.

[Coo71] Stephen A. Cook. The complexity of theorem-proving proce-

dures. In Proceedings of the Third Annual ACM Symposium

on Theory of Computing, STOC ’71, pages 151–158, New

York, NY, USA, 1971. ACM.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and

Charles E. Leiserson. Introduction to Algorithms. McGraw-

Hill Higher Education, 2nd edition, 2001.

[CYM12] Jaeun Choi, Yourim Yoon, and Byung-Ro Moon. An efficient

genetic algorithm for subgraph isomorphism. In Proceedings

of the Fourteenth International Conference on Genetic and

Evolutionary Computation Conference, GECCO ’12, pages

361–368, 2012.

[DFG+15] Daniel Delling, Daniel Fleischman, Andrew V. Goldberg, Ilya

Razenshteyn, and Renato F. Werneck. An exact combinato-

rial algorithm for minimum graph bisection. Math. Program.,

153(2):417–458, November 2015.

[Due93] Gunter Dueck. New optimization heuristics: The great deluge

algorithm and the record-to-record travel. Journal of Compu-

tational Physics, 104(1):86 – 92, 1993.

[Epp95] David Eppstein. Subgraph isomorphism in planar graphs and

related problems. In Proceedings of the Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’95, pages

632–640, Philadelphia, PA, USA, 1995. Society for Industrial

and Applied Mathematics.

98

[FSV01] Pasquale Foggia, Carlo Sansone, and Mario Vento. A

database of graphs for isomorphism and sub-graph isomor-

phism benchmarking. In Proc. of the 3rd IAPR TC-15 Inter-

national Workshop on Graph-based Representations, pages

176–187, 2001.

[GJ90] Michael R. Garey and David S. Johnson. Computers and In-

tractability; A Guide to the Theory of NP-Completeness. W.

H. Freeman & Co., New York, NY, USA, 1990.

[GJR84] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A

cutting plane algorithm for the linear ordering problem. Op-

erations Research, 32(6):1195–1220, 1984.

[HH13] S. Halim and F. Halim. Competitive Programming 3: The

New Lower Bound of Programming Contests. Number V. 3.

Lulu.com, 2013.

[HKM06] Inwook Hwang, Yong-Hyuk Kim, and Byung-Ro Moon.

Multi-attractor gene reordering for graph bisection. In Pro-

ceedings of the 8th Annual Conference on Genetic and Evo-

lutionary Computation, GECCO ’06, pages 1209–1216, New

York, NY, USA, 2006. ACM.

[HKY15] Inwook Hwang, Yong-Hyuk Kim, and Yourim Yoon. Moving

clusters within a memetic algorithm for graph partitioning.

Mathematical Problems in Engineering, 2015, 2015.

[HR00] C. Helmberg and F. Rendl. A spectral bundle method for

semidefinite programming. SIAM Journal on Optimization,

10(3):673–696, 2000.

[IWM00] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An

apriori-based algorithm for mining frequent substructures

from graph data. In DjamelA. Zighed, Jan Komorowski, and

99

Jan Żytkow, editors, Principles of Data Mining and Knowl-

edge Discovery, volume 1910 of Lecture Notes in Computer

Science, pages 13–23. Springer Berlin Heidelberg, 2000.

[JAMS89] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and

Catherine Schevon. Optimization by simulated annealing: an

experimental evaluation. part i, graph partitioning. Oper. Res.,

37(6):865–892, October 1989.

[JB05] Yaochu Jin and J. Branke. Evolutionary optimization in un-

certain environments-a survey. IEEE Transactions on Evolu-

tionary Computation, 9(3):303–317, June 2005.

[KCYM16] Jinhyun Kim, HyukGeun Choi, Hansang Yun, and Byung-Ro

Moon. Measuring source code similarity by finding similar

subgraph with an incremental genetic algorithm. In Proceed-

ings of the 2016 Annual Conference on Genetic and Evo-

lutionary Computation, GECCO ’16, pages 925–932, New

York, NY, USA, 2016. ACM.

