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ABSTRACT

MODELING METHODOLOGY OF

PULSE-ECHO ULTRASOUND SYSTEM FOR

MEDICAL IMAGING DIAGNOSTICS

TAEHOON KIM

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

A flexible clinical ultrasound system must operate with different transducers, which 

have characteristic impulse responses and widely varying impedances. The impulse 

response determines the shape of the high-voltage pulse that is transmitted and the 

specifications of the front-end electronics that receive the echo; and the impedance 

determines the specification of the matching network through which the transducer is 

connected. System-level optimization of these subsystems requires accurate modeling of 

pulse-echo (two-way) response, which in turn demands a unified simulation of the 

ultrasonics and electronics. 

This thesis proposed modeling methodology of pulse-echo ultrasound system for 

medical imaging diagnostics and the development of pulse-echo ultrasound system 

simulator in the Matlab/Simulink environment by using the modeling methodology. This

simulator is realized by combining Matlab/Simulink models of the high-voltage 
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transmitter, the transmission interface, the acoustic subsystem which includes wave 

propagation and reflection, the receiving interface, and the front-end receiver. 

To demonstrate the effectiveness of our simulator, the models are experimentally 

validated by comparing the simulation results with the measured data from commercial 

ultrasound system. Proposed pulse-echo ultrasound simulator, which is developed by our 

modeling methodology, could be used to quickly provide system-level feedback for an 

optimized tuning of electronic design parameters.

Keywords: ultrasound imaging, ultrasound transducer, behavior modeling, design 
optimization, impedance matching, MATLAB.
Student Number: 2012-30202
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CHAPTER 1

INTRODUCTION

1.1 ULTRASOUND IMAGING

Ultrasound techniques are widely used for numerous applications, such as SONAR 

(Sound Navigation and Ranging), diagnostic imaging, nondestructive testing, and surface 

acoustic wave (SAR) devices, etc.

Ultrasound medical imaging devices are widely used as medical diagnosis tools. 

Millions of people have been spared painful exploratory surgery by noninvasive imaging. 

Their lives have been saved by ultrasound diagnosis and timely intervention, their hearts 

have been evaluated and repaired, and their children have been guided and checked by 

ultrasound. Many more people have breathed a sigh of relief after a brief ultrasound exam 

found no disease or confirmed the health of their future child. 

Compared to X-ray and computer tomography (CT) devices, which expose the 

human body to radiation, the ultrasound medical imaging is harmless to the human body. 

Also, it is noninvasive and less costly than other cross-sectional imaging modalities such 

as CT and magnetic resonance imaging (MRI). Table 1.1.1 shows comparison of imaging 

modalities [1.1.1].
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Mechanical waves and vibrations occur over a wide range of frequencies called the 

acoustic spectrum. This spectrum extends from the audible range (10 to 20,000 Hz), with 

which we are all familiar, to the range of phonons (>1012 Hz), which comprise the 

vibrational states of matter. A graphical interpretation of the acoustic spectrum is given in 

Fig. 1.1.1 [1.1.2], in which frequency is shown in powers of 10 on the horizontal axis 

from 100 to 1013 Hz. Sound occupies the range from 10 Hz to 20 KHz. We are all familiar 

Table 1.1 Comparison of imaging modalities

Modality Ultrasound X-ray CT MRI

What is 
imaged

Mechanical 
properties

Mean tissue
absorption

Tissue 
absorption

Biochemistry

Spatial 
resolution

0.3-3 mm ~1 mm ~1 mm ~1 mm

Penetration 3-25 cm Excellent Excellent Excellent

Safety Very good
Ionizing 
radiation

Ionizing 
radiation

Very good

Speed
100 

frames/sec
Minutes

1/2 minute to 
minutes

10 frames/sec

Cost cheap cheap expensive
Very 

expensive

Portability Excellent Good Poor Poor
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with the fabulous wealth of information that we extract from verbal communication, 

music, and other sources of sound. It is not surprising, therefore, that frequencies greater 

than 20 KHz, the ultrasound frequencies, have similar potential. In the frequency range 

from 20 to 100 KHz many animals use ultrasound to communicate and navigate and to 

track their prey.

From 100 KHz (105 Hz) to 1MHz (106 Hz), ultrasound has numerous applications. 

Perhaps the most important of these is SONAR, which is the human imitation of the 

echolocation methods of many animals. The medical applications occupy only a tiny 

Fig. 1.1.1. The acoustic spectrum. Diagnostic applications are clustered in the 1-
10MHz range, whereas ultrasound bio-microscopy applications occur in the range from 
approximately 40 to 100MHz.
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silver of the spectrum between 1 and 10MHz. Even in this range the choice of frequency 

is closely tied to the intended application. For example, frequencies between 3.5 and 

5MHz are used in body imaging applications where significant penetration of the tissues 

is needed. These frequencies have the ability to penetrate the tissues to a depth of 15 to 

20cm and still return signals of sufficient strength to form an image. As the frequency 

increases, the ultrasound is more strongly attenuated, reducing penetration. Higher 

frequencies (7 to 10MHz) can be used in small parts imaging such as visualization of the 

eye, where penetration of 4 to 5cm is sufficient.

Although the vast majority of clinical ultrasound imaging is performed between 1 

and 10MHz, new applications are beginning to emerge in the high-frequency range 

between 10 and 40MHz. These include systems designed to image the skin, imaging of 

blood vessels. The commercial systems for skin and intravascular applications in the 20 

to 30MHz range have transverse resolution ranging from approximately 200 to 500μm

and are still considered experimental.



５

1.2 HISTORY OF ULTRASOUND IMAGING

The concept of deriving real-time parameters other than direct pulse-echo data by 

signal processing or by displaying data in different ways was not obvious at the very 

beginning of medical ultrasound. M-mode, or a time–motion display, presented new time-

varying information about heart motion at a fixed location when I. Elder and C. H. Hertz 

introduced it in 1954. In 1955, S. Satomura, Y. Nimura, and T. Yoshida reported 

experiments with Doppler-shifted ultrasound signals produced by heart motion. Doppler 

signals shifted by blood movement fall in the audio range and can be heard as well as 

seen on a display. By 1966, D. Baker and V. Simmons had shown that pulsed spectral 

Doppler was possible (Goldberg and Kimmelman, 1988). P. N. T. Wells (1969) invented 

a range-gated Doppler to isolate different targets.

In the early 1980s, Eyer et al. (1981) and Namekawa et al. (1982) described color

flow imaging techniques for visualizing the flow of blood in real time. During the late

1980s, many other signal processing methods for imaging and calculations began to

appear on imaging systems. Concurrently, sonar systems evolved to such a point that Dr. 

Robert Ballard was able to discover the Titanic at the bottom of the sea with sonar and 

video equipment in 1986 (Murphy, 1986).

Also during the 1980s, transducer technology underwent tremendous growth. Based 

on the Mason equivalent circuit model and waveguide, as well as the matching-layer 

design technology and high coupling piezoelectric materials developed during and after 

World War II, ultrasonic phased array design evolved rapidly. Specialized phased and 
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linear arrays were developed for specific clinical applications: ardiogy; radiology 

(noncardiac internal organs); obstetrics/gynecology and transvaginal; endoscopic 

(transducer manipulated on the tip of an endoscope); transesophageal (transducer down 

the esophagus) and transrectal; surgical, intraoperative (transducer placed in body during 

surgery), laparoscopic, and neurosurgical; vascular, intravascular, and small parts. With 

improved materials and piezoelectric composites, arrays with several hundred elements 

and higher frequencies became available. Wider transducer bandwidths allowed the 

imaging and operation of other modes within the same transducer at several frequencies 

selectable by the user.

By the 1990s, developments in more powerful microprocessors, high-density gate 

arrays, and surface mount technology, as well as the availability of low-cost 

analog/digital (A/D) chips, made greater computation and faster processing in smaller 

volumes available at lower costs. Imaging systems incorporating these advances evolved 

into digital architectures and beamformers. Broadband communication enabled the live 

transfer of images for telemedicine. Transducers appeared with even wider bandwidths 

and in 1.5D (segmented arrays with limited elevation electronic focusing capabilities) and 

matrix array configurations.

By the late 1990s, near–real-time three-dimensional (3D) imaging became possible.

Commercial systems mechanically scanned entire electronically scanned arrays in ways 

similar to those used for single-element mechanical scanners. Translating, angular 

fanning, or spinning an array about an axis created a spatially sampled volume. Special 

image-processing techniques developed for movies such as John Cameron’s Titanic 
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enabled nearly real-time three-dimensional imaging, including surface-rendered images 

of fetuses. 

To extend the capabilities of ultrasound imaging, contrast agents were designed to 

enhance the visibility of blood flow. In 1968, Gramiak and Shah discovered that 

microbubbles from indocyanine green dye injected in blood could act as an ultrasound 

contrast agent. By the late 1980s, several manufacturers were developing contrast agents 

to enhance the visualization of and ultrasound sensitivity to blood flow. To emphasize the 

detection of blood flow, investigators imaged contrast agents at harmonic frequencies 

generated by the microbubbles. As imaging system manufacturers became involved in 

imaging contrast agents at second harmonic frequencies, they discovered that tissues 

could also be seen. Signals sent into the body at a fundamental frequency returned from 

tissue at harmonic frequencies. Tissues talked back. P. N. T. Wells (1969a) mentioned 

indications that tissues had nonlinear properties. Some work on imaging the nonlinear 

coefficient of tissues directly (called their ‘‘B/A’’ value) was done in the 1980s but did 

not result in manufactured devices. By the late 1990s, the clinical value of tissue 

harmonic imaging was recognized and commercialized. Tissue harmonic images have 

proved to be very useful in imaging otherwise difficult-to-image people, and in many 

cases, they provide superior contrast resolution and detail compared with images made at 

the fundamental frequency.
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1.3 CHALLENGE AND APPROACH

Ultrasound imaging has been applied to many clinical applications, including 

obstetrics, gynecology, orthopedics, emergency medicine and the detection of cancer. 

Ultrasound imaging provides immediate data, facilitating speedy diagnosis and reducing 

cost. The type of transducer required varies across different applications, and transducers 

commonly have different impedance values and impulse responses. For example, an 

annular array transducer is required for steerable continuous-wave Doppler measurements 

of the heart, whereas an array with a tight convex curvature is required for imaging 

between the ribs [1.3.1].

The design of ultrasound systems capable of operating with a wide range of 

transducers poses several problems. One key challenge is the impedance mismatch which 

commonly occurs because the impedance of different transducers can vary from less than 

50Ω to 10kΩ [1.3.2], [1.3.3], while the impedance of the electronics is fixed. Mismatched 

impedances can seriously compromise the effectiveness of an ultrasound system, even if 

the transducer and electronics individually have outstanding performance. To maximize 

the efficiency with which the signal power is transferred requires a matching network, 

and a different network must be designed for each configuration.

Another challenge is that the electronics need to be designed appropriately for 

different types of transducers [1.3.3]. A transducer is driven by a high-voltage transmitter, 

which must generate a pulse with a shape that suits the impulse response of that 

transducer. The parameters of all the components in the front-end receiver, including the 
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gains of amplifiers, the bandwidths of filters, and the sampling-rate and resolution of the 

analog-to-digital converter (ADC) will be determined by the transducer’s two-way 

impulse response.

