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Abstract

Herbal medicine has been traditionally and historically used worldwide.
However, along with the increase usage of the herbal medicine, its market also
has been suffered from the practice of adulteration, either genuinely by lack
of experience or intentionally for business gains. Therefore, it is essential to
develop an approach that could effectively ascertain the correct identification
of the ingredients used in the herbal remedies. Here in this study, we illustrated
the application of a multi-platform metabolomics approach in assisting the
establishment of a better quality control method for herbal medicine. We first
illustrated the capacity of UPLC-QTOFMS based metabolomics to
discriminate well 4 common Panax species in Panax genus, namely Panax
ginseng, Panax viethamensis, Panax notoginseng, Panax quinquefolius. Next
we further examine whether *H-NMR based metabolomics approach could
evaluate the same Panax ginseng samples but from dissimilar locations. The
results showed that not only it could well differentiate those samples, but also
it could point out the possible mixing proportion in case if those samples were
mixed together. Additionally, utilizing those data derived from metabolomics
approach, we also discussed the possibility in connecting metabolite variation
to that of phylogenetic, as for UPLC-QTOFMS data and in building a model
effectively assessing the mixing proportion of intentional admixtures, as for
'H-NMR data. Consequently, we believe that the ease and transferability of
our approach as well as its applicability to other products could contribute to
establishing a safer market and greater consumer confidence by preventing

herbal medicine adulteration.
Keywords: metabolomics; ginseng; authentication; phylogenetic; QTOF-MS;
'H-NMR
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Part | UPLC-QTOFMS based metabolomics followed
by stepwise partial least squar e-discriminant analysis
(PLS-DA) explore the possible relation between the
variations in secondary metabolites and the
phylogenetic divergences of the genus Panax

1. Introduction

Phylogenetics is the study of evolutionary relations among groups of different
species. This field of study involves the classification of organisms according
to evolutionary sources or environmental adaptations. The discipline traces
geographical or physical occurrences of the species to generate allopatric
speciation and investigates the biological scattering of many living organisms
[1, 2]. Many botanists, specifically evolutionary biologists, have employed
DNA sequencing to measure infra-generic dispersion to construct trees, hence
forming the framework to examine and discuss similarities and dissimilarities
within species [3]. The branching point of a phylogenetic tree shows both the
beginning of a new lineage and the divergence of characteristics such as
morphologies, behaviors and chemical properties [4, 5].

Metabolites, terminal outcomes from adaptations in response to biological
surroundings, have drawn attention from many evolutionists in that
metabolites directly transfer signals from the genomes, transcriptomes and
proteomes of an organ in sequence to the tissues or other organs, thus
furthering close relations among biological phenotypes and differences in
species-specific characteristics. In fact, metabolites can be divided into two

categories: primary and secondary metabolites. Primary metabolites, such as



carbohydrates, amino acids, fatty acids and organic acids, are directly involved
in normal growth, development and reproduction, essentially existing in all
living things [6]. On the other hand, secondary metabolites are not directly
involved in those processes but are considered to be produced by adaptations
to the surrounding environment and have multiple ecological functions such
as defense (against herbivores, microbes, viruses or competing plants) and
signaling (to attract pollinating or seed-dispersing animals) [7]. Indeed,
secondary metabolites provide the ultimate distinguishing traits between
similar species. Currently, metabolomics has become one of the most common
approaches for the intensive profiling and comparison of secondary
metabolites among species and has gradually permeated into botany for the
identification of changes to physiological, genotypic, or other factors that
impact metabolism [8].

Despite the gradually increasing number of papers related to phylogenetics or
metabolomics over the past several years, however, few papers have reported
metabolomic studies from a phylogenetic perspective. Until now, researchers
have focused on measuring and observing the quantity of metabolites to find
phylogenetic markers [9, 10]. Normally, in the common metabolomic
approach, the profiles of metabolites are acquired, and then the metabolic
profiles between phenotypes are compared with the help of statistical tools
such as principal component analysis (PCA) and partial least square-
discriminant analysis (PLS-DA) [11]. However, all the approaches utilized to
classify samples by species only reveal the expressional differences among the
species, not the differences in metabolites between each clade of the
phylogenetic tree. For example, Xie et al. and Chan et al. showed
metabolomics-based discrimination among three Panax species using both

LC-MS and NMR, which only revealed the chemical composition and relative



abundance of the metabolites in each species. Their results could not explain

the metabolomic variations in the Panax phylogenetic tree [12-14].

In this study, we attempted a new metabolomic approach using stepwise PLS-
DA to determine the connection between phylogenetic relations and
differences in secondary metabolites of the phylogenetic tree of the Panax
genus. The phylogenetic trees were constructed based on the gene sequences
of four species, P. ginseng (PG), P. vietnamensis (PV), P. notoginseng (PN)
and P. quinguefolius (PQ). The differences in secondary metabolites among
the four were analyzed by ultra-performance liquid chromatography-
quadrupole time of flight mass spectrometry (UPLC-QTOFMS), and the
resulting data were then subjected to PCA to demonstrate the common
metabolomic approach. The PCA results showed that all the secondary
metabolites were clustered according to species, which simply mirrored the
results expected from conventional metabolomics-based studies. Then, we
applied stepwise PLS-DA according to the branching point of the phylogenetic
tree of these species to obtain the differences in the metabolites between clades
of the tree. The results revealed that some particular secondary metabolites of
these plants, commonly known as ginsenosides [15-17], can be mapped onto
the plants’ phylogenetic trees to better explain the divisions in branching

points.

2. Materials and methods

2.1. Chemicals

HPLC grade acetonitrile, methanol and water were purchased from J.T.
Baker (Phillsburg, NJ, USA). Formic acid, 2-propanol (LC/MS grade) and
lithium hydroxide were purchased from Sigma-Aldrich (St. Louis, MO, USA)

- 9 10



and used to make a lithium formate solution serving as a mass calibrant (50%
2-propanol with 1% lithium hydroxide and 0.1% formic acid). Using silica gel
column chromatography and semi-preparative liquid chromatography, nine
standard compounds for assigning peaks (ginsenoside Rb1, Rb2, Rc, Rd, Re,
Rg1, majonoside R1, R2, and vinaginsenoside R2) were isolated from fresh
PG as for Rb1, Rb2, Rc, Rd, Re, Rgl and from fresh PV as for majonoside R1,
R2 and vinaginsenoside R2. After isolation, the purity of all ginsenoside
standards was determined to be over 95% by HPLC-UV-ELSD [18].

2.2. Plant material

Dried rhizomes of PN, PQ and PG were purchased in a Korean herbal
market, Korea. Unlike other ginsengs, PV was directly collected at the
ginseng farms in Quangnam Province, Socialist Republic of Vietnam due to
its rarity on the market. After collecting, PN, PQ and PG were identified by
Prof. Won Keun Oh from the Department of Pharmacognosy, Seoul National
University, Korea while PV was authenticated by Prof. Minh Duc Nguyen
from the Department of Pharmacognosy, University of Medicine and
Pharmacy, Ho Chi Minh city, Vietnam. Voucher specimens were deposited
at the Deparment of Biomedical and Pharmaceutical Analysis, Seoul

National University, Korea.

2.3. Sample preparation

Two rhizomes for each sample, with a total of twenty rhizomes for ten samples
of each species, were splintered into small fragments to be freeze-dried,
completely eliminating moisture. After 24 hours of freeze-drying, they were

pulverized using a grinder (DA700, Daesung Artlon, Seoul, Korea) and sieved



to a particle size of 90-125 um. Twenty mg of powdered rhizome was
extracted with 2 mL of pure methanol and centrifuged at 13,000 g for 5 min,
and the supernatant was filtered with a 0.5 um PTFE filter (Otawa, Tokyo,
Japan). A total of 5 QC samples were prepared by mixing together 100 pL
aliquots of all ten samples to confirm the reproducibility of data acquisition.

All standard solutions were prepared in pure methanol.

2.4, Data acquisition parameters

A UPLC (Waters, Milford, MA, USA) with micrOTOF-QII (Bruker Daltonik
GmbH, Bremen, Germany) was utilized. A 5 puL aliquot of each sample extract
was injected into an ACQUITY BEH Cig column (2.1 x 100 mm, 1.7 pm,
Waters, Milford, MA, USA). A column temperature of 40 °C was employed
for peak separation, using a mobile phase consisting of A: water with 0.1%
formic acid; and B: acetonitrile with 0.1% formic acid. The flow rate was 0.3
mL/min; the gradient started at 82% A, changed to 75% A for 5 min, changed
to 68% A for 20 min and held for 4 min, then changed to 62% A for 11 min,
to 55% A for 5 min, and eventually to 0% A for 20 min, with a pre-run rinse
of 82% A for 10 min. The source parameters were as follows: capillary voltage
3.5 kV, nebulizer pressure 1.2 bar, dry gas flow rate 8 L/min and dry gas
temperature 200 °C. The ion transfer and collision stages were set as follows:
funnel 1 RF 400 Vpp, funnel 2 RF 400 Vpp, hexapole RF 400 Vpp, quadrupole
ion energy 15 eV, collision energy 10 eV, collision RF 400 Vpp, transfer time
100 ps and pre-pulse storage 5 ps. High purity nitrogen was used as a nebulizer

gas, dry gas, and collision gas.

