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ABSTRACT 

Graphene quantum dot (GQD), typically composed of graphene sheets with 

lateral dimensions less than 100 nm in single-, double- and few- (3 to <10) 

layers, has emerged tremendous research interest. Due to the pronounced 

quantum confinement and edge effects, GQDs assume numerous novel 

chemical/physical properties. Besides GQD also show low cytotoxicity, 

excellent solubility, chemical inertness, stable photoluminescence, better 

surface grafting, thus making them promising in optoelectonic devices, sensors, 

bioimaging, etc. Up to date, various synthetic methods for preparing GQD have 

been developed. However, most previous synthetic methods suffer from the 

precise control of the size, shape, fluorescence wavelength, and heteroatom 

doping. Consequently, it is still challenging to produce graphene with tailored 

morphology and diameters for various applications. 

This dissertation describes the two different ways in the synthetic 

methodology of graphene will be presented in the viewpoint of top-down 

approach and bottom-up approach. As a ‘top-down approach’, the GQDs with 

well-defined and low size distribution fabricated using a simple oxidation of 
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carbon nanomaterials and size-selective precipitation. Interestingly, the 

diameter and luminescence wavelength of graphene quantum dots can be 

controlled by selectively designing the morphology of starting materials and 

optimizing the oxidation condition. As a ‘bottom-up approach’, heteroatoms-

doped GQDs are formed using simple carbonization approach of organic 

precursor with two different doping sources. Under the catalytic reaction 

conditions of H2SO4, citric acid can be transformed to GQD due to the 

dehydration forming a graphitic hexagonal matrix. This novel strategy does not 

require a high carbonization temperature and pressure, and the simple strategy 

offers great possibility for fabricating heteroatom(S or N)-doped GQDs with 

precise control of carbonization degree, a gram-scale production, and high-

PLQY (ca. 61%). Most, importantly, these novel approaches can be used as an 

alternative tool for fabrication of various carbon-based nanomaterials with 

rational nanostructure design and may offer an opportunity for the further 

investigation of industrial applications, and might be expanded to allow the 

applications of GQDs in a wide range of areas (e.g., electronic/optoelectronic 

devices, fluorescent probe, bioimaging system, energy conversion systems). 
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1. INTRODUCTION 

1.1. Background 

1.1.1. Graphene quantum dots 

Carbon, one of the most abundant elements on the earth, brings us star 

materials over and over again.[1, 2] Graphitic forms include 0D fullerene, 1D 

CNT and 3D graphite, and the 2D case comes to the graphene, a single layer of 

carbon atoms formed in honeycomb lattice.[3] Recently, graphene, a novel 

one-atom-thick two-dimensional graphitic carbon system, has attracted 

enormous attention because of its unique physical properties and with 

numerous promising applications in nanotechnology ever since discocered in 

2004 by Geim and Novoselov et al.[4-6] As graphene is a zeo-bandgap 

material, the possibility for the observation of its application in electronic and 

opto-electronic application has been limited.[7] Accordingly, techniques to 

engineer the bandgap in graphene have attracted significant attention for 

applications in graphene-based opto-electronics.[8, 9] Up to date, diverse 

strategies for the formation of a bandgap in graphene structures have been 

developed using quantum confinement and edge effects such as graphene 

nanoribbons (GNRs) and graphene quantum dots (GQDs) (Figure 1).[2, 10] 

Among graphene nanostructures, GQDs, typically composed of graphene 

sheets with lateral dimensions less than 100 nm in single-, double- and few- (3 
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to <10) layers, have recently emerged as a potential candidate for fluorescent 

probes in bioimaging and semiconductor materials in electronic devices due to 

their numerous novel chemical/physical properties.[11] Besides GQD also 

show low cytotoxicity, excellent solubility, chemical inertness, stable 

photoluminescence, better surface grafting, thus making them promising in 

optoelectonic devices, sensors, bioimaging, etc.[12-17] Typically, GQDs 

contain carboxylic acid moieties at the edge, which is similar to graphene, thus 

imparting them with excellent water solubility and suitability for subsequent 

functionalization with various organic, polymeric, inorganic or biological 

species.[18, 19] Interestingly, GQDs also possess fascinating upconversion 

photoluminescence (PL) properties, making them a valuable platform for 

photoelectrochemical cells.[20, 21] As a consequence of their simple structure, 

as well as health concerns and biological hazards of semiconductor based QDs, 

GQDs are at the center of significant research efforts to develop low-toxicity, 

eco-friendly alternatives that have the desirable performance characteristics of 

QDs.[22, 23] 
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Figure 1. Energy gap of π – π* transitions calculated based on DFT as a 

function of the number of fused aromatic rings (N). The inset shows the 

structures of the graphene molecules used for calculation. Reprinted with 

permission from Ref. 14. Copyright 2010 Right Managed by Wiley-VCH 

Verlag GmbH & Co. KGaA. 



 4

1.1.2. Synthesis of graphene quantum dots 

Up till now, tremendous efforts have been made to develop synthetic 

methods for GQDs, which can be classified into two main groups: top-down 

and bottom-up methods.[18, 19] The top-down methods include electron beam 

lithography, acidic exfoliation, electrochemical oxidation, microwave-assisted 

hydrothermal synthesis, and so on.[10, 13] In addition, GQDs can also be 

prepared through bottom-up routes, including the solution chemistry, 

cyclodehydrogenation of polyphenylene precursors, carbonizing some special 

organic precursorsor, the fragmentation of suitable precursors, for example, the 

C60.[11, 15, 16, 24-26] The top-down routes for the preparation of GQDs have 

the advantages of abundant raw materials, large scale production and simple 

operation.[27] Moreover, the GQDs synthesized via top-down methods usually 

contain oxygen-containing functional groups at the edge, thus facilitating their 

solubility, functionalization and passivation.[28] However, this method also 

suffers from some disadvantages, such as the requirement of special equipment, 

low yield, the damage on the aromatic carbon framework, and the non-

selective “top-down” chemical cutting process, which does not allow precise 

control over the morphology and the size distribution of the products.[29] 

Conversely, the bottom-up methods offers us exciting opportunities to control 

the GQDs with well-defined molecular size, shape, and thus properties.[30] 

Nevertheless, these methods always involve complex synthetic procedures, and 
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the special organic precursors may be difficult to obtain.[31] More importantly, 

the poor solubility and strong tendency of aggregation of the GQDs limits their 

practical applications.[32] Besides, these GQDs obtained via the solution 

chemistry are usually smaller than 5 nm, which is below the processable scale 

of state-of-the-art lithography technology (10 nm).[33] In the past few years, 

increasing efforts have been paid to the advanced synthesis of GQDs, and the 

deficiencies have gradually overcome via the elaborate designs.[34] 

 

1.1.2.1. Acidic oxidation 

The acidic oxidation method has emerged to be one of the most promising 

techniques for the large-scale production of single and multiple layer graphene 

quantum dots.[35, 36] Li et al. suggested that a well-controlled oxidation 

induced cut of graphene could lead to more smooth edges compared to heat or 

sonic treatment.[37] Thus the oxidation of GO in a strong acid solution is a 

widely adopted method, usually followed by neutralization of the excess acid 

and a dialysis process.[38] Peng and co-workers reported the synthesis of 

GQDs in large scale with acidic exfoliation and etching of pitch carbon 

nanofibers (CNF) (Figure 2).[39] The carbon nanofibers were dispersed into a 

mixture of concentrated H2SO4 and HNO3, sonicated for two hours and stirred 

for 24 hours at three different temperatures (80 °C, 100 °C and 120 °C). 
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Accordingly, three kinds of GQDs with the emission color of blue, green, and 

yellow were obtained, their corresponding diameters distributed between the 

range of 1–4 nm, 4–8 nm, and 7–11 nm, respectively. The heights of the GQDs 

are between 0.4 and 2 nm, corresponding to 1–3 graphene layers. A clear blue-

shift from 330 to 270 nm with increasing the temperature was observed in the 

UV-visible absorption spectra, revealing that the reaction temperature could 

tune the size of the as-prepared GQDs and affect their absorption 

properties.[40]  
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Figure 2. (a) Macroscale image and simplified illustrative nanostructure of 

coal. (b) SEM image of ground bituminous coal with sizes ranging from 1 to 

hundreds of microns in diameter. Scale bar, 50 mm. (c) Schematic illustration 

of the synthesis of GQDs. Oxygenated sites are shown in red. (d) TEM image 

of GQDs showing a regular size and shape distribution. Scale bar, 20 nm. (e) 

HRTEM image of representative GQDs from d; the inset is the 2D FFT image 

that shows the crystalline hexagonal structure of these quantum dots. Scale bar, 

2 nm. (f) AFM image of GQDs showing height of 1.5–3 nm. Scale bar, 100 nm. 

Reprinted with permission from Ref. 35. Copyright 2013 Right Managed by 

Nature Publishing Group. 
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1.1.2.2. Hydrothermal and solvothermal method 

The hydrothermal method is a facile synthetic route for the preparation of 

GQDs.[41, 42] It usually required the usage of strong alkali (such as NaOH 

and ammonia) as scissors to cut the carbon based precursors into colloid 

GQDs.[43] In 2010, Pan et al. firstly reported the hydrothermal synthesis of 

GQDs using micrometer-sized GO sheets as the starting material.[44] Briefly, 

the preparation of GQDs involved the thermal reduction of monolayer GO 

sheets (200–300 °C for 2 h) into chemically derived graphene sheets (GSs), the 

oxidization of the GSs in concentrated H2SO4 and HNO3 solution for 15–20 h 

under mild ultrasonication, and the hydrothermal deoxidation of the oxidized 

GSs (200 °C for 10 h) under weakly alkaline conditions (pH 8). Their 

diameters are ainly distributed in the range of 5–13 nm (9.6 nm average 

diameter), and the topographic heights are mostly between 1 and 2 nm (1–3 

graphene layers). Here, due to the low temperature for thermal de-oxidization 

of GO sheets and the weakly alkaline condition for the hydrothermal cutting 

reaction, the resultant GQDs were less ordered.[45] Later in 2011, Pan et al. 

improved this hydrothermal approach to prepare well-crystallized GQDs using 

high-temperature (600 °C) thermally reduced GO sheets as the precursor by a 

fine chemical cutting route under strongly alkaline hydrothermal conditions 

(pH > 12).[46] The well-crystallized GQDs exhibited strong green fluorescence 



 9

with lateral size ranging from 1.5 to 5 nm (3 nm average diameter) and a 

narrow height distribution from 1.5 to 1.9 nm, indicating that the GQDs 

typically consist of 2–3 graphene layers. 

 

1.1.2.3. Microwave- and sonication-assisted method 

A microwave-assisted technique has been widely applied to materials 

synthesis for it combines both the advantages of hydrothermal and microwave 

techniques.[47] As a convenient and rapid heating source, microwave assisted 

exfoliation and reduction of GO has been reported.[48] Reduced graphite oxide 

materials could be readily obtained in the scale of minutes and the yield of 

graphene prepared by this method was very high, which suggested that 

microwave irradiation could shorten the reaction time and improve the product 

yield. Recently, Li et al. developed a facile microwave-assisted approach for 

the preparation of stabilizer-free two-color GQDs from GO nanosheets under 

acid conditions.[49] Briefly, initiated by the acid oxidation of epoxy groups, it 

was prone to form a mixed line on the carbon lattice composed of fewer epoxy 

groups and more carbonyl groups, making the graphitic domains fragile and 

readily attacked. The greenish yellow-luminescent GQDs showed an average 

diameter of 4.5 nm, and were mostly single layered or bilayered. Followed by a 

single step of moderately reducing greenish yellow-luminescent GQDs with 

NaBH4, the blue-luminescent GQDs were obtained with almost the same 
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dimension and height. The PL QYs of greenish yellow-luminescent- and blue-

luminescent-GQDs were as high as 11.7% and 22.9%, respectively. It was also 

verified that reduction occurred simultaneously with the cleaving of GO, thus 

microwave irradiation integrated the cleaving and reduction steps into facile 

one step and finally simplified the synthetic process and shortened the reaction 

time. 

 

1.1.2.4. Electrochemical method 

Typically, carbon based materials such as graphite and MWCNTs have 

been widely used as the working electrode for the electrochemical preparation 

of CDs, as well as fluorescent graphene nanoribbons (Figure 3).[50] These 

methods adopted high redox potential, ranging from ±1.5 V to ±3 V, which 

was high enough to either oxidize the C–C bonds or oxidize water to generate 

hydroxyl and oxygen radicals playing the role of an electrochemical “scissors” 

in its oxidative cleavage reaction.[15] Besides, the potential cycling can drive 

the supporting electrolyte (BF4
– or TBA+ ions) to intercalate into the carbon 

anode, thus bring about the depolarization and expansion of the carbon anode. 

Both the interplay of anodic oxidation and anion intercalation lead to the 

exfoliation of the carbon anode and the production of CDs via defect-mediated 

fragmentation processes. This electrochemical strategy has further been 
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extended to the production of GQDs.[51] The electrochemical preparation of 

GQDs was firstly performed by Li et al. in 0.1 M phosphate buffer solution 

(PBS, pH 6.86) with a filtration-formed graphene film as the working electrode 

upon the application of cyclic voltammetry (CV) scan within the potential 

region of ±3 V.[52] The collected GQDs were monodisperse with a uniform 

diameter of ca. 3–5 nm, the topographic heights were between 1 and 2 nm, 

indicating the architecture of 1–3 graphene layers. The GQDs present a green 

luminescence and can be retained stably in water for several months without 

any changes. 
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Figure 3. Illustration of the exfoliation process showing the attack of the 

graphite edge planes by hydroxyl and oxygen radicals, which facilitate the 

intercalation of BF4 anion. The dissolution of hydroxylated carbon 

nanoparticles gives rise to the fluorescent carbon nanoparticles. Oxidative 

cleavage of the expanded graphite produces graphene nanoribbons. Reprinted 

with permission from Ref. 50. Copyright 2009 Right Managed by American 

Chemical Society.
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1.1.2.5. Bottom-up approach 

Compared with the top-down routes, the reports concerning the bottom-up 

routes are relatively scarce. Li's group has made great effort to synthesize 

GQDs via stepwise solution chemistry based on oxidative condensation 

reactions.[53] The obtained large colloidal GQDs have a uniform and tunable 

size, containing conjugated carbon atoms respectively. The stabilization of the 

resultant GQDs was achieved by multiple 2’,4’,6’-triakyl phenyl groups 

covalently attached to the edges of the graphene moieties. (Figure 4) The 

crowdeness on the edges of the GQDs twists the substituted phenyl groups 

from the plane of the core, leading to alkyl chains closing the latter in all three 

dimensions. This results in reduced face-to-face interaction between the 

graphenes, thus effectively increasing their solubility. Some organic precursors 

have also shown great potential for the preparation of GQDs via pyrolysis or 

carbonization under certain conditions. Tang et al. firstly reported a facile 

microwave-assisted hydrothermal method for the production of GQDs with 

glucose as the starting material and also the sole reagent.[53] First the glucose 

molecules were dehydrated to form the nucleus of GQDs that is composed of 

C═C. Then the growth of GQD occurred at the spherical surface (edge growth), 

with increasing heating time. The source molecules reach the surface of the 

GQD and generate new C═C by dehydration. Owing to the high pressure 

induced by the hydrothermal condition, the freshly formed C═C is orderly 
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arranged and assists the growth of crystalline GQDs. The diameter of the 

GQDs can be increased by increasing microwave heating time. The size of the 

GQDs can be tuned from 1.65 to 21 nm by simply prolonging the heating time 

from 1 to 9 min. at the same time. They also claimed that most of the 

carbohydrates which contain C, H, and O in the ratio of ~1 : 2 : 1 may be used 

as the carbon source to prepare GQDs. 
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Figure 4. Synthesis of graphene quantum dots via bottom-up approach. 

