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Abstract 

IMPROVEMENT OF EFFICIENCY 

AND PHOTO-STABILITY IN 

INVERTED ORGANIC SOLAR CELLS 

JIYUN SONG 

DEPARTMENT OF 

ELECTRICAL AND COMPUTER ENGINEERING 

COLLEGE OF ENGINEERING 

SEOUL NATIONAL UNIVERSITY 

Organic solar cells are one of the most promising candidates for third generation 

solar cells, due to their potential of simple and low cost process to be 

commercialized in flexible, light-weight, and semi-transparent devices. With these 

advantages, organic solar cells can target new and niche applications, such as 

portable solar battery chargers, clothing, car windows, and so on, which are 

differentiated from inorganic counterparts. 

There are prerequisite conditions for organic solar cells to be commercialized, 

which are high performance, low cost, and high stability. Low cost is known as one 
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of the main advantages in organic solar cells both in terms of material itself and 

fabrication methods, on the other hand, performance and stability issues are still 

remained to be considered for commercial viability.  

In this thesis, two topics including the efficiency improvement and 

understanding of degradation mechanism are discussed. In terms of device 

configuration in organic solar cells used herein, an inverted structure, the electrons 

are collected by the bottom electrode – indium tin oxide (ITO), and holes are 

collected by the top electrode, is employed for better long-term device stability and 

manufacturing compatibility.  

For efficiency improvement, along with the development of organic materials, 

optical engineering, and new processing techniques, the improvement of charge 

extraction properties has become a key topic for high performance organic solar 

cells. In order to enhance charge extraction characteristics, interlayer (or buffer layer) 

between electrode and light-absorbing layer is the most important to extract 

generated electrons and holes as efficiently as possible toward the electrodes. Here, 

a unique nanostructured electron-selective interlayer comprising of In-doped ZnO 

(ZnO:In) and vertically-aligned CdSe tetrapods (TPs) was introduced. With 

dimension-controlled CdSe TPs, the direct inorganic electron transport pathway is 

provided, resulting in the improvement of the short circuit current and fill factor of 

devices. This enhancement is attributed to the roles of CdSe TPs that reduce the 

recombination losses between the active layer and buffer layer, improve the hole-

blocking as well as electron-transporting properties, and simultaneously improve 

charge collection characteristics. As a result, the power conversion efficiency of 

PTB7:PC71BM based solar cell with nanostructured CdSe TPs increases to 7.55%. 

Moreover, this approach introduced herein, which uses the length-controlled 
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inorganic nanocrystals as an interlayer, is expected to be a versatile platform for 

improving charge extraction in thin film solar cells. 

Besides, systematic study for understanding the degradation mechanisms of 

organic solar cells was performed. Among the main factors known to degrade 

organic devices, which are oxygen, moisture, heat, and light, light is chosen since 

the sunlight can accelerate other degradation processes, and operating condition of 

solar cells is under the illumination with high photon flux system as well. Several 

light-induced mechanisms have been proposed with the well-known P3HT-based 

solar cells; however, considering the aging mechanisms also greatly depend on the 

organic materials of active layer, it is required to explore the mechanisms for high 

performance polymer-based solar devices. Therefore, in this thesis, the light-induced 

degradation of high performance PTB7-based organic solar cells in the first 24 hours 

was demonstrated. After the photo-induced aging, the device revealed 30 % of initial 

performance drop mostly through a decrease in JSC and FF. In order to figure out the 

origin of this photo-induced degradation, the morphological and electrical 

characteristics of active layer and devices were investigated by atomic force 

microscopy, impedance spectroscopy, and temperature dependent current density-

voltage characteristics. As a result, the light-induced traps inside the 

bulkheterojunction and two adjacent interfaces were found to be a primary cause of 

loss. Furthermore, this trap formation was observed with energy of 78 meV and with 

substantially high density of (8.3 ± 2.0) × 1017 cm-3, leading to highly trap-charge-

limited conduction properties and electrical degradation of solar cells. 

This thesis demonstrates the practical approaches to enhance power conversion 

efficiency and to understand light-induced degradation mechanism of inverted 

organic solar cells. These approaches and various measurement techniques including 

optical and electrical characterization methods introduced here are expected to be 
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applied not only to solar cells but also to other kinds of organic optoelectronic 

devices, such as OLEDs and organic thin-film transistors. 
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Chapter 1 

Introduction 

Renewable energy is an essential part of reducing worldwide carbon emissions by 

responding to the global climate change. Fossil fuels have been the world’s primary 

energy source until now; however, they give lots of negative effects on our 

environment. When they are burnt, gases including carbon dioxide (CO2) are 

released. Since carbon dioxide is known to one of the primary reasons for formation 

of global warming, developing and using renewable energy sources including solar, 

wind, hydropower, biomass, and geothermal is necessary.  

Among the possible renewable energy sources, solar cells, which convert 

sunlight into electricity, are expected to the most promising one as sustainable and 

infinite source (approximately 86,000 TW) of clean energy. Figure 1.1 shows that 

solar photovoltaic (PV) power system demonstrates the highest average annual 

growth rates during the last five years among the renewable energies. By virtue of 
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this rapid development of solar energy industry, cumulative PV solar cell capacity 

reached more than 200 GWs in 2015 as shown in Figure 1.2.  

 

 

Figure 1.1 Average annual growth rates of renewable energy capacity and biofuels 

production from the end of 2010 to the end of 2015. (Source : Renewables global 

status report 2016) 

 

 

Figure 1.2 Solar photovoltaic global capacity, by country and region, 2005–2015. 

(Source : Renewables global status report 2016) 
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1.1 Organic Solar Cells 

Solar cells are typically categorized into three generations, according to cost and 

efficiency of the cells. The first generation solar cells are mainly based on silicon 

wafers, which demonstrate a performance about 15-20 %. These types of solar cells 

have dominated the market until now; however, they required a lot of energy to be 

produced at the early stage of Si solar cell technologies, so the cost was quite 

expensive (module cost per watt in 2007 : > 3.0 $ /W). 

The second generation contains amorphous silicon, Copper Indium Gallium 

Selenide (CIGS), and Cadmium Telluride (CdTe) types of solar cells based on thin 

film technology that have a lower efficiency (10-15 %), but are much cheaper to 

produce than cells in first generation. Since the second generation solar cells have a 

lower material consumption due to thin active layer, it has been possible to reduce 

costs compared to the first generation.  

To meet both low cost and high performance, which is the goal for third 

generation (or next-generation) solar cells, technical breakthroughs are required in 

the view of materials as well as fabrication process. Most technologies in this 

generation are not yet commercialized, but a lot of researches are going on in this 

area, including dye-sensitized solar cells, organic solar cells, perovskite solar cells, 

and quantum dot solar cells. They all have advantages of cost, since they can be 

fabricated with cost-effective roll-to-roll (R2R) technologies through the solution 

process.  

Figure 1.3 shows the relationship between efficiency, module areal costs, and 

cost per peak watt (in $/Wp). For third generation (or next-generation) technologies, 

the goal is to achieve 0.3-0.5 $/Wp (blue shaded region in Figure 1.3), which can be 

realized by solar cells with high performance and low cost. Not only the emerging 
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photovoltaics but Si solar cells are also coming to this region by continuous efforts 

for cost reduction. (module cost per watt in 2015 : 0.57 $ /W, Source : GTM 

Research PV Pulse, Mar. 2016).  

 

 

Figure 1.3 Relationship between power conversion efficiency, module areal costs, 

and cost per peak watt (in $/Wp).[1] ©  2014 Nature Publishing Group. For next-

generation (or third generation) technologies the goal is to reach 0.3-0.5 $/Wp, 

denoted by the blue shaded region.  

 

Organic solar cells are one of the most promising candidates for third 

generation solar cells, due to their potential of simple and low cost process to be 

commercialized in flexible, light-weight, and large-area devices.[2, 3] With these 

advantages, organic solar cells can target new and niche applications, such as 

portable solar battery chargers, clothing, car windows, and so on. Although 

efficiency of organic solar cells is still low compared to the inorganic counterparts, 

the record efficiency has been gradually increased since C. W. Tang reported first 
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bilayer organic solar cell in 1986.[4] The power conversion efficiency (PCE) of 

polymer:fullerene bulkheterojunction (BHJ) solar cells have already gone beyond 

10 % in single junction by the benefit of multidirectional efforts containing the 

development of new materials, device architectures, and processes.[5-8] As shown 

in Figure 1.4, recently 11.5 % of PCE was achieved in single cell structure,[9] and 

10.6 % was reported in tandem structure.[10] The state of the art and remaining 

challenges of organic solar cells will be discussed in a subsequent chapter. 

 

 

Figure 1.4 Best research solar cell efficiencies chart. Enlarged graph shows the 

reported timeline of efficiencies for organic solar cells (Source : National 

Renewable Energy Laboratory, Aug. 2016) 
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1.2 Current State of the Art and Challenges in Organic 

Solar Cells 

Organic solar cells have drawn great attention due to their potential to be fabricated 

on low cost and large area by solution process. In addition, organic materials have 

an advantage over the inorganic counterparts in material flexibility. By designing 

and synthesizing the organic materials (usually p-type conjugated polymers), it is 

possible to control their physical properties, such as band gap, energy position of 

highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital 

(LUMO), absorption ability, and carrier mobility.[11]  

One of the classic polymers as a donor material is poly(3-hexylthiophene) 

(P3HT), and it has reached 4-5 % of PCE.[12, 13] However, it showed low current 

density because of its relatively large band gap (1.9 eV). Recently, low band gap 

polymers including poly[N-9′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-

thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), poly[[4,8-bis[(2-ethylhexyl)oxy] 

benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno 

[3,4-b]thiophenediyl]] (PTB7), and PTB7 derivatives have been extensively reported 

for better light harvesting of solar spectrum.[14-16]  

There are prerequisite conditions for organic solar cells to be commercialized, 

which are high performance, low cost, and high stability as shown in Figure 1.5. For 

performance, with gradual efforts to improve PCEs containing the development of 

new low band gap polymer materials and device architectures, the highest efficiency 

above 10 % was reported in single-cell structure, approaching the efficiency 

threshold for commercial viability.[5-7] In order to further increase in efficiency of 

organic solar cells, continuous progress from the points of view of materials, optical 

enhancement, fabrication methods, and charge extraction techniques is important. 
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Low cost is known as one of the main advantages in organic solar cells both in 

terms of material itself and fabrication methods. Due to their solution-processable 

properties, manufacturing costs will be low (< 0.5$/Wp) by using spin-coating, ink-

jet printing, and roll-to-roll (R2R) technologies. 

Stability also has to be guaranteed for organic solar cells to be in market; 

however, it remains a great challenge so far to reach a goal of more than 5 year 

lifetime. There are factors limiting the stability in organic solar cells, such as oxygen 

and moisture, heat, and light irradiation.[17-21] Therefore, systematic investigation 

to understand degradation mechanism is important for overcoming the challenges to 

achieve highly stable organic solar cells. 

 

 

Figure 1.5 Requirements for commercialization of organic solar cells. 
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1.2.1 Progress in Efficiency Improvement of Organic Solar Cells  

Efficiency of organic solar cells has been steadily improved as shown in Figure 

1.4 through a lot of efforts. Along with the development of organic materials,[5, 22, 

23] optical engineering,[7, 24] and new processing techniques,[9] the improvement 

of charge extraction properties has become a key topic for high performance organic 

solar cells. In order to enhance charge extraction characteristics, interlayer (or buffer 

layer) between electrode and light-absorbing layer is the most important to extract 

generated electrons and holes as efficiently as possible toward the electrodes. This 

interlayer should meet good optical transparency, charge transport and extraction 

properties with suitable energy band positions.  

Metal oxides thin films are one of the most promising candidates for efficient 

charge extraction layers by virtue of their good carrier transport characteristics with 

appropriate energy level as well as optical transparency in the visible region. As hole 

extraction layer, metal oxides including MoOX,[25, 26] V2O5,[25, 27] WO3,[28] and 

NiO[29] are usually employed in organic devices, while SnO2,[30] TiO2,[31] and 

ZnO[32, 33] are widely used for electron extraction layer. 

To collect photogenerated charge carriers more efficiently from the active layer 

to electrode, there also have been efforts applying conjugated polyelectrolytes 

(CPEs),[34, 35] metal doping,[36-39] and nanostructures[40, 41] to the metal oxides. 

Choi et al.[34] reported that the incorporation of thin CPE interfacial layer between 

titanium oxide and active layer can enhance the device performance by reducing the 

electron extraction barrier through the vacuum level shift. On the other hand, doped 

metal oxides also have been used as interlayer for efficient charge extraction, since 

the doping of semiconductors is known to greatly affect their properties, especially 

electrical characteristics such as electron mobility and conductivity toward increased 
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direction.[36-39, 42] Furthermore, nanostructured metal oxides, such as nanowires-, 

rods-, or wrinkles-shaped, were applied to enhance the power conversion efficiency 

of solar cells. Liu et. al.[40] demonstrated that through the nanowires structure of 

metal oxides, increased interfacial area and more continuous path for charge 

transport could be given, enhancing the short circuit current and overall performance 

of solar cells. Selected performance parameters of organic solar cells which employ 

metal oxides interlayer as charge extraction layer are summarized in Table 1.1. 

 

Table 1.1 Performance parameters of organic solar cells using various types of 

metal oxides as charge extraction interlayer.  