2.5. Multivariate statistical analysis



Quantitative data were extracted from the software DataAnalysis 4.0 (Bruker
Daltonik GmbH, Bremen, Germany). Then, the table of all the derived data
was converted to a suitable format and subsequently processed by
MetaboAnalyst 2.0 (http://www.metaboanalyst.ca) and SIMCA-P* 12
(Umetrics, Umed, Sweden) for statistical analysis, including PCA and PLS-
DA. The PCA plot verified the reliability of the analysis with the clustered and
centered QC data, and also displayed the suitability of the grouping based on
species [19]. Then, a novel approach to find phylogenetic markers was applied:
PLS-DA was performed with 3 steps classification according to phylogenetic
divergence (first: PN vs. PV, PQ, and PG; second: PV vs. PQ and PG; third:
PQ vs. PG). The markers were determined by VIP values of each analysis.

3. Results and discussion
3.1. Ginsenoside identification in four species

Due to the limited reproducibility of LC-MS and the extensive presence of
secondary metabolites in plants, a general LC-MS database for plant
secondary metabolites has not yet been established. In this context, we have
constructed an in-house database of the ginsenosides referenced in studies
profiling Panax species, including retention times obtained under similar
conditions, nominal masses, m/z values of fragment ions and compounds’
existence in each species. Then, using the library and confirmed standards, we
assigned the peaks in the same manner as in our previous study of Schisandra
chinensis [20] (Figure 1) . Consequently, 17, 13, 14, and 12 ginsenosides of
PV (Table 1), PN (Table 2), PQ (Table 3) and PG (Table 4), respectively, were
identified. 9 ginsenosides among them were identified using standards, while

the rest were identified using information from the literature [21-26]. In



negative mode, ESI produced two dominant precursor ions, [M—H]  and

[M+HCOO]", which were readily identified (Figure 2).

Figure 1. Chromatograms of 4 species and QC.
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Table 1. Assigned ginsenosides of Panax viethamensis

Ret(?ntio m/z Error -

rz r;(:inr;l)e Adduct ion Exact Mez:jsure Formula (m)Da Identification
2.3 [MHHCOOL 717 445 717.4424 C%Hf“Ol -0.1  Vinaginsenoside R12
3.4 [M-H] 801.4630  801.4641 C“H57001 1.1 Vinaginsenoside R14
4.9 [M-H 9315260 931.5244 C‘”H:OOl 416  Notoginsenoside R1
5.2 [M-H] 815.4787  815.4768 C“ZHS7201 -1.9 Majonoside R1
57  [M¥HCOOl g5 4508  ga5.4882 C“ZH47201 16 Ginsenoside Rg1
57  IMHHCOOL 991 5477 9915447 C“8H88201 3 Ginsenoside Re
6.3 [M-H]- 785.4681  785.4636 C‘”H47001 -45 Majonoside R2
06 [M+HCOO] 103%.558 10335.555 csngs401 24 Pseudoginsenoside Rsl
116 [M-H]  827.4787  827.4753 C“':”Ol 34 Vinaginsenoside R2
11.8 [M-H] 841.4943  841.4912 C““H57401 3.1  Vinaginsenoside R1
184  [M*HCOOL 6384370 6384369 CssHeOs  -0.1 Ginsenoside Rh1
20.2 [M-H] 1102'594 1102'595 CS“H;ZOZ 1.1 Ginsenoside Rb1
24.4 [M-H] 1072'584 1072'580 C53H29°oz 3.7 Ginsenoside Rc
25.1 [M-H] 1072'584 1072'584 C53|!9002 0.9 Ginsenoside Rb2
27.3 [M-H] 1142'605 114%'605 C56H49402 0.1 Quinquenoside R1
29.2 [M-H] 9455417 9455388 C“SH:ZOl 2.9 Ginsenoside Rd
34.1 [M+HCOOL 991 5477 9915472 C“SH:ZOl 0.5 Gypenoside XVII

Table 2. Assigned ginsenosides of Panax notoginseng
Retentio m/z Error

rzr]t:inr:)er Adduct ion Exact Mez(ijsure Formula (m)Da Identification
45 [M-HJ 9615366  961.5373 C“s':SZOl 0.7 Glucogiznos;ecn)g)si de Rf
49 [M-H 9315260 931.5291 C‘”T"Ol 31 Notoginsenoside R1
5.7 [M“;'_COO 8454898  845.4912 C“ZF:“Ol 14 Ginsenoside Rg1
5.7 [M“]*_COO 9915477  991.5496 C“STZOl 1.9 Ginsenoside Re



C41H7001

14.9 [M-H] 769.4732  769.4758 . 2.6 Notoginsenoside R2
17.1 [M-HJ 783.4889  783.4890 C“ZTZOl 0.1 Ginsenoside Rg2
20.2 ] HIOT94 1107594 CS“T’ZOZ 0.1 Ginsenoside Rb1
231 ['V'*';'_COO 683.4370 6834383 CasHs:0s 1.3 Ginsenoside F1
24.4 ] 1070084 1077584 C“ig"oz 0.4 Ginsenoside Rb2
251 [M-H] 1072'584 1072'584 C“ig"oz 0.9 Ginsenoside Rb3
29.0 [M-H] 9455417 9455414 C“:'SZOl 03 Ginsenoside Rd
34.0 [MJ";_COO 991.5477  991.5484 C“giSZOl 0.7 Gypenoside XVII
432 [MJ";_COO 820.4949  829.4995 04227201 46 Ginsenoside F2
Table 3. Assigned ginsenosides of Panax quinquefolius
Retgntion m/z Error o
(trlr:?:) Adduct ion Exact Mea(ljsure Formula (m)Da Identification
4.9 [M-H" 9315260 931.5261 C‘”':BOOl 0.1 Notoginsenoside R1
5.7 [M”;_COO 845.4808  845.4858 C“'j"Ol -4 Ginsenoside Rgl
5.7 [M”;_COO 991.5477 9915435 C“TZOl 4.2 Ginsenoside Re
13.4 [M-H]  799.4838  799.4839 C“Z'j"c’l 01 o dogizn‘;gsn)c')si de F11
14.9 [M-H  769.4732  769.4771 c41|:7001 3.9 Notoginsenoside R2
17.1 [M-H]-  783.4889  783.4847 C“ZTZQ -4.2 Ginsenoside Rg2
202 ] 0TS LIOTS97 CS“':QZOZ 3.1 Ginsenoside Rb1
22.2 [M-H] 1072'584 10771'584 CSS'_:QOOZ 0.1 Ginsenoside Rc
24.3 [M-H] 1076'584 10774'584 C53|_:9°OZ 0.4 Ginsenoside Rb2
251 M) 1070584 1077584 C“":g"oz 0.9 Ginsenoside Rb3
272 M 1149005 1149604 CSG":Q“OZ 02  Quinquenoside R1
29.0 [M-H] 9455417 9455436 C“BTZOl 1.9 Ginsenoside Rd
34.0 [M“]*_COO 9915477 991.5471 C“Sif‘ZOl 0.6 Gypenoside XVII
432 [M“]*_COO 829.4949  829.4910 C“ZTZQ -3.9 Ginsenoside F2



Table 4. Assigned ginsenosides of Panax ginseng

Rett_entio m/z Error o
r(1 rgir:)e Adduct ion Exact Mez;lsure Formula (m)Da Identification

45 [M-H] 9615366 9615321 C48|:8201 45 20-O-Gluc;%insenoside
57  [MYHCOOl g/ 4008  g45.4045 C“2H47201 47 Ginsenoside Rgl
5.7 [M-H" 9455417  945.5433 C“8H88201 16 Ginsenoside Re
13.1 [M-HT 799.4838  799.4841 C“ZH47201 0.3 Ginsenoside Rf
14.8 [M-H] 7604732 769.4701 C41H37001 31 Notoginsenoside R2
17.1 [M-HJ 783.4889  783.4877 C“ZH37201 -1.2 Ginsenoside Rg2
20.1 [M-HJ 1102'594 11077'591 C54|-;9202 -2.8 Ginsenoside Rb1
22.1 [M-H] 1072'584 107;586 C53|:9°OZ 2.8 Ginsenoside Rc
24.3 [M-HJ 1072'584 10779'583 C53H29°oz 0.1 Ginsenoside Rb2
25.1 [M-H] 1072'584 1072'584 C53|!9002 0.9 Ginsenoside Rb3
27.1 [M-HJ 1142'605 114%'602 C56H49402 2.3 Quinquenoside R1
28.9 [M-HJ 0455417 9455454 CeHeOL 5 Ginsenoside Rd

8



Figure 2. Mass spectra of 26 ginsenosides. Precursor ions for assignment were

checked with ionization patterns.
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3.2. Method validation

Our analysis process had reproducible retention times, and m/z values were
calibrated with lithium formate before every sample to minimize deviations in
mass accuracy during data acquisition. To calculate the reliability of our
results, mass precision was evaluated for six ginsenosides in the QC (quality
control) data in conjunction with the retention time and m/z alterations. The
variations in the m/z values and retention times of the six ginsenosides showed
that significant errors during analysis were unlikely. Then, the areas of the
peaks with verified mass and retention time precision were utilized to confirm
the sensitivity of the mass detector (Figure 3). All the peaks showed a
coefficient of variation lower than 15%, indicating that unintended factors that
might have interfered with the collection of reliable data were negligible in
our experiments.

