

약학박사 학위논문

해양천연물 (+)-Bermudenynol 의

Intramolecular Amide Enolate Alkylation 을 이용한 부제 전합성

Asymmetric Total Synthesis of (+)-Bermudenynol, Through Intramolecular Amide Enolate Alkylation

2014년 2월

서울대학교 대학원

약학과 약품화학 전공

김 규 동

Abstract

A substrate-controlled asymmetric total synthesis of (+)-bermudenynol, a compact and synthetically challenging C_{15} *Laurencia* metabolite that contains several halogen atoms, is reported. The oxocene core, which contains a vinyl chloride, was constructed by an efficient and highly stereoselective intramolecular amide enolate alkylation (IAEA). This result showcases the broad utility of the IAEA methodology as a useful alternative for cases in which the ring-closing metathesis is inefficient.

Keywords: Total Synthesis of Natural Products

(+)-bermudenynol

Intramolecular Amide Enolate Alkylation

Vinyl Chloride Containing Oxocene

Student Number : 2010-30462 (Gyudong Kim)

Table of Contents

Abstract	i
1. Introduction	1
2. Results and Discussion	4
2.1 Retrosynthetic plan for (+)-Bermudenynol	4
2.2 Synthesis of Key Bromo Oxocene 2	5
2.3 Completion of the Synthesis	11
3. Conclusion	16
4. Experimental Section	
Part A : Experimental Procedures and Product Characterization	17
Part B : Spectroscopy Analysis	50
5. References	64

69

국문초록

1. Introduction

Red algae of the genus *Laurencia* produce a diverse series of halogenated secondary metabolites.^[1] (+)-Bermudenynol (1) was isolated from the red alga *Laurencia intricata* by Meinwald and co-workers in Castle Harbour, Bermuda in 1982.^[2] The structure of **1** was elucidated on the basis of spectroscopic methods and further corroborated by X-ray crystallography. From a synthetic point of view, this acetogenin marine natural product bearing three halogen atoms possesses a unique vinyl chloride-containing eight-membered cyclic ether skeleton with five stereogenic centers in addition to a (*Z*)-enyne side chain in its compact C_{15} framework. Bermudenynol has not been synthesized to date, probably due to difficulties associated with construction of the vinyl chloride-containing oxocene core.

Figure 1. Structure of (+)-bermudenynol (1)

Ring-closing metathesis (RCM) has become established as a successful protocol for the construction of medium-ring oxacyclic skeletons, including those with either α, α' -*cis* or α, α' -*trans* disubstitution.^[3] Notably, Weinreb and Chao reported RCM of olefinic vinyl chlorides to construct a variety of vinyl chloride-containing carbocyclic and heterocyclic five-, six-, and seven-membered rings in excellent yields.^[4] And they also briefly investigated the possibility of forming larger rings by this process. Unfortunately, their attempt to construct a vinyl chloride-containing oxocene via RCM under their optimized RCM conditions (Scheme 1) was met with failure.

Scheme 1. Attempted RCM Cyclization to a Vinyl Chloride-Containing Oxocene.

Recently, we have demonstrated the potential of our "olefin geometry-dependent" intramolecular amide enolate alkylation (IAEA) methodology (Scheme 2) in the synthesis of medium-ring oxacyclic marine natural products with an α, α' -*cis*-disubstituted oxocene skeleton.^[5]

Scheme 2. Olefin Geometry-Dependent Intramolecular Amide Enolate Alkylation

More significantly, an extension of our methodology has served to complement a deficiency in RCM in the construction of (*E*)-oxonenes, as we demonstrated in our IAEA-based synthesis of (*E*)-cladiellin diterpenes.^[6] (Figure 3)

Figure 3. (E)-cladiellin diterpenes

Mindful that the abovementioned Weinreb study did not augur for success, we were still intrigued by the possibility that our olefin geometry-dependent IAEA strategy could be used to construct the crucial vinyl chloride-containing oxocene core of (+)-bermudenynol. This approach was ultimately successful, and this thesis reports our first asymmetric total synthesis of the *Laurencia* marine natural product.

2. Results and Discussion

2.1 Retrosynthetic plan for (+)-Bermudenynol

Scheme 3. Retrosynthetic Plan for (+)-Bermudenynol (1). PMB = p-methoxybenzyl

As shown in our retrosynthetic plan (Scheme 3), we planned to introduce the C(7) side chain, which contains both a vicinal chlorohydrin and a (*Z*)-enyne, by elaboration of the α -alkoxy dimethylamide function in oxocene 2. We were confident that the key vinyl chloride-containing bromo oxocene 2 could be secured by the IAEA of (*E*)-allylic bromide 4, followed by bromination of the resultant

oxocene adduct **3** with inversion of configuration. We further envisaged that the requisite (E)- γ -chloro allylic bromide moiety in IAEA substrate **4** could be elaborated from the terminal alkene function in known C(12)/C(13)-*syn* diol derivative **5**, which was available in four steps from **6** by Evans alkylation and chelation-controlled nucleophilic addition.^[7]

2.2 Synthesis of Key Bromo Oxocene 2

To commence the synthesis, α -alkoxy amide **7** was prepared by *O*-alkylation of known *syn*-diol derivative **5** by treatment with NaH and *N*,*N*-dimethyl chloroacetamide (Scheme 4). The terminal alkene function in **7** was used to install the (*E*)- γ -chloro allylic bromide moiety required in key IAEA substrate **4** as follows: one-pot cleavage of alkene **7** by a modified Lemieux-Johnson oxidation,^[8] followed by Ohira-Bestmann alkynylation of the resultant aldehyde **8**, gave the desired alkyne **9** in good overall yield (78% yield for 3 steps from **5**).^[9] Regio- and stereoselective hydrostannylation of propargylic ester **10**, prepared by palladium-catalyzed oxidative carbonylation of alkyne **9**,^[10] was accomplished under the stannylcupration conditions described by Pancrazi and co-workers to afford the desired (*E*)-vinyl stannane **11** (53% for the two steps).^[11] Chemoselective reduction of ester function in **11** in the presence of α -alkoxy dimethylamide by treatment with the ate complex generated from DIBAL-H and *n*BuLi^[12a] (-78 °C, then

NaBH₄/EtOH, -78 °C to RT), and subsequent tin-chlorine exchange^[13] led to the desired (*E*)- γ -chloro allylic alcohol **13** (55% yield for the two steps). This same ate complex is used elsewhere to reduce an α -alkoxy dimethylamide function to the corresponding aldehyde at 0 °C to room temperature (vide infra), so the temperature effect makes the chemoselectivity here highly tunable. Finally, bromination of allylic alcohol via a modification of the Stork protocol^[14] gave rise to the desired allylic bromide in nearly quantitative yield (96% for the two steps), setting the stage for the crucial intramolecular amide enolate alkylation.

Scheme 4. Preparation of IAEA Substrate **4**: a) NaH, CICH₂CONMe₂, THF/DMF (3:1), RT, 3 h, 94 %; b) i. OsO₄, NMO, acetone/H₂O, RT, 18 h, ii. NaIO₄, RT, 3 h, 92 %; c) CH₃COCN₂PO(OCH₃)₂, K₂CO₃, MeOH, RT, 18 h, 90 %; d) Pd(OAc)₂, PPh₃, MeOH, DMF, CO, O₂, RT, 25 h, 72 %; e) hexabutylditin, *n*BuLi, CuCN, MeOH, THF, -78 °C, 1 h, 73 %; f) DIBAL-H (3 equiv), *n*BuLi (3 equiv), THF, -78 °C, 10 min, then NaBH₄ (excess), EtOH, -78 °C to RT, 1 h, 77 % (BRSM 83%); g) CuCl₂, THF, 0 °C, 4 h, 71 %; h) Ms₂O, Et₃N, CH₂Cl₂, RT, 10 min; i) LiBr, THF, RT, 1 h, 96 % (2 steps).

THF = tetrahydrofuran, NMO = N-methylmorpholine-N-oxide, DMF = N,N-dimethylformamide, DIBAL-H = diisobutylaluminum hydride, Ms = methanesulfonyl.

Scheme 5. Intramolecular Amide Enolate Alkylation and Bromination: a) LiHMDS, THF, -78 °C, 1 h, 80 %; b) DDQ, CH₂Cl₂/pH 7.4 buffer solution (9:1), RT, 7 h, 94 %; c) CBr₄, *n*Oct₃P, 1-methyl cyclohexene, toluene, 70 °C, 12 h, 25 % for **2**, **2/15** = 1:1.2; d) McCl, 2,6-lutidine, CH₂Cl₂, 0 °C, 1 h; e) LiBr, Et₂O/THF (10:1), 40 °C, 6 d, 67 % for 2 steps, **2/15** = 7.3:1.

HMDS = hexamethyldisilazide, DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, Mc = chloromethylsulfonyl.

With the internal alkylation substrate in hand, we turned our attention to the much anticipated, pivotal IAEA of $4^{[5,6]}$ To our delight, upon exposure to LiHMDS in THF at -78 °C for 1 h, the (*E*)-allylic bromide 4 gave rise to the key vinyl chloride-containing oxocene amide 3 in good yield (80%). This was an extremely welcome result because we had little confidence in an alternative route based on RCM, as mentioned earlier. Having gained access to the key vinyl chloride-containing

oxocene amide 3, we next proceeded to address the crucial question of introducing the ring bromine, crucial because one of the most demanding tasks in the synthesis of oxocene marine natural products is introduction of the halogen atom with a defined stereochemistry. It is known that both the relative α, α' -stereochemistry and C(12)/C(13) stereochemistry in oxocenes can exert subtle conformational effects on halogenation with inversion of configuration. Our extensive experience in this area together with literature analogy suggested the diastereomeric oxocene alcohols with α, α' -cis-C(12)/C(13)-syn stereochemistry represent the most favorable substrates for halogenation with inversion.^[15] For instance, α, α' -cis-C(12)/C(13)-syn oxocene alcohol 14'^[5d] {our laurefucin synthetic intermediate, and identical to 14 except for lacking the chlorine substituent at the C(10) underwent efficient bromination with inversion of configuration upon exposure to CBr₄ and nOct₃P (78%) under the Hooz conditions.^[16] To our surprise and disappointment, however, bromination of key C(10)-chloro oxocene alcohol 14, prepared in 96% yield by removal of the PMB protecting group in 3 under the Yonemitsu conditions, [17] produced a 1:1.2 mixture of the desired product 2 (25%) and the eliminated diene 15 under comparable conditions. We are still formulating an explanation for the subtle effect of the C(10) chlorine atom on the bromination behavior. Fortunately, the obstacle could be overcome by a modification of the Nakata two-step procedure via chloromethanesulfonate intermediate 16 to obtain the crucial bromo oxocene in good yield (67% for the two steps) with minimal formation of diene 15.^[15,18]

2.3 Completion of the Synthesis

Scheme 6. Completion of the Synthesis: a) DIBAL-H (2 equiv), *n*BuLi (2 equiv), THF, 0 °C, 10 min, then RT, 50 min, 83 %; b) $(CF_3CH_2O)_2POCH_2CO_2Me$, KHMDS, 18-crown-6, THF, -78 °C, 15 h, 71 %, Z/E = 10 : 1; c) DIBAL-H, toluene, -78 °C, 30 min, 96 %; d) VO(acac)₂, *t*BuOOH, benzene, 40 °C, 15 h, $\alpha/\beta = 2.3 : 1, 70 %$ total yield; e) DMP, NaHCO₃, CH₂Cl₂, RT, 5 h, 96 %; f) **A**, KHMDS, THF, -78 °C, 30 min, 53%, Z/E = 16 : 1; g) TMSCI, DMAP, EtOAc, RT, 3 h, 76 %; h) TBAF, acetic acid, THF, 0 °C, 30 min, 90 %.

