

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Efficient Parallel Processing of Skyline
Queries for Big Data

빅데이터의효율적인스카이라인질의처리를위한
병렬처리알고리즘

BY

Park, Yoonjae

Feburary 2017

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Efficient Parallel Processing of Skyline
Queries for Big Data

빅데이터의효율적인스카이라인질의처리를위한
병렬처리알고리즘

BY

Park, Yoonjae

Feburary 2017

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Efficient Parallel Processing of Skyline
Queries for Big Data

빅데이터의효율적인스카이라인질의처리를위한
병렬처리알고리즘

지도교수심규석

이논문을공학박사학위논문으로제출함

2017년 2월

서울대학교대학원

전기컴퓨터공학부

박윤재

박윤재의공학박사학위논문을인준함

2017년 2월

위 원 장: 김 형 주 (인)

부위원장: 심 규 석 (인)

위 원: 이 상 구 (인)

위 원: 홍 성 수 (인)

위 원: 민 준 기 (인)

Abstract

The skyline operator and its variants such as dynamic skyline, reverse skyline and

probabilistic skyline operators have attracted considerable attention recently due to its

broad applications. However, computing a skyline is challenging today since we have

to deal with big data. For data-intensive applications, the MapReduce framework has

been widely used recently.

In this dissertation, we propose the efficient parallel algorithms for processing sky-

line, dynamic skyline, reverse skyline and probabilistic skyline queries using MapRe-

duce. For the skyline, dynamic skyline and reverse skyline queries, we first build

quadtree-based histograms to prune out non-skyline points. We next partition data

based on the regions divided by the histograms and compute candidate skyline points

for each partition using MapReduce. Finally, in every partition, we check whether

each skyline candidate point is actually a skyline point or not using MapReduce. For

the probabilistic skyline query, we first introduce three filtering techniques to prune out

points that are not probabilistic skyline points. Then, we build a quadtree-based his-

togram and split data into partitions according to the regions divided by the quadtree.

We finally compute the probabilistic skyline points for each partition using MapRe-

duce. We also develop the workload balancing methods to make the estimated execu-

tion times of all available machines to be similar. We did experiments to compare our

algorithms with the state-of-the-art algorithms using MapReduce and confirmed the

effectiveness as well as the scalability of our proposed skyline algorithms.

keywords: Skyline queries, reverse skyline queries, probabilistic skyline queries,

parallel algorithms, MapReduce algorithms

student number: 2011-20842

i

Contents

Abstract i

Contents ii

List of Tables v

List of Figures vi

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Contributions of This Dissertation 6

1.3 Dissertation Overview . 8

2 Related Work 10

2.1 Skyline Queries . 10

2.2 Reverse Skyline Queries . 13

2.3 Probabilistic Skyline Queries . 14

3 Background 17

3.1 Skyline and Its Variants . 17

3.2 MapReduce Framework . 22

4 Parallel Skyline Query Processing 24

4.1 SKY-MR: Our Skyline Computation Algorithm 24

ii

4.1.1 SKY-QTREE: The Sky-Quadtree Building Algorithm 25

4.1.2 L-SKY-MR: The Local Skyline Computation Algorithm . . . 29

4.1.3 G-SKY-MR: The Global Skyline Computation Algorithm . . 32

4.2 Experiment . 34

4.2.1 Performance Results for Skylines 36

4.2.2 Performance Results in Other Environments 41

5 Parallel Reverse Skyline Query Processing 45

5.1 RSKY-MR: Our Reverse Skyline Computation Algorithm 45

5.1.1 RSKY-QTREE: The Rsky-Quadtree Building Algorithm . . . 47

5.1.2 Computations of Reverse Skylines using Rsky-Quadtrees . . . 50

5.1.3 L-RSKY-MR: The Local Reverse Skyline Computation Algo-

rithm . 53

5.1.4 G-RSKY-MR: The Global Reverse Skyline Computation Al-

gorithm . 57

5.2 Experiment . 59

5.2.1 Performance Results for Reverse Skylines 59

6 Parallel Probabilistic Skyline Query Processing 63

6.1 Early Pruning Techniques . 63

6.1.1 Upper-bound Filtering . 63

6.1.2 Zero-probability Filtering 67

6.1.3 Dominance-Power Filtering 68

6.2 Utilization of a PS-QTREE for Pruning 69

6.2.1 Generating a PS-QTREE . 70

6.2.2 Exploiting a PS-QTREE for Filtering 70

6.2.3 Partitioning Objects by a PS-QTREE 71

6.3 PS-QPF-MR: Our Algorithm with Quadtree Partitiong and Filtering . 73

6.3.1 Optimizations of PS-QPF-MR 79

iii

6.3.2 Sample Size and Split Threshold of a PSQtree 83

6.4 PS-BRF-MR: Our Algorithm with Random Partitioning and Filtering 84

6.5 Experiments . 87

89

97

105

6.5.1 Performance Results for Probabilistic Skylines

7 Conclusion

Abstract (In Korean)

iv

List of Tables

2.1 The related works on skyline and its variant queries 11

4.1 Parameters used for the skyline algorithms 34

4.2 Implemented skyline algorithms . 35

4.3 Effects of the virtual max points (V) and sky-filter points (F) (sec) . . 40

4.4 Varying n on a single core machine (sec) 41

4.5 Varying n on a multi-core machine (sec) 42

4.6 Varying n on MPI (sec) . 43

5.1 Parameters used for the reverse skyline algorithms 59

5.2 Implemented reverse skyline algorithms 60

6.1 Parameters used for the probabilistic skyline algorithms 87

6.2 Implemented probabilistic skyline algorithms 88

6.3 Varying the probability threshold (Tp) 92

6.4 Varying t with our cluster (sec) . 93

6.5 Varying t on Amazon EC2 with |D|=108 (sec) 93

6.6 Filtered objects per filtering technique 94

6.7 Effects of the filtering techniques (sec) 94

6.8 Effects of optimization techniques 95

6.9 Effect of quadtree partitioning using EC2 95

v

List of Figures

1.1 An example of a skyline and a dynamic skyline 2

1.2 The dynamic skylines with respect to p2 and p5 3

1.3 An example of a probabilistic skyline 5

1.4 Dissertation overview . 8

3.1 An example of a skyline . 18

3.2 The dynamic skyline of D with respect to q = 〈50, 20〉 19

3.3 The dynamic skylines with respect to p2 and p5 20

3.4 An example of a probabilistic skyline 22

4.1 The SKY-MR algorithm . 25

4.2 An example of sky-quadtree building 26

4.3 The data flow in the local skyline phase of SKY-MR 31

4.4 The map function of the G-SKY-MR algorithm 32

4.5 The data flow in the global skyline phase of SKY-MR 33

4.6 Examples of data sets . 36

4.7 SKY-MR with varying s and ρ . 37

4.8 Varying the number of points (n) for skyline processing 38

4.9 Varying the number of dimensions (d) for skyline processing 39

4.10 Relative speed with varying the number of machines (t) 40

4.11 Varying the number of points (n) on Spark 44

vi

5.1 The space split with respect to q = 〈50, 25〉 46

5.2 The RSKY-MR algorithm . 47

5.3 An example of rsky-quadtree building 49

5.4 Points and their midpoints in an orthant 51

5.5 The map function of the L-RSKY-MR algorithm 53

5.6 The reduce function of the L-RSKY-MR algorithm 54

5.7 The data flow in the local reverse skyline phase of RSKY-MR 55

5.8 The map function of the G-RSKY-MR algorithm 56

5.9 The data flow in the global reverse skyline phase of RSKY-MR 58

5.10 RSKY-MR with varying s and ρ . 60

5.11 Varying the number of points (n) for reverse skyline processing 61

5.12 Relative Speed with varying the number of machines (t) for reverse

skyline processing . 62

6.1 A PSQtree . 64

6.2 The PS-QPF-MR algorithm . 74

6.3 The map function of the PS-QPFC-MR algorithm 75

6.4 The reduce function of the PS-QPFC-MR algorithm 76

6.5 The steps of PS-QPFC-MR . 77

6.6 Selection of |S| and |F | . 89

6.7 Varying the number of objects (|D|) 90

6.8 Varying the number of dimensions (d) 91

6.9 Varying ` and |D| when ` = 1 . 92

6.10 Relative speedups with |D| = 108 94

6.11 Varying the number of objects (|D|) for the continuous model 96

vii

Chapter 1

INTRODUCTION

1.1 Motivation

The skyline operator [10] and its variants such as dynamic skyline [38], reverse sky-

line [16] and probabilistic skyline [41] operators have recently attracted considerable

attention due to their broad applications including product or restaurant recommen-

dations [30, 31], preference-based marketing [16, 55], review evaluations with user

ratings [28], querying wireless sensor networks [53] and graph analysis [61].

Given a d-dimensional data set D = {p1, p2, . . . , p|D|}, the skyline of D is com-

posed of the points, called skyline points, which are not dominated by any other point.

A point pi is said to dominate another point pj if pi is not greater than pj in all dimen-

sions and pi is smaller than pj in at least a single dimension. For example, consider

a laptop database D with price and weight attributes in Figure 1.1(a). We plot every

laptop in D into a 2-dimensional space where the horizontal axis indicates the price,

and the vertical axis represents the weight in Figure 1.1(b). The laptop p7 = 〈40, 60〉

dominates another laptop p8 = 〈65, 90〉 according to the definition of the dominance

relationship. A user who would like to buy a cheap and light-weight laptop can con-

sider the laptops in the skyline {p1, p3, p5, p7}, since there always exists a better laptop

in the skyline for any laptop which is not contained in the skyline. Each laptop in the

1

ID Price Weight

p1 15 85

p2 85 95

p3 55 35

p4 80 55

p5 60 15

p6 70 40

p7 40 60

p8 65 90

(a) The laptop data set D

0

20

40

60

80

100

0 25 50 75 100

W
ei

g
h
t

Price

p1

p3

p5

p7

p2

p4

p6

p8

(b) The skyline of D

0

20

40

60

80

100

0 25 50 75 100

Δ
W

ei
g
h
t

ΔPrice

p1

p3

p5

p7

p2

p4
p6

p8

(c) The dynamic skyline of D

with respect to q = 〈50, 20〉

Figure 1.1: An example of a skyline and a dynamic skyline

skyline is represented by a black circle in Figure 1.1(b).

When the dominance relationship is defined with respect to a user’s query point,

the skyline becomes a dynamic skyline. Given a query point, the dynamic skyline is a

set of all points that are not dynamically dominated by any other point with respect to

the query point. A point pi dynamically dominates another point pj with respect to a

query point q if (1) pi has closer values to q than pj in all dimensions and (2) pi has

strictly closer values to q than pj in at least a single dimension. For example, when a

user wants to find a laptop whose price and weight are close to 50 and 20 respectively,

the dynamic skyline of D with respect to a query point 〈50, 20〉 is the set of candidate

laptops to be purchased. Note that, after transforming all data points to the points con-

sisting of coordinate-wise distances to the query point 〈50, 20〉, the dynamic skyline is

equal to the skyline of the transformed points. We plot the transformed points in Fig-

ure 1.1(c) and denote the dynamic skyline with respect to 〈50, 20〉 (i.e., {p3, p5}) by

black circles. The user will purchase the laptop p3 or p5 since they are not dynamically

dominated by other laptops with respect to the user’s preference.

While the skyline and the dynamic skyline queries retrieve the products that users

like, a reverse skyline query focuses on companies’ perspective. Suppose that each

point pi represents a user who purchased a laptop with its price and weight shown

in Figure 1.1(a) and a company wants to estimate the sales of a new laptop to be

2

0

20

40

60

80

100

0 25 50 75 100

Δ
W

ei
g
h
t

ΔPrice

p4

p2

q

p8

(a) The dynamic skyline of D∪{q}−{p2}with

respect to p2

0

20

40

60

80

100

0 25 50

Δ
W

ei
g
h
t

ΔPrice

p3

p5

q

(b) The dynamic skyline of D∪{q}−{p5}with

respect to p5

Figure 1.2: The dynamic skylines with respect to p2 and p5

manufactured whose price and weight will be 50 and 25 respectively. We denote the

new laptop by a query point q = 〈50, 25〉. If the query point q belongs to the dynamic

skyline of D ∪ {q} − {pi} with respect to a point pi, we assume that the user pi finds

the laptop q interesting. The reverse skyline of D with respect to q is defined as the set

of every point pi ∈ D such that q belongs to the dynamic skyline of D ∪ {q} − {pi}

with respect to pi. In other words, the reverse skyline of D with respect to q is the set

of all customers who will be interested in q. For instance, reconsider the data set D in

Figure 1.1(a). Given a query point q = 〈50, 25〉, we plot the dynamic skylines with

respect to p2 and p5 in Figures 1.2(a) and 1.2(b), respectively. Since q does not belong

to the dynamic skyline with respect to p2 (i.e., {p4, p8}), the point p2 is not contained

in the reverse skyline with respect to q. However, the point p5 is in the reverse skyline

with respect to q because the dynamic skyline with respect to p5 (i.e., {p3, q}) contains

q.

Since there has been an increased growth recently in a number of applications such

as social network [1], data integration [19] and sensor data management [17] that nat-

urally produce large volumes of probabilistic/uncertain data, another variant of the

skyline query, called a probabilistic skyline query, was introduced in [41] for uncer-

3

tain objects. The uncertainty is inherent due to various factors such as data randomness

and incompleteness, limitations of measuring equipments and so on. An uncertain ob-

ject can be described by the discrete or continuous uncertainty model. In the discrete

model, an object U is modeled as a set of instances and denoted by U = {u1, u2, . . . ,

u|U |} where ui is a d-dimensional point with its existence probability. In the continu-

ous model, an object U is modeled as an uncertainty region with its probabilistic dis-

tribution function (pdf). Given a set of uncertain objects D represented by the discrete

model, a possible world is a set of instances from objects in D where at most a single

instance may be selected from each object. The skyline probability of an instance is the

probability that it appears in a possible world and is not dominated by every instance

of the other objects in the possible world. Then, the skyline probability of an object is

the sum of the skyline probabilities of its all instances. Similarly, for the continuous

model, we define the skyline probability of an object by using its uncertainty region

and pdf. Given a probability threshold Tp, regardless of the uncertainty models used,

the probabilistic skyline is the set of uncertain objects whose skyline probabilities are

at least Tp.

The probabilistic skyline query has many practical applications. Consider an on-

line shopping website such as Amazon. In the website, users can purchase a laptop

and rate the laptop they bought. Users can evaluate the performance and design of the

laptop they bought where scores are between 1(good) and 10(bad). Each laptop gets

different reviews from the users since the viewpoints vary from person to person. We

can model each laptop as a discrete uncertain object and each review of the laptop

can be viewed as an instance of the objects. For example, the ratings of laptops W ,

X , Y and Z are represented by the discrete uncertain model in Figure 1.3(a). The

instance w1 of the laptop W represents that 50% of users rated the performance and

design of laptop W as 2 and 4, respectively. We plot each instance in Figure 1.3(b).

The probabilistic skyline can be used to find out which laptop is probabilistically better

than others. Given a minimum probability threshold Tp = 0.5, the laptopsW andZ are

4

Object Instances Performance Design Probability

W
w1 2 4 0.5

w2 8 1 0.4

X
x1 6 2 0.2

x2 7 3 0.2

Y
y1 9 6 0.8

y2 8 7 0.2

Z
z1 1 8 0.5

z2 9 2 0.5

(a) The rating of laptops

0

2

4

6

8

10

0 2 4 6 8 10

D
es

ig
n

Performance

z1

w1

x1

x2

y1

w2

y2

z2 Objects

X

Y

W

Z

(b) Uncertain objects

Figure 1.3: An example of a probabilistic skyline

probabilistic skyline objects which are probabilistically better than the other laptops.

In the following, we present some relevant applications which require the skyline

query and its variant queries.

Recommending products: The skyline, dynamic skyline and probabilistic skyline

queries help customers to reduce the number of candidates to consider as shown in the

previous examples. Without considering all items in the database, the customers can

make decisions quickly among the items in the skyline only. By utilizing the rapidly

growing social web which has been a source of vast amount of data concerning user

preferences in the form of ratings, the dynamic skyline queries is useful for personal-

ized recommendation based on the user preference.

Marketing based on user preferences: The reverse skyline can be utilized to

estimate the sales of a new product to be manufactured based on the preferences of the

customers. It can be used to decide the specification of the new product or the location

of a new store. For example, among the several possible location for the new store,

the reverse skyline returns the estimated number of customers who are potentially

interested in the new store. Thus, we can select the location which maximizes the

estimated number of customers.

Making decisions with sensor networks: The modern world is full of devices

with sensors and processors. Such deployments of computational resources enable us

to measure, collect and process large data from billions of connected devices serv-

5

ing many applications. Since a common characteristics of such sensors is that every

measured value is associated with some measurement error, the probabilistic skyline is

useful on sensor networks. For example, consider a large number of devices equipped

with sensors to measure NO2 and SO2 concentrations in the air and deployed in a

wide area to monitor the air pollution. To determine the locations of a new air purifier

to reduce the air pollution, we can consider the locations of the devices whose pairs of

measured NO2 and SO2 values are in the probabilistic skyline.

Computing the skyline and its variants becomes more challenging problems today

as there is an increasing trend of applications which expect to deal with vast amounts

of data that usually do not fit in the main memory of one machine. For frequent pat-

tern mining [45, 49] and graph mining [39], the skyline operator is used as a primi-

tive operator and computes skyline of patterns and sub-graphs represented by multiple

features. Since the numbers of patterns and sub-graphs increase exponentially as the

sizes of graph and pattern increase, the patterns and sub-graphs can be considered as a

big data. For such data-intensive applications, Google’s MapReduce [15] and its open-

source equivalent Hadoop [4] have been considered as a de facto standard. MapReduce

is a powerful and widely used tool that provides easy development of scalable parallel

applications such as large-scale graph processing, text processing and machine learn-

ing to process big data on large clusters of commodity machines. At Google, more than

10,000 distinct programs have been implemented using MapReduce [15]. Thus, we de-

velop the parallel skyline, dynamic skyline, reverse skyline and probabilistic skyline

algorithms using the MapReduce framework.

1.2 Contributions of This Dissertation

In this dissertation, we propose efficient query processing algorithms for skyline and

its variant queries discussed in our motivating applications. Our contributions are as

follows:

6

• We first study the optimization of skyline query processing. We propose an ef-

ficient parallel skyline computation algorithm which consists of three phases.

In the first phase, we build a new histogram which is an extension of quadtrees

[20] to effectively prune out non-skyline points in advance. In the second phase,

we split data into partitions based on the regions divided by our proposed his-

tograms and compute candidate skyline points for each partition independently

using MapReduce. Finally, we check whether each candidate point is actually

a skyline point in every region independently by another MapReduce phase.

Although our proposed algorithms are devised for the MapReduce framework,

they can be also applied to other frameworks such as MPI [27] and multi-cores.

Since the dynamic skyline can be obtained by calculating the skyline after trans-

forming the coordinates of data points with respect to a given query point, we

can utilize our parallel skyline computation algorithm to compute the dynamic

skyline.

• We next investigate the reverse skyline query processing. To the best of our

knowledge, no existing work has addressed computing the reverse skyline query

using MapReduce. We analyze the characteristics of the reverse skylines theoret-

ically to prune non-reverse skyline points. Based on the properties of the reverse

skylines, we develop the novel parallel algorithm consisting of three phases. In

the first phase, we build a variant of quadtree which is used for pruning non-

reverse skyline points by utilizing the characteristics. In the second phase, by

using MapReduce, we compute the local reverse skyline points in each partition

split by the histogram. In the last phase, we compute the global reverse skyline

points in every region independently and simultaneously by using MapReduce.

• We finally present the efficient algorithm for computing the probabilistic sky-

line query for both continuous and discrete uncertain models. To prune out non-

probabilistic skyline objects in advance, we develop three filtering methods. The

7

Introduction

(Chapter 1)

Related Work

(Chapter 2)

Background

(Chapter 3)

Conclusion

(Chapter 7)

Skyline Query Processing

(Chapter 4)

Reverse Skyline Query

Processing

(Chapter 5)

Probabilistic Skyline Query

Processing

(Chapter 6)

Figure 1.4: Dissertation overview

proposed algorithms are composed of only two phases. In the first phase, we

build a variant of a quadtree. In the second phase, by utilizing the proposed

filtering methods, we efficiently compute the probabilistic skyline in each par-

tition according to the space split by the variant of a quadtree. To balance the

workload and reduce the transmission overhead, we also propose a workload

balancing technique for the second phase.

Since the skyline queries studied in this dissertation are widely required in many

applications such as product or restaurant recommendations, review evaluations with

user ratings, querying wireless sensor networks and graph analysis, our proposed al-

gorithm will enhance the performance of those applications practically.

1.3 Dissertation Overview

The remaining chapters of this dissertation is organized as follows. In Chapter 2, we

review the previous works on skyline query processing. In Chapter 3, we provide the

background to this dissertation which is commonly utilized in this dissertation. In

8

Chapter 4, we study the problem of skyline query processing and expend it to the

dynamic skyline query processing. In Chapter 5, we investigate the problem of finding

reverse skyline of a given query point. In Chapter 6, we examine the problem of prob-

abilistic skyline query processing. We finally present our conclusions and future work

in Chapter 7. The diagram in Figure 1.4 outlines how the chapters of this dissertation

are related to each other.

9

Chapter 2

Related Work

In this chapter, we present related work on skyline and its variant query processing. We

first discuss the algorithms for computing skylines and next study reverse skyline and

probabilistic skyline query processing techniques. In Table 2.1, we summarized the

related works on skyline, reverse skyline and probabilisitic skyline query processing.

2.1 Skyline Queries

After skyline processing was introduced in [10], several serial algorithms for comput-

ing skylines were introduced in [6, 7, 13, 26, 29, 38, 47] to improve the performance

of skyline processing. The work in [10] presents skyline algorithms such as block-

nest-loop (BNL) and divide-and-conquer (D&C). The sort-filter skyline (SFS) algo-

rithm [13] improves BNL using presorted data set according to the scores computed by

a monotone function. Linear-elimination-sort for skyline (LESS) [22] is an optimized

algorithm of SFS by eliminating a portion of a data set during sorting. Tan et al. [47]

first proposed the progressive techniques, called Bitmap and Index that progressively

return skyline points as they are identified unlike most existing algorithms that require

at least one pass over the dataset to return the first skyline point. By exploiting R*-

tree [8], an improved algorithm, called NN, based on the nearest neighbor search was

10

Queries Serial algorithms Parallel algorithms

Skyline query [6], [7], [13], [26], [2], [25], [37],

[29], [38], [47] [40], [56], [57]

Reverse skyline query [16],[21], [55], [59] [53]

Probabilistic skyline query [5], [33], [41] [18]

Table 2.1: The related works on skyline and its variant queries

presented in [26]. Papadias et al. [38] improved NN using a branch-and-bound method

(BBS) and also introduced the dynamic skyline query.

After the dynamic skyline was introduced in [38], variants of the skyline queries

such as the reverse skylines [16], probabilistic skylines [33, 41], top-k frequent sky-

lines [12], spatial skylines [43], continuous skylines [5, 48, 58], and stochastic sky-

lines [34] have been also introduced. Although many existing serial algorithms utilize

centralized indexing structures such as B+-trees and R*-trees to check whether a point

belongs to the skyline or not, such algorithms are not suitable to be parallelized us-

ing MapReduce since MapReduce does not provide the functionality for building and

accessing distributed indexing structures.

Although we focus on computing the skyline using MapReduce, we still need a se-

rial skyline algorithm to calculate the local skyline for each partition. Thus, among the

serial skyline algorithms [6, 10, 13, 29] without using centralized indexes, we adopt

the state-of-the-art algorithm BSkyTree-P [29]. BSkyTree-P calculates a skyline in a

divide-and-conquer manner. To split the data space into 2d partitions, BSkyTree-P first

selects a pivot point which reduces the number of checking dominance relationships

between point pairs from different partitions. Then, every point dominated by the pivot

point is removed and BSkyTree-P recursively divides the partitions into sub-partitions

until each partition contains at most one point. It next merges the partitions and com-

putes the local skyline of the merged partition repeatedly until there is a single partition

and then the global skyline is obtained.