Figure 3. Validation of reproducibility within the experiment. Six peaks dispersed
on the retention time for representative of the other ginsenosides. CV values under
15% exhibit the acquired data were credible.
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3.3. Discriminating the four species with common metabolomic approaches

Principal component analysis, an unsupervised analysis, was performed on the
four species. The score plots showed good clustering, and PC1 and PC2 were
determined as good criteria for discriminating the four species (Fig. 4A).
Additionally, the centering of QC samples in the plot showed the
reproducibility of the analytical methods and statistical analysis [19]. The
loading plots related metabolite abundance with each species (Fig. 4B), and
bar graphs of all the ginsenosides are included in Fig. S3. Majonosides,
vinaginsenosides, and some ginsenosides such as G-Rh1 and pseudo-Rs1 were
biased toward PV. Notoginsenosides were present in PN at high
concentrations, and PN contained the largest number of highly expressed
metabolites (13 metabolites) among the four species. However, the results
showed the limitations of the conventional approach, the mere determination
of which metabolites are highly expressed in a specific species. Furthermore,
it is widely known among ginseng experts that ginsenosides occur with
varying abundances. Thus, quantitative differences in ginsenosides and the
interpretation of such differences by common metabolomic approaches
provide no novel information from a phylogenetic perspective. Therefore, we
introduced the stepwise PLS-DA approach as an attempt to better understand

the phylogenetic relationship among Panax species.



Figure 4. Score plot (A) and bi-plot (B) of PCA. (B): green dots: metabolites
detected in the experiment; black dots: metabolite markers
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3.4. Construction of phylogenetic trees

The sequences of 18S rDNA and trnK of each species were downloaded from
GenBank as files in FASTA format [27]. The detailed accession numbers of
the FASTA files and species can be found in Table 5. Because the combination
of trnK and 18S rRNA sequences is considered to provide better accuracy than
the data from one sequence [27, 28], we combined the downloaded 18S rDNA
and trnK data using the ShortRead package in R software. However, the

combined data varied considerably in length, making it difficult to compare
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different sets of data. Hence, we cut the terminal sequence of the combined
data to a consistent length, 4345 base pairs. Finally, all the data were exported
as FASTA format files using the seqinR package in R software and used to
reconstruct the phylogenetic trees [29].

The phylogenetic trees were reconstructed using a simplistic and widely used
hierarchical clustering algorithm. In fact, it is one of the methods using for
inferring the phylogenetic tree even though it is not commonly used to
construct phylogenetic trees in terms of ginseng research. The core principle
of the algorithm is based on highlighting the distance of surrounding or remote
objects to one object; the use of the method parallels the basic idea of
phylogenetics, which reflects the evolutionary relationships among species
[30-32]. Consequently, two phylogenetic trees were reconstructed (Figure 5).
One tree showed the relations of 15 species, while the other focused on the
relations of the four species used in this study. Both phylogenetic trees showed
similarities in the phylogenetic relations of the four species, thus confirming

the consistency of our method of constructing phylogenetic trees.



Table 5. Sequences downloaded from GenBank and their accession humbers

Species Abbreviatio  GenBank Accession
n
trnK 18S
rDNA
Panax ginseng C. A. Meyer PG AB08799 D83275
9
Panax quinquefolius L. PQ ABO08800  D85172
1
Panax japonicus C. A. Meyer (Japan) PJJ AB08800  D84100
0
Panax japonicus C.A. Meyer (China) PJC AB08800 AB08801
6 8
Panax japonicus C.A. Meyer var. PJIMH AB08800 AB08802
major C.Y. Wu et Feng 8 0
Panax japonicus C.A. Meyer var. PJA AB08800 AB08801
angustifolius (Burk.) 7 9
Cheng et Chu
Panax japonicus C.A. Meyer var. PJB AB08801 AB08802
bipinnatifidus (Seem.) 0 1
C.Y. Wu et Feng
Panax notoginseng (Burk.) F.H. Chen. PN ABO08800 D85171
2
Panax vietnamensis Ha et Grushv. PV AB08800 ABO03363
3 5
Panax pseudoginseng Wall. PP AB08801 ABO08802
6 6
Panax pseudoginseng Wall. subsp. PPH1 AB08801 ABO04490
himalaicus Hara 1 2
Mayodia, Arunachal Pradesh State,
India
Panax pseudoginseng Wall. subsp. PPH2 AB08801 ABO08802
himalaicus Hara 2 2
KMPG (originated from Chame,
Nepal)
Panax pseudoginseng Wall. subsp. PPH3 AB08801 ABO08802
himalaicus Hara 3 3
KMPG (originated from Langtang,
Nepal)
Panax pseudoginseng Wall. subsp. PPH4 AB08801 AB08802
himalaicus Hara 4 4

KMPG(originated from Gokyo, Nepal)
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Figure 5. Phylogenetic tree of 15 Panax plants (A) and 4 Panax species (B)
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3.5. Stepwise PLS-DA for revealing markers of phylogenetic divergences

As described above, the conventional metabolomic approach with PCA or
PLS-DA derives the expressional differences among species, not between
clades of the phylogenetic tree. Thus, we suggested that, after stepwise
classification according to divergences on the phylogenetic tree, PLS-DA, a
supervised method, be applied at each step to obtain phylogenetic markers
(Figure 6). Samples were classified according to the criteria of each branching
and projected into latent spaces. From the result, the variable importance of
projection (VIP) values determined the branching markers, and finally the

loading plots revealed an increase or decrease in metabolite expression.

We applied metabolomics-based phylogenetics to these species by classifying
specimens according to their divergence on the tree using PLS-DA. Each step
showed good discrimination based on the divergence, but the determination of
the branching markers needed a scaling step [33]. Among several scaling
methods, we selected auto-scaling, given that this method did not omit any
branching marker candidates (Table 6). After scaling, components with VIP
values higher than 1.00 for all the three branching points were determined to

be the markers.

By loading the averaged value of each metabolite in PLS-DA, we showed not
only increases on the left or right side but also alterations (importance) for
each metabolite, which can explain the degree of differences according to the
evolutionary divergences of the phylogenetic tree. Furthermore, the levels of
alterations were translated to color saturations, which formed a heat map
related to the phylogenetic tree (Figure 7). The first branching specified eleven

ginsenosides that are highly expressed in PN. This result revealed that this

1 S 33



approach was capable of identifying metabolites with species-specific
abundance, but the conventional approach also enabled us to find abundant
metabolites in each species. Other ginsenosides with clear abundances in only
one species showed results from the two approaches that matched the
phylogenetic tree. However, metabolites that decreased only in one species
contradicted the previously established phylogenetic markers. More than two
branching points exhibited the same metabolites as markers, G-Rg2, 20-O-G-
Rf, N-R1, G-Rd, G-Rc, G-Re and G-Rg1, which had more than two alterations
during a down flow on the tree. Hence, the conventional metabolomic

approach cannot be applied to these metabolites.

The size of alterations can also be evaluated in this approach. Furthermore,

this approach is more likely to assimilate many experimental results about

metabolites related to the phylogenetic tree, thus making a database for a

whole phylogenetic mapping of metabolic alterations.

Figure 6. The flow of stepwise PLS-DA for phylogenetic mapping of metabolites
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Figure 7. Heat map of metabolite alterations according to divergences on the
phylogenetic tree. The level of alterations is shown as color saturation.
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3.6. Distribution of secondary metabolites from the phylogenetic point of
view

After mapping all the variations in secondary metabolites onto the
phylogenetic tree, we can more closely examine the differences among the
four species, such as alterations to gene sequences within many species or
species differentiation caused by the impact of their surroundings. These
Panax species were originally cultivated in different regions and thus in
different climates. Therefore, we assume that the environmental factor has to
be taken into account. According to the Képpen—Geiger climate classification,
the Northern United States and Canada, in which PQ is cultivated, and South

.:I _-' ' |35



Korea, in which PG grows, are regions of similar climate conditions
characterized by a cold and snowy winter and warm-to-hot summer [34].
Therefore, PQ and PG belong to one clade. PV is cultivated in the middle
region of Vietnam, dominated by a distinctive tropical climate, which might
explain why the species has its unique ocotillol ginsenosides. Finally, PN is
mostly cultivated in Yunnan Province in China, a region that has the
characteristics of both of the two aforementioned climate conditions. Thus,
PN belongs to the clade consisting of the two clades of the above species. It is
suggested that, during the differentiation process from a common ancestor, the
secondary metabolite profile of each species has somehow actively changed
to adapt to its specific climate. As a consequence, the metabolite profile of one
species might have differentiated from those of others in the form of some key
metabolites despite the fact that the related species share some similar
metabolites inherited from a common ancestor. This phenomenon may be
accounted for by “switch on” and “switch off” gene expression, which means
that, in certain cases, the gene responsible for enzymes producing a given
structure or structure skeleton might have been switched off and then switched
on at some later point of the evolution process [35]. Therefore, these
chemotaxonomic discussions, which come from research concerning both
phylogenetics and metabolomics, could expedite research in phylogenetics
and evolution, with the adoption of the fast and easy protocol of stepwise PLS-
DA.

4. Conclusion

In brief, our results proved that compared to the conventional metabolomics
approach with PCA or PLS-DA only deriving the expressional differences
among species, this proposed method might be handy to study the
phylogenetic relationships and differences in secondary metabolites of plants
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by applying stepwise PLS-DA along the phylogenetic tree, thus highlighting
the expressional differences between clades and within clade and possibly
enabling further discussion of environmental evolution and life strategies
embedded in it.



Part Il A 'H-NMR-based metabolomics approach to
evaluate the geographical authenticity of Panax
ginseng and its application in building a model
effectively assessing the mixing proportion of
intentional admixtures.

1. Introduction

Ginseng, the root of Panax ginseng is one of the most commonly used herbal
medicine in the world, especially in Korea. Ginseng contains many primary
metabolites such as amino acids, carbohydrates and minor elements [36],
while its secondary metabolites, dammarane saponins (generally known as
ginsenosides) [37], have been reported to exhibit numerous pharmacological
effects such as anti-aging [38], memory enhancement [39], vasodilation [40],
cognitive performance enhancement [41], antioxidant activity and cancer
prevention [42]. Due to its popularity and the enormous size of the market,
ginseng has long been the target of falsification, especially falsification of the

cultivation region.