Despite these interdependencies, the transducers and the electronics in an ultrasound 

system are commonly developed independently, making it difficult to optimize 

performance. This motivates our development of a pulse-echo ultrasound system 

simulator. Most previous studies [1.3.4]-[1.3.14] have only focused on the modeling of 

the transducer and ultrasound field as an equivalent electrical circuit. The modeling of 

transducers themselves [1.3.4]-[1.3.9] has largely been based on theoretical models, such 

as those of Mason [1.3.10], Redwood [1.3.11], KLM [1.3.12], and Leach [1.3.13]. These 

theoretical models, based on knowledge of the transducers’ material properties and 

physical dimensions, are best suited to the optimization of a transducer during its design 

and manufacture.

Alternatively, an analytical model based on experimental measurements allows 

system designers to simulate transducers without reference to their physical specifications 

[1.3.14]. To combine a model of this sort with electronics within an analog circuit 

simulator requires the transducer model to be transformed to a lumped passive-circuit 

model. Moreover, system-level simulation using an analog simulator requires a time-

consuming transistor-level design of the electronics; and these circuits still have to be 

redesigned to permit a full analysis of subsequent parameter changes.

A third possibility, which allows a system designer to investigate the behavior of a 

pulse-echo ultrasound system from a more complete electro-acoustic point of view, is to 
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simulate both the transducer and the electronics in the same high-level environment.

In this thesis, we present a simulator of this type, in which both the ultrasound 

components and the electronics of a pulse-echo ultrasound system are represented by a 

single Matlab/Simulink model.

This approach supports a two-way (transmit and receive) analysis of ultrasound 

system. Unlike other simulators [1.3.15]-[1.3.19], high-voltage pulse generation, 

electrical signal conditioning, and analog-to-digital conversion can be simulated with the 

transducer. Modeling the transducer as a transfer function, which can be derived from 

pulse-echo measurements made during manufacturing, makes it easy to change the 

transducer in the simulation. Moreover, by inserting transfer functions into the signal path 

to account for the impedances of both the transducer and the electronics, impedance 

mismatches can be analyzed and corrected.

Our simulator includes all the parameters that the designers of an ultrasound system 

require to specify the electronics. Thus the best pulse for a given transducer can be 

determined using the high-voltage transmitter model and, since the front-end receiver 

model is based on a specific architecture, the specifications of each component in the 

receiver can readily be determined. Finite element modeling (FEM) can also be 

considered to simulate the electronics. It is also a powerful tool but with complicated and 

time-consuming method [1.3.20]. On the other hand, our approach reduces the simulation 

time while keeping high accuracy and it is able to provide the microelectronics designers 

with affordable system-level feedback in a short time [1.3.21].
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1.4 THESIS ORGANIZATION

The thesis, organized into six chapters, describes the modeling methodology of a 

pulse-echo ultrasound system for medical imaging diagnostics.

The first chapter introduces the general description of ultrasound imaging with its 

history, challenge in the developments of ultrasound systems and our approach. Chapter 2 

outlines the key points of ultrasound system fundamentals; basic ultrasound physics, the 

basics of piezoelectric transducers and ultrasound system overview. Chapter 3 describes 

Chapter 3 introduces literature review of ultrasound transducer modeling, which is the 

most important for the simulation of pulse-echo ultrasound systems. Chapter 4 the 

building blocks of the proposed simulator are presented and the MATLAB/Simulink 

implementation of the subsystems – high-voltage transmitter, acoustic subsystem, 

interfacing electronics, and front-end receiver – is described in detail. In chapter 5, we 

present the results of experiments designed to validate the accuracy of our simulator and 

discuss with these results. Chapter 6 summarized the achievements of this study and its 

possible impact on ultrasound imaging.
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CHAPTER 2

FUNDAMENTALS OF ULTRASOUND
SYSTEMS

2.1 BASIC ULTRASOUND PHYSICS

2.1.1 SOUND WAVES

Sound is mechanical energy that is transmitted by pressure waves through a medium. 

Periodic changes in the pressure of the medium (air or water or iron) are created by forces 

acting on the molecules, causing them to oscillate about their normal, unperturbed 

positions. Since the motion of the molecules (particles) is repetitive, the term cycle is 

used to describe any sequence of changes in molecular motion (particle displacement, 

density of molecules, pressure, and particle velocity) that recurs at regular intervals.

The frequency of wave is the number of a wave is the number of vibrations (back 

and forth movements) that a molecule makes per second or the number of times the cycle 

is repeated each second. For comparative purposes, higher frequency means that the 

cyclic motion is executed at a faster rate and more cycles are completed in the 1-second 

interval than at lower frequency. Sound waves are those pressure changes that the human 
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ear can detect. They oscillate at frequencies of 20 to 20,000 cycles/second (1/s), also 

referred to as hertz (Hz).

Wavelength is the extent of one complete wave cycle. A cycle is a sequence of 

changes in amplitude that recur at regular intervals. When particle density is plotted 

against distance, amplitude describes the variation in density. Wavelength is the distance 

between two successive equivalent density zones and is expressed in unit of a meter (m), 

centimeter (cm), or millimeter (mm).

Amplitude is the change in magnitude of a physical entity. The term can be applied 

to pressure in the medium or to particle density, particle displacement, or particle velocity 

in the medium. It has other applications, such as to characterize the size of a voltage pulse 

delivered to or induced within the crystal of the transducer. When the amplitude is plotted 

as a function of time, the period of the wave is defined as the time necessary for one 

complete cycle or the time between two successive compression zones or rarefaction 

zones. Alternatively, the period is the elapsed time between compression zones as the 

sound wave passes through one point in the medium. The unit of the period is the second.

The frequency of a wave is the number of cycles occurring at a given point in one 

unit of time. It corresponds to the inverse of the period. The unit of frequency is the hertz, 

which is equal to 1 cycle per second. Cycle is not a standard of measurement but is used 

as a descriptor to clarify the concept of frequency. Often frequency is expressed in units 

of inverse time only.

The speed at which a wave propagates through the medium is called the acoustic 

velocity (c). In physics, velocity is usually considered a vector quantity – magnitude and 
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direction are assigned. In ultrasound physics the term velocity traditionally refers to 

magnitude only. The velocity of sound is determined by the rate at which the wave 

energy is transmitted through the medium, which depends on the density and 

compressibility of the medium.

The velocity of sound or ultrasound remains constant for a particular medium. The 

velocity (c) is equal to the frequency (f) times the wavelength (λ). Stated mathematically:

c f l= × ,     (2.1.1)

This is probably the most important equation used in diagnostic ultrasound. Because the 

velocity is constant for a particular medium, increasing the frequency causes the 

wavelength to decrease.
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2.1.2 REFLECTION

The major interaction of interest for diagnostic ultrasound is reflection. If a sound 

beam is directed at right angles (called normal incidence) to a smooth interface (e.g., the 

boundary between different tissue types) large than the width of the beam, it will be 

partially reflected toward the sound source as shown in Fig. 2.1.1. These interfaces, called 

specular reflectors, are responsible for the major organ outlines seen in diagnostic 

ultrasound examinations.

A difference in acoustic impedances causes some portion of the sound to be 

reflected at the interface. The product of density (ρ) times velocity (c) is called the 

acoustic impedance (Z):

Z cr= × ,       (2.1.2)

This quantity is a measure of the resistance to sound passing through the medium. 

Acoustic impedance is expressed as kilograms per square meter per second (kg/m2/s). In 

the international system of units (SI) this combination of kg/m2/s is given a special name, 

the rayl.

For perpendicular incidence, the reflection coefficient for intensity is expressed as 

follows:
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,       (2.1.3)
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where, αr is the reflection coefficient, Z2 the acoustic impedance of medium number 2 and 

Z1 the acoustic impedance of medium number 1. The transmission coefficient (αt) is 

calculated 1 minus the reflection coefficient.

( )
2 1

2 1

4
t

Z Z

Z Z
a

×
=

+
,       (2.1.4)

It does not matter which impedance is the larger or smaller for two materials 

composing the interface - the difference between them squared gives the same number. 

Thus the same percentage of reflection occurs at the interfaces, whether sound is going 

from a high acoustic impedance to a low acoustic impedance, or vice versa. If the 

acoustic impedance difference is small, the magnitude of the reflected wave will be small. 

Sound Source

Medium 1 Medium 2

Incident

Reflected

Transmitted

Fig. 2.1.1. Reflection caused by a sound wave striking a large smooth interface at 
normal incidence. 
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Because the same device transmits and receives the sound waves, maximum detection of 

the reflected echo occurs when the sound beam strikes the interface with normal 

incidence. If the acoustic impedance difference is large, such as in bone compared to soft 

tissue, a large fraction of sound will be reflected; of the transmitted bean will penetrate 

structures behind the bone, and much will return to the detector. Table 2.1.1 shows the 

acoustic impedance of some main biological tissues [2.1.1].

Table 2.1.1 Acoustic impedance of some main biological tissues

Material
Sound velocity

(m/sec)
Acoustic impedance

(106kg/m2s)

Water 1480 1.48

Air 330 0.0004

Blood 1570 1.61

Fat 1410-1470 1.34-1.39

Muscle 1590 1.71

Bone 4000 8.8

Soft tissue 1540 1.62
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2.1.3 SCATTERING

Another important interaction between ultrasound and tissue is scattering, or 

nonspecular reflections, which is responsible for providing the internal texture of organs 

in the image. The scattering occurs because the interfaces are small, with physical 

dimensions approximately the size of the wavelength or smaller. Each interface acts as a 

new separate sound source, and sound is reflected in all directions independent of the 

direction of the incoming sound wave as shown in Fig. 2.1.2. The magnitude of scattered 

ultrasound intensity is much weaker than for specular reflection and depends on the 

number of scatterers per volume, size of the scatterers, acoustic impedance, and 

frequency.

Sound Source

Fig. 2.1.2. Nonspecular reflection (scattering). The scattered wave from a small 
structure indicated in gray is emitted in all directions, shown here in two dimensions 
only.
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2.1.4 REFRACTION

Another interaction that occurs between ultrasound and tissue is refraction. If the 

ultrasound beam strikes an interface between two media at an angle of 90 degrees 

(normal incidence), a percentage will be reflected back to the first medium, and the rest 

will be transmitted into the second medium without a change in direction. If the beam 

strikes the interface at an angle other than 90 degrees, however, the transmitted part will 

be refracted or bent away from the straight-line path as shown in Fig. 2.1.3. Refraction of 

sound waves obeys Snell’s law, which relates the angle of transmission to the relative 

velocities of sound in the two media. Snell’s law is given by

sin

sin
i i

t t

c

c

q

q
= ,       (2.1.5)

where θi is the incident angle, θt the transmitted angle, ci the velocity of sound in the 

incident medium, and ct the velocity of sound in the transmitted medium. In Snell’s law 

the angle θi and θt are defined with respect to a line drawn perpendicular to the interface.
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Interface

Normal

θi

θt

Fig. 2.1.3. Case of refraction. The velocity of a sound beam in the incident medium is 
less than that in the transmitted medium, causing the beam to be bent away from the 
normal.
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2.1.5 DIFFRACTION

Diffraction causes the ultrasound beam to diverge or spread out as the waves move 

farther from the sound source as shown in Fig. 2.1.4. The rate of divergence increases as 

the size (diameter) of the sound source decreases. Diffraction also occurs after the beam 

with planar wave-fronts passes through a small aperture on the order of one wavelength. 