Type Interlayer Active layer 
JSC 

(mA cm-2) 

VOC 

(V) 

FF 

(%) 

PCE 

(%) 
Ref. 

Thin films 

MoOX P3HT:PC60BM 8.94 0.60 61.9 3.33 [25] 

V2O5 P3HT:PC60BM 8.83 0.59 59.1 3.10 [25] 

WO3 
Si-PCPDTBT: 

PC71BM 
12.8 0.62 60.4 4.8 [28] 

NiO P3HT:PC60BM 11.3 0.64 69.3 5.16 [29] 

SnO2 P3HT:PC60BM 9.89 0.58 56 3.23 [30] 

TiO2 P3HT:PC60BM 11.1 0.61 66 5.0a [31] 

ZnO 
PCDTBT: 

PC71BM 
10.41 0.88 68.8 6.33 [33] 

Incorporation 

of CPEs 

TiOX/ 

FPQ-Br 
P3HT:PC60BM 8.85 0.58 70 3.55 [34] 

ZnO/ 

PFN-Br 

PBDT-DTNT: 

PC71BM 
17.4 0.75 61 8.4 [35] 

Metal doping 

Ga-doped 

ZnO 
PTB7:PC71BM 14.96 0.75 65.0 7.34 [37] 

Al-doped 

ZnO 

PTB7-Th: 

PC71BM 
17.91 0.80 72.3 10.4 [38] 

In-doped 

ZnO 

PCDTBT: 

PC71BM 
12.28 0.88 51.7 5.58 [39] 

Nanostructured 

ZnO 

nanowires 
CuPC:C60 3.86 0.46 30 0.53 [40] 

ZnO nano-

patterned 

PBDTTT-C-T: 

PC71BM 
12.95 0.73 57 5.43 [41] 

aDevice was measured under a solar simulator with irradiation intensity of 90 mW cm–2. 
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Inorganic nanocrystals (NCs), which have strengths in superior electrical 

characteristics, easily tunable band gap, and solution processability[43, 44] are 

introduced as an interlayer in Chapter 3 of this thesis. Organic-inorganic NCs 

hybrid system based solar cells have already been widely reported; however, most of 

the results employed NCs as electron acceptor in combination with electron donor of 

conjugated polymer.[45-47]  

In order to realize charge extraction interlayer of inorganic NCs, the colloidal 

tetrapod (TP)-shaped NCs were chosen due to their structural uniqueness and 

controllability as shown in Figure 1.6. The tetrapod morphology is the simplest 

architecture which can stably stand on a substrate owing to its low center of mass, so 

that vertically-oriented inorganic channels can be easily produced on the substrate 

by simple spin-coating process. In a case of carrier transport, TPs are intended to 

give more effective pathway through their branches based on the conduction 

mechanism rather than hopping mechanism of quantum dot-shaped NCs.  

 

 

Figure 1.6 Transmission electron microscopy (TEM) images and schematic 

illustration of CdSe TPs with controlled arm lengths (l). All scale bars are 50 nm. 
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1.2.2 Stability/Degradation of Organic Solar Cells  

As efficiency growths are making progress toward the commercial practicality of 

organic solar cells, the importance of stability issues has been highlighted 

simultaneously. However, stability and degradation of organic solar cells are yet to 

be proven, therefore, systematic study about degradation mechanisms which 

happens inside the device is important. 

There are four main factors, which are known to degrade organic devices: 

oxygen, moisture, heat, and light.[19-21, 48] Oxygen and moisture molecules are 

considered as important degradation factors because they can vertically penetrate 

into active layer through microscopic pinholes of top electrode.[17, 19] By diffusing 

from the organic/metal electrode interface, oxygen and moisture can lead to the 

degradation of organic underlayers. 

In addition, Bertho et al. reported in 2007[20] that thermal energy above glass 

transition temperature (Tg) of polymer can make macroscopic phase separation in 

bulkheterojunction geometry, hence high Tg PPV-based solar cells showed better 

thermal stability due to their firmer matrix of polymers. That is, maintaining a stable 

morphology of active layer can efficiently suppress the deterioration in solar cell 

performances. 

Among the degradation factors, light is the most crucial issue to be solved 

because not only is it an intrinsic reaction, but the sunlight is also known to 

accelerate the reaction with oxygen.[49, 50] Furthermore, solar cells are inevitably 

operated under the light illumination condition. Recent studies have shown that there 

is fast initial performance drop, which is called burn-in loss, in organic solar cells 

during the continuous light exposure.[49] Reese et. al.[51] revealed that 

conventional P3HT:PCBM devices, which were continuously illuminated under the 
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light source of tungsten halogen bulbs in an inert atmosphere, exhibited a 60 % loss 

in power conversion efficiency after 200 h of illumination. Recently, Tamai et al.[52] 

reported that decrease of power conversion efficiency for P3HT:ICBA blend cells 

resulted in an 60 % reduction during the 45 h of light exposure under the AM1.5G 

simulated solar illumination. This burn-in loss is a major drawback for 

commercialization, therefore, it is highly required to systematically study about 

photo-induced degradation mechanism. Several light-induced mechanisms have 

already been proposed with the well-known P3HT-based solar cells:[17, 53-58] 

chemical structure modification of P3HT and P3HT:PCBM film,[53] large phase 

segregation in morphology,[54] photo-induced oxidation of PC60BM,[55] electrical 

deterioration,[56, 57] and interface degradation.[58]  

Manceau et al. investigated the effects of long-term light irradiation on P3HT 

and P3HT:PCBM active layer in the absence of oxygen through UV-visible and 

infrared (IR) spectroscopies.[53] The authors found that the 10,000 h light 

irradiation of P3HT provoked the modification of its chemical structure, such as a 

reduction of the conjugation length in the macromolecular backbone and a decrease 

of the IR absorption bands of the various polymer functional groups (thiophene rings, 

aromatic C-H, and alkyl groups), all leading to the UV-Vis absorbance decrease. 

The degradation rate was strongly attenuated, on the other hand, when P3HT is 

blended with PCBM due to the radical scavenging properties of the fullerene and its 

ability to quench the P3HT singlet state, remaining in chemically stable state during 

the 10,000 h of artificial accelerated light aging.  

The same authors extended this study to P3HT:PCBM deposited on 

PEDOT:PSS system in order to make more connection with solar cell devices.[54] It 

concludes that P3HT:PCBM blend deposited on a PEDOT:PSS layer has undergone 

the formation of large PCBM aggregates after the long-term (~ 6,000 h) 
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photochemical aging, which can possibly hinder the exciton dissociation and charge 

transport properties, resulting in degradation of device performances at last.  

Reese et al. also conducted the investigations on the changes in absorbance and 

photoconductance of P3HT and P3HT:PCBM blended films under the illumination 

both in inert and ambient conditions.[55] They concluded that under inert 

atmosphere, both the polymer and the blend are stable for at least 1,000 h of one sun 

illumination, which is consistent with the above results.[53, 54] Under exposure to 

air and light, however, the photoconductance of the blend decreased during 

degradation due to the oxidation series of PCBM. They argued that these oxidized 

molecules serve as deep traps through decreased electron mobility, having an impact 

on the device lifetime.  

Studies from Yang’s group demonstrated about electrical degradation of 

P3HT:PCBM solar cells exposed under X-rays irradiation.[56] They found that 

whereas no structural changes take place in polymer solar cells when subjected to 

high radiation doses, electrical deterioration, especially charge carrier accumulation, 

is thought to be a severe problem resulting in temporary degradation in solar cell 

performance. Another work by Khelifi et al. observed that the effect of 

photodegradation on electrical transport and charge extraction for P3HT:PCBM 

solar cells under continuous illumination in nitrogen atmosphere.[57] With various 

measurements including admittance spectroscopy and numerical device modeling 

tool, the authors determined that initial degradation of electrical properties during 

250 h is mainly caused by the increased density of deep traps in the blend. 

Williams et al. reported about photo-stability behavior of P3HT:PCBM solar 

cells by applying different hole and electron extraction layers in between organic 

and electrode interfaces.[58] They concluded that exposure to light results in 

degradation in all parameters of devices, and inserting the charge extraction layer 



 

14 

 

between the organic layer and aluminum electrode can suppress contact photo-

degradation and enhance photo-stability. 

For high performance solar cells with recently developed materials, on the 

other hand, studies of degradation mechanism have been limited. Considering the 

aging mechanisms also greatly depend on the organic materials of active layer, it is 

required to explore the mechanisms for high performance polymer-based solar 

devices. In Chapter 4, investigation of light-induced degradation mechanisms of 

PTB7:PC71BM based organic solar cells are discussed. 
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1.3 Outline of Thesis 

This thesis is divided into five chapters.  

In the introduction of Chapter 1, brief overview of organic solar cells and their 

current state of the art and challenges were explained, especially in terms of 

efficiency improvement and understanding of degradation mechanism.  

Chapter 2 surveys the basic device physics of organic solar cells, materials 

used in this thesis, and device fabrication methods. In addition, characterization 

methods including optical and electrical techniques are described. 

In Chapter 3, to enhance the charge extraction properties for high performance 

solar cells, the electron-selective interlayer of inorganic CdSe TP-shaped 

nanocrystals are introduced, and their device performances are investigated 

including the analysis of recombination and charge collection characteristics.  

In Chapter 4, to understand the degradation mechanisms especially for high 

performance polymer-based solar devices, the light-induced degradation of PTB7-

based organic solar cells in the first 24 hours are demonstrated. The morphological 

and electrical characteristics of active layer and devices are investigated by various 

measurement techniques to figure out the origin of photo-induced degradation. 

In Chapter 5, the results obtained are summarized and concluding remarks of 

this thesis are given. 
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Chapter 2 

Theory and Experimental Methods 

2.1 Basic Device Physics of Organic Solar Cells 

2.1.1 Working Principle of Organic Solar Cells 

Like all photovoltaic cells, organic solar cell converts solar energy (light) into 

electricity, and its working principle is shown in Figure 2.1. While free carriers are 

directly generated through the photon absorption in inorganic solar cells, excitons, 

i.e. electron-hole pair bound together by electrostatic force, are produced (Figure 2.1 

(1)) in organic solar cells. Then, these generated excitons diffuse until they either 

recombine or reach at the donor and acceptor interfaces, where they are broken up 

into electrons (black) and holes (white) by effective built-in potential. (Figure 2.1 (2 

and 3)) The separated electrons and holes are then collected to cathode and anode, 

respectively, generating electricity. (Figure 2.1 (4)) 
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Figure 2.1 The working principle of organic solar cells.  

2.1.2 Solar Cell Performance Parameters 

In order to determine the performance and electrical characteristics of the 

photovoltaic devices, current density-voltage (J-V) measurements are performed 

under the illumination of solar simulator which can provide approximating natural 

sunlight. A typical J-V characteristic of a solar cell is shown in Figure 2.2.  

The current under illumination when the voltage across the solar cell is zero is 

called short-circuit current density, JSC. This is the maximum current delivered by a 

solar cell, and it depends on the optical properties (absorption and reflection) as well 

as electrical properties (exciton dissociation, carrier transport, and charge collection) 

of active layer.  

The open-circuit voltage, VOC, is the maximum voltage that solar cell is able to 

supply, and occurs when the net current through the device is zero. In organic solar 

cells, VOC is known to be mainly determined by the energy offset between the 



 

18 

 

highest occupied molecular orbital (HOMO) of donor and the lowest unoccupied 

molecular orbital (LUMO) of acceptor materials.[59, 60] Reverse saturation current, 

recombination, or defect states are factors that influence the open-circuit voltage in 

organic solar cells. 

 

 

Figure 2.2 Current density-voltage (J-V) curve of solar cell. 

 

While the power from the solar cell is zero at the operating points of both JSC 

and VOC, there is a point where the solar cell can deliver its maximum power (PMax) 

to an external load. The fill factor, FF is defined as the ratio of the maximum power 

generated from the solar cell to the product of VOC and JSC, which is shown in 

equation (2.1). 

 
OCSC

Max

VJ

P
FF


  (2.1) 

The FF can also be graphically defined as the ratio of the area of the maximum 

possible largest rectangle (dark grey region in Figure 2.2), which fits in the J-V 
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curve, to the rectangle formed with VOC and JSC. The ideal value for FF is unity 

(100%), if all the generated charge carriers are extracted out of a device without any 

losses. In typical organic solar cells, however, FF is usually in the range of 50-80 %, 

since there are factors which influence FF in organic solar cells including parasitic 

resistive losses and current leakages. 

The efficiency of a solar cell, which is defined as the fraction of incident power 

converted to electricity, is the most commonly used parameter to show the 

performance of solar cells. The power conversion efficiency, PCE, is given by 

 (%) 100
PowerLight 

Power Electric
(%) 

light

SCOC 



P

FFJV
PCE  (2.2) 

where Plight is the incident power of light. The efficiency is needed to be measured 

under the standard test conditions for comparing performances from one to another, 

because it has a dependence on spectrum and intensity of incident sunlight. The 

standard condition includes an irradiance of 1 sun (100 mW cm-2) with an air mass 

1.5 global (AM 1.5G) solar spectrum as shown in Figure 2.3. 