Reprinted with permission from Ref. 53. Copyright 2010 Right Managed by 

American Chemical Society. 
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1.1.3. Application fields 

With its superior properties, such as fluorescence, physiological stability, 

pH sensitivity, up-conversion PL property, fine biocompatibility and low 

toxicity, GQD has offered substantial application perspectives.[25, 54, 55] 

Meanwhile, rapid development in synthesizing GQD with controllable sizes, 

tailorable chemical structures, as well as strong PL, further speeds up their 

applications.[19] Until now much effort has been centered on biological and 

other applications 

1.1.3.1. Bioimaging 

Optical properties are the key for GQDs to be put into practical use.[56, 57] 

The bright PL and established low cytotoxicity render GQDs applicable in 

biological applications such as bioimaging.[18] Peng et al. selected the green 

luminescent GQDs to incubate with human breast cancer cell lines T47D with 

the nucleus stained with DAPI (blue color).[58] Figure 5 showed the images of 

T47D cells treated with green GQDs for 4 h incubation time, which clearly 

visualized the phase contrast image of T47D cells with nucleus stained with 

blue DAPI, agglomerated high contrast fluorescent image of green GQDs 

around each nucleus and overlay image of cell with phase contrast, DAPI and 

green GQDs.[59] These obtained images indicated that GQDs can be used in 

high contrast bioimaging.[60] The excitation-dependent PL behavior of the 

GQDs can give rise to numerous visible results.[61] 
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Figure 5. Fluorescent images of human breast cancer cell T47D after 

incubation with green GQDs for 4 h. (a) Phase contrast picture of T47D cells. 

(b) Individual nucleus stained blue with DAPI. (c) Agglomerated green GQDs 

surrounding each nucleus. (d) The overlay high contrast image of nucleolus 

stained with blue DAPI and GQDs (green) staining. Reprinted with permission 

from Ref. 58. Copyright 2012 Right Managed by American Chemical Society.
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1.1.3.2. Photoluminescence sensors 

Based on the PL of GQDs, various sensors have been fabricated recently 

with either signal-off or signal-on processes.[62] Wang et al. firstly reported 

that GQDs could be used for Fe3+ detection on the basis of the selective 

fluorescence quenching effect to Fe3+.[63, 64] Taking into account the special 

coordinate interaction between Fe3+ ions and phenolic hydroxyl group which 

was responsible for the PL of GQDs, the photoluminescence of GQDs could be 

greatly affected by Fe3+ ions.[65] The fluorescence change GQDs with and 

without addition of 80 ppm Fe3+ ions shows that the fluorescence of GQDs in 

the presence of Fe3+ ions was almost completely quenched, while other metal 

ions (Zn2+, Cd2+, Ca2+, Mg2+, Pb2+, Fe2+, Cu2+, Ru3+and Fe3+) at the same 

concentration had much weaker influence on the fluorescence of GQDs. In the 

range of 0.8–8 ppm of Fe3+ ions, fluorescent quenching value was detectable 

and presented an almost linear relationship. The detection limit of Fe3+ ions for 

0.12 mg mL–1 GQDs dispersion was calculated to be around 1 ppm. 

 

1.1.3.3. Catalyst for the oxygen reduction reaction 

Zhuo et al. designed photocatalysts (rutile TiO2/GQD and anatase 

TiO2/GQD complex systems) to harness the visible spectrum of sunlight, based 

on the upconversion luminescence properties of GQDs.[66, 67] Their 

photocatalytic ability was determined by degradation of methylene blue (MB) 
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under Xe lamp irradiation (with 420 nm cutoff filter). The photodegradation 

efficiency is up to 97% in 60 min with the rutile TiO2/GQD complex and 31% 

with anatase TiO2/GQD complex acting as photocatalysts (Figure 6). Under 

visible light (λ > 420 nm) irradiation, the upconverted PL peak of GQDs was 

located at ca. 407 nm (3.05 eV). This energy was larger than the band gap of 

rutile TiO2 3.0 eV (414 nm), yet smaller than that of anatase TiO2 3.2 eV (388 

nm). Hence the photocatalytic ability of rutile TiO2/GQD was much superior to 

that of the anatase TiO2/GQD complex. Contrast experiments were carried out 

using only pure rutile TiO2 (50 mg), pure anatase TiO2 (50 mg), pure GQDs (5 

mL) and CaIn2O4 as photocatalysts. The result indicated that the excellent 

photocatalytic activities of TiO2/GQD should be attributed to the interaction 

between GQDs and TiO2.[68] 
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Figure 6. (1) Relationship between MB concentration and reaction time for 

different catalysts: rutile TiO2/GQDs, CaLn2O4, antatse TiO2/GQDs, GQDs, 

rutile TiO2 NPs, and anatase TiO2 NPs. (b) Schematic of photocatalytic process 

for rutile TiO2/GQD and anatase TiO2/GQD under visible light irradiation. 

Reprinted with permission from Ref. 66. Copyright 2012 Right Managed by 

American Chemical Society.



 21

1.1.3.4. Organic photovoltaic devices 

Organic photovoltaic (OPV) devices have attracted increasing attention 

since the report of two-layer organic photovoltaic cell by Tang.[69, 70] Usually, 

the OPV cells are those with bulk heterojunction (BHJ) architecture based on 

soluble poly(3-hexylthiophene) (P3HT) and poly(3-octylthiophene) (P3OT) as 

the donor and PCBM as the acceptor.[71] Recently, graphene was applied as 

the acceptor and could also replace the common ITO as the transparent 

electrode due to its remarkable electronic and mechanical properties.[71] 

However, graphene sheets have extremely poor solubility and have a strong 

tendency to aggregate into graphite.[72] The properties of large solubility and 

tunable band gap make GQDs very attractive for photovoltaic applications.[73]  

Li et al. applied GQDs as novel electron acceptor in a P3HTbased solar 

cell.[52] As shown schematically in Figure 7, polymer photovoltaic cells with 

the structure of ITO/PEDOT:PSS/P3HT:GQDs/Al were fabricated, where ITO, 

PEDOT, PSS and P3HT stranded for indium tin oxide, poly(3,4-

ethylenedioxythiophene), poly(styrenesulfonate) and poly(3-hexylthiophene), 

respectively. Figure 7b gives the energy level diagram for the GQD-based 

photovoltaic cells where the LUMO level of GQDs is estimated to be in the 

range of 4.2–4.4 eV by electrochemical methods. Compared with the P3HT 

device, the performance of GQD-based devices, in terms of such quantities as 

Isc, Voc, FF and PCE, was enhanced overall due to the contribution of GQDs in 
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this device (Figure 7c). In the P3HT:GQDs composite device, the GQDs 

provides a large surface area for the formation of p–n interfaces and carrier 

transporting pathways. Although without device optimization in this primary 

study, a power conversion efficiency of 1.28% was achieved. 
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Figure 7. Schematic (a) and energy band (b) diagrams of the ITO/PEDOT: 

PSS/P3HT:GQDs/Al device. (c) J–V characteristic curves for the ITO/ 

PEDOT:PSS/P3HT/Al, ITO/PEDOT:PSS/P3HT:GQDs/Al and ITO/ 

PEDOT:PSS/P3HT:GQDs/Al devices after annealing at 140 °C for 10 min. 

Reprinted with permission from Ref. 52. Copyright 2010 Right Managed by 

Wiley-VCH Verlag GmbH & Co. KGaA. 
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1.2. Objectives and Outline of the Study 

1.2.1. Objectives 

In the preceding section, the importance of graphene quantum dots was 

introduced from the viewpoint of academic research and practical applications. 

The aim of this dissertation is to present two different synthetic methodologies 

to fabricate graphene quantum dots in the viewpoint of ‘top-down’ and 

‘bottom-up’ approach. Furthermore, the formation mechanism of the graphene 

quantum dots is systematically investigated, and their application fields are 

also explored, including FRET-based photovoltaic devices, fluorescent sensor, 

and bioimaging. 

 

1.2.2. Outline 

This dissertation involves the following subtopics:  

I. ‘Top-down’ Approach for Fabricating Uniform Graphene Quantum Dots 

with Sizes 

1. Chemical oxidation of various carbon nanomaterials  

2. Separation of graphene quantum dots via size-selective precipitation 

approach 

II. ‘Bottom-up’ Approach for Fabricating Graphene Quantum Dots based on 

Carbonization and Heteroatom Doping  
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1. Carbonization of citric acid 

2. Controllable S, N-doping of graphene quantum dot  

III. Applications 

1. FRET-based dye-sensitized solar cells for near-infrared light harvesting  

2. Graphene quantum dot-based fluorescent sensor for rapid and 

ultrasensitive detection of an anthrax biomarker  

3. Photoinduced electron transfer based sensor probes for intracellular 

hydrogen peroxide  

 

A detailed outline of the study is as follows: 

1. As a ‘top-down approach’, the GQDs with well-defined and low size 

distribution are successfully fabricated using a simple oxidation of carbon 

nanomaterials and size-selective precipitation. To control the size and 

luminesecence wavelength of graphene quantum dots, different types of 

CNs and various oxidation conditions are studied. Interestingly, the 

diameter and luminescence wavelength of graphene quantum dots can be 

controlled by selectively designing the morphology of starting materials 

and optimizing the oxidation condition. In addition, a size-selective 

precipitation method for GQDs is also propsed in order to separate highly 

monodispersed GQDs from additives or unreacted residual materials. The 
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GQDs can be formed without any additional time-consuming dialysis 

process and are highly dispersed in different solvents with high content of 

GQDs. 

2. As a ‘bottom-up approach’, heteroatoms-doped GQDs are formed using 

simple carbonization approach of organic precursor with two different 

doping sources. Under the catalytic reaction conditions of H2SO4, citric 

acid can be transformed to GQD due to the dehydration forming a 

graphitic hexagonal matrix. Sulfuric acid served to S atom dopants as well 

as catalyst of dyhydration reaction of citric acid. Then, DMF was added 

when S-doped GQD was formed. DMF served as a quenching solvent for 

the growth retardation to GO and source of nitrogen. This novel strategy 

does not require a high carbonization temperature and pressure, and the 

simple strategy offers great possibility for fabricating heteroatom(S or N)-

doped GQDs with precise control of carbonization degree, a gram-scale 

production, and high-PLQY (ca. 61%).  

3. The high FLQY-GQDs could be used as light-harvesting antennae in 

FRET-based photovoltaic devices. This novel and simple approach 

involves simultaneously utilize the wide solar spectrum, thereby resulting 

in high conversion efficiency over a wide wavelength range. In addition, 

major parameters that affect the FRET interaction between donor and 
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acceptor have been investigated including the fluorescent emission 

spectrum of GQD and the content of deposited GQDs into the TiO2 matrix. 

Interestingly, the Upconversion properties of GQD were determined and 

the response mechanism of the upconversion GQD-layer-modified 

working electrode in dye-sensitized solar cells (DSSCs) was investigated.  

4. As a fluoresence sensor for detecting of B. anthracis spores, a simple and 

novel approach based on the hybridization of GQDs into a europium (Eu)-

macromolecule complex have been proposed. This novel approach 

involves anchoring Eu onto GQDs of two different diameters, which 

provides a change in the fluorescence intensity that varies with the 

concentration of B. anthracis. Most importantly, the Eu-modified GQDs 

reported here exhibit an excellent limit of detection (LOD) of 10 pM 

towards B. anthracis; this concentration is six orders of magnitude smaller 

than the infectious dose of the spores (60 µM). We also demonstrate 

excellent specificity towards the B. anthracis spores via measurements of 

sensitivity in aqueous solutions containing numerous aromatic ligands. 

5. As a selective H2O2 probe, a boronate and folic acid dual-modified 

fluorescent GQD was successfully fabricated. Well-defined GQDs were 

fabricated and then further surface modified with boronate and folic acid 

for detecting of H2O2 and targeting of cancer cell, respectively. 
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Interestingly, the fluorescence intensity changed and an emission peak 

shifted when BPAN nanoparticles selectively interacted with H2O2, 

relative to other ROS. The BPAN nanoparticles undergo photoinduced 

electron transfer (PET) between a Schiff base moiety and boronate, which 

enhances the fluorescence and makes the nanoparticles suitable for 

selective molecular recognition. In addition, we demonstrate the use of 

these nanoparticles as a detector of endogenous H2O2 produced in living 

cells. 
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2. EXPERIMENTAL DETAILS 

2.1. ‘Top-down’ Approach for Fabricating Uniform Graphene 

Quantum Dots of Various Size 

2.1.1. Chemical oxidation of various types of carbon materials 

0.3 g of carbon nanomaterials (CNs), such as graphene oxide (GO), 

herringbone-typed carbon nanofiber (H-CNF), and platelet-typed carbon 

nanofiber (P-CNF), were added into a mixture of concentrated H2SO4 (60 mL) 

and HNO3 (20 mL). The solution was sonicated for two hours until the solution 

was homogenious and then transferred into a three-neck round flask of 250 mL. 

The CN-contained acidic solution was oxidized under excessive acidic 

conditions for 24 hours at different temperatures ranging from 80 to 120 °C to 

synthesize GQDs. The mixture was cooled and diluted with deionized (DI) 

water (800 mL). Then, the pH of the GQD solution was adjusted to 8 using 

Na2CO3. 

 

2.1.2. Separation of graphene quantum dots via size-selective 

precipitation approach 

In order to isolate the graphene quantum dots, the size-selective 

precipitation has been carried out from the reaction mixture. At first, the crude 

solution of GQDs has been concentrated to approximately one fifth of the 
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initial volume. After that, a nonsolvent (ethanol) has been added to the 

concentrated solution in volume ratio of 2:1. Then, the Na2SO4 salts and large 

sized graphenes started to precipitate. From the resulting turbid solution, the 

precipitate and the supernatant were separated by centrifugation at 12,000 

RPM for 1hr. To the first supernatant obtained from this procedure, ethanol was 

added into the GQD aqueous solution in volume ratio of 2:1 and a 

centrifugation was performed with 12,000 RPM for 1 hr, producing another 

fraction of supernatants and precipitates. This process was repeated several 

times in order to obtain fractions of GQDs with a uniform size. The obtained 

supernatant of GQD solution was strongly fluorescent with a uniform size. The 

obtained supernatant of GQD solution was strongly fluorescent with a uniform 

size. 

 

2.2. ‘Bottom-up’ Approach for Fabricating Graphene Quantum Dots 

based on Carbonization and Heteroatom Doping 

2.2.1. Carbonization of citric acid 

In a typical procedure of GQDs preparation, 2 g of citric acid (CA) was put 

into a beaker and heated to 200 °C using heating mantle. About 5 min later, the 

CA was liquated. Subsequently, the color of the liquid was changed from 

colorless or pale yellow, and then orange in 30 min, implying the formation of 
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GQDs. If the haeating was kept on, the orange liquid would finally turn to 

black solid in about 2 h, suggesting the formation of GO. The obtained orange 

liquid for preparing GQDs was added drop by drop into 100 mL of 10 mgmL-1 

NaOH solution, under vigorous stirring. After neutralized to pH 7.0 with 

NaOH, the aqueous solution of GQDs was obtained. The black solid was 

dissolved with 50 mL of 10 mg mL-1 NaOH solution, and further neutralized 

with the same concentration of NaOH, resulting the aqueous solution of GQD. 

 

2.2.2. Controllable S, N-doping of graphene quantum dot. 

For the S-doped GQD, 2 g citric acid and 0.56 mL H2SO4 with a molar 

ratio 1: 1 were put into a round-shaped flask and stirred to form a clear solution. 

Then the solution was heated to 100 °C in a heating mentle and kept for 

additional 10 minutes. Subsequently, the color of liquid was changed to pink 

and then getting darker, indicating the formation of graphene oxide. For the 

following N-doping, 10 mL DMF (dimethyl formamide) was added to the clear 

pink S-doped GQD solution. Then the temperature was increased to 200 °C 

and kept for additional 30 minutes. Finally, as-synthesized S, N-doped GQD 

was collected by adding ethanol into the solution and further neutralized with 

NaOH, resulting the aqueous solution of GOD. 
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2.3. Applications 

2.3.1. FRET-based dye-sensitized solar cells for near-infrared light 

harvesting 

For use as light-harvesting antennae in FRET-based photovoltaic devices, 

the GQD was passivated by polyethylene glycol (PEG) for high fluorescent 

quantum yield. PEG molecules were anchored onto the surface of GQD via 

hydrothermal route at 200 °C for 2 h. Then, the PEG-passivated GQDs were 

deposited onto the top of a TiO2 working electrode of DSSCs via spin coating. 

For the preparation of GQD-layer modified photoanode, TiO2 mesoporous film 

was prepared by screen-printing of P25 based TiO2 paste on FTO-type TCO 

glass and sintered at 450 °C in air for 30 min. The PEG-passivated GQD 

solution was spin-coated on top of the as-prepared nanoporous TiO2 layer at 

500 rpm for 20 sec from a solution with a concentration of approx. 0.5 mg/ml. 