11

Recently, skyline processing algorithms in distributed environments such as MapRe-

duce [37, 40, 56, 57] and other distributed systems [2, 23, 25, 60] have been proposed.

Among the above works, we next illustrate MR-GPMRS [37], MR-BNL [56], and PPF-

PGPS [57] briefly since they are the most relevant works to ours. We also present 1/2-

step algorithms [2] and PPPS [25] since they are related to ours although the works in

[2] and [25] are not proposed for the MapReduce framework.

While MR-GPMRS [37] consists of the partitioning and global skyline phases only,

MR-BNL [56] and PPF-PGPS [57] are composed of the partitioning, local skyline and

global skyline phases. In the partitioning phase, the space is split into partitions by

using angle-based partitioning [52] in PPF-PGPS or grid partitioning in MR-GPMRS

and MR-BNL. In contrast to MR-GPMRS using two phases, MR-BNL and PPF-PGPS

compute the local skyline for each partition in the additional local skyline phase. The

benefit of the additional phase is that the overheads of computing the skyline as well as

distributing the points via the network in the global skyline phase are reduced since the

number of local skyline points in each partition is much less than that of all points in

the partition. Then, in the global skyline phase, MR-GPMRS, MR-BNL and PPF-PGPS

compute the global skyline.

In the global skyline phase, all points in the partitions should be distributed into

groups so that each point p and all other points dominated by p are contained in the

same group. However, since MR-GPMRS with two phases does not have the local sky-

line phase, it does not get the benefit of decreasing the network overhead of the global

skyline phase from the filtering by the local skyline phase. The machines participating

in the MapReduce framework could not be fully utilized by MR-BNL and PPF-PGPS

since MR-BNL and PPF-PGPS use a single machine to compute the global skyline.

Thus, the performances of MR-BNL and PPF-PGPS deteriorate when there are a large

number of local skyline points. On the contrary, our proposed parallel skyline algo-

rithm is optimized by utilizing the available machines as many as possible and per-

forming additional pruning technique in the local skyline phase.

12

Although the works in [2] and [25] are not proposed for MapReduce, we present

them here since they can be processed with MapReduce. The 1-step and 2-step algo-

rithms in [2] split the data space into dm1/(d−1)ed and md grid partitions, respectively,

where m is the number of machines. They next prune the partitions with no skyline

point by dominance relationships of the grid partitions and compute the global skyline

for every unpruned partition in parallel.

The algorithm PPPS in [25] for multi-core machines utilizes the angle-based space

partitioning [52]. PPPS recursively splits each partition into two partitions until the

number of the partitions becomes the desired number of CPU cores c. The local skyline

is next computed for every partition in parallel. Finally, PPPS performs a bottom-

up merge in O(log(c)) iterations until there remains a single partition only where

PPPS merges the local skylines simultaneously in every group of two partitions in

each iteration. Since PPPS can utilize c/2i cores only in the i-th merging iteration,

multi-cores are not fully utilized for parallel merging of the local skylines.

2.2 Reverse Skyline Queries

The reverse skyline query was introduced in [16] where a branch-and-bound reverse

skyline (BBRS) algorithm and an enhanced reverse skyline using skyline approxima-

tion (RSSA) algorithm are proposed.

BBRS is an extension of BBS algorithm [38] for the skyline query. Given a query

point q, BBRS first computes the superset of the reverse skyline which can be simply

computed than the reverse skyline. Then, it verifies that each point p in the superset

of the reverse skyline is a reverse skyline point of q by invoking a window query. The

window query checks whether the rectangular area centered at p contains other point

in the data set or not. The point p is a reverse skyline point only and only if there exists

no other point in the rectangular area. BBRS utilizes R*-tree to speed up the window

queries.

13

RSSA is an improved version of BBRS by utilizing the dynamic skyline to prune

away non-reverse skyline points. RSSA first computes the dynamic skyline of each

point in the data set before computing the reverse skyline. Given a query point q,

RSSA computes the superset of the reverse skyline of q and check whether each

point in the superset is pruned by dominance relationships with the dynamic skyline

points calculated before. If p is not pruned by the dnyamic skyline points, p is checked

whether a reverse skyline point or not by the window query. The number of invoking

the window queries is reduced by the pruning based on the dynamic skyline points and

thus RSSA shows better performance than BBRS.

Recently, the RSQ algorithm [21] is proposed to reduce the number of traversing

R*-tree by utilizing a technique. However, since BBRS, RSSA and RSQ utilize the

centralized index structure R*-tree, it is hard to parallelize the algorithms by using the

MapReduce framework.

Many reverse skyline variants such as the bichromatic reverse skyline queries [55],

reverse skyline queries on data stream [59] and the reverse skyline queries in the wire-

less sensor networks [53] are introduced. In [53], a skyband-based approach to pro-

cess reverse skyline queries energy-efficiently in wireless sensor networks is proposed.

Note that the wireless sensor network is similar to the distributed computation frame-

work but it has limitated network bandwidth and battery power. Thus, the wireless

sensor network is not suitable to run a MapReduce job since it requires heavy net-

work traffic and computation power. To the best of our knowledge, there is no parallel

reverse skyline algorithm using MapReduce.

2.3 Probabilistic Skyline Queries

The uncertainty inherently arises in the real-world from diverse applications. Due

to the importance of supporting applications dealing with uncertain data, the tech-

niques for processing uncertain queries such as probabilistic top-K [44] and similarity

14

join [35] queries have been proposed. Refer to [54] for the summary of processing

uncertain queries.

The serial algorithms for probabilistic skyline processing over uncertain data have

been introduced in [5, 41]. The skyline probabilities of all objects in the discrete model

are computed without considering the minimum probability threshold in [5]. Skyline

computation with the minimum probability threshold is considered in [41] for both

discrete and continuous models, but every instance of each object has the same ex-

istence probability. To parallelize such serial algorithms, we need two MapReduce

phases. The first phase splits data into partitions randomly and computes the partial

skyline probabilities of every object in each partition independently. The second phase

computes the skyline probability of each object by collecting its partial skyline proba-

bilities from different partitions. However, the performances of the algorithms simply

extended from the serial algorithms degrade since they do not utilize the filtering tech-

niques based on the probabilistic threshold. In this dissertation, we address a general-

ized problem of both [5] and [41], and we compute the probabilistic skylines with the

minimum probability threshold for the discrete and continuous models.

Recently, as shown in Section 2.1, parallel skyline processing algorithms with

MapReduce for certain data (i.e., non-probabilistic data) were presented. We can de-

velop the parallel algorithms for uncertain data by simply performing one of the algo-

rithms for certain data for every possible world. However, since there are exponential

number of possible worlds (i.e., O(2|D|)) where |D| is the number of uncertain ob-

jects in the data set), naive extensions of such algorithms to uncertain data are very

inefficient and impractical.

The most relevant work to ours is the MapReduce algorithm PSMR [18], but PSMR

can compute the probabilistic skylines only for the case where each uncertain object

has a single instance in the discrete model. The algorithm PSMR in [18] works with

two MapReduce phases as follows. It first computes the local candidate and affect sets

in the first phase. The candidate set contains possible probabilistic skyline objects and

15

the affect set includes the probabilistic non-skyline objects required to compute the

skyline probabilities of the objects in the candidate set. In the second phase, PSMR

first divides the union of the candidate and affect sets into several partitions each of

which is allocated to a different machine. After broadcasting the candidate set to every

machine, each machine computes the partial skyline probabilities of all broadcast can-

didate objects by using the objects in its allocated partition. Then, they gather all partial

skyline probabilities of each object from different machines into one of the machines

to calculate the skyline probabilities of all candidate objects in parallel. To the best of

our knowledge, the case of allowing multiple instances to each object for processing

probabilistic skylines using MapReduce has not addressed yet.

16

Chapter 3

Background

In this chapter, we provide the technical background commonly used in this disserta-

tion. We first present the definitions of skyline, dynamic skyline, reverse skyline and

probabilistic skyline queries. We next present the overview of the MapReduce frame-

work.

3.1 Skyline and Its Variants

Consider a d-dimensional data set D = {p1, p2, . . . , p|D|}. A point pi is represented by

〈pi(1), pi(2), · · · , pi(d)〉where pi(k) is the k-th coordinate of pi. A point pi dominates

another point pj , denoted as pi ≺ pj , if the two conditions hold: (1) for every k with

1 ≤ k ≤ d, we have pi(k) ≤ pj(k) and (2) there exists k with 1 ≤ k ≤ d such that

pi(k) < pj(k) holds. The skyline is defined as follows.

Definition 3.1.1 (Skyline) The skyline of D, represented by SL(D), is a subset of D

where every point in SL(D) is not dominated by every other point in D. In other words,

SL(D) = {pi ∈ D | @pj(6= pi) ∈ D such that pj ≺ pi}. The points in SL(D) are

called skyline points of D.

Example 3.1.2 Consider a data set D representing laptops with two attributes of

17

ID Price Weight

p1 15 85

p2 85 95

p3 55 35

p4 80 55

p5 60 15

p6 70 40

p7 40 60

p8 65 90

(a) The laptop data set D

0

20

40

60

80

100

0 25 50 75 100

W
ei

g
h
t

Price

p1

p3

p5

p7

p2

p4

p6

p8

(b) The skyline of D

Figure 3.1: An example of a skyline

price and weight in Figure 3.1(a). In Figure 3.1(b), we plot every point in D into

a 2-dimensional space where the horizontal axis indicates the price and the vertical

axis represents the weight. The point p3 = 〈55, 35〉 dominates p6 = 〈70, 40〉 since

we have p3(1) = 55 < p6(1) = 70 and p3(2) = 35 < p6(2) = 40. Since p1 is not

dominated by the other points in D, p1 is a skyline point (i.e., ∈ SL(D)). The skyline

of D is SL(D) = {p1, p3, p5, p7}. We plot every point in SL(D) with a black circle in

Figure 3.1(b).

Given a query point q, we say that a point pi dynamically dominates another point

pj with respect to q, denoted as pi ≺q pj , if and only if (1) |pi(k)− q(k)| ≤ |pj(k)−

q(k)| for all k with 1 ≤ k ≤ d and (2) there exists k with 1 ≤ k ≤ d such that

|pi(k)−q(k)| < |pj(k)−q(k)|. The dynamic skyline is defined based on the dynamical

dominance relationships.

Definition 3.1.3 (Dynamic skyline) Given a query point q and a data set D, the dy-

namic skyline, represented by DSL(q,D), is the set of points that are not dynamically

dominated by any other point with respect to q. In other words,DSL(q,D) = {pi ∈ D

| @pj(6= pi) ∈ D such that pj ≺q pi}.

In the above definition, dynamic skylineDSL(q,D) is equivalent to the traditional

18

0

20

40

60

80

100

0 25 50 75 100

Δ
W

ei
g
h
t

ΔPrice

p1

p3

p5

p7

p2

p4
p6

p8

Figure 3.2: The dynamic skyline of D with respect to q = 〈50, 20〉

skyline obtained by transforming every point pi in D into a new space where the query

point q becomes the origin and for every k with 1 ≤ k ≤ d (i.e., |pi(k)−q(k)| becomes

the k-dimensional coordinate value in the new space).

Example 3.1.4 Let us consider the data set D in Figure 3.1(a) and a query point

q = 〈50, 20〉. The point p3 = 〈55, 35〉 dynamically dominates the point p7 = 〈40, 60〉

with respect to q since we have |p3(1)−q(1)| = 5 < |p7(1)−q(1)| = 10 and |p3(2)−

q(2)| = 15 < |p7(2) − q(2)| = 30. In Figure 3.2, each point pi = 〈pi(1), pi(2)〉 in

D is converted to p′i = 〈|pi(1)− q(1)|, |pi(2)− q(2)|〉. For instance, p1 = 〈15, 85〉 is

mapped to p′1 = 〈|15−50|, |85−20|〉 = 〈35, 65〉. Since the dynamic skylineDSL(q,D)

is the same as the skyline of the points mapped to the new space whose origin is the

query point q, DSL(q,D) becomes {p3, p5}. We represent the dynamic skyline point

p3 by a black circle in Figure 3.2.

Based on the definition of the dynamic skyline, the notion of the reverse skyline is

proposed.

Definition 3.1.5 (Reverse skyline) Given a d-dimensional data set D and a query

point q, the reverse skyline, represented by RSL(q,D), is the set of every point pi

19

0

20

40

60

80

100

0 25 50 75 100

Δ
W

ei
g
h
t

ΔPrice

p4

p2

q

p8

(a) The dynamic skyline of D∪{q}−{p2}with

respect to p2

0

20

40

60

80

100

0 25 50

Δ
W

ei
g
h
t

ΔPrice

p3

p5

q

(b) The dynamic skyline of D∪{q}−{p5}with

respect to p5

Figure 3.3: The dynamic skylines with respect to p2 and p5

in D satisfying q ∈DSL(pi,D∪{q}−{pi})(i.e., the query point q is contained in the

dynamic skyline with respect to pi).

Example 3.1.6 Consider the data D in Figure 3.1(a). Figure 3.3(a) illustrates the dy-

namic skyline with respect to p2. Since q does not belong to the dynamic skyline with

respect to p2, p2 is not a reverse skyline point (i.e., p2 6∈ RSL(q,D)). However, since

q is in the dynamic skyline with respect to p5 illustrated in Figure 3.3(b), p5 is in the

reverse skyline with respect to q.

We next introduce the definition of the probabilistic skyline [41] by the popular

possible worlds semantics [3, 14]. Each object in uncertain data can be modeled by a

set of instances with their existence probabilities (i.e., discrete model) or an uncertainty

region with its pdf (i.e., continuous model).

The discrete model: Given a set of uncertain objects D, an object U ∈ D is

modeled as a set of instances and denoted by U = {u1, u2, · · · , u|U |} where ui is as-

sociated with an existence probability P (ui) such that
∑

ui∈U P (ui) ≤ 1. A possible

world is a materialized set of instances from objects. Since all instances of U are mu-

20

tually exclusive, multiple instances of U cannot belong to a possible world simultane-

ously. The probability that an instance ui ∈ U appears in a possible world is P (ui) and

the probability that any instance of an object U does not appear is 1−
∑

ui∈U P (ui).

When a possible world contains an instance ui ∈ U , if any instance vj of every

other object V ∈ D dominating ui does not exist in the possible world, ui is a skyline

instance in the possible world. Since such a probability is
∏
V ∈D,V 6=U (1−

∑
vj∈V,vj≺ui

P (vj)), the skyline probability of ui, denoted by Psky(ui), can be written as follows

[5]:

Psky(ui) = P (ui)×
∏

V ∈D,V 6=U
(1−

∑
vj∈V,vj≺ui

P (vj)). (3.1)

We define the skyline probability of an object U , denoted by Psky(U), as the sum of

the skyline probabilities of all its instances (i.e., Psky(U) =
∑

ui∈U Psky(ui)).

The continuous model: An uncertain object U ∈ D is modeled as an uncertainty

region U.R with its probabilistic distribution function U.f(·) [9, 32, 41]. We assume

that each uncertainty region is a hyper-rectangle as in [32]. The probability that an

instance of U is located at a point u in U.R is U.f(u) where
∫
U.R U.f(u)du = 1.

Given an object U ∈ D, Psky(U) is defined in [41] as:

Psky(U) =

∫
U.R

U.f(u)
∏

V ∈D,V 6=U

(
1−

∫
V.R

V.f(v)I(v ≺ u)dv
)

du (3.2)

where I(v ≺ u) is an indicator function which returns 1 if v dominates u, and 0

otherwise.

Definition 3.1.7 (Probabilistic skyline) For a set of uncertain objects D and a prob-

ability threshold Tp, the probabilistic skyline, denoted by pSL(D, Tp), is the set of all

objects whose skyline probabilities are at least Tp. That is, pSL(D, Tp) = {U ∈ D |

Psky(U) ≥ Tp}.

Example 3.1.8 Consider a set of objects D = {W,X, Y, Z} with the discrete model

in Figure 3.4(a). In Figure 3.4(b), we plot every instance in D into a 2-dimensional

21

Object Instances Performance Design Probability

W
w1 2 4 0.5

w2 8 1 0.4

X
x1 6 2 0.2

x2 7 3 0.2

Y
y1 9 6 0.8

y2 8 7 0.2

Z
z1 1 8 0.5

z2 9 2 0.5

(a) The rating of laptops

0

2

4

6

8

10

0 2 4 6 8 10

D
es

ig
n

Performance

z1

w1

x1

x2

y1

w2

y2

z2 Objects

X

Y

W

Z

(b) Uncertain objects

Figure 3.4: An example of a probabilistic skyline

space. Since y1 is dominated by w1, w2, x1, x2 and z2, the skyline probability of y1

computed by Equation (3.1) is Psky(y1) = P (y1)(1− P (w1)− P (w2))(1− P (x1)−

P (x2))(1 − P (z2)) = 0.024. Similarly, Psky(y2) = 0.012. The skyline probability of

Y is Psky(Y) = Psky(y1)+Psky(y2) = 0.036. Furthermore, we have Psky(W) = 0.9,

Psky(X) = 0.4 and Psky(Z) = 0.74. When Tp is 0.5, pSL(D, Tp) is {W,Z}.

3.2 MapReduce Framework

MapReduce [15] or its open-source equivalent Hadoop [4] is a widely used frame-

work for data-intensive parallel computation in shared-nothing clusters of machines.

In Hadoop, data is represented as key-value pairs. Hadoop divides the input data to

a MapReduce job into fixed-size pieces called chunks and spawns a mapper task for

each chunk. The mapper task invokes a map function for each key-value pair in the

chunk and the map function may output several key-value pairs. The key-value pairs

emitted by all map functions are grouped by keys in the shuffling phase and passed to

reducer tasks to generate the final output. Users can control which key goes to which

reducer task by modifying a Partitioner class. For each distinct key, the reduce task

invokes a reduce function with the key and the list of all values sharing the key as

input. A reduce may generate several key-value pairs. Each mapper (or reducer) task

can execute a setup function before invoking map (or reduce) functions and a cleanup

22

function after executing all map (or reduce) functions. Hadoop executes the main func-

tion on a single master machine and we may pre-process the input data or post-process

the output in the main function.

23

Chapter 4

Parallel Skyline Query Processing

4.1 SKY-MR: Our Skyline Computation Algorithm

To calculate the skyline, a brute-force algorithm compares each point with every other

points. If we know a non-skyline point earlier, we do not have to compare the point

with every other points. Knowing data distributions allows us to prune such non-

skyline points earlier. To identify the data distribution, many histograms such as MHIST [42]

and V-Opt [24] have been proposed. However, these histograms partition the data space

into buckets with arbitrary regions and thus it is unsuitable and difficult to identify the

dominance relationship between buckets effectively. Thus, we utilize a variant of the

quadtree [20], called the sky-quadtree since we can easily identify the dominance re-

lationship between the regions of the quadtree as shown later in this chapter.

We present our parallel algorithm SKY-MR to discover the skyline SL(D) in a

given data set D by utilizing the sky-quadtree. The pseudocode of SKY-MR is shown

in Figure 4.1. SKY-MR consists of the following three phases.

(1) Sky-quadtree building phase: To filter out non-skyline points effectively ear-

lier, we propose a new histogram, called the sky-quadtree, to represent data distribu-

tions. To speed up, we build a sky-quadtree with a sample of D where each leaf node

with non-skyline sample points only is marked as “pruned”.

24

Function SKY-MR(D, ρ, d, δ)

D: a data set, ρ: the split threshold,

d: the dimension, δ : local skyline threshold

begin

1. sample = ReservoirSampling(D);

2. sky-quadtree = SKY-QTREE(sample, ρ, d);

3. Broadcast sky-quadtree;

4. Local-SL = RunMapReduce(L-SKY-MR);

5. if Local-SL.size ≥ δ then

6. Broadcast non-empty leaf node ids;

7. SL = RunMapReduce(G-SKY-MR);

8. else SL = G-SKY(Local-SL);

9. return SL;

end

Figure 4.1: The SKY-MR algorithm

(2) Local skyline phase: We partition the data D based on the regions divided by

the sky-quadtree and compute the local skyline for the region of every unpruned leaf

node independently using MapReduce by calling L-SKY-MR.

(3) Global skyline phase: We calculate the global skyline using MapReduce from

the local skyline points in every unpruned leaf node by calling G-SKY-MR. When the

number of local skyline points is small, we run the serial algorithm G-SKY in a single

machine to speed up.

We next present the details of the above three phases.

4.1.1 SKY-QTREE: The Sky-Quadtree Building Algorithm

A sky-quadtree is an extension of quadtrees [20] which subdivide the d-dimensional

space recursively into sub-regions. In a sky-quadtree, internal nodes have exactly 2d

children and each leaf node has at most a predefined number of points ρ called the

25

(a) (b) (c)

0

25

50

75

100

0 25 50 75 100

p4

p6

p8

p500

01 11

10

pruned

0

25

50

75

100

0 25 50 75 100

00

01 1100

1101 1111

1011

1010

1001

1001

1110

0

25

50

75

100

0 25 50 75 100

pruned

00

01 1100

1101 1111

1011

1010

1001

1001

1110
pruned

pruned

Figure 4.2: An example of sky-quadtree building

split threshold. We denote the region of a node n as region(n). An id is assigned

to each node based on its location in sky-quadtrees. In a d-dimensional space, the

id of a node n with depth k is represented by id(n) = a1a2 · · · ak·d which consists

of the first (k − 1) · d bits coming from its parent node and the remaining d bits

a(k−1)·d+1a(k−1)·d+2 · · · ak·d where a(k−1)·d+i = 0 (or a(k−1)·d+i = 1) if the i-th

dimensional range of the region(n) is the first half (or the second half) of its parent’s

i-th dimensional range. Similarly, we let node(id) represent the node with an id id.

We can decompose id(n) into d number of bit strings sub(id(n), i)s (for 1 ≤ i ≤ d)

s.t. sub(id(n), i) = aia(i+d)a(i+2·d) · · · a(i+(k−1)·d).

Given a pair of bit strings a = a1a2 · · · ap and b = b1b2 · · · bq, we say that a = b

if ai = bi for all i = 1, 2, · · · , min(p, q), and a < b if there exists an integer j, with

1 ≤ j ≤ min(p, q), s.t. ai = bi for all i = 1, 2, · · · , j − 1 and aj < bj . Similarly,

we write a > b if there exists an integer j, with 1 ≤ j ≤ min(p, q), s.t. ai = bi for

i = 1, 2, · · · , j − 1 and aj > bj .

Definition 4.1.1 Given a pair of leaf nodes ni and nj in a sky-quadtree, if every point

in region(ni) dominates all points in region(nj), ni dominates nj and we represent

it by ni ≺ nj . If every point in region(ni) does not dominate all points in region(nj),

ni does not dominate nj and we denote it by ni 6≺ nj .

Dominance relationships by node ids: Based on the following proposition, we

26

can efficiently identify the nodes dominated by another non-empty leaf node in a sky-

quadtree by utilizing node ids.

Proposition 4.1.2 Given a pair of nodes ni and nj in a sky-quadtree, ni dominates

nj if sub(id(ni), k) < sub(id(nj), k) for all k = 1, 2, · · · , d. Similarly, ni does not

dominate nj (i.e., ni 6≺ nj) if there exists k such that sub(id(ni), k) > sub(id(nj), k)

with k = 1, 2, · · · , d.

Proof: Let region(n) = 〈[n(1)−, n(1)+), · · · , [n(d)−, n(d)+)〉where [n(k)−, n(k)+)

is the range of the k-th dimension of n’s covering region. If sub(id(ni), k) < sub(id(nj), k),

both [ni(k)
−, ni(k)

+) and [nj(k)
−, nj(k)

+) are disjoint and ni(k)+ ≤ nj(k)−. Thus,

for a pair of points pi in region(ni) and pj in region(nj), we have pi(k) < ni(k)
+ ≤

nj(k)
− ≤ pj(k). If sub(id(ni), k) < sub(id(nj), k) holds for all k=1, 2, · · · , d, we

have pi ≺ pj and ni ≺ nj . Similarly, if there exists k such that sub(id(ni), k) >

sub(id(nj), k), we have pi(k) > pj(k) and ni 6≺ nj

Building a sky-quadtree: In order to quickly build a sky-quadtree, we utilize a

random sample obtained from D by reservoir sampling [51]. Since we use a sample

only, we may prune fewer non-skyline points than using D. However, the use of sam-

pling does not affect the correctness of our skyline computation algorithm SKY-MR

because all skyline points exist in unpruned leaf nodes.