 

 

Figure 2.3 AM 1.5G spectral distribution of solar irradiation. 
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The quantum efficiency (QE) is the ratio of the number of charge carriers 

collected by the solar cell to the number of photons of a given wavelength incident 

on the solar cell. In solar cells, two types of QE are often considered: external 

quantum efficiency (EQE) and internal quantum efficiency (IQE). EQE, also known 

as IPCE (incident photon-to-current conversion efficiency), is the ratio of the 

number of charge carriers collected by the solar cell to the number of photons of a 

given energy shining on the solar cell from outside (incident photons). On the other 

hand, IQE is the ratio of the number of charge carriers collected by the solar cell to 

the number of photons of a given energy that shine on the solar cell from outside and 

are absorbed by the cell. 

 
photonsincident  ofnumber 

load externalin  electrons collected ofnumber 
  (%) EQE  (2.3) 

 

nTransmissoReflection1
               

photons absorbed ofnumber 

load externalin  electrons collected ofnumber 
  (%) 

-

EQE

IQE






 (2.4) 

2.1.3 Equivalent Circuit Model 

To understand the electronic properties of a solar cell, equivalent circuit model is 

useful, which consists of ideal electrical components whose behavior is well defined. 

As shown in Figure 2.4, a solar cell can be modeled by a current source in 

parallel with a diode, a series resistance (RS), and a shunt resistance (RSH). In an 

ideal solar cell, the series resistance is zero and the shunt resistance is infinite. From 

the equivalent circuit, the current density of solar cell (J) under illumination is given 

by the sum of the dark diode current density (Jdiode), leakage current density (Jleak), 

and the photogenerated current density (Jph). 
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Figure 2.4 The equivalent circuit diagram of solar cell under illumination. 

 

 phleakdiode
JJJJ   (2.5) 

Here, voltage of solar cell (V) can be expressed considering the voltage drop 

across the RS as follows: 

 SSHleak
JRRJV   (2.6) 

When combining two equations, Equation (2.5) and Equation (2.6), then 

current density of solar cell is given by 
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 (2.7) 

where, J0 is the reverse saturation current density, n is the diode ideality factor, q is 

the elementary charge, k is the Boltzmann constant, and T is the absolute 

temperature.  
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2.2 Materials 

2.2.1 Materials 

The followings are the details of materials used for solar cell fabrication in this 

thesis, and preparation methods using these materials are described in the following 

subchapters. Cadmium oxide powder (CdO, 99.95%) was obtained from Alfa Aesar. 

Selenium powder (99.99%), oleic acid (OA, 90%), n-trioctylphosphine (TOP, 90%), 

1-octadecene (1-ODE, 90%), hexadecyltrimethylammonium bromide (HTAB, 

99+%), chlorobenzene (99.8%), zinc acetate dihydrate (Zn(ac)2·2H2O, ≥98%), 

indium (III) nitrate hydrate (In(NO3)3·xH2O, 99.99%), potassium hydroxide (KOH, 

90%), ethanolamine (≥99.0%) and 1-hexylamine (99%) were purchased from 

Sigma-Aldrich. Methanol (99.8%) and 1,8-diiodooctane were obtained from 

Samchun Pure Chemical Co. and Tokyo Chemical Industry Co., respectively. 

Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-

2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and [6,6]-phenyl-

C71-butyric acid methyl ester (PC71BM) for photoactive materials were purchased 

from 1-Material, and these chemical structures and energy diagram are shown in 

Figure 2.5. All materials mentioned above were used as received without any further 

purification.  
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Figure 2.5. (a and b) Chemical structures and (c) an energy level diagram of PTB7 

and PC71BM, which are used as photoactive materials in this thesis. 

2.2.2 Preparation of ZnO Nanoparticles 

ZnO nanoparticles (NPs) are used as electron extraction layer for inverted-type of 

organic solar cells in Chapter 4. For synthesizing ZnO NPs, method from Pacholski 

et al.[61] was a bit modified. First, the mixture of zinc acetate dihydrate (2.00 g) and 

methanol (80 ml) was in the 3-neck round bottom flask under the continuous stirring, 

and heated to 60 °C. At the stabilized temperature of 60 °C, 40 ml of KOH solution 

(mixture of 1.51 g of KOH flakes and 65 ml of methanol) was added dropwise into 

the zinc acetate dihydrate solution. Then, the reaction mixture was stirred for 2 h and 

30 min keeping the temperature at 60 °C to yield milky solution containing ZnO 

NPs. The ZnO NPs were then isolated by centrifugation at 4000 rpm and re-

dispersed in 1-butanol, resulting in a final concentration of about 50 mg mL-1. 

2.2.3 Synthesis of CdSe Tetrapods and Their Surface Modification  

In Chapter 3, CdSe tetrapod (TP)-shaped colloidal nanocrystals are used as electron-

selective interlayer. To prepare the arm length-controlled CdSe TPs, synthetic 

process by Lim et al.[62] was partially modified. As arm growth precursors, 

cadmium oleate (Cd(OA)2) solution (reacting 10 mmol of CdO with 9 mL of OA in 
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5 mL of ODE and 1 mL of TOP at 280 °C) containing 0.14 mmol of HTAB and 

SeTOP solution (reacting 12 mmol Se with 6 mL TOP at 150 °C) were mixed under 

the inert atmosphere for 5 min. Then, 28 mL of the arm growth precursors was 

continuously injected into the seed solution (0.3 μmol of CdSe seeds (diameter ~ 5 

nm) dissolved in 26.25 mL of ODE, 1.5 mL of TOP, 2.25 mL of OA and 0.21 mmol 

of HTAB) at 260 °C. Injection rate was fixed to 30 mL/hr. After the precursor 

injection was finished, the crude solution was immediately cooled down to ambient 

temperature and purified three times using acetone (for precipitation) and hexane 

(for re-dispersion). The final product was dispersed in hexane for surface 

modification. 

Oleate ligands of CdSe TPs were replaced with oleylamine via two-phase 

ligand exchange procedure.[47] Briefly, oleate-capped CdSe TPs dispersed in non-

polar organic phase (e.g., hexane) and polar DMF phase containing HBF4 were put 

in a round-bottom flask and vigorously stirred to transfer the CdSe TPs to the DMF 

phase, which indicates the elimination of oleate ligands. Next, the bare CdSe TPs 

dispersed in the DMF phase were precipitated using acetone and re-dispersed in a 

mixture of chloroform and oleylamine (for example, 4 mL of chloroform and 1 mL 

of oleylamine). Then, the oleylamine-capped CdSe TPs were precipitated using 

acetone to remove excess oleylamine. Finally, chloroform was added to the 

precipitates to disperse CdSe TPs. Small amount of oleylamine was helpful to 

sustain colloidal stability of CdSe TPs over several weeks. 
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2.3 Device Fabrication Methods 

To fabricate an inverted structure of organic solar cells having CdSe TPs as an 

electron-selective interlayer, which are discussed in Chapter 3, In-doped ZnO thin 

films (ZnO:In) have been firstly prepared by spin-coating of sol-gel precursor. 

Zn(ac)2·2H2O and In(NO3)3·xH2O (5 at.% of the precursor) were dissolved in a 

mixture of ethanol and ethanolamine (ethanol:ethanolamine = 10:0.15 (v/v)) and 

stirred for 2 hours at room temperature to yield a homogeneous and clear solution. 

Then, as-prepared precursor solution was spin-coated on a ultraviolet-ozone treated 

ITO-coated glass at 3500 rpm for 40 sec and sequentially annealed in atmosphere 

from 120 to 450 °C for 2 hours, resulting in 30 nm-thick ZnO:In thin films.  

To assembly CdSe TPs, the ZnO:In substrates were transferred to a glove box 

filled with Ar. Different concentration (0.5, 1, and 2 mg mL-1) of CdSe TP solutions 

was spun at 2000 rpm for 30 sec on top of the ZnO:In substrate, followed by 

annealing at 150 °C for 20 min. Following, the film was washed twice using ethanol 

at room temperature and annealed at 120 °C for 10 min to remove residual solvent 

and fix CdSe TPs on the ZnO:In substrate. Then, the CdSe TPs was modified with 

1-hexylamine (acetone:1-hexylamine = 8:2 (v/v)) by spin-coating at 2000 rpm and 

dried at 100 °C for 10 min. Note that the series of thermal annealing and use of 

solvents showed no significant differences in electrical property of ZnO:In thin films. 

25 mg mL-1 of PTB7:PC71BM blend with a weight ratio of 2:3 dissolved in mixed 

solvent (chlorobenzene:1,8-diiodooctane (97:3 (v/v)) was spin-coated onto the CdSe 

TP electron extraction interlayer at 1000 rpm for 60 sec; the thickness of active layer 

is about 90 nm. Subsequently, 10 nm of MoOX and 100 nm of Al layers were 

thermally evaporated under a 10-6 Torr vacuum. All the fabrication steps described 

above are briefly shown in Figure 2.6. 
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Figure 2.6 Schematic of fabrication process and the structure of PTB7:PC71BM 

organic solar cells with electron-selective interlayer comprising of In-doped ZnO 

(ZnO:In) and vertically-aligned CdSe tetrapods (TPs). 

 

Solar cells for understanding light-induced degradation mechanisms, which are 

discussed in Chapter 4, were fabricated on patterned ITO-coated glass substrates. In 

this time, ZnO nanoparticles (NPs) were used as electron extraction layer. 10 mg 

mL-1 of ZnO NPs solution was spun on a patterned ITO at 2000 rpm for 60 sec and 

annealed at 100 °C for 30 min in N2 atmosphere. Next, 25 mg mL-1 of 

PTB7:PC71BM blend was prepared using the same recipe as above, and was spin-

coated on top of ZnO NPs in an Ar-filled glovebox; the thickness of PTB7:PC71BM 

is 80 nm. The thickness was slightly different from above, and it is probably due to 

batch-to-batch variation of materials or different underlayer morphologies. 

Subsequently, 10 nm of MoOX, and 100 nm of Ag layers were thermally evaporated. 

The active areas of solar cells (overlapped electrodes) were 1.96 mm2. Then, the 

devices were encapsulated under inert atmosphere to minimize extrinsic factors, 

such as oxygen and moisture, during the light-induced aging process.  
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2.4 Thin Film Characterization Methods 

2.4.1 Optical Measurements 

Absorption spectroscopy:   The absorption of sunlight is required for photoactive 

layer in organic solar cells to generate excitons so as to extract charge carriers into 

an external circuit. To know about the amount of light absorbed by the thin film at a 

given wavelength, the absorption spectroscopy was conducted, and the basic 

schematic of it is shown in Figure 2.7. In this thesis, the Cary 5000 UV-Vis-NIR 

spectrophotometer (Agilent technologies) was used. 

 

 

Figure 2.7 Schematic of an UV-Vis spectrophotometer. 

 

X-ray photoelectron spectroscopy (XPS):   XPS is the most widely used surface 

analysis technique for measuring quantitative elemental composition or chemical 

states. As shown in Figure 2.8, XPS typically consists of monochromatic aluminum 

K-alpha X-rays, which excite a surface of samples, causing photoelectrons to be 

emitted from the surface. An analyzer to measure the kinetic energy of electron is 

used, quantifying the energy of the ejected photoelectrons. Then, the experimental 

quantity and chemical states can be determined from the results of binding energy 
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and intensity of a photoelectron peak. In this thesis, XPS measurements were 

performed using an Axis-HSi (Kratos Analytical), shown in Figure 2.8b, with a 

monochromated Al anode in order to investigate surface elements before and after 

light-induced degradation in Chapter 4. 

 

 

Figure 2.8 (a) Schematic diagram of XPS. (b) XPS machine in Research Institute of 

Advanced Materials (RIAM) at Seoul National University. 

 

Ultraviolet photoelectron spectroscopy (UPS):   UPS is also a part of 

photoelectron spectroscopy like XPS, which measures kinetic energy of 

photoelectrons emitted by molecules. The difference from XPS is its exciting source 

of vacuum UV radiation rather than X-rays. As a source of radiation, He is 

frequently used, which emits energy of 21.2 eV. The HOMO (highest occupied 

molecular orbital) or VBM (valence band maximum) of the sample can be 

experimentally obtained using the following equation through the UPS measurement. 

 onsetcutoff
)(or  EEhVBMHOMO    (2.8) 
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In this thesis, UPS measurements were conducted using an Axis Ultra DLD (Kratos 

Analytical) with He I (21.2 eV) photon source and a hemispherical analyzer to 

measure the VBM of CdSe tetrapod nanocrystals in Chapter 3. 

2.4.2 Atomic Force Microscopy Technique 

Atomic force microscopy (AFM) is a powerful technique to obtain local surface 

information from samples at nanometer-scale resolution. Conductive AFM (c-AFM), 

in particular, is a type of AFM in which a bias voltage is applied between conductive 

cantilever and surface of sample, measuring the flowing current between the two as 

shown in Figure 2.9. Using c-AFM, topography and current conductivity data over 

the sample surface can be acquired at the same time. In this thesis, topographic and 

c-AFM images of active layer were obtained using Park XE-100 AFM with 

platinum-coated cantilevers PPP-ContPt (Nanosensors) in contact mode, when –4 V 

was applied from ITO substrate to the conductive tip through both ZnO NPs and 

active layer. The resulting values were inverted so that the higher current represents 

toward plus direction. 

 

 

Figure 2.9 Schematic of a conductive AFM measurement. 
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2.4.3 Other Thin Film Characterization Methods 

Scanning electron microscopy (SEM):   SEM is a technique to gain information 

about topography and composition of samples’ surface with a resolution of a few 

tens of nanometers. It scans a focused electron beam over the sample to produce 

images. In Chapter 3 of this thesis, surface morphology of ZnO:In/CdSe TP film 

was obtained using SEM (JEOL JSM-6701F).  