DMP = Dess-Martin periodinane, TMS = trimethylsilyl, DMAP = 4dimethylaminopyridine, TBAF = tetra-*n*-butylammonium fluoride.

For installation of the challenging C(7) side chain, we envisioned that regioselective opening at the allylic position of $cis-\alpha$ -epoxy (Z)-enyne 22 by S_N2

displacement with chloride would produce the pivotal chlorohydrin in a stereo- and regioselective manner (Scheme 6). Taking advantage of the versatility of the α -alkoxy dimethylamide function,^[5,6] reduction of oxocene amide **2** with the ate complex generated from DIBAL-H and *n*BuLi (0 °C to RT) produced the corresponding aldehyde **17** (83%),^[12b] which was transformed into the requisite (*Z*)-enoate **18** with a good *Z/E* selectivity (10:1) via the Still-Gennari olefination (71%),^[19] To generate the *cis*- α -epoxide functionality in the presence of the trisubstituted oxocene vinyl chloride, we decided on epoxidation of (*Z*)-allylic alcohol **19**, prepared by DIBAL-H reduction of (*Z*)-enoate **18** in excellent yield (96%). After some experimentation, we found that exposure of (*Z*)-allylic alcohol **19** to VO(acac)₂ and *tert*-butyl hydrogen peroxide under the Sharpless conditions afforded the desired *cis*- α -epoxide **20** with a modest degree of selectivity ($\alpha/\beta = 2.3:1, 70\%$ total yield).^[20-22] We were unable to assign the stereochemistry of the epoxide at that stage, but completion of the synthesis as described below

The facial selectivity of epoxidation was probed through density functional theory (DFT) calculations, at the B3LYP/6-311+G(d,p) level of theory (Figure 1).^[23] Competing transition structures were located for oxidation of either diastereoface of the allylic alcohol, according to a concerted mechanism involving a V^{V} -peroxy species as originally proposed by Sharpless et al.^[20] and supported by

recent computational studies.^[24] Due to the complexity of the substrate used experimentally, modeling studies used truncated substrate C to investigate the effect of the allylic stereocenter. In close agreement with experiment, a small free energy preference of 2.4 kJ/mol (i.e. 2.5:1 at 40 °C) is computed between TSs for epoxidation of either face of the C=C bond, favoring the $cis-\alpha$ -epoxide. This modest selectivity results from the difference in the hyperconjugative donating abilities of allylic C-C and C-O σ -bonds. In forming the major diastereomer, the allylic stereocenter is oriented so as to maximize σ_{C-C} and $\pi_{C=C}$ overlap, enhancing the electron density that may be donated towards the electrophilic oxidant in the TS. In the minor pathway this orientation is prohibited by the approach of the electrophile, and consequently there is less hyperconjugative donation from the σ_{C} -_C bond. NBO calculations confirm this, showing greater $\sigma_{C-C} \rightarrow \pi *_{C=C}$ delocalization in the favored TS, and greater $\sigma_{C=C} \rightarrow \sigma *_{C-O}$ in the disfavored TS. Two different model systems **B** and **C** give the same relative free energies and similar conformations (see the Supporting Information for **B**), indicating that the selectivity is predominantly influenced by the allylic stereocenter, rather than by more remote stereoinductive effects.

Figure 1. DFT Calculations on Diastereoselective Sharpless Epoxidation of 19

Returning to Scheme 6, we focussed our attention on the introduction of the (*Z*)enyne unit. Unfortunately, the use of the Yamamoto-Peterson reaction^[25] on epoxy aldehyde **21**, generated from **20** by DMP oxidation in excellent yield (96%),^[26] led to destruction of the starting material. To our delight, the desired (*Z*)-enyne unit could be installed by application of the Julia-Kocienski procedure^[27] to 21 with sulfone A to give the desired TMS-(Z)-enyne 22 in a serviceable yield and with a good stereoselectivity (53% isolated yield, Z/E = 16:1). Finally, regioselective opening of allylic epoxide 22 with chloride,^[28] followed by removal of the TMS group in the resultant chlorohydrin 23 by exposure to TBAF under acidic conditions, delivered bermudenynol (1) in good overall yield for the two steps (68 %). It is imperative to run the desilylation with fluoride under slightly acidic conditions, since otherwise diene 24 is formed as the major product. Both the spectral characteristics and optical rotation of our synthetic material 1 were in good agreement with those reported for the natural bermudenynol: $\left[\alpha\right]_{D}^{25} + 194.3$ (c 0.75, CHCl₃) [natural: lit.² $[\alpha]^{25}_{D}$ +187 (c 0.756, CHCl₃)]. In particular, the ¹³C NMR (125 MHz, acetone- d_6) spectral data were in excellent agreement with the resonances listed in the original isolation paper (20 MHz, acetone- d_6), and bermudenynol was fully characterized by 1D and 2D NMR spectroscopy (COSY, HSQC, HMBC, and NOESY). In addition, the measured rotation of our synthetic material supports the conclusion that the absolute configuration of (+)bermudenynol is that represented by the structure **1**.

3. Conclusions

In summary, we have accomplished a substrate-controlled asymmetric total synthesis of (+)-bermudenynol (1), a compact and synthetically challenging C_{15} *Laurencia* metabolite that is laced with halogen atoms, in 21 steps from the known and readily available *syn*-diol intermediate **5**. The vinyl chloride-containing oxocene core in the natural product was constructed by an efficient and highly stereoselective intramolecular amide enolate alkylation, which showcases the broad utility of our IAEA methodology as a useful alternative for cases in which the ring-closing metathesis is inefficient.

- Experimentals: Part A -

Experimental Procedures and Product Characterization

General Procedures Proton (¹H) and carbon (¹³C) NMR spectra were obtained on a Jeol JNM-LA300 (300/75 MHz), Bruker AV 400 (400/100 MHz), Bruker AMX 500 (500/125 MHz), Jeol JNM-ECA600 (600/150 MHz), or AVANCE II 900 (900/225 MHz) spectrometer. Chemical shifts are reported in ppm units with Me₄Si or CHCl₃ as the internal standard. All reactions were routinely carried out under an inert atmosphere of dry nitrogen or argon. Reactions were checked by thin layer chromatography (Kieselgel 60 F254, Merck). Spots were detected by viewing under a UV light, and by colorizing with charring after dipping in a *p*-anisaldehyde solution or phosphomolybdic acid solution. In aqueous work-up, all organic solutions were dried over anhydrous sodium sulfate and filtered prior to rotary evaporation at water pump pressure. The crude compounds were purified by column chromatography on a silica gel (Kieselgel 60, 70-230 mesh, Merck). Unless otherwise noted, materials were obtained from commercial suppliers and were used without purification. All solvents were purified and dried by standard techniques just before use. THF and Et₂O were freshly distilled from sodium and benzophenone. Methylene chloride, toluene, and benzene were purified by refluxing with CaH₂. Hexanes and ethylacetate were purified by simple distillation.

Preparation of α-Alkoxy Amide 7

To a cooled (0 $^{\circ}$ C) solution of the known alcohol 5¹ (420.0 mg, 1.678 mmol) in anhydrous THF/DMF (3:1, total 8.4 mL, 0.2 M) was added in one portion sodium hydride (168.0 mg, 60% dispersion in mineral oil, 4.2 mmol), followed by dropwise addition of 2-chloro-N,N-dimethylacetamide (0.52 mL, 5.034 mmol) after 10 min. After being stirred at the room temperature for 3 h, the reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL), and diluted with Et₂O (10 mL). The layers were separated, and the aqueous layer was extracted with $Et_2O(2 \times 50 \text{ mL})$. The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1 to 1/1) to give α -alkoxy amide 7 (530.0 mg, 94%): $R_f 0.30$ (hexanes/EtOAc, 1/1); colorless oil; $[\alpha]_D^{25} = +6.14$ (c 1.02, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.6 Hz, 2 H), 6.85 (d, J = 8.7 Hz, 2 H), 5.81-5.89 (m, 1 H), 5.07 (ddd, J = 1.5, 18.3, 27.8 Hz, 2 H), 4.51 (ddd, J = 11.2, 11.2, 11.2 Hz, 2 H), 4.21 (ddd, J = 13.2, 13.2, 13.2 Hz, 2 H), 3.79 (s, 3 H), 3.53 (ddd, J = 4.9, 4.9, 7.4 Hz, 1 H), 3.36 (ddd, J = 4.8, 4.8, 7.7 Hz, 1 H), 2.98 (s, 3 H), 2.92 (s, 3 H), 2.36-2.41 (m, 1 H), 2.24 (ddd, J = 7.4, 7.4, 14.6 Hz, 1 H), 1.63-1.71 (m, 1 H), 1.45-1.54 (m, 1

H), 0.91 (dd, J = 7.4, 7.4, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.5, 159.1, 135.3, 130.8, 129.4, 116.8, 113.6, 82.8, 79.4, 72.1, 70.3, 55.2, 36.6, 35.3, 34.7, 22.7, 10.1; IR (neat) 2929, 2874, 1651, 1613, 1514, 1249, 1106, 1036 cm⁻¹; HRMS (FAB) found 336.2168 [calcd for C₁₉H₃₀NO₄⁺ (M+H)⁺ 336.2175].