[KHKM11] Jin Kim, Inwook Hwang, Yong-Hyuk Kim, and Byung-Ro

Moon. Genetic approaches for graph partitioning: A survey.

In Proceedings of the 13th Annual Conference on Genetic

and Evolutionary Computation, GECCO ’11, pages 473–480,

New York, NY, USA, 2011. ACM.

[KKM+06] Christopher Kruegel, Engin Kirda, Darren Mutz, William

Robertson, and Giovanni Vigna. Polymorphic worm detection

using structural information of executables. In Proceedings

of the 8th International Conference on Recent Advances in

Intrusion Detection, RAID’05, pages 207–226, Berlin, Hei-

delberg, 2006. Springer-Verlag.

[KM04] Yong-Hyuk Kim and Byung-Ro Moon. Lock-gain based

graph partitioning. Journal of Heuristics, 10(1):37–57, Jan-

uary 2004.

100

[KM10] Keehyung Kim and Byung-Ro Moon. Malware detection

based on dependency graph using hybrid genetic algorithm.

In Proceedings of the 12th Annual Conference on Genetic and

Evolutionary Computation, GECCO ’10, pages 1211–1218,

2010.

[KM12] Jinhyun Kim and Byung-Ro Moon. New malware detection

system using metric-based method and hybrid genetic algo-

rithm. In Proceedings of the 14th Annual Conference Com-

panion on Genetic and Evolutionary Computation, GECCO

’12, pages 1527–1528, 2012.

[KM14] Jinhyun Kim and Byung-Ro Moon. A genetic algorithm for

linear ordering problem using an approximate fitness evalu-

ation. In Proceedings of the Companion Publication of the

2014 Annual Conference on Genetic and Evolutionary Com-

putation, GECCO Comp ’14, pages 1461–1462, New York,

NY, USA, 2014. ACM.

[Kri01] Jens Krinke. Identifying similar code with program depen-

dence graphs. In Proceedings of the Eighth Working Confer-

ence on Reverse Engineering (WCRE’01), WCRE ’01, pages

301–, Washington, DC, USA, 2001. IEEE Computer Society.

[KYM16] Jinhyun Kim, Yourim Yoon, and Byung-Ro Moon. Solving

maximum cut problem with an incremental genetic algorithm.

In Proceedings of the Companion Publication of the 2016 An-

nual Conference on Genetic and Evolutionary Computation,

GECCO Comp ’16, pages 49–50, New York, NY, USA, 2016.

ACM.

[Las91] Gregor Von Laszewski. Intelligent structural operators for the

k-way graph partitioning problem, 1991.

[LCHY06] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag:

detection of software plagiarism by program dependence

101

graph analysis. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data

mining, KDD ’06, pages 872–881, 2006.

[LL01] Jianzhuang Liu and Yong Tsui Lee. A graph-based method

for face identification from a single 2D line drawing. IEEE

Trans. Pattern Anal. Mach. Intell., 23(10):1106–1119, Octo-

ber 2001.

[Luk82] Eugene M. Luks. Isomorphism of graphs of bounded valence

can be tested in polynomial time. Journal of Computer and

System Sciences, 25(1):42 – 65, 1982.

[MAEf06] Nashat Mansour, Mohamad Awad, and Khaled El-fakih. In-

cremental genetic algorithm. The International Arab Journal

of Information Technology, 3(1):42–47, 2006.

[MB00] B.T. Messmer and H. Bunke. Efficient subgraph isomorphism

detection: a decomposition approach. Knowledge and Data

Engineering, IEEE Transactions on, 12(2):307–323, 2000.

[MKYM07] Alberto Moraglio, Yong-Hyuk Kim, Yourim Yoon, and

Byung-Ro Moon. Geometric crossovers for multiway graph

partitioning. Evol. Comput., 15(4):445–474, December 2007.

[MRD12] Rafael Martı́, Gerhard Reinelt, and Abraham Duarte. A

benchmark library and a comparison of heuristic methods

for the linear ordering problem. Comput. Optim. Appl.,

51(3):1297–1317, April 2012.