Ginseng currently available on the market comes mainly from Korea and
China and has similar shape regardless of different cultivated locations.
However, in the practice of pricing and grading herbal food products, the
origin does play a major role, resulting in a higher price for the ginseng
products originating from a marketable site and vice versa. For instance, if
blended samples are intentionally produced by mixing ginseng roots of a lower
market value with those of a higher market value, it will be unfeasible for
diagnostic morphological examination to detect the proportion of mixing. This
issue also holds true for other prepared forms such as powder and extract.

Consequently, the ginseng market particularly and the herbal food market
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generally are extremely likely to suffer from contamination from this kind of
adulteration practice, therefore decreasing the actual value of the product. In
fact, Wallace et al. did report that 50% of the ginseng products labeled as
“Korean ginseng (Panax ginseng)” were replaced by “American ginseng
(Panax quinquefolius)” [43], and many others also expressed concerns over
similar issues for other herbal food or plant species [44-48]. According to
WHO Traditional Medicine Strategy of 2002-2005 and 2014-2023, this
falsification practice is a threat to consumer safety and may also erode
consumer confidence, thus calling for the establishment of a better

authentication approach.

Undoubtedly, the traditional morphological inspection by an expert, which is
subjective and lacks reproducibility, needs to be replaced by a better technique.
As a result, it is essential to develop a scientific method which can effectively
authenticate the origin of cultivation and, if possible, point out the proportions
of blending. The genetic diversities or differences in DNA genomics are
considered as a more reliable solid approach for botanical identification than
morphological observation. However, this approach will be effective only if
the genetic makeup of the plants is distinctive. When the genetic makeup of
plants cultivated at different sites is uniform, the finding of the gene markers
still remains a great challenge. Metabolomics, a research field that has recently

and rapidly been developed, might provide the answer.

Metabolomics inspects the composition of an organism or biological system;
thus, it can easily describe all metabolites, which can be regarded as the
terminal response of one organism to its surroundings [49]. Using
metabolomics, the metabolic profiles of ginseng cultivated in dissimilar
regions will be different because each region has its own distinctive

environmental factors. Therefore, investigating the differences in the
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metabolic profiles of ginseng from different regions might be meaningful in
assisting the prevention of origin counterfeiting. In fact, many successful
applications of metabolomics in tracking the physiological responses of plants
to surrounding, in performing metabolic fingerprinting as well as in the
characterization of various plants or foods, have been reported [50-54].
Among the analytical platforms often used in metabolomics techniques such
as a chromatographic and spectroscopic platform, a proton nuclear magnetic
resonance (*H-NMR)-based metabolomics approach possesses advantages of
highly reproducible, non-destructive, widely applicable methodology [55, 56].
Moreover, the use of *H-NMR-based metabolomics also simplifies the process
of sample preparation and reduces the analysis time, thus making it suitable
for high-throughput analysis.

In this paper, the uniformity in genetic makeup of 60 ginseng roots collected
in Korea and China was first examined by a DNA-based technique, which
revealed that the 60 ginseng roots were all genetically similar, thus
demonstrating the very narrow genetic diversity within the ginseng samples
from different geographical populations. As a result, *H-nuclear magnetic
resonance (*H-NMR)-based metabolomics approach, combined with a
statistical method was used to effectively differentiate ginseng roots collected
in Korea and China. In addition, as an attempt to recreate the adulteration
practice in reality, we prepared numerous blended samples representing
different ratios of Korea samples to China samples. Subsequently, the mixed
samples were effectively estimated the proportion of mixing by a constrained
least-squares statistical method constructed by our own laboratory, hence

indicating the practical application of our method.



2. Experimental
2.1. Solvents and Chemicals

Analytical grade deuterium oxide (D20) was purchased from Euriso-top
(France), 3-(trimethylsilyl)-propionic-2,2,3,3-ds acid sodium salt (TMSP),
sodium deuteroxide (NaOD) and deuterium chloride (DCI) were obtained
from Sigma (St. Louis, MO, USA). Monopotassium phosphate (KH2PO4) and
dipotassium phosphate (K2HPO4) were obtained from American Bio (Natick,
MA, USA).

2.2. Sample collection and preparation

As the origin of cultivation is critical in this experiment, whole dried roots of
ginseng were directly purchased from herbal market in Seoul, Korea and Ji
Lin, China, regardless of their ages to ascertain the samples currently available
on the market. The morphology of the samples was authenticated by Professor

Oh Won Keun at the Department of Pharmacognosy, Seoul National

University, Korea. Samples were kept in the plastic bags and stored at -20 °C

until use. Voucher specimens were deposited at the Department of Biomedical

and Pharmaceutical Analysis, Seoul National University, Korea.

The collected samples were cut into small pieces and subsequently freeze-
dried to completely eliminate moisture. Then, samples were pulverized and
sieved. The powdered samples that passed between 125- 300 um sieves were

used for *H-NMR analysis.


http://www.snupharm.ac.kr/eng/professor/professor_view.asp?key=188

Mixed samples were prepared as follows: 100 mg from each of 30 samples
from Korea were mixed carefully together to make one representative Korea
sample. The same procedure was applied to make a representative China
sample. Then, those two representative samples were used to make 7 different
mixing ratios: 0, 10, 25, 50, 75, 90 and 100% of the Korea sample. Samples

of each ratio were prepared in triplicate.

2.3. DNA extraction and Polymerase Chain Reaction (PCR) analysis

Total DNA was extracted from the samples according to the reported protocol
[57]. The intergenic spaces of the chloroplast genome were amplified by 23
primer pairs (Table 6) [58]. PCR was performed in a 30 puL reaction mixture
consisting of 40 ng template, 20 pmol of primer pair (Cosmo Genetech, Seoul,
Korea), 2.5 mM of dNTP and 0.4 unit of Tag polymerase (TaKaRa Shuzo).
The PCR conditions are as follows: first, a denaturing step at 94 °C for 5 min,
followed by 20 cycles of a DNA denaturing step at 95 °C for 30 s, a primer
annealing step at 55 °C for 30 s and a Tag polymerase activation and DNA
extension step at 72 °C for 30 s. Finally, the complete extension of DNA was
done at 72 °C for 5 min. The PCR products were separated and plated on

agarose gels (1.5-3%).



Table 6. Sequences and locations of the primers used for DNA analysis.

Primer 1D Location Primer sequence
013 . F AGGCTCGGACACATTGAGTA
pgcp P R TGAAGCAGCTATTGGACTGG
. F CTGCGGAAAAATAGCTCGAC
bgepir0l4 — rmS - trnR (ACG) R GCCACGTGCTCTAATCCTCT
. F ACCTTGACGRGGRGGAAGTC
pgepirO15 - tmV (GAC) - rnl6 R TGAGCCAGGATCGAACTCTC
. F TTCCATGACCCCTCTTAATTG
pgepir016  psbC - tmS (UGA) R TTCGAATCCCTCTCTCTCCT
. F AAGCTAACGATGCGGGTTC
pgepir017 tmG (UCC) -tmR(UCV) - o o A AAGGTTTAGAAGACCTCTGTCC
ot 2P F GGGATTTCGTGACATTTCTGA
pocp P P R TGTTGATCTTGTAGCGGTTGA
ot 4o F CCGCTGTTATCCGCTACATT
pocp pla-tp R TCGTCTAAAATGCCTATACGAACTC
. F TTCGAGTCCGCTTATCTCCA
pgepir020  tmA (UGC) - rm23 R ATCCACCGTAAGCCTTTCCT
— U F TCATTCTGTACATGCCAGTTCAT
pocp P R GCCATACGCAAAAAGGAAGA
o oroe F CTCTTCCAAATTGATGTTCCAA
poce pSe-Tp R TCCATGATACACCAGAACAATCA
. F CGCTTTCGCGTCTCTCTAAA
pgepir036  psbA-trnk (UUL) R ATCCGACTAGTTCCGGGTTC
. F TCTTTGCCAAGGAGAAGACG
pgcpir037 trnG (GCC)-trnfM (CAU) R GGTTCATGCATGTTTGTTGE
. F CTGCATATTTGATTCCATCCA
pgepir038  rpl23-tmi (CAU) R ATTGGCGAATTCGTAGGTTC
. F TACAGGCGTGGTGATCAGTT
pgepir039  petG-tmW (CCA) R GGTAGAACGTGGGTCTCCAA
. F CCCGATCCCAGAAAGACTAA
pgcpir042 ndhG-ndhl R CCGATGGCAGTAATTGACG
s T F TCCAGGACTTCGAAAGGGTA
pgcp pr-p R ACACGATACCAAGGCAAACC
o oKos] F TGTTTGGCAAGCTGCTGTAA
poce PSP R AAACGAAAAGTTTGAGAGTAAGCA
. F CTCTACCACTGAGCTACTGAGGA
pgepir0S0  trnN (GUU)-yefl R TTCATGCATAAGGATACTAGATTACC
. F GGTAGCCGTACTGGAAGGTG
pgepir0S5 116 -tml (GAU) R AGGCACAACGACGCAATTAT
- o2 F GAGTCGACCGCTAGAACTGC
pocp pste-p R GGAAAGAATCCACCGGAATAA
058 AotA F TCGTGTTTCTCCGTCACTTG
pocp P R TCGAGTAATCTGTTCCTTTATCCA
060 - F AGGCATCCTAACAGACCGATA
pocp : R CCTCTACGCCTAGGACACCA
P62 SoBpebT : GCATTCCAAAAACTGGGAGA

GGAATGTATAAACCAATGCTTCC




2.4. Metabolite extraction

Forty milligrams of powdered material were vortexed in 1 mL pH 7 buffer
comprising monopotassium phosphate and dipotassium phosphate in D20
(containing 0.0025% TMSP as the internal chemical shift standard), which
was then extracted by ultrasonication for 40 min at 30 °C. After extraction, the
sample was centrifuged at 16,000 x g for 30 min. Subsequently, the
supernatant was filtered using a cellulose membrane (0.45 um). The filtrate

was transferred into a 5 mm NMR tube for analysis.