Preparation of Aldehyde 8

To a solution of terminal alkene **7** (512.0 mg, 1.526 mmol) in acetone (7.6 mL, 0.2 M) was dropwise added successively osmium tetroxide (1.6 mL, 0.5 wt% in H2O, 0.031 mmol) and *N*-methylmorpholine-*N*-oxide (1.07 mL, 50 wt% in H2O, 4.579 mmol) at room temperature, and the mixture was stirred for 18 h at the same temperature. To the reaction mixture was then added sodium periodate (653.0 mg, 3.053 mmol) in one portion. After being stirred at room temperature for 3 h, the reaction mixture was diluted with H2O (10 mL) and CH2Cl2 (10 mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (2×10 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The residue was purified by filtration through a short column of silica gel (hexanes/EtOAc, 1/1 to 1/2) to give aldehyde **8** (474.0 mg,

92%): $R_f 0.30$ (EtOAc only); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 9.77 (dd, J = 1.7, 1.7 Hz, 1 H), 7.24 (d, J = 8.5 Hz, 2 H), 6.86 (d, J = 8.6 Hz, 2 H), 4.52 (ddd, J = 11.3, 11.3, 11.3 Hz, 2 H), 4.13-4.22 (m, 3 H), 3.79 (s, 3 H), 3.46 (ddd, J = 4.4, 4.4, 8.3 Hz, 1 H), 2.96 (s, 3 H), 2.93 (s, 3 H), 2.79 (ddd, J = 1.4, 4.4, 16.7 Hz, 1 H), 2.62 (ddd, J = 2.3, 7.7, 16.7 Hz, 1 H), 1.65-1.73 (m, 1 H), 1.42-1.53 (m, 1 H), 0.94 (dd, J = 7.3, 7.3 Hz, 3 H).

Preparation of Terminal Alkyne 9

To a cooled (0 °C) solution of aldehyde **8** (144.1 mg, 0.427 mmol) in anhydrous MeOH (4.3 mL, 0.1 M) was dropwise added dimethyl-1-diazo-2-oxopropylphosphonate (0.1 mL, 0.666 mmol), followed by addition of potassium carbonate (118.1 mg, 0.854 mmol) in one portion, under Ar. After being stirred at room temperature for 18 h, the reaction mixture was quenched with saturated aqueous NaHCO₃ (10 mL) at 0 °C, and diluted with Et₂O (10 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2 × 50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel,

hexanes/EtOAc, 2/1 to 1/1) to give terminal alkyne **9** (127.6 mg, 90%): R*f* 0.50 (EtOAc only); colorless oil; $[\alpha]_D^{25} = -24.78$ (*c* 0.43, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, *J* = 8.6 Hz, 2 H), 6.86 (d, *J* = 8.7 Hz, 2 H), 4.68 (d, *J* = 11.4 Hz, 1 H), 4.51 (d, *J* = 11.3 Hz, 1 H), 4.23 (ddd, *J* = 13.3, 13.3, 13.3 Hz, 2 H), 3.80 (s, 3 H), 3.65 (ddd, *J* = 5.9, 5.9, 5.9 Hz, 1 H), 3.45-3.49 (m, 1 H), 2.99 (s, 3 H), 2.92 (s, 3 H), 2.57 (ddd, *J* = 2.7, 5.6, 17.0 Hz, 1 H), 2.43 (ddd, *J* = 2.6, 6.3, 17.0 Hz, 1 H), 1.99 (dd, *J* = 2.6, 2.6 Hz, 1 H), 1.62-1.70 (m, 1 H), 1.50-1.59 (m, 1 H), 0.88 (dd, *J* = 7.5, 7.5, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.3, 159.3, 130.4, 129.6, 113.7, 82.2, 81.5, 77.7, 72.3, 70.1, 69.8, 55.3, 36.6, 35.3, 22.4, 20.3, 10.0; IR (neat) 3286, 3245, 2962, 2935, 2877, 1650, 1514, 1249, 1106, 823 cm⁻¹; HRMS (FAB) found 334.2025 [calcd for C₁₉H₂₈NO₄⁺ (M+H)⁺ 334.2018].

Preparation of Propargylic Ester 10

To a cooled (0 °C) solution of palladium acetate (26.8 mg, 0.120 mmol) and triphenylphosphine (62.7 mg, 0.239 mmol) in anhydrous DMF (4 mL) was dropwise added terminal alkyne **9** (102.5 mg, 0.398 mmol) in anhydrous MeOH (0.4 mL, 9.885 mmol). After being stirred for 25 h at room temperature under the atmoshphere of carbon monoxide and oxygen (1:1), the reaction mixture was quenched with H₂O (10 mL) at 0 °C, and diluted with Et₂O (10 mL). The layers were separated, and the aqueous

layer was extracted with Et₂O (2 × 50 mL). The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1 to 2/1) to give propargylic ester **10** (90.4 mg, 72%): Rf 0.33 (hexanes/EtOAc, 1/2); colorless oil; $[\alpha]_D^{25} = -3.68$ (*c* 0.90, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.6 Hz, 2 H), 6.87 (d, *J* = 8.7 Hz, 2 H), 4.66 (d, *J* = 11.3 Hz, 1 H), 4.53 (d, *J* = 11.3 Hz, 1 H), 4.20 (s, 2 H), 3.80 (s, 3 H), 3.76 (s, 3 H), 3.72-3.75 (m, 1 H), 3.43 (ddd, *J* = 4.8, 4.8, 7.4 Hz, 1 H), 2.98 (s, 3 H), 2.93 (s, 3 H), 2.73 (dd, *J* = 4.9, 17.4 Hz, 1 H), 2.56 (dd, *J* = 7.1, 17.4 Hz, 1 H), 1.63-1.72 (m, 1 H), 1.46-1.57 (m, 1 H), 0.9 (dd, J = 7.4, 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 159.3, 154.0, 130.0, 129.7, 113,8, 87.2, 82.2, 76.9, 74.0, 72.5, 69.7, 55.3, 52.6, 36.5, 35.4, 22.2, 20.7, 10.1; IR (neat) 2917, 2240, 1714, 1655, 1514, 1253, 1076, 771 cm⁻¹; HRMS (FAB) found 392.2064 [calcd for C₂₁H₃₀NO₆⁺ (M+H)⁺ 392.2073].

Preparation of (E)- β -Stannyl Enoate 11

To a cooled (-78 °C) solution of hexatributylditin (759.0 mg, 1.309 mmol) in anhydrous THF (1.5 mL) was dropwise added *n*-butyllithium (0.78 mL, 1.6 M solution in hexanes, 1.243 mmol) under Ar, and the resulting solution was stirred at -40 °C for 30 min. To a cooled (-78 °C) suspension of CuCN (58.6 mg, 0.654 mmol) in anhydrous THF (1.5 mL) was dropwise added the above-generated solution via cannular, and the resulting mixture was stirred for 30 min at -78 °C until obtention of a yellow solution. Upon dropwise addition of MeOH (0.4 mL) at -78 °C, the yellow solution turned to a red gel, which was stirred at -10 °C for 30 min until obtention of a red solution. To a cooled (-78 °C) red solution of Bu₃Sn(Bu)CuCNLi₂ (1.2 mL, 0.179 mmol) was dropwise added propargylic ester 10 (22.0 mg, 0.056 mmol) in anhydrous THF (0.5 mL). After being stirred at same temperature for 1 h, the reaction mixture was quenched with saturated aqueous NH4Cl (10 mL), and diluted with EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 5/1 to 3/1) to give (E)- β -stannyl enoate 11

(28.0 mg, 73%): R*f* 0.30 (hexanes/EtOAc, 1/1); colorless oil; $[\alpha]_D^{25} = +50.80$ (*c* 0.40, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 8.6 Hz, 2 H), 6.82 (d, *J* = 8.6 Hz, 2 H), 6.05 (d, *J* = 31.9, 31.9 Hz, 1 H), 4.34-4.48 (m, 3 H), 4.10 (d, *J* = 13.3 Hz, 1 H), 3.79 (s, 3 H), 3.74 (ddd, *J* = 3.6, 3.6, 8.5 Hz, 1 H), 3.65 (s, 3 H), 3.40 (ddd, *J* = 4.2, 4.2, 8.4 Hz, 1 H), 3.15 (dd, *J* = 10.2, 12.7 Hz, 1 H), 3.02-3.06 (m, 1 H), 3.00 (s, 3 H), 2.92 (s, 3 H), 1.65-1.75 (m, 1 H), 1.41-1.55 (m, 6 H), 1.23-1.31 (m, 6 H), 0.85-0.97 (m, 19 H); ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 169.6, 164.4, 158.9, 131.0, 129.4, 129.0, 113.4, 83.0, 80.0, 72.3, 69.9, 55.2, 50.8, 36.7, 35.4, 35.3, 28.9, 27.4, 22.7, 13.6, 10.5, 10.3; IR (neat) 2955, 2927, 1715, 1654, 1514, 1463, 1249, 1171, 1077, 822 cm⁻¹; HRMS (FAB) found 684.3293 [calcd for C₃₃H₅₈NO₆Sn⁺ (M+H)⁺ 684.3286].