Because the wave is blocked everywhere but in the area of the aperture, the aperture acts 

as a small sound source, and the beam diverges rapidly. 

Sound Source

Fig. 2.1.4. Divergence of a sound beam from a small source.
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2.1.6 ABSORPTION

Absorption is the only process whereby sound energy is dissipated in a medium. All 

other modes of interactions decrease the ultrasonic beam intensity by redirecting the 

energy of the beam. Absorption is the process whereby ultrasonic energy is transformed 

into other energy forms, primarily heat. It is responsible for the medical applications of 

therapeutic ultrasound.

The absorption of an ultrasound beam is related to the beam’s frequency and to the 

viscosity and relaxation time of the medium. The relaxation time describes the rate at 

which molecules return to their original positions after being displaced by a force.

If a substance has a short relaxation time, the molecules return to their original 

positions before the next wave compression arrives. If a substance has a long relaxation 

time, however, the molecules may be moving back toward their original positions as the 

wave crest strikes them. More energy is required to stop and then reverse the direction of 

the molecules, and this produces more heat. The ability of molecules to move past one 

another characterizes the viscosity of a medium; high viscosity provides great resistance 

to molecular flow.

The frequency also affects absorption in relation to both the viscosity and the 

relaxation time. If the frequency is increased, the molecules must move more often, 

thereby generating more heat from the drag caused by friction. Also, as the frequency is 

increased, less time is available for the molecules to recover during the relaxation process. 

Molecules remain in motion, and more energy is necessary to stop and redirect them, 
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again producing more absorption. The rate of absorption is directly related to the 

frequency. If the frequency doubles, the rate of absorption also doubles.

The peak amplitude of acoustic pressure (pascal), particle density (kg/m3), particle 

displacement (m), and particle velocity (m/s) all decrease as the wave traverses a 

homogeneous medium. Fig. 2.1.5 shows the absorption of the pulsed ultrasonic beam 

follows an exponential function as the pulsed wave penetrates the tissue. Absorption is 

enhanced if the frequency is increased.

Sound 
Source

Fig. 2.1.5. Attenuation of acoustic pressure as a sound beam penetrates the medium.
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2.1.7 ATTENUATION

Attenuation includes the effects of both scattering and absorption in the 

characterization of amplitude reduction as the ultrasound wave propagates through a 

medium. Attenuation is also described by an exponential function dependent on the 

distance traveled, composition of the medium, and the frequency. As frequency is 

increased, the reduction of the ultrasound intensity with distance becomes more 

pronounced. This has a practical consequence in medical imaging. The ultrasound beam 

and returning echoes used to form the image must travel through tissue. The depth of 

penetration becomes less as frequency is increased – the ability to observe deep-lying 

structures is forfeited.

At a particular location within a continuous single-frequency ultrasonic field, the 

variations of pressure with time demonstrate an oscillatory behavior, the greatest 

deviations occurring during maximum pressure. The maximum particle velocity and the 

maximum particle displacement are related to the maximum pressure. As the maximum 

pressure is reduced, a corresponding decrease in particle velocity and particle 

displacement occurs.

Table 2.1.2 shows some intensity attenuation factors for human tissues at a 

frequency of 1MHz.
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Table 2.1.2 Attenuation of human tissues and other media at 1MHz

Material Attenuation (dB/cm)

Blood 0.18

Fat 0.6

Kidney 1

Muscle (across fibers) 3.3

Muscle (along fibers) 1.2

Brain 0.85

Liver 0.9

Lung 40

Skull 20

Lens 2

Aqueous humor 0.022

Vitreous humor 0.13

Water 0.0022

Castor oil 0.95
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2.2 ULTRASOUND SYSTEM OVERVIEW

Fig. 2.2.1 shows a simplified diagram of an ultrasound system [2.1.1]. In most 

systems the transducer element is connected to the end of a relatively long cable of about 

2 m. In traditional ultrasound, this cable has from a minimum of 48 and up to 256 micro-

coaxial cables, and is usually one of the most expensive parts of the system. For 3-D

ultrasound, the number of channels increases dramatically, and the number of cables can 

typically not be correspondingly large. In traditional systems the transducer elements 

directly drive the cable, which can result in significant signal loss due to the loading of 

the cable capacitance on the transducer elements. Unfortunately, this in turn demands that 

the receiver noise figure (NF) is lower by the amount of the cable loss. The loss is 

typically on the order of 1-3 dB depending on transducer and operating frequency. In 

most systems multiple probe heads can be connected to the system, this allows the 

operator to select the appropriate transducer for optimal imaging. The heads are selected 

via High Voltage (HV) relays; these relays introduce a large parasitic capacitance in 

addition to the cable.

A high-voltage mux/demux is used in some arrays to reduce the complexity of 

transmit and receive hardware at the expense of flexibility. The most flexible systems are 

phased array digital beamforming systems where all transducer elements can be 

individually phase and amplitude controlled. These also tend to be the most expensive 

systems due to the need for full electronic control of all channels.

On the transmit side the TX beamformer determines the delay pattern and pulse train 
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that set the desired transmit focal point. The outputs of the beamformer are then amplified 

by high voltage transmit amplifiers that drive the transducers. These amplifiers might be 

controlled by DACs to shape the transmit pulses for better energy delivery to the 

transducer elements. Typically multiple transmit focal regions (zones) are used, i.e. the 

field to be imaged is divided up by focusing the transmit energy at progressively deeper 

points in the body. The main reason for doing this is to increase the transmit energy for 

points that are deeper in the body because the signal is heavily attenuated as it travels into 

the body.

On the receive side there is a transmit/receive switch, generally a diode bridge,

HV 
MUX /

DEMUX

T/R 
Switch

CW (analog) 
Beamformer

Spectral 
Doppler 

Processing
(D Mode)

TX 
Beamformer

RX 
Beamformer 
(B&F Mode)

Beamformer 
Central 
Control 
System

Image & 
Motion 

Processing
(B Mode)

Color 
Doppler (PW) 
Processing

(F Mode)

Audio Output

Display

Transducer

Coaxial Cable

High-Voltage TX 
Amplifiers

Variable-Gain 
Amplifier

Low-Noise 
Amplifier

Fig. 2.2.1 Ultrasound system block diagram.
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which blocks the high transmit voltage pulses, followed by a low noise amplifier and

variable gain amplifiers which implement the time gain compensation and sometimes also 

apodization functions; spatial windowing to reduce side lobes in beam. Time-gain control 

(TGC) is under operator control and used to maintain image uniformity. After 

amplification, beamforming is performed which can be implemented in analog (ABF) or 

digital (DBF) form. Digital beamforming is usually preferred in modern systems except 

for continuous wave (CW) Doppler processing whose dynamic range is mostly too large

to be processed through the same channel as the image. Finally, the Rx beams are

processed to show either a gray scale image, color flow overlay on the 2–D image, and/or 

a Doppler output.
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2.3 PIEZOELECTRIC TRANSDUCER

The fundamental working principle of a piezoelectric ultrasound transducer is based 

on the piezoelectric effect. When a mechanical force in the form of an ultrasound wave is 

applied to a transducer, along with geometric deformation, polarization of the electrical 

dipoles in the transducer dielectric occurs. Thus, a net dipole moment is created, which 

forms an electric field across the two electrodes of the transducer [2.3.1]. The polarization 

is proportional to the mechanical force, and changes sign depending on the sign of the 

pressure wave [2.3.2]. Inversely, if an ultrasound transducer is excited with alternating 

electric fields, it will compress and expand, and thereby generating sound waves in the 

ultrasonic range.

Many crystalline materials can be used to build piezoelectric ultrasound transducers, 

which can be categorized as natural crystals (e.g. quartz, Rochelle salt) or man-made 

ceramics (e.g. barium-titanate ceramics, leadzirconate-titanate ceramics). Among them, 

the lead-zirconate-titanate ceramic, known as PZT, is the most widely used material 

[2.3.3]. It is also the building material for transducers used in this thesis project. It is 

worth noting that the piezoelectric property of a PZT ultrasound transducer will be lost if 

the temperature of the crystal rises above its Curie temperature. The temperature 

requirement puts constraints on the transducer-to-chip interconnection technology. 

Therefore, we should keep the processing temperature well below the Curie temperature 

of the selected PZT ceramic.

A typical piezoelectric ultrasound transducer is a layered device consisting of two 
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electrodes, a piece of piezo-ceramic, a backing layer and one or more matching layers as 

shown in Fig. 2.3.1. The electrodes should be sufficiently thin so that their influence on 

wave propagation is negligible [2.3.2]. The piezo-ceramic is the actual ultrasound 

generator and detector, which is sandwiched between the signal electrode and the ground 

electrode. The size and shape of the piezo-ceramic determine the resonance frequency of 

the transducer, at which the energy-conversion efficiency of the transducer reaches its 

highest value [2.3.4]. The frequency response of a piezoelectric ultrasound transducer has 

a band-pass shape. The bandwidth determines the range of frequencies over which the 

transducer can operate with relatively high energy conversion efficiency.

Since the acoustic impedances between the piezo-ceramic and the tissue being 

Ground electrode

Matching layer 1

Matching layer 2

Piezo-ceramic

Signal electrode

Backing layer

Fig. 2.3.1 Structure of a typical piezoelectric transducer.
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imaged differ greatly (e.g. the acoustic impedance of PZT ceramic is about 20-30 times 

higher than that of soft tissue [2.3.5]), connecting the piezoceramic directly to the tissue 

would cause strong reflection at the boundary. In this case, in the transmit mode, only a 

small percentage of the acoustic energy would then be transmitted into the tissue. The 

reflected waves would cause unwanted ringing of the piezo-ceramic, which would 

degrade the axial resolution discussed in Section 2.1.4 of the image due to very long pulse 

duration. Moreover, in the receive mode, large reflection would result in a low sensitivity.

To improve the energy transfer efficiency at the transduce-tissue boundary and 

enhance the sensitivity, one or more matching layers are employed. Matching layers have 

acoustic impedance levels between those of the piezoceramic and the tissue. The use of 

matching layers allows the sound waves to reflect back and forth repeatedly inside the 

matching layers, producing waves that are in phase to each other. Hence, waves are 

constructively added up to form a reinforced wave that propagates across the boundary. 

In this way, the sensitivity of the transducer is improved. In addition to the 

aforementioned advantage, as described in [2.3.5], by using several matching layers to 

gradually bridge the gap of acoustic impedances between the tissue and the piezo-ceramic, 

the bandwidth of the transducer can be tuned. In the meantime, to overcome the ringing 

problem, a backing layer is attached underneath the piezo-ceramic, so that during 

transmission, most of the energy reflected back into the piezo-ceramic can be absorbed 

and turned into heat. The backing layer also provides damping to the received echo 

signals. The durations of the echoes are as well shortened for better axial resolution.