[NYB12] Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke.

Evolutionary dynamic optimization: A survey of the state of

the art. Swarm and Evolutionary Computation, 6:1 – 24,

2012.

[OEGS93] Miles Ohlrich, Carl Ebeling, Eka Ginting, and Lisa Sather.

Subgemini: Identifying subcircuits using a fast subgraph iso-

102

morphism algorithm. In Proceedings of the 30th International

Design Automation Conference, DAC ’93, pages 31–37, New

York, NY, USA, 1993. ACM.

[OSH87] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of per-

mutation crossover operators on the traveling salesman prob-

lem. In Proceedings of the Second International Conference

on Genetic Algorithms on Genetic Algorithms and Their Ap-

plication, pages 224–230, Hillsdale, NJ, USA, 1987. L. Erl-

baum Associates Inc.

[RC07] Chanchal Kumar Roy and James R. Cordy. A survey on soft-

ware clone detection research. Technical Report 2007-541,

School of Computing, Queen’s University at Kingston, On-

tario, Canada, 2007.

[RP94] J. Rocha and T. Pavlidis. A shape analysis model with appli-

cations to a character recognition system. IEEE Trans. Pattern

Anal. Mach. Intell., 16(4):393–404, April 1994.

[RWH+10] J. H. Rutgers, P. T. Wolkotte, P. K. F. Holzenspies, J. Kuper,

and G. J. M. Smit. An approximate maximum common sub-

graph algorithm for large digital circuits. In Digital System

Design: Architectures, Methods and Tools (DSD), 2010 13th

Euromicro Conference on, pages 699–705, Sept 2010.

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and

Efficiency. Number V. 1 in Algorithms and Combinatorics.

Springer, 2003.

[SL12] Bo Song and Victor Li. A hybridization between memetic al-

gorithm and semidefinite relaxation for the max-cut problem.

In Proceedings of the Fourteenth International Conference on

Genetic and Evolutionary Computation Conference, GECCO

’12, pages 425–432, New York, NY, USA, 2012. ACM.

103

[SS05] Tommaso Schiavinotto and Thomas Stützle. The linear or-

dering problem: Instances, search space analysis and algo-

rithms. Journal of Mathematical Modelling and Algorithms,

3(4):367–402, 2005.

[SWC04] A.J. Soper, C. Walshaw, and M. Cross. A combined evolu-

tionary search and multilevel optimisation approach to graph-

partitioning. Journal of Global Optimization, 29(2):225–241,

2004.

[Ull76] J. R. Ullmann. An algorithm for subgraph isomorphism. J.

ACM, 23(1):31–42, January 1976.

[vLM91] Gregor von Laszewski and Heinz Muhlenbein. Partitioning a

graph with a parallel genetic algorithm. In Hans-Paul Schwe-

fel and Reinhard Manner, editors, Parallel Problem Solving

from Nature, volume 496 of Lecture Notes in Computer Sci-

ence, pages 165–169. Springer Berlin Heidelberg, 1991.

[VN] P. Vivekanandan and D. R. Nedunchezhian. A new incremen-

tal genetic algorithm based classification model to mine data

with concept drift.

[VS02] Jorge Valenzuela and Alice E. Smith. A seeded memetic algo-

rithm for large unit commitment problems. Journal of Heuris-

tics, 8(2):173–195, 2002.

[WERC+07] Andrew Walenstein, Mohammad El-Ramly, James R. Cordy,

William S. Evans, Kiarash Mahdavi, Markus Pizka, Ganesan

Ramalingam, and Jürgen Wolff von Gudenberg. Similarity

in programs. In Rainer Koschke, Ettore Merlo, and Andrew

Walenstein, editors, Duplication, Redundancy, and Similarity

in Software, number 06301 in Dagstuhl Seminar Proceedings,

Dagstuhl, Germany, 2007. Internationales Begegnungs- und

Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,

Germany.