The procedure SKY-QTREE (in line 2 of Figure 4.1) builds a sky-quadtree by in-

serting a sample into the root node and recursively splits each node n to 2d child nodes

whenever the number of points in n exceeds the split threshold ρ. When splitting a

node n, we insert each point p in region(n) into its child node ni into which p is in-

serted. If the last d-bit string of ni’s id is 00 · · · 0 (i.e., the first half in every dimension),

we mark nj whose last d-bit string of its id is 11 · · · 1 (i.e., the second half in every

dimension) as “pruned” and skip all remaining points belonging to nj . After all points

are inserted into child nodes, we recursively split each unpruned child node. When

we cannot split any more, starting from the root node, we traverse the sky-quadtree to

mark every node dominated by a non-empty leaf node as “pruned”.

27

Example 4.1.3 Consider the dataD in Figure 3.1(a) and the split threshold ρ=1. Sup-

pose that a sample {p4, p6, p7, p8} is inserted into the root node. In Figure 4.2(a), the

root node is subdivided since it has more than ρ points. The id of the root node’s child

node in the top-left corner is 01 since the region covers the first and second halves

of the root node’s first and second dimensions respectively. The node id 1011 can be

decomposed into sub(1011, 1) = 11 and sub(1011, 2) = 01. Additionally, for the

node id 1000, sub(1000, 1) = 10 and sub(1000, 2) = 00. Because sub(1000, 1) <

sub(1011, 1) and sub(1000, 2) < sub(1011, 2), we have node(1000) ≺ node(1011).

Thus, we mark node(1011) as “pruned” in Figure 4.2(b). In addition, since node(1000) ≺

node(1110) and node(1000) ≺ node(1111) hold, both nodes are marked as “pruned”.

The final sky-quadtree obtained is presented in Figure 4.2(c).

Finding a proper sample size: Since we construct a sky-quadtree from a sample

S ⊂ D, the number of data points of D located in the region of each leaf node varies a

lot. Because we split a node of a sky-quadtree if it contains more than the split threshold

ρ sample points, the number of sample points in each leaf node is upper-bounded by

ρ. However, there is no upper-bound for the number of actual data points of D located

in each leaf node. It can be problematic if a node contains much more points than

estimated number since it can cause skewness of the workloads of machines in the

local and global skyline phases. Thus, we next study how to choose the sample size

|S| to find the probabilistic upper-bound of the number of data points in each leaf

node.

For a leaf node n of a quadtree, we denote the number of sample and data points

in the region of n by S(n) and D(n). Since we utilize the random sampling, we can

estimate |D(n)| as |D̂(n)| = |S(n)| × |D|/|S|. We want to guarantee that the prob-

ability of the actual partition size |D̂(n)| being much greater than the estimated size

(i.e., γ×|D̂(n)| for γ > 1) is less than a threshold δ. When |D(n)| is small, it does not

affect the workloads of the our algorithm SKY-MR even though |D(n)| is much larger

than |D̂(n)|. Thus, we focus on the case when |D(n)| ≥ ω for a user-defined param-

28

eter ω. In other word, given a user-defined parameters γ and δ, we want to estimate

the number of sample size such that Pr[γ × |S(n)| × |D|/|S| < |D(n)|] < δ when

D(n) ≥ ω. We have the following lemma which can be used to find a proper sample

size.

Lemma 4.1.4 Given a leaf node n, a maximum probability threshold δ, a partition

size threshold ω, a endurable size ratio γ > 1 and a sample S ⊂ D, if |S| ≥

−2 ln δ D·γ2
ω(1−γ)2 , we have Pr[γ × |S(n)| × |D|/|S| < |D(n)|] < δ for |D(n)| ≥ ω.

Proof: Let Xj be a random variable that is 1 if j-th point in S belongs to the region

of n and 0 otherwise. Since we do uniform random sampling, X1, · · · , X|S| are inde-

pendent Bernoulli trials with P (Xj = 1) = |D(n)|/|D|. The number of points in S

belonging to S(n) is X =
∑

j Xj and the expected value of X is µ = E[X] = |S| ·

|D(n)|/|D|. Then, we have Pr[γ · |D̂(n)| < |D(n)|] = P [X × |D|/|S| < |D(n)|/γ]

since we have |D̂(n)| = |S(n)| × |D|/|S| = X × |D|/|S|.

Chernoff bounds state that we have P [X < (1 − ε)µ] < exp(−µε2/2) for 0 <

ε ≤ 1. Rewriting the probability to conform to the Chernoff bounds, we get P [X <

(1− (1− |S|·|D(n)|
γ·µ·|D|))µ] = Pr[X < (1− (1− 1

γ))µ] since µ = |S| · |D(n)|/|D| holds.

Then, by applying the Chernoff bounds, we obtain Pr[X < (1 − (1 − 1/γ))µ] <

exp(−µ(1 − 1/γ)2/2). Thus, Pr[X < (1 − (1 − 1/γ))µ] is upper bounded by

exp(−|S| · |D(n)|/|D| · (1 − 1/γ)2/2). In other words, the maximum probability

threshold δ is at most exp(−|S| · |D(n)|/|D| · (1 − 1/γ)2/2). Solving it for |S|, we

get |S| ≥ −2 ln δ D·γ2
D(n)(1−γ)2 . Since we assume that |D(n)| ≥ ω, |S| should be larger

than −2 ln δ D·γ2
ω(1−γ)2 .

4.1.2 L-SKY-MR: The Local Skyline Computation Algorithm

We next present the parallel algorithm L-SKY-MR that calculates the local skyline in-

dependently for every unpruned leaf node in the sky-quadtree. The sky-quadtree Q is

first broadcast to all map functions. Each map function is next called with a point p

29

in D. If the point p is in the region of an unpruned leaf node np of Q, we output the

key-value pair 〈np, p〉. Otherwise, we do nothing.

In the shuffling phase, the key-value pairs emitted by all map functions are grouped

by each distinct leaf node, and a reduce function is called with each node n and its point

list L. Each reduce function computes the local skyline in L (i.e., SL(L)) and outputs

〈n,p〉 for every local skyline point p. It also produces an artificial d-dimensional point

referred to as the virtual max point of the node n which is denoted by vpn where

vpn(k) = maxp∈SL(L)p(k) with 1 ≤ k ≤ d. Every virtual max point of each un-

pruned leaf node is output to the file VIRTUAL in the Hadoop distributed file sys-

tem(HDFS). The virtual max point will be used to reduce the number of checking

dominance relationships by the following proposition.

Proposition 4.1.5 If a point p does not dominate the virtual max point of a leaf node n

(i.e., vpn) in a sky-quadtree, p does not dominate every local skyline point in region(n).

Proof: We will prove the contrapositive: if p dominates a local skyline point in region(n),

we have p ≺ vpn. Since the point p dominates a local skyline point pl in region(n),

we have p(k) ≤ pl(k) for every k with 1 ≤ k ≤ d and there exists k such that p(k)

< pl(k). By the definition of the virtual max point, pl(k) ≤ vpn(k) holds for every

k. Thus, we also have p(k) ≤ vpn(k) for every k and there exists k such that p(k) <

vpn(k). In other words, p ≺ vpn.

Example 4.1.6 Consider the points pi=〈5, 30〉, pj=〈10, 20〉 and pk=〈15, 10〉. As-

sume {pj , pk} is the local skyline of an unpruned leaf node n. The virtual max point

vpn is 〈15, 20〉. Since pi 6≺ vpn, pi does not dominate every local skyline point in n

due to Proposition 4.1.5 and we do not need to check whether the points pj and pk are

dominated by p.

In addition, each reduce function selects a single local skyline point, called a sky-

filter point, for each dimension which has the minimum value on the dimension. The

30

p1=⟨15,85⟩

p2=⟨85,95⟩

p3=⟨55,35⟩

p4=⟨80,55⟩

p5=⟨60,15⟩

p6=⟨70,40⟩

p7=⟨40,60⟩

p8=⟨65,90⟩

M
ap

M
ap

key value

10 p1=⟨15,85⟩
1001 p3=⟨55,35⟩

key value

1000 p5=⟨60,15⟩
1001 p6=⟨70,40⟩

01 p7=⟨40,60⟩
1101 p8=⟨65,90⟩

S
o
rt b

y
 k

ey

key Value

01 p1=⟨15,85⟩,
p7=⟨40,60⟩

1000 p5=⟨60,15⟩

1001 p3=⟨55,35⟩,
p6=⟨70,40⟩

1101 p8=⟨65,90⟩

R
ed

u
ce

key local skyline virtual max

01 p1=⟨15,85⟩,
p7=⟨40,60⟩

⟨40,85⟩

1000 p5=⟨60,15⟩ ⟨60,15⟩

1001 p3=⟨55,35⟩ ⟨55,35⟩

1101 p8=⟨65,90⟩ ⟨65,90⟩

(a) (b) (c)

Figure 4.3: The data flow in the local skyline phase of SKY-MR

local skyline points dominated by such selected sky-filter points will be filtered out in

the next global skyline phase. All sky-filter points are stored to the file called SKY-

FILTER in HDFS.

Example 4.1.7 Consider the sky-quadtree in Example 4.1.3. Figures 4.3(a)–(c) show

the data flow in the local skyline phase of SKY-MR. After the sky-quadtree is broadcast

to all map functions, each map function is invoked with a point p in D as illustrated

in Figure 4.3(a). For instance, 〈10, p1〉 is emitted since p1 is contained in the un-

pruned leaf node, node(10). In Figure 4.3(a), the key-value pairs emitted from all map

functions are shown. The key-value pairs grouped by each distinct key are provided

in Figure 4.3(b). Each reduce function finally outputs the local skyline of a node and

the virtual max point as well as sky-filter points. Consider node(10) whose skyline

points are {〈15, 85〉, 〈40, 60〉}. The reduce function with node(10) outputs 〈15, 85〉

and 〈40, 60〉 as sky-filter points. It also outputs 〈40, 85〉 as a virtual max point. The

points output by all reduce functions are illustrated in Figure 4.3(c).

Discussion: We can utilize R*-trees instead of our sky-quadtrees. However, since

R*-trees are optimized to reduce the amount of “dead space” (empty area) covered

by their nodes, a large portion of uncovered space tends to be generated in R*-trees.

Furthermore, generating an R*-tree from a sample increases uncovered space even

31

Function G-SKY-MR.map(ni, p)

ni: a node id, p: a point belongs to the node with id = key

begin

1. nodes = LoadNonEmptyNodes();

2. if DominatedByFilterPoints(p) then return;

3. output(ni, (+, p));

4. for each node id nj (6= ni) in nodes do

5. if IsNeeded(ni, nj) then

6. if p ≺ vpnj
then output(nj , (∗, p));

end

Figure 4.4: The map function of the G-SKY-MR algorithm

more. Since every point belonging to the uncovered space in an R*-tree cannot be

pruned, using an R*-tree instead of a sky-quadtree produces a lot of unpruned points

resulting in a significant increase of execution times in the next phase. In addition,

it is difficult to compute local skyline and global skyline in each node of an R*-tree

independently because the regions represented by nodes in an R*-tree are overlapped

with each other.

4.1.3 G-SKY-MR: The Global Skyline Computation Algorithm

The procedure G-SKY-MR computes the global skyline in every non-empty unpruned

leaf node independently using MapReduce. In the map function called with each local

point, the point is emitted to every other unpruned leaf node in which it may dominate

at least a point in the node. Since it is straightforward to implement the serial algorithm

G-SKY, we omit the details of G-SKY here.

The pseudocode of G-SKY-MR.map is shown in Figure 4.4. In G-SKY-MR, a map

function with each local skyline point p discards the point p if p is dominated by a

sky-filter point chosen in the previous phase. Otherwise, the pair 〈ni, (+, p)〉 is emit-

32

M
ap

key value

10 (+, p1)

1101 (*, p1)

01 (+, p7)

1101 (*, p7)

1000 (+, p5)

1101 (*, p5)

1001 (+, p3)

1101 (*, p3)

Global skyline

point

p1=⟨15,85⟩
p7=⟨40,60⟩
p5=⟨60,15⟩
p3=⟨55,35⟩

S
o
rt b

y
 k

ey

key value

01 (+, p1)

(+, p7)

1000 (+, p5)

1001 (+, p3)

1101 (*, p1)

(*, p5)

(*, p7)

(*, p3)

R
ed

u
ce

key local skyline virtual max

01 p1=⟨15,85⟩,
p7=⟨40,60⟩

⟨40,85⟩

1000 p5=⟨60,15⟩ ⟨60,15⟩

1001 p3=⟨55,35⟩ ⟨55,35⟩

1101 p8=⟨65,90⟩ ⟨65,90⟩

(a) (b) (c)

Figure 4.5: The data flow in the global skyline phase of SKY-MR

ted where ni is the leaf node containing p and the symbol ‘+’ represents that p is in

region(ni) (in lines 1-3 of G-SKY-MR.map).

If a local skyline point pj of node nj is dominated by at least a local skyline point

of the other nodes, pj cannot be a global skyline point. However, if every point p is

sent to all other nodes except ni, the communication overhead is very expensive. By

Definition 4.1.1, when ni 6≺ nj , every point in ni cannot dominate the points in nj .

The procedure IsNeeded(ni, nj) easily identifies such case (i.e., ni 6≺ nj) using ids

of two nodes based on Proposition 4.1.2. If ni 6≺ nj , IsNeeded(ni, nj) returns false.

Otherwise, IsNeeded(ni, nj) returns true and we output the pair 〈nj , (∗, p)〉 where ‘*’

indicates that the point p is not in region(nj) but p may dominate at least a point in

region(nj). However, if p does not dominate vpnj , we do not emit the pair 〈nj , (∗, p)〉

due to Proposition 4.1.5 (in lines 4-6).

Each reduce function called with a node ni next computes the global skyline points

by checking whether each of ni’s local skyline points annotated with ‘+’ is dominated

by a local skyline point associated with ‘*’ which comes from the other nodes.

Example 4.1.8 The behavior of G-SKY-MR is illustrated in Figures 4.5(a)–(c). Ev-

ery map function is called with each local skyline point. For example, the map func-

tion with p1 emits 〈01,(+,p1)〉 since the point p1 is in region(node(01)). In addition,

〈1101,(*,p1)〉 is emitted since p1 dominates the virtual max point of node(1101). How-

ever, in the map function invoked with p5, 〈1101,(*,p5)〉 is not emitted because p5 does

33

Parameter Range Default

Number of samples (s) 100 ∼ 8, 000 400

Split threshold (ρ) 10 ∼ 60 20

Number of points (n) 107 ∼ 4× 109 108

Number of dimensions (d) 2 ∼ 10 6

Number of machines (t) 5 ∼ 20 10

Table 4.1: Parameters used for the skyline algorithms

not dominate the virtual max point 〈65,90〉 in node(1101). Figure 4.5(a) shows the

key-value pairs emitted by all map functions. The key-value pairs after the shuffling

phase are shown in Figure 4.5(b). Each reduce function computes the global skyline

of its associated node. After all reduce functions are finished, we obtain the skyline in

Figure 4.5(c).

Extending to dynamic skylines: We first convert each point pi in D to a point

p′i using a query point q where p′i(k)=|pi(k) − q(k)| for k=1, · · · , d, as presented in

Section 3.1. Then, we calculate the dynamic skyline with respect to q by computing

skyline points among the converted points. Extending SKY-MR to handle the dynamic

skylines is straightforward since at the first and second phases, each point in D can be

easily transformed into a new space whose origin is the query point q. Due to lack of

space, we do not present the details of dynamic skyline processing using MapReduce.

4.2 Experiment

We empirically evaluated the performance of our proposed algorithms using the pa-

rameters as summarized in Table 4.1. All experiments on MapReduce were performed

on the cluster of 20 nodes of Intel(R) Core(TM) i3 CPU 3.3GHz machines with 4GB

of main memory running Linux. The implementations of all algorithms were complied

by Javac 1.6. We used Hadoop 1.0.3 for MapReduce [4]. The execution times in the

graphs shown in this section are plotted in log scale. We ran all algorithms five times

34

Algorithm Description

SKY-MR-S/M SKY-MR-S utilizes the serial algorithm G-SKY.

SKY-MR-M utilizes G-SKY-MR.

SKY-MR SKY-MR adaptively selects G-SKY-MR or

G-SKY with respect to the number of local skyline points.

If it is less than 7× 105, G-SKY is selected.

MR-BNL The state-of-the-art using MapReduce in [56].

PPPS-MR The MapReduce implementation of PPPS in [25].

We set the sample size (s) to 1,000 which shows

the best performance.

GRID-MR-1/2 The MapReduce implementations of the 1-step

and 2-step algorithms in [2].

SKY-SC The serial implementation of SKY-MR.

BBS The state-of-the-art for a single core in [38].

SKY-MC The implementation of SKY-MR for multi-cores.

PPPS The state-of-the-art for multi-cores in [25].

SKY-MP The implementation of SKY-MR using MPI.

GRID-1/2 The implementations of the 1-step and 2-step

algorithms using MPI in [2].

SKY-SPARK The implementation of SKY-MR using Spark.

Table 4.2: Implemented skyline algorithms

and measured the average execution times. We do not plot the execution times of some

algorithms when they did not finish within 8 hours or they did not work due to some

reasons such as out of memory.

Implemented algorithms: The MapReduce algorithms implemented for skyline

are presented in Table 4.2. Furthermore, we also implemented the variants of SKY-

MR for other environments such as using a single-core machine, multi-core machines,

message passing interface (MPI) library [27] and Spark [46] to see the effectiveness

of our proposed algorithms compared to the existing algorithms[2, 25, 38] in such

35

(a)anti-correlated (b)independent (c)correlated

Figure 4.6: Examples of data sets

environments.

Data sets: We built three synthetic data sets which were randomly generated by

correlated, independent and anti-correlated distributions. The three types of data sets

are typically used to evaluate the performance of skyline algorithms [10]. Figure 4.6

shows the examples of such data sets where skyline points are represented by small

bold circles. The sizes of resulting synthetic data sets are varied from 392MB to 153GB

depending on the number of points (n) as well as the number of dimensions (d).

4.2.1 Performance Results for Skylines

Default values of s and ρ: To find the proper values of s and ρ, we ran SKY-MR with

varying s from 100 to 8, 000 and ρ from 10 to 60. According to the Lemma 4.1.4, s

should be larger than −2 ln δ D·γ2
ω(1−γ)2 . By letting δ = 0.99, ω = 105 and γ = 2, we

have s ≥ 80.4. Thus, we have Pr[2 × |S(n)| × |D|/|S| < |D(n)|] < 0.99 for leaf

nodes with |D(n)| ≥ 105.

The average execution times of SKY-MR for all data sets are shown in Figure 4.7.

Since the best performance of SKY-MR is obtained with s = 400 and ρ = 20, we set

s = 400 and ρ = 20 as the default values. When the sample size s decreases, since

the samples do not reflect the data distribution precisely, the number of pruned points

decreases and SKY-MR becomes inefficient. In SKY-MR, virtual max points, sky-filter

points and local skyline points of an unpruned node are sent to the other unpruned

36

 400

 450

 500

 550

 600

 650

 700

 750

 800

 100 200 400 1000 2000 4000 8000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of sample points(s)

ρ=10
ρ=20
ρ=40
ρ=60

Figure 4.7: SKY-MR with varying s and ρ

leaf nodes. Thus, as the sample size s increases, the number of unpruned leaf nodes

of a sky-quadtree which receives such points from other unpruned nodes increases and

SKY-MR becomes inefficient due to high network costs. Decreasing ρ has also a similar

effect of increasing the sample size s.

Varying n: We varied n from 107 to 4 × 109 and plot the running times of the

algorithms in Figure 4.8. SKY-MR is always better than SKY-MR-S/M since it switches

to SKY-MR-S or SKY-MR-M adaptively based on the number of local skyline points.

Thus, we do not report the performance of SKY-MR-S/M in the rest of the paper.

Since the number of skyline points of the anti-correlated data sets is generally

larger than those of the independent data sets and the correlated data sets, the algo-

rithms with the anti-correlated data sets take generally more execution time than those

of the other data sets.

GRID-MR-2 is always the worst performer due to the high cost of computing the

relaxed skyline grids from td grids (e.g., when t = 10 and d = 6, we have td = 106

number of grids). MR-BNL performs better than GRID-MR-2, but it is still slower

than SKY-MR because MR-BNL calculates the global skyline in a single machine only.

GRID-MR-1 performs poorly because it broadcasts all points p in each relaxed skyline

grid to every other grid containing points which may be dominated by p. Since SKY-

37

 100

 1000

 10000

 1e+07 1e+08 1e+09 4e+09

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of points

GRID-MR-2
MR-BNL

PPPS-MR
GRID-MR-1

SKY-MR

(a) Anti-correlated

 10

 100

 1000

 10000

 1e+07 1e+08 1e+09 4e+09

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of points

GRID-MR-2
PPPS-MR

MR-BNL
GRID-MR-1

SKY-MR

(b) Independent

 10

 100

 1000

 10000

 1e+07 1e+08 1e+09 4e+09

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of points

GRID-MR-2
MR-BNL

GRID-MR-1
PPPS-MR

SKY-MR

(c) Correlated

Figure 4.8: Varying the number of points (n) for skyline processing

MR filters out non-skyline points effectively using the sky-quadtree, it shows the best

performance.

Varying d: With varying d from 2 to 10, we plot the execution times of the al-

gorithms except GRID-MR-1/2 in Figure 4.9 because they show similar patterns with

varying n.

The execution times of all algorithms increase gradually with increasing d since

checking the dominance relationship between two points becomes more expensive

with large values of d. Furthermore, when d = 2, MR-BNL becomes slow because

MR-BNL utilizes only 4 (= 2d) machines out of 10 machines. For the independent

and anti-correlated data sets, PPPS-MR becomes slow since the last two partitions are

merged in a single machine. However, PPPS-MR becomes fast for the correlated data

38

 10

 100

 1000

 10000

 100000

 2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of dimensions

MR-BNL
PPPS-MR

SKY-MR

(a) Anti-correlated

 10

 100

 1000

 10000

 2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of dimensions

MR-BNL
PPPS-MR

SKY-MR

(b) Independent

 10

 100

 1000

 10000

 2 4 6 8 10

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of dimensions

PPPS-MR
MR-BNL
SKY-MR

(c) Correlated

Figure 4.9: Varying the number of dimensions (d) for skyline processing

sets, since there are a small number of local skyline points and merging them can be

done quickly. The graphs confirm that SKY-MR is generally the best performer.

Varying t: We show the relative speed of the tested algorithms averaged over all

data sets in Figure 4.10. That is, for each algorithm, we plot its running time with 5

machines divided by its running time with t machines. For example, if the running

times of SKY-MR with 5 and 20 machines are T5 and T20 respectively, we plot the

ratio T5/T20 for t=20. In an ideal case, if the number of machines increases by 4 times

from 5 to 20, the speed will be 4 times faster. We also plot the ideal speedup curve

in the graphs of Figure 4.10. For the relative speed, our proposed algorithm SKY-MR

shows the best scalability since SKY-MR effectively prunes data by partitioning with

the sky-quadtrees and utilizes the virtual max points and sky-filter points to reduce the

39

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20

R
el

at
iv

e
sp

ee
d

Number of machines

IDEAL
SKY-MR

GRID-MR-1
PPPS-MR

MR-BNL
GRID-MR-2

Figure 4.10: Relative speed with varying the number of machines (t)

SKY-MR F and V F V NONE

Correlated 218 229 234 242

Independent 260 281 283 283

Anti-correlated 840 1146 952 1207

Table 4.3: Effects of the virtual max points (V) and sky-filter points (F) (sec)

unnecessary comparisons.