３２

2.4 HIGH-VOLTAGE TRANSMITTER

A digital transmit beamformer typically generates the necessary digital transmit 

signals with the proper timing and phase to produce a focused transmit signal. High-

performance ultrasound systems will generate complex transmit waveforms using an 

arbitrary waveform generator to optimize image quality. In these cases, the transmit 

beamformer generates digital 8-bit to 10-bit words at rates of approximately 40MHz to 

produce the required transmit waveform. Digital-to-analog converters (DACs) are used to 

translate the digital waveform to an analog signal, which is then amplified by a linear 

high-voltage amplifier to drive the transducer elements. This transmit technique is 

generally reserved for more expensive and less portable systems, as it can be very large, 

costly, and power hungry. As a result, the majority of ultrasound systems do not use this 

transmit-beamformer technique, but instead use multilevel high-voltage pulsers to 

generate the necessary transmit signals. In this alternate implementation highly-integrated, 

high-voltage pulsers quickly switch the transducer element to the appropriate 

programmable high-voltage supplies to generate the transmit waveform. To generate a 

simple bipolar transmit waveform, a transmit pulser alternately connects the element to a 

positive and negative transmit supply voltage controlled by the digital beamformer. More 

complex realizations allow connections to multiple supplies and ground in order to 

generate more complex multilevel waveforms with better characteristics.
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2.5 FRONT-END RECEIVER

A T/R switch protects the LNA from the high-voltage transmit pulse and isolates the 

LNA's input from the transmitter during the receive interval. The switch is usually 

implemented using an array of properly biased diodes which automatically turn on and 

off when presented with a high-voltage transmit pulse. The T/R switch must have fast 

recovery times to ensure that the receiver is on immediately after a transmit pulse. These 

fast recovery times are critical for imaging at shallow depths and for providing a low on-

impedance to ensure that receiver noise sensitivity is maintained.

The LNA in the receiver must have excellent noise performance and sufficient gain. 

In a properly designed receiver the LNA will generally determine the noise performance 

of the full receiver. The transducer element is connected to the LNA through a relatively 

long coaxial transducer cable terminated into relatively low impedance at the LNA's input. 

Without proper termination the cable capacitance, combined with the transducer 

element's source impedance, can significantly limit the bandwidth of the received signal 

from a broadband transducer. Termination of the transducer cable into a low impedance 

reduces this filtering effect and significantly improves image quality. Unfortunately, this 

termination also reduces the signal level at the input to the LNA and, therefore, tends to 

reduce the receiver's sensitivity. Consequently, it is important for the LNA to have active-

input-termination capability to provide the requisite low-input impedance termination and 

excellent noise performance required under these conditions.

The VGA, sometimes called a time gain control (TGC) amplifier, provides the 
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receiver with sufficient dynamic range over the full receive cycle. Ultrasound signals 

propagate in the body at approximately 1540m/sec and attenuate at a rate of about 

1.4dB/cm-MHz roundtrip. Immediately after an acoustic transmit pulse, the received 

"echo" signal at the LNA's input can be as large as 0.5VP-P. This signal quickly decays to 

the thermal noise floor of the transducer element. The dynamic range required to receive 

this signal is approximately 100dB to 110dB, and is well beyond the range of a realistic 

ADC. As a result, a VGA is used to map this signal into the ADC. A VGA with 

approximately 30dB to 40dB of gain is necessary to map the received signal into a typical 

12-bit ADC used in this application. The gain is ramped as a function of time (i.e., "time 

gain control") to accomplish this dynamic range mapping.

The AAF in the receive chain keeps high-frequency noise and extraneous signals 

that are beyond the normal maximum imaging frequencies from being aliased back to 

baseband by the ADC. Many times an adjustable AAF is provided in the design. To avoid 

aliasing and to preserve the time-domain response of the signal, the filter itself needs to 

attenuate signals beyond the first Nyquist zone. 

The ADC used in this application is typically a 12-bit device running from 40Msps 

to 60Msps. This converter provides the necessary instantaneous dynamic range at 

acceptable cost and power levels. In a properly designed receiver, this ADC should limit 

the instantaneous SNR of the receiver. As previously mentioned, however, limitations in 

the poor-performing VGAs many times limit receiver SNR performance.
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CHAPTER3

MODELING OF ULTRASOUND TRANSDUCER

3.1 THEORETICAL MODELS

3.1.1 LEACH MODEL

Modeling a pulse–echo ultrasound system is very challenging because of the 

ultrasound transducer which involves both electrical and mechanical properties. The 

transducer has been successfully modeled using equivalent circuits such Mason [3.1.1], 

Redwood [3.1.2], and the KLM model proposed by Krimholtz et al. [3.1.3]. Many 

research have been carried out to implement these equivalent circuits on a computer-

aided design (CAD) tool such as SPICE [3.1.4]–[3.1.7]. In contrast to the finite element 

method (FEM) which calculates direct resolution of the piezoelectric equations using 

numerical methods, this simulation method can easily be adapted to any configuration 

provided that we have the suitable equivalent circuit; thus, it offers much more flexibility.

The previous models [3.1.1]–[3.1.3] have some weakness. The transformer primary–

secondary ratio varies according to the frequency and it is difficult to make its 

implementation on a simulation environment. Also, the negative capacitance 



３６

does not physically make sense. Unlike those models, the Leach model [3.1.8] proposed a 

smart way to avoid these weakness by using controlled sources to express the energy 

transformation between the electrical and acoustical port. The SPICE implementation of 

the Leach model is shown in Fig. 3.1.1. The electrical port of the transducer is 

represented by the couple voltage–current (v, i), whereas the acoustical ports are modeled 

by the couple force–particle velocity (f1, u1) for backing material and the couple (f2, u2) 

for the propagating medium.

The Leach model parameters are calculated from the electrical and acoustical 

f1 f2

u1 u2

u1-u2

i

(u1-u2)

C0 i

v

h

s

h

s

Ideal Transmission Line

Fig. 3.1.1 Leach model, analog circuit for the thickness-mode transducer 
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characteristics of the transducer according to the following equations:

The piezoelectric field constant (in newtons per coulomb)

S

e
h

e
= (3.1.1)

where e is the piezoelectric constant (in coulombs per square meter), and εS is the relative 

permittivity at constant deformation.

The static capacitance of the transducer (in farads)

0

S A
C

e

d
= (3.1.2)

where A is the cross section of the transducer, and δ is its thickness.
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3.1.2 ACOUSTICAL ATTENUATION

Losses in piezoelectric material are of two different causes: dielectric and 

mechanical loss. Dielectric losses can be modeled by change of the electrical part of the 

equivalent circuit. Mechanical losses can be modeled by change of the transmission line, 

which is the mechanical part of the equivalent circuit. Lossy transmission lines can be 

modeled as lumped ladders consisting of the elements L', R', C', G' per unit of length dl as 

shown Fig. 3.1.2. 

The propagation of sinusoidal waves travelling along such a transmission line can be 

described with two complex quantities, the characteristic impedance Z0 and the 

propagation function γ [3.1.9]:
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with j=√-1 and ω=2πf. The real part of γ is the attenuation coefficient α of the 

transmission line; the complex part β is a value for the phase velocity vp:
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w

b
= . (3.1.5)
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Assuming G’=0 and R’<<ωL’ (high frequencies), (3.1.3) and (3.1.4) can be 

approximated as follows:

0

'

'

L
Z

C
»       (3.1.6)

' '
' '

2 '

R C
j L C

L
g w» + (3.1.7)

Thus the phase velocity is

1
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= , (3.1.8)

and the attenuation coefficient in nepers per unit of length is found to be
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l

i
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Fig. 3.1.2 Lumped segment of the lossy transmission line.
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' '
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L
a » . (3.1.9)

(3.1.8) and (3.1.9) may be rearranged as

'
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R

v L v

w w
a d

w
» × = . (3.1.10)

With the loss factor δ=1/Q, the same dependence is derived in [3.1.10] for acoustic 

losses in solid materials. For solids without scattering, Q is assumed to be constant and 

thus increases in proportion to frequency.

Fig. 3.1.3 shows the lumped model of the lossy thickness-mode transducer. The 

V2
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Fig. 3.1.3 Spice model of the lossy thickness-mode transducer.
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PSpice internal model of the lossy transmission line is a distributed model with the 

parameters L', R', C', G' and length l. T1 is the lossy transmission line and the parameters 

of T1 are given by rearranging (3.1.6) and (3.1.8) to (3.1.10):

0

0

1 '
' , ' , , ' 0

p p

Z L
L C R G

v v Z Q
= = = =

×
      (3.1.11)

with the characteristic impedance Z0 = Aρυp, where ρ is the density and υp is the sound 

velocity of the transducer material. The parameter l is the thickness of the transducer.
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3.1.3 PROPAGATING MEDIUM

The propagation medium is also can be modeled as electrical transmission lines 

when the ultrasound system is simulated with equivalent circuits [3.1.11]. The attenuation 

constant for an electrical transmission line can be written under the assumption of low-

loss conditions (R « ωL, G « ωC):

1 1

2 2

R G
LC LC

L C
a

æ ö æ ö
= +ç ÷ ç ÷

è ø è ø
, (3.1.12)

where R is resistance, G is conductance, C is capacitance, and L is inductance per unit 

length of the transmission line. This can be rewritten:

0

0

1 1

2 2

R
GZ

Z
a = + , (3.1.13)

where 0Z L C= is the characteristic impedance of the transmission line. 

A propagating sound wave is modeled as a forward travelling voltage wave in the 

transmission line. The amplitude of this voltage wave can be expressed as [3.1.12]:

0( ) zV z V e a-= , (3.1.14)
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where V0 is the voltage amplitude at z=0. (3.1.13) then gives:

0 0( 2 ) ( 2)

0( ) R Z z GZV z V e e- -= . (3.1.15)

We can assign the following relationships to the lossy transmission line:

2
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, , 2 ,v tcL A C R cA G

A c cA
r r a a

r r
= = = =    (3.1.16)

where A is the cross-sectional area of the acoustic beam, ρ is the medium’s density 

(kg/m3), αv is the coefficient of attenuation due to viscous losses, and αtc is the coefficient 

of attenuation due to thermal conduction. When the loss due to thermal conduction is 

negligible, the conductance G can be 0.
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3.1.4 DIFFRACTION EFFECTS

Diffraction loss (i.e., beam spreading) is a major loss origin in low-loss media such 

as water. Considering the diffraction effect, an attenuation term is not dependent of the 

attenuation caused by R. This diffraction loss can be modeled by setting G≠0. In the 

[3.1.13], this is used to model the loss due to diffraction as:

0

0

( 2)

( 2 )
0

( ) GZ
diff R Z z

V z
A e

V e
-

-
= = . (3.1.17)

Solving for G gives:

0

2
ln( )diffG A

Z z
= , (3.1.18)

which can be used as a parameter for the lossy transmission line, if the diffraction loss 

Adiff is known.
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3.1.5 PARASITIC COMPONENTS

Parasitic components are unwanted resistance, inductance, and capacitance existing 

in cable, bond wires, and circuit board paths. To model the behavior of an electrical 

circuit accurately, these components might need to be considered. To be able to include 

the parasitics in a simulation, the values of the components need to be estimated. On chip 

level, this can be done by the parasitic extraction results of the layout tool. The same 

method can be applied for circuit boards. For bond wires that connect a chip to a socket 

approximate values can be achieved from the packaging facility.