 

Transmission electron microscopy (TEM):  TEM also uses high energy of 

focused electron beam like SEM technique, but the difference from it is that images 

are produced from the interaction of the electrons which transmitted directly through 

the sample; therefore, TEM offers higher resolution than SEM. In Chapter 3 of this 

thesis, cross-sectional image of solar cells were taken using focused-ion beam 

equipment (FEI Nova 600 Nanolab) for sample preparation and TEM (JEOL JEM-

2100F) measurement.  
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2.5 Device Characterization Methods 

2.5.1 Current Density–Voltage Characteristics Measurement 

The characterization of current density-voltage (J-V) curve is basic method to 

experimentally evaluate the performance of solar cells (as mentioned in Chapter 

2.1.2). In this thesis, J-V characteristics were measured with a source measurement 

unit (Keithley SMU237), and the performances of the devices were characterized 

under AM1.5G solar spectrum at 1 sun (100 mW cm-2) illumination, simulated by 

Newport 91160A. To study the light intensity dependence of solar cell devices, the 

incident light intensity was adjusted using neutral density filters from 1 mW cm-2 to 

100 mW cm-2. For temperature dependent J-V measurements, closed-cycle cryostat 

with a temperature controller (Lake Shore Cryotronics, model 331) was used. 

2.5.2 Incident Photon-to-electron Conversion Efficiency Measurement 

IPCE (incident photon-to-current conversion efficiency) measurement is used to 

know how efficiently the solar cell devices convert incident light into electricity at a 

given photon energy. The measurement is based on illuminating the sample by a 

monochromatic light which came through the xenon lamp and monochromator as 

shown in Figure 2.10. By extracting electrical signal (number of generated carriers) 

from the sample varying the wavelength of the light, IPCE curve as a function of 

wavelength can be obtained. Therefore, the integrated value of IPCE data is same as 

the current density generated from the solar cell. In this thesis, IPCE spectra of 

devices were acquired using an Oriel IQE 200 model, which composed of xenon 

lamp, lock-in amplifier, order-sorting filter wheel, chopper, and monochromator.  
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Figure 2.10 Schematic diagram of IPCE measurement. 

2.5.3 Light Intensity Dependence Characteristics 

Light intensity dependence of J-V characteristics can provide carrier recombination 

and collection properties of solar cells.[63-67] First of all, the incident light 

dependence of JSC follows a power law relationship, which is given by 

 


lightSC
PJ   (2.9) 

where, α is the exponent. When the exponent value α closes to 1, then extraction of 

charge carriers is faster than recombination, so that recombination mechanism is 

dominated by monomolecular recombination, while it closes to 0.5 if bimolecular 

recombination is dominant due to comparable processes between charge extraction 

and recombination. 

In addition, the values of VOC as a function of light intensity are able to be 

considered to determine the additional recombination mechanism of trap-assisted 

recombination, which is a Shockley-Read-Hall (SRH) recombination. In this case, a 
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slope of thermal voltage (kT/q) features the strength of the recombination: the higher 

slope correlates with the more charge recombination losses.  

 

 

Figure 2.11 The equivalent circuit diagram of solar cell with additional 

recombination loss term (Jrec). 

 

To obtain further investigation into the collection properties of solar cells, 

collection voltage (VC) can also be analyzed. For an equivalent circuit of solar cells, 

the additional recombination loss term of Jrec has been introduced as shown in 

Figure 2.11, since a significant recombination occurs within the active layer of the 

solar cells consisting of disordered materials, such as amorphous silicon or organic 

materials. Hence, Equation (2.7) is now modified by considering the Jrec term as 

follows: 

 recph
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As shown in Figure 2.12, collection voltages (VC) can be defined by a crossing 

point of all linear fits for the J-V curves at short circuit condition, which are 

measured at various light intensities.  
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Figure 2.12 Schematic diagram of the theoretical behavior of incident light intensity 

dependent J-V characteristics for (a) crystalline materials-based solar cells and (b) 

solar cells with disordered materials. Figure modified from [68]. 

 

Voz et al.[67] recently derived expressions for calculating carrier collection 

efficiency in polymer solar cells under the three assumptions, which are constant 

electric field, drift-driven collection, and monomolecular recombination. Under 

these assumptions, the collection efficiency of photogenerated charge carriers at 

short circuit condition (ηC0), short circuit resistance (RSC, reciprocal slopes of the J-V 

curve at V=0, i.e., VC = RSC JSC), which reflects the recombination term (Jrec) under 

the various light intensities, and VC can be expressed as follows:  
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where lC0 is the collection length at short circuit condition, L is a thickness of the 

active layer, μτeff is the effective μτ product, i.e, μτeff = μnτn + μpτp, and Vbi is the 

built-in potential, which refers to the voltage at which Jph is zero, where Jph is 

determined as subtracting measured current density in the dark from the measured 

current density under illumination.[65] The collection length denotes the maximum 

distance of dissociated electrons and holes driven by the electric field before 

recombination.  

2.5.4 Impedance Spectroscopy 

Impedance spectroscopy is an analytical tool to obtain more information about 

electrodynamic processes in solar cells.[69, 70] It measures both resistive and 

reactive components simultaneously as a function of frequency, therefore the 

frequency response of the system can be revealed. Nyquist (or Cole-Cole) plot, 

which is called when real part of impedance spectra is plotted on the X-axis and the 

imaginary part on the Y-axis, is the most popular format for evaluating the interface 

and bulk characteristics of the devices. An example of Nyquist plot of organic solar 

cell, which structure is ITO/ZnO NPs/PTB7:PC71BM/MoOX/Ag, is shown in Figure 

2.13a.  

For an equivalent circuit model of organic solar cells, circuit with a series of 

one resistance and three parallel RC elements (Figure 2.13b) was applied in this 

thesis, where RC is contact resistance and three RC circuits represent bottom 

interface, bulkheterojunction, and top interface. By fitting the impedance spectra 

with proper equivalent circuit model and by assigning RC components to 

appropriate films (layers), then further analysis using extracted resistance and 

capacitance values can be carried out. 
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Figure 2.13 (a) Nyquist plot and (b) equivalent circuit of organic solar cells. The 

open circles in (a) are experimental data and the dotted line is the fitted line of 

impedance spectrum using an equivalent circuit of (b). 

 

The impedance and its real (Zʹ) and imaginary (-Zʺ) part of the equivalent 

circuit in Figure 2.13b is given as follows: 
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 (2.16) 

In this thesis, the AC impedance measurements for solar cell devices were 

perfomed by an impedance analyzer (Wayne Kerr Electronics, 6550B) for a 

frequency range from 1 kHz to 50 MHz with an AC drive bias of 15 mV. The 

impedance spectroscopy data were fitted using MEISP and ZView software with an 

equivalent circuit of solar cells. 
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2.5.5 Transient Photocurrent Measurement 

Transient photocurrent is a measurement technique to study about time-dependent 

extraction of charge carriers generated by light (usually laser). Therefore, it can be 

conducted in solar cells to get information about photocurrent decay dynamics 

including charge recombination or density of states.[71, 72] In this thesis, transient 

photoconductivity measurements were performed by excitation of PTB7:PC71BM 

solar cells with a Nd:YAG pulsed laser (pulse duration ~ 5 ns, λ = 590 nm), then the 

resulting photocurrent decay signals were recorded on a digital oscilloscope 

(Tektronix, TDS5054B), which are all shown in Figure 2.14. 

 

 

Figure 2.14 Schematic diagram of transient photoconductivity measurement. 

Nd:YAG pulsed laser (pulse duration ~ 5 ns, λ = 590 nm) was used as an excitation 

source, and load resistance RL was 1 MΩ. 

2.5.6 Space Charge Limited Current Measurement 

Space-charge-limited current (SCLC) measurement is one of the most widely used 

techniques for determining charge carrier mobility in organic devices. To measure 

the SCLC, the typical device structure is sandwiched organic semiconductor layer 

between two metal electrodes that make ohmic contact on one side, so that, only 

single carrier (hole-only or electron-only) can transport. 
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In the low voltage region, current varies linearly with the voltage, which shows 

free carrier conduction following Ohm’s law. However, at higher voltage above 

VSCLC, current presents a quadratic dependence on the voltage (
2VJ ∝ ), indicating 

space charge formation in photoactive layer.[73] Considering the field-dependent 

mobility,[74] the J-V characteristics thus can be modeled as follows:[74, 75]  
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where ε0 and εr represent the permittivity of free space and relative dielectric 

constant, respectively, μ0 is the zero-field mobility, β is the Pool-Frenkel (PF) 

coefficient, F is the applied electric field, and d is the thickness of active layer. 

Using the Equation (2.17), charge carrier mobility can be extracted from this space-

charge-limited region. 

On the other hand, when traps are involved, current can follow a power law 

behavior on the voltage (
1 lVJ ), where the exponent l is given by trap energy 

klTE
t
  depending on the temperature. The J-V characteristics of trap-charge-

limited current (TCLC) conduction model are given as: [76, 77]  
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where Nt is the trap density and Nv is the effective density of states.  

2.5.7 Light-induced Aging Conditions 

For light-induced aging process of solar cells in Chapter 4, the samples were 

continuously illuminated under AM1.5G 1 sun condition for 24 h using solar cell 

reliability test system (K3600, McScience). A Xenon lamp was used as a light 

source and its light intensity was adjusted to 100 mW cm-2 using a calibrated Si 



 

39 

 

reference cell. Temperature had been maintained at 25 °C with cooling system 

during the light-induced process, and the current-voltage curves were measured at 

every 15 min. The device structure prepared for this experiment and image of solar 

cell reliability test system are shown in Figure 2.15. 

 

 

Figure 2.15 (a) Device structure of inverted organic solar cells prepared for light-

induced degradation experiments. (b) Solar cell reliability test system in Center for 

Multiscale Energy System at Seoul National University.  
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Chapter 3 

Efficiency Improvement of Inverted 

Organic Solar Cells by Using CdSe 

Tetrapod as an Electron-selective 

Interlayer  

3.1 Introduction 

In terms of device configuration in organic solar cells, an inverted structure, the 

electrons are collected by the bottom electrode – indium tin oxide (ITO), and holes 

are collected by the top electrode, has been steadily investigated.[78-81] Compared 

to conventional structure, inverted-type devices have potential for better long-term 

ambient stability by preventing the use of hygroscopic and acidic poly(3,4-

ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) as hole transport 
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layer, and by employing high work function metal for top electrode. One of the key 

factors in performance of inverted-type devices is the n-type buffer layer. This 

electron buffer layer should meet good optical transparency, electron transport and 

extraction characteristics with suitable energy band positions.  

To collect photogenerated electrons efficiently from the active layer to cathode, 

the metal oxides thin films (e.g. SnO2, TiO2, and ZnO)[30-32] have been the most 

widely used as n-type buffer layers due to its properties of easy process, optical 

transparency, and good electrical performance. Furthermore, there have been efforts 

to make these metal oxides nanostructured, such as nanowires-, rods-, or wrinkles-

shaped, to enhance the power conversion efficiency (PCE) of solar cells.[40, 41, 82, 

83] Due to their increased interfacial area and more continuous path for carrier 

transport,[40] short circuit current and overall performance of solar cells increased. 

However, in order to control the growth of these aligned metal oxides nanostructures, 

photolithography[84, 85] or nanoimprint-soft lithography[41] was employed; both 

techniques are complicated fabrication methods using photoresist and exposure 

process. Therefore, it will be beneficial to find an easy-processable nanostructured 

interlayer regarding time and cost savings. 

Here a unique electron-selective interlayer comprising of In-doped ZnO 

(ZnO:In) and vertically-aligned CdSe tetrapods (TPs) for polymer:fullerene 

bulkheterojunction (BHJ) solar cells is introduced. Using highly monodisperse CdSe 

TPs with tailored dimension for BHJ layer thickness, vertically electron transport 

channels are easily assembled on the ZnO:In buffer layer by simple spin-coating 

process. In addition to good exciton dissociation properties of typical BHJ network 

with extensive interfaces, this CdSe TP nanostructures are able to offer direct and 

efficient pathways for photogenerated electrons from the active layer to ZnO:In 

buffer layer by penetrating the disordered BHJ domains.  
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3.2 Device Configuration of PTB7:PC71BM Solar Cells with 

CdSe Tetrapods  

The organization of the solar cells with organic active layer and inorganic charge 

extraction nanostructure is illustrated in Figure 3.1a. The vertically-standing CdSe 

TPs were deposited on plane ZnO:In buffer layer/ITO cathode substrates. This 

nanostructure is assembled with poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-

b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-

b]thiophenediyl]] (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) 

BHJ, and a molybdenum oxide (MoOX) and an aluminum (Al) were evaporated as 

an anode.  

In this study, the colloidal CdSe TP nanocrystals were chosen because of their 

excellent electron mobility (bulk Hall electron mobility ~ 900 cm2 V−1 s−1),[86] 

appropriate energy levels (conduction band ~ 4 eV, Figure 3.1b), and structural 

uniqueness. A detailed explanation for energy level of CdSe TP nanocrystals will be 

given in the Chapter 3.2.2. These excellent electrical properties allow the electrons 

to be rapidly transferred from PC71BM (lowest unoccupied molecular orbital ~ 4 eV) 

to CdSe TPs and moved to the ZnO:In buffer layer. Therefore, the CdSe TPs are 

intended to amplify electron transport from PC71BM domains to the ITO cathode. 