2.5. NMR spectroscopy

To ensure that the samples were all analyzed under identical instrument
conditions and parameters, all *H-NMR spectra of samples, including blended
samples, were measured on a 600 MHz JEOL NMR ECA 600 spectrometer,
equipped with a TH5 probe (JEOL, Tokyo, Japan) following the acquisition
parameters: 5.7 us (45 °C) pulse width, 12018.6 Hz spectral width, number of
scans equal to 32 and 5 s relaxation delay. During the relaxation delay, the
water suppression process was enforced to eliminate the unwanted signals
from residual water. Fourier transformation, phase and baseline correction
were applied to the data. Calibration of the data was carried out by shifting the
TMSP signal to 0.0 ppm using MestReNova (version 6.0), and the intensities

of the peaks were normalized to TMSP.

Peaks in *H-NMR were first tentatively assigned by comparing the chemical
shifts and the coupling constants of peaks to those of standards referred
fromprevious papers [55] or in the freely available database [59, 60], using
MestReNova (version 6.0). Afterwards, those tentatively identified peaks

were further checked by comparing with standard prepared in our lab. After



assignment, the confirmation of peak identities was achieved by two-
dimensional NMR such as *H-correlation spectroscopy (*H-'H COSY) and
heteronuclear multiple bond coherence (HMBC). Finally, all the intensities of
all the spectra were derived and saved as ASCII format data for data

processing and analysis.

2.6. NMR data processing and analysis

The residual water signal region (& 4.6-5 ppm) was eliminated from the raw
spectra. Then, the spectra were divided into bin steps at every 6 0.01 and
aligned, producing a total of 980 bins. All the integrated values were
normalized to the intensity of the TMSP signal. The normalized integrated
data were pre-treated with the pareto scaling method prior to multivariate
statistical analysis. This scaling reduces the relative importance of large value
metabolites, thus effectively increasing the importance of low value
metabolites while keeping the structure of the data partially intact. Therefore,
the scaling permits both low and high value metabolites to contribute to

constructing the pattern [33].

The multivariate statistical analysis was done using SIMCA-P* software
(version 12.0, Umetrics, Umea, Sweden) while univariate statistical analysis

was performed on MetaboAnalyst 2.0 [61].

3. Results and discussion
3.1. Identification of the species using DNA-based technique

Molecular markers have long been utilized as a means of performing the
estimation of the genetic diversity and genetic similarity. Chloroplasts are
intracellular organelles of plants that are mainly responsible for



photosynthesis. The genome of the chloroplast has long been used to construct
genetic markers because significant amounts of nucleotide variation can be
found in the intergenic regions of the chloroplast genome in spite of the
conservancy in the genetic region. Hence, chloroplast intergenic space (CIS)
has been a handy tool for systematic studies of diverse plants because the
richness of information can be found for differentiation of not only species but

also samples within a population in that region [62, 63].

As previously mentioned above, the substitution of P. quinquefolius in P.
ginseng products has been reported, possibly due to its similar morphological
appearance and genetically close phylogenetic relationship [64]. Therefore,
employing 23 CISs regions (Table 6) proven to be useful for studying the
genetic diversity of the Araliaceae family [58], we examined the uniformity
of the genetic makeup of 60 samples from Korea and China in comparison
with that of P. quinquefolius samples. Consequently, none of the 23 CISs
regions were polymorphic among the four representative samples (Figure 8),
two Korea samples (K24, K27) and two China samples (C01, C27). Notably,
primer pgcpir 035 may well resolved the genetic diversity between all the P.
ginseng samples and P. quinquefolius sample, a reported adulterant in ginseng
products (Fig. 9). However, all of primers including primer pgcpir 035 failed
to show any differences among 60 ginseng samples. This experiment indicates
either the seemingly narrow genetic diversity within ginseng samples from
different geographical populations or the fact that those primers do not have
sufficient intra-genus discrimination power. Therefore, it is suggested to use a
set of powerful intra-genus discrimination DNA ginseng markers when it

comes to dealing with authentication of samples from dissimilar regions.



Figure 8. PCR results of amplified CIS regions of four P. ginseng root samples

consisting of two from China (C01, C27) and two from Korea (K24, K27) for the 23

CIS regions.
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Figure 9. PCR results for the primer ‘pgcpir 035’ of 60 P. ginseng root samples
from Korea and China.
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3.2. 'H-NMR spectrum inspection and metabolite identification

First, we tried to visually inspect the 'H-NMR spectra of aqueous extracts
from Korea and China samples to get a primitive idea about the differences
(Fig. 3S). As seen from the spectra, a heavy congestion of high intensity
signals could be observed in the carbohydrate region (6 3.0-4.2 ppm),
implying that the samples contain a considerable amount of sugar. There were
also some notable signals in the organic region (6 0.5-3 ppm). The detailed
information for the assigned peaks can be found in Table 1 and Figure 10.

Figure 10. Detected peaks in the representative *H-NMR spectra. Carbohydrate (1):
glucose and sucrose. Organic acid: malic acid (2), succinic acid (3), glutaric acid

(4), acetic acid (5), 2-oxo- glutaric acid (6), fumaric acid (7) and formic acid (8).

Amino acids: tyrosine (9), leucine (10), glutamine (11), choline (12), alanine (13)
and arginine (14)
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Table 7. *H-NMR chemical shifts (ppm) and multiplicity of assigned metabolites
and coupling constants (in Hertz) of assigned metabolites.
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3.3. Multivariate statistical analysis

Multivariate statistical analysis was used to investigate the differences in
ginseng samples from two countries. PCA was first applied to the data without
any prior group label (in an unsupervised manner) to identify outliers and
visualize the underlying trends as well as showing the variation in the matrix
data [55]. Using six principal components with a total variation of 89.2%, the
statistical modeling was achieved (Figure 11A). As seen from the PCA plot,
there were noticeable overlaps between the two classes of samples, indicating
that the samples could not be separated well, despite the high level of fitting
being applied. The variation within each set of samples was also considerable,
which might arise because the samples were of different ages and were also

cultivated in various areas in a single country.

Next, orthogonal projections on latent structure-discriminant analysis (OPLS-
DA) was introduced for discrimination and potential markers identification.
OPLS-DA is an extended version of the supervised partial least square
regression method (PLS-DA) building in an integrated OSC filter, hence
allowing better classification and predicting capacity. Furthermore, OPLS-DA
can be utilized when PCA fails to discriminate individual classes exhibiting
divergence in within-class variation [65]. Indeed, despite a large amount of
structural noise, the score plot of the OPLS-DA clearly showed the satisfactory
separation between the ginseng samples from two countries (Figure 11B). The
model was obtained using one predictive and two orthogonal variations while
having an adequate goodness of fit, Ry?, of 86% and predictive ability, Q?, of
89.7%. The total variation of the independent variables defined by the mode
in Rx? was 0.79%, showing that the OPLS-DA approach is more proper and

effective than PCA for discrimination of the cultivation sources.



Figure 11. (A) Score plot of PCA of Korea and China samples. (B) Score plot of

OPLS-DA of Korea and China samples. Blue squares represent the Korea samples;
red dots represent the China samples.
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3.4. Determination of the potential metabolite markers

To further examine how significantly the variable contributed to the
discrimination, the loading scores of the variable importance for projection
(VIP) (Figure 12) was extracted from the OPLS-DA model. On the x-axis, the
chemical shifts (ppm) represent the bins, which can be referred to the
equivalent to that of the detected metabolites in Table 7. One or more bins
belonging to the same metabolites are observable in the spectrum. For example,
the bins at 2.12, 2.13, 2.14, 2.15, 2.16 and 2.45, 2.46 ppm were all identified
as glutamine. Now those bins having a VIP score more than 1 were derived
and further analyzed by univariate statistical analysis. Univariate statistical
analysis was introduced to confirm biased distribution, thus removing those
samples that were not strongly biased to either one of the groups (p > 0.05).
This strategy might be conventional, but the strategy is, however, reliable.
Finally, we were able to identify seven marker candidates. *H-‘H COSY
(Figure 13) were subsequently employed to further confirm the identities.
Based on the results, the discriminatory compounds such as glutaric acid,
succinic acid, malic acid, choline, glucose and sucrose expressed highly in the
Korea samples, while glutamine appeared abundantly in the China samples
(Fig. 14).

Sugar metabolism is a especially dynamic process, and metabolic fluxes and
sugar concentrations differ greatly in both the development stage and the
response to environmental changes. By and large, under low sugar conditions,
source activities such as photosynthesis, nutrient mobilization and export are
upregulated, while sink activities like growth and storage are upregulated due
to carbon sources being plentifully available [66]. In that aspect, as in Korea,
the roots are usually harvested in autumn [67], when conditions such as

sunlight and rain are much more available, thus allowing accumulation of
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carbohydrate sources preparing for the coming winter. As in China, the roots
are harvested in spring, after a long winter when sunlight and rain are rarely
encountered resulting in increased reduction of available carbohydrate sources
for energy consumption. Similarly, the organic acids including succinic acid
and malic acid are key intermediates in the tricarboxylic acid cycle, so the
higher concentration of these metabolites in Korea samples might indicate that
energy metabolism of Korean samples was more active than that of China
samples. Moreover, the upregulation of amino acid synthesis was reported to
be associated with temperature stress and light exposure as well [68, 69].
Therefore, we might conclude that the distinctive environmental stress and the
cultivation conditions in each country might influence the differences in the
primary metabolites.