Chip level capacitance and interconnect inductance are often in the nH and pF range 

as shown in Fig. 3.1.4. A coaxial cable that is used to connect the ultrasound machine

with the transducer presents capacitance and inductance values that are considerably 

higher. Therefore, this often will be a dominating source of parasitic inductance and 

capacitance in the system.

A phenomenological explanation to the effects of the parasitic components arising in 

a coaxial cable, however, is easier to give if the lumped model is applied. [3.1.13] gives 

the lumped model of a coaxial cable. If the length of a coaxial cable is short compared to 

the wavelength of the propagating electromagnetic (EM) wave, the coaxial cable behaves 

as a lumped components consisting of a series inductor LL (H) and a parallel capacitance 

CL (F). The limit for when to use a lumped model is often drawn when the length of the 

conductor exceeds λ/10, where λ is the wavelength of the EM wave.
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With a wavelength of:

c

f
l = ,      (3.1.19)

the approximate upper frequency limit for when to use a lumped approach can be written:

lim
10

c
f

l
= . (3.1.20)

Fig. 3.1.4 Schematic used for simulation of parasitic components.
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3.2 BUTTERWORTH VAN-DYKE MODEL

The Butterworth-Van Dyke (BVD) model can be derived from the measured 

impedance or admittance of the transducer. Therefore this model does not require the 

knowledge of the transducer’s physical details. The transducer can be regard as a one port 

electrical device so the impedance can be measured as shown Fig. 3.2.1. 

The new modified BVD model has been presented to be covered for and high frequency 

ultrasonic transducers [3.2.1]. The schematic diagrams of conventional and modified 

BVD models are shown in Fig. 3.2.2.

The real resistance (R1*) can be calculated from the magnitude of the resistance (R1) 

and phase angle (θr) at resonant frequency (ωr). The inductance (L1) can be obtained at 

the resonant condition if we assume the magnitude of the impedance value at the resonant 

frequency is constant [3.2.2].

*
1 1 cos( )rR R q= × , (3.2.1)

1 2
1

1

r

L
Cw

= , (3.2.2)

The bulk capacitance (C0) can be calculated by the mechanical property or by the 

resonant condition.
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2 2

0

r

r r

r

X

R X
C

w

+
= or 0 0 r

A
C

d
e e= (3.2.3)

where C0 is the clamped capacitance, Rr and Xr are the resistance and admittance at 

resonant frequency, ε0 and εr are the dielectric constant at free space and a piezoelectric 

material, A and d are the surface and thickness of the material.

The capacitance C1 can be derived from the relationship between the resonant (ωr) 

and anti-resonant frequency (ωa).

2

1 0 1a

r

C C
w

w

æ öæ ö
ç ÷= × -ç ÷ç ÷è øè ø

(3.2.4)

Impedance Analyzer

Ultrasonic 
Transducer

Fig. 3.2.1. Impedance measurement setup for ultrasound transducer.
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The transformed clamped capacitance (C0
*) was re-defined according to the resonant and 

anti-resonant frequencies using the characteristic capacitances of the ultrasonic 

transducers.

Input Output

R1
L1 C1

C0

(a)

Input Output

R1
L1 C1

C0

(b)

Fig. 3.2.2. The schematic diagrams of (a) conventional and (b) modified BVD
models.
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* 1 0
0 0

/ /

2 a

C C
C C

Q
= - (if Qa is high),       (3.2.5)

* 1 0
0 0

/ /

2 a

C C
C C

Q
= + (if Qa is low)     (3.2.6)

where Qa is the quality factor at anti-resonant frequency. 

The impedance could be changed according to propagation medium. Thus, the 

radiation resistances (Ra and Rr) were added to the model. These resistances could be 

obtained from the mechanical data.

1 2
2

0

( )

4
r

t r C

Z Z
R

k C Z

p

w

+
= (3.2.7)

3
2 2

0

0 1 2

4

( )
t C

a

a

k Z C
R

C Z Z w
=

+
(3.2.8)

where Z1 and Z2 are the acoustic impedances at front and back port, kt is the coupling 

factor, ZC is the acoustic transducer impedance.

The inductance (L2) can be derived by the anti-resonant condition. The real 

resistance (R2
*) can be calculated by the magnitude of the resistance (R2) and phase angle 

(θa) at an anti-resonant frequency.
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2
2

a

a

R Q
L

w

×
= (3.2.9)

*
2 2 cos( )aR R q= × (3.2.10)

where R2 is the resistance at anti-resonant frequency and θa is the phase angle of the 

impedance at anti-resonant frequency. The real resistance (Ra
*) at anti-resonant frequency

can be calculated by

* 21a a aR R Qé ù= +ë û (3.2.10)

The loss term (RL) could be negligible. The modified BVD model could be constructed 

depending on the internal quality factors (Qr and Qa) at the resonant and anti-resonant

frequency. Thus, one more inductor (L2) and additional loss term (Ra
*//R2

*//RL) were 

added and the clamped capacitance (C0) was also changed accordingly.
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3.3 ANALYTICAL MODEL

The last methodology of the transducer modeling introduced in this thesis is the 

analytical model [3.3.1]. This model is developed starting from the experimental 

measurements of the driving point impedance and the electroacoustic transfer function of 

the ultrasound transducer. The model is gradually developed by using the data obtained 

from the pulse-echo measurements of a two-port black box.

The model is identified by two characteristic functions, Z(s) and W(s) in the Laplace 

domain, fitting the corresponding experimental curves. The identification procedure 

consists of two complementary phases. The first step determines the number, the type and 

the approximate position of poles and zeros. The second phase starts with the results 

obtained from the first one and reduces the mean-square-error of the fitting functions, by 

a modified version of the “simplex” optimization method [3.3.2], [3.3.3]. The 

optimization modifies the model parameter until the predefined model accuracy is 

achieved.

The model shown in Fig. 3.3.1 considers the ultrasonic system as a two-port black 

box. The input port is represented by the connector of the transducer. The input port is 

characterized by the driving point voltage Vs and current Is. The output port provides a 

voltage Vh, corresponding to the transmitted acoustic axial field measured with a 

calibrated hydrophone. This analytical model is used here to predict transmitting 

characteristics of the transducer. Nevertheless the same modelling technique is suitable to 

devise a transducer model in receiving mode, where the output voltage of the 
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transducer is related to the incident field on the active surface.

Fig. 3.3.1 shows the model consisting of the input port function Z(s), which 

represents the driving point impedance of the transducer and the voltage transfer function 

W(s), both in the Laplace domain. With the assumption that the input impedance of the 

block W(s) is infinite, the driving point impedance is determined only by Z(s). W(s) also 

represents the electroacoustic transfer function of the ultrasonic system. The W(s)

function includes a propagation delay term τ, introduced by the transducer itself and the 

measurement chain.

The actual driving point impedance and transfer function used as reference, are 

obtained from the time domain signals acquired with the experimental setup shown in Fig. 

3.3.2. The immersion transducer is driven by a one cycle sinusoid at the transducers' 

nominal central frequency. The excitation signal generated at the output of the signal

generator. Then, it is amplified by the power amplifier, which is needed to drive the probe 

under test. A one cycle sinusoid excitation signal has been chosen since the signal 

spectrum can be centered on the bandwidth of the transducer.

Z(s) W(s)VS

IS

Vh

Fig. 3.3.1. The analytical model of the ultrasound transducer.
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The driving point voltage Vs and current Is are sensed with a voltage probe and a 

broadband current probe. The ultrasonic axial far field distribution is measured by an l-

mm diameter PVDF hydrophone, The hydrophone spectral response is broad enough for 

the frequency range used in our measurement system. The hydrophone was placed in the 

transducer's far field. This condition reduces phase cancellation problems due to finite 

size of the hydrophone [3.3.4]. The hydrophone was aligned with the acoustic axis of the 

transducer and the output amplified with a wide bandwidth linear amplifier. For these 

measurements it was essential to use a broadband linear amplifier. In this paper, 

transimpedance amplifier is used with a linear phase response in the bandwidth 0-

190MHz and phase deviation of 1.2◦. Only a fraction of the bandwidth was required. The 

output voltage Vh was digitized and stored for an offline processing. This experimental 

Pulse generator
HP mod. 8012B

Burst generator
Wavetek mod. 164

ENI power amplifier Mod. 300L, 
bandwidth 0.25-110MHz, gain 40dB

Digital sampling 
oscilloscope 

Gould Mod. 4072
400Msample/s, 

bandwidth 100MHz  

IBM PS2
Mod. 80

Broad band 
preamplifier 

Water tank

HydrophoneTransducer

Vh

Is Vs Broadband 
current probe 
TEKTRONIX 

P6022

Fig. 3.3.2. Block diagram of the experimental setup.
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setup serves to calculate two reference curves for the approximation of Z(s) and W(s), 

namely ZM (jωk) and WM (jωk) and obtained by the Fast Fourier Transform (FFT) of the 

time domain signals as stated in the following expressions:

( ( )) ( ( ))
( ) , ( )

( ( )) ( ( ))
s k h k

M k M k

s k s k

FFT V t FFT V t
Z jw W jw

FFT I t FFT V t
= = (3.2.8)

where: ωk=2πk/NT, N number of samples per trace, T sampling period, tk sampled time. 

With the assumption of working in the linear range of the measurement chain, the output 

voltage Vh is proportional to the axial pressure field and consequently by (3.2.8) WM (jωk)

represents the transducer electroacoustic response. In this way, an electroacoustic transfer 

function have been defined similar to that used by the reciprocity method for the absolute 

calibration of transducers.
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CHAPTER 4

DEVELOPMENT OF MATLAB/SIMULINK 

PULSE-ECHO ULTRASOUND SYSTEM 

SIMULATOR

4.1 MODELING STRATEGY FOR PULSE-ECHO ULTRASOUND 

SYSTEM

Fig. 4.1.1 shows the block diagram of a pulse-echo ultrasound system, consisting of 

a high-voltage transmitter, a transducer, an ultrasound field, a coaxial cable, and a front-

end receiver. In transmit mode, an electrical pulse is generated by the high-voltage 

transmitter, causing the transducer to produce an acoustic pulse which propagates towards 

a focal point, reflecting off any object in its path. In receive mode, the transducer picks up 

the returning acoustic echo, which is converted into an electrical echo signal and 

processed by the front-end receiver.

The front-end receiver contains a transmit/receive (T/R) switch, which blocks the 
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high-voltage pulses during the reception; a low-noise amplifier (LNA), which acts as a 

preamplifier; a programmable-gain amplifier (PGA), which provides time-gain 

compensation to allow for the way in which the returning echo signal is attenuated by 

body tissues as a function of the distance traveled; an antialiasing filter (AAF), which 

restricts the bandwidth of the signal to satisfy the Nyquist-Shannon sampling theorem 

over the band of interest; and an analog-to-digital converter (ADC), which digitizes the 

electrical echo signal for subsequent image processing [4.1.1].

The block diagram in Fig. 4.1.2 shows the main units of the proposed simulator. A 

system designer can configure the parameters of the high-voltage transmitter model to 

generate desired particular high-voltage pulse in transmit mode. The front-end receiver 

model simulates electrical signal conditioning and analog-to-digital conversion in receive 

mode, taking into account the most significant non-idealities, such as sampling clock 

jitter, noise, and harmonic distortion.