The effects of the virtual max and sky-filter points: To evaluate the performance

improvements by utilizing the virtual max points and sky-filter points, we report the

execution times of SKY-MR using virtual max point and the sky-filter points (F and

V), SKY-MR using only the sky-filter points (F), SKY-MR using only the virtual max

points(V), and SKY-MR without both points (NONE) in Table 4.3. For the correlated

data set, the performance of SKY-MR is improved mainly by the sky-filter points, since

most of the local skyline points are removed by sky-filter points in the third phase. For

the anti-correlated data set, since the virtual max points reduce unnecessary compar-

isons between the local skyline points by Proposition 4.1.5, the running time decreases.

Since SKY-MR utilizes both sky-filter points and virtual max points, it runs faster than

the other algorithms.

40

Distribution Algorithm 105 106 107 108 109

Anti-correlated SKY-SC 1.5 91.3 949.8 8906.8 -

BBS 39.9 603.2 16334.5 - -

SQL 410 1168 - - -

Independent SKY-SC 0.6 1.6 10.1 70.4 -

BBS 0.3 1.9 12.6 2275.8 -

SQL 117 3386 - - -

Correlated SKY-SC 0.2 0.5 3.3 41.5 -

BBS 0.1 0.2 1.3 11.6 -

SQL 6.6 113 - - -

Table 4.4: Varying n on a single core machine (sec)

4.2.2 Performance Results in Other Environments

We finally present the experimental results by comparing the performance of our

ported algorithms to other environments with the existing state-of-the-art algorithms

in such environments. We did experiments with varying n and d, but reported only the

experimental results with varying n.

Single core machine: We compared our serial algorithm SKY-SC to the state-of-

the-art serial algorithm BBS [38] which utilizes an R*-tree on a single core machine.

We report the average execution times with varying n from 105 to 109 in Table 4.4.

We do not include the construction time of R*-trees for BBS, but we include the con-

struction time of sky-quadtrees for SKY-SC in Table 4.4. Whenever any algorithm did

not finish due to lack of memory, we do not show the running time in Table 4.4.

BBS finds skyline points progressively in increasing order of their distances to

the origin. When the number of skyline points is small (i.e., correlated data), most of

minimum bounding rectangles (MBRs) of R*-trees are pruned by the skyline points

found at the beginning of BBS and thus BBS shows slightly better performance than

SKY-SC. However, when the number of skyline points is large (i.e., independent or

anti-correlated data), many MBRs are not pruned by the skyline points. Since SKY-SC

41

Distribution Algorithm 107 4× 107 108 4× 108 109

Anti-correlated SKY-MC 116.8 380.2 877.4 - -

PPPS 2201.5 10887 21736 - -

Independent SKY-MC 11.3 37.7 81.4 290.8 666.0

PPPS 14.9 66.5 193.1 1171.3 -

Correlated SKY-MC 5.1 17.8 44.5 170.3 410.8

PPPS 4.9 20.5 50.2 216.3 512.2

Table 4.5: Varying n on a multi-core machine (sec)

filters out non-skyline points effectively using the sky-quadtree as well as virtual max

points and sky-filter points, when the number of skyline points becomes large, SKY-SC

performs much better than BBS.

Multi-core machine: We evaluated our SKY-MC and PPPS [25] devised for multi-

core machines. Experiments were performed on a 32-core machine of Intel(R) Xeon(TM)

E7 CPU 2.67GHz with 128GB of main memory running Linux. We show the average

execution times with varying n from 107 to 109 in Table 4.5. Whenever any algorithm

did not finish due to lack of memory, we do not show the running time in the table.

As shown in Table 4.5, SKY-MC is much better than PPPS for all cases even if our

work is originally developed for MapReduce. The reason is that SKY-MC filters out

non-skyline points effectively using the sky-quadtree as well as virtual max points and

sky-filter points.

MPI: We compared our SKY-MP with GRID1 and GRID2 proposed in [2]. We

used MPICH2 [27] for the implementations of MP-model and GMP-model. We report

the average execution times with varying n in Table 4.6. Whenever any algorithm did

not finish within 8 hours, we do not show the running time in the table. Similar to the

experiments with multi-core machines, our SKY-MP performs better than the others

due to effective pruning.

42

Distribution Algorithm 107 4× 107 108 4× 108 109

Anti-correlated SKY-MP 190 665 1478 4513 9509

GRID1 226 699 1586 4651 9698

GRID2 5134 20955 - - -

Independent SKY-MP 12 53 183 669 1583

GRID1 20 69 142 785 1801

GRID2 641 860 1139 2300 4250

Correlated SKY-MP 4.9 16 51 365 669

GRID1 5.4 28 66 442 1126

GRID2 237 447 642 1250 2322

Table 4.6: Varying n on MPI (sec)

Spark: Spark [46] is especially useful for parallel processing of distributed data

with iterative algorithms. Spark uses Resilient Distributed Datasets (RDDs) which are

a collection of elements partitioned across the nodes of a cluster and can be operated on

in parallel. Since RDDs can be kept in memory, algorithms can iterate over RDD data

many times very efficiently. It is generally known that Spark is useful for iterative al-

gorithms (e.g., K-means) and interactive data analysis. However, due to its in-memory

style data structure, MapRedure is still a promising parallel framework for the appli-

cations in which the intermediate results become much larger than input data and/or

each machine requires a large (but not disjoint) portion of the intermediate result to

generate a final result.

We implemented our SKY-MR using Spark, called SKY-SPARK, and compared it

with the SKY-MR using the MapReduce framework. In Figure 4.11, we plot the execu-

tion times of SKY-MR and SKY-SPARK with varying the number of points n from 106

to 108. Due to the overhead of invoking MapReduce jobs, SKY-MR always takes more

time than 50 seconds. However, the execution time of SKY-SPARK can be less than

50 seconds when the size of data is small. As the number of points increases, SKY-

MR becomes faster than SKY-SPARK since skyline computation requires more larger

43

intermediate results (i.e., local skylines) to compute the global skyline.

 0
 50

 100
 150
 200
 250
 300
 350
 400

1⋅106 1⋅107 1⋅108

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

SKY-SPARK
SKY-MR

(a) Anti-correlated

 0

 50

 100

 150

 200

 250

1⋅106 1⋅107 1⋅108

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

SKY-SPARK
SKY-MR

(b) Independent

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

1⋅106 1⋅107 1⋅108

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

SKY-SPARK
SKY-MR

(c) Correlated

Figure 4.11: Varying the number of points (n) on Spark

44

Chapter 5

Parallel Reverse Skyline Query Processing

5.1 RSKY-MR: Our Reverse Skyline Computation Algorithm

To develop efficient reverse skyline algorithm, we first study the characteristics of

the reverse skyline query. Then, we present out MapReduce reverse skyline algorithm

called RSKY-MR.

Given a query point q, we divide the data D into 2d orthants with respect to a

query point q as illustrated in Figure 5.1 to filter out non-reverse skyline points effi-

ciently. The set of all data points located in an orthant o is denoted as Do. For each

orthant o represented by the region 〈[o(1)−, o(1)+], · · · , [o(d)−, o(d)+]〉, the id, de-

noted by a1a2· · · ad, is assigned where ai = 0 if [o(i)−, o(i)+] = [−∞, q(i)] and

ai = 1 if [o(i)−, o(i)+] = [q(i),∞]. For instance, the orthant 01 represents the region

〈[−∞, 50], [25,∞]〉 in Figure 5.1.

Lemma 5.1.1 For pi, pj ∈ D, if pj is located at an orthant o and pj dynamically

dominates a query point q with respect to pi (i.e. pj ≺pi q), then pi is also in the same

orthant o.

Proof: When pj ≺pi q, we have |q(k)− pi(k)| ≥ |pj(k)− pi(k)| for all k = 1, · · · , d.

Squaring both sides and rearranging terms, the above condition becomes equivalent

45

0

25

50

75

100

0 25 50 75 100

Orthant 01

Orthant 00 Orthant 10

Orthant 11

p1 p2

p3

p4

p5

p8

p7

p6

q

Figure 5.1: The space split with respect to q = 〈50, 25〉

to 0 ≥ (pj(k) − pi(k))
2 − (q(k) − pi(k))

2. Then, we get 0 ≥ (pj(k) + q(k) −

2pi(k)) · (pj(k) − q(k)) = −2 · (pi(k) − q(k))(pj(k) − q(k)) + (pj(k) − q(k))2.

Since 2 · (pi(k) − q(k)) · (pj(k) − q(k)) ≥ (pj(k) − q(k))2 ≥ 0 for all k=1,· · · ,d,

(pi(k)− q(k)) and (pj(k)− q(k)) have the same sign. Thus, pi and pj are in the same

orthant.

Note that pi 6∈ RSL(q,D) if there exists a point pj ∈ D such that pj ≺pi q. Since

every point dynamically dominating q with respect to pi is always located in the same

orthants in which pi is located by Lemma 5.1.1, our brute-force algorithm BR-RSKY-

MR calculates the reverse skyline of each orthant independently and merges all reverse

skylines.

To compute RSL(q,D) efficiently, we next devise the algorithm RSKY-MR with

the following three phases. RSKY-MR utilizes rsky-quadtrees which are a variant of

sky-quadtrees. The pseudocode of RSKY-MR is presented in Figure 5.2.

(1) Rsky-quadtree building phase: By running RSKY-QTREE, we build an rsky-

quadtree associated with each orthant from a sample obtained by reservoir sampling [51].

(2) Local reverse skyline phase: For each unpruned leaf node of every rsky-

quadtree, we compute candidate reverse skyline points in parallel by invoking L-RSKY-

MR. In addition, the local dynamic skyline of the midpoints between every point p (∈

D) and q is selected to prune non-reverse skyline points in the next phase.

46

Function RSKY-MR(D, q, ρ, d, δ)

D: a dataset, q: a query point, ρ: the split threshold,

d: the dimension, δ: strong reverse skyline threshold

begin

1. sample = ReservoirSampling(D);

2. rsky-quadtrees=RSKY-QTREE(sample, ρ, d);

3. Broadcast q and rsky-quadtrees;

4. Local-RSL = RunMapReduce(L-RSKY-MR);

5. if Local-RSL.size ≥ t

6. then Broadcast q, non-empty leaf node ids;

7. RSL = RunMapReduce(G-RSKY-MR);

8. else RSL = G-RSKY(Local-RSL);

9. return RSL;

end

Figure 5.2: The RSKY-MR algorithm

(3) Global reverse skyline phase: We check in parallel whether each candidate

reverse skyline point is actually a global reverse skyline point. Similar to SKY-MR,

depending on the number of candidate reverse skyline points produced in the previous

phase, the global reverse skyline is computed on a single machine by calling G-RSKY

or on multiple machines by invoking G-RSKY-MR.

5.1.1 RSKY-QTREE: The Rsky-Quadtree Building Algorithm

For effective pruning with rsky-quadtrees, we adopt the idea of midpoints introduced

in [16, 53]. The midpoint between a point p and a query point q is defined asmid(p, q)

= 〈(p(1)+q(1))/2, · · · , (p(d)+q(d))/2〉. Since |(p(i)+q(i))/2−q(i)| ≤ |p(i)−q(i)|

holds for each dimension i, the following is trivially true.

Proposition 5.1.2 The midpoint mid(p, q) always dynamically dominates p with re-

spect to q.

47

We develop the following lemmas to identify efficiently whether a point in D is a

global reverse skyline point.

Lemma 5.1.3 Given an orthant o and a query point q, pi ∈ Do is not in the reverse

skyline of Do with respect to q, if and only if there exists another point pj ∈ Do s.t.

mid(pj , q) ≺q pi.

Proof: (⇒:) When pi 6∈ RSL(q,Do), q 6∈ DSL(pi, Do) holds and there exists a point

pj(∈ Do) s.t. pj ≺pi q. Since |pj(k) − pi(k)| ≤ |q(k) − pi(k)| for all k=1, · · · , d,

we can derive (pj(k) − q(k))2 ≤ 2 · (pi(k) − q(k))(pj(k) − q(k)), as shown in

the proof of Lemma 5.1.1. Since pi and pj are in the same orthant by Lemma 5.1.1,

|pj(k)−q(k)|/2 = |(pj(k)+q(k))/2−q(k)| ≤ |pi(k)−q(k)|. Similarly, we can derive

|(pj(k)+ q(k))/2− q(k)| < |pi(k)− q(k)| for at least a single dimension k. Thus, by

the definition of the midpoints, there exists pj ∈ Do such that mid(pj , q) ≺q pi.

(⇐:) We have |(pj(k) + q(k))/2 − q(k)| = |pj(k) − q(k)|/2 ≤ |pi(k) − q(k)|

for all k=1, · · · , d, when mid(pj , q) ≺q pi. By multiplying 2(pj(k) − q(k)) to both

sides, we get

(pj(k)− q(k))2 ≤ 2(pj(k)− q(j))(pi(k)− q(k)). (5.1)

Since |pj(k)−pi(k)| = |pj(k)−q(k)−pi(k)+q(k)|, we have (pj(k)−pi(k))2 =

(pj(k) − q(k))2 + (pi(k) − q(k))2 − 2(pj(k) − q(k))(pi(k) − q(k)). By replacing

(pj(k)−q(k))2 with 2(pj(k)−q(j))(pi(k)−q(k)) and using the above inequality (5.1),

we obtain (pj(k)−pi(k))2 ≤ (pi(k)−q(k))2 and thus |pj(k)−pi(k))| ≤ |pi(k)−q(k)|

holds for every dimension k. Similarly, we can show that |pj(k)− pi(k))| < |pi(k)−

q(k)| for at least a dimension k. Consequently, pj ≺pi q and q cannot be a dynamic

skyline point with respect to pi. In other words, ifmid(pj , q) ≺q pi, pi 6∈ RSL(q,Do).

Lemma 5.1.4 For two points pi, pj ∈ Do, if pj ≺q pi, we have pi 6∈ RSL(q,Do).

48

the rsky-quadtree

ρ=2

orthant 11

01

0 25 50 75 100

25

50

75

100

11

pruned

m6

m4

m1

10

p1

p6

p4

p3

p5m5
m3

p2
p7 p8

m7

m2
m8

00

orthant 11

0 25 50 75 100

25

50

75

100

m4

m1

p1

p4

p5m5

p8

m8

orthant 11

01

0 25 50 75 100

25

50

75

100

11

pruned

m4

m1

10

p1

p4

p5m5

p8

m8

00

(a) (b) (c)

Figure 5.3: An example of rsky-quadtree building

Proof: Since mid(pj , q) ≺q pj by Proposition 5.1.2, mid(pj , q) ≺q pi holds. Thus,

pi 6∈ RSL(q,Do) due to Lemma 5.1.3.

We develop the procedure RSKY-QTREE to build rsky-quadtrees. The main differ-

ences from SKY-QTREE presented in Section 4.1.1 are as follows: (1) Given a query

point q and a data set D, an rsky-quadtree associated with each orthant o is built by in-

serting sample points p ∈ Do(⊂ D) and their midpoints. (2) In an rsky-quadtree, every

node n is marked as “pruned” if there exists a point p ∈ Do dynamically dominating

the node n since all points belonging to the node n cannot be in the reverse skyline. (3)

In an rsky-quadtree, every node n is also marked as “pruned” if there exist at least two

points pi, pj ∈ Do whose mid(pi, q) and mid(pj , q) dynamically dominate the node

n. Since mid(p, q) always dynamically dominates p according to Proposition 5.1.2,

we need at least two midpoints to prune a node of an rsky-quadtree.

Example 5.1.5 Consider the data D in Figure 3.1(a) with a query point q = 〈0, 0〉

and the split threshold ρ = 2. Dividing D into 4 orthants with respect to q results

in a non-empty orthant o with id=11 only. Assume {p1, p4, p5, p8} is a sample of

D. All sample points and their midpoints are inserted into the root node as shown

in Figure 5.3(a) where mi represents mid(pi, q). We recursively subdivide the data

space starting from the root node until the number of points and midpoints in each

49

unpruned leaf node of the rsky-quadtree is at most ρ. Since there are multiple midpoints

dynamically dominating the node with id=11 (i.e., m1, m4, m5 and m8), it is marked

as “pruned” as illustrated in Figure 5.3(b). The rsky-quadtree constructed from the

sample is shown in Figure 5.3(c).

5.1.2 Computations of Reverse Skylines using Rsky-Quadtrees

To illustrate how to compute the reverse skylines using rsky-quadtrees, we utilize the

following definitions.

Definition 5.1.6 For a leaf node n, let Lp(n) = {p ∈ D| p is located in region(n)},

Lm(n) = {mid(p, q)|p ∈ D s.t. mid(p, q) is located in region(n)} and L(n) =

Lp(n)∪Lm(n). The strong reverse skyline SRSL(q, L(n)) ofL(n) with respect to q is

{pj ∈ Lp(n) | pj ∈ RSL(q, Lp(n)) and @m(6= mid(pi, q)) ∈ Lm(n) s.t. m ≺q pj}.

A reverse skyline point p is a strong reverse skyline point of the node contain-

ing p since p is not dominated by the midpoints of all other points in D accord-

ing to Lemma 5.1.3. Thus, if we can eliminate all non-reverse skyline points from

SRSL(q, L(n)) of every node n in rsky-quadtrees, we can obtain the reverse skyline.

To eliminate non-reverse skyline points in each node n, we need the local dynamic

skyline midpoints DSL(q, Lm(n)) of every other node. For example, consider the

points pi, pj , pk ∈ Do. If mid(pk, q) ≺q mid(pj , q) and mid(pj , q) ≺q pi, we have

mid(pk, q) ≺q pi and pi 6∈ RSL(q,Do) by Lemma 5.1.3. Thus, if mid(pk, q) ≺q

mid(pj , q), we only need mid(pk, q) to check whether pi is a reverse skyline point or

not.

The local dynamic skyline midpoints themselves are not sufficient, however, to

eliminate all non-reverse skyline points from the strong reverse skylines. For instance,

consider the point pi in Figure 5.4. Although pi is a strong reverse skyline point, pi 6∈

RSL(q,D) because mj(= mid(pj , q)) ≺q pi holds. Since mi(= mid(pi, q)) ≺q mj

in node(00),mj is not a local dynamic skyline midpoint. Thus, if we only use the local

50

q

11

10

01

00

pi
pj

mi mj

pruned

Figure 5.4: Points and their midpoints in an orthant

dynamic skyline midpoints blindly, we cannot eliminate pi correctly. However, since

mi is a local dynamic skyline midpoint, we can annotate mi with a special symbol,

representing that mj dynamically dominates pi, in order to utilize mi to prune pi. We

call such annotated midpoints the verification midpoints as defined below:

Definition 5.1.7 Given a query point q and the set of midpoints Lm(n) of an unpruned

leaf node n in an rsky-quadtree, consider a point p such that mid(p, q)∈DSL(q,

Lm(n)). The midpointmid(p, q) is a verification midpoint if there existsmj ∈ Lm(n)

such that mid(p, q) ≺q mj ≺q p.

Lemma 5.1.8 Given a query point q and an rsky-quadtree r of an orthant o, p ∈ Do

is a reverse skyline point if and only if (1) p is in SRSL(q, L(n)) of an unpruned leaf

node n in r,(2) mid(p, q) is not a verification midpoint, and (3) for every unpruned

leaf node n′ in r, there does not exist m(6= mid(p, q)) ∈ DSL(q, Lm(n′)) such that

m ≺q p.

Proof: (⇒:) We prove the contrapositive: when one of the three conditions is not

satisfied, p 6∈ RSL(q,D).

When the condition (1) is not satisfied, by Definition 5.1.6, there ism(6= mid(p, q)) ∈

Lm(n) or pi(6= p) ∈ Lp(n) s.t. m ≺q p or mid(pi, q) ≺q p. If the condition (2) is

not satisfied, there is a midpoint m s.t. mid(p, q) ≺q m ≺q p by Definition 5.1.7.

When the condition (3) is not satisfied, there is m(6= mid(p, q)) ∈ DSL(q, Lm) s.t.

51

m ≺q p. Thus, whenever one of the three conditions is not satisfied, there exists a

midpoint m 6= mid(p, q) s.t m ≺q p and p 6∈ RSL(q,Do) according to Lemma 5.1.3.

Therefore, p ∈ RSL(q,Do) implies that all three conditions are satisfied.

(⇐:) For the purpose of contradiction, suppose p 6∈ RSL(q, Do). Based on Lemma 5.1.3,

there exists a midpoint m 6= mid(p, q) s.t. m ≺q p for a point p contained in the or-

thant o. Without loss of generality, assume that m is in an unpruned leaf node. (Other-

wise, let m be mu where mu (6= mid(p, q)) is a midpoint which is in an unpruned leaf

node and dynamically dominates m. The midpoint mu always exists by the properties

of the rsky-quadtrees and we have mu ≺q p).

When p and m are located in the same node n of r, p 6∈ SRSL(q, L(n)) since

m ≺q p. It contradicts the condition (1) resulting that p andm should be located in dif-

ferent nodes of r. In the unpruned leaf node nm containingm, ifm ∈ DSL(q, Lm(nm)),

it contradicts the condition (3). Therefore, there exists another midpointm′ ∈ DSL(q, Lm(nm))

s.t. m′ ≺q m. If m′ 6= mid(p, q), it also contradicts the condition (3) since m′ ≺q

m ≺q p. This implies that m′ = mid(p, q). Since m and mid(p, q) are located in

the same unpruned leaf node and mid(p, q) ≺q m ≺q p, mid(p, q) is a verification

midpoint by Definition 5.1.7. It contradicts the condition (2). Therefore, if all three

conditions hold, p is a reverse skyline point.

We next define the reverse virtual max point of each leaf node of an rsky-quadtree

and provide the property of the reverse virtual max points.

Definition 5.1.9 The reverse virtual max point of each leaf node n of an rsky-quadtree,

denoted by rvpn, is defined as the point whose k-th dimensional value rvpn(k) is

maxpi∈SRSL(q,L(n)) |pi(k)− q(k)| for every k=1,2,· · · ,d.

Proposition 5.1.10 If a midpointm does not dynamically dominate the reverse virtual

max point of a leaf node n in an rsky-quadtree,m does not dynamically dominate every

strong reverse skyline point in region(n).

We omit the proof of Proposition 5.1.10 because it is similar to that of Proposition

52

Function L-RSKY-MR.map(key, p)

key: null, p: a point

begin

1. rsky-qtrees = LoadTrees(), q = LoadQuery();

2. O(p) = FindOrthants(p, q);

3. for each o ∈ O(p) do

4. np = GetNode(p, rsky-qtrees[o]);

5. if np.pruned == false then

6. emit((o,np),(“P”,p));

7. nm = GetNode(mid(p, q), rsky-qtrees[o]);

8. if nm.pruned == false then

9. emit((o,nm),(“M”,mid(p,q)));

end

Figure 5.5: The map function of the L-RSKY-MR algorithm

4.1.5 in Section 4.1.2.

5.1.3 L-RSKY-MR: The Local Reverse Skyline Computation Algorithm

Based on Lemmas 5.1.1, 5.1.3 and 5.1.8, the procedure L-RSKY-MR computes the

strong reverse skyline and local dynamic skyline midpoints in every unpruned leaf

node of all rsky-quadtrees. The pseudocodes of map and reduce functions are shown

in Figures 5.5 and 5.6, respectively.

Each map function is called with a point p in D. To check whether a point p is a

reverse skyline point or not, we examine only the points in each orthant containing p

by Lemma 5.1.1. Thus, in the map function called with p, we examine each orthant o

containing p independently. Note that if a point p ∈ Do is in the pruned leaf node of the

rsky-quadtree, p is not a global reverse skyline point due to Lemma 5.1.3 since there

exists a midpoint of another point in Do which dynamically dominates p with respect

to q. For each orthant o, we perform the following two steps: (1) We check whether p

53

Function L-RSKY-MR.reduce(key, L)

key: (orthant id o, a node id n), L: a list of points and midpoints

begin

1. q = LoadQuery();

2. SRSL = StrongReverseSkyline(q,L);

3. output(key, SRSL);

4. Lm = {m ∈ L|m has symbol “M”};

5. DSL = DynamicSkyline(q,Lm);

6. for each midpoint m in DSL do

7. if IsVerificationMidpoint(m, Lm) then

8. output (key, (“V”,m);

9. else output (key, (“M”,m);

10. append(RSKY-FILTER, FilterPoint(DSL);

11. append(RVIRTUAL, VirtualMax(SRSL);

end

Figure 5.6: The reduce function of the L-RSKY-MR algorithm

belongs to an unpruned leaf node of o’s rsky-quadtree. If it does, we emit 〈(o, np),(“P”,

p)〉 where “P” represents that p is a point (in lines 2-6 of L-RSKY-MR.map). (2) If

mid(p, q) belongs to an unpruned leaf node nm, we output 〈(o, nm), (“M”,mid(p, q))〉

where “M” denotes that m is a midpoint (in lines 7-9).