Preparation of (E)-7-Stannyl Allylic Alcohol 12

An ate complex (0.3 M solution in hexanes/THF) was generated by dropwise addition of *n*-buthyllithium (1.0 mL, 1.6 M solution in hexanes, 1.6 mmol) to DIBAL-H (1.6 mL, 1.0 M solution in hexanes, 1.6 mmol) in anhydrous THF (2.6 mL) at 0 °C under Ar, followed by stirring for 30 min at 0 °C. To a cooled (-78 °C) solution of (*E*)- β -stannyl enoate 11 (12.0 mg, 0.018 mmol) in anhydrous THF (0.8 mL, 0.023 M) was dropwise added the above-generated ate complex solution (0.18 mL, 0.054 mmol) under Ar, and the resulting mixture was stirred for 10 minutes at the same temperature. To the mixture was dropwise added sodium borohydride (0.53 mL, 0.3 M in dry ethanol solution, 0.159 mmol). The reaction mixture was warmed to room temperature over 1 h with stirring, quenched with saturated aqueous NH4Cl (10 mL), and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3×20 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1 to 1/1) to give (E)- γ -stannyl allylic alcohol 12 (8.9 mg, 77%, 83% BRSM): Rf 0.20 (hexanes/EtOAc, 1/1); colorless oil; $[\alpha]_D^{25} = +20.96$ (c 0.76, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.4 Hz, 2 H), 6.85 (d, J = 8.4 Hz, 2 H), 5.95-6.12 (m, 1 H), 4.48 (ddd, J = 11, 11, 11 Hz, 2 H), 4.18 (ddd, J = 13.1, 13.1, 13.1 Hz, 2 H), 4.09-4.15 (m, 1 H), 4.02-4.07 (m, 1 H), 3.79 (s, 3 H), 3.49 (ddd, J = 3.8, 3.8, 8.2 Hz, 1 H), 3.44 (ddd, J = 4.5, 4.5, 8.0 Hz, 1 H), 3.13 (s, 1 H, OH), 2.99 (s, 3 H), 2.94 (s, 3 H), 2.69 (dd, *J* = 9.5, 13.5 Hz, 1 H), 2.49 (dd, J = 3.7, 13.5 Hz, 1 H), 1.66-1.73 (m, 1 H), 1.55-1.61 (m, 1 H), 1.40-1.54 (m, 6 H), 1.27-1.34 (m, 6 H), 0.94-0.96 (m, 3 H), 0.87-0.90 (m, 15 H); ¹³C NMR (125 MHz, CDCl₃) § 169.3, 159.3, 144.3, 142.6, 129.9, 129.6, 113.7, 82.0, 78.8, 72.6, 69.3, 57.8, 55.2, 36.6, 35.4, 33.6, 29.1, 27.5, 13.7, 10.5, 9.7; IR (neat) 3438, 2955, 2927, 2871,

1654, 1514, 1249, 1073, 822 cm⁻¹; HRMS (FAB) found 656.3337 [calcd for $C_{32}H_{58}NO_5Sn^+(M+H)^+$ 656.3337].

Preparation of (E)-7-Chloro Allylic Alcohol 13 at 0 °C

To a cooled (0 °C) solution of (*E*)- γ -stannyl allylic alcohol **12** (10.4 mg, 0.016 mmol) in anhydrous THF (2.0 mL, 0.008 M) was added copper chloride (42.7 mg, 0.318 mmol) in one portion. After being stirred at the same temperature for 4 h, the reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL), diluted with EtOAc (10 mL), and stirred for 3 h at room temperature. The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to give (*E*)- γ -chloro allylic alcohol **13** (4.5 mg, 71%): R_f 0.20 (EtOAc only); colorless oil; $[\alpha]_D^{25} = -7.61$ (*c* 0.51, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, *J* = 8,2 Hz, 2 H), 6.87 (d, *J* = 8.6 Hz, 2 H), 6.04 (dd, *J* = 7.4, 7.4 Hz, 1 H), 4.53 (s, 2 H), 4.25 (d, *J* = 13.2 Hz, 1 H), 4.14 (d, *J* = 13.2 Hz, 1 H), 3.99-4.10 (m, 2 H), 3.91 (ddd, *J* = 4.8, 4.8, 8.6 Hz, 1 H), 3.80 (s, 3 H), 3.49 (ddd, *J* = 4.7, 4.7, 8.0 Hz, 1

H), 3.21 (dd, J = 6.6, 6.6 Hz, 1 H, OH), 3.00 (s, 3 H), 2.94 (s, 3 H), 2.65-2.75 (m, 2 H), 1.65-1.72 (m, 1 H), 1.51-1.57 (m, 1 H), 0.92 (dd, J = 7.4, 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 159.5, 135.1, 129.9, 129.7, 113.8, 81.4, 75.7, 72.7, 68.8, 58.2, 55.2, 36.6, 35.4, 34.8, 22.0, 10.3; IR (neat) 3414, 2963, 2935, 2876, 1650, 1613, 1514, 1105, 1034 cm⁻¹; HRMS (FAB) found 400.1895 [calcd for C₂₀H₃₁ClNO₅⁺ (M+H)⁺ 400.1891].

Preparation of (*E*)-*γ*-Chloro Allylic Alcohol 13 at -40 to -5 °C

To a cooled (-40 °C) solution of (*E*)- γ -stannyl allylic alcohol **12** (22.0 mg, 0.034 mmol) in anhydrous THF (2 mL, 0.017 M) was added in one portion copper chloride (91.6 mg, 0.681 mmol). After being stirred for 90 h at -40 °C, the reaction mixture was stirred at – 5 °C for additional 10 h to complete the reaction, quenched with saturated aqueous NH₄Cl (10 mL), diluted with EtOAc (10 mL), and stirred for 3 h at room temperature. The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford (*E*)- γ -chloro allylic alcohol **13** (10.8 mg, 79%).

[Note] The tin-chlorine exchange reaction had been carried out at -40 to -5 °C (100 h, 79%) until it was found out that the lower temperature was not necessary (0 °C, 4 h,

71%) at the final stage of synthesis. The experiment at 0 $^{\circ}$ C was carried out only once and the yield was not optimized.

Preparation of (*E*)-*γ***-Chloro Allylic Bromide 4**

[Mesylation] To a solution of (*E*)- γ -chloro allylic alcohol **13** (50.1 mg, 0.125 mmol) in anhydrous CH2Cl2 (2 mL, 0.063 M) was dropwise added triethylamine (0.052 mL, 0.375 mmol), followed by addition of methanesulfonic anhydride (34.0 mg, 0.188 mmol) in one portion at room temperature under Ar. After being stirred at the same temperature for 10 min, the reaction mixture was quenched with saturated aqueous NH4Cl (10 mL), and diluted with CH2Cl2 (10 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 × 20 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The crude product was used for the next step without further purification.

[**Bromination**] To a solution of the crude mesylate in THF (2 mL) was added lithium bromide (109.0 mg, 1.253 mmol) in one portion at room temperature. After being stirred at the same temperature for 1 h, the reaction mixture was quenched with H₂O (10 mL), and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer

was extracted with EtOAc (2×50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The residue was purified by filtration through a short column of silica gel (hexanes/EtOAc, 1/1 to 1/2) to give (E)- γ -chloro allylic bromide 4 (55.7 mg, 96% for 2 steps): R_f 0.40 (EtOAc only); colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 8.6 Hz, 2 H), 6.85 (d, J = 8.6 Hz, 2 H), 6.00 (dd, J = 7.9, 9.5 Hz, 1 H), 4.50 (s, 2 H), 4.19 (ddd, J = 13.3, 13.3, 13.3 Hz, 2 H), 4.07 (dd, J = 10.5, 10.5 Hz, 1 H), 3.85-3.88 (m, 2 H), 3.79 (s, 3 H), 3.41 (ddd, J = 4.4, 4.4, 8.2 Hz, 1 H), 3.00 (s, 3 H), 2.94 (s, 3 H), 2.78 (dd, J = 9.3, 14.5 Hz, 1 H), 2.54 (dd, J = 2.7, 14.5 Hz, 1 H), 1.64-1.72 (m, 1 H), 1.45-1.54 (m, 1 H), 0.93 (dd, *J* = 7.4, 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) & 169.2, 159.2, 137.8, 130.4, 129.6, 126.2, 113.6, 82.3, 76.3, 73.0, 69.5, 55.2, 36.6, 35.6, 35.4, 27.4, 22.3, 10.3; IR (neat) 2934, 1650, 1514, 1249, 1104, 1082 cm⁻¹; HRMS (FAB) found 462.1045 [calcd for $C_{20}H_{30}BrClNO_4^+(M+H)^+$ 462.1047]. [Note] Two modifications of the original procedure (G. Stork, P. A. Grieco, M. Gregson, Tetrahedron Lett. 1969, 10, 1393-1395) were implemented: use of mesyl anhydride instead of mesyl chloride, and the target in the present case is a bromide, and not a chloride as in the original work. The use of methanesulfonyl chloride as described in the original procedure produced a small amount of the corresponding allylic chloride, which resulted in a lower yield during the subsequent intramolecular amide enolate alkylation.

Preparation of Oxocene Amide 3

To a cooled (-78 °C) solution of (*E*)- γ -chloro allylic bromide **4** (15.2 mg, 0.033 mmol) in anhydrous THF (7.2 mL, 0.005 M) was dropwise added LiHMDS (0.33 mL, 0.2 M solution in THF, 0.066 mmol) under Ar. After being stirred at the same temperature for 1 h, reaction mixture was quenched with saturated aqueous NH₄Cl (20 mL), and diluted with EtOAc (50 mL) and H₂O. The layers were separated, and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1 to 2/1) to give oxocene amide **3** (10.1 mg, 80%): R_f 0.20 (hexanes/EtOAc, 1/1); colorless oil; $[\alpha]_D^{25} = +22.15$ (*c* 0.37, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, *J* = 8.6 Hz, 2 H), 6.87 (d, *J* = 8.7 Hz, 2 H), 5.95 (dd, *J* = 7.5, 8.9 Hz, 1 H), 4.62 (d, *J* = 11.5 Hz, 1 H), 4.40 (d, *J* = 11.6 Hz, 1 H), 4.17 (dd, *J* = 1.2, 10.2 Hz, 1 H), 3.80 (s, 3 H), 3.76-3.79 (m, 1 H), 3.51 (ddd, *J* = 2.6, 6.3, 8.3 Hz, 1 H), 3.12-3.17 (m, 4 H), 2.93 (s, 3 H), 2.75 (ddd, *J* = 7.5, 10.2, 14.7 Hz, 1 H), 2.61 (dd, *J* = 4.6, 13.1 Hz, 1 H), 2.26 (ddd, *J* = 1.4, 9.0, 14.7 Hz, 1 H), 1.67-1.76 (m, 1 H), 1.50-1.59 (m, 1 H), 0.82 (dd, J = 7.4, 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 159.2, 134.3, 130.3, 129.5, 125.5, 113.7, 84.3, 83.1, 78.8, 71.1, 55.3, 37.4, 36.9, 36.2, 33.0, 25.1, 10.4; IR (neat) 2965, 2936, 1649, 1613, 1513, 1250, 1076, 822 cm⁻¹; HRMS (FAB) found 382.1787 [calcd for C₂₀H₂₉ClNO₄⁺ (M+H)⁺ 382.1785].