At the same time, the tetrapod morphology is the simplest architecture which 

can stably stand on a substrate owing to its low center of mass, so that vertically-

oriented inorganic channels can be easily produced by simple deposition of CdSe 

TPs on the substrate.  
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Figure 3.1 (a) Schematic illustration of a PTB7:PC71BM solar cell with the CdSe TP 

charge extraction nanostructure. The detailed role of CdSe TPs is illustrated below; 

CdSe TPs can extract photogenerated electrons in PC71BM domain by providing 

vertical transport pathway through their arms. (b) An energy level diagram of 

PTB7:PC71BM solar cells with CdSe TPs. 
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3.2.1 Tailored CdSe Tetrapods for Organic Solar Cells  

In this study, morphologically-uniform CdSe TPs (shape selectivity > 90% and a 

deviation in arm length ~ 3 nm) were synthesized with ~ 57 nm of theoretical height 

via the continuous precursor injection (CPI) method (Figure 3.2a).[62] The 

dimension of CdSe TPs was precisely decided by the thickness of PTB7:PC71BM 

BHJ active layer varying from 70 nm to 100 nm. As shown in Figure 3.3, J-V curve 

for solar cell with 98 nm-arm lengths of CdSe TPs show no diode characteristics and 

high leakage current. That indicates taller CdSe TPs can possibly perforate the 

active layer and form an undesired contact with a MoOX/Al layer. From a 

transmission electron microscopy (TEM) of CdSe TPs representing the orthographic 

projection image of CdSe TP arms, it is possible to calculate the theoretical arm 

length (~ 52 nm) and 3-dimensional height (~ 57 nm) of CdSe TPs based on 

Pythagorean Theorem (Figure 3.2a).  

Using the length-controlled CdSe TPs, the CdSe TPs were easily fabricated by 

spin-coating of solution and following thermal treatment. As shown in Figure 3.2b, 

CdSe TPs spun on the ZnO:In substrate formed a scattered morphology with 

vertically-oriented arms (displaying as white dots). Besides, the heat treatment has a 

role in stratifying mechanical robustness of the CdSe TPs against following surface 

treatment and a formation of PTB7:PC71BM BHJ.[47] It was confirmed that the 

morphology of CdSe TPs was preserved during ligand elimination (by repeating 

ethanol washing), surface passivation (with 1-hexylamine), and a formation of 

PTB7:PC71BM active layer (Figure 3.4). Note that high concentration (> 3 mg mL-1) 

of CdSe TP solution resulted in an entangled and directionless CdSe TP morphology, 

which is attributed to the capillary force between CdSe TPs during solvent drying 

(Figure 3.2c).  
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Figure 3.2 (a) A transmission electron microscopy (TEM) image of CdSe TPs 

tailored for a PTB7:PC71BM BHJ layer. Detailed dimensions of vertically-standing 

CdSe TPs are illustrated on the right. A top scanning electron microscopy (SEM) 

image of the charge extraction nanostructure fabricated with (b) 0.5 mg mL-1 and (c) 

4 mg mL-1 of CdSe TP solution on top of ZnO:In layer. All scale bars are 100 nm. 
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Figure 3.3 J-V characteristics of PTB7:PC71BM solar cell having different arm 

lengths of CdSe TPs (52 nm and 98 nm) under the dark (filled symbol) and 

illuminated (open symbol) conditions.  
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Figure 3.4 Top SEM images of (a) CdSe TP film before coating a PTB7:PC71BM 

layer, (b) spin-coated active layer film on top of CdSe TPs, and (c) recovered CdSe 

TP film by eliminating active layer with chloroform washing. 
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As shown in Figure 3.5a, it is clearly shown that the CdSe TP arms 

perpendicular to the ZnO:In substrate are well included in the uniform 

PTB7:PC71BM active layer. Meanwhile, the overall height of CdSe TPs was 

estimated as ~ 50 nm, slightly lower than the theoretical value. It is supposed to 

originate from the deviation in the arm length of CdSe TPs and the surface 

roughness of ZnO:In substrates (RMS roughness ~ 1 nm). Energy dispersive X-ray 

spectroscopy (EDS) analysis in Figure 3.5b-c also supports that CdSe TPs are 

vertically aligned and are surrounded by S atoms (from PTB7 layer). 

3.2.2 Energy Level of CdSe Tetrapods – UPS Analysis  

In order to define the energy level of CdSe TPs, UV photoelectron 

spectroscopy (UPS) measurement was performed. Figure 3.6a shows the high 

binding energy cutoff region and the valence band region in UPS spectra for 

different concentration of CdSe TPs (0, 0.5, 1, and 2 mg mL-1), which was formed 

on top of a bare ZnO:In film. By using Equation (2.8), HOMO (highest occupied 

molecular orbital) or VBM (valence band maximum) of ZnO:In and CdSe TPs films 

can be determined. The resulting values are 6.98 eV, 6.34 eV, 5.8 eV, and 5.62 eV 

for a bare ZnO:In film, 0.5 mg mL-1, 1 mg mL-1, and 2 mg mL-1 of CdSe TPs, 

respectively. Considering 0.5 mg mL-1 of CdSe TPs solution is hard to completely 

cover the ZnO:In underlayer as shown in Figure 3.2b, VBM of CdSe TP 

nanocrystals can be calculated to approximately 5.6 ~ 5.8 eV. Therefore, conduction 

band minimum (CBM) value of CdSe TPs is around 3.8 ~ 4.0 eV by using the first 

exciton peak of CdSe TPs, which is 1.8 eV, estimated from the absorption 

measurement (shown in the right panel of Figure 3.6b). 
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Figure 3.5 (a) A cross-sectional TEM image of the PTB7:PC71BM solar cell with 

CdSe TPs. (b) A dark field cross-sectional TEM image of the solar cell device with 

CdSe TPs and energy dispersive X-ray spectroscopy (EDS) mapping: (c) Zinc (from 

a ZnO:In layer), Sulfur (from PTB7), Cadmium, and Selenium (from CdSe TPs). 
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Figure 3.6 (a) High binding energy cutoff and valence band region in UPS spectra 

of a bare ZnO:In film and films with CdSe TPs. (b) UV-Vis absorption spectrum of 

PTB7:PC71BM and spectra of CdSe TPs with different concentration on top of 

ZnO:In film. Enlarged graph for absorption edge of CdSe TPs is shown in the right 

side of panel b. 
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3.3 Performance of PTB7:PC71BM Solar Cells with CdSe 

Tetrapods  

It has been examined that CdSe TPs are the appropriate candidate for electron-

selective interlayer, having advantages of easy fabrication process and excellent 

electrical properties with suitable energy band positions.  

Before investigating the actual device performance of PTB7:PC71BM solar 

cells with CdSe TPs interlayer, the numbers of CdSe TPs within the small area of 

0.12 μm2 were counted through the SEM images, to quantify those of CdSe 

nanocrystals deposited on the ZnO:In film as shown in Figure 3.7. The estimated 

number of CdSe TPs per unit surface area (μm2) is 150, 250, and 350 when the 

concentration of CdSe TPs is 0.5, 1, and 2 mg mL-1, respectively. This estimate is 

quite reasonable when the number of CdSe TPs with low magnification SEM image 

was also counted (not shown here), because most tetrapods show well-distributed 

morphology in micrometer scale with proper fabrication condition (e.g., 0.5 mg mL-1). 

3.3.1 Solar Cell Device Characteristics  

Figure 3.8a shows the current density versus voltage (J-V) characteristics of solar 

cell devices without and with 250 μm-2 of CdSe TPs under the 1 sun illumination, 

and the results deduced from J-V curves are summarized in Table 3.1 together with 

the 150 μm-2 and 350 μm-2 concentration of CdSe TPs. The device performance 

gradually improved when CdSe TPs were applied more as electron extraction 

interlayer as shown in Figure 3.8c and d, and the optimum device was achieved 

when 250 μm-2 of CdSe TP solution was used.  
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Figure 3.7 (a) A top SEM images of CdSe TPs with different concentration (0, 0.5, 

1, and 2 mg mL-1). At higher concentration, CdSe TPs are getting aggregated, 

forming TP clusters. All image sizes are 400 nm × 300 nm. (b) Relationship between 

the areal number density (#/μm2) and the concentration of CdSe TPs. The number of 

TPs within the area of 0.12 μm2 was counted through the SEM images to estimate 

the areal number density. 
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Figure 3.8 Current density (J) - voltage (V) characteristics of the PTB7:PC71BM 

solar cells without and with the 250 μm-2 of CdSe TPs, measured under the (a) 

AM1.5G 1 sun illumination and (b) dark condition. (c) Short circuit current density 

(JSC), fill factor (FF), and (d) power conversion efficiency (PCE) as a function of the 

areal number density of CdSe TPs. The inset of (b) shows the equivalent circuit 

diagram for solar cells. Dark current fitting is done using this solar cell equivalent 

circuit model. 
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Table 3.1 Performance parameters of inverted PTB7:PC71BM solar cells without 

and with different concentration of nanostructured CdSe TPs under AM 1.5G 1sun 

illumination.a 

 

 

 

 

 

 JSC 

(mA cm-2) 

VOC 

(V) 

FF 

(%) 

PCE 

(%) 

RS 

(Ω cm2) 

RSH 

(Ω cm2) 

w/o 

CdSe TPs 

16.82±0.11 

(16.80) 

0.74±0.01 

(0.75) 

55.22±0.85 

(55.70) 

6.90±0.10 

(6.98) 
8.30 532.34 

w/ CdSe TPs 

(150/μm2) 
17.67±0.08 

(17.67) 

0.75±0.01 

(0.75) 

55.81±0.71 

(56.62) 

7.39±0.12 

(7.51) 
7.08 451.71 

w/ CdSe TPs 

(250/μm2) 

17.46±0.04 

(17.48) 

0.75±0.01 

(0.75) 

56.30±2.11 

(57.26) 

7.41±0.27 

(7.55) 
6.70 539.14 

w/ CdSe TPs 

(350/μm2) 

17.17±0.10 

(17.25) 

0.75±0.01 

(0.75) 

55.74±0.83 

(56.07) 

7.17±0.18 

(7.28) 
6.87 544.25 

a The average and standard deviation values are for samples at least 4 devices on the 

same substrate. The values in brackets represent the photovoltaic parameters 

obtained for the best-performing cell. 
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Device containing 250 μm
-2

 of nanostructured CdSe TPs showed the improved 

short circuit current density (JSC) and fill factor (FF) from 16.80 mA cm-2 and 55.70 % 

to 17.48 mA cm-2 and 57.26 %, respectively, while an open circuit voltage (VOC) 

remains as same as the device without CdSe TP. Hence, the power conversion 

efficiency (PCE) increases from 6.98 % to 7.55 %. The CdSe TPs in this device 

absorbs some part of the UV-visible light as shown in Figure 3.6b, however, this is 

negligible compared to the absorption of PTB7:PC71BM, so that almost the whole 

absorption takes place in active layer.  

As further increase of the areal number density of CdSe TPs to 350 μm-2, 

device performance decreased. One possible reason is that the aggregated TP 

clusters with high concentration of CdSe TPs form voids, leading the reduction of 

the interfacial area between CdSe TPs and BHJ layer. Furthermore, the additional 

photogenerated charges from the high concentration of CdSe TPs may recombine 

before delivering the holes to polymer molecules due to its limited surface area with 

donor molecules. Therefore, the increased JSC in the device with CdSe TPs is more 

attributed to the better charge transport of electrons, which are generated and 

dissociated in active layer, rather than the photogenerated electrons in CdSe TPs 

itself.  

The IPCE spectrum for the device with CdSe TP in Figure 3.9a shows 

enhanced broad wavelength range of spectral response (300-800 nm). On the other 

hand, as shown in Figure 3.9b, there is only small increase in absorbance from CdSe 

TPs at short wavelength region. Thus, it clearly proves that the improvement in the 

JSC for the device with CdSe TP interlayer originates from the better charge 

extraction characteristics. Note that all the devices with CdSe TPs, which 

concentration is up to 350 μm-2, showed improved performances compared to the 

device without CdSe TP interlayer.  
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Figure 3.9 (a) IPCE spectra of PTB7:PC71BM solar cells without and with CdSe 

TPs. (b) UV-Vis absorption spectra of PTB7:PC71BM films without and with the 

CdSe TP layer. 
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In order to investigate the effect of CdSe TPs (250 μm
-2

) nanostructure into the 

electrical properties of the interface more systematically, the diode characteristics in 

the dark were studied. The dark J-V curves of the solar cells without and with CdSe 

TPs are shown in Figure 3.8b, and equivalent circuit model is shown in inset of 

Figure 3.8b. (mentioned in detail in Chapter 2.1.3 and Chapter 2.5.3)  

With no illumination (Jph = Jrec = 0), the current density-voltage characteristics 

of Equation (2.10) can be expressed as  
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In addition, with in the regime where diode characteristics are dominant, i.e., 

exp[q(V–JRS)/nkT] » 1, then the current density-voltage relationship is given as 

follows:[87]  
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where, J0 and n represent the reverse saturation current density and diode ideality 

factor, respectively, q is the elementary charge, k is the Boltzmann constant, T is the 

absolute temperature, RS is the series resistance, and RSH is the shunt resistance. 