104

[WWL15] Qinghua Wu, Yang Wang, and Zhipeng Lü. A tabu search

based hybrid evolutionary algorithm for the max-cut problem.

Appl. Soft Comput., 34(C):827–837, September 2015.

[WYJ+04] A.S. Wu, H. Yu, S. Jin, Kuo-Chi Lin, and G. Schiavone.

An incremental genetic algorithm approach to multiprocessor

scheduling. Parallel and Distributed Systems, IEEE Transac-

tions on, 15(9):824–834, 2004.

[YHM14] Hansang Yun, MyoungHoon Ha, and RobertIan McKay. Vlr:

A memory-based optimization heuristic. In Thomas Bartz-

Beielstein, Jurgen Branke, Bogdan Filipie, and Jim Smith,

editors, Parallel Problem Solving from Nature(PPSN) XIII,

volume 8672 of Lecture Notes in Computer Science, pages

151–160. Springer International Publishing, 2014.

[ZWL+11] Qing Zhong, Zhigang Wu, Lingxue Lin, Yao Zhang, and Yao

Zhang. Computing resources assignment in rtds simulators

with subgraph isomorphism based on genetic algorithm. In

Electric Utility Deregulation and Restructuring and Power

Technologies (DRPT), 2011 4th International Conference on,

pages 1144–1149, 2011.

105

국문초록

조합최적화문제는최적화문제중에서그해공간이이산적인경우

를 말한다. 그래프 객체는 그 구조가 이산적이기 때문에 다수의 그래프

문제를 조합 최적화 문제로 분류할 수 있다. 그래프가 다양한 분야에서

널리 활용되고 있는 자료 구조이다 보니 실세계에는 그래프를 입력으로

하는다양한조합최적화문제가존재한다.그중일부문제는해공간의크

기가문제의크기에대해지수적이며,따라서그러한문제를풀때는보다

효과적인공간탐색방법을사용해야한다.

유전알고리즘은조합최적화문제를풀때널리사용되는방법이며,

특히점진적유전알고리즘을이용하면그래프최적화문제를효율적으로

풀수있다.이를위해서는주어진문제를직접푸는대신에부분문제들을

정의한후에이들을단계적으로풀어야한다.부분문제는원래주어진그

래프의부분적인구조를택하여정의하고,이들을풀때에는점진적유전

알고리즘을 사용한다. 그리고 알고리즘의 중간 단계에서 사용되는 부분

문제의크기를점차증가시킨다.개별부분문제를풀때에는유전알고리

즘이 사용되고, 유전 알고리즘의 초기 해집단으로는 이전 단계에서 진화

된해집단이이용된다.

본 논문은 두 가지 조합 최적화 문제를 위한 점진적 유전 알고리즘

을 제시한다. 각각의 문제는 부분 그래프 동형 문제와 그래프 컷 최적화

문제다. 또한, 본 논문에서는 부분 문제 수열에 대한 최적 부분 구조라는

개념을 고안하였으며, 이러한 개념 및 관련된 다른 요소들이 알고리즘의

진행과정에어떻게영향을끼치는지를설명한다.또한,올바른부분문제

106

수열을 구축하려는 방법의 일환으로 몇 가지의 그래프 확장 방법과 정점

재배열 방식을 제시한다. 제안된 점진적 기법을 혼합형 유전 알고리즘과

결합하여부분그래프동형문제를효과적으로풀수있었으며,이알고리

즘을 추가로 개선하여 거의 완벽한 결과를 거둘 수 있었다. 또한, 점진적

유전 알고리즘에 대한 분석 결과를 바탕으로 그래프 컷 최적화 문제를

푸는 효과적인 알고리즘을 고안하고 구현하였다. 그리고 그 알고리즘을

그래프 분할 문제 및 최대 컷 문제에 대한 벤치마크 그래프 인스턴스에

대해수행하였으며,실험을통해서부분문제의수열이탐색할공간의지

형도에 어떻게 영향을 끼치는지도 조사하였다. 적합한 부분 문제 수열을

이용한 점진적 유전 알고리즘을 이용하면 기존에 비해 향상된 결과를 얻

을수있었다.