The acoustic subsystem that we model consists of a coaxial cable, a transducer and 

LNA AAF ADCPGA

Front-End Receiver

Digital
Output

Transducer

High-Voltage TransmitterUltrasound 
Field

Focal Point
T/R Switch

Coaxial Cable

Fig. 4.1.1 Block diagram of a pulse-echo ultrasound system



５８

an ultrasound field. The acoustic subsystem model is based on the electroacoustic transfer 

function H(s), which represents the acoustic process which transforms an outgoing 

electrical pulse Vt(t) into an incoming electrical echo signal Vr(t). This process involves 

electro-acoustic conversion of the transmitted pulse, acoustic propagation, reflection, and 

acoustic-electrical conversion of the echo signal. H(s) can be expressed as the ratio 

between Vt(s) and Vr(s), which are respectively the Laplace transforms of Vt(t) and Vr(t).

To simulate the voltage division by the impedances of the subsystems, models of the 

interfacing electronics are inserted between the models of two subsystems. In transmit 

mode, a model of the TX interfacing electronics acting as a voltage divider based on 

transfer function ZTX(s) is inserted between the high-voltage transmitter model and the 

TX Interfacing 
Electronics 

ZTX(s)

ZRX(s)

H(s)

Vt(t)

Vr(t)

VTX(t)

VRX(t)

+

-

+

-

+

-

+

-

Acoustic Subsystem

(Coaxial Cable, Transducer, Focal 
Point, and Ultrasound Field)

RX Interfacing 
Electronics

High-Voltage Transmitter

Front-End Receiver

(T/R Switch, LNA, PGA, AAF, 
and ADC)

Fig. 4.1.2 Model of the pulse-echo ultrasound system shown in Fig. 1, consisting of 
five subsystem models. The electronic components in the system are simulated in the 

high-voltage transmitter model and the front-end receiver model. The acoustic behavior 
of the ultrasound field and the effect of coaxial cable are modeled as the acoustic 

subsystem, based on the electroacoustic transfer function H(S). To express division of 
the voltage by the impedances of the subsystems, the transfer functions ZTX(S) and 
ZRX(S), representing the interfacing electronics, are inserted between the models of 

the electronics and the acoustic subsystem.



５９

acoustic subsystem model. The impedance Za of the acoustic subsystem is the load 

impedance, as seen by the high-voltage transmitter; and the output impedance Zt of the 

high-voltage transmitter is the source impedance. Thus the amplitude of an electrical 

pulse VTX(t) from the high-voltage transmitter needs to be multiplied by Za/(Zt+Za), if it is 

to correspond to the electrical pulse Vt(t) that reaches the acoustic subsystem.

In receive mode, a model of the RX interfacing electronics based on the transfer 

function ZRX(s) is inserted between the acoustic subsystem model and the front-end 

receiver model. The impedance Za of the acoustic subsystem is the source impedance and 

the input impedance Zr of the front-end receiver is the load impedance as seen by the 

acoustic subsystem connected to the front-end receiver. Thus the amplitude of the 

electrical echo signal Vr(t) acquired by the transducer needs to be multiplied by Zr/(Za+Zr),

if it is to correspond to the electrical echo signal VRX(t) that is sent to the front-end 

receiver.
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4.2 HIGH-VOLTAGE TRANSMITTER MODEL

Most ultrasound transmitters can be classified as pulse-type or burst-type. 

Theoretically, an ideal pulse-type transmitter generates a single spike, which is the 

waveform that produces the best axial resolution. However, a real transducer has a band-

pass response, and the pulse that is actually generated needs to be appropriate for the 

response of that particular transducer. A burst-type transmitter generates several cycles of 

a square wave or a sinusoid, modulated by a window (such as a Hamming window). 

Since the amount of energy that can be transmitted into a patient’s body is limited by 

medical authorities, the voltage generated by the transmitter needs to be lower when the 

pulse train is longer. 

Fig. 4.2.1 shows our model, in which the high-voltage transmitter is simulated by 

relatively simple blocks; nevertheless, the amplitude of the pulse, offset, period and duty 

Pulse
Generator 1

Pulse
Generator 2

+

+

Add Noise

Band-Limited
White Noise

measured tx voltage

From Workspace

1

sel

Multiport
Switch

2

tx sel

High-Voltage 
Transmitter Output

num(s)
den(s)

T/R Switch

Fig. 4.2.1 Simulink model of the high-voltage transmitter.
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cycles are controllable, and multiple square or sine waves can easily be generated. The 

best pulse for a particular application can be determined by examining the simulated 

returning echo signal for different transmitted pulse. Additionally, the multiport switch 

block allows the simulated output of the high-voltage transmitter to be replaced by 

measured data.
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4.3 ACOUSTIC SUBSYSTEM AND INTERFACING ELECTRONICS 

MODELS

From the description in Section II, the complete transfer function from the 

transmitted pulse VTX(t) to the received echo signal VRX(t) can be written as follows:

aRX r
TX RX

TX t a a r

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

ZV s Z
Z s H s Z s s H s s

V s Z Z Z Z
= =

+ +
,       (4.3.1)

where VTX(s) and VRX(s) are respectively the Laplace transforms of VTX(t) and VRX(t). 

In order to model this transfer function using Matlab/Simulink, we have measured the 

output impedance Zt(j2πfk) of the high-voltage transmitter and the input impedance 

Zr(j2πfk) of the front-end receiver at 949 frequencies ranging from 1 to 20MHz.  To 

obtain the measured data, Agilent HP4194A impedance analyzer and ECUBE7 

ultrasound system are connected by calibrated impedance probe. We have also measured 

the impedance Za(j2πfk) of the transducer with the 2.3m coaxial cable. The L3-12 

transducer that has 128-elements and 8.5MHz center frequency is used in this 

measurement. Both ECUBE7 ultrasound system and L3-12 transducer are the commercial 

product developed from Alpinion Medical Systems. Values of the vectors 

Za(j2πfk)/(Zt(j2πfk)+Za(j2πfk)) and Zr(j2πfk)/(Za(j2πfk) +Zr(j2πfk)) in the complex plane were 

obtained from the measured data. The transfer functions ZTX(s) and ZRX(s) were then 

computed using the rationalfit function in Matlab to fit a function of the following form 
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to the complex vector data [4.3.1], [4.3.2]:

1

( )
N

k

k k

residue
F s

s pole=

=
-

å , (4.3.2)

where N is the number of poles.

We also need to measure Vt(j2πfk) and Vr(j2πfk) in the frequency domain, in order to 

build the transfer function H(s). We made pulse-echo measurements using the setup 

shown in Fig. 4.3.1. A Panametrics NDT-5800 pulser-receiver sends a high-voltage pulse 

to the transducer, which sends an acoustic wave towards a steel reflector in a water tank, 

Pulser-Receiver Oscilloscope

L3-12 Transducer

Steel Reflector

Water Tank

Coaxial Cable

NDT-5800 DSO6012A

Workstation

Fig. 4.3.1 Setup for the pulse-echo measurements required to build the electroacoustic 
transfer function H(s).
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and awaits echoes. The echoes received by the pulser-receiver are measured using an 

Agilent DSO6012A oscilloscope, which samples the echo signal every 5ns, and transfers 

the digitized sample to a workstation. Measurements of Vt(tk) and Vr(tk) at sampling time 

tk are converted respectively into Vt(j2πfk) and Vr(j2πfk), in the frequency domain, by 

discrete Fourier transform. Vt(j2πfk) is the product of VTX(j2πfk) and 

Za(j2πfk)/(Zt(j2πfk)+Za(j2πfk)). From this frequency domain data, we can find H(j2πfk) from 

the ratio Vr(j2πfk)/Vt(j2πfk). We can then compute H(s) by calling the rationalfit function, 

as we did to obtain ZTX(s) and ZRX(s). The transducer has its own axial intensity profile, 

so the magnitude of the transfer function H(s) changes depending on the distance between 

the transducer and the reflector. However, the transducer’s significant properties in the 

system-level optimization, such as center frequency, bandwidth, and impedance, are not

affected by the distance. Therefore, the overall direction of system development does not 

change. In our experiment, we have measured transducer properties with 20mm distance 

that is focal depth of the transducer. Although the distance between transducer and steel 

reflector can slightly affect transfer function H(s) with the attenuation of medium, we 

assume that the attenuation coefficient of water (0.0022dB/MHz/cm) is small enough to 

be neglected for our study. 

The Simulink models of the TX interfacing electronics, the acoustic subsystem, and 

the RX interfacing electronics consist of a number of transfer function blocks, together 

with an add block. The poles and relevant residues of a transfer function can be converted 

respectively to the numerator and denominator of a transfer function block in the 

Simulink environment, as shown in Fig. 4.3.2. ZTX(s), H(s) and ZRX(s) has 77, 300, and 19 
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poles respectively. To ensure that every transfer function block has real coefficients, each 

block represents either one real pole, or a pair of complex conjugate poles. Consequently, 

each Simulink model of the TX interfacing electronics, acoustic subsystem, and RX 

interfacing electronics has 39, 151, and 11 transfer function blocks.
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4.4 FRONT-END RECEIVER MODEL

Our Simulink model of a front-end receiver, shown in Fig. 4.4.1, consists of a 

transfer function block, the T/R switch, and eight subsystem blocks, which model: 

harmonic distortion, the low-noise amplifier (LNA), the voltage-controlled attenuator 

(VCAT), the programmable-gain amplifier (PGA), the high-pass filter (HPF), the low-

pass filter (LPF), sampling clock jitter, and the analog-to-digital converter (ADC).

4.4.1 T/R SWITCH AND ACTIVE TERMINATION

Fig. 4.4.2 shows an equivalent circuit model of the T/R switch [4.4.1]. The values of 

Rs, Rp and Cp are 13Ω, 100kΩ and 40pF respectively. RIN and CIN are the input resistance 

and the input capacitance of the LNA. RF is a shunt feedback resistor for an active input 

termination, which is preferred in ultrasound applications because it reduces the 

reflections resulting from mismatches and achieves better axial resolution without a 

Input                Output

T/R Switch Voltage-Controlled 
Attenuator

Input                Output

Low-Noise
Amplifier

Input                Output

Harmonic
Distortion

Input               Output

Analog-to-Digital
Converter

Input                Output

Sampling
Clock Jitter

Input                Output

Low-Pass Filter

Input                Output

High-Pass Filter

Input                Output

Programmable-
Gain Amplifier

num(s)
den(s) PGA Input

PGA Input

Front-End 
Receiver Input

Front-End 
Receiver Output

Fig. 4.4.1 Simulink model of the front-end receiver.
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significant increase in noise. The input impedance ZIN, Active Termination of the LNA under the 

active termination approximately follows:

F
IN, Acitve Termination

V,LNA1
2

R
Z

A
=

+
, (4.4.1)

where, AV,LNA is the voltage gain of the LNA.  The equivalent input impedance of the 

LNA can be expressed as follows [4.4.2]: 

IN F
IN IN, Active Termination IN IN

V,LNA

F IN IN IN F

( )

1
2

R R
Z s Z || R || C

A
R R C s R R

= =
æ ö

+ + +ç ÷
è ø

. (4.4.2)

Front-End 
Receiver Input

LNA

RS/2

RP CP RIN CIN

RF

LNA Output
T/R Switch OutputRS/2

Fig. 4.4.2 Equivalent circuit model of the T/R switch under considering the active 
input termination. 
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Without active termination, the value of the feedback resistor RF is effectively infinite. 