The as-prepared TiO2/GQDs films were treated with a 40 mM titanium 

tetrachloride (TiCl4) solution and heated at 450 °C in air for 30 min before use. 

The GQD-deposited TiO2 thin film was immersed in the dye solution (0.5 mM 

D719 dye in acetonitrile and t-butanol (volume ratio of 1 : 1)) for 36 h at 25 °C. 

For the preparation of Pt-counter electrode, a drop of 5 mM H2PtCl6 ethanol 

solution was spread out onto the FTO glasses, and thermal treated at 400 °C for 

15 min under air. The working electrodes were assembled with Pt-FTO 
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electrodes into sandwich- type cells using thermal adhesive films (Surlyn: 60 

μm, Dupont). A drop of electrolyte (Iodolyte AN-50, Solaronix), consisting of 

50 mM triiodide, 0.1 M LiI, and 0.5 M 1,2-dimethyl-3-propylimidazolium 

iodide in acetonitrile, was injected into the cell. 

 

2.3.2. Graphene quantum dot-based fluoresent sensor for rapid and 

ultrasensitive detection of an anthrax biomarker 

For the preparation of Eu-modified GQD, GQD (0.1 g) in 5 mL of distilled 

water were reacted with ethylene diamine (EDA) (0.1 mL) for 2 h and 

centrifuged. Next, the product was reacted with ethylenediamine teraacetic acid 

dianhydride (EDTAD) (0.1 M; 1 mL) for 2 h. Subsequently, the product was 

redispersed in aqueous solution of EuCl3 (0.1 M; 1 mL) by sonication and 

stirred for 3h. The product (Eu-GQD) was centrifuged and washed with 

distilled water. The DPA detection of Eu-GQDs was measured by fluorescence 

spectra analysis with a JASCO FP-6500 spectrofluorometer. The fluorescence 

intensity changes were observed with increasing the concentration of DPA, and 

the fluorescence intensity changes of the Eu-GQD were monitored at 616 nm 

(λex = 270 nm) in the presence of DPA (0- 1 μM). 
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2.3.3. Photoinduced electron transfer based sensor probes for 

intracellular hydrogen peroxide 

To graft boronate on the surface of GQD, 5 mg amount of 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide and 5 mg amount of N-

hydroxysuccinimide were added in an aqueous solution of GQD (1 mg/mL) at 

20 °C for 3 h. Then, the product was treated with folic acid solution (8 mM; 1.5 

mL) for 6 h to synthesize the F-GQD. Subsequently, the product was reacted 

with 2-aminopyrimidine-5-boronic acid pinacol ester (15 mM; 1.5 mL) for 6 h. 

(B-GQD) The quantum yield of BGQD was calculated by a comparison 

method of the fluorescence emission with the standard reference, 7-amino-4-

methylcoumarin (AMC; Aldrich). AMC has been widely used as a blue-

emitting dye due to their high quantum yield (Φ = 0.88).  

For the H2O2 and ROS detection in the presence of various metabolites, the 

fluorescence intensity changes of BGQD were monitored at 360 nm (λex = 490 

nm). A 0.1 M HEPES buffer solution and 1 cm × 1 cm quartz cuvettes were 

used in all experiments. The concentration of the BGQD was fixed at 10 μg 

mL-1. H2O2 and OCl- were obtained from 35% hydrogen peroxide (Aldrich) 

and 5% sodium hypochlorite solution (Hanawa Chemical Pure, Osaka, Japan), 

respectively. ·OH and ·OtBu were acquired by reaction of 1 Mm Fe2+ with 100 

μM H2O2 or 100 μM TBHP, respectively. In order to confirm interference 
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effect of metabolites, 10 µg mL-1 BGQD and 1 mM metabolites were mixed, 

and they were reacted with H2O2. Ca2+, L-glutamine, and L-ascorbic acid were 

selected as representative ion, amino acid, and vitamin, respectively. 

The rate of conversion from BGQD to oxidized BGQD was calculated 

under pseudo-first order conditions with excess H2O2. A BGQD solution (10 

μg m L-1, 3.0 mL) was added to H2O2 to final concentrations of 20, 40, 60, 80, 

and 100 μM. The change in absorbance at 360 nm was monitored over 0.5-5 

min. The slope of the linear fit of ln[(A-Aoxidized BGQD)/(A0-Aoxidized BGQD)] vs 

time gives observed rate constant kobs (where A0 and Aoxidized BGQD are the initial 

absorbance of BGQD and the absorbance of a 10 μg mL-1 oxidized BGQD, 

respectively). The rate constant k (M-1 s-1) was determined from the slope of 

the line of Kobs vs [H2O2].  

For the Cell culture, human breast cancer MCF-7 cells (FR+) and human 

breast cancer SK-BR-3 cells (FR-) were purchased from American Type 

Culture Collection (Manassas, VA, USA). Both cells were cultured in RPMI-

1640 medium with 10% fetal bovine serum and 1% penicillin-streptomycin 

solution. They were maintained in a 75T flask at 37 °C in humidified 5% CO2 

atmosphere and passaged at 70-80% confluence. 

For the titration assay, 3 × 103 MCF-7 and SK-BR-3 cells per well were 

seeded in black, opaque, 96-well plates and inserted with the BGQD (2.5~15 
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μg mL-1) for 24 h. Then, PMA (1~10 μg mL-1) was added to the cells for 30 

min at 37 °C. Fluorescence intensity was detected by Victor3 multilabel readers 

(Perkin-Elmer, Boston, MA, USA) at an excitation wavelength of 565 nm and 

an emission wavelength of 460 nm due to restriction of the fluorescence lamp 

of the instrument. 

For the Observation of TGQD and BGQD treated cells. MCF-7 and SK-

BR-3 cells were spread at a density of 3000 cells per well, in 8-well Lab-Tek II 

chambered coverglass (Nunc, Thermo Fisher Scientific, USA) and treated with 

10 μg mL-1 of TGQD and BGQD. After 24 h, the supernatant was removed and 

the cells were washed twice with 0.1 M phosphate buffered solution (PBS). 

Then, the cells were treated with 5 μM phorbol-12-myristate-13-acetate (PMA, 

Sigma) solution for 10 min at 37 °C. The cells were analyzed with a Delta 

Vision RT imaging system (Applied Precision, Issaquah, WA, USA) under 5% 

CO2 at 37 °C. To obtain images, a Cascade II electron multiplying charge-

coupled device camera was used. The excitation and emission filter were used 

as Rd-TR-PE and DAPI, respectively, to restriction of the fluorescence lamp of 

the instruments.  

For the Viability test, the cell viability was measured using Cell-Titer glow 

luminescent cell viability assay (Promega, Madison, WI, USA). This assay is a 

homogeneous method of estimating the number of viable cells based on the 
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ATP content. MCF-7 cells were seeded in white opaque 96-well plates at a 

density of 1.5×104 cells mL-1 for 24 h, and BGQD or TGQD were inserted for 

another 24 h. Then, cell medium was removed and following steps were carried 

out as manufacturer’s instructions. The luminescence was detected by Victor3 

Multilabel Readers (Perkin Elmer, Boston, MA, USA) at 595 nm. The viability 

was calculated by dividing the ATP content of BGQD or TGQD treated cells 

by that of untreated cells (negative control). 

For the ROS production, the intracellular ROS was measured by 2’,7’-

dichlorodihydrofluorescein diacetate (H2DCF-DA; Invitrogen, Grand Island, 

NY, USA) staining. MCF-7 cells were seeded in black opaque 96-well plates at 

a concentration of 1.5×104 cells mL-1 and treated with BGQD or TGQD for 

another 24 h. They were washed with 0.1 M Hank's Buffered Salt Solution 

twice and treated with 10 μM H2DCF-DA for 30 min at 37 oC. Fluorescence 

intensity was detected by Victor Multilabel Readers (Perkine Elmer, Boston, 

MA, USA) at an excitation wavelength of 485 nm and an emission wavelength 

of 535 nm. 
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3. RESULTS AND DISCUSSION 

3.1. ‘Top-down’ Approach for Fabricating Uniform Graphene 

Quantum Dots with Sizes.  

The overall synthetic procedure for GQDs is shown in Figure 8. Under our 

experimental conditions, the GQDs are synthesized by excessive chemical 

oxidation and size-selective precipitation approach of micrometer-sized pitch 

based carbon nanomaterials (CN) such as graphene oxide (GO), platelet-typed 

carbon nanofiber (P-CNF), herringbone-typed carbon nanofiber (H-CNF).[21] 

The small domain structure of sp2 carbon atoms, such as those in carbon 

nanofibers has advantages of easy extraction and facile size control of the 

synthesized GQDs.[39] The CN were oxidized under excessive acidic 

conditions for 24 h and exfoliated to nanometer-sized graphene oxides.[74] The 

oxidation process was carried out at temperatures ranging from 80 to 120°C to 

synthesize GQDs. Then, the pH of the solution was adjusted to 8 with Na2CO3. 

Then, size-selective precipitation was used to isolate the GQDs from the 

reaction mixture. Ethanol, a non-solvent, was added to the concentrated 

solution until the Na2SO4 salts started to precipitate. Excess Na+ and SO4
2– ions 

were present in the GQD solution due to the neutralization reaction between 

H2SO4 and Na2CO3; the excess ions combined to form Na2SO4 salts in a non-

solvent system. From the resulting turbid solution, the precipitate and the 
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supernatant were perfectly separated by centrifugation. Consequently, uniform 

nanometer-sized GQDs were separated from Na2SO4 salts and larger GQDs 

under various sedimentation velocity conditions. 
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Figure 8. Formation mechanism for the graphene quantum dots (GQDs) via 

chemical oxidation and size-selective precipitation procedures. 
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3.1.1. Chemical oxidation of various types of carbon materials. 

Figure 9 show transmission electron microscopy (TEM) images of pristine 

CNs and as-synthesized GQD by chemical oxidation for 24h. During the 

oxidation process, the CNs are exfoliated and cut to the nanometer-sized GQDs. 

The GQD originated from H-CNF indicates narrow size-distribution and small 

diameters (3 nm ± 10 nm) compared to that of P-CNF (5 nm ± 14 nm) and GO 

(17 nm ± 25 nm).[75] This is attributed to the smaller structural units (ca. 50 

nm) of the H-CNF, facilitating oxidization and cut for the nanometer sized 

GQDs.[76] Moreover, the GQD originated form H-CNF shows the excellent 

dispersity in the aqueous solution. 

Figure 10 shows the UV-vis absorption spectra of three types of GQD 

fabricated from different CNs. It shows a development of new absorption band 

at 300 nm, which are silimar to the graphene quantum dots prepared by a 

hydrothermal graphene oxide reduction method.[44] In contrast, the pristine 

CNs exhibits a broad UV-vis absoprtion below 600 nm, suggesting that those 

sp2 clusters containined in GO and CNF is not uniform in size.[77] As the 

oxidization time increases, the overall absorption of GQDs increases with 

relative decrease of the band at 300 nm. The origin of the peak is related to π 

electron transition in oxygen-containing GQD. The absorption peak at 300 nm 

corresoponds to n → π* transition of C=O bond.[78] In addition, Figure 11 
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also demonstrates the PL spectra of as-prepared GQDs orginated from different 

CNs. The fluorescence intensity increases in the order of GO < P-CNF < H-

CNF. This result is in accordance with the monodisperse GQD of H-CNF in 

nanometer size range. Taking these results into account, it is concluded that 

small and uniform structural unit of H-CNF gives monodisperse size 

distribution and high fluorescent intensity of GQD.  

Raman spectroscopy was also used to characterize the GQDs, as shown in 

Figure 12. The G peak shows blue shift ca. 2 nm compared with the original 

CF. The D peak of GQDs can be found at 2700 cm−1. The relative intensity of 

the “disorder” D band to the crystalline G-band (ID/IG) for the GQDs is 0.91, 

indicating the increase of defect compared to that of pristine H-CNF (1.18).[1] 
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Figure 9. TEM images of (a) pristine GO, (b) 24 h-oxidized GO, (c) pristine 

P-CNF, (d) 24h-oxidized P-CNF, (e) pristine H-CNF, and (f) 24h-oxidized H-

CNF.  
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Figure 10. The UV-vis absorption spectra of GQDs fabricated by (a) graphene 

oxide(GO), (b) Platelet typed-carbon nanofiber(P-CNF), and (c) Herringbone 

typed-carbon nanofiber(H-CNF). 
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Figure 11. The PL spectra of as-prepared GQDs orginated from graphene 

oxide(GO, blue line), platelet typed-carbon nanofiber(P-CNF, red line), and  

herringbone typed-carbon nanofiber(H-CNF, black line). 
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Figure 12. Raman spectra of pristine H-CNF and the as-prepared GQD. 
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To control the oxidation condition of H-CNF, the molar ratio of 

hydrochloric acid and sulfuric acid was varied from 1:3 to 3:1 in Figure 13. In 

the case of GQDs with higher ratio of H2SO4, fluorescene intensity increases 

compraed to that of higher ratio of HCl, indicating high fluorescence quantum 

yield of ca. 2%.  

In addition, the oxidation temperature of H-CNF was varied from 80 to 

140 °C and UV-vis absorption and PL spectra was analyzed (Figure 14). The 

as-prepared GQDs show two clear absoption bands at 300 and 350 nm in 

Figure 14a. The orgin of these peak is related to π electron transition in 

oxygen-containing GQDs. The absorption peak at 300 nm is due to n → π* 

transition of C=O bond, and the absoprtion at 350 nm corresponds to n → π* 

transition of the C–S bond. When the oxidation temperature increases from 80 

to 140 °C, the 300 nm peak of C=O bond gradually decreased with the increase 

of 350 nm peak of C–S bond, indicating the enhancement of S doping levels of 

GQDs due to the sulfuric acid. The result reveals that the reaction temperature 

can affect the absorption properties of as-sythesized GQDs and that high 

temperature leads to GQDs absorption at longer wavelenths.  

Figure 14b shows the PL spectra of GQDs with different oxidation 

temperatures from 60 to 120 °C, which were excited at 350 nm. The as-

prepared GQDs show two emission bands at 469 nm and 530 nm. In the case of 
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GQD with low oxidation temeperature, the PL results revealed that high 

intensity at the 530 nm band and low intensity at 469 nm band. However, as the 

oxidation temperature increase, the peak at 530 nm gradually decreased and the 

peak at 469 nm increased, resulting the 120 °C-oxidized GQD has narrow PL 

band. The result reveals that the temperature can change the distribution of 

emission wavelength of as-synthesized GQDs. Different emission color may 

originate from GQDs of different size, shape and defects. Further 

characterization (typical TEM images and size distribution for GQDs) supports 

the conclusion that different-sized GQDs yield different emission colors. 
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Figure 13. The PL spectra of GQDs fabricated by different oxidation 

conditions(volume ratio of H2SO4: HNO3); 3:1 (blue line), 2:2 (red line), 1:3 

(black line). H-CNF was used as carbon sources. 
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Figure 14. (a) The UV-vis absorption spectra of the as-prepared GQDs with 

different oxidation temperatures; 80, 100, 120, and 140 °C. (b) PL spectra of 

GQDs with different oxidation temperatures (60, 80, 90, 100, and 120 °C), 

which were excited at 350 nm. H-CNF was used as carbon sources. 
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Figure 15. TEM images of GQDs prepared via excessive oxidation and size-

selective precipitation. (a–b) 3-nm-diameter GQDs and (c–d) 10-nm-diameter 

GQDs. (insets: corresponding HR-TEM images of GQDs). 
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Figure 15 indicates TEM analysis of GQDs prepared by different oxidation 

temperature (80 and 120 °C). The 80 °C-oxidized GQD has ca. 3 nm of 

average diameter. And the 120 °C-oxidized GQD has ca. 10 nm of average 

diameter. From the above results, it could be concluded that the different 

oxidation temperature yields different-sized GQDs with different emission 

colors. 

Under our experimental condition, the zeta potential measurements show a 

linear increase in the zeta potential with respect to increasing oxidation levels. 

