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Abstract

Exposure to persistent organic pollutants (POPs)
in pregnant women and newborn infants and

associated endocrine disruption effects

Sunmi Kim
Graduate School of Public Health

Seoul National University

Many of the persistent organic pollutants (POPs) had been banned several
decades ago. However, most of these compounds, including organochlorine
pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been frequently
detected in various environmental media, biota, and human biological samples
worldwide. In addition, new POPs - such as polybrominated diphenyl ethers
(PBDESs) - have also been frequently detected because of their extensive use and
bioaccumulative characteristics. Among various toxic effects of POPs, endocrine
disruption that may link to changes in growth and development, metabolic
disorders and obesity is one of the important adverse health effects.

Thyroid hormones and adipokines are key hormones related to normal
development and energy metabolism. Early life stages are particularly susceptible
to these hormones and the endocrine disruption. Endocrine disrupting effect
during these sensitive periods may lead to permanent adverse effects in later

stages of life. Therefore, association between POPs exposure and endocrine



disruption among the susceptible human populations, including fetuses, newborn
infants, and pregnant women deserves scrupulous investigation. However, current
understanding on endocrine disruption effects of POPs is still limited among these
vulnerable populations and previously reported results are frequently controversial.
In order to address these issues, the present study investigates the association
between POPs exposure and thyroid hormones or adipokine levels among
pregnant women or matching newborns.

For this purpose, pregnant women and their matching newborn infants
without any known occupational exposure pathways to major POPs were recruited
from five university hospitals located in four cites of South Korea in 2011-2012
(Children’s Health and Environmental Chemicals of Korea Panel: CHECK Panel).
Maternal and cord blood serum samples were collected at delivery, and breast
milk samples were collected between 15" and 30" day of lactation. Target
chemicals including 19 OCPs, 19 PCBs, and 19 PBDEs, and hormones were
measured in serum samples, and chemicals which were detected > 60% and sum
of the isomers (XPCB, ZPBDE, Xdichlorodiphenyltrichloroethane (DDT),
Ychlordane (CHD), Xhexachlorhexane (HCH)) were used in statistical analysis.

This study was conducted in three parts.

In the first part, the associations between major groups of POPs and thyroid
hormone balances among pregnant women were assessed. Blood samples were
collected within a day before delivery from 105 pregnant women of CHECK
Panel in 2011. Serum was then analyzed for target POPs along with five thyroid
hormones (free and total T3 and T4, and TSH). Several PCBs, such as CB 28, -52,
and -118, showed negative associations with T3 or T4. BDE 47 and ZPBDEs
showed significant associations with T3 or T4. For OCPs, ZDDT and
hexachlorobenzene (HCB) were generally associated with the reduction of T3 or

T4. While the thyroid hormone levels of all subjects were within the reference
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range, the levels of exposure to several target POPs were clearly associated with
alteration of thyroid hormone balance among pregnant women without any known

occupational sources of exposure.

In the second part, the associations between prenatal exposure to major
POPs and thyroid hormone levels among newborn infants were investigated
(n=104). As thyroid hormone levels in cord blood serum could be influenced by
the input of thyroid hormones of maternal origin, thyroid hormone concentrations
of the matching mothers at delivery were adjusted. In addition, TSH measured in
bloodspot samples of newborn infants on 2 day after birth was used. In cord
serum, BDE 47, BDE 99, XCHD, and p,p'-dichloro-diphenyldichloro-ethylene
(DDE) showed significant positive associations with cord blood serum or
bloodspot TSH. At the same time, p,p-DDE and HCB showed negative
association with total T3 and T4 in cord serum, respectively. Maternal exposure to
S-hexachlorhexane (f-HCH), XCHD, ZDDT, or p,p"-DDE were also associated
with neonatal thyroid hormones. Although the sample size was small and the
thyroid hormone levels of the subjects were within the reference range, our
observation clearly supported endocrine disrupting effects of several POPs among

newborn infants at the levels occurring in the general population.

In the third part, the associations between several kinds of maternal POPs
exposure and the levels of adipokines in breast milk were investigated (n=50). As
the effect marker hormones related to obesity and diabetes, leptin and adiponectin
in breast milk were selected. Significant negative association between breast milk
leptin concentration and oxy-chlordane (oxyCHD), > CHD, BDE 47, or CB 138
levels in maternal serum was observed. Pp’-DDT, oxyCHD, trans-Nonachlordane
(tNCHD), > CHD, BDE 47, CB 153, or ) PCB body burden were significantly

associated with increased adiponectin concentrations in breast milk samples. Thus,
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the results of this study provide a line of evidence that POPs at the current level of
exposure may link to the alteration of lipid metabolism, which might possibly lead

to obesity in later stages of life.