The transfer function of the T/R switch under the active termination configuration can be 

expressed as follows:

T/R Switch Output p IN

Front-End Receiver Input s p p s p s IN

2 2 ( )
( )

2 2 ( )

V R Z s
s

V R R C s R R R Z s
= ×

+ + +
. (4.4.3)

The transfer function block which models the T/R switch is shown at the top left in 

Fig. 4.4.1. 
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4.4.2 HARMONIC DISTORTION

Fig. 4.4.3 shows the model of harmonic distortion. The model is placed between T/R 

switch and the LNA to express the signal distortion introduced by the nonlinearities of the 

amplifiers and ADC in the front-end receiver. The harmonic distortion is not shown in 

Fig. 4.4.2, because it is not a specific circuit but a phenomenon from following circuits.

The parameter value of the constant block controls the order of the harmonic 

distortion, and the gain changes its power. By describing a transfer function in 

polynomial form:

2 3
0 1 2 3y x x xa a a a= + + + ××× . (4.4.4)

Next, variable x is replaced by a single tone input given by Acos(ωt). Hence, after some 

algebraic manipulations:

3 3
3 3

1 cos cos
4 4

A A
y A t t

a a
a w w
æ ö

= - -ç ÷
è ø

. (4.4.5)
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  K
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uv

C

Math 
Function

Constant

HD In HD Out

Fig. 4.4.3 Simulink model of harmonic distortion. 
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4.4.3 AMPLIFIER AND FILTER

Fig. 4.4.4 shows the model of the amplifier used in the LNA, VCAT and PGA 

subsystem blocks. The gain and transfer function model the amplifier’s finite gain and 

bandwidth. The rate limiter models the amplifier’s slew-rate, and the saturation block 

models the output swing. Our Simulink model of the front-end receiver also includes a 

model of amplifier noise, which is a crucial difference between a real and an ideal circuit. 

This amplifier noise is made up of current and voltage noise, together with thermal noise 

from the source resistance. Several noise-modeling blocks have been introduced into the 

LNA, VCAT and PGA subsystem blocks to simulate the band-limited white noise of the 

input voltage, current noise from the LNA, and the input voltage noise from the PGA and 

VCAT. The total voltage-noise density of the output of the amplifier can be expressed as 

follows:

    K

Transfer 
Function

Rate Limiter SaturationGain

num(s)
den(s)

Noise

In Out

Fig. 4.4.4 Simulink model of LNA, VCAT and VGA with variable gain. 
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( )
22

O source source4N N BE e i R K TR= + + , (4.4.6)

where eN is the voltage noise density of the amplifier. The term iNRsource is the product of 

the voltage contribution of current-noise density and the source resistance, which has a 

thermal-noise density of (4KBTRsource)
1/2. The source resistance Rsource is the impedance of 

the transducer, and is therefore likely to vary widely with the type of transducer in use. 

Fig. 4.4.5 shows the HPF and LPF subsystems, in each of which the filter is represented 

by a transfer function, and this can be changed using the multiport switch to vary the 

bandwidth of the corresponding filter. 

Transfer 
Function

num(s)
den(s)

1

n-1

n
sel

Multiport Switch

In
Out

Fig. 4.4.5 Simulink model of HPF and LPF with selective bandwidth. 
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4.4.4 SAMPLING CLOCK JITTER

Fig. 4.4.6 shows the model of sampling clock jitter, defined as a random variation of 

the sampling instant; the resulting noise is assumed to be uniformly distributed. Clock 

jitter results in a non-uniform sampling time sequence, and produces an error which 

increases the total error power at the spectrum output of the ADC. The error introduced in 

Fig. 4.4.7 by a sinusoidal signal x(t) with amplitude A and frequency fin can be calculated 

as in terms of the jitter deviation δ as follows [4.4.3]: 

in in

( )
( ) ( ) 2 cos(2 )

dx t
x t x t f A f t

dt
d p d p d+ - » = , (4.4.7)

and (4.4.7) is the basis of our jitter model. 

K

×
du/dt

Random Number Zero-Order Hold Gain

Jitter In Jitter Out

Fig. 4.4.6 Simulink model of sampling clock jitter. 
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Sampling error

Jitter error

t(s)

Sampling uncertainty

Ideal sampling point

Sampling clock

Fig. 4.4.7 Sampling clock jitter. 
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4.4.5 ANALOG-TO-DIGITAL CONVERTER

The ADC in an ultrasound system requires a sampling-rate which is at least 40MS/s, 

and a resolution between 10 and 14bits. A pipelined ADC architecture is known to be 

able to satisfy these requirements, and that is what we have modeled as shown in Fig. 

4.4.8. 

Input
SHA

Stage
1

Stage
n

Sub-
ADC

MDAC

Stage 1 Output (2-bit)

VDAC,1

VRES,1

Digital Encoder

S
ta

g
e

 n
 O

u
tp

u
t 

(1
-b

it
)

Stage 2~Stage (n-1) Output (2-bit)

VIN,1

VRES,1VIN,1 VIN,nADC In

Fig. 4.4.8 Simulink model of ADC. 
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This ADC includes a sample-and-hold amplifier (SHA), several stages, and an encoder 

for digital correction, and each stage has a multiplying DAC (MDAC) and a sub-ADC. 

Fig. 4.4.9, Fig. 4.4.10 and Fig. 4.4.11 respectively show the block diagrams of the SHA, 

the MDAC, and the sub-ADC which is inside the ADC. The digital encoder is described 

using a Matlab script.

Relay

NOT

NOR

1

-1
+
+

MSB(i)

LSB(i)

VIN,i

VDAC,i

Fig. 4.4.11 Simulink model of sub-ADC in ith stage. 

Zero-Order Hold

K

Gain
SaturationVDAC,i

VIN,i VRES,i

Fig. 4.4.10 Simulink model of MDAC in ith stage. 

Zero-Order Hold

K

Gain Saturation

In Out

Fig. 4.4.9 Simulink model of input SHA in ADC. 
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CHAPTER 5

EXPERIMENTS VERSUS SIMULATION

5.1 VALIDATION OF SUBSYSTEMS

5.1.1 ACOUSTIC SUBSYSTEM AND INTERFACING ELECTRONICS

Before simulating the complete ultrasound system, we assessed the accuracy of each 

subsystem model. We started with the models of the acoustic subsystem and the 

interfacing electronics, and investigated the accuracy of the approximate transfer 

functions ZTX(s), H(s), and ZRX(s) in the same context as shown in [5.1.1]. Fig. 5.1.1

compares the approximate transfer function ZTX(s) obtained by calling the rationalfit

function with the complex vector data Za(j2πfk)/(Zt(j2πfk)+Za(j2πfk)), measured using an 

Agilent HP4194A impedance analyzer at 949 frequencies in the frequency domain. The 

difference between the curves can be expressed as follows:
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where ε is the error in dB, F0 is the measured value of F0(j2πfk) at a frequency fk, 

F(s=j2πf) is the approximation of the transfer function computed using the rationalfit

function. On this basis, the error in ZTX(s) is -32.18dB. Fig. 5.1.2 shows similar results for 

H(s), and here the error is -43.83dB. At around 17.5MHz there is a mismatch between the 

simulated and the measured signals, but this frequency is sufficiently distant from the 

carrier frequency that it contains no meaningful information. Fig. 5.1.3 shows further 

results for the transfer function ZRX(s), and in this case the error is less than -44dB.
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(a)

(b)

Fig. 5.1.1 Comparison between the transfer function ZTX(s) and the experimental data 
ZTX(j2πfk) (a) magnitude and (b) phase, both against the frequency fk.



８１

(a)

(b)

Fig. 5.1.2 Comparison between the transfer function H(s) and the experimental data 
H(j2πfk) (a) magnitude and (b) phase, both against the frequency fk.
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(a)

(b)

Fig. 5.1.3 Comparison between the transfer function ZRX(s) and the experimental data 
ZRX(j2πfk) (a) magnitude and (b) phase, both against the frequency fk.
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5.1.2 FRONT-END RECEIVER

We then turned to the model of the front-end receiver. We sent a sine wave with an 

amplitude of 8mVPP and frequency of 5MHz to both the Matlab/Simulink model and the 

front-end receiver in the ECUBE7 ultrasound system. The parameters of the front-end 

receiver, obtained from its datasheet [5.1.3], are summarized in Table I. The ability of our 

entire simulation, to predict system performance and image quality, depends on accurate 

modeling of the noise characteristics of the front-end receiver [5.1.4]. We can see from 

(4.4.6) that the controllable parameters related to the noise of the front-end receiver 

include the source impedance, and the gain of the LNA and PGA. The source impedance 

contributes to the second and third terms in (4.4.6), which are the densities of input 

current noise and thermal noise. The gain of the LNA and PGA affect the first term of 

(4.4.6) which is the input voltage noise density [5.1.4]. We compared the narrow-band 

signal-to-noise ratio (NBSNR) of the simulated and measured results for different 

combinations of LNA and PGA gain, and different source impedances. The source 

impedance of the front-end receiver was changed by inserting termination resistors with 

values of 50, 120 and 240Ω between the input of the front-end receiver and ground. We 

also compared the spurious-free dynamic range (SFDR) of the simulated and measured 

results to assess the accuracy with which distortion is modeled. Tables II and III compare 

measured values of NBSNR and SFDR with simulation results.
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Table 2.1.1 Front-end receiver parameters in the Matlab/Simulink model

Parameter Value Units

Low-Noise Amplifier (LNA)

Input resistance 8 kΩ

Input capacitance 20 pF

Gain 12, 18, 24 dB

Bandwidth 70 MHz

Input voltage noise 
over gain

0.9, 0.7, 0.63 nV/√Hz

Input current noise 2.7 pA/√Hz

Voltage Controlled Attenuator (VCAT)

Attenuation 0 to -40 (9 steps) dB

Input voltage noise
over attenuation

2 to 10.5 (9 steps) nV/√Hz

Programmable Gain Amplifier (PGA)

Gain 24, 30 dB

Bandwidth 70 MHz

Input voltage noise 1.75 nV/√Hz

Full-scale range 3.3 V

Anti-Aliasing Filter (AAF)

Low cut-off frequency 50, 100, 150 kHz

High cut-off frequency 10, 15, 20, 30 MHz

Analog-to-Digital Converter

Sampling clock jitter 20 ps

Input range 2 V

Sampling-rate 40, 65 MS/S

Resolution 12, 14 bits
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Table 2.1.2 Measured and simulated values of NBSNR of the front-end receiver for 
different combinations of LNA and PGA gain, and with different termination resistors

Termination
Resistor 

(Ω)

LNA
Gain
(dB)

PGA
Gain
(dB)

Measured
NBSNR*

(dB)

Simulated
NBSNR*

(dB)

Error
(dB)

50

12
24 39.68 39.42 0.26

30 38.68 39.42 -0.74

18
24 40.48 40.82 -0.34

30 40.41 40.86 -0.45

24
24 40.99 41.5 -0.51

30 42.05 41.52 0.53

120

12
24 45.82 44.66 1.16

30 44.61 45.06 -0.45

18
24 45.52 46.07 -0.55

30 45.55 46.08 -0.53

24
24 45.83 46.65 -0.82

30 50.14 46.68 3.46

240

12
24 48.68 48.16 0.52

30 48.06 48.26 -0.2

18
24 50 49.1 0.9

30 49.07 49.15 -0.08

24
24 48.18 49.52 -1.34

30 50.14 49.58 0.56

*NBSNR (dB) = 10ⅹlog10 (signal power(Vrms
2) / sum of noise power in 2MHz band 

around signal frequency(Vrms
2))
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We assessed our model of the high-voltage transmitter as part of our validation of 

the complete system by comparing the simulated output waveform of the model to 

measured high-voltage pulses while inputting the same parameters to the signal generator 

block in the model and the high-voltage transmitter in the ECUBE7 ultrasound system.