Preparation of α,α'-cis-C(12)/C(13)-syn Oxocene Alcohol 14

To a cooled (0 °C) solution of oxocene amide **3** (317.0 mg, 0.830 mmol) in CH₂Cl₂/pH 7.4 buffer solution (9:1, total 11 mL, 0.076 M) was added 2,3-dichloro-5,6-dicyano-1,4benzoquinone (471.0 mg, 2.075 mmol) in one portion. After being stirred vigorously at room temperature for 7 h, the reaction mixture was quenched with saturated aqueous NaHCO₃ (100 mL), and diluted with H₂O (40 mL) and CH₂Cl₂ (50 mL). The resulting dark red mixture was stirred vigorously at room temperature for 2 h. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1 to 1/1) to give α, α^2 -*cis*-C(12)/C(13)-*syn* oxocene alcohol **14** (204.0 mg, 94%): R_f 0.15 (EtOAc only); colorless
oil; $[\alpha]_D^{25} = +19.47$ (*c* 0.079, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.95 (dd, *J* = 7.9, 7.9 Hz, 1 H), 4.27 (dd, *J* = 1.5, 9.6 Hz, 1 H), 4.00 (s, 1 H, OH), 3.51-3.54 (m, 1 H), 3.10 (s, 3 H), 3.05 (dd, *J* = 10.2, 13.3 Hz, 1 H), 2.95 (s, 3 H), 2.67-2.74 (m, 1 H), 2.62 (dd, *J* = 4.8, 13.2 Hz, 2 H), 2.21 (ddd, *J* = 1.6, 9.0, 14.8 Hz, 1 H), 1.65-1.73 (m, 1 H), 1.56-1.64 (m, 1 H), 0.91 (dd, *J* = 7.5, 7.5 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 134.5, 124.9, 83.5, 80.3, 72.7, 40.9, 37.3, 36.0, 32.9, 25.1, 10.4; IR (neat) 3402, 2964, 1644, 1098, 1076 cm⁻¹; HRMS (FAB) found 262.1216 [calcd for C₁₂H₂₁ClNO₃⁺ (M+H)⁺ 262.1210].

Preparation of Chloromethanesulfonate 16

To a cooled (0 °C) solution of α , α '-*cis*-C(12)/C(13)-*syn* oxocene alcohol **14** (342.7 mg, 1.309 mmol) in anhydrous CH2Cl2 (13 mL, 0.1 M) were dropwise added successively 2,6-lutidine (1.53 mL, 13.093 mmol) and chloromethanesulfonyl chloride (0.58 mL, 6.547 mmol) under Ar. After being stirred at the same temperature for 1 h, the reaction mixture was quenched with saturated aqueous NH4Cl (10 mL), and diluted with CH2Cl2 (30 mL). The layers were separated, and the aqueous layer was extracted with H2O

and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The residue was filtered through a short column of silica gel (hexanes/EtOAc, 2/1 to 1/1) to give the crude chloromethanesulfonate **16** (583.0 mg, 119%), which was immediately used for the next step: R_f 0.50 (EtOAc only); colorless solid.

Preparation of Bromo Oxocene Amide 2

To a solution of the crude chloromethanesulfonate **16** (583.0 mg) in Et₂O/THF (10:1, total 13 mL) was added lithium bromide (568.6 mg, 5.0 mmol) in one portion at room temperature. After being heated at 40 °C (bath temperature) with stirring for 6 d, the reaction mixture was cooled to room temperature, quenched with H₂O, and diluted with EtOAc (100 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1 to 1/1) to give bromo oxocene amide **2** (284.8 mg, 67%, <u>isolated</u> yield for 2 steps) and diene **15** (**2**/**15** = 7.3:1 by ¹H NMR analysis): **For Bromo Oxocene Amide 2**; R_f 0.25 (hexanes/EtOAc, 1/1); colorless solid; $[\alpha]_D^{25} = +24.36$ (*c* 0.55, CHCl₃); ¹H NMR (500

MHz, CDCl₃) δ 6.12 (dd, J = 7.2, 9.2 Hz, 1 H), 4.22 (dd, J = 1.8, 9.4 Hz. 1 H), 4.11 (ddd, J = 3.9, 3.9, 10.1 Hz, 1 H), 3.63 (dd, J = 3.9, 15.2 Hz, 1 H), 3.54 (ddd, J = 2.6, 8.1, 10.3 Hz, 1 H), 3.07 (s, 3 H), 2.96 (s, 3 H), 2.80 (dd, J = 3.8, 15.2 Hz, 1 H), 2.59-2.65 (m, 1 H), 2.28 (ddd, J = 1.8, 9.3, 14.9 Hz, 1 H), 2.03-2.11 (m, 1 H), 1.61-1.70 (m, 1 H), 0.94 (dd, J = 7.4, 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 133.4, 126.2, 85.2, 79.9, 51.4, 40.2, 37.1, 36.1, 32.7, 26.6, 9.1; IR (neat) 2965, 2935, 1650, 1084, 1071 cm⁻¹; HRMS (FAB) found 324.0375 [calcd for C₁₂H₂₀BrClNO₂⁺ (M+H)⁺ 324.0366]; **For Diene 15**; R_f 0.40 (hexanes/EtOAc, 1/1); colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 6.04 (dd, J = 8.6, 8.6 Hz, 1 H), 5.99 (d, J = 11.1 Hz. 1 H), 5.62 (dd, J = 7.2, 11.0 Hz, 1 H), 3.96 (dd, J = 1.5, 7.2 Hz, 1 H), 3.62 (ddd, J = 6.5, 6.5, 6.5 Hz, 1 H), 3.10 (s, 3 H), 2.96 (s, 3 H), 2.75 (ddd, J = 1.6, 9.0, 14.6 Hz, 1 H), 2.22 (ddd, J = 7.9, 7.9, 15.2 Hz, 1 H), 1.63-1.78 (m, 2 H), 0.94 (dd, J = 7.4, 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 134.5, 132.0, 127.2, 127.1, 78.2, 73.6, 37.4, 36.0, 32.6, 29.7, 9.7; IR (neat) 3353, 2965, 2934, 2879, 1725, 1646, 1096, 755 cm⁻¹; HRMS (FAB) found 242.0951 [calcd for C₁₂H₁₇CINO₂⁺ (M+H)⁺ 242.0948].

Preparation of Bromo Oxocene Amide 2 by the Hooz Protocol

To a solution of α , α '-*cis*-C(12)/C(13)-*syn* oxocene alcohol **14** (7.0 mg, 0.027 mmol) in anhydrous toluene (0.5 mL, 0.053 M) was added in one portion carbon tetrabromide (10.6 mg, 0.032 mmol), followed by successive dropwise addition of *n*Oct₃P (0.03 mL, 90 %, 0.060 mmol) and 1-methyl cyclohexene (0.01 mL, 0.086 mmol) at room temperature. After being heated at 70 °C (bath temperature) with stirring for 12 h, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1 to 1/1) to give bromo oxocene amide **2** (2.2 mg, 25% isolated yield) and diene **15** (**2**/**15** = 1:1.2 by ¹H NMR analysis).

Preparation of α-Alkoxy Aldehyde 17

An ate complex (0.3 M solution in hexanes/THF) was generated by dropwise addition of n-buthyllithium (1.0 mL, 1.6 M solution in hexanes, 1.6 mmol) to DIBAL-H (1.6 mL, 1.0 M solution in hexanes, 1.6 mmol) in anhydrous THF (2.6 mL) at 0 °C under Ar, followed by stirring for 30 min at 0 °C. To a cooled (0 °C) solution of α -alkoxy oxocene amide 2 (32.0 mg, 0.099 mmol) in anhydrous THF (1 mL, 0.1 M) was dropwise added the above-generated ate complex (0.66 mL, 0.198 mmol) under Ar. After being stirred at the same temperature for 10 min, the reaction mixture was stirred at room temperature for additional 50 min, quenched with saturated aqueous NH₄Cl (30 mL), and diluted with EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by filtration through a short column of silica gel (hexanes/EtOAc, 20/1 to 15/1) to give α -alkoxy aldehyde 17 (23.0 mg, 83%), which was used immediately for the next step: $R_f 0.40$ (hexanes/EtOAc, 3/1); colorless solid; ¹H NMR (500 MHz, CDCl₃) δ 9.68 (s, 1 H), 6.05 (dd, J = 7.2, 9.1 Hz, 1 H), 4.08 (ddd, *J* = 4.1, 4.1, 10.1 Hz, 1 H), 3.76 (dd, *J* = 2.5, 9.4 Hz, 1 H), 3.50-3.56 (m, 2 H),

37

2.83 (dd, *J* = 4.2, 15.2 Hz, 1 H), 2.54 (ddd, *J* = 2.5, 9.3, 14.8 Hz, 1 H), 2.17-2.25 (m, 1 H), 1.59-1.65 (m, 1 H), 1.02 (dd, *J* = 7.4, 7.4 Hz, 3 H).

[Note] In their initial work (S. Kim, K. H. Ahn, *J. Org. Chem.* **1984**, *49*, 1717-1724), Kim and Ahn reported that partial reduction of tertiary amides to the corresponding aldehydes could be effected by using exactly one equivalent of the ate complex generated from DIBAL-H and *n*BuLi, which precluded over-reduction to the primary alcohol. With α -alkoxy dimethyl amide **2** in our case, an excess of the reagent could be tolerated presumably since the partial reduction proceeds through a very stable metalchelated intermediate that resists over-reduction.

Preparation of (Z)-Enoate 18

To a cooled (-78 °C) solution of (CF₃CH₂O)₂POCH₂CO₂Me (114.0 mg, 95%, 0.340 mmol) and 18-crown-6 (377.0 mg, 1.426 mmol) in anhydrous THF (2 mL) was dropwise added KHMDS (0.68 mL, 0.5 M solution in toluene, 0.340 mmol) under Ar, and the resulting solution was stirred at the same temperature for 30 min. To a cooled (-78 °C) solution of α -alkoxy aldehyde **17** (23.9 mg, 0.085 mmol) in anhydrous THF (1 mL, 0.085 M) was dropwise added the above-generated phosphonate anion solution

under Ar. After being stirred at the same temperature for 15 h, the reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL), and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2×50 mL). The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 100/1 to 30/1) to give (Z)-enoate **18** (20.3 mg, 71% isolated yield) and (E)-enoate **18**' (Z/E = 10:1 by ¹H NMR analysis): For (Z)-Enoate 18; $R_f 0.60$ (hexanes/EtOAc, 10/1); colorless oil; $[\alpha]_D^{25} =$ +2.45 (c 0.21, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.21 (dd, J = 7.7, 11.8 Hz, 1 H), 6.13 (dd, J = 8.0, 8.0 Hz, 1 H), 5.76 (dd, J = 1.2, 11.9 Hz, 1 H), 4.96 (dd, J = 7.5, 7.5 Hz, 1 H), 3.99 (ddd, J = 4.0, 4.0, 9.9 Hz, 1 H), 3.73 (s, 3 H), 3.51-3.59 (m, 2 H), 2.80 (dd, J = 3.9, 15.1 Hz, 1 H), 2.25-2.35 (m, 2 H), 2.09-2.16 (m, 1 H), 1.36-1.45 (m, 1 H), 0.89 (dd, J = 7.3, 7.3 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 149.8, 132.7, 126.6, 118.0, 84.2, 78.9, 52.3, 51.4, 40.4, 35.4, 27.1, 9.6; IR (neat) 2963, 2925, 1721, 1642, 1438, 1208, 1068, 819 cm⁻¹; HRMS (CI) found 337.0206 [calcd for C₁₃H₁₉BrClO₃⁺ $(M+H)^+$ 337.0206]; For (*E*)-Enoate 18'; R_f 0.40 (hexanes/EtOAc, 10/1); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 6.83 (dd, J = 4.0, 15.6 Hz, 1 H), 6.03-6.10 (m, 2 H), 4.01-4.07 (m, 2 H), 3.75 (s, 3 H), 3.50-3.56 (m, 2 H), 2.80 (dd, J = 4.0, 15.1 Hz, 1 H), 2.09-2.37 (m, 3 H), 1.45-1.54 (m, 1 H), 0.93 (dd, *J* = 7.3, 7.3 Hz, 3 H).