In Figure 16, the zeta potential values of 80°C-, 100°C- and 120°C-oxidized 

GQDs were found to be -17.3, -23.2, and -27.8 mV, respectively. The negative 

zeta potential values are due to the presence of electronegative functional 

groups formed at the graphite lattice during the oxidation process.1 With the 

successive increase in the oxidation temperature, a greater number of 

electronegative functional groups are formed in GQD resulting in the increase 

of the zeta potential at higher oxidation levels. Accordingly, the results for the 

high oxygenated functional groups with higher zeta potential in an aqueous 

medium is more likely due to the dissociation of a greater number of acidic 

groups at the surface thereby resulting in a higher zeta potential. 
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Figure 16. Plot of zeta potential vs. GQD samples with different oxidation 

levels. Smoluchowski approximation was used for the conversion equation of 

zeta-potential.  
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3.1.2. Separation of graphene quantum dots via size-selective 

precipitation approach. 

The size-selective precipitation approach was used to isolate the GQDs 

from the reaction mixture in Figure 17. Ethanol, a non-solvent, was added to 

the concentrated solution until the Na2SO4 salts started to precipitate. Excess 

Na+ and SO4
2- ions were present in the GQD solution due to the neutralization 

reaction between H2SO4 and Na2CO3; the excess ions combined to form 

Na2SO4 salts in a non-solvent system. From the resulting turbid solution, the 

white crystalline precipitate and the yellowish transparent supernatant were 

perfectly separated by high speed centrifugation in Figure 17b. Consequently, 

uniform nanometer-sized GQDs were separated from Na2SO4 salts and larger 

GQDs under various sedimentation velocity conditions. 

Figure 18 shows FT-IR spectra of precipitate and supernatant after 

sedimentation process. The FT-IR spectrum of the precipitate shows 

characteristic SO4 asymmetric bending at 640 cm-1, SO4 symetric stretching at 

1100 cm-1, and O–H stretching peak at 3449 cm-1, indicating the major 

products are Na2SO4. The FT-IR spectrum of supernatant presents 

characteristic C–O stretching at 1100 cm-1, C=C aromatic stretching at 1591 

cm-1, C=O stretching at 1785 cm-1, C–H stretching at 2882 cm-1, indicating the 

presence of GQDs. 
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Figure 17. Digital photograph of GQD solutions (a) before and (b) after 

separation process. 
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Figure 18. FT-IR spectra of supernatant and precipitate after size-selective 

precipitation process. 
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Figure 19 show transmission electron microscopy (TEM) images of 

pristine HCNFs and GQDs at each size-selective precipitation step. The 

pristine HCNFs had diameters of ca. 50–100 nm (Figure 19a). After excessive 

oxidation and PEG anchoring steps, the as-synthesized GQDs had diameters of 

ca. 5–40 nm with a broad size distribution (Figure 19b). After each separation 

step, the supernatant and precipitate showed significant differences in 

morphology and in the size of the GQDs (Figure 19c-d). The size distributions 

measured using TEM were ca. 5–40 nm and ca. 5–15 nm for the precipitates 

and supernatant, respectively. Namely, the supernatant after separation process 

have a uniform morphology and a narrow size distribution compared with that 

of precipitate.  

We also investigated the size distribution of GQDs before and after the 

size-selective precipitation process using dynamic light scattering (DLS) 

analysis in Figure 20. Under our experimental condition, the GQDs before 

separation showed broad distribution in the range of 6 nm to 3 μm. However, 

GQDs after separation process showed narrow distribution with 12 nm peak. 

This result is corresponding to the results from TEM measurement in Figure 19. 

Figure 21 shows the PL spectra of 80 °C-oxidized GQD and 120 °C-oxidized 

GQD before and after size-selective precipitation process. After the separation 

process, both of the emission peaks of 80 °C- and 120 °C-oxidized GQDs were 



 58

blue-shifted about 15 nm and the emission spectral width was narrowed. This 

is attributed to the uniformity of size and shape of the GQDs after the size-

selective precipitation step. 
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Figure 19. TEM images for (a) pristine HCNFs, (b) as-synthesized GQDs 

before size-selective precipitation step, (c) precipitate and (d) supernatant after 

size-selective precipitation step (inset indicates the corresponding size-

distribution analysis of GQD). 
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Figure 20. Size distribution of (a) GQDs (80 °C) before separation and (b) 

GQDs (80 °C) after separation process measured by Dynamic light scattering 

spectroscopy(DLS). 
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Figure 21. PL spectra of GQDs before and after the size-selective 

precipitation; (a) 120 °C-oxidized GQD and (b) 80 °C -oxidized GQD.  
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Discrete nanomaterials dispersed in a fluid exhibit a divergent 

sedimentation trend as a function of size, morphology, structure, and other 

properties.[79] Thus, the predominant dispersion stability of smaller GQDs is 

attributable to the sedimentation velocity, which is an important factor in 

particle precipitation.[80] Stoke’s law, a formula for determining the rate of 

sedimentation, indicates that a particle moving through a viscous liquid attains 

a constant velocity or sedimentation rate.[81] The equation for Stoke’s law of 

sedimentation is as follows: 

      (1) 

Where Vg is the sedimentation velocity, d is the particle diameter, ρp is the 

particle density, ρ1 is the liquid density, η is the viscosity of liquid, and G is the 

gravitational acceleration. Under our conditions, the sedimentation velocity 

(Vg) was 1.64 × 10–11 and 1.15 × 10–9 m·s–1 for 10- and 50-nm GQDs, 

respectively (Table 1). It is noteworthy that the Vg value of 10-nm GQDs was 

ca. 70 times slower than that of 50-nm GQDs. It was also expected that the 

slower settling velocity of smaller GQD sheets and the limited formation of 

Na2SO4 salts on smaller GQD sheets would have a synergistic effect and 

enhance the anti-sedimentation properties.
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Table 1. Physical parameters and sedimentation velocity of GQDs.  

 3-nm GQD 50-nm GQD 

Diameter a ca. 3 nm ca. 50 nm 

Density b 1.15 g/cm3 2.37 g/cm3 

Fluid density c 0.789 g/cm3 0.789 g/cm3 

Fluid viscosity c 0.0012 Pa·s 0.0012 Pa·s 

Sedimentation velocity d 1.64 x 10-11 m/s 1.15 x 10-9 m/s 
a The average diameter of GQDs was determined by TEM (50 GQDs counted). 
b The density of GQDs was obtained using density hydrometer at a standard 
temperature of 20 ºC. c Ethanol was used as a dispersing medium. d Stoke’s 
settling equation was used for calculation of sedimentation velocity. GQD 
Reynolds number less than 0.2. 
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3.2. ‘Bottom-up’ Approach for Fabricating Graphene Quantum Dots 

based on Carbonization and Heteroatom Doping. 

The S, N-doped GQD was prepared through a facile carbonization 

approach of citric acid under the sulfuric acid (H2SO4) and dimethylformamide 

(DMF) condition (Figure 22). Under the catalytic reaction conditions of H2SO4, 

citric acid undergoes dehydration forming a graphitic hexagonal matrix.[82] 

During the carbonization of citric acid, H2SO4 plays two roles for the 

preparation of S-doped GQD. One is to catalyze the dehydration of citric acid 

under acidic conditions.[56] The other is to provide S-doping sources, resulting 

sulfonic acid and sulfonyl group on the surface of GQD. The benzene ring of 

GQD reacts slowly with sulfuric acid to give benzenesulfonic acid via 

electrophilic aromatic substitution reaction (S-doped GQD). Then, DMF was 

added to the reactant when the color of the liquid was changed from colorless 

to orange in 20 min, implying the formation of S-doped GQD.[83] Since DMF 

could be decomposed to dimethylamine and carbon monoxide at temperature 

higher than its boiling point, DMF served as a quenching solvent for the 

growth retardation to graphene oxide and source of nitrogen. [57] Then the 

decomposed dimethylamine was doped into the GQD via peptide bonding with 

carboxylic acid group on the surface of GQD.  
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Figure 22. Schematic diagram for the fabrication procedure of S, N-doped 

GQD. 
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3.2.1. Carbonization of citric acid 

The formation of GQDs was confirmed by TEM analysis (Figure 23). The 

TEM observation revealed that the diameter of GQDs increased with the 

increase of carbonization time, and finally over 100 nm-sized graphene oxide 

discs were developed at the 40 min of carbonization. [77] 

 

3.2.2. Controllable S, N-doping of graphene quantum dot 

Figure 24 shows the high-resolution TEM images of GQD, S-doped GQD, 

and S, N-doped GQD. The as-prepared GQDs are well dispersed in narrow size 

distributions with mean diameters of 10.2 ± 0.4 nm (GQD), 10.8 ± 0.4 nm (S-

doped GQD) and 12.3 ± 0.5 nm (S, N-doped GQD), respectively. After doping 

with S, N atoms, the average diameter of GQD increased to 12.3 nm. A 

representative HR-TEM images display a lattice spacing distances of 0.25 nm, 

which are similar to those of graphite (1120) facets (Figure 24).[84] The above 

results suggest that the GQD might be composed of nanocrystalline cores of 

graphitic sp2 carbon atom.[85] 

In addition, the formation of GQD, S-doped GQD, and S, N-doped GQD 

was confirmed using both Fourier-transform infrared (FT-IR) spectroscopy and 

Raman spectroscopy. In Figure 25, the FT-IR spectrum of the GQDs shows 

characteristic C–H deformation peaks at 861 cm-1, C–O–C stretching peaks 
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1215 cm-1, C=C aromatic stretching peaks at 1578 cm-1, C=O stretching at 

1700 cm-1, C–H stretching at 2930 cm-1, indicating the successful synthesis of 

GQDs. Following S-doping with H2SO4, the peaks related to sulfur appear, 

including the C–S stretching at 616 cm-1, S=O stretching at 1042 cm-1. The S, 

N-doped GQD exhibits new peaks related to amine bond; N–H deformation at 

861 cm-1, C–N stretching of tertiary amine at 1090 cm-1, C–H stretching of N–

CH3 at 2809 cm-1, and N–H stretching at 3053 cm-1. 

Raman spectroscopy was used to confirm the quality of the S-doped GQD 

and S, N doped-GQD. Two major features, a D band and G band, were 

observed at around 1385 and 1575 cm-1, respectively (Figure 26).[86] The 

relative intensity of the “disorder” D-band and the crystalline G-band (ID/IG) 

for the S, N doped-GQD increased to 0.54 compared to that of S-doped GQD 

(0.75), indicating the increased defect which is derived from N dopants.[87] 
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Figure 23. The low-and high-magnification of TEM images of GQD at (a-b) 

20 min, and (c-d) 40 min of carbonization time of citric acid. The dotted red 

circles indicate the as-synthesized graphene oxide, which diameters are about 

50 nm. 
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Figure 24. HR-TEM images of (a) pristine GQD, (b) S-doped GQD, and (c) S, 

N-doped GQD. The inset indicates magnified HR-TEM image of each GQD. 

(d) The S, N-doped GQDs with lattice parameters of 0.25 nm.  
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Figure 25. FT-IR spectra of GQD, S-doped GQD, and S, N-doped GQD. 
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Figure 26. Raman spectra of pristine GQD (black), S-doped GQD (red), and S, 

N-doped GQD (blue). 
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Figure 27 shows X-ray photoelectron spectroscopy (XPS) characterization 

of GQDs, including pristine GQD, S-doped GQD, and S, N-doped GQD. The 

atomic concentrations of C, and O in the pristine GQD were determined to be 

47.2% (C), and 52.8% (O), respectively. In the S-doped GQD, the atomic 

concentrations were 41.8% (C), 50.0% (O), and 8.2% (S), which indicates that 

the new peak in S 2p region appeared and peak in C 1s significantly decreased. 

In addition, the atomic concentrations of S, N-doped GQD were calculated to 

be 42.7% (C), 47.1% (O), 4.9% (S), and 5.3% (N). The new peak in N 1s 

(5.3%) region appeared and C1s region was enlarged which is attributed to the 

formation of dimethylamino group. In Figure 27b-d, the deconvoluted C1s, 

S2p, N1s XPS spectra of S, N-doped GQD are presented. In the C1s region, the 

main peak at 284.6 eV corresponds to the graphite like sp2 carbon, indicating 

most of the carbon atoms are arranged in honeycomb lattice. In addition, the 

peak intensity of C-O or C-N or C-S bonding (peak II, 286.0 eV) significantly 

increased compared to that of pristine GQD, and S-doped GQD, which suggest 

the formation of C-N bonding. The high-resolution XPS spectra of S2p shows 

main two peaks at 168.4 and 169.6 eV and minor two peaks at 163.6, and 164.7 

eV, which represents large portion of sulfone (168.4 eV) and sulfate (169.6 eV) 

group (Figure 27c). These results indicate that sulfuric acid was doped into the 

GQD to yield benzenesulfonic acid via electrophilic aromatic substitution 
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reaction with the benzene ring on the surface of GQD. The high-resolution 

XPS spectra of N1s from S, N-doped GQD can be deconvoluted into two peaks 

(Figure 27d). The peak at 399.9 eV is attributed to the N 1s of the N-C bond of 

amino alcohols, indicating that the decomposed dimethylamine is attached to 

the aromatic ring of the N-GQD. The strong peak at 401.6 eV is ascribed to the 

N-C bond of amide linkage, indicating that the dimethylamine was doped into 

the GQD by peptide bonding with the carboxylic acid group on the surface of 

GQD. Judging from these data, the preparation of S, N-doped GQD is 

successfully carried out. 

To investigate the growth mechanism of GQD and doping level of S, N 

atoms, optical properties of GQDs were monitored during the carbonization 

process by recording the UV-visible absorption spectra of the sample aqueous 

solutions at different times in Figure 28a-c. Figure 28a shows the growth of 

two clear absorption bands of pristine GQD at 244 nm, and 330 nm until time 

reaches to 20 min and then decrease after 20 min, indicating the synthesized 

GQDs keep grow to graphene oxide(GO) at high carbonization degrees. The 

origins of these two peaks are related to π electron transition in oxygen-

containing GQDs. The peak at 244 nm corresponds to π→ π* transition of the 

aromatic sp2 domains. The other absorption peak at 330 nm is due to n → π* 

transition of the C=O bond. [67] 
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Figure 27. (a) XPS spectra of GQD, S-doped GQD, and S, N-doped GQD. The 

high resolution (b) C1s, (c) S2p, and (d) N1s peaks of the S, N-doped GQD. 
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 In the case of S-doped GQD, three absorption bands appeared at 244 nm, 

300 nm, and 365 nm in Figure 28b. The peak at 244 nm significantly enlarged 

in the condition of H2SO4, indicating that sulfuric acid act as acidic catalyst for 

facilitate aromatic sp2 structure.[30] The peak at 300 nm is due to n → π* 

transition of the C=O bond. The absorption band at 365 nm is related to the 

doping of sulfur, which alters the surface state of GQDs. The bands at 365 nm 

are attributed to the π → π* of C─S. Following N-doping with the addition of 

DMF, the absorption bands of S, N-doped GQD appear at 300 nm, 365 nm and 

527 nm in Figure 28c. The bands at 527 nm may be attributed to the π → π*, 

and n → π* of C─N. Figure 28d shows the digital images of the color change 

of S, N-doped GQDs. As the reaction time increase, the color of S, N-doped 

GQD aqueous solution change from bright pink to dark yellow, indicates the 

formation of graphene oxide when high carbonization degrees.[88] The result 

reveals that the carbonization degree can affect the absorption properties of as-

synthesized GQDs and that high carbonization degree leads to the growth of 

GO.[89] 
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Figure 28. UV-vis absorption spectra of (a) pristine GQD, (b) S-doped GQD, 

and (c) S, N-doped GQD as a function of reaction time. (d) Optical images of 

diluted S, N-doped GQD aqueous solution.  
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Like most luminescent carbon nanoparticles, the S, N-doped GQD also 

exhibit an excitation-dependent PL behavior. When the excitation wavelength 

is changed from 350 nm to 450 nm, the emission maximum wavelength 

showed red-shift from 440 nm to 550 nm and gradual decrease of its intensity 

(Figure 29a). In general, the excitation-dependent PL behaviors of GQDs 

reflect the effect from particles of different surface states.[87] In addition, the 

fluorescence quantum yield (FLQY) of GQDs excited with 350 nm UV light 

was measured by selecting 4’, 6-diamidino-2-phenylindole (DAPI) dissolved in 

dimethylsulfoxide as a standard in Figure 29b. The FLQY of GQD, S-doped 

GQD, and S, N-doped GQD were measured to 9%, 41%, and 61%, 

respectively (Table 2). It is notable that the FLQY of S, N-doped GQD is ca. 7 

times higher than that of pristine GQD. In principle, the FL of the GQDs 

should be attributed to the radiative recombination of electrons and holes 

trapped on the GQDs surface. Pristine GQDs have different kinds of surface 

states (O-states) corresponding to a relatively wide distribution of different 

energy levels to generate a broad UV/Vis absorption band and broad and 

excitation-dependent emission spectra.[36] After doping of S, N atoms, it 

seems that the doped sulfur and nitrogen atoms introduce a new kind of surface 

state such as S-states and N-states. Therefore, electrons trapped by the new 

formed surface states could facilitate a high yield of radiative recombination. 
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From the above results, the strong FL emission of the S, N-doped GQDs 

mainly result from the surface-doped sulfur and nitrogen atoms.  