The parameters of J0 and n can be evaluated from the y-intercept and the slope 

of the line, respectively. The solid lines in Figure 3.8b show the fitted results, while 

circles and triangles represent the measured values of dark current density, and the 

set of parameters extracted from these are summarized in Table 3.2.  

With vertically aligned nanostructure of CdSe TPs in solar cell device, the 

reverse saturation current density and series resistance decreased, and the shunt 

resistance increased, as well as the diode ideality factor was closer to 1. The lower 

reverse saturation current density in the device with CdSe TPs means that diffusion 
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Table 3.2 Fitted parameters calculated from the dark curve of PTB7:PC71BM solar 

cells without and with nanostructured CdSe TPs. 

 

 

 

 

 

 

 

 

 
J0 

(nA cm-2) 
n 

RS 

(Ω cm2) 

RSH 

(kΩ cm2) 

w/o CdSe TP 1.68 1.82 8.55 10.54 

w/ CdSe TPs 

(250/μm2) 
1.03 1.79 6.83 25.28 
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of minority carriers, which are holes in our case, is smaller. At the same time, 

current is higher at the positive voltage around 1V, and therefore CdSe TPs can 

work as electron-selective layer both transporting electrons and blocking holes. The 

two times higher value of shunt resistance for the device with CdSe TPs also implies 

that the leakage current is effectively suppressed by the CdSe TPs layer.[88]  

The diode ideality factor n is known as reflecting the properties of the internal 

BHJ morphology,[89] recombination loss or disorder in the electronic states.[90, 91] 

The n value of the device having CdSe TPs is closer to 1, and it can be interpreted as 

decrease of the interfacial recombination with the introduced CdSe TPs. The 

characteristics of recombination and charge collection for the devices without and 

with CdSe TPs will be discussed in a subsequent chapter.  

To sum up these J-V curve under the illumination and dark diode characteristics, 

we conclude that CdSe TPs with ZnO:In layer work as nanostructured electron-

selective layer, which can extract electrons well from the disordered PC71BM 

domain to the cathode through their vertically-aligned inorganic domains, resulting 

in improved JSC and FF. 
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3.3.2 Recombination and Charge Collection Characteristics  

To explore the effects of CdSe TPs on carrier recombination and collection 

characteristics, we determined the light intensity dependence of JSC and VOC, and 

collection voltages (VC) of the solar cell devices without and with CdSe TPs. Note 

that the detailed characterization methods used here were discussed in Chapter 2.5.3. 

First of all, Figure 3.10a shows the log-log plot of incident light dependence of 

JSC of the devices, and the JSC values change linearly along the light intensity for the 

both, yielding the power law of 0.894 for the device without CdSe TPs and 0.914 for 

the one with CdSe TPs. When the exponent value closes to 1, then extraction of 

charge carriers is faster than recombination, so that recombination mechanism is 

dominated by monomolecular recombination, while it closes to 0.5 if bimolecular 

recombination is dominant due to comparable processes between charge extraction 

and recombination.[63, 64] Therefore, the higher value for the device with CdSe 

TPs means that bimolecular recombination losses are more suppressed than the 

device without CdSe TPs.  

Secondly, the values of VOC as a function of light intensity were measured to 

determine the additional recombination mechanism of trap-assisted recombination, 

which is a Shockley-Read-Hall (SRH) recombination, as shown in Figure 3.10b. A 

slope of thermal voltage (kT/q) features the strength of the recombination: the higher 

slope correlates with the more charge recombination losses.[65, 66] The linear slope 

of VOC‒log(Plight) is 1.36 kT/q for a solar cell without CdSe TPs, whereas 1.29 kT/q 

for a cell with CdSe TPs, implying that the device with CdSe TPs has less trap-

assisted recombination loss, and fewer trap states than the one without CdSe TPs.  
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Figure 3.10 (a) Light intensity dependence of short circuit current density (JSC) for 

cells without and with CdSe TPs. Dotted lines show fitting curves using a power law. 

(b) Open circuit voltage (VOC) of cells without and with CdSe TPs as a function of 

light intensity, together with linear fits. 
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To obtain further investigation into the collection properties of solar cells 

depending on the existence of CdSe TPs, we lastly analyzed the collection voltage 

(VC). As shown in Figure 3.11, collection voltages (VC) can be defined by a crossing 

point of all linear fits for the J-V curves, which were measured at various light 

intensity (5-100 mW cm-2), at short circuit condition. We can calculate the collection 

efficiency at short circuit condition (ηC0) and effective μτ product (μτeff) from the VC.  

Under the three assumptions of constant electric field, drift-driven collection, 

and monomolecular recombination, VC can be defined to calculate carrier collection 

efficiency (ηC).[67] An equivalent circuit of solar cells is shown in Figure 2.11, and 

under the above assumptions, the collection efficiency of photogenerated charge 

carriers at short circuit condition (ηC0), short circuit resistance (RSC, reciprocal slopes 

of the J-V curve at V=0, i.e., VC = RSC JSC), which reflects the recombination term 

(Jrec) under the various light intensities, and VC can be expressed as follows:  
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where lC0 is the collection length at short circuit condition, L is a thickness of the 

active layer, μτeff is the effective μτ product, i.e, μτeff = μnτn + μpτp, and Vbi is the 

built-in potential, which refers to the voltage at which Jph is zero, where Jph is 

determined as subtracting measured current density in the dark from the measured 
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current density under illumination. The collection length denotes the maximum 

distance of dissociated electrons and holes driven by the electric field before 

recombination. The detailed derivations of formulas are given in the reference 

quoted above.  

The resulting values of VC are 5.86 V and 6.94 V for the device without CdSe 

TPs and with CdSe TPs, respectively, as shown in the insets of Figure 3.11. 

According to the Equation (2.11) and Equation (2.13) with an active layer thickness 

of 90 nm, the ηC0 increases from 85.4 % to 88.3 % by inserting nanostructured CdSe 

TPs between ZnO:In and active layer. The corresponding μτeff product using an 

Equation (2.14) is 2.8 × 10-10 cm2 V-1 for the cell without CdSe TPs, whereas 3.8 × 

10-10 cm2 V-1 for the cell with CdSe TPs. All extracted parameters including VC, lC0, 

ηC0, and μτeff are summarized in Table 3.3. These calculated parameters indicate that 

CdSe TPs provide the better charge transport and extraction characteristics through 

their vertically-aligned arms, which straight connect the active layer to buffer layer, 

and in the end to the electrode. 
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Figure 3.11 J-V characteristics of cells without and with CdSe TPs measured at 

various incident light intensity (5-100 mW cm-2). Collection voltages (VC) are 

defined by the intersection of all linear fits at short circuit condition. The insets of (a) 

and (b) show RSC extracted around V = 0, and calculated VC from the relation of VC = 

RSCJSC. 
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Table 3.3 Calculated parameters of collection voltage (VC), collection length (lC0) 

and collection efficiency (ηC0) at short circuit condition, and effective μτ product 

(μτeff) for solar cell devices without and with CdSe TPs. 

 

 

 

 

 

 

 

 

 
V

C 

(V) 

l
C0 

(cm) 

η
C0

 

(%) 

μτ
eff

 

(cm
2 

V
-1

) 

w/o CdSe TP 5.86 3.09 × 10
-5

 85.4 2.78 × 10
-10

 

w/ CdSe TPs 

(250/μm2) 
6.94 3.84 × 10

-5

 88.3 3.76 × 10
-10
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3.4 Summary 

In summary, the roles of CdSe TPs as an electron-selective interlayer on the 

performance of inverted organic solar cells were studied. By providing the direct 

inorganic path from the disordered bulkheterojunction domain to electron buffer 

layer, CdSe TPs layer can effectively extract photogenerated charge carriers, leading 

to the improvement of both JSC and FF of the solar cell devices. It was demonstrated 

that CdSe TPs reduce the interfacial traps between the BHJ layer and buffer layer, 

reduce the recombination losses, improve the hole-blocking properties as well as 

electron-transporting, and therefore improve charge collection. Consequently, the 

power conversion efficiency of PTB7:PC71BM based solar cell with nanostructured 

CdSe TPs increases to 7.55%. Furthermore, the use of length-controlled inorganic 

nanocrystals as an interlayer is expected to be a general platform for improving 

charge extraction in thin film solar cells. 
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Chapter 4 

Understanding of Light-induced 

Degradation Mechanisms of Inverted 

Organic Solar Cells  

4.1 Introduction  

The efficiency growths in the field of organic solar cells are making progress toward 

their commercial practicality with a big advantage of low-cost manufacturability, 

emphasizing the importance of stability issues at the same time. Thus, interest has 

been raised in understanding degradation mechanisms inside the solar cells. Among 

the main factors which are known to degrade organic devices (as mentioned in 

Chapter 1.2.2), light is the most crucial one because not only is it an intrinsic 

reaction, but the sunlight is also known to accelerate other degradation processes.[49, 
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50] Furthermore, since the solar cells operate under the illumination with high 

photon flux, it is necessary to systematically study about photo-induced degradation 

mechanism of the organic solar cells. 

The loss mechanisms of organic solar cells caused by light mostly have been 

studied in well-known poly(3-hexylthiophene) (P3HT)-based solar cells.[17, 54, 55, 

57, 58] Studies of light-induced degradation in P3HT:[6,6]-phenyl-C61-butyric acid 

methyl ester (PC60BM) solar cells have revealed that morphological change,[54] 

photo-oxidation of PC60BM,[55] electrical deterioration,[57] and interface 

degradation [58] are the main results of continuous light irradiation by using various 

measurement techniques. Moreover, light-induced degradation of organic solar cells 

is speculated to have material-specific properties as well. Heumueller et al. reported 

that crystalline polymers show less photo-induced burn-in voltage loss than 

amorphous materials.[92] Despite the polymer-dependent characteristics of 

degradation effects, the researches in terms of stability issues or degradation 

mechanisms have been limited for recently developed polymers, which are realizing 

high PCE these days. Therefore, it is required to explore the light-induced 

degradation mechanisms for high performance polymer-based solar devices. 

Here the investigation of light-induced degradation for poly[[4,8-bis[(2-

ethylhexyl)oxy]benzo-[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-

ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7):[6,6]-phenyl-C71-butyric 

acid methyl ester (PC71BM) BHJ solar cells was done in the first 24 hours under the 

AM 1.5G 1 sun continuous illumination. To minimize the extrinsic factors, devices 

were encapsulated and temperature was maintained at 25 °C during the light-aging 

process. By comparing the fresh and 24 h-aged device using both morphological and 

electrical measurement techniques, it was possible to gain a better understanding of 

light-induced degradation mechanism for PTB7-based solar cells.  
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4.2 Degradation Trend of Inverted PTB7:PC71BM Solar 

Cells 

In order to observe the light-induced degradation trend of PTB7:PC71BM solar cells 

during the continuous illumination of 24 h, devices were fabricated using an 

inverted structure with a configuration of ITO/ZnO NPs/PTB7:PC71BM/MoOX/Ag. 

This device architecture, which uses metal oxides thin films as electron extraction 

layer, was adopted due to better stability than conventional structure not by using 

hygroscopic and acidic poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) 

(PEDOT:PSS) as bottom charge extraction layer right above the ITO.[32, 93] 

Encapsulated devices were then tested for light-induced aging under the 1 sun 

illumination with controlled temperature of 25 °C.  

Current density-voltage (J-V) characteristics of fresh and 24 h-aged devices are 

shown in Figure 4.1a, and the variation of normalized solar cell parameters as a 

function of aging time is shown in Figure 4.1b-e. The parameter values deduced 

from J-V curves are summarized in Table 4.1. The device performance gradually 

degraded within 24 h of light-induced aging, and was shown to be mainly due to 

drop of both short circuit current density (JSC, 11 % drop) and fill factor (FF, 20 % 

drop), while an open circuit voltage (VOC) dropped to less than 3 %. Note that bias 

effect from the J-V measurement at every 15 min is negligible by comparing with 

the degradation trend of the device exposed only in light (not shown here). To gain 

further insight into the photo-induced degradation process inside the devices, which 

resulted in approximately 30 % of power conversion efficiency (PCE) loss after 24 h, 

a systematic investigation was performed on the film characteristics of photoactive 

layer and electrical properties of devices. 
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Figure 4.1 (a) Current density–voltage (J–V) characteristics of PTB7:PC71BM solar 

cell before and after light-induced aging for 24 h of continuous illumination, and 

detailed variation of normalized performance parameters of (b) JSC, (c) VOC, (d) FF, 

and (e) PCE with respect to the illumination time. 
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Table 4.1 Characteristics of PTB7:PC71BM solar cell devices before and after 24 h 

of the light-induced aging. JSC, VOC, FF, and PCE were measured under the 1 sun 

illumination condition, and fitted parameters of J0, n, RS, and RSH were calculated 

from the dark J-V curve in Figure 4.6a. 