After the shuffling phase groups the output of the map functions according to each

distinct unpruned leaf node, a reduce function is called with each distinct group. For

each distinct group (o, n), the list L(n), which is Lp(n)∪Lm(n) as defined in Defini-

tion 5.1.6, is generated.

Consider the reduce function called with a distinct group (o, n) and the input value

listL(n). The reduce function computes the strong reverse skyline (i.e., SRSL(q, L(n)))

and the local dynamic skyline of midpoints (i.e.,DLS(q,Lm(n))) according to Lemma 5.1.8

(in lines 1-5 of L-RSKY-MR.reduce). For every strong reverse skyline point, the reduce

54

p1=⟨15,85⟩

p2=⟨85,95⟩

p3=⟨55,35⟩

p4=⟨80,55⟩

p5=⟨60,15⟩

p6=⟨70,40⟩

p7=⟨40,60⟩

p8=⟨65,90⟩

M
ap

M
ap

key value

11,01 (“P”, p1=⟨15,85⟩)
11,0001 (“M”, m1=⟨7.5,42.5⟩)
11,0011 (“M”, m2=⟨42.5,47.5⟩)
11,10 (“P”, p3=⟨55,35⟩)
11,0010 (“M”, m3=⟨27.5,17.5⟩)
11,0011 (“M”, m4=⟨40,27.5⟩)
11,10 (“P”, p5=⟨60,15⟩)
11,0010 (“M”, m5=⟨30,7.5⟩)
11,10 (“P”, p6=⟨70,40⟩)
11,0010 (“M”, m6=⟨35,20⟩)
11,01 (“P”, p7=⟨40,60⟩)
11,0001 (“M”, m7=⟨20,30⟩)
11,0011 (“M”, m8=⟨32.5,45⟩)

S
o

rt b
y

 k
ey

R
ed

u
ce

(a) (b) (c)

key value

11,01 (“P”, p1=⟨15,85⟩)
(“P”, p7=⟨40,60⟩)

11,0001 (“M”, m1=⟨7.5,42.5⟩)
(“M”, m7=⟨20,30⟩)

11,0011 (“M”, m2=⟨42.5,47.5⟩)
(“M”, m4=⟨40,27.5⟩)
(“M”, m8=⟨32.5,45⟩)

11,10 (“P”, p3=⟨55,35⟩)
(“P”, p5=⟨60,15⟩)
(“P”, p6=⟨70,40⟩)

11,0010 (“M”, m3=⟨27.5,17.5⟩)
(“M”, m5=⟨30,7.5⟩)
(“M”, m6=⟨35,20⟩)

key value rvpn

11,01 (“p”, p1=⟨15,85⟩) ⟨15,85⟩
11,0001 (“m”, m1=⟨7.5,42.5⟩)

(“m”, m7=⟨20,30⟩)
11,0011 (“V”, m4=⟨40,27.5⟩)

(“V”, m8=⟨32.5,45⟩)
11,10 (“p”, p5=⟨60,15⟩) ⟨60,15⟩
11,0010 (“V”, m3=⟨27.5,17.5⟩)

(“m”, m5=⟨30,7.5⟩)

: rsky-filter point

Figure 5.7: The data flow in the local reverse skyline phase of RSKY-MR

function outputs the key-value pair 〈(o, n), (“P”, p)〉 (in line 3). In addition, the reduce

function emits 〈(o, n), (“V”, v)〉 for every verification midpoint v in DSL(q, Lm(n))

defined in Definition 5.1.7 (in lines 6-8). For every midpoint m in DSL(q, Lm(n))

which is not a verification midpoint, the reduce function outputs 〈(o, n), (“M”, m)〉(in

line 9).

Similar to L-SKY-MR, for each dimension, the reduce function chooses a single

midpoint, called an rsky-filter midpoint, in DSL(q, Lm(n)) which has the minimum

value of the dimension. The reduce function also computes the reverse virtual max

point of the leaf node n. Finally, the reduce function outputs the rsky-filter midpoints

and the reverse virtual max point to the files called RSKY-FILTER and RVIRTUAL in

HDFS respectively (in lines 10-11).

Example 5.1.11 Consider the rsky-quadtree in Example 5.1.5. In the local reverse

skyline phase, a map function is invoked with each point p ∈ D. For instance, the map

function with p5 outputs 〈(11, 10), (“P”, p5)〉 because p5 belongs to the unpruned leaf

node, node(10), in the orthant with id=11. In addition, sincemid(p5, q) belongs to an

unpruned leaf node, node(0010), in the same orthant, the map function also outputs

〈(11, 0010), (“M”, mid(p5, q))〉. The key-value pairs output by all map functions are

shown in Figure 5.7(a). The output of the shuffling phase is presented in Figure 5.7(b).

55

Function G-RSKY-MR.map(key, p)

key: (an orthant id o, a node id n), p: (a point or a midpoint p, mark)

begin

1. q = LoadQuery();

2. if IsPoint(p) then

3. if DynamicDominatedByFilterPoints(p,q,o) then return;

4. emit(key, (“P”, p));

5. if IsMidpoint(p) then

6. rsky-quadtrees = LoadTrees()

7. nodes = LoadNonEmptyNodes(o);

8. for each node id ni in nodes

9. if IsNeeded(n, ni) then

10. output((o,ni), (mark, p));

end

Figure 5.8: The map function of the G-RSKY-MR algorithm

For each distinct key (o, n), a reduce function is called with the list of points and

midpoints in region(n). For instance, the reduce function invoked with the key (11,10)

receives {p3, p5, p6} as input value list and outputs 〈(11,10),(p5,“P”)〉 since p5 is a

strong reverse skyline point. The reduce function next calculates the verification mid-

points, reverse virtual max point and rsky-filter points. In node(0011),m4 is annotated

with “V” since m2 is in region(n) and m2 dominates p4. In node(0011), m4 and m8

are selected as the rsky-filter midpoints sincem8(1) = 32.5 andm4(2) = 27.5 are the

minimum value on the first and second dimensions respectively. In Figure 5.7(c), we

have shown the output emitted by all reduce functions where the rsky-filter midpoints

are circled.

56

5.1.4 G-RSKY-MR: The Global Reverse Skyline Computation Algorithm

The parallel algorithm G-RSKY-MR finds the global reverse skyline points indepen-

dently in each non-empty unpruned leaf node by Propositions 4.1.2, 5.1.10 and Lemma 5.1.8.

We omit the details of the serial algorithm G-RSKY due to space limitations.

For every strong reverse skyline point p, we check whether (1) p is not dynam-

ically dominated by a local dynamic skyline midpoint m (i.e., m 6≺q p) and (2) p’s

midpoint is not one of the verification midpoints. If both conditions are satisfied, p is

a global reverse skyline point due to Lemma 5.1.8. To check the condition (1), we ex-

amine whether m ≺q p for every midpoint m contained in all unpruned leaf nodes ni.

However, we do not need to check whether m ≺q p if there is k such that sub(id(ni),

k) > sub(id(nj), k) where nj is the node containing p and sub(id(n), k) is the k-th

substring of n’s id defined in Section 4.1.1. The reason is that we have m 6≺q p for

every point p in nj according to Proposition 4.1.2. In addition, if m 6≺q rvpnj (i.e., the

reverse virtual max point of nj), since m 6≺q p for every strong reverse skyline point p

belonging to nj by Proposition 5.1.10, we do not need to check m ≺q p either.

The pseudocode of G-RSKY-MR is presented in Figure 5.8. Each map function

is invoked with a strong reverse skyline point (i.e., annotated with “P”) or a local

dynamic skyline midpoint (i.e., annotated with “M” or “V”) which were generated

at the previous phase. Consider a map function called with a strong reverse skyline

point p in an unpruned leaf node n in an orthant o. Note that p is not a global reverse

skyline point if p is dominated by another point’s midpoint by Lemma 5.1.3. Thus, the

map function emits 〈(o, n), (“P”,p)〉 if p is not dynamically dominated by rsky-filter

midpoints (in lines 1-4 of G-RSKY-MR.map).

For the map function called with a local dynamic skyline midpoint m contained

in an unpruned leaf node nm in an orthant o, the map function should find out all

unpruned leaf nodes n requiring m to check whether n’s strong reverse skyline points

are the global reverse skyline points. If nm 6≺ n or m 6≺q rvpn, n does not require m

to check n’s strong reverse skyline points by Propositions 4.1.2 and 5.1.10. For each

57

M
ap

key Value

11,01 (“P”, p1=⟨15,85⟩)
11,01 (“M”, m1=⟨7.5,42.5⟩)
11,10 (“P”, p5=⟨60,15⟩)
11,10 (“M”, m5=⟨30,7.5⟩)

Global skyline

point

p1=⟨15,85⟩
p5=⟨60,15⟩

S
o

rt b
y

 k
ey

R
ed

u
ce

(a) (b) (c)

key value rvpn

11,01 (“P”, p1=⟨15,85⟩) ⟨15,85⟩
11,0001 (“M”, m1=⟨7.5,42.5⟩)

(“M”, m7=⟨20,30⟩)
11,0011 (“V”, m4=⟨40,27.5⟩)

(“V”, m8=⟨32.5,45⟩)
11,10 (“P”, p5=⟨60,15⟩) ⟨60,15⟩
11,0010 (“V”, m3=⟨27.5,17.5⟩)

(“M”, m5=⟨30,7.5⟩)

key Value

11,01 (“P”, p1=⟨15,85⟩)
(“M”, m1=⟨7.5,42.5⟩)

11,10 (“P”, p5=⟨60,15⟩)
(“M”, m5=⟨30,7.5⟩)

Figure 5.9: The data flow in the global reverse skyline phase of RSKY-MR

unpruned leaf node n which requires m, the map function outputs 〈(o, n), (“V”,m)〉 if

m is a verification midpoint. Otherwise, it outputs 〈(o, n), (“M”,m)〉 (in lines 5-10).

The key-value pairs emitted by map functions are grouped according to each dis-

tinct unpruned leaf node in the shuffling phase and a reduce function is called with

each distinct group. Each reduce function checks whether the strong reverse skyline

points in a node are the global reverse skyline points based on Lemma 5.1.8. If a strong

reverse skyline point p is dynamically dominated by the midpoints coming from the

other nodes or p’s midpoint is annotated with “V”, p cannot be a reverse skyline point.

Finally, the reduce function outputs the global skyline points.

Example 5.1.12 Assume a map function is called with each point in the output of

the local reverse skyline phase in Example 5.1.11. Since m1 in node(0001) dynami-

cally dominates the reverse virtual max point of node(01), the map function with m1

emits 〈(11,01), (“M”, m1)〉. However, since m3 does not dynamically dominate the

reverse virtual max point of node(1000), we do not emit 〈(11,1000), (“V”, m3)〉.

Figures 5.9(a) and 5.9(b) show the output of all map functions and the result of the

shuffling phase respectively.

For every unpruned leaf node, a reduce function is called to see whether each

strong reverse skyline point is actually a global reverse skyline point. For example,

the input value list of the reduce function with the key (11, 01) is {p1, m1}. Since m1

is not a verification midpoint, p1 is a global reverse skyline point. After every reduce

function is finished, {p1, p5} becomes the reverse skyline as in Figure 5.9(g).

58

Parameter Range Default

No. of samples (s) 100 ∼ 8, 000 1,000

Split threshold (ρ) 10 ∼ 60 40

No. of points (n) 107 ∼ 4× 109 108

No. of dimensions (d) 2 ∼ 10 6

No. of machines (t) 5 ∼ 20 10

Table 5.1: Parameters used for the reverse skyline algorithms

5.2 Experiment

We empirically evaluated the performance of our proposed algorithms using the pa-

rameters as summarized in Table 5.1. All experiments on MapReduce were performed

on the cluster of 20 nodes of Intel(R) Core(TM) i3 CPU 3.3GHz machines with 4GB

of main memory running Linux. The implementations of all algorithms were complied

by Javac 1.6. We used Hadoop 1.0.3 for MapReduce [4]. The execution times in the

graphs shown in this section are plotted in log scale.

5.2.1 Performance Results for Reverse Skylines

We next present the experimental results of the reverse skyline algorithms with ran-

domly generated query points.

Data sets: We built three synthetic data sets which were randomly generated by

correlated, independent and anti-correlated distributions. The three types of data sets

are typically used to evaluate the performance of skyline algorithms [10]. The sizes

of resulting synthetic data sets are varied from 392MB to 153GB depending on the

number of points (n) as well as the number of dimensions (d).

Implemented algorithms: The MapReduce algorithms implemented for the re-

verse skyline are presented in Table 5.2. We ran all algorithms five times and measured

the average execution times. We do not plot the execution times of some algorithms

when they did not finish within 8 hours or they did not work due to some reasons such

59

Algorithm Description

RSKY-MR-S/M RSKY-MR-S utilizes G-RSKY.

RSKY-MR-M utilizes G-RSKY-MR.

RSKY-MR RSKY-MR adaptively selects G-RSKY-MR or G-RSKY

with respect to the number of strong reverse skyline points.

If it is less than 104, G-RSKY is selected.

BR-RSKY-MR Our brute-force algorithm without using rsky-quadtrees in Section 5.1

Table 5.2: Implemented reverse skyline algorithms

 500

 550

 600

 650

 700

 750

 800

 100 200 400 1000 2000 4000 8000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of sample points(s)

ρ=10
ρ=20
ρ=40
ρ=60

Figure 5.10: RSKY-MR with varying s and ρ

as out of memory.

Default values of s and ρ: To choose the proper values of s and ρ, we varied s

from 100 to 8, 000 and ρ from 10 to 60. Figure 5.10 presents the average execution

time over all data sets. We utilize s = 1, 000 and ρ = 40 as the default values since

RSKY-MR shows the best performance with those values. Note that small and large

values of s make RSKY-MR inefficient, as we mentioned in Section 4.2.1.

Varying n: We varied n from 107 to 4 × 109 and plot the execution times in Fig-

ure 5.11. Similar to the skyline experimental results with varying n, the performance of

every algorithm on the anti-correlated data set is worse than that of itself on the other

data sets. When there is a skew in data such that a lot of points belong to an orthant,

60

 10

 100

 1000

 10000

 100000

 1e+07 1e+08 1e+09 4e+09

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of points

BR-RSKY-MR
RSKY-MR-M
RSKY-MR-S

RSKY-MR

(a) Anti-correlated

 100

 1000

 10000

 100000

 1e+07 1e+08 1e+09 4e+09

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of points

BR-RSKY-MR
RSKY-MR-M
RSKY-MR-S

RSKY-MR

(b) Independent

 10

 100

 1000

 10000

 100000

 1e+07 1e+08 1e+09 4e+09

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of points

BR-RSKY-MR
RSKY-MR-M
RSKY-MR-S

RSKY-MR

(c) Correlated

Figure 5.11: Varying the number of points (n) for reverse skyline processing

BR-RSKY-MR shows the worst performance since BR-RSKY-MR computes the reverse

skyline in each orthant independently.

Even though our RSKY-MR also computes the reverse skyline in every orthant in-

dependently, RSKY-MR performs well due to the effective use of rsky-quadtrees. Fur-

thermore, RSKY-MR-M shows better performance than RSKY-MR-S due to its paral-

lelization of the third phase when the number of strong reverse skyline points is large.

As we expected, the performance of RSKY-MR-S is better than that of RSKY-MR-M

only for small correlated data sets. Since RSKY-MR selects RSKY-MR-M or RSKY-

MR-S adaptively depending on the number of strong reverse skyline points, RSKY-MR

always shows the best performance.

Varying t and d: In order to evaluate the speedup of our algorithms, we varied

61

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20

R
el

at
iv

e
sp

ee
d

Number of machines

IDEAL
RSKY-MR

RSKY-MR-M
RSKY-MR-S

BR-RSKY-MR

Figure 5.12: Relative Speed with varying the number of machines (t) for reverse sky-

line processing

the number of machines t from 5 to 20. In Figure 5.12, we show the relative speed

of each algorithm. For the relative speed with varying t, when the number of strong

reverse skyline points is small (i.e., the correlated data set), RSKY-MR-S has the better

scalability than RSKY-MR-M. Over all cases, RSKY-MR shows the best scalability. Fur-

thermore, the graphs varying d have almost the same trends with those with varying n

in Figure 5.11. Thus, we do not provide the graphs for the experiments with varying d.

62

Chapter 6

Parallel Probabilistic Skyline Query Processing

6.1 Early Pruning Techniques

If we know that an object cannot be a probabilistic skyline object, we can avoid com-

puting its skyline probability. Thus, we introduce three filtering techniques called

upper-bound filtering, zero-probability filtering and dominance-power filtering. We

next present the details of each filtering technique.

6.1.1 Upper-bound Filtering

The following propositions address that the skyline probability of an object U by con-

sidering a sample S of the objects in D only is an upper bound of Psky(U) for both

discrete and continuous models.

Proposition 6.1.1 Consider an object U in the discrete model. For an instance ui ∈

U , the value of Psky(ui) computed by Equation (3.1) with V ′ ⊆ V and S ⊂ D instead

is the upper bound of Psky(ui). The sum of the upper bounds of Psky(ui)s with all

ui ∈ U is the upper bound of Psky(U).

Proposition 6.1.2 Consider an object U modeled by its uncertainty region U.R with

a pdf U.f(·). The value of Psky(U) computed by Equation (3.2) with S ⊂ D and a

63

0

2.5

5

7.5

10

0 2.5 5 7.5 10

z1

w1 x1
x2

y1

w2

y2

z2 Objects

X

Y

W

Z

Pmin=1.0 Pmin=0.5

Pmin=1.0Pmin=1.0

node(01) node(11)

node(10)node(00)

Figure 6.1: A PSQtree

sub-region V.R′ of V.R becomes the upper bound of Psky(U).

By keeping the upper bounds of the skyline probabilities of all instances in each ob-

ject, we can identify probabilistic non-skyline objects. As shown in Figure 6.1, all in-

stances in 〈[5, 10), [5, 10)〉 are dominated byw1. Note thatPsky(y1)=P (y1)
∏
V ∈D,V 6=Y

(1-
∑

vj∈V,vj≺y1 P (vj))=0.024 by Equation (3.1). Due to Proposition 6.1.1, we have

Psky(y1) ≤ P (y1)(1-P (w1))=0.4 which is obtained by using S = {W} and V ′ =

{w1}. Similarly, the upper bound of Psky(y2) becomes 0.1. Thus, the upper bound of

Psky(Y) becomes 0.5 by adding the upper bounds of Psky(y1) and Psky(y2). If Tp is

0.6, since Psky(Y) ≤ 0.5 < Tp, Y is a non-skyline object.

We now present how to compute the upper bound of the skyline probability of

every object in each partition for our upper-bound filtering. Let R.min be the point

whose k-th coordinate is the minimum in the k-th dimension for a rectangular region

R.

Definition 6.1.3 For an instance ui of an object U ∈ D, a set of objects S ⊂ D and a

rectangular region R(ui) including ui, we define

64

β(U,S, R(ui)) =
∏
V ∈S(1−

∑
vj∈V,vj≺R(ui).min

P (vj))

1−
∑

uk≺R(ui).min,uk∈U P (uk)
(6.1)

and up(ui, U,S, R(ui)) = P (ui)× β(U,S, R(ui)).

The upper bound of the skyline probability of an instance can be computed by

utilizing the following lemma.

Lemma 6.1.4 Consider an instance ui of an object U ∈ D and a rectangular re-

gion R(ui) which contains ui. For a set of objects S ⊂ D, we have Psky(ui) ≤

up(ui, U,S, R(ui)).

Proof: Let Dui and DR be the sets of the instances in D which dominate ui and

R(ui).min, respectively. Since every instance dominating R(ui).min also dominates

ui, we have DR ⊆ Dui . We derive Psky(ui) ≤ up(ui, U,S, R(ui)) as follows:

Psky(ui) ≤ P (ui)
∏

V ∈S,V 6=U

1−
∑

vj∈V ∩DR

P (vj)

 (by Proposition 6.1.1)

= P (ui)
∏

V ∈S,V 6=U

1−
∑

vj∈V ∩DR

P (vj)

 1−
∑

ui∈U∩DR
P (ui)

1−
∑

ui∈U∩DR
P (ui)

≤ P (ui)

∏
V ∈S

(
1−

∑
vj∈V ∩DR

P (vj)
)

1−
∑

uk∈U∩DR
P (uk)

= P (ui)

∏
V ∈S(1−

∑
vj∈V,vj≺R(ui).min

P (vj))

1−
∑

uk≺R(ui).min,uk∈U P (uk)
= up(ui, U,S, R(ui))

(since {vj ∈ V |vj ≺ R(ui).min} = V ∩DR)

Corollary 6.1.5 Consider an object U∈D and let R(ui) be a rectangular region con-

taining an instance ui ofU . For a set of objects S⊂D, if we have
∑

ui∈U up(ui, U,S, R(ui))

< Tp, U is not a probabilistic skyline object.

65

By Corollary 6.1.5, we do not compute the skyline probability of an uncertain

object U if we have
∑

ui∈U up(ui, U,S, R(ui))< Tp. We call such pruning the upper-

bound filtering. We can prune even further when every object has a single instance only

as follows.

Lemma 6.1.6 When every object in D has a single instance, consider an instance u of

an object U and a rectangular region R(u) containing u. For a set of objects S ⊂ D,

if we have up(u, U, S, R(u)) = P (u)×β(U,S, R(u)) < Tp, U is not a skyline object.

Furthermore, if β(U,S, R(u)) < Tp also holds, there is no object in the probabilistic

skyline whose instance is dominated by u.

Proof: Since every object has a single instance, we have Psky(U) = Psky(u) ≤

up(u, U, S, R(u)) ≤ Tp by Lemma 6.1.4 and U is not a skyline object due to Corollary

6.1.5.

We next prove the second case of when β(U,S, R(u)) < Tp by contradiction. As-

sume that there is a skyline objectW whose instancew is dominated by u (i.e., u ≺ w).

By Proposition 6.1.1, we have Psky(W) ≤ P (w)
∏
V ∈S(1−

∑
v∈V,v≺w P (v)). Since

R(u) contains u, R(u).min ≺ u ≺ w holds and hence R(u).min ≺ w. Further-

more, because every instance v such that v ≺ R(u).min also dominates w, we have

{v ∈ V |v ≺ R(u).min} ⊆ {v ∈ V |v ≺ w} and get

P (w)
∏
V ∈S

(1-
∑

v∈V,v≺w
P (v)) ≤ P (w)

∏
V ∈S

(1-
∑

v∈V,v≺R(u).min

P (v)).

When U has a single instance u which does not dominate R(u).min, we have∑
u≺R(u).min,u∈U P (u) = 0 resulting that

β(U,S, R(u)) =
∏
V ∈S

(1−
∑

v∈V,v≺R(u).min

P (v))

from Definition 6.1.3. Thus, we have Psky(W) ≤ P (w)×β(U,S, R(u)). Now assume

that β(U,S, R(u)) < Tp holds. Then, we obtain Psky(W) < Tp. It contradicts to the

assumption that W is a skyline object.

66

The following corollary shows that the Lemma used by PSMR [18] is a special case

of our Lemma 6.1.6 since β(U,S, R(u)) =
∏
V ∈S(1−

∑
vj∈V,vj≺u P (vj)) whenR(u)

degenerates to the minimum bounding rectangle containing only a single instance u.