The luminescence decay profiles of the blue GQDs are shown in Figure 30. 

The decay was recorded for the GQDs transitions at 350 nm excitation 

measured at room temperature by a timecorrelated single photon counting 

technique. The lifetime data of three types of GQDs were very well fitted to a 

double-exponential function as shown in Figure 30. The parameters generated 

from iterative reconvolution of the decay with the instrument response function 

(IRF) are listed in the inset of Figures 30, respectively. The observed lifetimes 

of the S, N-doped GQD are τ1 = 2.17 ns, and τ2 = 0.15 ns, whereas for pristine 

GQDs lifetime τ1 = 0.19 ns, and τ2 = 1.15 ns were observed. The observed 

lifetime of GQDs in nanosecond suggests that the synthesized S, N-doped 

GQDs are most suitable for optoelectronic and biological applications. 

Importantly, a gram-scale GQD production was readily obtained in a single 

carbonization reaction (Figure 31). The photograph shows ca. 2 g of three 

types of GQD; pristine GQD, S-doped GQD, and S, N-doped GQD, which is a 

very large quantity for a laboratory-scale production. The color of GQD 

changed from bright yellow to black after S, N-doping process, indicating 

sulfur and nitrogen atoms are incorporated into the pristine GQD. 
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Figure 29. (a) Fluorescence spectra of S, N-doped GQD under different 

excitation wavelengths from 350 to 460 nm. The insets are magnified FL 

spectra of S, N-doped GQD under different excitation wavelengths from 420 

nm to 460 m. (b) Fluorescence spectra of pristine GQD, S-doped GQD, and S, 

N-doped GQD under 350 nm. The insets are the optical images of GQD, S-

doped GQD, and S, N-doped GQD excited under 350 nm illumination.  
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Figure 30. The transient PL measurements of pristine GQD, S-doped GQD, 

and S, N-doped GQD. The red line shows the lifetime curve fitted by two-

exponential function. 
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Figure 31. Digital photographs showing ca. 2 g of (d) pristine GQD (e) S-

doped GQD, (f) S, N-doped GQD obtained in a single carbonization reaction. 
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Table 2. Fluorescence quantum yields of GQD, S-doped GQD, and S, N-doped 

GQD. 

 

 

 

 

 

 
[1] The fluorescence quantum yield of GQDs excited with 350 nm UV light is 
calculated by selecting the DAPI (4’,6-diamidino-2-phenylindole) as standard.  

Samples 
Fluorescence quantum yield[1] 

 (%) 

GQD 9.0 

S-doped GQD 41.4 

S, N-doped GQD 61.1 
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3.3. Applications 

3.3.1. FRET-based dye-sensitized solar cells for near-infrared light 

harvesting. 

The as-synthesized GQDs could be applied as fluorescent phosphors in 

FRET-based photovoltaic devices.[90] The overall cell structure and the 

arrangement of TiO2 nanoparticles, GQDs, and dye inside the cell are shown in 

Figure 32a. In principle, when solar light impinges on the photoanode of DSSC, 

the GQDs serve as “antennae” and funnel the absorbed energy to nearby dye 

molecules by means of FRET, rather than being used directly as 

sensitizers.[91] Therefore, more electron charges can be generated and difused 

into the TiO2 films through FRET.[92] Figure 32b shows the energy-level 

diagram describing the upconverted fluorescence emission from a GQD under 

infrared excitation. In general, GQDs possessed characteristic upconvesion PL 

properties. Upconversion refers to a nonlinear optical process characterized by 

the successive absorption of two or more photons followed by the emission of 

radiation at a shorter wavelength than the excitation wavelength.[93] The 

upconversion PL properities of GQDs are attributable to multiphoton active 

processes, similar to previous reports on carbon dots.[20] Thus, a greater 

amount of light can be utilized by the D719 dye via the upconversion fuction of 

the GQDs and FRET. [94, 95] 
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Figure 32. (a) Schematic image of GQD-layer-modified DSSC and light 

harvesting mechanism via FRET. (b) Energy level diagram of GQD-layer-

modified DSSC. 
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To enhance the PL intensities of GQDs, the GQD was surface passivated 

by anchoring the surface edges of GQDs with polyethylene glycol (PEG, MW: 

10,000).[96] The anchoring process was performed at 120°C for 1 h via a 

hydrothermal method. Figure 33 demonstrates that the TEM image of GQDs 

before and after the PEG-passivation. After PEG-passivation, the size of GQDs 

was increased from 5 nm to 7 nm. The dotted circles show the lattice structures 

of GQDs, indicating the rest of circles are PEG molecules. Namely, it was 

exhibited that the thickness of PEG was in the range of 1-2 nm on the surface 

of GQDs. 

Figure 34 shows FT-IR spectra of GQDs and PEG-passivated GQDs. The 

FT-IR spectrum of the GQDs show characteristic C–H deformation peak at 835 

cm-1, C–O stretching at 1100 cm-1, C=C aromatic stretching at 1637 cm-1, and 

C=O stretching at 1785 cm-1, indicating the successful synthesis of GQDs. 

Following surface passivation with PEG (PEG-GQD), the peaks related to C–H 

and C–O bond increased in intensity, including the C-H deformation at 950 cm-

1, C-O-C stretching at 1100 cm-1, and C-H stretching at 2884 cm-1. 

Figure 35 demonstrates the PL spectra of pristine GQD and PEG-

passivated GQD. After PEG-passivation of GQDs, the PL intensity of PEG-

GQD increases ca. 12 times compared to the pristine GQDs, and peak 

maximum blue-shifted about 30 nm. This peak shift is attributable to the size  
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Figure 33. The low-and high-magnification of TEM images of (a-b) pristine 

GQD (c-d) PEG-passivated GQD. 
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Figure 34. Fourier-transform infrared (FT-IR) spectra of pristine GQDs and 

PEG-passivated GQDs.  
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decrease of GQDs during the hydrothermal process at PEG anchoring step.  

To further explore the upconversion fluorescence properties of as-

synthesized GQDs, a detailed PL study was carried out using different 

excitation wavelength. As shown in Figure 36, when the excitation wavelength 

changed from 600 to 750 nm, an upconversion emission band was observed in 

the curve centered at ca. 525 nm. The upconversion PL property of GQDs is 

attributable to multiphoton active processes, similar to previous reports on 

carbon dots.[20] 

Figure 37 shows the absorption spectrum of dye and the emission specra of 

differently sized GQDs. These GQDs showed strong emission bands at 435 nm 

(120 °C), and 500 nm (80 °C), respectively. These emission characteristics are 

well-corresponded to the PL results in Figure 21. In addition, an aquesous 

solution odf D719 dye had two main absorption peaks at 380 and 540 nm. In 

principle for efficient FRET, the emission spectrum of the donor (GQDs) must 

overlap with the absorption spectrum of the acceptor (dye). Therefore, 80 °C-

oxidized GQDs have better spectral overlap with D719 dye than 120 °C-

oxidized GQDs, indicating the more efficient FRET design between donor and 

acceptor.  
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Figure 35. PL spectra of (a) 120 °C- and (b) 80 °C-oxidized GQD before and 

after PEG passivation. (The insets indicate the corresponding fluorescence 

quantum yield of GQDs) 
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Figure 36. Upconverted PL spectra of the (a) 120 °C- and (b) 80 °C-oxidized 

GQDs at different excitation wavelengths from 600 nm to 750 nm. 

 

 

 



 91

 
 

Figure 37. Absorption (left) of D719 dye and emission (right) of GQDs; 80°C-, 

and 120°C-oxidized GQDs. Emission spectra upon excitation at 350 nm with 

emission maxima normalized at their intensities.  
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In our initial assays, we focused on a FRET system compsed of D719 dye 

with differently sized GQDs. To test the energy transfer between the GQDs and 

the sensitizing D719 dye, the PL spectra of a mixture of GQDs and D719 dye 

in aqueous solution were obtained (Figure 38a-b). In the PL analysis of 

GQD+dye combinations, it was observed that the intensity of the emission 

spectrum significantly decreased after the addition of dye to the GQDs. In 

particular, the PL quenching was greater for 80 °C-GQDs followed compared 

to that of 120 °C, which meant that a larger degree of luminescence of 80 °C 

GQDs was absorbed into the dye in the 80 °C GQD+dye combination.[97]  

Additionally, the Stern–Volmer plot of the fluorescence quenching of GQD 

with an emission peak at 350 nm were investigated with compared with those 

of other light emitting GQDs (80 °C and 120 °C) in Figure 38c.[98] Compared 

to the 120 °C-GQD, the 80 °C-GQD indicated a high quenching rate with the 

content of D719 dye. These results are corresponding to a larger degree of 

overlap between the donor fluorescence spectrum and the acceptor absorbance 

spectrum, as shown in Figure 37.[99] Thus, a greater amount of light can be 

utilized by the D719 dye via the upconversion function of the GQDs and 

Förster resonance energy transfer (FRET).[94, 95] On the basis of these data, 

energy transfer from GQD donors to D719 dye acceptors is the dominant 

mechanism of the fluorescence quenching. The absorption spectra for the GQD 
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were recorded before and after the addition of D719 dye in Figure 38d. The 

absorption spectrum of dye+GQDs indicated increased absorption intensity in 

the wavelength range from 350 to 700 nm after the addition of dye to the 

GQDs. In particular the absorption of dye+GQDs showed a remarkable 

increase around 450 nm and above 600 nm relative to the pristine dye. This 

signified the high utilization of the solar spectrum area that dyes alone are not 

able to utilize sufficiently.[100] In general, the efficiency of energy transfer by 

FRET is given by the equation (2),[101] 

    (2) 

Where kET is the rate of energy transfer from donor to acceptor, τD is the 

excited state lifetime of the donor in the absence of the acceptor, and kw is the 

effective rate of any other competing process.[98] The rate of Förster energy 

transfer for two dipoles separated a distance r is  

     (3) 

R0 is given by the well-known expression for the Förster radius: [90] 

  (4) 
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Where n is the refractive index, NA is the Avogadro number, k is the dipole 

orientation factor, and ΦD is the donor fluorescence quantum yield in the 

absence of acceptor.[92] The terms within the square brackets constitute the 

spectral overlap integral J of the donor fluorescence intensity (normalized to 

unit area) and the absorption spectrum of the acceptor. For our photoanode, we 

employed differently sized GQDs into the nanoporous TiO2 film via a spin-

coating method. 
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Figure 38. PL quenching of (a) GQDs (80 °C) and (b) GQDs (120 °C) as a 

function of the amount of dye molecules from 12 to 160 μM. (c) Stern-Volmer 

plot of the fluorescence quenching of GQDs (80, 120 °C) with D719 dye. (d) 

Absorption spectra of GQDs (80 °C) as a function of the amount of dye 

molecules from 12 to 160 μM. 
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For use as light-harvesting antennae in FRET based photovoltaic devices, 

GQDs were deposited onto the top of a TiO2 working electrode of DSSCs via 

spin coating.[92, 100] The photovoltaic performance (PV) of GQD-layer-

modified DSSCs is shown in Figure 39. When 2.6 mg of GQDs were 

incorporated into the DSSC, the power-conversion efficiency was enhanced to 

7.95%, compared to 7.28% for pristine DSSC. Notably, the optimized GQD-

layer-modified DSSC showed ca. 9.2% enhanced efficiency compared with 

pristine DSSC. Figure 39b shows the incident photon-to-current efficiency 

(IPCE) for DSSCs with and without GQDs. For the cells with GQDs, the 

response for wavelengths between 350 and 700 nm increased significantly 

compared with pristine DSSC. The IPCE changed significantly for 

wavelengths less than 530 nm, corresponding to the overlap region of the 

donor emission spectrum and the acceptor absorption spectrum. Moreover, the 

high-wavelength bands at 850 nm increased with the addition of GQDs, which 

could be attributable to the upconverted PL of GQDs (Figure 39b, inset).[102, 

103] Thus, the GQD-layer-modified photoanode provided enhanced DSSC 

performance and offers new possibilities for realizing FRET based DSSCs for a 

wide range of wavelengths by incorporating GQDs. 
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Figure 39. (a) J-V characteristics (under simulated AM 1.5 irradiation) of the 

cells with and without the use of GQDs. (inset: the photocurrent density as a 

function of the amount of deposited GQDs) (b) IPCE of the cells with and 

without the use of GQDs. (inset: high magnification spectra in IPCE).  
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Table 3 demonstrates the summary of photovoltaic performance of GQD-

layer modified DSSCs with the content of GQDs. Although no significant 

trends in open-circuit voltage (Voc) and fill factor (FF) were observed, the 

circuit density (Jsc) of GQD-layer modified DSSC was significantly higher than 

that of the pristine DSSCs. The higher Jsc of GQD-layer modified DSSC than 

the pristine DSSC is attributable to the enhanced ability of the GQD-layer 

modified photoanode to harvest light by means of FRET. In addition, the Jsc 

increased as the GQD content increased to 2.6 mg, and Jsc decreased with 

greater GQD content. The decrease in Jsc can be explained by the formation of 

a PEG layer on top of the TiO2/dye layer, which inhibited contact between the 

electrolyte and the dye in Figure 42. Therefore, a greater amount of GQDs 

decreased Jsc significantly. When 2.6 mg of GQDs were incorporated into the 

DSSCs, the power-conversion efficiency was enhanced to 7.95%, compared to 

7.28% for pristine DSSCs. 
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Figure 40. J-V curves of GQDs-modified DSSC with different types of GQDs. 

(80 °C, and 120 °C-oxidized GQDs) 
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Table 3. Summary of photovoltaic performance of TiO2/dye/GQD cells as a 

function of GQD (80 °C) content from 1.3 to 5.2 mg 

Sample a 
GQDs Jsc 

b Voc 
c FF d η e 

(mg) (mA cm-2) (mV)  (%) 

Pristine DSSC  - 13.90 765  0.75  7.28  

TiO2/dye/GQDs cell 1.3 14.81 765 0.75 7.75 

TiO2/dye/GQDs cell 2.6 15.20 766  0.75  7.95  

TiO2/dye/GQDs cell 3.9 14.85 764 0.74 7.76 

TiO2/dye/GQDs cell  5.2 14.35 764 0.74 7.49 
a The content of deposited GQD was varied from 0 to 5.2 mg via the number of 
spincoating . Active area of the assembled DSSC is 0.25 cm2. b Short-circuit 
current. c Open-circuit voltage. d Fill factor. e Power conversion efficiency. 
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Figure 41. Photovoltaic-characteristics relationship with GQD types of GQD-

layer modified DSSCs: (a) Jsc, (b) Voc, (c) FF and (d) power conversion 

efficiency. The deposited amount of GQDs was fixed to 2.6 mg for GQD-

modified layer. 
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Figure 42. Top-view scanning electron microscope (SEM) images of the 

FTO/TiO2/GQD electrodes; (a-b) 2.6 mg of GQDs, and (c-d) 10.0 mg of GQDs. 

(The red-dotted circles indicate PEG molecules)  
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3.3.2. Graphene quantum dot-based fluoresent Sensor for rapid and 

ultrasensitive detection of an anthrax biomarker. 

The as-synthesized GQD was modified by hybridization with EuIII-

macromolecule complex and applied as dual emission fluorescent sensor for 

Bacillus anthracis spore detection. The fabrication of a Eu-based fluorescence 

GQD sensor and detection mechanism of dipicolinic acid (DPA) is outlined in 

Figure 43. Initially, pristine blue photoluminescent GQDs were fabricated via 

an excessive oxidation and size-selective precipitation approach, as described 

in Ref 21.[21] To graft the europium sensing moiety onto the GQDs, 

ethylenediamine (EDA) was covalently bonded onto the GQDs to form NH2-

GQDs. Ethylenediamine tetraacetic acid dianhydride (EDTA) was then 

introduced onto the GQDs, leading to a reaction between the amino groups and 

the anhydride groups. The resulting EDTA ligand on the GQD was then 

converted into a [GQD(EDTA)(Eu)–(H2O)3] complex via reaction with EuCl3 

(Eu-GQD). Upon exposure of the Eu-GQD sensor to DPA, water molecules 

were excluded from the EuIII coordination sphere through the formation of a 

[GQD(EDTA)(Eu)–(DPA)] complex, which significantly minimized the non-

radiative quenching of the EuIII emission.[104] This resulted in an increase in 

the overall quantum yield of EuIII and thereby a corresponding improvement in 

the sensitivity towards DPA. There was a clear red fluorescent enhancement of 
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Eu-GQDs following the addition of DPA, which was readily visible to the 

naked eye under a UV lamp. 