 

 

 

 

 fresh 24 h-aged 

JSC (mA cm-2) 15.50 13.84 

VOC (V) 0.74 0.72 

FF (%) 69.27 55.35 

PCE (%) 7.91 5.51 

J0 (A cm-2) 3.32 × 10-12 4.56 × 10-10 

n 1.35 1.78 

RS (Ω cm2) 1.42 1.76 

RSH (kΩ cm2) 122.19 15.00 
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4.2.1 Degradation in Optical Properties 

The optical microscope images and absorption spectra for fresh and 24 h-aged 

PTB7:PC71BM films, formed on top of ZnO NPs layer, are shown in Figure 4.2 and 

Figure 4.3, respectively. The photoactive layer shows no detectable change in both 

optical images and absorbance after the 24 h of light exposure, indicating that 

PTB7:PC71BM film itself remains quite stable within relatively short aging time of 

24 h. It was reported that exposed in ambient conditions can decrease intensity of 

absorption much faster by chemical modification of polymers.[21] To clarify the 

surface characteristics of active layer, AFM topography images and XPS spectra 

were measured as shown in Figure 4.4a-b and Figure 4.5, respectively. Both 

measurements reveal that there are negligible differences in surface composition, 

chemical bonding states, and surface roughness (1.029 nm for fresh, 1.046 nm for 

aged) between the fresh and 24 h-aged PTB7:PC71BM films. Note that by virtue of 

encapsulation, the atomic concentration of O 1s has been kept almost same values of 

7.64–7.9 % during the photo-induced aging. While the optical, structural, and 

morphological information of active layer has not been changed for 24 h of light-

aging process, solar cell device performance was degraded quite rapidly as shown in 

Figure 4.1. It can be interpreted as consequences caused by electrical degradation 

rather than the chemical change of PTB7:PC71BM, so conductive-AFM (c-AFM) 

was also performed to probe conductance imaging of active layer as shown in Figure 

4.4c-d. The average current on a measured area of 9 μm2 decreased from 174.9 pA 

to 150.0 pA, when the film was aged under the continuous illumination.  
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Figure 4.2 Optical microscope images of PTB7:PC71BM films (a and c) before and 

(b and d) after light-induced aging process with magnifications of (a and b) 50X and 

(c and d) 100X. 
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Figure 4.3 UV-Vis absorption spectra of PTB7:PC71BM films, deposited on top of 

ZnO nanoparticles, before and after light-induced aging for 24 h of continuous 

illumination. 
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Figure 4.4 (a and b) Topographic and (c and d) conductive AFM images of 

PTB7:PC71BM films before and after 24 h of continuous illumination. The height 

and current images were taken at the same time within the same area, and all images 

are 3 × 3 μm2. 
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Figure 4.5 The wide XPS spectra and high resolution spectra of F 1s, O 1s, C 1s, 

and S 2p for PTB7:PC71BM active layer before and after 24 h of light-induced aging. 

The quantified results of surface atomic concentrations are shown in the inset table. 
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4.2.2 Degradation in Electrical Properties 

To investigate the light-induced degradation effects on the electrical properties more 

systematically, techniques including dark diode characteristics and IPCE were 

studied. First of all, the dark J-V curves of solar cells before and after aging are 

shown in Figure 4.6a. It is clear that leakage current at reverse bias increased, and 

current at positive voltage around 1 V decreased in aged device, which probably 

leads to lower shunt resistance and larger series resistance, respectively, resulting in 

lower FF.  

The dark J-V characteristics can also be more analyzed using a solar cell 

equivalent circuit model, which is shown in the inset of Figure 4.6a. (mentioned in 

detail in Chapter 3.3.1 ) Using an Equation (3.2), diode characteristics including J0, 

n, RS, and RSH are able to be estimated, and the parameters are summarized in Table 

4.1. The dotted lines in Figure 4.6a show the calculated J-V curve using these 

evaluated parameters. 

Figure 4.6b shows IPCE curves, which are directly correlated to JSC by a 

combination of optical absorption and electrical properties. It is notable that light-

induced JSC loss for the aged device originates from the decline of extraction 

characteristics by comparing Figure 4.3 with Figure 4.6b. Although the absorbance 

of PTB7:PC71BM remained unchanged during the 24 h of continuous light, the IPCE 

decreased in a broad wavelength range from 360 nm to 800 nm, which should be 

explained by the electrical degradation. 
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Figure 4.6 (a) Dark J-V characteristics on a semi-logarithmic scale and (b) IPCE 

spectra for PTB7:PC71BM solar cells before and after light-induced aging. The 

equivalent circuit diagram used for data fitting is shown in the inset of (a). 
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4.3 Investigation into the Light-induced Degradation 

Mechanisms 

The morphological and electrical properties of active layer and devices were 

investigated by absorption spectra, atomic force microscopy, XPS spectra, and 

current density-voltage characteristics. To figure out the origin of photo-induced 

degradation, especially on the electrical degradation effects, various techniques 

including light intensity dependence of solar cell parameters, impedance 

spectroscopy, temperature dependence of J-V in hole-only devices (HODs), and 

transient photocurrent decay were studied. 

4.3.1 Light Intensity Dependent J-V Characteristics 

Figure 4.7 shows the light intensity dependence of JSC and VOC so as to study the 

charge recombination characteristics before and after photo-induced aging process. 

Figure 4.7a shows the log-log plot of JSC versus various incident light intensities, 

correlated following a power law as in Equation (2.9), 


lightSC
PJ  , where α is the 

exponent. When the exponent value is close to unity, it indicates the weak 

bimolecular recombination in the organic solar cell devices.[63, 64] The fitted 

parameters yield α values of 1.00 and 0.98 for fresh and light-aged device, 

respectively. The α value was slightly decreased after the device had been kept 

under the continuous illumination for 24 h, but still both have weak bimolecular 

recombination.  
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Figure 4.7 Light intensity dependence of (a) short circuit current density (JSC) and 

(b) open circuit voltage (VOC) for the devices before and after aging process for 24 h. 

Dotted lines in (a) and (b) define power-law and linear fitting curves, respectively, 

and their fitting parameters are shown in the figures. 
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The VOC as a function of light intensity was, in addition, measured to 

demonstrate the additional recombination mechanism of trap-assisted or Shockley-

Read-Hall (SRH) recombination, as shown in Figure 4.7b. A slope of thermal 

voltage (kT/q) represents the degree of trap-assisted recombination: the enhanced 

dependence of the open circuit voltage on the light intensity (2kT/q) correlates with 

the more recombination losses,[65, 94] where k is the Boltzmann constant, T is the 

temperature, and q is the elementary charge. The fresh and aged devices showed a 

slope of 1.04 kT/q and 1.32 kT/q, respectively, implying increase of the trap-assisted 

recombination and more trap states inside the light-induced device. This is relevant 

to the previous photo-degradation studies for P3HT or PCDTBT-based solar cells 

showing the presence of light-induced traps in the active layer.[49, 57]  

Collection voltages (VC) were then defined in order to investigate the difference 

in collection properties of solar cells during the light-induced degradation. As shown 

in Figure 4.8, VC can be defined by a crossing point of all linear fits for the J-V 

curves, which were measured at various light intensity (5-100 mW cm-2), at short 

circuit condition. The collection efficiency at short circuit condition (ηC0) and 

effective μτ product (μτeff) can be evaluated from the VC. The determined VC values 

are greatly reduced from 5.62 V to 2.97 V after the light-induced aging process. The 

corresponding ηC0 and μτeff are also degraded from 84.9 % and 2.1 × 10-10 cm2 V-1 for 

fresh device to 77.5 % and 1.7 × 10-10 cm2 V-1 for 24 h-aged device, respectively.  

As a result from the light intensity dependent J-V characteristics, it was 

observed that the aged device has more trap-assisted recombination losses, which 

may lead to an electrical degradation, reducing charge collection properties. 
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Figure 4.8 Collection voltages (VC) of (a and b) fresh and (c and d) 24 h of light-

induced aged devices. (b) and (d) show extracted short circuit resistance (RSC) at V = 

0, and each point relates to the different incident light intensity (5-100 mW cm-2). 
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4.3.2 Impedance Analysis 

In order to explore the electrical degradation, impedance spectroscopy was 

conducted. Figure 4.9b-c shows Nyquist plots of impedance spectra depending on 

the incident light intensity before and after light-induced aging for frequencies from 

1 kHz to 50 MHz. The data were measured at open circuit conditions where no 

photocurrent was observed. The equivalent circuit with a series of three parallel RC 

elements as shown in Figure 4.9a was applied to fit, where RC is contact resistance 

and three RC circuits stand for bottom ZnO/bulk interface (RI1 and CI1), bulk (RB and 

CB), and top bulk/MoOX/Ag interface (RI2 and CI2). By using this model, the 

impedance spectra were fitted with good agreement for under all light intensities as 

shown by the dotted lines of Figure 4.9b-c.  

Fitted resistances (RC, RI1, RB, and RI2) as a function of incident light intensities 

are shown in Figure 4.10, and all parameter values including capacitances are 

summarized in Table 4.2. It is notable to mention that the photoactive bulk layer is 

the thickest than others and the most sensitive to light as well, resulting in the largest 

values of R and the largest variations of R and C values depending on the different 

light intensities, respectively. To ensure our assignments for bottom (I1) and top (I2) 

interfaces, the additional experiments were carried out by changing the top interface 

as shown in Figure 4.11. The fitted results of impedance spectra for the device with 

different top interface (50 and 100 nm of MoOX layer) are well matched with the 

experimental data when RI1 and RB were fixed with the same values of 10 nm-MoOX 

device. In addition, RC and RI2 values are gradually increased according to the 

increase in MoOX thickness, which coincides with the device results in Figure 4.11a. 

Note that large fitting error above 20 % occurred when data were fitted by fixing the 

values of RB and RI2. 
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By going back to the impedance results of solar cell devices before and after 

light-induced aging as shown in Figure 4.10, resistance parameters of aged device 

show higher values than those of fresh sample, both in whole range of light intensity 

and for all elements, which is due to the light-induced degradation on electrical 

properties. Note that when decreasing the light intensity, resistance values of aged 

device for bottom and top interfaces, and bulk as well (RI1, RI2, and RB) increase 

more rapidly than those of fresh one. Since only small amount of charges can be 

generated at low light power (~ 1 mW/cm2), this sharp increase could be an 

indication of existence of light-induced traps inside the photo-aged device. It is 

considered that all components including bulk and two adjacent interfaces, 

especially top interface, are regions that traps are located at. This is also supported 

by our above results of increase in trap-assisted recombination for photo-aged 

device.  
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Figure 4.9 Nyquist plots measured under various illumination intensities (1, 3, 10, 

50, and 100 mW cm-2) at open circuit conditions for PTB7:PC71BM solar cell 

devices (b) before and (c) after 24 h of light-induced aging. The marked voltages in 

figures represent to open circuit voltages, which were applied to devices, and (a) 

shows an equivalent circuit model used for data fitting. 

 

 



 

86 

 

 

 

 

Table 4.2 Fitting parameter values (R and C) extracted from the impedance 

spectroscopy using solar cell equivalent circuit model shown in the Figure 4.9a. RC 

represents contact resistance, and three RC components are assigned as bottom 

ZnO/bulk interface (RI1 & CI1), bulk (RB & CB), and top bulk/MoOX/Ag interface 

(RI2 & CI2). 

 

 

 

 

 

Light 

intensity 

(mW cm-2) 

RC 

(Ω) 

RI1 

(Ω) 

CI1 

(nF) 

RB 

(Ω) 

CB 

(nF) 

RI2 

(Ω) 

CI2 

(nF) 

fresh 

100 53.23 8.79 0.64 63.59 6.22 21.69 2.17 

50 51.48 10.19 0.56 162.04 4.26 33.80 1.99 

10 48.44 11.92 0.48 801.36 2.26 50.17 2.16 

3 53.51 11.52 1.31 2273.81 1.65 55.05 3.59 

1 54.62 15.80 1.83 3594.09 1.49 72.75 5.25 

24 h-

aged 

100 60.40 18.29 1.20 80.84 5.70 38.69 2.76 

50 59.97 26.54 1.24 187.30 4.47 65.45 3.04 

10 60.17 42.21 1.41 806.08 3.04 172.18 4.05 

3 60.50 47.17 1.65 2605.52 2.87 700.19 3.37 

1 60.92 45.47 1.83 5644.78 2.52 1222.69 3.31 
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Figure 4.10 Fitting parameters of (a) contact (RC), bottom ZnO/bulk interface (RI1), 

(b) bulk (RB), and top bulk/MoOX/Ag interface (RI2) resistance values for the devices 

before and after light aging as a function of light intensity.  
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Figure 4.11 (a) J-V characteristics and (b) Nyquist plots for PTB7:PC71BM solar 

cells with various thicknesses of MoOX layer (10, 50, and 100 nm). Two different 

fitting curves are shown in (c and d) for the same experimental data of the device 

with (c) 50 nm-MoOX and (d) 100 nm-MoOX: “RI1 & RB fixed” and “RB & RI2 fixed”. 

Fixed parameters here are from the values of fitting results for the device with 10 

nm of MoOX. (e) Summarized fitting parameter values (R and C) when RI1 and RB 

are maintained with the same values of 10 nm-MoOX device.  



 

89 

 

4.3.3 Charge Carrier Conduction Properties 

To further study the effects of light-induced degradation on charge transport 

properties, especially of the active layer, temperature dependent J-V measurements 

of hole-only devices (HODs) were performed. Figure 4.12a and b show the J-V 

characteristics for the fresh and aged HODs, respectively, each presenting two 

different charge transport regions depending on the voltage.  