Preparation of (Z)-Allylic Alcohol 19

To a cooled (-78 °C) solution of (Z)-enoate **18** (11.0 mg, 0.033 mmol) in anhydrous toluene (3 mL, 0.011 M) was dropwise added DIBAL-H (0.1 mL, 1.0 M solution in hexanes, 0.1 mmol). After being stirred for 30 min at the same temperature, the reaction mixture was quenched with saturated aqueous Rochelle's solution (10 mL), diluted with EtOAc (20 mL), and stirred at room temperature for additional 2 h. The layers were separated, and the aqueous layer was extracted with EtOAc (2×100 mL). The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1 to 5/1) to give (Z)-allylic alcohol 19 (9.7 mg, 96%): $R_f 0.40$ (hexanes/EtOAc, 3/1); colorless oil; $[\alpha]_D^{25} = +21.96$ (c 0.68, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.07 (dd, J = 7.3, 7.3 Hz, 1 H), 5.65 (ddd, J = 6.4, 6.4, 12.2 Hz, 1 H), 5.53 (dd, J = 8.0, 8.0 Hz, 1 H), 4.13-4.26 (m, 3 H), 4.00 (ddd, J) = 4.1, 4.1, 9.8 Hz, 1 H), 3.56 (dd, *J* = 3.4, 15.1 Hz, 1 H), 3.51 (ddd, *J* = 2.0, 9.8, 9.8 Hz, 1 H), 2.81 (dd, J = 4.0, 15.1 Hz, 1 H), 2.28-2.37 (m, 1 H), 2.11-2.22 (m, 2 H), 1.39-1.48 (m, 1 H), 0.93 (dd, J = 7.4, 7.4 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 132.9, 132.1, 129.1, 126.3, 84.5, 78.2, 58.9, 52.1, 40.4, 36.0, 27.2, 9.7; IR (neat) 3380, 2964, 2920,

2876, 1641, 1061, 1030, 942, 865, 836 cm⁻¹; HRMS (CI) found 309.0264 [calcd for C₁₂H₁₉BrClO₂⁺ (M+H)⁺ 309.0257].

Preparation of *cis*-α-Epoxide 20

To a solution of (*Z*)-allylic alcohol **19** (4.1 mg, 0.013 mmol) in anhydrous benzene (2.0 mL, 0.007 M) was dropwise added *tert*-butyl hydroperoxide (0.01 mL, 5.5 M solution in decane, 0.055 mmol), followed by vanadyl acetylacetonate (0.01 mL, 0.016 M in benzene, 0.0002 mmol) at room temperature under Ar. The reaction mixture was heated at 40 °C (bath temperature) with stirring for 15 h. The reaction mixture was quenched with saturated aqueous Na₂S₂O₄ (10 mL), and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to give *cis*- α -epoxide **20** and *cis*- β -epoxide **20**; R_f 0.30 (hexanes/EtOAc, 3/1); colorless oil; [α]_D²⁵ = 2.36 (*c* 0.24, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.06 (dd, *J* = 7.3, 9.6 Hz, 1 H), 4.01 (ddd, *J* =

3.7, 4.6, 9.7 Hz, 1 H), 3.96 (ddd, J = 3.7, 6.4, 12.4 Hz, 1 H), 3.72 (ddd, J = 5.5, 5.5, 12.4 Hz, 1 H), 3.48-3.51 (m, 2 H), 3.39 (ddd, J = 2.3, 7.8, 7.8 Hz, 1 H), 3.26 (ddd, J = 4.1, 4.1, 6.8 Hz, 1 H), 2.95 (dd, J = 4.1, 7.8 Hz, 1 H), 2.85 (dd, J = 5.0, 15.1 Hz, 1 H), 2.47 (ddd, *J* = 2.3, 9.2, 14.6 Hz, 1 H), 2.33-2.38 (m, 1 H), 2.03-2.09 (m, 1 H), 1.56-1.63 (m, 1 H), 0.94 (dd, J = 7.4, 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 133.2, 125.6, 84.1, 77.6, 60.8, 57.8, 57.6, 51.3, 40.9, 33.2, 27.0, 9.0; IR (neat) 3438, 2966, 2925, 2877, 1743, 1643, 1097, 1076, 1065, 1038, 947 cm⁻¹; HRMS (CI) found 325.0197 [calcd for $C_{12}H_{19}BrClO_3^+$ (M+H)⁺ 325.0206]; For *cis-β*-Epoxide 20'; $R_f 0.25$ (hexanes/EtOAc, 3/1); colorless oil; $[\alpha]_D^{25} = +19.69$ (c 0.47, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.05 (dd, J = 7.3, 9.2 Hz, 1 H), 4.02 (ddd, J = 3.7, 3.7, 10.1 Hz, 1 H), 3.84 (dd, J = 4.1, 12.4 Hz, 1 H), 3.78 (dd, J = 5.5, 12.4 Hz, 1 H), 3.57 (dd, J = 3.7, 14.7 Hz, 1 H), 3.40-3.47 (m, 1)2 H), 3.19 (ddd, J = 4.6, 4.6, 4.6 Hz, 1 H), 3.08 (dd, J = 4.6, 8.2 Hz, 1 H), 2.79 (dd, J = 4.1, 15.1 Hz, 1 H), 2.31-2.36 (m, 1 H), 2.14-2.22 (m, 2 H), 1.68 (s, 1 H, OH), 1.46-1.53 (m, 1 H), 1.05 (dd, J = 7.3, 7.3 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 133.2, 125.5, 84.7, 80.6, 60.4, 59.2, 55.8, 52.1, 40.2, 32.7, 27.3, 9.7; IR (neat) 3438, 2962, 2930, 2877, 1714, 1642, 1072, 1038, 940 cm⁻¹; HRMS (FAB) found 325.0196 [calcd for $C_{12}H_{19}BrClO_3^+(M+H)^+$ 325.0206].

Preparation of *cis*-α-Epoxy Aldehyde 21

To a cooled (0 °C) solution of *cis*- α -epoxide **20** (16.7 mg, 0.051 mmol) in anhydrous CH₂Cl₂ (3.0 mL, 0.017 M) were successively added NaHCO₃ (6.5 mg, 0.077mmol) and Dess-Martin periodinane (109.0 mg, 0.256 mmol) under Ar. After being stirred at room temperature for 5 h, the reaction mixture was quenched with H₂O (10 mL), and diluted with CH₂Cl₂ (10 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1 to 5/1) to give *cis*- α -epoxy aldehyde **21** (15.9 mg, 96%): R_f 0.50 (hexanes/EtOAc, 3/1); colorless oil; ¹H NMR (600 MHz, CDCl₃) δ 9.54 (d, *J* = 3.7, 1 H), 6.04 (dd, *J* = 7.4, 9.7, 1 H), 3.95 (ddd, *J* = 4.1, 4.1, 10.1 Hz, 1 H), 3.70 (ddd, *J* = 2.3, 4.6, 9.2, 1 H), 3.47 (ddd, *J* = 2.8, 8.7, 10.6, 1 H), 3.43 (dd, *J* = 4.1, 4.1 Hz, 1 H), 3.41 (dd, *J* = 4.6, 16 Hz, 1 H), 3.22 (dd, *J* = 4.6, 4.6 Hz, 1 H), 2.79 (dd, *J* = 4.6, 15.1 Hz, 1 H), 2.45 (ddd, *J* = 2.3, 9.7, 14.7, 1 H), 2.26-2.31 (m, 1 H), 2.05-2.11 (m, 1 H), 1.45-1.52 (m, 1 H), 0.96 (dd, *J* = 7.4, 7.4 Hz, 3 H).