Corollary 6.1.7 When every object in D has a single instance, consider an instance u

of an object U and a subset S ⊂ D. If P (u)
∏
V ∈S(1−

∑
vj∈V,vj≺u P (vj)) < Tp, U is

not a skyline object. Furthermore, when β(U,S, R) =
∏
V ∈S(1−

∑
vj∈V,vj≺u P (vj)) <

Tp also holds, there is no object in the probabilistic skyline whose instance is domi-

nated by u.

The continuous model: We define uppdf (u, U, S, R(u)) by replacing the summa-

tions in Definition 6.1.3 with integrations over all points contained in V.R for every

object V ∈ S.

Definition 6.1.8 For an object U ∈ D with its uncertainty region U.R, a point u

located in U.R, a subset S ⊂ D and a rectangular region R(u) which contains u,

uppdf (u, U, S, R(u)) is defined as follows:

uppdf (u, U, S, R(u)) = U.f(u)

∏
V ∈S(1-

∫
V.R V.f(v)I(v ≺ R(u).min)dv)

1-
∫
U.R U.f(w)I(w ≺ R(u).min)dw

where R(u).min is the point whose k-th coordinate is the minimum in the k-th di-

mension for R(u).

The following lemma states the condition of when an object is not a probabilistic

skyline object. Since the proof is similar to that of Lemma 6.1.4, we omit it.

Lemma 6.1.9 Consider the skyline threshold Tp, an object U ∈ D and a point u in

U.R. LetR(u) be a rectangular region containing u. For an object U ∈ D and a subset

S ⊂ D, when
∫
U.R uppdf (u, U, S, R(u))du < Tp, U is not a skyline object.

6.1.2 Zero-probability Filtering

Recall that the skyline probability of ui ∈ U is Psky(ui) = P (ui)
∏
V ∈D,V 6=U (1 −∑

vj∈V,vj≺ui P (vj)). WhenPsky(ui) = 0, there exists an object V such that
∑

vj∈V,vj≺ui

67

P (vj) = 1. Thus, an instance of V dominating ui always appears in every possible

world and ui cannot contribute to computing the skyline probability of every other

object.

Lemma 6.1.10 Consider an instance ui of an object U ∈ D and a rectangular region

R(ui) containing ui. For a subset S⊂D, when
∏
V ∈S(1-

∑
vj∈V,vj≺R(ui).min

P (vj))=0,

the skyline probability of ui is zero and we can delete ui from U .

Proof: By Lemma 6.1.4, we have Psky(ui) ≤ up(ui, U,S, R(ui)) = P (ui)× β(U,S,

R(ui)). If
∏
V ∈S(1−

∑
vj∈V,vj≺R(ui).min

P (vj)) = 0 (i.e., the numerator in Equation

(6.1) of β(U,S, R(ui)) is zero), we have 0 ≤ Psky(ui) ≤ up(ui, U, S, R(ui)) = 0.

We refer to the pruning technique based on Lemma 6.1.10 as the zero-probability

filtering.

The continuous model: When uppdf (u, U, S, R(u)) = 0 holds for all u ∈ U.R,

we have
∫
U.R uppdf (u, U, S, R(u))du = 0 and U is not a skyline object by Lemma

6.1.9. Thus, we can delete U .

6.1.3 Dominance-Power Filtering

We maintain a small number of objects with the high dominating power and use them

for checking the dominance relationship to handle large data.

Definition 6.1.11 Consider a d-dimensional space 〈[0, b(1)), · · · , [0, b(d))〉 where

[0, b(k)) is its range of the k-th dimension. The dominating power of an instance

vj=〈vj(1), · · · , vj(d)〉, denoted by DP (vj), is
∏d
k=1(b(k)−vj(k)). Furthermore, the

dominance power of an object V , denoted by DP (V) is
∑

vj∈V (P (vj)×DP (vj)).

As the existence probability of an instance vj of an object V increases, the sky-

line probability of ui of another object U dominated by vj decreases. In addition, the

number of instances of other objects dominated by vj tends to be larger as the dominat-

ing power DP (vj) grows. Thus, we utilize DP (V) to estimate the dominating power

68

of V . We refer to the set of top-K objects with the largest dominating powers as a

dominating object set F .

For an objectU with a dominating object setF , if we have
∑

ui∈U P (ui)
∏
V ∈F,V 6=U

(1 −
∑

vj∈V,vj≺ui P (vj)) < Tp, U is not a probabilistic skyline object in D and thus

we do not compute its skyline probability. We call the strategy the dominance-power

filtering.

To maintain the K objects with the largest dominating powers and identify non-

skyline objects at the same time, we invoke the procedure DP-Filter which utilizes a

min-heapH to store theK dominating objects. For an objectU , if the value ofPsky(U)

which is computed by considering H instead of D is less than Tp, DP-Filter returns

FALSE to indicate that U is not a probabilistic skyline object due to Proposition 6.1.1.

Otherwise, it returns TRUE. In this case, we also update H by inserting U . In other

words, if the number of objects in H is less than K, we insert the object U into H .

When the number of objects in H is K and the dominance power of U is larger than

that of the object O with the minimum dominance power in H , we delete O from H

and insert U to H .

The continuous model: Consider a d-dimensional space 〈[0,b(1)),· · · ,[0,b(d))〉.

The dominance power of an objectU in the continuous model, represented byDPpdf (U),

is defined as
∫
U.R U.f(u)

∏d
k=1(b(k) − u(k))du. We keep top-K objects with the

highest dominating powers as the dominating object set F . The only change is to

utilize Proposition 6.1.2 instead of Proposition 6.1.1. If
∫
U.R U.f(u)

∏
V ∈F,V 6=U (1−∫

V.R V.f(v)I(v ≺ u)dv)du < Tp holds for an object U , DP-Filter returns FALSE.

Otherwise, it returns TRUE and update H with U .

6.2 Utilization of a PS-QTREE for Pruning

To divide the data space into several sub-spaces, we develop a variant of sky-quadtrees

in [40], called the PS-QTREE.

69

6.2.1 Generating a PS-QTREE

We recursively divide d-dimensional space into equi-sized 2d sub-spaces, each of

which is associated with a node in a PS-QTREE, until the number of points in each

sub-space does not exceed the split threshold, denoted by ρ. We refer to the region

represented by a node n as n.region = 〈[n(1)−, n(1)+), · · · , [n(d)−, n(d)+)〉 where

[n(k)−, n(k)+) is the k-th dimensional range. We also define n.min (n.max) as the

n.region’s closest (farthest) corner of a leaf node n from the origin. Each node n is

assigned with an id according to the method in [40] and the node with an id “i” is

represented by node(i). To build a PS-QTREE quickly, we utilize a random sample

S of the objects in D. Figure 6.1 shows an example of a PS-QTREE produced by the

subset S = {W,Z} of D in Figure 3.4(a)(a).

6.2.2 Exploiting a PS-QTREE for Filtering

In this section, we show how the filtering techniques presented previously can be ex-

ploited by using a PS-QTREE.

Definition 6.2.1 Consider a dataset D, and a leaf node n of a PS-QTREE built by a

sample S ⊂ D. We define n.Pmin(S) =
∏
V ∈S(1 −

∑
vj∈V,vj≺n.min P (vj)) for the

discrete model and n.Pmin(S) =
∏
V ∈S(1 −

∫
V.R V.f(v)I(v ≺ n.min)dv) for the

continuous model.

By traversing the PS-QTREE, we set n.Pmin(S) in each leaf node n where S is

the sample used to build the PS-QTREE and initially n.Pmin(S)=1. In each leaf node

n, we scan every object V ∈S to check whether n.min is dominated by an instance

vj of V and compute the sum of P (vj) of every instance vj dominating n.min. We

next update n.Pmin(S) by multiplying (1−
∑

vj∈V,vj≺n.min P (vj)) to itself according

to Definition 6.2.1. For the continuous model, we generate the points in V.R for each

object V ∈ S by following V.f(·) and build a PS-QTREE by using the generated

points.

70

Upper-bound filtering: We can utilize n.Pmin(S) for the upper-bound filtering

due to the following corollary. The proof of the corollary is analogous to that of Lem-

mas 6.1.4 and 6.1.9 by letting R(ui).min = n(ui).min.

Corollary 6.2.2 For a PS-QTREE T generated by a sample S ⊂ D and an instance

ui of an object U , let n(ui) be the leaf node of T whose region contains ui. Depending

on an uncertainty model, the skyline probability of U (i.e., Psky(U)) is upper bounded

by upT (U,S) where

upT (U,S) =

∑

ui∈U
P (ui)×n(ui).Pmin(S)

1−
∑

uk≺n(ui).min,uk∈U
P (uk)

∫
U.R

U.f(ui)×n(ui).Pmin(S)
1−

∫
U.R U.f(w)I(w≺n(ui).min)dw

dui.

Zero-probability filtering: We also use n.Pmin(S) for the zero-probability filter-

ing by the following corollary whose proof is similar to that of Lemma 6.1.10.

Corollary 6.2.3 For a leaf node n of a PS-QTREE built by a sample S⊂D, when

n.Pmin(S)=0, the skyline probability of every instance in the n.region is zero and

thus we can delete the instances of all objects in the n.region from D.

To build a PS-QTREE, the procedure GenQtree is called with a sample S of the

objects in D. We omit the pseudocode of GenQtree since it is straightforward.

6.2.3 Partitioning Objects by a PS-QTREE

For an object U ∈ D, if we distribute its instances to several partitions, we need an

additional aggregation phase to compute the skyline probability of U by summing the

skyline probabilities of its instances in multiple partitions. To guarantee that the skyline

probability of each object can be computed without an extra MapReduce phase, we

allocate all instances of each object U to a single partition by utilizing U.max defined

as follows.

71

Definition 6.2.4 For the discrete model, the max and min points of an object U , rep-

resented by U.max and U.min, are defined as U.max(k) = maxui∈Uui(k) and

U.min(k) = minui∈Uui(k), respectively, for k = 1, . . . , d. For the continuous model,

where U is modeled by an uncertainty region U.R with pdf, U.max (U.min) is the far-

thest (closest) corner point in U.R from the origin.

Let M(D, n`) be the set of objects whose max points belong to a leaf node n`

of a PS-QTREE. We need to identify all the other objects required to compute the

skyline probability of every object U ∈ M(D, n`). To do this efficiently, we use the

dominance relationship between a pair of leaf nodes.

Definition 6.2.5 For a pair of nodes n1 and n2 in a PS-QTREE, if n1.min(k) <

n2.max(k) for k = 1, · · · , d, we say n1 weakly dominates n2 and represent it by n1

� n2.

Consider the PS-QTREE in Figure 6.1. The min point of node(00) (i.e., node(00).min)

is 〈0, 0〉 and the max point of node(11) (i.e., node(11).max) is 〈100, 100〉. Since

node(00).min(1) < node(11).max(1) and node(00).min(2) < node(11).max(2),

node(00) � node(11). We also have node(00).min(k) < node(01).max(k) for ev-

ery k and node(00) � node(01). However, since node(01).min(2) ≥ node(10).max(2),

node(01) does not weakly dominate node(10).

For each leaf node n`, Lemma 6.2.6 shows that the exact skyline probabilities of

the objects inM(D, n`) can be computed by considering only the instances located in

the region of every leaf node which weakly dominates n` in both discrete and contin-

uous models.

Lemma 6.2.6 Consider a dataset D, a leaf node n` of a PS-QTREE and an object

U ∈ M(D, n`). In the discrete model, for each instance ui of U , if an instance vj of

another object V ∈ D is contained in the region of a leaf node n such that n 6� n`, vj

does not dominate ui. In the continuous model, if V.R.min does not dominate n`.max

for another object V ∈ D, V does not affect the skyline probability of U .

72

Proof: Since the object U is inM(D, n`), U.max is contained in n`.region. Consider

the discrete model first. For an instance ui ∈ U , ui(k) ≤ U.max(k) < n`.max(k)

holds for k = 1, · · · , d. Since n 6� n`, there exists a value k such that n`.max(k) ≤

n.min(k). Because vj is contained in n.region, we have n.min(k) ≤ vj . Thus, we

have ui(k) < n`.max(k) ≤ n.min(k) ≤ vj and vj does not dominate ui. Similarly,

we can prove the case of the continuous model.

According to Lemma 6.2.6, we define the set of instances of an object V 6∈

M(D, n`) required to compute the skyline probability of every object U inM(D, n`).

Definition 6.2.7 For a leaf node n`, let Iw(D, n`) be all instances of an object in D−

M(D, n`) which are in a leaf node n satisfying n � n`. In other words, Iw(D, n`) =

{vj ∈ V |V 6∈ M(D, n`) ∧ n(vj) � n`}.

Consider the dataset D in Figure 3.4(a) and the PS-QTREE in Figure 6.1. Iw(D,

node(10)) is {w1, w2, z2} since node(00) and node(10) weakly dominate node(10)

as well asM(D, node(10))={X}.

6.3 PS-QPF-MR: Our Algorithm with Quadtree Partitiong

and Filtering

In this section, we develop the algorithms with a single MapReduce phase by distribut-

ing the objects based on the space split by a PS-QTREE.

We first present the MapReduce algorithm PS-QP-MR (Probabilistic Skyline al-

gorithm by Quadtree Partitioning) which utilizes a PS-QTREE. Then, we provide the

MapReduce algorithm PS-QPF-MR which enhances PS-QP-MR by applying the fil-

tering techniques described in Section 6.1.

PS-QP-MR: We build a PS-QTREE with a sample S of data D in a single machine

by calling GenQtree introduced in Section 6.2. We next split D using MapReduce into

partitions each of which corresponds to a leaf node n` of the PS-QTREE and contains

73

Function PS-QPF-MR(D, Tp, ρ)

D: uncertain dataset, Tp: probability threshold, ρ: split threshold

begin

1. S = Sample(D);

2. PSQtree = GenQtree(S, ρ);

3. Broadcast PSQtree; Broadcast Tp;

4. pSL = RunMapReduce(PS-QPFC-MR, D);

5. return pSL;

end

Figure 6.2: The PS-QPF-MR algorithm

the objects in M(D, n`) as well as the instances in Iw(D, n`) (by Definition 6.2.7).

We then compute the skyline probability of each object U inM(D, n`) and output U

if U is a probabilistic skyline object.

PS-QPF-MR: The only difference of PS-QPF-MR from PS-QP-MR is to check

whether each object U is a skyline candidate object or not by using the three filtering

techniques and to compute the skyline probabilities of only skyline candidate objects.

We present the pseudocode of PS-QPF-MR in Figure 6.2.

Setup function: Before map functions are called, the setup function of each map-

per task initializes a min-heap H and loads a PS-QTREE to share them across the map

functions. The min-heap H maintains the dominating object set F for the dominance-

power filtering introduced in Section 6.1.3.

Map function: The pseudocode of the map function is shown in Figure 6.3. The

map function invoked with an objectU loads the probability threshold Tp (line 1 of PS-

QPFC-MR.map). We apply the zero-probability, upper-bound and dominance-power

filtering techniques by invoking ZeroProb, UpperBound and DP-Filter, respectively

(lines 2-6). We refer to U ′ as the object after pruning U ’s instances by ZeroProb. If

the upper bound of the Psky(U ′) computed by UpperBound is at least Tp, DP-Filter is

74

Function PS-QPFC-MR.map(U)

U : an uncertain object

begin

1. Tp = LoadThreshold();

2. U ′ = ZeroProb(U , PSQtree);

3. upper = UpperBound(U ′, PSQtree);

4. cand = FALSE;

5. if upper ≥ Tp then

6. cand = DP-Filter(U ′, Tp, H);

7. if cand then emit(n(U ′.max), (U ′, ‘C’));

8. for each leaf node n` in PSQtree do

9. if cand = True and n` = n(U ′.max) then continue;

10. I = NewList();

11. for each ui in U ′ do

12. if n(ui) � n` then

13. I .add(ui));

14. emit(n`, (I , ‘W’, cand))

end

Figure 6.3: The map function of the PS-QPFC-MR algorithm

invoked to check whether U ′ is a candidate object or not. If U ′ is a candidate object

(i.e., cand =TRUE), the map function emits the key-value pair 〈n(U ′.max), (U ′,

‘C’)〉 where n(U ′.max) is the leaf node containing U ′.max and ‘C’ represents that

U ′ is a skyline candidate contained inM(D, n(U ′.max)) (line 7).

For each leaf node n`, we emit each instance ui of U ′ which is required to compute

the exact skyline probabilities of objects in M(D, n`) (i.e., ui ∈ I(D, n`)) (lines 8-

14). For an instance ui ∈ U ′, if n(ui) 6� n`, ui does not dominate the instances of the

objects inM(D, n`) by Lemma 6.2.6. Thus, if n(ui) � n`, the map function puts ui

into the list I . After every instance of U ′ is evaluated for n`, the map function outputs

75

Function PS-QPFC-MR.reduce(n`, L)

begin

1. (LC , L
T
W , LF

W) = SplitList(L);

2. Tp = LoadThreshold();

3. for each object U in LC do

4. skyline prob = SkylineProb(U , LC , LT
W , LF

W);

5. if skyline prob ≥ Tp then

6. emit(U , skyline prob);

end

Figure 6.4: The reduce function of the PS-QPFC-MR algorithm

the key-value pair 〈n`, (I, ‘W’, cand)〉 where ‘W’ denotes that the instances are in

I(D, n`) and cand represents that U ′ is a candidate object or not (line 14). Note that

when U ′ is a candidate object and n` = n(U ′.max), we do nothing (line 9) since it is

already sent in line 7.

Reduce function: In the shuffling phase, the key-value pairs emitted by all map

functions are grouped by each distinct leaf node, and a reduce function is called with

each node n` and a value list L. The pseudocode of the reduce function is presented in

Figure 6.4. The value list L is split into LC , LTW and LFW where LC isM(D, n`), LTW
is the subset of Iw(D, n`) whose instances are marked with cand = TRUE, and LFW is

Iw(D, n`)− LTW (line 1 of PS-QPFC-MR.reduce).

To split L into three partitions LC , LTW and LFW effectively, we exploit the func-

tionality of secondary sorting [36] provided by the MapReduce framework which ar-

ranges the elements in L with a specific ordering such that all elements belonging to

LC always appear first, all elements belonging toLTW are located next and the elements

belonging to LFW are placed last.

Once all elements in LC are loaded into main memory, the reduce function com-

putes the skyline probability of every object U in LC by invoking SkylineProb (lines

76

W={(⟨2,4⟩,0.5), (⟨8,1⟩,0.4)}

X={(⟨6,2⟩,0.2), (⟨7,3⟩,0.2)}

Y={(⟨9,6⟩,0.8), (⟨8,7⟩,0.2)}

Z={(⟨1,8⟩,0.5), (⟨9,2⟩,0.5)}

M
ap

key value

10 W={(⟨2,4⟩,0.5), (⟨8,1⟩,0.4)}, ‘C’

00 W={(⟨2,4⟩,0.5)}, ‘W’, True

01 W={(⟨2,4⟩,0.5)}, ‘W’, True

11 W={(⟨2,4⟩,0.5), (⟨8,1⟩,0.4)}, ‘W’, True

10 X={(⟨6,2⟩,0.2), (⟨7,3⟩,0.2)}, ‘W’, False

11 X={(⟨6,2⟩,0.2), (⟨7,3⟩,0.2)}, ‘W’, False

11 Y={(⟨9,6⟩,0.8), (⟨8,7⟩,0.2)}, ‘C’

11 Z={(⟨1,8⟩,0.5), (⟨9,2⟩,0.5)}, ‘C’

10 Z={(⟨9,2⟩,0.5)}, ‘W’, True

01 Z={(⟨1,8⟩,0.5)}, ‘W’, True

S
o
rt b

y
 k

ey

R
ed

u
ce

Probabilistic skyline

(W, 0.9)

(Z, 0.74)

(a)

(b) (c)

key value

10 W={(⟨2,4⟩,0.5), (⟨8,1⟩,0.4)}, ‘C’

X={(⟨6,2⟩,0.2), (⟨7,3⟩,0.2)}, ‘W’, False

Z={(⟨9,2⟩,0.5)}, ‘W’, True

00 W={(⟨2,4⟩,0.5)}, ‘W’, True

01 W={(⟨2,4⟩,0.5)}, ‘W’, True

Z={(⟨1,8⟩,0.5)}, ‘W’, True

11 W={(⟨2,4⟩,0.5), (⟨8,1⟩,0.4)}, ‘W’, True

X={(⟨6,2⟩,0.2), (⟨7,3⟩,0.2)}, ‘W’, False

Y={(⟨9,6⟩,0.8), (⟨8,7⟩,0.2)}, ‘C’

Z={(⟨1,8⟩,0.5), (⟨9,2⟩,0.5)}, ‘C’

Figure 6.5: The steps of PS-QPFC-MR

2-4). Since we keep only the elements of LC in main memory, we require O(|LC |) =

O(|M(D, n`)|) memory.

To discover non-skyline objects earlier, we first compute Psky(U) with other ob-

jects in LC since LC is already in main memory. Then, Psky(U) is updated with LTW

and next updated with LFW . The reason why LFW is read in last is that all instances in

LFW tend to have less dominance power than the instances in LTW since they belong to

non-skyline objects (i.e., cand = FALSE).

Let O be the set of objects whose instances were used to compute Psky(U) up to

now. Note that, by Proposition 6.1.1 with S = O, the skyline probability of U com-

puted by using O becomes an upper bound of Psky(U). Thus, whenever the skyline

probability of U updated currently is less than Tp, SkylineProb returns zero to indicate

that U is a non-skyline object. Otherwise, we output U with Psky(U) (lines 5-6).

77

Example 6.3.1 Consider the data D and the PS-QTREE in Figure 3.4(a) with the

probability threshold Tp=0.5. Figures 6.5(a)-(d) show the data flow in PS-QPF-MR.

After the PS-QTREE is broadcast to all map functions, each map function is called

with an uncertain object as illustrated in Figure 6.5(a). Consider the map function

called withX . Since the upper bound of the skyline probability ofX is node(10).Pmin·

P (x1) + node(10).Pmin · P (x2) = 0.4 < Tp = 0.5, X is not a skyline candidate

object (due to Corollary 6.1.5). Note that every instance of X is contained in the re-

gion of node(10). The map function emits the key-value pairs 〈10, ({(〈6, 2〉, 0.2), (〈7,

3〉, 0.2)},“W”, False)〉 and 〈11,({(〈6, 2〉, 0.2), (〈7, 3〉, 0.2)},“W”, False)〉 since

node(10) weakly dominates node(10) itself and node(11). Figure 6.5(a) shows the

key-value pairs emitted by all map functions. The key-value pairs grouped by each

distinct key are provided in Figure 6.5(b). As shown in Figure 6.5(c), the probabilistic

skyline objects W and Z are output by the reduce functions called with node(10) and

node(11), respectively.

The continuous model: We utilize the Monte Carlo integration [11] to calcu-

late the skyline probabilities of objects. We sample points u from U.R uniformly and

Psky(U) in Equation (3.2) is calculated as the average value of |U.R|×U.f(u)
∏
V ∈D,V 6=U

PLS(u, V) where PLS(u, V) = 1−
∫
V.R V.f(v)I(v ≺ u)dv. The integral to calculate

PLS(u, V) is also computed by the Monte Carlo integration.

The pseudocode of PS-QPFC-MR is the same as that of PS-QPFC-MR for the

discrete model except that it utilizes the filtering techniques for the continuous model

and the lines 10-14 of the map function in Figure 6.3 are replaced by the lines below.

Due to Lemma 6.2.6, when U.R.min ≺ n`.max holds, we send U to the reduce

function of n`.

10. if U.R.min ≺ n`.max then

11. emit(n`, (U , ‘W’, cand));

78

6.3.1 Optimizations of PS-QPF-MR

When a map function is invoked with an object V , each instance vj ∈ V is transmitted

to the reduce function corresponding to every leaf node n` dominated weakly by n(vj)

(i.e., the leaf node whose region includes vj). To minimize the number of transmissions

by all map functions, we can actually cluster the leaf nodes of a PS-QTREE into several

groups such that a single reduce function processes all leaf nodes of each group with

the main memory available in each machine.