Figure 12. VIPs score plot derived from OPLS-DA model.
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Figure 13. Expanded representative 2D-NMR spectra of P. ginseng samples
obtained from *H-'H COSY
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3.5. Validation of the model by prediction

Twenty-one sets of processed metabolomics data for seven mixing proportions
were applied to the OPLS-DA model samples previously built. As illustrated
in Figure 14, the mixed samples were scattered from left to right of the tPS(1)
predictive component that was utilized for clean discrimination of the
cultivation origins. As we expected, those samples having 100% and 0%
Korea ratio were clearly classified into the Korea group and the China group,
respectively, thus indicating the robustness of the statistical model. Even
though the mixed samples at the ratio of 0% and 10% of Korea somewhat
overlapped, they still showed good separation when visualizing the model in
3D score plot (Figure 15) and in this case, only choline and glucose markers
contributed to the discrimination, indicating the difficulty in detecting those

samples intentionally blended at a tiny proportion.



More interestingly, it is notable that other blended samples were positioned
consistently with the degree of mixing. For example, in Korea samples, the
100% mixing ratio mixed well in the clustering while other ratios were
gradually located farther away with respect to the level of mixing. Finally,50%
Korea mixing samples were located around the main axis of the predictive
component tPS(1), implying that the model could not classify the 50% Korea
mixing samples to any group because 50% Korea mixing samples expressed
the characteristics of both classes of samples. This result not only clearly
confirmed the accuracy and efficiency of our method but also encouraged us
to build a statistical procedure for estimating mixing proportions of the

blended samples.

Figure 14. Score plot of OPLS-DA of mixing samples combining with Korea and
China samples. Blue squares represent the Korea samples; red dots represent the

China samples; and green shapes represent the mixing ratio.
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Figure 15. 3D OPLS-DA score plot of two 0% and 10% Korea groups. Black
triangles represent 10% Korea group while red triangles represent 0% Korea
groups. Only choline and glucose markers contributed to the discrimination of
these two groups.
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3.6. Setting up a statistical procedure for assessing the mixing ratio of
blended samples from dissimilar origins

As a practical aspect, it could be of great importance to predict the unknown
mixing proportion of Korea and China samples whenever they are
intentionally blended. We constructed the aggregated constraint least squares
method, a statistical approach to estimate the mixing proportion from ‘H-
NMR spectra.

2] 2 TR



We obtained 21 'H-NMR spectra of blended samples together with the
information of the true mixing proportions. The information is expressed as a
vector and scalar pair, where (y@,7®) (i =1,2,..,21), where y® =

(yélz)oyélz)l yélgo) is a vector of intensities, and = is the true mixing

proportion of Korea sample in the i*" sample. The subscription 0.20, 0.21, ... ,

and 6.00 means ppm (binning of 0.01 ppm), for example, y(i)

.20 Indicates the

'H-NMR intensity at 0.20 ppm of i sample. The values of 7® are 7 =
0 (pure China) fori =1,2,3,7® = 0.1 fori = 4,5, 6, and the rest is 0.25,
0.5, 0.75, 0.9 and 1 (pure Korea), in the same manner. The parameters = are
assumed to be unknown during the analysis except for the pure China (i =
1, 2,3) and the pure Korea (i = 19, 20, 21). In addition, N and ¥XF were set

as the mean vectors of pure China and pure Korea, respectively, i.e., 9N =

1 - . 1 -
522113’(1) and PXR = gZ?ilgy(‘)-

The key idea of estimation is as follows. If a blended sample y has a mixture
proportion of , the spectral intensity at k-ppm, say y, is expected to have a
mean of i, <% + (1 — ), <", where 2,“Y and 4, " are the intensity at k
ppm of the mean vectors of 30 training samples from China and Korea,
respectively. We did not use all bins of spectral intensities because many bins
in the spectra were baseline noise. Instead, we chose a subset of bins
corresponding to 0.01 ppm-nearest neighborhoods of choline (3.21-3.23 ppm),
glucose (5.23-5.26 ppm), glutaric acid (2.31-2.33 ppm), glutamine (2.11-2.17
ppm and 2.43-2.47 ppm), malic acid (2.67-2.70 ppm and 4.29-4.32 ppm),
succinic acid (2.56-2.58 ppm) and sucrose (5.39-5.42 ppm). The bins selected

were discovered from the t-test procedures of the training samples in the

previous section, which ensured that the mean intensities 2, " and ;<% were



statistically well separated. The consideration of the 0.01 ppm nearest

neighbor is for reducing the unexpected error from the horizontal shift.

Note that there could be an uncontrolled deviation between the blended
samples and the training samples due to the differences in the experiment
conditions. As Figure 16A shows, the mean of the representative blended
samples and (PN and PXR) in the selected bins was shifted from the means of
the training samples (‘N and @XR). To reduce the shift, we further pre-
processed the data of the blended samples utilizing a pointwise linear
matching, AN = a 9N + b, and XR = q, VKR + b, for each k €K .
The parameters a; and b, were calculated directly by solving the system of

linear equations. Then, the blended sample y® was redefined by y,gi) =

aky,@ + b, for every i = 1,2, ...,21. The shift of the mean spectra between
blended and training samples was removed after the transformation (Figure
16B). This transformation step also allows the removal of the deviation in the
mean spectra of samples acquired on a different machine and under different
experimental conditions, thus making it altogether functional in the

constrained least squares model.

Then, the aggregated constraint least squares method was utilized to estimate
the mixture proportions. The details are explained here for completeness. The
set of all 37 bins corresponding to seven biomarkers are denoted by K. From
the choice of bins, VX% and ¥¢N have sufficient dispersion to distinguish two
groups for each k € K. The estimation of 7 has two steps, bin-wise estimation
and aggregation. First, fix each k € K and find m;, minimizing (y, —

m AKR — (1 — m)AEN)? subject to 0 < m, < 1. The solution of the problem,
_~CN

namely, 7, is explicitly 7, = min (max (% 0), 1). As a second step,
k Mk

7 was estimated as the median of 7, 7 := median (7} : k = 1,2, ...,K). We
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used median because median is more robust for the unexpected outlier than
the mean. We applied this procedure to 21 blended samples, respectively, to
calculate #® (i = 1,2, ..., 21), the estimate of the mixing proportion. Figure
17 illustrates the true mixing proportion (7)) against the estimated mixing
proportion (#(®) fori = 1,2,...,21. The linear trend was quantified as the
adjusted R? of 0.8343, thus indicating that the model also has a good
predictability for estimating the mixing proportions of blended ginseng
Figure 16. Mean spectra at 2.10 - 2.70 ppm, Dashed lines represent the mean () of
the spectra of the training data set; dotted lines represent the mean (¥) of the spectra
of the pure samples from the blended samples; blue lines represent Korea samples;
and red lines represent China samples (A). After pre-processing, the spectra of pure
samples from the blended samples (dotted lines) are synchronized to those of the

training samples (dashed lines). The shift of the mean spectra between blended and
training samples was removed after the transformation (B).
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4. Conclusion
In this study, 60 ginseng samples from different geographical areas, namely

Korea and China, were found to be indistinguishable using DNA-based
approach due to the very narrow genetic diversity among those samples.
However, *H-NMR-based metabolomics with OPLS-DA statistical models
clearly clustered the samples according to the geographical origins. Several
metabolites contributing to the discrimination were also found to be potential
markers. Samples of different mixing proportions were applied to the newly
built OPLS-DA model, being separated well according to the ratios of mixing.
Consequently, we believe that the ease and transferability of our approach as
well as its applicability to other products could contribute to the establishment
of a better quality control method for ginseng particularly and other herbal
medicine, and thus promote a safer market and greater consumer confidence

by preventing origin counterfeiting.
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1. Metabolomics approach

Metabolomics approach is scientific study focusing on the small molecule
metabolites. Metabolites are compounds synthesized by plants for both
essential functions. There are 2 types of metabolites: primary and secondary
metabolites. Primary metabolites essentially play their role in growth and
development while secondary metabolites are known for their specific
functions such as pollinator attraction or defense against herbivory.

Metabolomics, the downstream product of genomics, transcriptomics and
proteomics, is an recently emerging approach of system biology that has
provided often unexpected and unique insights into various biological
processes. Unlike the genome or proteome, changes in the metabolome are
rapid and represent the final response of an organism to both internal and
external stimuli. Hence, metabolomics is particularly conducive to identifying
pathophysiologically affected processes and moreover elucidating novel
physiological and pathological mechanisms.

The things that make metabolomics approach different from the conventional
analytical chemistry is that metabolomics approach embraces high throughput
analysis and therefore creates a very complex data matrix. Multivariate
statistical analysis is often employed to reduce the dimension of such complex
data matrix and thus help interpret the meaning of the data set.
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2. Metabolomics analytical methods

It should be noted that the choice of analytical methods is simplified by the
fact that the many substances in a living metabolism are interlinked in
synthesis and function, with each substance providing information about some
of the others. When a large subset of these substances are quantitatively
analyzed, the metabolites measured can be chosen by analytical convenience
and economy rather than maximum information content per metabolite.

Those analytical platforms usually employed in metabolomics approach are
Liquid chromatography couple with mass detector (LC-MS), Gas
chromatography couple with mass detector (GC-MS) and Nuclear magnetic
resonance (NMR).
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3. Multivariate statistical analysis

Multivariate analysis is the area of statistics that deals with observations
made on many variables. The main objective is to study how the variables
are related to one another, and how they work in combination to distinguish
between the cases on which the observations are made.