Figure 44 shows transmission electron microscopy (TEM) data confirming 

the formation of GQDs. The average diameters of the two sets of GQDs were 

controlled to 3 and 10 nm by acidic oxidation temperature and the both of 

GQDs were monodisperse in the aqueous solution. In addition, the formation 

of GQD, NH2-GQD, and Eu-GQD was confirmed using both Fourier-transform 

infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), as 

shown in Figure 45a–d. The FT-IR spectrum of the GQDs shows characteristic 

C–H deformation peaks at 835 cm–1, C–O–C stretching peaks 1236 cm–1, C–O 

stretching peaks at 1360 cm–1, and C=C aromatic stretching peaks at 1591 cm–1, 

indicating the successful synthesis of GQDs. Following amine 

functionalization with EDA (NH2-GQD), the peaks related to amines increased 

in intensity, including the N–H bending mode at 640 nm–1 and C–N stretching 

modes at 1167 cm–1 and 1255 cm–1. The Eu-GQDs exhibited new peaks due to 

carboxylic acid groups at 1312 cm–1 and 1584 cm–1, and N–H stretching modes 

at 3185 cm–1 appeared due to formation of the [GQD(EDTA)(Eu)] 

complex.[105]  
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Figure 43. Schematic diagram showing the fabrication process of Europium 

modified GQD and their sensing mechanism with DPA. The inset shows the 

visual fluorescent color change of each sensor under UV irradiation. 
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Figure 44. TEM images of GQDs prepared via excessive oxidation and size-

selective precipitation. (a–b) 3-nm-diameter GQDs and (c–d) 10-nm-diameter 

GQDs. (insets: corresponding HR-TEM images of GQDs). 
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Figure 45. (a) FT-IR spectra of GQDs (black line), NH2-GQD (red line), and 

Eu-GQD (blue line). 
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Figure 46 shows XPS characterization of GQDs, including surface-

modified NH2-GQDs and Eu-GQDs. The atomic concentrations of C, N, and O 

in the GQDs were determined to be 54.78%, 0.12%, and 45.10%, respectively 

(Table S2). In the NH2-GQDs, the atomic concentrations were 52.08%(C), 

2.64%(N), and 45.28%(O), which indicates that the N 1s region was enlarged. 

Additionally, the Eu 4d (4.12%) region appeared and the O (50.79%) region 

increased in the Eu-GQDs, which is attributed to the formation of 

[GQD(EDTA)(Eu)] complexes. The deconvoluted C1s XPS spectrums of 

GQDs, NH2-GQDs, and Eu-GQDs are presented in Figure 46c-d. The main 

peaks of GQD at 284.6 eV (peak I) corresponds to the graphite-like sp2 carbon, 

indicating most of the carbon atoms are arranged in honeycomb lattice. In 

addition, the small peaks of GQD can be attributed to C−O or C−N (peak II, 

286.0 eV), −COOR or C−N (peak III, 288.2 eV), and CO3
2- (peak IV, 290.2 

eV), respectively. After the EDA treatment (NH2-GQD), the intensity of peak II 

and III significantly increased, indicating successful amine functionalization of 

GQD. In the case of Eu-GQD, peak intensity of C−O or C−N bonding (peak II) 

significantly increased. The high-resolution XPS spectrum reveals the Eu 4d 

region with Eu 4d3/2 peaks: Eu2+ for Eu 4d5/2 (128.2 eV); Eu3+ for Eu 

4d5/2(136.3 eV) and Eu 4d3/2(142.1 eV). The peaks are shown double-peak 

structure of each spin-orbit split component (j = 5/2 and 3/2), where peak and 
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satellite show a comparable intensity, are typical for oxygen-rich Eu(III) 

species. Judging from these data, the preparation of Eu-GQD is successfully 

carried out. 

To demonstrate the operating principle of the Eu-GQD fluorescence 

sensors, the response of the dual-emission fluorescent probe towards DPA was 

measured in the presence of a 1-μM solution of DPA, and representative data 

are shown in Figure 47a. The 3-nm-diameter Eu-GQD probe showed three 

emission bands, centered at 435 nm, 593 nm, and 616 nm, which are ascribed 

to the emission from the blue GQD (435 nm) and red [(Eu)–(DPA)] complex 

(593 nm and 616 nm).[106] The two peaks in the 600-nm region are attributed 

to the formation of the [(Eu)–(DPA)] complex, specifically the transition of the 

Eu3+ excited states 5D0 → 7FJ (J = 0, 1, and 2).[107] For the 10-nm-diameter 

Eu-GQDs, the emission peak red-shifted to ca. 540 nm; this is consistent with a 

decrease in the band gap of the GQDs as the size increases.[39] The attachment 

of DPA to the Eu ions reduced the non-radiative quenching of the Eu3+ 

emission, resulting in an increase in the quantum yield and a corresponding 

enhancement of the detection sensitivity for DPA.[108] 
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Figure 46. (a) X-ray photoemission spectroscopy (XPS) spectra of GQDs 

(black line), NH2-GQDs (red line), and Eu-GQDs (blue line). (b) Curve fit of 

the C 1s peak of GQD. (c) Curve fit of the C 1s peak of NH2-GQD. (d) Curve 

fit of the C 1s peak of Eu-GQD. 
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 In Figure 47b, the time-dependent fluorescence response of the 3-nm- and 

10-nm-diameter Eu-GQDs to a 10-μM DPA solution was monitored at 616 nm, 

using excitation at 270 nm.[109] Both curves indicated a rapid increase of the 

fluorescence intensity within 8 sec, followed by an maintain their response 

after 8 sec. This result revealed that the reaction was complete within 8 sec, 

enabling rapid detection of B. anthracis spores. The response time of the 3-nm-

diameter Eu-GQDs was 5.2 s, which is 1.5 times faster than that of the 10-nm-

diameter Eu-GQDs (7.7 s). This is attributed to the larger surface-area-to-

volume ratio of the 3-nm-diameter GQDs, enhancing contact between DPA 

and GQDs.[110] This rapid detection of DPA has considerable advantages in 

practical applications. 
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Figure 47. (a) Representative fluorescence spectra of 3-nm Eu-GQDs (black 

line) and 10-nm Eu-GQDs (red line) excited at 350 nm (red line). (b) Time-

dependent fluorescence intensity plot of 3-nm Eu-GQDs (black line) and 10-

nm Eu-GQDs (red line) following exposure to DPA (250 nM; fluorescence 

detected at 616 nm). 
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To evaluate the sensitivity of the Eu-GQDs, they were exposed to various 

concentrations of DPA in aqueous solution. Figure 48-49 shows the 

fluorescence   intensities of GQDs, which increased linearly with increasing 

concentration of DPA. The LOD of the 3- and 10-nm-diameter Eu-GQDs was 

10 pM and 50 pM, respectively. This is six orders of magnitude smaller than 

the infectious dose of the spores (60 µM).[111] The five-fold increase in 

sensitivity of the 3-nm-diameter Eu-GQDs compared with the 10-nm-diameter 

Eu-GQDs is attributed to the larger surface-area-to-volume ratio of the 3-nm 

GQDs, which led to an increased frequency of contact with the DPA, as well as 

the increased response of the baseline due to the overlap of emission from the 

GQDs and the EuIII complex. This limit of detection (LOD) is 4 to 20 times 

more sensitive than those recently been reported using lanthanide metals.[104] 

This superior sensitivity of Eu-GQD can be explained by the large surface area 

of the GQDs and integration of macromolecules to provide active sites for the 

DPA to bind to. Figure 48b-48b shows a linear relationship between the 

emission intensity at 616 nm and the concentration of DPA. Compared with 

conventional fluorescence-based sensors, the Eu-GQD system has excellent 

sensing properties because the reference fluorescence plays a crucial role in 

calibration and correction of the concentration. 
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Figure 48. (a) Fluorescence spectra of 3-nm Eu-GQDs for various 

concentrations of DPA. (b) Fluorescence intensity of 3-nm Eu-GQDs at 616 

nm as a function of the DPA concentration. The adjusted coefficient of 

determination was R2 = 0.996 for the 3-nm Eu-GQDs. (inset: photo of 3-nm 

Eu-GQD and 3-nm Eu-GQD in the presence of 1 μM DPA under 364 nm UV 

irradiation) 
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Figure 49. (a) Fluorescence spectra of 10-nm Eu-GQDs for various 

concentrations of DPA. (b) Fluorescence intensity of 10-nm Eu-GQDs at 616 

nm as a function of the DPA concentration. The adjusted coefficient of 

determination was R2 = 0.994 the 10-nm Eu-GQDs. (inset: photo of 10-nm Eu-

GQD and 10-nm Eu-GQD in the presence of 1 μM DPA under 364 nm UV 

irradiation) 
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Moreover, the EuIII-macrocycle complex system enables specific DPA 

binding in an aqueous solution because the EDTA binding maintains three 

available adjacent coordination sites and does not inhibit DPA binding. To 

determine the specificity of the Eu-based anthrax detector, the detectors were 

exposed to six aromatic ligands, such as benzoic acid, terephtalic acid, 

nicotinic acid, isophthalic acid, and picolinic acid, each at 1 µM concentration, 

as listed in Table 4. Although only very weak fluorescence changes were 

observed for aromatic ligands at the high concentration, DPA showed 

outstanding fluorescence enhancement of both Eu-GQD 3 and Eu-GQD 10 nm, 

respectively. (ca. 103- and 43-fold higher than other aromatic compounds, 

respectively) The higher selectivity of smaller Eu-GQD sensor was ascribed to 

the increase in surface area-to-volume-ratio. These results show that the Eu-

GQD based sensors for anthrax detection can amplify the specific [Eu(EDTA)–

(DPA)] interaction, thus enabling high sensitive and selective detection for 

practical applications. 
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Table 4. Normalized fluorescence intensity, I/I0, in response to the addition of 

DPA and different aromatic ligands. 

Ligands[a] Eu-GQD, 3nm 

(I/I0) 

Eu-GQD, 10nm  

(I/I0) 

Dipicolinic acid  185.53 71.21 

Benzoic acid 1.18 0.87 

Terephthalic acid 1.46 1.21 

Nicotinic acid 1.22 1.05 

Isophthalic acid 1.40 1.13 

Picolinic acid 1.85 1.67 

[a] The concentration was 1μM for each ligand. 
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3.3.3. Photoinduced electron transfer based sensor probes for 

intracellular hydrogen peroxide. 

A boronate and folic acid dual-modified fluorescent GQD was fabricated 

for use as a selective H2O2 probe and targeting of cancer cell, respectively. 

Figure 50 illustrates the schematic process of fluorescent boronate-modified 

graphene quantum dot (B-GQD) sensor and selective sensing of H2O2 into the 

target cancer cell. Initially, pristine blue photoluminescent GQDs (P-GQDs) 

were fabricated via an excessive oxidation and size-selective precipitation 

procedure as described in previously described.[21]  By the reaction with 

ethylene dichloride (EDC), a carboxylic acid group on the surface of P-GQDs 

was converted to an active intermediate which reacts with N-

Hydroxysuccinimide (NHS) to give relatively stable amine-reactive NHS-

ester.[112] Then, the amine group of folic acid (FA) nucleophilically attacked 

the NHS-ester to form an amide bond, leading to covalent linkage to P-GQDs 

(folic acid-modified graphene quantum dot, F-GQD). Among various targeting 

system, the FA was selected as model targeting agent for enhancing 

internalization and selectivity of cancer cells. According to the target cell type, 

the FA can be easily substituted by other antibody. To graft the sensing moiety 

of H2O2 onto the F-GQDs, boronic acid pinacol ester was covalently bonded 

onto the F-GQDs via amid bond (B-GQDs). The as-synthesized B-GQDs were  
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Figure 50. Schematic diagram of fabrication procedure of Boronate modified 

GQD and their sensing process with H2O2. 
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internalized in the MCF-7 cell (folate receptor overexpressed cells) via the FA-

mediated targeting. Reaction with intracellular H2O2 made boronate groups of 

the B-GQD into pyridine groups, which induced efficient electronic 

communication between the B-GQDs and H2O2.[113] To the best of our 

knowledge, this is the first attempt to apply GQD as photoinduced electron 

transfer (PET) based sensor probes for intracellular hydrogen peroxide using 

their upconversion property.  

To confirm the formation of GQDs (P-GQD, F-GQD and B-GQD), high-

resolution transmission electron microscopy (HR-TEM) analysis and size-

distribution analysis was conducted in Figure 51. As displayed in Figure 51a, 

the P-GQDs were uniform and monodispersed with average diameter of ~3 nm. 

After the functionalization of P-GQD with FA, the F-GQD exhibited higher 

atomic density compared to P-GQD, and the average diameter increased to 

~4.8 nm (Figure 51b). Following grafting boronic acid pinacol ester onto the F-

GQD, B-GQD exhibited average diameter further increased to ~5.8 nm, 

indicating successful functionalization of B-GQD (Figure 51c).  

The formation of GQDs was confirmed using both fourier-transform 

infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In 

Figure 52, the FT-IR spectrum of the P-GQD shows characteristic C–H 

deformation peaks at 835 cm–1, C–O–C stretching peaks 1236 cm–1, C–O 
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stretching peaks at 1360 cm–1, and C=C aromatic stretching peaks at 1591 cm–1, 

indicating the successful synthesis of P-GQD. In case of F-GQD, the peaks 

related to amines increased in intensity, including the N–H bending mode at 

655 cm–1 and 1530 cm-1 and C–N stretching modes at 1179 cm–1 and C=N 

stretching at 1690 cm–1. The B–GQD exhibited new peaks related to the 

boronate, including B–C stretching at 1049 and 1087 cm-1 and B–OH 

stretching at 3306 cm-1. On the basis of these data, FA and boronic acid pinacol 

ester successfully modified the B-GQD surfaces. 
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Figure 51. HR-TEM images and size-distribution analysis of (a) P-GQD, (b) 

F-GQD, and (c) B-GQD  
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Figure 52. FT-IR spectra of P-GQD (black line), F-GQD (red line), and B-

GQD (blue line). 
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Figure 53 shows XPS characterization of P-GQD, including surface-

modified F-GQD and B-GQD. The atomic concentrations of C, N, and O in the 

GQDs were determined to be 54.78%, 0.12%, and 45.10%, respectively. In the 

F-GQD, the atomic concentrations were 48.17% (C), 4.64% (N), and 47.19% 

(O), which indicates that the N 1s region was enlarged. Additionally, the B 1s 

(3.54%) region appeared in the B-GQD, which is attributed to the boronate 

group. The deconvoluted C1s XPS spectrums of P-GQD, F-GQD, and B-GQD 

are presented in Figure 53b-d. The main peaks of GQD at 284.6 eV (peak I) 

corresponds to the graphite-like sp2 carbon, indicating most of the carbon 

atoms are arranged in honeycomb lattice.[21] In addition, the small peaks of P-

GQD can be attributed to C−O (peak II, 286.0 eV), −COOR (peak III, 287.8 

eV), and CO3
2- (peak IV, 290.1 eV), respectively. After the FA treatment, the 

peak intensity related to C−N bonding (peak II and III) significantly increased 

in F-GQD, which can be attributed to the functionalization of P-GQD by 

conjugation with FA. In the case of B-GQD, the peaks related to ether and 

amine group (peak II and III) increased indicating the formation of amide 

bonding with boronate. As the above results, XPS spectra and enlarged C1s 

spectra confirmed the successful fabrication of F-GQD and B-GQD. 