When we cluster the leaf nodes, we should balance workloads for all reduce func-

tions too. Let a group Gi be a set of leaf nodes {ni1 , . . . , ni|Gi|
}. The input of a reduce

function with a group Gi consists of the objects whose max points are in the region

of a leaf node nik∈Gi and the instances vj such that n(vj) weakly dominates a leaf

node nik∈Gi. Thus, we estimate the number of the objects as well as the number of the

instances in each group by utilizing the sample used to build a PS-QTREE and force

the input size of every reduce function to be similar for workload balancing.

Reducing Network Overhead by Clustering

Let G be a set of groups {G1, · · · , G|G|} where Gi is a group of leaf nodes {ni1 , . . . ,

ni|Gi|
}. Then, letM(D, Gi) =

⋃
nik
∈Gi
M(D, nik) and Iw(D, Gi) =

⋃
nik
∈Gi
Iw(D,

nik). The reduce function called for a group Gi computes the skyline probability of

every object inM(D, Gi) by using the other objects inM(D, Gi) and all instances in

Iw(D, Gi).

As mentioned in Section 6.3, the reduce function called for each leaf node n` re-

quiresO(|M(D, n`)|) memory only since we utilize the secondary sorting. Let the size

of main memory be s(mem) and the average size of an object be s(obj). When we

group leaf nodes, since each reduce function for a group Gi requires O(|M(D, Gi)|)

memory, we should have |M(D, Gi)| · s(obj) ≤ s(mem) so that M(D, Gi) can be

kept in the main memory. In addition, since the number of transmissions by all map

functions is
∑

Gi∈G(|Iw(D, Gi)|+ |M(D, Gi)|) and
∑

Gi∈G |M(D, Gi)| is a constant

79

regardless of leaf node grouping, we should minimize
∑

Gi∈G |Iw(D, Gi)| to reduce

the number of transmissions. Therefore, our leaf node grouping problem can be for-

mulated as follows:

Definition 6.3.2 [Leaf node grouping problem] Let the average size of an object be

s(obj), the size of main memory assigned to each reduce function be s(mem) and

N={n1, · · · , n|N |} be the set of all leaf nodes in a PS-QTREE. Assume |M(D, n`)| ·

s(obj) ≤ s(mem) for every n` ∈ N . The problem is to find a set of disjoint groups

G={G1, · · · , G|G|} such that G1∪· · ·∪G|G| = N , |M(D, Gi)| ·s(obj)≤s(mem) for

all i=1, . . . , |G| and
∑

Gi
|Iw(D, Gi)| is minimized.

Since this problem can be reduced from the well-known NP-Complete bin packing

problem [50] by setting |Iw(D, Gi)|=1 for every groupGi, it is NP-Complete and thus

we devise a greedy algorithm. Let G̃ be the set of groups created so far in our algorithm.

It takes each leaf node n` of a PS-QTREE one by one and inserts n` into the group

Gi ∈ G̃ which can accommodate n` (i.e., |M(D, Gi ∪ {n`})| · s(obj) ≤ s(mem))

with the minimum of (|Iw(D, Gi ∪ {n`})| − |Iw(D, Gi)|). If there is no group to

accommodate n`, we create an empty group Gj , put n` into Gj and insert Gj into G̃.

To apply our heuristics, we need |M(D, Gi)| and |Iw(D, Gi)|. With the sample

S to build the PS-QTREE, by assuming that |M(D, Gi)| and |Iw(D, Gi)| are propor-

tional to |M(S, Gi)| and |Iw(S, Gi)| respectively, we estimate them as |M̂(D, Gi)|

= |M(S, Gi)| · |D||S| and |Îw(D, Gi)| = |Iw(S, Gi)| · |D||S| .

Workload Balancing of Reduce Functions

After applying leaf node grouping, |M(D, Gi)| of every group Gi ∈ G becomes sim-

ilar and the sum of |Iw(D, Gi)|s over all groups Gi ∈ G is minimized. However,

since the sizes of Iw(D, Gi)s may be skewed, the execution times of reduce functions

can be quite different. Let the input of the reduce function for a group Gi be X(Gi)

which actually consists of M(D, Gi) and Iw(D, Gi). We balance the workloads of

80

reduce functions for the groups Gi with large |Iw(D, Gi)| by splitting Iw(D, Gi) into

mGi disjoint partitions {Iw(D, Gi, 1), · · · , Iw(D, Gi,mGi)} such that every instance

of the each object is in the same partition. With respect to X(Gi), we next generate a

set X (Gi)={X1(Gi), · · · , XmGi
(Gi)} where Xk(Gi) is composed ofM(D, Gi) and

a partition Iw(D, Gi, k), and invoke a reduce function withXk(Gi) to calculate partial

skyline probability of each instance u of an object U inM(D, Gi). Then, the skyline

probability of U is computed in the main function by collecting all partial skyline

probabilities of every instance u∈U .

The skyline probability of each instance u of every object U ∈ M(D, Gi) can be

computed by using the reduce functions each of whose input is Xk(Gi) ∈ X (Gi).

Given a set of partitions I(Gi) = {Iw(D, Gi, 1), · · · , Iw(D, Gi,mGi)} of Iw(D, Gi),

let S(D, Gi, k) be the set of objects whose instances are contained in the k-th parti-

tion Iw(D, Gi, k) ∈ I(Gi) and P (D, Gi, k) be the probability that every instance vj

of an object V in S(D, Gi, k) which dominates u does not exist in a possible world

(i.e., P (D, Gi, k) =
∏
V ∈S(D,Gi,k)

(1−
∑

vj∈V,vj≺u P (vj))). For the instance u, since

every object V such that there exists an instance vj ∈ V dominating u is contained in

one ofM(D, Gi), S(D, Gi, 1), · · · , S(D, Gi,mGi−1) and S(D, Gi,mGi), the skyline

probability of u can be computed as follows:

Psky(u) = P (u)×
∏

V ∈D,V 6=U
(1−

∑
vj∈V,vj≺u

P (vj))

= P (u)×
∏

V ∈M(D,Gi),V 6=U

(1−
∑

vj∈V,vj≺u
P (vj))×

mGi∏
k=1

P (D, Gi, k)

While the reduce function invoked with Xk(Gi) computes P (D, Gi, k) using

Iw(D, Gi, k), one of the reduce functions calculates P (u) ×
∏
V ∈M(D,Gi),V 6=U (1 −∑

vj∈V,vj≺u P (vj)). Then, we can compute the skyline probability of u by using the

above equation.

After leaf node grouping, the number of reduce functions processed by each ma-

81

chine is either b|G|/tc or b|G|/tc+1 where t is the number of machines. Thus, we set

the number of reduce function calls to d |G|t e · t which is at least |G| and the smallest

multiple of t so that each machine processes the same number (i.e., d|G|/te) of reduce

functions. To do this, our workload balancing problem is defined as follows:

Definition 6.3.3 [Workload balancing problem] Given a set of groups G = {G1, · · · ,

G|G|} which is the result of the leaf node grouping problem and a number of machines

t, the problem is to find X (Gi) = {X1(Gi), · · · , XmGi
(Gi)} such that (1) Iw(D, Gi)

is split into disjoint partitions I(Gi) = {Iw(D, Gi, 1), · · · , Iw(D, Gi,mGi)} for each

group Gi ∈ G, (2) Xk(Gi) is composed of M(D, Gi) as well as Iw(D, Gi, k) ∈

I(Gi), (3) d |G|t e · t =
∑

Gi
mGi and (4) maxGi∈G,Xk(Gi)∈X (Gi) |Iw(D, Gi, k)| is

minimized. Note that
∑

Gi
mGi is the total number of reduce functions utilized by all

groups.

We next present the greedy algorithm GreedyWorkload for the workload balancing

problem. Let m̃Gi be the number of partitions in X (Gi) for each group Gi. Initially,

m̃Gi=1. At each step of GreedyWorkload, we repeatedly select the group Gi with the

maximum |Iw(D, Gi)|/m̃Gi and increase m̃Gi by one until
∑

Gi
m̃Gi=d

|G|
t e·t. As we

did in leaf node grouping previously, we estimate |Iw(D, Gi)| by utilizing a sample S

of the objects in D.

After GreedyWorkload terminates, for every group Gi, we split Iw(D, Gi) into

{Iw(D, Gi, 1), · · · , Iw(D, Gi, m̃Gi)}. We broadcast G and m̃Gi of every Gi ∈ G to

all map functions. To make the size of every partition similar, when a map function is

called with an object whose instances belong to Iw(D, Gi), the map function chooses

a random number k between 1 and m̃Gi and sends the instances to the reduce function

handling Xk(Gi).

Lemma 6.3.4 When Iw(D, Gi) can be split into equi-sized partitions for everyGi∈G,

the procedure GreedyWorkload finds an optimal solution for the workload balancing

problem.

82

Proof: Due to the space limitation, we omit the proof.

Since we may not split Iw(D, Gi) into equi-sized partitions such that every in-

stance of each object lies in the same partition, GreedyWorkload does not guarantee

the optimality.

6.3.2 Sample Size and Split Threshold of a PSQtree

In leaf node grouping, although we require s(obj) · |M(D, Gi)| ≤s(mem) for ev-

ery group Gi, the reduce function handling Gi may suffer from the lack of mem-

ory space since we estimate |M(D, Gi)| approximately by using a sample S of D.

To avoid such deficiency, we enforce s(obj)·|M̂(D, Gi)|≤α·s(mem) (e.g., α=0.8)

where |M̂(D, Gi)| is the estimate of |M(D, Gi)|. We refer to it as the memory utiliza-

tion heuristics.

Finding a proper sample size: We study how to choose the sample size to esti-

mate |M(D, Gi)| accurately. When s(obj) · |M̂(D, Gi)| < α ·s(mem) but s(mem) <

s(obj)·|M(D, Gi)|, it is problematic. Thus, we want the probability that |M̂(D, Gi)| <

α · |M(D, Gi)| is less than a threshold δ.

Lemma 6.3.5 Given a group Gi, a threshold δ and a sample S ⊂ D, if

|S| ≥ −2 · |D| · ln δ
(1− α)2 · |M(D, Gi)|

holds, we have P [|M̂(D, Gi)| < α · |M(D, Gi)|] < δ.

Proof: Let Xj be a random variable that is 1 if j-th object in S belongs toM(D, Gi)

and 0 otherwise. Since we do uniform random sampling,X1, · · · , X|S| are independent

Bernoulli trials with P (Xj = 1) = |M(D, Gi)|/|D|. The number of objects in S

belonging toM(D, Gi) is X =
∑

j Xj and the expected value of X is µ = E[X] =

|S| · |M(D, Gi)|/|D|. We have P [|M̂(D, Gi)| < α · |M(D, Gi)|] = P [X · |D|/|S| <

α · |M(D, Gi)|] since |M̂(D, Gi)| is X·|D|/|S|.

83

Chernoff bounds state that for 0 < ε ≤ 1, we haveP [X < (1-ε)µ] < exp(−µε2/2).

Rewriting the probability to conform to the Chernoff bounds, we get P [X < (1− (1−
α·|S|·|M(D,Gi)|

|D|µ))µ] < δ. Then, we obtain exp(−µ
2 (1−

α·|S|·|M(D,Gi)|
|D|µ)2) ≤ δ by apply-

ing the Chernoff bounds. Substituting µ = |S| · |M(D, Gi)|/|D| and solving it for |S|,

we obtain the lower bound of |S|.

To compute the above bound for every problematic group Gi satisfying s(obj) ·

|M(D, Gi)| > s(mem), by letting |M(D, Gi)| = s(mem)
s(obj) , we have |S| ≥ −2·|D|·ln δ·s(obj)

(1−α)2·s(mem)

since the lower bound of |S| is maximized when |M(D, Gi)| is minimized.

Setting the split threshold ρ: When we build a PS-QTREE with a sample S, we

split a node n if the number of instances in n exceeds the split threshold ρ. To apply

leaf node grouping with the memory utilization heuristics, we should guarantee that

s(obj)·|M(D, n`)|≤α·s(mem) for each n` since every group Gi contains at least a

single leaf node.

After the PS-QTREE is generated, we assume that the number of instances of ob-

jects appearing in each leaf node n` is at most ρ · |D|/|S|. Let nI be the average num-

ber of instances in each object. Then, under the assumption of uniform distribution, we

have |M(D, n`)| ≤ ρ/nI · |D|/|S|. Thus, we set ρ = α ·s(mem) ·nI · |S|/(s(obj) · |D|)

obtained by finding the minimum ρ satisfying s(obj) · ρ/nI · |D|/|S| ≤ α · s(mem).

6.4 PS-BRF-MR: Our Algorithm with Random Partitioning

and Filtering

In this section, we present the MapReduce algorithm PS-BRF-MR which utilizes ran-

dom partitioning as well as the filtering techniques in Section 6.1. We refer to the

brute-force algorithm based on random partitioning without such filtering techniques

as PS-BR-MR. Due to the space limitation, we omit the detailed pseudocodes for both

algorithms.

Generally, random partitioning is not suitable to the continuous model since all

84

objects required to compute the skyline probability of an object U by performing the

integration in Equation (3.2) cannot be in the same partition containing U . To apply

random partitioning to the continuous model, we adapt a specific integration method,

Monte Carlo integration [11], which is based on sample points (refer to [11] for de-

tails). Thus, for each object U , the partial values required to compute the integration

for the skyline probabilities are computed using the sample points selected in each par-

tition. Then, we calculate the skyline probability of U by integrating the partial values

of all partitions.

PS-BRF-MR: When a dataset D is split into disjoint partitions, P1, . . . , Pm, to

calculate the skyline probability of an instance ui ∈ U , we compute its k-th local

skyline probability PLS(ui, U, k) in every partition Pk.

Definition 6.4.1 For disjoint partitions P1, . . . , Pm of a dataset D and an instance

ui ∈ U , the k-th local skyline probability of ui, denoted by PLS(ui, U, k), is∏
V ∈Pk,V 6=U

(1−
∑

vj∈V,vj≺ui

P (vj)).

By Equation (3.1), we obtain

Psky(ui) = P (ui)
m∏
k=1

PLS(ui, U, k). (6.2)

The algorithm PS-BRF-MR consists of two MapReduce phases. In the first MapRe-

duce phase, the filtering techniques presented in Section 6.1 are applied to identify the

non-skyline objects so that we can compute the skyline probabilities for the skyline

candidate objects only. In the second MapReduce phase, we gather every local sky-

line probability of each instance to compute the skyline probabilities of all objects.

PS-BRF-MR consists of the following three phases:

(1) PS-QTREE building phase: We build a PS-QTREE with a sample S ⊂ D by

calling the procedure GenQtree in Section 6.2.2. Recall that it is done without using

MapReduce.

85

(2) Local skyline probability phase: After broadcasting a PS-QTREE and Tp,

each map function checks if each object is a candidate by the filtering methods in

Section 6.1.

We divide the data objects D into disjoint partitions,P1, . . . , Pm. For every partition-

pair (Pi, Pj) with 1≤i≤j≤m, we compute the local skyline probabilities of the in-

stances in Pi and Pj in parallel. For each partition-pair (Pi, Pj), when i = j, for every

instance u of each candidate objectU in Pi, we compute the i-th local skyline probabil-

ity PLS(u, U, i) defined in Definition 6.4.1. When i < j, we compute PLS(u, U, j) for

every u of U in Pi by considering the instances v ∈ V in Pj and calculate PLS(v, V, i)

for every v of each candidate object V in Pj by considering the instances u in Pi.

To reduce the number of comparisons, we compare the skyline candidate objects with

other skyline candidate objects first and then compare them to non-skyline objects by

using the secondary sorting illustrated in Section 6.3.

(3) Global skyline phase: We gather the local skyline probabilities computed

in the previous phase and calculate the exact skyline probabilities of the instances

of every skyline candidate object using Equation (6.2). For a candidate object U , if

Psky(U) =
∑

u∈U P (u)
∏m
i=1 PLS (u, U, i) ≥ Tp, we output U as a skyline object.

The continuous model: For the continuous model, we use a specific integration

method, Monte Carlo integral [11] which samples points u from the uncertainty region

U.R uniformly. In the local skyline probability phase, for each partition-pair (Pi, Pj),

when Pi = Pj , it calculates
∏
V ∈Pi,U 6=V PLS(u, V) for all U ∈ Pi where PLS(u, V)

is 1−
∫
V.R V.f(v)I(v ≺ u)dv. If Pi 6=Pj , we compute

∏
V ∈Pj

PLS (u, V) for U ∈ Pi

and
∏
U∈Pi

PLS(v, U) for V ∈ Pj . In the global skyline phase, we compute Psky(U)

by utilizing the
∏
V ∈Pi,U 6=V PLS(u, V) obtained in the previous phase since Psky(U)

is the average value of |U.R| × U.f(u)
∏
V ∈D,V 6=U PLS(u, V) by using Monte Carlo

integration as in Section 6.3.

86

Parameter Range Default

Number of samples (|S|) 1000 ∼ 10,000 1000 for PS-QPF-MR

2000 for PS-QP-MR

10000 for PS-BRF-MR

Number of 50 ∼ 5000 100 for PS-QPF-MR

dominating objects (|F |) 1000 for PS-BRF-MR

Number of objects (|D|) 105 ∼ 108 107

Number of dimensions (d) 2 ∼ 8 4

Probability threshold (Tp) 0.1 ∼ 0.6 0.3

Number of inst. per object (`) 1 ∼ 400 40

Number of machines (t) 10 ∼ 200 25

Table 6.1: Parameters used for the probabilistic skyline algorithms

6.5 Experiments

Experiments were done mainly on a cluster of 50 machines with Intel i3 3.3GHz CPU

and 4GB of memory running Linux. We also used Amazon’s EC2 Infrastructure as

a Service (IaaS) cloud to show the scalability of PS-QPF-MR up to 200 machines

with Intel Xeon 2.5GHz CPU and 3.75GB of memory. The implementations of all

algorithms were compiled by Javac 1.6. We used Hadoop 1.2.1 for MapReduce. The

execution times in the graphs are plotted in log scale.

Datasets: We generated the synthetic datasets with correlated, independent and

anti-correlated distributions, referred to as COR, IND and ANTI respectively, since

they are typically used to evaluate the performance of skyline algorithms [10, 40, 41].

For a d-dimensional space, we generated the center c of each object using the three

distributions where each dimension has a domain of [1, 10000). In the discrete model,

for each object U , we selected the number of U ’s instances using the uniform distribu-

tion in the range [1, `], where ` is 40 by default. Each instance was generated inside the

rectangle centered at c whose edge size is uniformly distributed in the range [1, 200].

The ratio of the objects U with
∑

ui∈U P (ui) = 1 to all objects in the dataset was

87

Algorithm Description

PS-QP-MR The algorithm with quadtree partitioning

PS-QPF-MR The algorithm with quadtree partitioning and filtering

PS-BR-MR The algorithm with random partitioning

PS-BRF-MR The algorithm with random partitioning and filtering

PSMR The state-of-the-art algorithm in [18]

Table 6.2: Implemented probabilistic skyline algorithms

set to 0.5. In the continuous model, for each object U , we selected the length of k-

th dimension of U.R in [1, 200], and assumed U.f(·) is the uniform distribution. The

sizes of resulting synthetic datasets are varied from 88MB to 86GB depending on the

number of points (|D|), the number of dimensions (d) and the number of instances per

each object (`). We also varied the probability threshold Tp from 0.1 to 0.6 to pro-

duce diverse probabilistic skyline queries. We set Tp = 0.3 as the default value. The

parameters used by our algorithms are summarized in Table 6.1.

Implemented algorithms: The MapReduce algorithms implemented for the prob-

abilistic skyline are presented in Table 6.2. We do not plot the execution times of some

algorithms when they did not finish within 6 hours or they did not work due to some

reasons such as out of memory.

Default value of m: In the random partitioning algorithms (i.e., PS-BR-MR and

PS-BRF-MR), we split data D into m partitions. Since such algorithms split all pairs

of objects into m(m+ 1)/2 partition-pairs, we set m to the minimum natural number

satisfyingm(m+1)/2 ≥ t so that each machine can process at least a single partition-

pair.

Default values of |S| and |F |: By the discussion in Section 6.3.2, the sample size

|S| should be at least 700 objects since |S| ≥ −2·|D|·ln δ·s(obj)
(1−α)2·s(mem)

= 700 with s(mem) =

4GB, s(obj) = 1KB, |D| = 107, α = 0.8 and δ = 0.01. Thus, to find the proper

sizes of a sample S and a dominating object set F (i.e., |S| and |F |), we ran our algo-

88

 100

 1000

 10000

 1000 2000 4000 10000

E
xe

cu
tio

n
tim

e
(s

ec
)

Sample size

PS-QPF-MR
PS-BRF-MR
PS-QP-MR

(a) Varying |S|

 100

 1000

 10000

 50 100 500 1000 5000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of dominating objects

PS-QPF-MR
PS-BRF-MR

(b) Varying |F |

Figure 6.6: Selection of |S| and |F |

rithms with varying |S| from 1, 000 to 10, 000 and |F | from 50 to 5, 000, respectively.

The average execution times over all datasets with varying |S| and |F | are shown in

Figures 6.6(a) and 6.6(b), respectively. Since PS-BR-MR does not utilize a PS-QTREE

and a dominating object set F , we do not plot its execution times in Figure 6.6.

Although more objects are filtered by the upper-bound and dominance-power fil-

tering as |S| and |F | increase, the costs for computing upper bounds and maintaining

dominating object set increase. Consequently, we set the default values of |S| and |F |

with which each algorithm show the best performance. For instance, the best perfor-

mance of PS-QPF-MR is obtained with |S| = 1000 and |F | = 100.

6.5.1 Performance Results for Probabilistic Skylines

We presented the experiment results with the discrete model first and the continuous

model next.

Varying |D|: We plotted the running times of the tested algorithms with varying

the number of objects |D| from 105 to 108 with each dataset in Figures 6.7(a), (b)

and (c), respectively. PS-QPF-MR with COR is faster than that with the other datasets

since most of instances are dominated by a few instances in COR and the three filtering

methods can identify non-skyline objects effectively. The best performance is shown

89

 10

 100

 1000

 10000

 100000

 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

PS-QPF-MR
PS-BRF-MR
PS-QP-MR
PS-BR-MR

(a) ANTI

 10

 100

 1000

 10000

 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

PS-QPF-MR
PS-BRF-MR
PS-QP-MR
PS-BR-MR

(b) IND

 10

 100

 1000

 10000

 100000

 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

PS-QPF-MR
PS-BRF-MR
PS-QP-MR
PS-BR-MR

(c) COR

Figure 6.7: Varying the number of objects (|D|)

by PS-QPF-MR which utilizes the three filtering methods and the quadtree partition-

ing. PS-QPF-MR is also found to be at least 1.7 times faster than PS-BRF-MR. Since

PS-QPF-MR and PS-BRF-MR are always faster than PS-QP-MR and PS-BR-MR, re-

spectively, due to the three filtering methods, we showed only the execution times of

PS-QPF-MR and PS-BRF-MR in the rest of the paper.

Varying d: The execution times with varying the number of dimensions d from 2

to 8 were reported in Figure 6.8. Since the time complexity of checking the dominance

relationship between instances isO(d), the execution times of both algorithms become

larger as d grows. We found that PS-QPF-MR is 4.4 times faster than PS-BRF-MR

on the average since quadtree partitioning is very effective. However, PS-BRF-MR

90

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of dimensions

PS-QPF-MR
PS-BRF-MR

(a) ANTI

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of dimensions

PS-QPF-MR
PS-BRF-MR

(b) IND

 10

 100

 1000

 10000

 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of dimensions

PS-QPF-MR
PS-BRF-MR

(c) COR

Figure 6.8: Varying the number of dimensions (d)

performs fast for COR with high dimension since there are a small number of candidate

objects and merging their skyline probabilities can be done quickly.

Varying Tp: We showed the execution time, number of candidate objects and num-

ber of skyline objects on average with varying Tp from 0.1 to 0.6 in Table 6.3. Since

all filtering methods are applied before data partitioning, the average numbers of can-

didate objects by both algorithms are the same. With increasing Tp, since the numbers

of candidate and skyline objects decrease, the execution times decrease. PS-QPF-MR

is up to 7.9 times faster than PS-BRF-MR.