107

	Chapter I. Introduction
	Chapter II. Incremental Genetic Algorithm
	2.1 Overview and Traditional Applications
	2.2 Application on Graph Optimization Problems
	2.2.1 Formalization of the Incremental Process
	2.2.2 Theoretical Background
	2.2.3 Sequence of Subproblems

	Chapter III. Subgraph Isomorphism Problem
	3.1 Introduction
	3.2 The Proposed Algorithm
	3.2.1 The Structure of the Incremental Genetic Algorithm
	3.2.2 Design Issues
	3.2.3 Genetic Framework

	3.3 Experimental Results
	3.3.1 Dataset and Evaluation
	3.3.2 Results and Discussions
	3.3.3 Overall Results

	3.4 Further Improvement
	3.4.1 New Operators
	3.4.2 Improvements by New Operators
	3.4.3 Overall Result

	Chapter IV. Graph Cut Optimization Problems
	4.1 Introduction
	4.2 The Proposed Algorithm
	4.2.1 Subproblem Structure
	4.2.2 Reordering Schemes
	4.2.3 Genetic Framework

	4.3 Experimental Results
	4.3.1 Dataset and Evaluation
	4.3.2 Results on Graph Partitioning Problem
	4.3.3 Results on Maximum Cut Problem
	4.3.4 Results on Problem Variants

	Chapter V. Related Applications
	5.1 Measuring Source Code Similarity with an Incremental Genetic Algorithm
	5.1.1 Introduction
	5.1.2 The Proposed System
	5.1.3 Experimental Results
	5.1.4 Discussion

	5.2 Linear Ordering Problem and an Approximate Fitness Evaluation
	5.2.1 Introduction
	5.2.2 The Proposed Method
	5.2.3 Experimental Results

	Chapter VI. Conclusions
	Bibliography
	국문 초록

<startpage>11
Chapter I. Introduction 1
Chapter II. Incremental Genetic Algorithm 6
 2.1 Overview and Traditional Applications 6
 2.2 Application on Graph Optimization Problems 9
 2.2.1 Formalization of the Incremental Process 9
 2.2.2 Theoretical Background 12
 2.2.3 Sequence of Subproblems 15
Chapter III. Subgraph Isomorphism Problem 19
 3.1 Introduction 19
 3.2 The Proposed Algorithm 21
 3.2.1 The Structure of the Incremental Genetic Algorithm 21
 3.2.2 Design Issues 25
 3.2.3 Genetic Framework 28
 3.3 Experimental Results 31
 3.3.1 Dataset and Evaluation 31
 3.3.2 Results and Discussions 33
 3.3.3 Overall Results 39
 3.4 Further Improvement 42
 3.4.1 New Operators 43
 3.4.2 Improvements by New Operators 45
 3.4.3 Overall Result 46
Chapter IV. Graph Cut Optimization Problems 50
 4.1 Introduction 50
 4.2 The Proposed Algorithm 51
 4.2.1 Subproblem Structure 51
 4.2.2 Reordering Schemes 54
 4.2.3 Genetic Framework 55
 4.3 Experimental Results 57
 4.3.1 Dataset and Evaluation 57
 4.3.2 Results on Graph Partitioning Problem 58
 4.3.3 Results on Maximum Cut Problem 66
 4.3.4 Results on Problem Variants 70
Chapter V. Related Applications 75
 5.1 Measuring Source Code Similarity with an Incremental Genetic Algorithm 75
 5.1.1 Introduction 75
 5.1.2 The Proposed System 76
 5.1.3 Experimental Results 80
 5.1.4 Discussion 88
 5.2 Linear Ordering Problem and an Approximate Fitness Evaluation 88
 5.2.1 Introduction 88
 5.2.2 The Proposed Method 89
 5.2.3 Experimental Results 91
Chapter VI. Conclusions 94
Bibliography 96
±¹¹® ÃÊ·Ï 106
</body>