 125

 
 

Figure 53. (a) XPS spectra of P-GQD (black line), F-GQD (red line), and B-

GQD (blue line). Enlarged C1s spectra of (b) P-GQD, (c) F-GQD, and (d) B-

GQD. 
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Figure 54. FT-IR spectra of B-GQD (red line) and H-GQD (black line). 
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Figure 55a displays representative absorbance spectra of F-GQD and B-

GQD. UV-vis spectra showed a new shoulder peak at 265 nm in B-GQD due to 

surface modification of F-GQD with pyridine-3-boronic acid pinacol ester 

though amide bond. Figure 55c and d shows that F-GQD had optimal 

excitation and emission wavelengths at 280 nm and 410 nm, while excitation 

and emission wavelengths of B-GQD were changed into 300 nm and 360 nm. 

These peak shifts were originated from efficient electronic communication 

between the F-GQD and pyridine-3-boronic acid pinacol ester group; such as 

the construction of the π-conjugation and PET.[114] The fluorescence quantum 

yield of the F-GQD was calculated as ca. 0.02 (blue) using the standard 

reference, 7-amino-4-methylcoumarin. After surface modification, the 

fluorescence quantum yield of B-GQD (red) was ca. 0.52, which is 26 time 

higher than that of the F-GQD (Figure 55b).[115] In the previous research, the 

fluorescence quantum yield of boronate-modified polyacrylonitrile 

nanoparticles is only ca. 0.10.[114] Notably, F-GQD and B-GQD also 

exhibited upconversion excitation-dependent PL behaviors (Figure 55e and 

55f). The emission wavelengths of F-GQD and B-GQD were red-shifted when 

changing excitation wavelengths from 560 nm to 640 nm and 470 nm and 540 

nm, respectively. These upconversion excitation-dependent PL property is 

possibly attributed to the two or multiphoton active process.[116] The highest 
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fluorescence intensity was measured at 433 nm in F-GQD (λex=580 nm), while 

that of B-GQD was shown at 351 nm (λex=490 nm). Similar to down-

conversion properties, the optimized excitation and emission wavelength of B-

GQD was blue shifted compared to those of F-GQD. Upconversion PL 

properties can provide relatively reduced background signal and enhanced 

sensitivity owing to the absence of autofluorescence.[117] Additionally, 

because of longer penetration depth, nanomaterials that have higher excitation 

wavelength are preferred for fluorescence applications in biomedical science 

such as bioimaging agent and fluorescent sensor.[118] Collectively, 

upconversion PL properties of B-GQD may provide a possibility for the use of 

intracellular fluorescence sensor with high sensitivity.  
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Figure 55. (a) UV-vis absorption spectra and (b) the representative 

fluorescence spectra of the F-GQD (blue line) and the B-GQD (red line). Inset: 

Photograph taken with UV lamp irradiation (254 nm). (c-d) Fluorescence 

spectra and (e-f) upconversion spectra of the F-GQD and B-GQD at different 

excitation wavelength in 0.1 M HEPES buffer.  
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We then explored the capability of the B-GQD as a fluorescence sensor for 

hydrogen peroxide (Figure 56a). The added H2O2 induced a marked increase in 

fluorescence intensity of the B-GQD and the peak was red-shifted from 350 to 

360 nm when the excitation wavelength was 490 nm. Figure 56b exhibits that 

B-GQD detects H2O2 in a ratiometric manner. The limit of detection value of 

B-GQD for H2O2 was 20 pM, which is 5 times higher sensitivity compared to 

previous boronated polyacrylonitrile nanoparticles.[114] Furthermore, the rate 

of conversion of B-GQD to H2O2-treated B-GQD (H-GQD) was calculated as 

2.02 M-1 s-1 by measuring the change in absorption using pseudo-first-order 

reaction conditions with an excess of H2O2. These data provide further 

evidence that H2O2-triggered conversion of 3-pyrdineboronic acid pinacol ester 

is a robust and versatile methodology for reaction-based H2O2 detection.  

Figure 57 presents a remarkable selectivity of B-GQD for H2O2 over other 

variety of biologically relevant ROS, including hypochlorite (OCl-), hydroxyl 

radical (·OH), and tert-butoxy radicals (·OtBu). H2O2 induced increase of the 

fluorescence intensity at an excitation wavelength of 490 nm, and the 

fluorescence change was ratiometric. Hypochlorite, however, showed a 

decreased fluorescent intensity and the intensity barely changed with other 

ROS. Based on these data, we proposed the mechanism of the PET process 

between H2O2 and B-GQD (Figure 56c). B-GQD consists of two parts; GQD 
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which exhibited fluorescence and boronic acid pinacol ester group which 

reacted with H2O2. Boron atom of the boronic acid pinacol ester group was in 

the sp2 state, which means they can act as an electron acceptor from the 

excited-state GQD donor.[119] The UV and PL data suggested that when GQD 

is excited (490 nm; hν1), a PET occurred from the GQD donor to the boron 

atom acceptor, which leads to quench the fluorescence (350 nm; hν2). After 

addition of H2O2, the boronic acid pinacol ester was transformed into hydroxyl 

group (Figure 54).[113, 114] There is no PET process because of absence of 

electron acceptor; the fluorescence intensity is enhanced consequently. In case 

of hypochlorite, like H2O2, they were reacted with boronic acid pinacol ester 

group and produced hydroxyl group.[120]  Higher hypochlorite concentration, 

however, caused a rapid decrease in the levels of phenolic product, and they 

formed chlorinated phenol.[120] The chlorine group, acted as an electron 

withdrawing group, induced PET process again. Fluorescence intensity of B-

GQD gradually decreased as hypochlorite inserted. These chemospecific 

boronate switch and PET properties make B-GQD as good selective sensor 

probe for H2O2 over a variety of biologically relevant ROS. 

In order to confirm the interference from metabolites, fluorescence 

intensity changes of B-GQD was measured in the presence of various 

metabolites (Ca2+ as an ion, L-glutamine as an amino acid, L-ascorbic acid as a 
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vitamin; 1 mM) at 350 nm excitation. Figure 57b shows H2O2 measurement 

was not interfered no matter what metabolites were inserted in the solution. 

The concentration of metabolites in this experiment is 1 mM, which is much 

higher than average metabolite concentration in body. Considering these data, 

our B-GQD can be applied as selective sensor probe for H2O2 in biological 

system. 
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Figure 56. (a) Fluorescence spectra of B-GQD in the presence of H2O2. (b) 

The linear correlation between the emission intensity at 350 nm and H2O2 

concentration (red line), and plot of Kobs against H2O2 concentration to 

determine the rate constant for B-GQD and H2O2 (blue line). c) An illustration 

of the PET mechanism of H2O2 sensing by B-GQD. 
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Figure 57. (a) Fluorescence change of B-GQD after addition of H2O2 or other 

ROS (200 μM) excited at 490 nm. (b) Fluorescence response of B-GQD versus 

the concentration of H2O2 in the presence of various metabolites (1 mM). 
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On the basis of these data, the sensing capability of the B-GQD was 

systematically investigated in vitro (Figure 58). In our experiments, two cell 

lines were used: MCF-7 (folate receptor overexpressed cell; target; FR+) and 

SK-BR-3(absence of folate receptor; control; FR-).[121] Figure 58a illustrates 

phorbol-12-myristate-13-acetate (PMA; stimulator for the generation of 

intracellular H2O2) concentration-dependent fluorescence changes of B-GQD 

in MCF-7 cells (7.5 μg mL-1). The increase of PMA concentration induced 

intracellular hydrogen peroxide generation, resulting in the fluorescence 

increment of B-GQD. Figure 58b shows linear correlation between the B-GQD 

dose and fluorescence intensity in the presence of PMA (4 μg mL-1). As the B-

GQD concentration increases, more intracellular hydrogen peroxide is captured 

by B-GQD. In case of SK-BR-3 cells, no PMA and B-GQD concentration-

dependent fluorescence changes were observed due to absence of folate 

receptor.  

Individual intracellular fluorescence intensities were also evaluated using 

flow cytometry analysis for quantifying internalized B-GQD in the presence or 

absence of folate receptor on the cells (Figure 59). Because of the restriction of 

the flow cytometry laser wavelength, fluorescein isothiocyanate-modified B-

GQD were used for this experiment.[114] Both cells were incubated with 10 

μg mL-1 B-GQD for 24 h, and then individual intracellular fluorescence 
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intensities were measured. The B-GQD-internalized MCF-7 and SK-BR-3 cells 

were calculated as 27.1% and 5.7%, respectively. Based on these data, it can be 

concluded that B-GQD is selectively internalized in folate positive cells and 

detect hydrogen peroxide ratiometrically. 

The upconversion fluorescence image of B-GQD treated cells and their 

mean fluorescence intensity values are shown in Figure 55d and 55e, 

respectively. B-GQD was successfully internalized into MCF-7 cells and they 

exhibited more uniform and higher fluorescence than B-GQD in SK-BR-3 cells, 

indicating targeting ability of B-GQD for folate receptor positive cells. After 5 

μg mL-1 PMA treatment, the fluorescence of B-GQD were increased 1.7 times 

in MCF-7  cells, while there is no fluorescence change in F-GQD inserted 

cells owing to absence of boronic acid pinacol ester group (Figure 54). These 

data provided upconverted B-GQD were capable of visualizing generated H2O2 

in MCF-7 cells owing to efficient PET process after reaction with H2O2. These 

results are in accordance with the previous reports that mono-boronate group 

can detect H2O2 in PMA-treated cells.  
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Figure 58. (a-b) Titration curves as a function of PMA and B-GQD 

concentration in the cells. The concentration of B-GQD and PMA were fixed 

as 7.5 μg mL-1 and 4 μg mL-1, respectively. 
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Figure 59. Quantification of F-GQD and B-GQD (10 μg mL-1) treated MCF 

and SK-BR-3 cells.  
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According to the fluorescence images, B-GQD had no considerable change 

in cell shape. The viabilities of B-GQD- and F-GQD-treated MCF-7 cells were 

checked in vitro (Figure 60a). The level of ATP production in F-GQD and B-

GQD-treated cells exhibited no significant decrease compared to negative 

control. The lowest viability was about 85% even at a high concentration of B-

GQD (250 μg mL-1). Previous researches reported that the viability of 

fluorescent polymer nanoparticle-treated cells was about 82% at same 

concentration.[114] In general, fluorescent polymer nanoparticles are known as 

low toxic materials. Based on these data, B-GQD can be considered as low 

toxic materials and are suitable for bio-applications. We further test their ROS 

generating ability because generating ROS can affect not only toxicity but also 

accuracy of the fluorescence sensing result of B-GQD. As shown in Figure 61, 

the ROS values showed no significant change compared to negative control, 

like cell viability results. Therefore, the B-GQD is an effective intracellular 

H2O2 detector without significant ROS production. Judging from these data, B-

GQD provides ratiometric and selective H2O2 detection with low toxicity in 

only folate positive cells. 
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Figure 60. (a) Live cell differential interference images of the cells and (b) 

their relative fluorescence intensity. Both cells were treated with 10 μg mL-1 of 

B-GQD for 24 h, and 5 μg mL-1 PMA was additionally inserted for intracellular 

H2O2 generation (scale bar: 90 μm). 
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Figure 61. Viability of MCF-7 cells incubated with F-GQD (solid squares) and 

B-GQD (open circles) for 24 h. ROS production by MCF-7 cells after being 

incubated with F-GQD (shaded bars) and B-GQD (open bars). H2O2 (0.02%) 

was used as a positive control. 
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4. CONCLUSIONS 

1. The GQDs with well-defined and low size distribution are successfully 

fabricated using a simple oxidation of carbon nanomaterials and size-

selective precipitation. To control the size and luminesecence wavelength 

of graphene quantum dots, different types of CNs and various oxidation 

conditions are studied. Interestingly, the diameter and luminescence 

wavelength of graphene quantum dots can be controlled by selectively 

designing the morphology of starting materials and optimizing the 

oxidation condition. 

2. A carbonization approach of organic precursor with doping sources was 

proposed in order to fabrciate heteroatoms-doped graphene quantum dots. 

Under the catalytic reaction conditions of H2SO4, citric acid can be 

transformed to GQD due to the dehydration forming a graphitic hexagonal 

matrix. To enhance the PL efficiency of GQDs, various types of doping 

sources and carbonization degree was studied. This simple and novel 

strategy offers great possibility for fabricating heteroatom(S or N)-doped 

GQDs with precise control of carbonization degree, a gram-scale 

production, and high-PLQY (ca. 61%).  

3. The high FLQY-GQDs could be used as light-harvesting antennae in 

FRET-based photovoltaic devices. The GQDs were doposited onto the top 
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of a TiO2 working electrode of DSSCs via spincoating forming GQD-

modified layer. The GQD-layer modified DSSCs was implemented for 

simultaneous utilize the wide solar spectrum, thereby resulting in high 

conversion efficiency (7.95%) over a wide wavelength range. Furthermore, 

the synthexsized GQDs exhibited excellent upconversion properties, and 

proved to be a feasible candidate for a phosphor in photovoltaic devices to 

enhance the light-harvesting ability in the long-wavelength range.  

4. A novel and facile strategy based on the hybridization of GQDs into a 

europium (Eu)-macromolecule complex was demonstrated for detecting of 

B. anthracis spores. This novel approach involves anchoring Eu onto 

GQDs of two different diameters, which provides a change in the 

fluorescence intensity that varies with the concentration of B. anthracis. 

Most importantly, the Eu-modified GQDs reported here exhibit an 

excellent limit of detection (LOD) of 10 pM towards B. anthracis due to 

larger surface to volume ratio originated from the nanometer-sized GQDs. 

The insight into the size-dependence of detection properties of GQds and 

binding with europium complex offer an opportunity for the further 

investigation of biological & medical applications, and can be generalized 

to the fabrication for highly efficient detection probes using the concept of 

GQD based platform. 
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5. A novel approach to fabricate GQD based-upconversion fluorescence 

sensor probe for intracellular H2O2 was demonstrated. B-GQD can 

internalize into folate positive cells (MCF-7 cells) selectively due to folic 

acid, and then reacted with intracellular H2O2 over other competing ROS. 

After detection, fluorescence peak of B-GQD increased and shifted, which 

allows ratiometric and selective H2O2 detection at concentration as low as 

20 pM. To the best of our knowledge, this is the first attempt to apply GQD 

as PET based sensor probes for intracellular H2O2 using their upconversion 

property. Considering these findings, the B-GQD offers a new system to 

selectively recognize H2O2 in specific cells and may lead to biomedical 

applications as an intracellular H2O2 sensor. 

 

In summary, two different ways in the synthetic methodology of size-and 

PL-controlled GQDs were demonstrated in the viewpoint of top-down 

approach and bottom-up approach. As a ‘top-down approach’, the GQDs with 

well-defined and low size distribution were successfully fabricated using a 

simple oxidation of carbon nanomaterials and size-selective precipitation. 

Interestingly, the diameter and luminescence wavelength of graphene quantum 

dots can be controlled by selectively designing the morphology of starting 

materials and optimizing the oxidation condition. As a ‘bottom-up approach’, 
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heteroatoms-doped GQDs were formed using simple carbonization approach of 

organic precursor with two different doping sources. The well-defined S, N-

doped GQDs were obtained with the assistance of acidic dopant and quenching 

solvent at a mild carbonization condition. This novel strategy does not require 

a high carbonization temperature and pressure, and the simple strategy offers 

great possibility for fabricating heteroatom(S or N)-doped GQDs with precise 

control of carbonization degree, a gram-scale production, and high-PLQY (ca. 

61%). The size-controlled GQDs have been successfully applied in a wide 

variety of applications, suggesting that these nanomaterials may be potentially 

very useful in many new types of applications related to electronic/ 

optoelectronic devices, fluorescent probe, bioimaging system, and energy 

conversion systems. 

 



 146

REFERENCES 

[1] M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Physics Reports 

2005, 409, 47. 

[2] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. 

Dimiev, B. K. Price, J. M. Tour, Nat. 2009, 458, 872. 

[3] L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Nanoscale 2013, 5, 

4015. 

[4] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. 

[5] J. Y. Hong, J. Jang, J. Mater. Chem. 2012, 22, 8179. 

[6] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. 

McGovern, B. Holland, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, 

G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, 

A. C. Ferrari, J. N. Coleman, Nature Nanotechnology 2008, 3, 563. 

[7] R. M. Westervelt, Science 2008, 320, 324. 

[8] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. 

P. G. De Arquer, F. Gatti, F. H. L. Koppens, Nature Nanotechnology 

2012, 7, 363. 

[9] V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, S. 

Chand, J. Am. Chem. Soc. 2011, 133, 9960. 