Preparation of TMS-(Z)-Enyne 22

To a cooled (–78 °C) solution of *cis*- α -epoxy aldehyde **21** (2.7 mg, 0.008 mmol) and sulfone **A** (25.6 mg, 0.083 mmol) in anhydrous THF (2.0 mL, 0.0042 M) was dropwise added KHMDS (0.13 mL, 0.5 M solution in toluene, 0.067mmol) under Ar. After being stirred at –78 °C for 30 min, the reaction mixture was quenched with H2O and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 80/1 to 50/1) to give TMS-(*Z*)-enyne **22** (1.8 mg, 53% <u>isolated</u> yield) and TMS-(*E*)enyne **22**[•] (*Z*/*E* = 16:1 by ¹H NMR analysis): **For TMS-(***Z***)-Enyne 22**; colorless oil; R_f 0.50 (hexanes/EtOAc, 10/1); $[\alpha]_D^{25}$ = +46.69 (*c* 0.14, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.07 (dd, *J* = 6.8, 9.1, 1 H), 5.84 (dd, *J* = 0.9, 11 Hz, 1 H), 5.69 (dd, *J* = 8.7, 11.0 Hz, 1 H), 4.06 (ddd, *J* = 0.9, 4.1, 8.7 Hz, 1 H), 4.01 (ddd, *J* = 4.1, 4.1, 10.1 Hz, 1 H), 3.52 (dd, *J* = 3.7, 4.2 Hz, 1 H), 3.45 (ddd, *J* = 2.7, 8.7, 10.5 Hz, 1 H), 3.26 (ddd, *J* = 2.3, 8.3, 8.3 Hz, 1 H), 3.11 (dd, *J* = 4.1, 7.8 Hz, 1 H), 2.83 (dd, *J* = 4.6, 15.1 Hz, 1 H), 2.47-2.50 (m, 1 H), 2.33-2.40 (m, 1 H), 2.01-2.09 (m, 1 H), 1.47-1.52 (m, 1 H), 0.90 (dd, J = 7.3, 7.3 Hz, 3 H), 0.20 (s, 9 H); ¹³C NMR (225 MHz, CDCl₃) δ 136.9, 133.2, 125.9, 116.0, 102.2, 100.0, 84.4, 77.8, 59.7, 55.6, 51.7, 40.6, 33.1, 27.0, 9.4; IR (neat) 2962, 2924, 2149, 1251, 1097, 845, 772 cm⁻¹; HRMS (FAB) found 415.0506 [calcd for C₁₈H₂₅BrClO₂Si⁺ (M+H)⁺ 415.0496]; **For TMS-**(*E*)-**Enyne 22'**; colorless oil; R_f 0.33 (hexanes/EtOAc, 10/1); ¹H NMR (500 MHz, CDCl₃) δ 6.08 (dd, J = 7.3, 9.2 Hz, 1 H), 6.02 (dd, J = 6.6, 16 Hz, 1 H), 5.82 (dd, J = 0.7, 15.9 Hz, 1 H), 4.00 (ddd, J = 4.2, 4.2, 10.0 Hz, 1 H), 3.56 (ddd, J = 0.8, 4.1, 6.4 Hz, 1 H), 3.45-3.54 (m, 2 H), 3.19 (ddd, J = 2.5, 8.3, 8.3 Hz, 1 H), 3.04 (dd, J = 4.1, 8.1 Hz, 1 H), 2.83 (dd, J = 4.4, 15.1 Hz, 1 H), 2.34-2.47 (m, 2 H), 2.03-2.11 (m, 1 H), 1.45-1.52 (m, 1 H), 0.90 (dd, J = 7.4, 7.4 Hz, 3 H), 0.19 (s, 9 H).

Preparation of 1-TMS-Chlorohydrin 23

To a cooled (0 °C) solution of TMS-(*Z*)-enyne **22** (5.2 mg, 0.012 mmol) in anhydrous EtOAc (3 mL, 0.004 M) was dropwise added TMSCl (0.01 mL, 0.079 mmol), followed by addition of DMAP (0.15 mg, 0.001 mmol) under Ar. After being stirred at room temperature for 3 h, the reaction mixture was quenched with H₂O (2 mL), and diluted with EtOAc (10 mL). The layers were separated, and the aqueous layer was extracted

with EtOAc (2 × 30 mL). The combined organic layers were washed successively with H2O and saturated brine, dried over anhydrous Na2SO4, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexane/EtOAc, 20/1 to 15/1) to give 1-TMS-chlorohydrin **23** (4.3 mg, 76%): R*f* 0.10 (hexanes/EtOAc, 10/1); white solid; $[\alpha]_D^{25} = +84.41$ (*c* 0.071, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.11 (dd, *J* = 10.2, 10.7 Hz, 1 H), 6.03 (dd, *J* = 7.3, 9.3 Hz, 1 H), 5.68 (dd, *J* = 0.4, 10.9 Hz, 1 H), 5.33 (dd, *J* = 3.2, 9.9 Hz, 1 H), 4.07 (ddd, *J* = 4.0, 4.9, 10.0, 1 H), 3.61 (ddd, *J* = 3.0, 5.7, 13.2 Hz, 1 H), 3.52-3.57 (m, 1 H), 3.47 (dd, *J* = 3.8, 15.1 Hz, 1 H), 3.42 (ddd, *J* = 2.5, 7.6, 15.0 Hz, 1 H), 2.86 (dd, *J* = 5, 15.2, 1 H), 2.54 (ddd, *J* = 2.5, 9.4, 14.6 Hz, 1 H), 2.35 (ddd, *J* = 7.5, 7.5, 14.8 Hz, 1 H), 2.03-2.14 (m, 2 H), 1.74-1.85 (m, 1 H), 1.02 (dd, *J* = 7.4, 7.4 Hz, 3 H), 0.21 (s, 9 H), 0.97; ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 132.9, 126.0, 112.7, 103.3, 99.3, 83.9, 80.3, 75.2, 60.9, 50.1, 41.0, 30.5, 26.3, 8.6; IR (neat) 3444, 2960, 2924, 2854, 2149, 1711, 1251, 1092, 845 cm⁻¹; HRMS (CI) found 453.0419 [calcd for C₁₈H₂₈BrCl₂O₂Si⁺ (M+H)⁺ 453.0419].

Preparation of (+)-Bermudenynol (1)

To a cooled (0 °C) solution of TBAF (10 mL, 1.0 M solution in THF, 10 mmol) was dropwise added acetic acid (0.5 mL), and the mixture was stirred at the same

temperature for 30 min. To a cooled (0 °C) solution of 1-TMS-chlorohydrin 23 (5.3 mg, 0.012 mmol) in dry THF (3 mL, 0.004 M) was dropwise added 3 drops of acetic acid, followed by the above acetic acid-pretreated TBAF (0.11 mL, 0.103 mmol). After being stirred at 0 °C for 30 min, the reaction mixture was quenched with H₂O (30 mL), and diluted with EtOAc (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed successively with H₂O and saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 20/1 to 15/1) to give (+)-bermudenynol (1) (4.0 mg, 90%): Rf 0.36 (hexanes/EtOAc, 4/1); colorless oil; $[\alpha]_D^{25} = +194.3$ (c 0.75, CHCl₃) {(lit. $^2[\alpha]_D^{25} =$ +187.0 (c 0.756, CHCl₃)}; ¹H NMR (500 MHz, acetone- d_6) δ 6.41 (dd, J = 10.6, 10.6Hz, 1 H), 6.12 (dd, J = 7.3, 9.4 Hz, 1 H), 5.75 (dd, J = 2.3, 10.6 Hz, 1 H), 5.50 (dd, J = 1.8, 10.5 Hz, 1 H), 4.60 (d, J = 8.2 Hz, 1 H, OH), 4.25-4.28 (m, 1 H), 3.93-3.94 (m, 1 H), 3.76 (ddd, J = 3.8, 3.8, 10.3 Hz, 1 H), 3.62 (ddd, J = 2.6, 8.2, 8.2 Hz, 1 H), 3.54 (dd, *J* = 3.2, 15.2 Hz, 1 H), 3.48 (ddd, *J* = 2.0, 8.3, 8.3 Hz, 1 H), 2.93 (dd, *J* = 4.9, 15.3 Hz, 1 H), 2.82 (s, 1 H), 2.73 (ddd, J = 2.6, 9.5, 14.4 Hz, 1 H), 2.38 (ddd, J = 7.5, 7.5, 14.7 Hz, 1 H), 2.02-2.09 (m, 1 H), 1.91-1.99 (m, 1 H), 1.05 (dd, J = 7.4, 7.4 Hz, 3 H); ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 6.24 \text{ (dd}, J = 10.6, 10.6, 1 \text{ H}), 6.05 \text{ (dd}, J = 7.3, 9.2 \text{ Hz}, 1 \text{ H}), 5.65$ (dd, J = 2.3, 10.6 Hz, 1 H), 5.44 (dd, J = 2.8, 10.1 Hz, 1 H), 4.10 (ddd, J = 1.3, 1.3, 8.7)Hz, 1 H), 3.65 (ddd, J = 3.2, 4.6, 10.1 Hz, 1 H), 3.41 (ddd, J = 2.3, 7.8, 7.8 Hz, 1 H),

3.26 (dd, J = 1.0, 2.3 Hz, 1 H), 2.85 (dd, J = 4.6, 15.1 Hz, 1 H), 2.56 (ddd, J = 2.3, 9.6, 14.6 Hz, 1 H), 2.31 (ddd, J = 7.8, 7.8, 15.1, 1 H), 2.07 (d, J = 10.1, 1 H), 1.99-2.05 (m, 1 H), 1.85-1.92 (m, 1 H), 0.99 (dd, J = 7.3, 7.3 Hz, 3 H); ¹³C NMR (125 MHz, Acetoned₆) δ 142.3, 133.2, 127.8, 111.3, 86.5, 83.6, 81.0, 79.5, 74.9, 61.1, 50.8, 41.9, 31.5, 26.4, 7.5; IR (neat) 3546, 3297, 2965, 2925, 1091, 655, 627 cm⁻¹; HRMS (FAB) found 381.0013 [calcd for C₁₅H₂₀BrCl₂O₂⁺ (M+H)⁺ 381.0024].

	Natural (Meinwald) ²		Synthetic (Kim)
Carbon	(+)-Bermudenynol	$\Delta\delta$	(+)-Bermudenynol
No.	(20 MHz, acetone-d ₆)	(Natural – Synthetic)	(125 MHz, acetone-d ₆)
	δ (TMS = 0)		δ (acetone- $d_6 = 206.19$)
1	85.7	-0.8	86.5
2	78.7	-0.8	79.5
3	110.6	-0.7	111.3
4	141.6	-0.7	142.3
5	60.4	-0.7	61.1
6	74.1	-0.8	74.9
7	82.9	-0.7	83.6
8	30.8	-0.7	31.5
9	127.0	-0.8	127.8
10	132.5	-0.7	133.2
11	41.1	-0.8	41.9
12	50.0	-0.8	50.8
13	80.2	-0.8	81.0
14	25.6	-0.8	26.4
15	6.8	-0.7	7.5

Table I. ¹³C NMR Comparison of (+)-Bermudenynol

References

- (1) I. Kadota, H. Uyehara, Y. Yamamoto, *Tetrahedron*, **2004**, *60*, 7361-7365.
- (2) J. H. Cardellina II, S. B. Horsley, J. Clardy, S. R. Leftow, J. Meinwald, *Can. J. Chem.* **1982**, *60*, 2675-2677.

- Experimentals: Part B -

Spectroscopy Analysis

The width δf^{7} the 500 MHz spectrum in acetone- d_{6} was adjusted for comparison purpose.