The analysis of multivariate data permeates every research discipline:
biology, medicine, environmental science, sociology, economics, education,
linguistics, archaeology, anthropology, psychology and behavioural science,
to name a few, and has even been applied in philosophy. All natural and
physical processes are essentially multivariate in nature—the challenge is to
understand the process in a multivariate way, where variables are connected
and their relationships understood, as opposed to a bunch of univariate
processes, single variables at a time, isolated from one another.
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4. Statistical Platforms

MetaboAnalys-is a set of online tools for metabolomic data analysis and
interpretation, created by members of the Wishart Research Group at the
University of Alberta. It was first released in May 2009 and version 2.0 was
released in January 2012. MetaboAnalyst provides a variety of analysis
methods that have been tailored for metabolomic data. These methods include
metabolomic data processing, normalization, multivariate statistical analysis,
and data annotation. The current version is focused on biomarker discovery
and classification.

MetaboAnalyst supports a wide variety of data input types commonly
generated by metabolomic studies including GC/LC-MS raw spectra,
MS/NMR peak lists, NMR/MS peak intensity table, NMR/MS spectral bins,
and metabolite concentrations.

MetaboAnalyst has four modules:

Data processing

Statistical analysis (one-factor, two-factor, and time-series data)
Functional enrichment analysis

Metabolic pathway analysis

MetaboAnalyst is part of a suite of metabolomics databases that also
includes Human Metabolome Database (HMDB), DrugBank, Toxin and
Toxin-Target Database, and The Small Molecule Pathway Database. The
HMDB has over 7900 human metabolites and roughly 7200 associated DNA
and protein sequences, that are linked to these metabolite entries. While
DrugBank includes information on 6707 drugs and 4228 non-redundant drug
targets, enzymes, transporters, and carriers, T3DB houses over 2900
common toxins and environmental pollutants. The suite is rounded out by
SMPDB with its pathway diagrams for more than 350 human metabolic and
disease pathways.
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5. Metabolome online library

The Human Metabolome Database (HMDB) is a freely available electronic
database containing detailed information about small molecule metabolites
found in the human body. It is intended to be used for applications in
metabolomics, clinical chemistry, biomarker discovery and general education.
The database is designed to contain or link three kinds of data

1) chemical data
2) clinical data
3) molecular biology/biochemistry data

The database contains 42,003 metabolite entries including both water-soluble
and lipid soluble metabolites as well as metabolites that would be regarded as
either abundant (> 1 uM) or relatively rare (< 1 nM). Additionally, 5,701
protein sequences are linked to these metabolite entries. Each MetaboCard
entry contains more than 110 data fields with 2/3 of the information being
devoted to chemical/clinical data and the other 1/3 devoted to enzymatic or
biochemical data. Many data fields are hyperlinked to other databases (KEGG,
PubChem, MetaCyc, ChEBI, PDB, UniProt, and GenBank) and a variety of
structure and pathway viewing applets. The HMDB database supports
extensive text, sequence, chemical structure and relational query searches.
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6. Framework for processing metabolomics profile data

Mzmine is modular framework for processing, visua

lizing, and analyzing

mass spectrometry-based molecular profile data. Mzmine is distributed free
of charge and could be downloaded online (http://mzmine.github.io/)

The software could be run on the Windows, Mac OS X, and Linux

platforms.
MZmine 2 core
User interface
Task control Project management
Execution of data Storage of raw data and peak lists.
processing methods Saving and loading projects.
Modules
Raw data import Raw data | Peak detection Peak list alignment
Parsers for mzXML, mzData, proceSSing Chromatogram construction, Join aligner using retention
. mzML, NetCDF and Thermo Smoothing and peak deconvolution, peak time and m/z, RANSAC
| RAW formats filtering methods remodeling. aligner
- . \ .

Peak identification Visualization Normalization
Identification of adducts, fragments and TIC, mass spectra, 2D and Linear normalization, normalization
complexes, custom database search, 3D visualizers, scatter plot using internal standards. .
connection to on-line databases. and histograms. Combined

s visualization of peak picking
AN results on top of raw data. Statistical analysis
& oreeorem. i | v
L PCA, CDA, Sammon’s plot...
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(http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-395)
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6.1. Raw data file format support

Mzmine can process both unit mass resolution and accurate mass resolution
MS data in both continuous and centroid modes, including fragmentation
(MS") scans. The currently supported file formats are mzML, mzXML,
mzData, NetCDF, and RAW format used natively by Thermo Fisher
Scientific instruments (requires installation of Thermo Xcalibur). If other
mass spectra from other instrument is used, it is required to convert the file

to CDF format prior to processing by MZmine.

6.2. Data visualization

MZmine 2 includes several of visualization modules. Following the goal of
providing the user with an intuitive interface, the visualizers automatically
annotate raw data with the obtained peak picking and identification results,

allowing for quick orientation when large amounts of data are being

processed.

Trehalose (STD) c

e e

(A) imported samples, (B) peak lists including single peak list contents, (C)
peak shapes for an identified metabolite across multiple samples, (D)
MS/MS spectrum of a metabolite, (E) combined base peak plot for multiple
samples, (F) scatter plot of peak areas across two samples, (G) 2D plot of a
detected peak, mass-to-charge ratio vs. retention time, (H) 3D view of a
detected peak, and (I) intensity plot for specific peaks across multiple

samples.



7. Nuclear Magnetic Resonance (NMR) software

There are several computer software that are developed for handling the raw
spectra of NMR data. Among which, MestReNova and Chenomex have been
the usual method of choice. MestReNova could be downloaded at
http://mestrelab.com,  while  Chenomex could be found at
http://www.chenomx.com.

S:=romx e | s | |

R ) |

New
Release!
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8. IH-NMR metabolomics using MestReNova
Measure the sample. Note that at this step, the water suppression must

v

v
v

be acquired (the operator should do this step).
Collect the raw file of the measured samples.

Open the 1H-NMR raw file of sample. Use the JDF file in the folder

received from the operator.
Adjust the ppm of TMS internal standard to 0 ppm.

Before adjustment

t
PG-CO1 (600MHz)

5 020 015 010
1 (ppm)

After adjustment

rrrrr




v The profiling of the metabolites is done by comparing the chemical
shift (ppm) and coupling constant (Hzt) of the standards to that of the
peak in the spectra. The standard library could be download at online
library such as HMDB, BMRB.

Coupling constant
(J1=17.2)

H - 020

<— Standard peak

Alanine

Sample peak

v After metabolite profiling, the data could be confirmed again by
comparing the chemical shift (ppm) and coupling constant (Hzt) of the
putatively identified compounds to standards prepared in our lab. All
the detected metabolites should be listed in a table along with the
characteristic chemical shift and coupling constant.



v Open all the raw spectra of the acquired samples and overlay all the
spectra in one spectra. From this overlaid spectra, the data would be
extracted and be ready for multivariate statistical analysis.
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v For multivariate statistical analysis, data are extracted and formatted

as follows

Observation -

(ppm)

Group labeling Variables
(for classification) (intensities)
Samples  Group 02 021 022 023 024
K1 K 228673 231006 23403 237022 238285
K2 K 076012 -099917 -107927 -091539 -0.71194
K3 K 229241 221436 236292 203366 239555
K4 K 419335 473765 43041 421588 47242
K5 K 050212 -105457 -164339 -151029 -168918
K& K 188868 195379 19.0271 197857 19.2298
K7 K 531598 437708 507492 50887 457224
K8 K 233428 22877 227593 228413 232774
K9 K 253917 270182 320827 349722 327989
K10 K 1573 155202 148959 154456 153869
K11 K BESSE3 91267 10.0177 990311 937641
K12 K 113191 122205 118438 117015 12841
K13 K 153595 152713 158855 154191 156171
K14 K 833199 820754 844155 921027 869549
K15 K 857349 823112 852143 877426 847213
K16 K 105445 105714 106179 11359 116168
K17 K 256424 255176 258296 260163 260508
K18 K BB4231 900896 B56703 87753 911306
K13 K 126128 12021 12226 129521 126463
K20 K 152089 148899 146762 144813 147786
K21 K 797018 871851 7.35317 839497 9.00755
K22 K 449343 441394 414838 45303 485677
K23 K 258388 227228 255554 288203 242477
K24 K 13118 127772 12826 125751 124517
K25 K 886354 910665 905679 90021 893037
K28 K 393267 420862 335406 349791 356724
Ka7 K 566959 595315 628344 599762 682079
K28 K 198986 204304 201533 203293 200606
K29 K 385504 -287379 -402556 -262666 -345362
K30 K 771333 760052 B27808 B06093 77194
c1 c 51788 501957 493567 497074 485028
c2 < 123061 116796 117442 120861 121394
c3 c 302607 368425 366819 3BIG5 437449
ca c 202474 198617 201425 200564 205912
cs < 042288 0179244 04335 -047646 0.154389
ce c 137948 1885037 185046 19363 256675
et c 11405 114653 10.8769 114492 11519

025
235134
-0.47341
262868
4.33299
079414
19.5358
6.19035
237772
3.32448
156307
9.43855
121119
157368
834712

11.1507
256972

12.5676
154637
8.26049
4.30907
1.75429
127381
968473
322814
6.08162
205058
-3.11896
768829
485237
122613
468097
20.8807
-0.11256
224088
113493

502395
124979
470311
207133
-0.52683
166877
12084

027
235859
-0.531869
236092
4.75603
=1.20211
202567
54056
239869
284797
15.5961
9.78355
125894
158183
9.52874
840417
11.2607
261125

127866

16.072
B.44414
424823

13.0916
924229
3.83897

206376
-3.27495
8.10855
581485
127189
374137
204332
0379159
1.88537
12,0066

02
234253
-1.88414
163261
£.38102
-0.8127
200221
5315
24,0879
3.10918
15,5487

125114
159386
8.87301
888982
114575
267957
873439
128177
157053
899183
4.20744
271337
131335
10.5697
33382
5.73885
20,7808
-3.28613
877238
473756
11.9891
4.38853
21,0762
0.1050%8
18927
120644

02
243554
-1.01964
168966
4.43986
-1.03011

243172
3.40862
16.2356
9.64339
12.3355
16.1058

93948

9.4144
11.9751
267015
8.80127
13.1248
15.3501
831736
4.52599
256483
12,5084

32971
6.24458
20,8419
331698
875628
5.19219
124949
434172
20,7954,
0799765

118524



9. Multivariate statistical analysis procedure

v' Prepare the file with correct format and go the metaboanalyst website.