[10] H. Cheng, Y. Zhao, Y. Fan, X. Xie, L. Qu, G. Shi, ACS Nano 2012, 6, 



 147

2237. 

[11] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, 

K. S. Novoselov, A. K. Geim, Science 2008, 320, 356. 

[12] J. Lee, K. Kim, W. I. Park, B. H. Kim, J. H. Park, T. H. Kim, S. Bong, 

C. H. Kim, G. Chae, M. Jun, Y. Hwang, Y. S. Jung, S. Jeon, Nano Lett. 

2012, 12, 6078. 

[13] S. Kim, S. W. Hwang, M. K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, 

S. B. Yang, J. H. Park, E. Hwang, S. H. Choi, G. Ko, S. Sim, C. Sone, 

H. J. Choi, S. Bae, B. H. Hong, ACS Nano 2012, 6, 8203. 

[14] G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, 

C. W. Chen, M. Chhowalla, Adv. Mater. 2010, 22, 505. 

[15] J. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 2012, 48, 3686. 

[16] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. 

Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. 

Commun. 2011, 47, 6858. 

[17] L. Cao, M. J. Meziani, S. Sahu, Y. P. Sun, Acc. Chem. Res. 2013, 46, 

171. 

[18] S. N. Baker, G. A. Baker, Angew. Chem., Int. Ed. 2010, 49, 6726. 

[19] S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, H. Y. Chen, Chem. Soc. Rev. 

2010, 39, 4234. 



 148

[20] S. Zhuo, M. Shao, S. T. Lee, ACS Nano 2012, 6, 1059. 

[21] E. Lee, J. Ryu, J. Jang, Chem. Commun. 2013, 49, 9995. 

[22] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 

2005, 4, 435. 

[23] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, 

G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 

538. 

[24] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. 

Chakraborty, Advances in Physics 2010, 59, 261. 

[25] X. Yan, X. Cui, B. Li, L. S. Li, Nano Lett. 2010, 10, 1869. 

[26] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, J. Am. Chem. 

Soc. 2012, 134, 15. 

[27] E. Morales-Narváez, A. Merkoçi, Adv. Mater. 2012, 24, 3298. 

[28] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. 

Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nat. 

2010, 466, 470. 

[29] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 

2010, 39, 228. 

[30] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. 

Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nat. 2006, 



 149

442, 282. 

[31] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. 

Y. Choi, B. H. Hong, Nat. 2009, 457, 706. 

[32] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. 

Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. 

Ruoff, Science 2009, 324, 1312. 

[33] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 2006, 

313, 951. 

[34] D. Yu, Q. Zhang, L. Dai, J. Am. Chem. Soc. 2010, 132, 15127. 

[35] R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. 

Samuel, C.-C. Hwang, G. Ruan, G. Ceriotti, A.-R. O. Raji, A. A. Martí, 

J. M. Tour, Nat Commun 2013, 4. 

[36] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. 

Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 

45, 1558. 

[37] Z. Li, W. Zhang, Y. Luo, J. Yang, J. G. Hou, J. Am. Chem. Soc. 2009, 

131, 6320. 

[38] Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. 

Pennycook, H. Dai, Nature Nanotechnology 2012, 7, 394. 

[39] J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. 



 150

Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. 

Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, P. M. Ajayan, Nano 

Lett. 2012, 12, 844. 

[40] K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, 

K. Müllen, ACS Nano 2012, 6, 9541. 

[41] C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 

105, 1025. 

[42] A. H. Lu, E. L. Salabas, F. Schüth, Angew. Chem., Int. Ed. 2007, 46, 

1222. 

[43] B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Chem. Rev. 2004, 

104, 3893. 

[44] D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734. 

[45] B. Liu, E. S. Aydil, J. Am. Chem. Soc. 2009, 131, 3985. 

[46] F. Yang, M. Zhao, B. Zheng, D. Xiao, L. Wu, Y. Guo, J. Mater. Chem. 

2012, 22, 25471. 

[47] M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. 

Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. 

Prud'homme, I. A. Aksay, Chem. Mater. 2007, 19, 4396. 

[48] J. I. Parades, S. Villar-Rodil, A. Martínez-Alonso, J. M. D. Tascón, 

Langmuir 2008, 24, 10560. 



 151

[49] L.-L. Li, J. Ji, R. Fei, C.-Z. Wang, Q. Lu, J.-R. Zhang, L.-P. Jiang, J.-J. 

Zhu, Adv. Funct. Mater. 2012, 22, 2971. 

[50] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano 

2009, 3, 2367. 

[51] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Adv. Funct. Mater. 2009, 

19, 2782. 

[52] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, Adv. Mater. 

2011, 23, 776. 

[53] X. Yan, X. Cui, L.-s. Li, J. Am. Chem. Soc. 2010, 132, 5944. 

[54] K. A. Ritter, J. W. Lyding, Nat. Mater. 2009, 8, 235. 

[55] B. Trauzettel, D. V. Bulaev, D. Loss, G. Burkard, Nature Physics 2007, 

3, 192. 

[56] X. Li, S. P. Lau, L. Tang, R. Ji, P. Yang, Journal of Materials 

Chemistry C 2013, 1, 7308. 

[57] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong, Nano Lett. 2013, 13, 

2436. 

[58] J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. 

Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. 

Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, P. M. Ajayan, Nano 

Lett. 2012, 12, 844. 



 152

[59] J. Kim, Y. Piao, T. Hyeon, Chem. Soc. Rev. 2009, 38, 372. 

[60] P. Sharma, S. Brown, G. Walter, S. Santra, B. Moudgil, Adv. Colloid 

Interface Sci. 2006, 123-126, 471. 

[61] J. Zhou, Z. Liu, F. Li, Chem. Soc. Rev. 2012, 41, 1323. 

[62] J. Rocha, L. D. Carlos, F. A. A. Paz, D. Ananias, Chem. Soc. Rev. 2011, 

40, 926. 

[63] D. Wang, L. Wang, X. Dong, Z. Shi, J. Jin, Carbon 2012, 50, 2147. 

[64] L. D. Carlos, R. A. S. Ferreira, V. De Zea Bermudez, S. J. L. Ribeiro, 

Adv. Mater. 2009, 21, 509. 

[65] I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, J. 

M. Mauro, Nat. Mater. 2003, 2, 630. 

[66] S. Zhuo, M. Shao, S.-T. Lee, ACS Nano 2012, 6, 1059. 

[67] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. 

Xie, Z. Sun, Nanoscale 2013, 5, 12272. 

[68] R. Long, ChemPhysChem 2013, 14, 579. 

[69] A. Facchetti, Chem. Mater. 2011, 23, 733. 

[70] M. Grätzel, Acc. Chem. Res. 2009, 42, 1788. 

[71] C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, S. P. 

Williams, Adv. Mater. 2010, 22, 3839. 

[72] S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, M. Chhowalla, ACS Nano 



 153

2010, 4, 3169. 

[73] R. Steim, F. R. Kogler, C. J. Brabec, J. Mater. Chem. 2010, 20, 2499. 

[74] R. Leary, A. Westwood, Carbon 2011, 49, 741. 

[75] L. Dai, D. W. Chang, J. B. Baek, W. Lu, Small 2012, 8, 1130. 

[76] S. Guo, S. Dong, Chem. Soc. Rev. 2011, 40, 2644. 

[77] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, 

Carbon 2012, 50, 4738. 

[78] Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, C. Li, T. H. 

Zeng, Y. Sun, J. Zeng, Part. Part. Syst. Char. 2013. 

[79] J. Y. Hong, J. Jang, Soft Matter 2012, 8, 7348. 

[80] H. Cölfen, Polymer News 2004, 29, 101. 

[81] Y. Watanabe, A. Kawamoto, K. Matsuda, Compos. Sci. Technol. 2002, 

62, 881. 

[82] H. W. Liang, W. J. Zhang, Y. N. Ma, X. Cao, Q. F. Guan, W. P. Xu, S. 

H. Yu, ACS Nano 2011, 5, 8148. 

[83] K. Matsui, L. J. Lanticse, Y. Tanabe, E. Yasuda, M. Endo, Carbon 

2005, 43, 1577. 

[84] J. Huang, D. Wang, H. Hou, T. You, Adv. Funct. Mater. 2008, 18, 441. 

[85] P. Li, T. J. Zhao, J. H. Zhou, Z. J. Sui, Y. C. Dai, W. K. Yuan, Carbon 

2005, 43, 2701. 



 154

[86] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. 

Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, 

Phys. Rev. Lett. 2006, 97. 

[87] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. 

Yu, Angew. Chem., Int. Ed. 2013, 52, 7800. 

[88] C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. 

[89] A. K. Geim, Science 2009, 324, 1530. 

[90] D. C. Coffey, A. J. Ferguson, N. Kopidakis, G. Rumbles, ACS Nano 

2010, 4, 5437. 

[91] E. Lee, C. Kim, J. Jang, Chem. Eur. J. 2013, 19, 10280. 

[92] S. Buhbut, S. Itzhakov, E. Tauber, M. Shalom, I. Hod, T. Geiger, Y. 

Garini, D. Oron, A. Zaban, ACS Nano 2010, 4, 1293. 

[93] C. Yuan, G. Chen, P. N. Prasad, T. Y. Ohulchanskyy, Z. Ning, H. Tian, 

L. Sun, H. Agren, J. Mater. Chem. 2012, 22, 16709. 

[94] G. B. Shan, G. P. Demopoulos, Adv. Mater. 2010, 22, 4373. 

[95] J. Wu, J. Wang, J. Lin, Z. Lan, Q. Tang, M. Huang, Y. Huang, L. Fan, 

Q. Li, Z. Tang, Advanced Energy Materials 2012, 2, 78. 

[96] J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, New J. Chem. 2012, 

36, 97. 

[97] J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. 



 155

McGehee, M. Grätzel, M. K. Nazeeruddin, Angew. Chem., Int. Ed. 

2009, 48, 9277. 

[98] G. K. Mor, J. Basham, M. Paulose, S. Kim, O. K. Varghese, A. Vaish, 

S. Yoriya, C. A. Grimes, Nano Lett. 2010, 10, 2387. 

[99] J. H. Yum, B. E. Hardin, E. T. Hoke, E. Baranoff, S. M. Zakeeruddin, 

M. K. Nazeeruddin, T. Torres, M. D. McGehee, M. Grätzel, 

ChemPhysChem 2011, 12, 657. 

[100] J. I. Basham, G. K. Mor, C. A. Grimes, ACS Nano 2010, 4, 1253. 

[101] G. Wang, Q. Peng, Y. Li, Acc. Chem. Res. 2011, 44, 322. 

[102] R. F. Fink, J. Pfister, H. M. Zhao, B. Engels, Chem. Phys. 2008, 346, 

275. 

[103] C. Siegers, J. Hohl-Ebinger, B. Zimmermann, U. Würfel, R. Mülhaupt, 

A. Hinsch, R. Haag, ChemPhysChem 2007, 8, 1548. 

[104] K. Ai, B. Zhang, L. Lu, Angew. Chem., Int. Ed. 2009, 48, 304. 

[105] W. K. Oh, Y. S. Jeong, J. Song, J. Jang, Biosens. Bioelectron. 2011, 29, 

172. 

[106] S. J. Park, O. S. Kwon, S. H. Lee, H. S. Song, T. H. Park, J. Jang, Nano 

Lett. 2012, 12, 5082. 

[107] J. P. Kirby, M. L. Cable, D. J. Levine, H. B. Gray, A. Ponce, Anal. 

Chem. 2008, 80, 5750. 



 156

[108] M. D. Yilmaz, S.-H. Hsu, D. N. Reinhoudt, A. H. Velders, J. Huskens, 

Angew. Chem. Int. Ed. 2010, 49, 5938. 

[109] I. Lee, W. K. Oh, J. Jang, J. Hazard. Mater. 2013, 252-253, 186. 

[110] B. Farrow, S. A. Hong, E. C. Romero, B. Lai, M. B. Coppock, K. M. 

Deyle, A. S. Finch, D. N. Stratis-Cullum, H. D. Agnew, S. Yang, J. R. 

Heath, ACS Nano 2013, 7, 9452. 

[111] M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, A. Ponce, J. Am. 

Chem. Soc. 2007, 129, 1474. 

[112] C. Kim, S. Kim, W. K. Oh, M. Choi, J. Jang, Chem. Eur. J. 2012, 18, 

4902. 

[113] Z. Guo, I. Shin, J. Yoon, Chem. Commun. 2012, 48, 5956. 

[114] W.-K. Oh, Y. S. Jeong, S. Kim, J. Jang, ACS Nano 2012, 6, 8516. 

[115] Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. 

Chen, H. Zhang, ACS Nano 2010, 4, 3201. 

[116] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. 

Li, W. Yu, X. Wang, H. Sun, B. Yang, Adv. Funct. Mater. 2012, 22, 

4732. 

[117] K. J. Lee, W.-K. Oh, J. Song, S. Kim, J. Lee, J. Jang, Chem. Commun. 

2010, 46, 5229. 

[118] T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger, F. M. Pfeffer, 



 157

Coord. Chem. Rev. 2006, 250, 3094. 

[119] V. Tharmaraj, K. Pitchumani, RSC Advances 2013, 3, 11566. 

[120] A. Sikora, J. Zielonka, M. Lopez, J. Joseph, B. Kalyanaraman, Free 

Radical Biology and Medicine 2009, 47, 1401. 

[121] Y. Tao, Y. Lin, Z. Huang, J. Ren, X. Qu, Adv. Mater. 2013, 25, 2594. 

 

 



 158

 국문초록 

지난 수년 동안 집중적인 연구적 관심을 불러 일으키고 있는 

그래핀양자점은 측면지름이 약 100 nm 이하이고, 단일-, 이중-, 몇 

층의(3 내지 10 개의) 층으로 이루어진 그래핀 시트이다. 그래핀양자점은 

밴드갭의 존재, 넓은 표면적, 용이한 표면결합, 다양한 표면기와 같은 

고유의 특성뿐만 아니라, 우수한 형광 특성 및 업컨벌젼 형광성질과 같은 

광학적 특성을 바탕으로 광전자공학, 형광센서, 바이오 응용, 촉매반응, 

에너지 저장 및 변환 등의 다양한 분야에 적용되고 있다.  

본 연구에서는 하향식/상향식 접근방법을 이용하여 크기와 형광특성이 

조절된 그래핀양자점을 제조하였으며, 이들의 형성 메커니즘을 체계적으로 

고찰하였고, 아울러 광전변환소자, 형광 센서, 바이오 이미징으로의 응용에 

대해 살펴보았다. 하향식 접근방법으로, 그래핀양자점은 탄소나노물질의 

산화방법과 크기선택적 분리방법을 이용해 제조할 수 있었다. 흥미롭게도, 

그래핀양자점의 지름과 형광파장은 시작물질의 형태 디자인과 산화조건의 

최적화를 통하여 조절할 수 있었다. 뿐만 아니라, 그래핀 양자점의 균일한 

발광특성을 활용하기 위해서, 크기선택적 침전방법을 이용한 분리방법을 

제한하였다. 그래핀 양자점을 크기선택적 침전방법을 통해서 추가적인 

투석방법 없이 성공적으로 균일한 크기의 그래핀 양자점을 얻을 수 있었다. 

상향식 접근방법으로, 여러 도핑물질과 함께 유기전구체의 탄화공정을 

이용하여 헤테로원자가 도핑된 그래핀양자점을 제조할 수 있었다. 황산의 
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촉매조건에서 시트르산은 탈수공정을 통하여 흑연의 정육면체 구조를 

형성하며 그래핀 양자점으로 변하였다. 또한 황산과 디메틸포름아미드가 

각각 황과 질산 도핑 물질로서 사용되어, 탄화정도가 조절되고, 그람 

스케일의, 그리고 높은 형광양자효율(약 61%)을 가진 황과 질소가 도핑된 

그래핀양자점을 제조하였다. 본 연구에서 새롭게 개발한 하향식/상향식 

접근방법은 제어된 크기 및 모양을 지닌 다양한 종류의 그래핀양자점 

제조에 적용될 수 있으며, 이를 통해 전자/광전자 장치, 형광프로브, 

바이오이미징, 에너지변환장치를 포함한 여러가지 응용분야에 폭넓게 

활용될 수 있을 것으로 사료된다.              

 

주요어: 탄소나노물질, 그래핀양자점, 제조방법, 하향식, 상향식, 

염료감응태양전지, 형광센서, 바이오 이미징 
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