Carbon No.	Natural (+)-Bermudenynol (20 MHz, acetone- d_6) δ (TMS = 0)	∆ <i>δ</i> (Natural – Synthetic)	Synthetic (+)-Bermudenynol (125 MHz, acetone- d_6) δ (acetone- d_6 = 206.19)
1	85.7	-0.8	86.5
2	78.7	-0.8	79.5
3	110.6	-0.7	111.3
4	141.6	-0.7	142.3
5	60.4	-0.7	61.1
6	74.1	-0.8	74.9
7	82.9	-0.7	83.6
8	30.8	-0.7	31.5
9	127.0	-0.8	127.8
10	132.5	-0.7	133.2
11	41.1	-0.8	41.9
12	50.0	-0.8	50.8
13	80.2	-0.8	81.0
14	25.6	-0.8	26.4
15	6.8	-0.7	7.5

5. References

[1] a) M. Suzuki, C. S. Vairappan, *Current Topics in Phytochemistry* 2005, 7, 1-34; b) K. J. Bonney, D. C. Braddock, *J. Org. Chem.* 2012, 77, 9574-9584 and references therein.

[2] J. H. Cardellina II, S. B. Horsley, J. Clardy, S. R. Leftow, J. Meinwald, *Can. J. Chem.* **1982**, *60*, 2675-2677.

[3] a) M. E. Maier, Angew. Chem. Int. Ed. 2000, 39, 2073-2077; b) J. M. Ellis, M.

T. Crimmins, Chem. Rev. 2008, 108, 5278-5298 and references therein.

[4] a) W. Chao, S. M. Weinreb, *Org. Lett.* 2003, *5*, 2505-2507; b) W. Chao, M. L.
Meketa, S. M. Weinreb, *Synthesis*, 2004, 2058-2061; for related work, see c) M.
Gatti, E. Drinkel, L. Wu, I. Pusterla, F. Gaggia, R. Dorta, *J. Am. Chem. Soc.* 2010, *132*, 15179-15181; d) Y. Wang, M. Jimenez, P. Sheehan, C. Zhong, A. W. Hung, C.
P. Tam, D. W. Young, *Org. Lett.* 2013, *15*, 1218-1221.

[5] a) H. Kim, W. J. Choi, J. Jung, S. Kim, D. Kim, *J. Am. Chem. Soc.* **2003**, *125*, 10238-10240; b) S. Baek, H. Jo, H. Kim, H. Kim, S. Kim, D. Kim, *Org. Lett.* **2005**, 7, 75-77; for the synthesis of medium-ring dioxabicyclic marine natural products via intermediate α, α' -*cis*-oxocenes generated by IAEA, see c) H. Kim, H. Lee, D. Lee, S. Kim, D. Kim, *J. Am. Chem. Soc.* **2007**, *129*, 2269-2274; d) B. Kim, M. Lee, M. J. Kim, H. Lee, S. Kim, D. Kim, D. Kim, M. Koh, S. B. Park, K. J. Shin, *J. Am. Chem. Soc.* **2008**, *130*, 16807-16811.

[6] H. Kim, H. Lee, J. Kim, S. Kim, D. Kim, J. Am. Chem. Soc. 2006, 128, 15851-15855.

[7] a) I. Kadota, H. Uyehara, Y. Yamamaoto, *Tetrahedron* 2004, 60, 7361-7365;

b) M. T. Crimmins, K. A. Emmitte, Org. Lett. 1999, 1, 2029-2032; c) M. T.
Crimmins, K. A. Emmitte, J. D. Katz, Org. Lett. 2000, 2, 2165-2167.

[8] a) R. Pappo, D. S. Allen, Jr., R. U. Lemieux, W. S. Johnson, J. Org. Chem.
1956, 21, 478-479; b) V. VanRheenen, R. C. Kelly, D. Y. Cha, Tetrahedron Lett.
1976, 17, 1973-1976.

[9] a) S. Ohira, *Synth. Commun.* 1989, *19*, 561-564; b) S. Mueller, B. Liepold, G.
J. Roth, H. J. Bestmann, *Synlett* 1996, 521-522.

[10] Y. Izawa, I. Shimizu, A. Yamamoto, *Bull. Chem. Soc. Jpn.* 2004, 77, 2033-2045.

[11] a) E. Piers, J. M. Chong, H. E. Morton, *Tetrahedron* 1989, 45, 363-380; b) B.
H. Lipshutz, E. L. Ellsworth, S. H. Dimock, D. C. Reuter, *Tetrahedron Lett.* 1989, 30, 2065-2068; c) G. Reginato, A. Capperucci, A. Degl'Innocenti, A. Mordini, S.
Pecchi, *Tetrahedron* 1995, 51, 2129-2136; d) J. Betzer, F. Delaloge, B. Muller, A.
Pancrazi, J. Prunet, *J. Org. Chem.* 1997, 62, 7768-7780; e) G. Reginato, A. Mordini, A. Degl'Innocenti, S. Manganiello, A. Capperucci, G. Poli, *Tetrahedron* 1998, 54, 10227-10238.

[12] a) S. Kim, K. H. Ahn, *J. Org. Chem.* **1984**, *49*, 1717-1724; b) In their initial work (ref. 12a), Kim and Ahn reported that partial reduction of tertiary amides to

the corresponding aldehydes could be effected by using exactly one equivalent of the ate complex generated from DIBAL-H and *n*BuLi, which precluded overreduction to the primary alcohol. With α -alkoxy dimethyl amide 2 in our case, an excess of the reagent could be tolerated presumably since the partial reduction proceeds through a very stable metal-chelated intermediate that resists overreduction.

[13] a) T. Takeda, F. Kanamori, H. Matsusita, T. Fujuwara, *Tetrahedron Lett.* **1991**, *32*, 6563-6566; b) D. Madec, J. Férézou, *Tetrahedron Lett.* **1997**, *38*, 6661-6664; c) S. M. E. Simpkins, B. M. Kariuki, C. S. Aricó, L. R. Cox, Org. Lett. **2003**, *5*, 3971-3974.

[14] a) G. Stork, P. A. Grieco, M. Gregson, *Tetrahedron Lett.* **1969**, *10*, 1393-1395; b) Two modifications of the original procedure were implemented: use of mesyl anhydride instead of mesyl chloride, and the target in the present case is a bromide, and not a chloride as in the original work. The use of methanesulfonyl chloride as described in the original procedure produced a small amount of the corresponding allylic chloride, which resulted in a lower yield during the subsequent intramolecular amide enolate alkylation.

[15] B. S. Dyson, J. W. Burton, T. Sohn, B. Kim, H. Bae, D. Kim, J. Am. Chem. Soc. 2012, 134, 11781-11790 and references therein.

[16] J. Hooz, S. S. H. Gilani, Can. J. Chem. 1968, 46, 86-87.

[17] Y. Oikawa, T. Yoshioka, O. Yonemitsu, Tetrahedron Lett. 1982, 23, 885-888.

[18] a) T. Shimizu, S. Hiranuma, T. Nakata, *Tetrahedron Lett.* 1996, *37*, 6145-6148; b) T. Shimizu, T. Ohzeki, K. Hiramoto, N. Hori, T. Nakata, *Synthesis*, 1999, 1373-1385; c) K. Fujiwara, S. Souma, H. Mishima, A. Murai, *Synlett* 2002, 1493-1495.

[19] W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405-4408.

[20] a) K. B. Sharpless, J. M. Townsend, D. R. Williams, J. Am. Chem. Soc.
1972, 94, 295-296; b) K. B. Sharpless, R. C. Michaelson, J. Am. Chem. Soc. 1973,
95, 6136-6137; c) K. B. Sharpless, T. R. Verhoeven, Aldrichimica Acta, 1979, 12,
63-74.

[21] Sharpless epoxidation of carbohydrate derived γ-alkoxy (Z)-allylic alcohols with vanadium catalyst and TBHP showed quite different diastereoselectivity (reversal of stereofacial preference) depending on structures of the carbohydrate moiety; a) T. Katsuki, A. W. M. Lee, P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, D. Tuddenham, F. J. Walker, *J. Org. Chem.* **1982**, *47*, 1373-1378 and references therein; b) S. Valverde, B. Herradón, R. M. Rabanal, M. Martín-Lomas, *Can. J. Chem.* **1987**, *65*, 332-338; c) S. Valverde, B. Herradón, R. M. Rabanal, M. Rabanal, M. Martín-Lomas, *Can. J. Chem.* **1987**, *65*, 2316 (Additions and Corrections).

[22] Sharpless asymmetric epoxidation of **19** {(-)-DET, TBHP, Ti(OiPr)₄, CH₂Cl₂, -20 °C} was too sluggish to be synthetically useful (30 days, ~5%), and lacked any

significant enhancement of stereoselectivity; a) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, K. B. Sharpless, *J. Am. Chem. Soc.* **1987**, *109*, 5765-5780; b) N. Kutsumura, S. Nishiyama, *Bull. Chem. Soc. Jpn.* **2006**, *79*, 468-478.

[23] All calculations were performed with Gaussian *09, rev D.01*. Full details of all calculations performed may be found in the Supporting Information.

[24] M. Vandichel, K. Leus, P. Van Der Voort, M. Waroquier, V. Van Speybroeck, *Journal of Catalysis* **2012**, *294*, 1-18.

[25] a) Y. Yamakado, M. Ishiguro, N. Ikeda, H. Yamamoto, *J. Am. Chem. Soc.* **1981**, *103*, 5568-5570; b) We acknowledge discussions with and advice from Dr. Jonathan W. Burton (University of Oxford) regarding the optimum generation of this reagent.

[26] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156.

[27] a) C. Bonini, L. Chiummiento, V. Videtta, *Synlett* 2006, 2079-2082; b) X.
Lei, S. J. Danishefsky, *Adv. Synth. Catal.* 2008, *350*, 1677-1681.

[28] a) N. Daviu, A. Delgado, A. Llebaria, *Synlett* **1999**, 1243-1244; b) C.

Nilewski, R. W. Geisser, M. Ebert, E. M. Carreira, J. Am. Chem. Soc. 2009, 131, 15866-15876.
국문초록

본 연구는 C₁₅ Laurencia 대사물질, (+)-bermudenynol (1)의 기질에 의해 조절되는 부제 전합성에 관한 내용이다. Vinyl Chloride Containing Oxocene 의 독특한 핵심 골격을 본 연구실의 Intramolecular Amide Enolate Alkylation 방법으로 입체선택적으로 합성했다. 이 연구는 Intramolecular Amide Enolate Alkylation 방법의 새로운 사용 범위에 대해 좋은 예를 제시해주며, 현재 Ring-Closing Metathesis 으로 극복할 수 없는 문제점에 대해 대안법을 제시해준다.

주요어: 천연물 전합성

(+)-bermudenynolIntramolecular Amide Enolate AlkylationVinyl Chloride Containing Oxocene