In case of fresh device, at low voltage (< 2 V), current density varies linearly 

with the voltage, which is a typical signature of free carrier conduction following 

Ohm’s law. Electrical conductivity (σ) of the active layer can then be calculated 

from this region, and it increases from 8.00 × 10-8 S cm-1 to 1.92 × 10-6 S cm-1 by an 

increase in temperature from 150 K to 325 K. Likewise, temperature dependent 

conductivity for light-aged device was also obtained, and calculated values are 

shown in Figure 4.12c together with conductivity of fresh device. It is readily 

observed that σ decreased by nearly two orders of magnitude due to the photo-

induced degradation.  

At the same time, at higher voltage above 2 V, current density in fresh sample 

presents a quadratic dependence on the voltage (
2VJ  ), indicating space charge 

formation in photoactive layer.[73] The deviations of current density from quadratic 

dependence in high-voltage regime (> 7~10 V) are due to a field-dependent 

mobility.[74] The J-V characteristics are thus modeled using the field-dependent 

space-charge-limited current (SCLC) as Equation (2.17): 
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Figure 4.12 J-V characteristics of hole-only-devices (a) before and (b) after light-

induced aging with a structure of ITO/PEDOT:PSS/PTB7:PC71BM/MoOX/Au, 

measured at various temperatures. (c) Calculated electrical conductivity of active 

layer as a function of temperature for fresh and aged devices. (d) Temperature 

dependence of l from Equation (2.18) and its linear fitting curve in order to extract 

the trap energy in 24 h-aged device. Dotted lines in (a) and (b) show fitting curves 

using space-charge-limited current conduction (SCLC) and trap-charge-limited 

current conduction (TCLC) model for fresh device and aged device, respectively.  
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where ε0 and εr represent the permittivity of free space and relative dielectric 

constant, respectively, μ0 is the zero-field mobility, β is the Pool-Frenkel (PF) 

coefficient, F is the applied electric field, and d is the thickness of active layer. With 

a dielectric constant of 3, J-V curves were fitted using Equation (2.17) at high 

voltage region by varying both μ0 and β. The obtained values of μ0 were increased 

from 1.0 × 10-5 cm2 V-1 s-1 to 2.4 × 10-5 cm2 V-1 s-1, when the temperature was 

getting higher from 150 K to 325 K, while β values changed from 1.0 × 10-3 (cm V-

1)1/2 to 5.0 × 10-5 (cm V-1)1/2.  

For light-induced aged device at high voltage region, on the other hand, current 

follows a power law behavior on the voltage (
1 lVJ ), where the exponent l is 

given by trap energy klTE
t
  depending on the temperature. Et can now be 

obtained from the slope of l versus 1/T curve as shown in Figure 4.12d, yielding 78 

meV of trap energy, which is almost three times higher than the thermal energy at 

room temperature. This indicates that the charge carrier conduction mechanism in 

light-induced degraded device is highly trap-charge-limited; therefore, we modeled 

the higher voltage region of aged sample using a trap-charge-limited current (TCLC) 

conduction model in which the J-V characteristics are given as Equation (2.18): 
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where Nt is the trap density and Nv is the effective density of states, which value was 

taken as 1021 cm-3 in this work.[95] J-V characteristics were then fitted using 

Equation (2.18) to extract trap density with keeping μ fixed (1.0 × 10-7 cm2 V-1 s-1). 

As a result, significantly high trap carrier density of (8.3 ± 2.0) × 1017 cm-3 was 

obtained in photo-induced device.  
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To compare with the fresh device, we have estimated the free carrier 

concentration in fresh sample by using the calculated electrical conductivity and 

charge carrier mobility. The calculated values of free carrier concentration were 

found to be in the range of 5.0 × 1016 cm-3 to 5.0 × 1017 cm-3 when the temperature 

range is from 150 K to 325 K. Note that the same order of magnitude as free carrier 

density was observed for trap carrier density in 24 h of light-induced aged device, 

which possibly leads to the reduction in photocurrent and eventually performance 

loss of solar cell.  

Furthermore, we measured the transient photocurrent for both fresh and photo-

aged solar cell devices to compare the decay dynamics. As shown in Figure 4.13, the 

average charge transit time obtained from the transient response increases from 188 

μs to 292 μs during the 24 h of light-induced aging. It reveals that generated charges 

take more time to be collected in aged device, supporting our analysis of decrease in 

mobility and photo-induced trap formation. 
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Figure 4.13 Normalized photocurrent decay dynamics on a (a) linear scale and (b) 

log-log scale for devices before and after light-induced aging. Nd:YAG pulsed laser 

(pulse duration ~ 5 ns, λ = 590 nm) was used as an excitation source. 

 

 

 



 

94 

 

4.4 Summary 

In summary, the light-induced degradation of PTB7-based organic solar cells in the 

first 24 hours was demonstrated. After a day of continuous light-aging with 

minimized other extrinsic factors, solar cell device showed 30 % of initial 

performance drop, mainly through a decrease in JSC and FF. By investigating change 

in optical, structural, morphological, and electrical properties of active layer and 

devices, we conclude that the loss is primarily due to light-induced traps inside the 

bulkheterojunction and two adjacent interfaces. Temperature dependent J-V 

characteristics also support photo-induced traps inside the active layer, showing 

highly trap-charge-limited conduction mechanism with 78 meV of trap energy. 

These increased traps may lead to electrical degradation on solar cell device, 

resulting in reduced hole mobility, photocurrent, and device performance at last. 

Further studies are needed not only to investigate more about degradation 

mechanisms for low bandgap polymer-based solar cells, but to resolve the issues 

discussed here for achieving better stability of organic solar cells. 
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Chapter 5 

 

Conclusion 

In this thesis, the efficiency improvement and understanding of light-induced 

degradation mechanism for organic solar cells were investigated. The solar cells 

were prepared with high performance PTB7 polymer as a donor by employing the 

inverted-type of structure. 

First of all, in order to improve the power conversion efficiency especially in 

terms of charge extraction enhancement, a unique nanostructured electron-selective 

interlayer comprising of In-doped ZnO (ZnO:In) and vertically-aligned CdSe 

tetrapods (TPs) was introduced. By providing the direct inorganic path from the 

disordered bulkheterojunction domain to electron buffer layer, CdSe TPs layer can 

effectively extract photogenerated charge carriers, leading to the improvement of 

both JSC and FF of the solar cell devices. It was demonstrated from recombination 

and charge collection analysis that CdSe TPs can effectively reduce the interfacial 
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traps between the BHJ layer and buffer layer, reduce the recombination losses, 

improve the hole-blocking properties as well as electron-transporting, and therefore 

improve charge collection. Consequently, the power conversion efficiency of 

PTB7:PC71BM based solar cell with nanostructured CdSe TPs increases to 7.55%. 

Moreover, the use of length-controlled inorganic nanocrystals as an interlayer is 

expected to be a general platform for improving charge extraction in thin film solar 

cells. 

Besides, systematic study for understanding the light-induced degradation 

mechanisms of organic solar cells was also performed. After a day of continuous 

light-aging with minimized other extrinsic factors, solar cell device showed 30 % of 

initial performance drop, mainly through a decrease in JSC and FF. By investigating 

change in optical, structural, morphological, and electrical properties of active layer 

and devices, we conclude that the loss is primarily due to light-induced traps inside 

the bulkheterojunction and two adjacent interfaces. Temperature dependent J-V 

characteristics also support light-induced traps inside the bulkheterojunction and two 

adjacent interfaces, which are found to be a primary cause of loss. Furthermore, this 

trap formation was observed with energy of 78 meV and with substantially high 

density of (8.3 ± 2.0) × 1017 cm-3, leading to highly trap-charge-limited conduction 

properties, electrical degradation of solar cells, and device performance at last. 

Further studies are open not only to investigate more about degradation mechanisms, 

but to resolve the issues discussed here for achieving better stability of organic solar 

cells. 

In conclusion, this thesis proposes the practical approaches to enhance power 

conversion efficiency and to understand light-induced degradation mechanism of 

inverted organic solar cells. These approaches and various measurement techniques 

including optical and electrical characterization methods introduced herein are 
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expected to be applied not only to solar cells but also to other kinds of organic 

optoelectronic devices, such as OLEDs and organic thin-film transistors. 
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Abstract in Korean (한글 초록) 

유기태양전지는 제 3 세대 태양전지 중에서 저가 공정이 가능하면서도 

유연하고, 가볍고, 반투명한 소자의 제작이 가능하다는 장점으로 큰 

주목을 받고 있다. 이와 같은 점들을 바탕으로 이동식 충전기, 옷, 차창 

등에 적용하는 등 무기물 기반의 태양전지와는 다른 새로운 응용분야를 

창출할 수 있을 것으로 기대되고 있다. 

이러한 유기태양전지가 실제로 상용화되기 위해서는 높은 효율, 낮은 

가격 및 높은 안정성이 선결 되어야 한다. 이 중에서 저가의 재료 및 

공정 비용은 유기태양전지의 가장 큰 장점 중 하나인 반면에, 

전력변환효율과 수명의 문제는 실용화를 위한 여전한 과제로 남아 있다. 

따라서 본 논문에서는 유기태양전지의 효율을 향상시키는 방법과 

열화의 메커니즘을 이해하는 두 가지 주제에 대해 다루고자 한다. 이를 

위해 소자의 구조적인 부분에서는, 안정성과 공정의 측면에서 유리한 

역구조 (Inverted structure)가 본 논문에서 사용되었다.  

먼저 효율을 향상시키는 여러 방법들 중에서 전하의 추출 특성을 

개선하는 것은 새로운 물질의 개발, 광학 구조 개선 및 공정 개발과 

더불어 고효율 유기태양전지를 구현하는 데 있어 필수적인 방법이다. 

이를 위해서는 전극과 광활성층 사이에 존재하는 중간층 (또는 버퍼층)의 

역할이 가장 중요하며, 이 중간층은 광활성층 내에 생성된 전하와 정공을 

양 전극으로 최대한 효과적으로 추출하도록 한다. 본 논문에서는, In 이 

도핑된 ZnO (ZnO:In)와 수직으로 배향된 CdSe 테트라포드로 이루어진 
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독특한 형태의 나노구조체 기반의 전자추출층을 소개하고자 한다. CdSe 

테트라포드 나노입자는 무기물의 높은 전하이동도를 바탕으로 직접적인 

전자 수송 경로를 제공할 수 있을 뿐 아니라 합성을 통해 크기의 제어가 

가능하다는 장점이 있다. 이러한 CdSe 테트라포드를 전자추출층에 

적용하였을 때, 태양전지 소자의 단락 전류와 곡선 인자가 향상되었으며, 

이는 CdSe 테트라포드가 광활성층과 버퍼층 사이의 재결합 손실을 

줄이고, 그와 동시에 전하 수집 효율을 증가시키기 때문이다. 결과적으로 

CdSe 테트라포드 나노구조체를 사용한 PTB7:PC71BM 기반의 태양전지 

효율은 7.55%로 증가하였다. 또한, 본 논문에서 개발된 길이가 제어된 

무기 나노입자를 전자추출층에 적용하는 접근법은, 유기태양전지뿐 

아니라 다양한 박막 태양전지에서 전하 추출을 향상시키는 데에 적용 

가능할 것으로 기대된다. 

그 다음으로는, 유기태양전지의 열화 메커니즘을 이해하기 위한 

연구를 진행하였다. 유기 소자의 열화를 일으키는 다양한 요소들 (산소, 

수분, 열, 빛 등) 중에서 빛은 가장 중요한데, 태양전지의 동작 조건이 빛 

아래일 뿐 아니라 빛은 산소 등 다른 요인에 의한 열화를 더 가속화시킬 

수 있기 때문이다. 지금까지 빛에 의한 열화 메커니즘에 관한 연구는 

P3HT 기반의 유기태양전지에 관해 대부분 이루어졌으나, 광활성층을 

구성하는 유기물에 따라 열화의 경향 및 메커니즘이 달라지는 것을 

고려한다면, 현재 고효율을 나타내는 고분자에 대한 열화 연구도 

필수적이다. 따라서 본 논문에서는 고효율 PTB7 기반 유기태양전지의 

초기 24 시간동안 지속적인 빛에 의한 열화 특성을 분석하였다. 빛에 

의한 열화 후, 소자의 효율은 초기 효율 대비 30% 감소하였는데 주로 

단락전류 및 곡선인자가 감소하였다. 이러한 열화의 원인을 규명하기 

위해서 원자력현미경, 임피던스 분광, 온도에 따른 전류 전압 특성 등의 
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방법으로 광활성층의 모폴로지 및 소자의 전기적 특성을 분석하였다. 그 

결과, 열화의 주된 원인이 벌크 이종접합 및 이와 인접한 두 계면에 

존재하는 빛에 의한 트랩인 것으로 생각되며, 내부 트랩 형성으로 인해 

태양전지 소자에서의 전도 특성이 열화 후 트랩전하에 의해 제한되는 

특성을 보였다. 형성된 트랩의 에너지는 78 meV, 트랩전하밀도는 (8.3 ± 

2.0) × 1017 cm-3 로 높은 수치를 나타내었으며, 이는 결과적으로 

태양전지의 전기적 특성을 저하시켰다. 

본 논문에서는 이처럼 역구조 기반 유기태양전지의 효율을 

향상시키는 방법 및 빛에 의한 열화 메커니즘을 규명하는 연구가 

제시되었다. 이러한 접근법 및 본 논문에서 소개된 다양한 전기광학적 

특성 분석법은 태양전지에 한정되지 않고, 유기발광 다이오드, 

유기박막트랜지스터 등의 다양한 유기 광전자 소자에도 적용될 수 있을 

것으로 생각된다.  
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