Varying `: We evaluated both algorithms with changing the number of instances

per object ` from 1 to 400. We also tested the state-of-the-art algorithm PSMR for the

91

Tp PS-QPF-MR PS-BRF-MR # of candidate objects # of skyline objects

0.1 400 1905 259009 1057

0.2 223 1469 204964 509

0.3 164 1452 165907 329

0.4 161 1267 140129 234

0.5 151 1164 121678 172

0.6 151 1115 106530 127

Table 6.3: Varying the probability threshold (Tp)

 10

 100

 1000

 10000

 1 2 4 10 20 40 100 200 400

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of instances per object

PS-QPF-MR
PS-BRF-MR

PSMR

(a) Varying `

 10

 100

 1000

 10000

 1e+06 1e+07 1e+08 4e+08

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

PS-QPF-MR
PS-BRF-MR

PSMR

(b) Varying |D| when ` = 1

Figure 6.9: Varying ` and |D| when ` = 1

specific case where each object has only a single instance. We showed the average

execution times over all datasets in Figure 6.9(a). Since PSMR is only applicable when

`=1, we plotted the execution time of PSMR only when `=1. Although PS-BRF-MR

is worse than PSMR with large datasets, PS-QPF-MR is 2.1 times faster than PSMR.

We also reported the execution times of all algorithms with varying |D| from 105 to

4×108 when `=1 in Figure 6.9(b). We found that PS-QPF-MR is 2.3 times faster than

PSMR on the average.

Varying t: With increasing the number of machines t up to 50 in our cluster,

we presented the execution times with the default-sized datasets (|D|=107) and large

datasets (|D|=108) in Table 6.4. For the large datasets, since PS-BRF-MR finished

92

Algorithm t 10 20 25 30 40 50

IND 401 242 212 197 167 162

PS-QPF-MR COR 177 89 85 79 78 64

(|D| = 107) ANTI 429 228 196 175 152 135

IND 4373 2089 1872 1469 1177 912

PS-BRF-MR COR 361 205 179 160 130 117

(|D| = 107) ANTI 4893 2409 2307 1664 1338 959

IND 8107 4555 3569 2698 2268 1811

PS-QPF-MR COR 1119 627 541 471 398 351

(|D| = 108) ANTI 8442 3874 3738 3002 2206 1987

Table 6.4: Varying t with our cluster (sec)

t 25 50 75 100 125 150 175 200

IND 8783 4936 3252 2485 1961 1565 1293 1198

COR 1234 712 546 466 437 426 351 316

ANTI 12655 5713 4783 3186 2451 2352 2315 2080

Table 6.5: Varying t on Amazon EC2 with |D|=108 (sec)

within 6 hours only when t = 40, 50 with COR, we reported execution times and

relative speedup to 10 machines of PS-QPF-MR only in Table 6.4 and Figure 6.10(a),

respectively.

To show the scalability of PS-QPF-MR, we also tested with large datasets (|D|=108)

on Amazon EC2 Infrastructure consisting of 200 machines and showed the execution

time as well as relative speedup to 25 machines in Table 6.5 and Figure 6.10(b), re-

spectively.

In both experiments using large datasets, PS-QPF-MR shows linear speedup with

IND and ANTI, but sub-linear speedup with COR. It is because the number of proba-

bilistic skyline objects in the correlated data is very small and the benefit of using a

large number of machines is marginal.

93

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 20 25 30 40 50

R
el

at
iv

e
sp

ee
d

Number of machines

PS-QPF-MR (IND)
PS-QPF-MR (COR)
PS-QPF-MR (ANTI)

Ideal

(a) With our cluster

 1

 2

 3

 4

 5

 6

 7

 8

 25 50 75 100 125 150 175 200

R
el

at
iv

e
sp

ee
d

Number of machines

PS-QPF-MR(IND, 10^8)
PS-QPF-MR(COR, 10^8)
PS-QPF-MR(ANTI, 10^8)

Ideal

(b) With Amazon EC2

Figure 6.10: Relative speedups with |D| = 108

Filtering technique IND COR ANTI

Zero-probability (# of inst.) 12806654 172962353 4352818

Upper-bound (# of obj.) 882787 8614581 490691

Dominance-power (# of obj.) 9773641 9986907 9605070

Table 6.6: Filtered objects per filtering technique

The effects of filtering techniques: We first presented the number of instances re-

moved for zero-filtering technique and the numbers of non-skyline objects detected not

to compute their skyline probabilities for each of the other filtering techniques in Table

6.6. We found that dominance-power filtering detects more non-skyline objects than

upper-bound filtering. In Table 6.7, we showed the execution times of PS-QPF-MR by

applying dominance-power filtering only (D) or all filtering techniques (ALL). When

all filtering techniques were used, we applied them in the order of zero-probability

filtering, upper-bound filtering and dominance-power filtering. Applying all filtering

Dataset IND COR ANTI Average

PS-QPF-MR (ALL) 212 85 196 164

PS-QPF-MR (D) 226 123 207 185

Table 6.7: Effects of the filtering techniques (sec)

94

PS-QPF-MR L and W L NONE

Execution time (sec) 164 301 329

of transmitted instances (×106) 454 454 894

Table 6.8: Effects of optimization techniques

|D| = 107 Algorithm IND COR ANTI

Execution PS-QPF-MR 164 82 198

time (sec) PS-BRF-MR 473 143 470

of dominance PS-QPF-MR 59579 2037 58834

comparisons (×106) PS-BRF-MR 72844 3432 70369

Table 6.9: Effect of quadtree partitioning using EC2

techniques is faster than applying dominance-power filtering only in PS-QPF-MR.

The effects of optimization techniques: In Table 6.8, we reported the average

execution times and average number of transmitted instances by PS-QPF-MR with-

out leaf node grouping and workload balancing (NONE), PS-QPF-MR with leaf node

grouping only (L) and PS-QPF-MR with both methods (L and W). PS-QPF-MR with

leaf node grouping (L) has 49% of transmitted instances than PS-QPF-MR without

both methods (NONE). Since the workload balancing technique splits the instances

required to compute the skyline probabilities of objects in each group in order to uti-

lize all machines available, PS-QPF-MR with L and W is the most efficient as shown

in Table 6.8.

The effect of quadtree partitioning: To show the effectiveness of quadtree parti-

tioning, we experimented with datasets of |D| = 107 using 200 machines on Amazon

EC2 and presented the execution times as well as the numbers of checking dominance

relationships between instances of objects by both algorithms in Table 6.9. While PS-

QPF-MR has 1.37 times smaller number of dominance relationship comparisons than

PS-BRF-MR, PS-QPF-MR is 2.33 times faster than PS-QPF-MR, on average. Since

95

 10

 100

 1000

 10000

 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

PS-QPF-MR
PS-BRF-MR

(a) ANTI

 10

 100

 1000

 10000

 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

PS-QPF-MR
PS-BRF-MR

(b) IND

 10

 100

 1000

 100000 1e+06 1e+07 1e+08

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of objects

PS-QPF-MR
PS-BRF-MR

(c) COR

Figure 6.11: Varying the number of objects (|D|) for the continuous model

PS-QPF-MR has a single MapReduce phase but PS-BRF-MR consists of two MapRe-

duce phases, the performance gain in terms of execution time is higher than that in

terms of dominance relationship comparisons for PS-QPF-MR.

The continuous model: We set the default values of (|S|, |F |) to (10000, 2000)

and (2000, 1000) for PS-QPF-MR and PS-BRF-MR, respectively, since they performed

the best with those values. We omit the experimental results with varying |S| and |F |

since they show similar patterns with those for the discrete model. In Figure 6.11,

we plotted the execution times of both algorithms with varying |D|. We found that

PS-QPF-MR runs up to 7.72 times faster and is 2.37 times faster on the average than

PS-BRF-MR.

96

Chapter 7

Conclusion

We introduced efficient parallel algorithms for the skyline, dynamic skyline, reverse

skyline and probabilistic skyline queries.

We first study the optimization of skyline query processing. We propose an ef-

ficient parallel skyline computation algorithm which consists of three phases. In the

first phase, we build a new histogram which is an extension of quadtrees to effectively

prune out non-skyline points in advance. In the second phase, we split data into parti-

tions based on the regions divided by our proposed histograms and compute candidate

skyline points for each partition independently using MapReduce. Finally, we check

whether each candidate point is actually a skyline point in every region independently

by another MapReduce phase. Although our proposed algorithms are devised for the

MapReduce framework, they can be also applied to other frameworks such as MPI and

multi-cores. Since the dynamic skyline can be obtained by calculating the skyline after

transforming the coordinates of data points with respect to a given query point, we can

utilize our parallel skyline computation algorithm to compute the dynamic skyline.

Second, we investigate the reverse skyline query processing. To the best of our

knowledge, no existing work has addressed computing the reverse skyline query using

MapReduce. We analyze the characteristics of the reverse skylines theoretically to

prune non-reverse skyline points. Based on the properties of the reverse skylines, we

97

develop the novel parallel algorithm consisting of three phases. In the first phase, we

build a variant of quadtree which is used for pruning non-reverse skyline points by

utilizing the characteristics. In the second phase, by using MapReduce, we compute

the local reverse skyline points in each partition split by the histogram. In the last

phase, we compute the global reverse skyline points in every region independently and

simultaneously by using MapReduce.

We finally present the efficient algorithm for computing the probabilistic skyline

query for both continuous and discrete uncertain models. To prune out non-probabilistic

skyline objects in advance, we develop three filtering methods. The proposed algo-

rithms are composed of only two phases. In the first phase, we build a variant of a

quadtree. In the second phase, by utilizing the proposed filtering methods, we effi-

ciently compute the probabilistic skyline in each partition according to the space split

by the variant of a quadtree. To balance the workload and reduce the transmission

overhead, we also propose a workload balancing technique for the second phase.

For each type of skyline queries, we performed extensive experiments and con-

firmed the effectiveness and scalability of our proposed algorithms. We believe that

our algorithms proposed in this dissertation can be applied practically in many impor-

tant applications and enhance the performance of skyline query processing.

98

Bibliography

[1] E. Ada and C. Ré. Managing uncertainty in social networks. IEEE Data Eng.

Bull., 30(2):15–22, 2007.

[2] F. N. Afrati, P. Koutris, D. Suciu, and J. D. Ullman. Parallel skyline queries. In

ICDT, pages 274–284, 2012.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-

cessing of uncertain data. In ICDE, 2008.

[4] Apache. Hadoop. http://hadoop.apache.org.

[5] M. J. Atallah and Y. Qi. Computing all skyline probabilities for uncertain data.

In PODS, 2009.

[6] I. Bartolini, P. Ciaccia, and M. Patella. Salsa: computing the skyline without

scanning the whole sky. In CIKM, page 405, 2006.

[7] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation.

ACM Trans. Database Syst., 33(4):31, 2008.

[8] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An ef-

ficient and robust access method for points and rectangles. In SIGMOD, pages

322–331, 1990.

[9] C. Böhm, F. Fiedler, A. Oswald, C. Plant, and B. Wackersreuther. Probabilistic

skyline queries. In CIKM, pages 651–660. ACM, 2009.

99

[10] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE,

pages 421–430, 2001.

[11] R. E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica,

7:1–49, 1998.

[12] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. On high

dimensional skylines. In EDBT, 2006.

[13] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In

ICDE, pages 717–719, 2003.

[14] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In

VLDB, pages 523–544, 2007.

[15] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clus-

ters. Communication of the ACM, 51(1):107–113, 2008.

[16] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries. In

VLDB, pages 291–302, 2007.

[17] A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models for data

management in acquisitional environments. In CIDR, pages 317–328, 2005.

[18] L. Ding, G. Wang, J. Xin, and Y. Yuan. Efficient probabilistic skyline query

processing in mapreduce. In BigData Congress, pages 203–210, 2013.

[19] X. L. Dong, A. Halevy, and C. Yu. Data integration with uncertainty. In VLDB,

pages 469–500, 2009.

[20] R. Finkel and J. Bentley. Quad trees a data structure for retrieval on composite

keys. Acta informatica, 4(1), 1974.

[21] Y. Gao, Q. Liu, B. Zheng, and G. Chen. On efficient reverse skyline query pro-

cessing. Expert Systems with Applications, 41(7):3237–3249, 2014.

100

[22] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data

sets. In VLDB, pages 229–240, 2005.

[23] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline queries against mobile

lightweight devices in manets. In ICDE, 2006.

[24] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and

T. Suel. Optimal histograms with quality guarantees. In VLDB, pages 275–286,

1998.

[25] H. Köhler, J. Yang, and X. Zhou. Efficient parallel skyline processing using

hyperplane projections. In SIGMOD, pages 85–96, 2011.

[26] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online

algorithm for skyline queries. In VLDB, 2002.

[27] A. N. Laboratory. Mpich2. http://www.mpich.org/.

[28] T. Lappas and D. Gunopulos. Efficient confident search in large review corpora.

In ECML/PKDD (2), 2010.

[29] J. Lee and S.-w. Hwang. Scalable skyline computation using a balanced pivot

selection technique. Information Systems, 39:1–21, 2014.

[30] J. Lee, S. won Hwang, Z. Nie, and J.-R. Wen. Navigation system for product

search. In ICDE, 2010.

[31] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa. Preference query evaluation

over expensive attributes. In CIKM, 2010.

[32] X. Lian and L. Chen. Monochromatic and bichromatic reverse skyline search

over uncertain databases. In SIGMOD, pages 213–226, 2008.

[33] X. Lian and L. Chen. Reverse skyline search in uncertain databases. ACM Trans.

Database Syst., 35(1), 2010.

101

[34] X. Lin, Y. Zhang, W. Zhang, and M. A. Cheema. Stochastic skyline operator. In

ICDE, pages 721–732, 2011.

[35] V. Ljosa and A. K. Singh. Top-k spatial joins of probabilistic objects. In ICDE,

pages 566–575, 2008.

[36] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework

for all-pair similarity joins of multisets and vectors. VLDB, 5(8):704–715, 2012.

[37] K. Mullesgaard, J. L. Pedersen, H. Lu, and Y. Zhou. Efficient skyline computa-

tion in mapreduce. In EDBT, pages 37–48, 2014.

[38] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm

for skyline queries. In SIGMOD, 2003.

[39] A. N. Papadopoulos, A. Lyritsis, and Y. Manolopoulos. Skygraph: an algorithm

for important subgraph discovery in relational graphs. Data Mining and Knowl-

edge Discovery, 17(1):57–76, 2008.

[40] Y. Park, J.-K. Min, and K. Shim. Parallel computation of skyline and reverse

skyline queries using mapreduce. VLDB, 6(14):2002–2013, 2013.

[41] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In

VLDB, pages 15–26, 2007.

[42] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value

independence assumption. In VLDB, pages 486–495, 1997.

[43] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In VLDB, pages

751–762, 2006.

[44] M. A. Soliman, I. F. Ilyas, and K.-C. Chang. Top-k query processing in uncertain

databases. In ICDE, 2007.

102

[45] A. Soulet, C. Raı̈ssi, M. Plantevit, and B. Cremilleux. Mining dominant patterns

in the sky. In 2011 IEEE 11th International Conference on Data Mining, pages

655–664. IEEE, 2011.

[46] Spark. Spark. http://spark.apache.org.

[47] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation.

In VLDB, pages 301–310, 2001.

[48] Y. Tao and D. Papadias. Maintaining sliding window skylines on data streams.

TKDE, 18(2):377–391, 2006.

[49] M. Van Leeuwen and A. Ukkonen. Discovering skylines of subgroup sets. In

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 272–287. Springer, 2013.

[50] V. V. Vazirani. Approximation algorithms. springer, 2001.

[51] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathemat-

ical Software, 11(1):37–57, 1985.

[52] A. Vlachou, C. Doulkeridis, and Y. Kotidis. Angle-based space partitioning for

efficient parallel skyline computation. In SIGMOD, pages 227–238, 2008.

[53] G. Wang, J. Xin, L. Chen, and Y. Liu. Energy-efficient reverse skyline query

processing over wireless sensor networks. TKDE, 24(7), 2012.

[54] Y. Wang, X. Li, X. Li, and Y. Wang. A survey of queries over uncertain data.

Knowledge and information systems, 37(3):485–530, 2013.

[55] X. Wu, Y. Tao, R. C.-W. Wong, L. Ding, and J. X. Yu. Finding the influence set

through skylines. In Proceedings of the 12th International Conference on Extend-

ing Database Technology: Advances in Database Technology, pages 1030–1041.

ACM, 2009.

103

[56] B. Zhang, S. Zhou, and J. Guan. Adapting skyline computation to the mapreduce

framework: Algorithms and experiments. In DASFAA, pages 403–414, 2011.

[57] J. Zhang, X. Jiang, W. S. Ku, and X. Qin. Efficient parallel skyline evaluation

using mapreduce. IEEE Trans. Parallel Distrib. Syst., 27(7):1996–2009, 2016.

[58] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu. Probabilistic skyline oper-

ator over sliding windows. In ICDE, pages 1060–1071, 2009.

[59] L. Zhu, C. Li, and H. Chen. Efficient computation of reverse skyline on data

stream. In Computational Sciences and Optimization, 2009. CSO 2009. Interna-

tional Joint Conference on, volume 1, pages 735–739. IEEE, 2009.

[60] L. Zhu, Y. Tao, and S. Zhou. Distributed skyline retrieval with low bandwidth

consumption. TKDE, 21(3):384, 2009.

[61] L. Zou, L. Chen, M. T. Özsu, and D. Zhao. Dynamic skyline queries in large

graphs. In DASFAA, 2010.

104

초록

스카이라인질의와스카이라인에서파생된동적스카이라인,역스카이라인그

리고 확률적 스카이라인 질의들은 다양한 응용이 가능하기 때문에 최근에 많은 연

구가 진행되어 왔다. 스카이라인 질의들은 큰 데이터를 처리해야하는 경우가 많기

때문에효율적인스카이라인질의처리는중요한문제이다.큰데이터를처리해야하

는경우를위해맵리듀스프레임워크가제안되었고,따라서본논문에서는스카이라

인,동적스카이라인,역스카이라인,확률적스카이라인질의처리를위한효율적인

맵리듀스알고리즘을개발한다.

스카이라인, 동적 스카이라인, 역 스카이라인에 대해서는 질의 결과에 포함될

수없는데이터를빠르게제거하기위해서쿼드트리에기반한히스토그램을생성한

다.그리고히스토그램에따라데이터를여러파티션으로나누고각파티션에있는

데이터만을이용하여스카이라인이될수있는후보데이터를맵리듀스를이용하여

병렬적으로 뽑아낸다. 그 후에 다시 맵리듀스를 사용하여 병렬적으로 후보 데이터

중 실제 스카이라인을 찾아낸다. 확률적 스카이라인의 효율적인 처리를 위해 먼저

세가지필터링기법을제안하였다.이필터링기법을활용할수있도록쿼드트리에

기반한 히스토그램을 생성한다. 쿼드트리의 영역에 따라 데이터를 파티션하고 각

파티션마다확률적스카이라인점들을찾아낸다.각컴퓨터의수행시간을비슷하게

맞추기위해서부하균형기법도제안하였다.다양한실험을통해제안한알고리즘의

성능들이최신관련연구보다좋음을확인하였고,사용하는컴퓨터의수를늘림에

따라성능이확장성을갖고있음을확인하였다.

105

주요어:스카이라인질의,역스카이라인질의,확률적스카이라인질의,맵리듀스

학번: 2007-2007

106

	1 INTRODUCTION
	1.1 Motivation
	1.2 Contributions of This Dissertation
	1.3 Dissertation Overview

	2 Related Work
	2.1 Skyline Queries
	2.2 Reverse Skyline Queries
	2.3 Probabilistic Skyline Queries

	3 Background
	3.1 Skyline and Its Variants
	3.2 MapReduce Framework

	4 Parallel Skyline Query Processing
	4.1 SKY-MR: Our Skyline Computation Algorithm
	4.1.1 SKY-QTREE: The Sky-Quadtree Building Algorithm
	4.1.2 L-SKY-MR: The Local Skyline Computation Algorithm
	4.1.3 G-SKY-MR: The Global Skyline Computation Algorithm

	4.2 Experiment
	4.2.1 Performance Results for Skylines
	4.2.2 Performance Results in Other Environments

	5 Parallel Reverse Skyline Query Processing
	5.1 RSKY-MR: Our Reverse Skyline Computation Algorithm
	5.1.1 RSKY-QTREE: The Rsky-Quadtree Building Algorithm
	5.1.2 Computations of Reverse Skylines using Rsky-Quadtrees
	5.1.3 L-RSKY-MR: The Local Reverse Skyline Computation Algorithm
	5.1.4 G-RSKY-MR: The Global Reverse Skyline Computation Algorithm

	5.2 Experiment
	5.2.1 Performance Results for Reverse Skylines

	6 Parallel Probabilistic Skyline Query Processing
	6.1 Early Pruning Techniques
	6.1.1 Upper-bound Filtering
	6.1.2 Zero-probability Filtering
	6.1.3 Dominance-Power Filtering

	6.2 Utilization of a PS-QTREE for Pruning
	6.2.1 Generating a PS-QTREE
	6.2.2 Exploiting a PS-QTREE for Filtering
	6.2.3 Partitioning Objects by a PS-QTREE

	6.3 PS-QPF-MR: Our Algorithm with Quadtree Partitiong and Filtering
	6.3.1 Optimizations of PS-QPF-MR
	6.3.2 Sample Size and Split Threshold of a PSQtree

	6.4 PS-BRF-MR: Our Algorithm with Random Partitioning and Filtering
	6.5 Experiments
	6.5.1 Performance Results for Probabilistic Skylines

	7 Conclusion
	Bibliography
	Abstract (In Korean)

<startpage>12
1 INTRODUCTION 1
 1.1 Motivation 1
 1.2 Contributions of This Dissertation 6
 1.3 Dissertation Overview 8
2 Related Work 10
 2.1 Skyline Queries 10
 2.2 Reverse Skyline Queries 13
 2.3 Probabilistic Skyline Queries 14
3 Background 17
 3.1 Skyline and Its Variants 17
 3.2 MapReduce Framework 22
4 Parallel Skyline Query Processing 24
 4.1 SKY-MR: Our Skyline Computation Algorithm 24
 4.1.1 SKY-QTREE: The Sky-Quadtree Building Algorithm 25
 4.1.2 L-SKY-MR: The Local Skyline Computation Algorithm 29
 4.1.3 G-SKY-MR: The Global Skyline Computation Algorithm 32
 4.2 Experiment 34
 4.2.1 Performance Results for Skylines 36
 4.2.2 Performance Results in Other Environments 41
5 Parallel Reverse Skyline Query Processing 45
 5.1 RSKY-MR: Our Reverse Skyline Computation Algorithm 45
 5.1.1 RSKY-QTREE: The Rsky-Quadtree Building Algorithm 47
 5.1.2 Computations of Reverse Skylines using Rsky-Quadtrees 50
 5.1.3 L-RSKY-MR: The Local Reverse Skyline Computation Algorithm 53
 5.1.4 G-RSKY-MR: The Global Reverse Skyline Computation Algorithm 57
 5.2 Experiment 59
 5.2.1 Performance Results for Reverse Skylines 59
6 Parallel Probabilistic Skyline Query Processing 63
 6.1 Early Pruning Techniques 63
 6.1.1 Upper-bound Filtering 63
 6.1.2 Zero-probability Filtering 67
 6.1.3 Dominance-Power Filtering 68
 6.2 Utilization of a PS-QTREE for Pruning 69
 6.2.1 Generating a PS-QTREE 70
 6.2.2 Exploiting a PS-QTREE for Filtering 70
 6.2.3 Partitioning Objects by a PS-QTREE 71
 6.3 PS-QPF-MR: Our Algorithm with Quadtree Partitiong and Filtering 73
 6.3.1 Optimizations of PS-QPF-MR 79
 6.3.2 Sample Size and Split Threshold of a PSQtree 83
 6.4 PS-BRF-MR: Our Algorithm with Random Partitioning and Filtering 84
 6.5 Experiments 87
 6.5.1 Performance Results for Probabilistic Skylines 89
7 Conclusion 97
Bibliography 99
Abstract (In Korean) 105
</body>