Table 2.1.2 Measured and simulated values of SFDR of the front-end receiver for 
different combinations of LNA and PGA gain, and with different termination resistors

Termination
Resistor 

(Ω)

LNA
Gain
(dB)

PGA
Gain
(dB)

Measured
SFDR
(dB)

Simulated
SFDR
(dB)

Error
(dB)

50

12
24 41.54 48.52 -6.98

30 43.7 48.03 -4.33

18
24 43.51 49.79 -6.28

30 45.25 49.77 -4.52

24
24 49.08 50.87 -1.79

30 49.74 50.55 -0.81

120

12
24 51.3 54 -2.7

30 54.95 54.52 0.43

18
24 51.48 55.5 -4.02

30 52.05 55.11 -3.06

24
24 51.28 55.85 -4.57

30 55.32 55.65 -0.33

240

12
24 55.94 54.42 1.52

30 55.51 54.66 0.85

18
24 55.82 54.1 1.72

30 58.05 54.34 3.71

24
24 50.11 54.21 -4.1

30 55.97 54.3 1.67
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5.2 VALIDATION OF COMPLETE SYSTEM

5.2.1 EXPERIMENTAL SETUP

After they had been checked individually, the sub-system models were integrated in 

to a system model. We then carried out experiments on the complete system to verify 

correct pulse-echo operation. The experimental setup is shown in Fig. 5.2.1. The L3-12 

transducer immersed in a water tank is connected by a coaxial cable to an ECUBE7 

ultrasound system. The transducer is excited by pulses from the high-voltage transmitter 

in the ECUBE7, and produces the ultrasonic waves which propagate through the water 

and are reflected by a steel reflector. By exciting the transducer with a low voltage signal 

(tens of volts), it is possible to avoid the nonlinearity of the water [5.2.1]. The same 

transducer converts the returning sound to an electrical echo signal. The transmitted high-

voltage pulse and received echo signal can be visualized on an oscilloscope. The 

electrical echo signal goes through amplification, filtering, analog-to-digital conversion 

by the front-end receiver in the ECUBE7.
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Water Tank

Oscilloscope

L3-12 Transducer

Coaxial Cable ECUBE 7

(a)

Steel Reflector

Water Tank

L3-12 Transducer

(b)

Fig. 5.2.1. Photographs of (a) our experimental setup with (b) the water tank.
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Fig. 5.2.2 shows block diagrams of the experimental setup with the pulse-echo 

ultrasound system operating in transmit and receive modes. V(1) is the electrical pulse 

from the high-voltage transmitter, V(2) is the electrical echo signal from the acoustic 

subsystem, and V(3) is the digital output of the front-end receiver. The high-voltage pulse 

LNA AAF ADCPGA

Front-End Receiver

Digital
Output

L3-12 Transducer

High-Voltage TransmitterUltrasound 
Field

Steel Reflector

T/R Switch

V(1)

ECUBE7

(a)

LNA AAF ADCPGA

Front-End Receiver

Digital
Output

L3-12 Transducer

High-Voltage TransmitterUltrasound 
Field

Steel Reflector

T/R Switch

V(2)

ECUBE7

V(3)

(b)

Fig. 5.2.2. Block diagram of a pulse-echo ultrasound system in (a) transmit and (b) 
receive mode.
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V(1) and the echo signal V(2) were sampled every 5ns, and the digital output of the echo 

signal V(3) was acquired every 25ns. Agilent 10076C high-voltage probe, which supports 

maximum 4kV input voltage, was used to measure the high-voltage pulse V(1).
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5.2.2 COMPARISON SIMULATION AND MEASUREMENTS

We will now compare the signals obtained from experiments and simulations. Fig. 

5.2.3 compares the measured waveform of the high-voltage pulse V(1) in Fig. 5.2.2 with 

the simulated waveform from the high-voltage transmitter model. The amplitudes of these 

signals are normalized, so the received echo signal has a peak amplitude of unity. We are 

able to input either the measured or the simulated version of this waveform to the acoustic 

subsystem in our simulation; but we found that this produces no appreciable difference to 

the received echo signal, suggesting that the waveforms are very similar indeed.

Fig. 5.2.4 compares the waveform of the received echo signal V(2) in Fig. 5.2.2, 

measured between the acoustic subsystem and the front-end receiver, with the simulated 

waveform from the acoustic subsystem model. In Fig. 5.2.5(a), there is a noticeable 

divergence around 46.4µs; otherwise, the curves show satisfactory agreement. Fig. 5.2.6

shows the digitized output V(3) in Fig. 5.2.2 from the front-end receiver at a sampling 

rate of 40MSPS. 

Overall, these results suggest that our system model simulates the system-level 

behavior of a pulse-echo ultrasound system with sufficient fidelity to give it a place in the 

design process.
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(a)

Fig. 5.2.3. Measured and simulated amplitudes of the high-voltage pulse V(1).
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(a)

(b)

Fig. 5.2.4. Measured and simulated amplitudes of the echo signal V(2) (a) in the time 
domain and (b) in the frequency domain.
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(a)

(b)

Fig. 5.2.5. Measured and simulated amplitude of the digitized output V(3) (a) in the 
time domain and (b) in the frequency domain.
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5.3 DISCUSSION

One immediate application of our model is the design of a matching network, which 

can be implemented as a parallel compensating inductance, a series compensating 

inductance, or an ‘L’ matching network [5.3.1]. If we use a series compensating 

inductance, for example, then we need to change the imaginary part of the transducer 

impedance Za. We can do this by adding a term 2πfkL to the measured transducer 

impedance Za, recomputing the transfer functions ZTX(s) and ZRX(s), and rebuilding the 

Simulink model of the interfacing electronics. 

We would expect to achieve more accurate matching than existing simulators, which 

model the ultrasound field but not the electronics. In particular it is unsatisfactory to 

ignore the impedances of the high-voltage transmitter and the front-end receiver, and thus 

selected values of the inductors may be far from optimal in the context of the whole 

system. This means that the matching network has to be redesigned for each transducer, 

and tested at the imaging level. Our simulator should reduce the need for these activities.

Our simulation can also help in choosing a good shape for the electrical pulse 

generated by the high-voltage transmitter, because a designer can observe the simulated 

echo signal as the shape of the transmitted pulse is changed. A designer can also search 

for system parameters which improve the final SNR, because the simulation includes the 

analog processes of amplification, filtering and A/D conversion which take place in the 

front-end receiver. We can determine the most appropriate components in the front-end 

receiver by considering application requirements: the maximum gain required from the 
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amplifiers and an acceptable density of input referred noise are both determined by the 

depth of the target to be imaged; the resolution of the ADC is determined by the required 

image quality; and also, the bandwidth of the LNA and PGA, the cut-off frequency of the 

AAF, and the sampling rate of the ADC all depend on the bandwidth of the transducer 

used in a particular application.
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CHAPTER 6

CONCLUSIONS

We have presented a simulator for pulse-echo ultrasound systems, which combines 

models the high-voltage transmitter, coaxial cable, transducer, ultrasound field, and front-

end receiver in a single Matlab/Simulink simulation. A system designer can generate the 

high-voltage pulses that they require by configuring the input parameters of the high-

voltage transmitter model. The acoustic subsystem model, which consists of the coaxial 

cable, transducer, and ultrasound field, is based on samples of the transmitted pulse and 

received echo. From these samples, a transfer function of the acoustic subsystem is 

formulated in the Laplace s-domain using the Matlab rationalfit function, and is then 

converted to a Simulink model. To express the voltage division caused by impedances, 

models of the interfacing electronics one for transmit and one for receive mode, are 

inserted between subsystems. These models are also based on transfer functions, which 

are obtained by measuring the impedance of the acoustic subsystem, the high-voltage 

transmitter, and the front-end receiver. The model of the front-end receiver includes the 

main non-idealities (i.e. amplifier noise, harmonic distortion, and sampling clock jitter) 

which have the potential to reduce system performance significantly.

This simulator is intended to facilitate the design of matching networks and system 

optimization. In particular, the availability of a model of the high-voltage transmitter 
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makes it easier to discover how characteristics of the transmitted pulse, such as its 

magnitude and frequency, the number of peaks, rise and fall times, and jitter and noise, 

will affect the received echo. Designers can also examine the effects of the front-end 

receiver parameters on the whole system. We have demonstrated that our simulator is 

accurate enough to contribute to the development of ultrasound systems by comparing the 

simulated results with measured data from a commercial ultrasound system.
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한글 초록

다양한 임상 응용 분야를 대응할 수 있는 초음파 시스템은 응용 분야에 따

라 사용되는 트랜스듀서의 종류가 다르다. 각 트랜스듀서는 고유의 임펄스 응

답 및 임피던스 특성을 가지고 있다. 임펄스 응답 특성은 송신하는 고전압 펄

스의 모양과 에코 신호를 송신하는 프론트-앤드 일렉트로닉스의 성능을 결정

한다. 그리고 임피던스 특성은 연결되는 트랜스듀서에 적합한 매칭 네트워크

의 설계를 결정한다. 이러한 각 서브 시스템의 시스템 레벨에서의 최적화는

펄스-에코 (양방향) 응답 특성의 정확한 모델링이 요구되며, 이를 위해서는 초

음파와 일렉트로닉스가 통합된 환경에서 시뮬레이션 되어야 한다.

본 논문은 의료 영상 진단을 위한 펄스-에코 초음파 시스템의 모델링 방법

론을 제안하고, 이를 활용하여 매트랩/시뮬링크 환경에서 펄스-에코 초음파 시

스템 시뮬레이터를 개발하였다.

이 시뮬레이터는 고전압 송신기, 송신 인터페이스, 초음파의 전달 및 반사를

포함하는 어쿠스틱 서브 시스템, 수신 인터페이스 그리고 프론트-앤드 송신기

의 매트랩/시뮬링크 모델들로 통합하여 구현하였다.

제안하는 시뮬레이터의 유효성을 증명하기 위하여, 상용 초음파 시스템으로

얻어낸 측정된 데이터와 시뮬레이션 결과를 비교함으로써 모델의 실험적 검증
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을 수행하였다. 제안하는 모델링 방법론 기반의 펄스-에코 초음파 시스템 시

뮬레이터는 시스템 설계 변수의 최적화에 빠른 피드백을 얻어낼 수 있다.

주요어: 초음파 영상, 초음파 트랜스듀서, behavior modeling, 설계 최적화, 임

피던스 매칭, MATLAB.
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