B | Wetcome > clck here to start <<

News & Updates
= Added support for sparse PLS-DA (sPLS-DA) analysis (10/28/2016); MW
. ipport for quantil i -
+ Improved name mapping functions for common metabolite names (08/18/2016), e
» More than 1 million jobs have been processed since 0B/2015 (06/21/2016), M#
» Updated Time Sefies modulé 1o SUppOTt analysis of time-series only data (O6/D8/2016), "€
+ Added support for Orthogonal PLS.DA (05/16/2016), ew
« Improved support for dealing with special characters and punctuations (05/11/2016),
« Minor feature updates and bug fixes based on user feedback (04/28/2016)
 Added support for batch effect correction for multipl sels (Other 3
+ Updated the web framewark for better parformance (02/18/2016);
* Upgraded the Google Cloud server for improved performance (10/30/2015),
« Added support for detailed ROC curve analysis of individual biomakers (10/29/2015);

Please Cite:

Xia, J., Sinelnikoy, |, Han, &, and Wishart, D.S. i ingful. Nucl. Acids Res. 43,
W251-257.

ia, J, Mandal, R, Sineinikov, |, Broadhurst, D., and Wishart, D S. or ¥ data

analysis . Mucl Acids Res. 40, W127-133.

i, J. and Wishart, D S, (201 ic data using
MetaboAnalyst Nature Protocols 6 (6), 743-760.

ia | and Wishart NS anabesis.

v’ Select Statistical analysis options

= —

This module offers vanous commonly used statistical This module performs metabolite set enrichment
and machine learning methods including t-tests, analysis (MSEA) for human and mammalian species
ANOVA, PCA, PLS-DA and Orthogonal PLS-DA It also based on several libraries containing ~8300 groups of
provides clustering and visualization tools to create metabolite sets. Users can upload either 1) a list of
dendrograms and heatmaps as well as to classify compounds, 2) a list of compounds with
based on random forests and SVM. concentrations, or 3) a concentration table.
Pathway Analysis. © Time-series/Two-factor Design

This module supports pathway analysis (integrating This module supports temporal and two-factor data
enrichment analysis and pathway topology analysis) analysis including data overview, two-way ANOVA, and
and visualization for 21 mode! organisms, including empirical Bayes time-series analysis for detecting
Human, Mouse, Rat, Cow, Chicken, Zebrafish, distinctive temporal profiles. It also supports ANOVA-
Arabidopsis thaliana, Rice, Drosophila, Malaria, S simultaneous component analysis (ASCA) to identify
cerevisae, E coli. and others, with a total of ~1600 major patterns associated with each experimental
metabolic pathways. factor.
© Power Analysis - {9 Analysis
This module uses pilot data to calculate the minimum This module performs various ROC curve based
number of samples required to detect a statistically biomarker analyses for a single or multiple biomarkers.
signficant difference between two populations with a It also allows users to manually specify biomarker
given degree of confidence (called Power Analysis) models as well as new sample prediction.

~— © Integrated Pathway Analysis © Other Utilities
This module performs integrated metabolic pathway This module contains several common utility functions.
analysis on results obtained from combined At this moment, compound ID conversion, batch
metabolomics and gene expression studies conducted effect correction and lipidomics data analysis are
under the same experimental conditions. available




Click Browse to select the designated file and click submit to upload

the file.

|
‘.l = .“1_
-‘u')llﬂ; ld
[
L

* Processing

Download

0t

MetaboAnalyst 3.0
- a comprehensive tool

-
1) Upload your data
Ta (0t) or (.esv) file:
Data Type: Peak i
.
Zipped Files (.zip) :
Data Type: ®)NMR peak list . MS peak list | MS spectra
Data File: Browse... | No file selected. Submit
Pair File: Browse... | No file selected.
2) Try our test data :
Data Type Description
Metaolte concentrations of 77 urine samples from cancer patients measured by 1H
Concentrations

NMR (Eisner R et al). Group 1- cachexic. group 2 - control

Metaboitte concentrations of 30 rumen samples measured by proton NMR from dairy
cows proportions of BN etal) Group label -,
15,30, or 45 - indicating the percentage of grain in diet

Binned 1H NMR spectra of 50 rine samples using 0.04 ppm constant width (Bsihogios
NG_etal) Group 1- controt. group 2 - severe kidney disease.

by 1H NUR (Bsiogios NG,

NMR spectral bins

Peak lists and intensiy files for 50 urine

After successfully uploading the file, the first step is data filtering,
the usual choice of data filtering would be Interquantile range (IQR).

Click process to continue

i Data Filtering:
Upload The purpose of the data fitering is to identify and that 1y 10 be of use whes Pl
¥ Processing information are used in the fitering process, 5o the result can be used with any analysis. This step is strongly
Pro-process for untargeted metabolomics datasets (1.e. spectral binning data, peak kists) with large number of variables, many of them are from
baseline noises. Filtering can usually improve the results. For details, please refer o the paper by Hacksiad. et al
Wissing value
Non-informative variables can be characterized in two groups variables of very small values (close to baseline or detection imi) -
Data editor these variables can be detected using mean or median; variables that are throughout the expes
Image optons (housekeeping or homeostasis) - these variables can be detected (SD); or the as
Normalization Interquantile range (IQR). The relative standard deviation(RSD = SD/mean) s another useful vanance measure independent of the
* staistics mean. The following empirical rules are applied during data filtering.
Download
= + Less than 250 variables: 5% wil be fitered:
* Between 250 - 500 variables 10% will be filtered.

* Between 500 - 1000 variables: 25% will be fitered
* Over 1000 variables: 40% wil be fitered;

Please note, in order 1o reduce the computational burden to the server, the None option is only for less than 2000 features. Over that, if
you choose None. the IR fiiter will stil be applied. In addition, the maximum allowed number of variables is 5000. If over 5000 variables
were left after fitering, only the top 5000 will be Used in the subsequent analysis.

‘Standard deviation (SD)

Median absolute deviation (MAD)
Relative standard deviation (RSD = SD/mean)
N relative

Mean intensity value
Median intensity value

None (less than 2000 features)

5 A S TfEt



v Next is the step involving sample normalization, data transformation

and data scaling. The choice in this step are essentially based on the
types of samples being analyzed. After selecting all the necessary
features, click proceed to continue.

Sample normalization
® None
Sample-specific normalization (i.e. weight, volume) Click here to specify

Normalization by sum

Normalization by median

Normalization by a specific reference sample 3
Normalization by a pooled sample from group Bio
Normalization by reference feature var-1

Quantile normalization

Data transformation

(® None

Log logarithm or glog)
Cube root transformation (take cube root of data values)
Data scaling
® None
Mean centering (mean-centered only)
Auto scaling (mean-centered and divided by the standard dewiation of each vanable)
Pareto scaling  (mean-centered and divided by the square root of standard deviation of each variable)

Range scaling (mean-centered and divided by the range of each variable)

Normalize

At this step, click on any feature of choice to continue.

mELEMVSTE Y e e

Select an analysis path to explore :

Univariate Analysis.
Fold Change Analysis T-tests Volcano plot
One-way Analysis of Vanance (ANOVA|
Correlation Analysis  Pattem Searching
Chemometrics Analysis
Principal Component Analvsis (PCAI
Partial Least Squares - Discriminant Analvsis (PLS-DA)
Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA)
Orthogonal Partial Least Squares - Discrminant Analvs's (orthoPLS-DA

Feature identification
Analysis of Microaay (and (SAM)
Empincal Bayesian Analysis of Microaray (and Metaboltes) (EBAM)

Cluster Analysis
Herarchical Clustering: Dendrogram  Heatmaps

Parttional Clustering  K-means Se¥f Organizing Map (SOM)

Classification & Feature Selection

Support Vector Machine (SVM)



For classification purpose, click PCA or PLS-DA depending on the
efficiency of the model. After selecting the desired feature, for the important
features that contribute significantly to separating groups on the model could
be derived by.

K-means var-3786 | o HOM

Rangamorest var2059 | e | EOm

s var2088 | . EOm

vara7ss | . a0m

- wares | . e
var2081 | . a0m

var903 | . | [m] |
var-4d0 . Om
var.2060 . 0w
var-2005 | . | [ ] '
we2r2 | . mom
s [ ] |
varols | @ | [m] |
var-1207 . | ([ ]
var40ss | @ om

1. lustrating the model in two dimension

Illustrating the model in three dimension

3. Finding the optimal components employed in building the
meaningful model

4. Examining which feature contributing significantly to building the
meaning model

5. Validate the model

Extracting the table containing the important features.

7. Extracting the figures.

N

o
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