Through a series of cross-sectional studies, it was established that the
current levels of exposure to POPs could be associated with the disruption in
thyroid hormones and lipid metabolism among pregnant/lactating women or
newborn infants. These findings are supported by previous experimental studies,
but should be confirmed in prospective birth cohorts with a greater number of
subjects for the biological significance. Considering the importance of thyroid
hormones and adipokines during gestation and early life stages, health implication
of endocrine disruption effects by low level POPs exposure deserves further

investigation.

Keywords: POPs, Polychlorinated biphenyls (PCBs),
Polybrominated diphenyl ethers (PBDEs), Organochlorine
pesticides (OCPs), pregnant women, fetus, thyroid hormone,

adiponectin, leptin, breast milk, CHECK Panel
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Chapter 1. Introduction

1.1. Background

Persistent organic pollutants (POPs) exposure in general population

Among numerous man-made chemicals, persistent organic pollutants
(POPs) represent a global public health concern because of their persistence in
environment, bioaccumulation potential, and adverse health effects. To address
this emerging public health threat, a total of 152 countries have committed to
discontinue or restrict the use of major POPs by ratifying the Stockholm
Convention on Persistent Organic Pollutants (Stockholm Convention). Such POPs
include organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and,
more recently, polybrominated diphenyl ethers (PBDEs). Many OCPs, including
dichlorodiphenyltrichloroethane (DDT) had been widely used to control disease
vectors or harmful insects since World War II. However, due to environmental
persistence, serious ecosystem damages, and potential human health implications
of OCPs, the use of most of them has been banned since 1970s. Previously, PCBs
were extensively used as transformer, hydraulic fluids and additives of paints and
oils; several decades ago, however, their use was also restricted in most countries
due to similar reasons. PBDEs had been used as flame retardants worldwide and
applied in numerous products, such as polyurethane foam, furniture, mattresses,
synthetic textiles, and in electrical instruments. PBDEs are a new group of POPs
that were added in Stockholm Convention in 2009 and their ubiquitous
occurrences and potential health consequences are a growing worldwide concern.

Penta-, octa-, and deca BDE mixtures are predominant commercial flame

retardant products. PBDEs are added to the surface of products, and bromines are



released to the air and then replace oxygen when the product meets fire. They are
released into the environment during manufacturing operations or when the
products containing PBDEs are disposed. Due to toxicity PBDEs, their use in
consumer products or production has been banned since 2004 in many countries,
including those of the European Union. Testicular cancer, decreased birth weight,
cryptorchidism, decreased sperm quality were linked with PBDEs body burden in
human cross-sectional studies (Hardell et al., 2005; Chao et al., 2007; Main et al.,
2007; Akutsu et al., 2008), and thyroid disruption effects were also reported in
infant and adult populations (Herbstmann et al., 2008; Kim et al., 2009; Hagmar
et al., 2001; Turyk et al., 2008; Meeker et al., 2009).

Because of their persistent and accumulative characteristics, numerous
POPs that were banned several decades ago are still detected in human biological
samples like serum, adipose tissue, and breast milk (Govarts et al., 2012). PCBs
concentrations in adipose tissue in Korean adults were lower than in Japanese, but
higher than in US American and Singaporean populations (Moon et al. 2012).
Considering that DDTs and chlordane (CHD) concentrations are relatively greater
in Korean cetaceans (Moon et al., 2010), accumulation of PCBs and OCPs should
still be monitored in Korea. Even the new POPs were frequently detected in Korea.
In Korean general population, PBDEs, one of the new POPs, were detected on
average 7.0 to 8.6 ng/g lipid weight (Iw) with 96~97% of detection frequency in
two separate studies (n=400~450) (MFDS, 2008; MFDS, 2009). The levels
reported in Korea are similar to those of other Asian populations, and lower than
those of North America (MFDS, 2008; MFDS, 2009). Many studies have been
conducted to find exposure sources of PBDEs in general populations. As shown
by previous studies, food and dust ingestion are known as major intake routes of
PBDEs. Among the three possible pathways of PBDEs intake (namely, dust, air,
and breast milk), dust and human milk account for almost 100%, while air

inhalation accounts for a very insignificant part (Toms et al., 2009). Especially in



case of children, dust ingestion is the major exposure route, while intake amounts
of PBDEs from two exposure routes, seafood and dust are similar in adult

population of Korea (Lee et al., 2013a).



Pregnant women and newborn infants as susceptible populations

Fetuses and infants are considered to be among most susceptible
populations for the exposure to POPs, because of their endocrine disrupting
toxcities. Previous experimental studies show that POPs may lead to decrease of
reproduction success, alteration of thyroid hormone regulation, developmental
neurotoxicity, as well as physical developmental delay, weight velocity, and
metabolic disorders. In addition, POPs can cause oxidative stress, genotoxicity,
and disturbance of steroidogenic system (Gao et al., 2009; He et al., 2008; Reistad
and Mariussen, 2005).

Among several kinds of toxicity following POPs exposure, the number of
studies describing thyroid dysfunction in animal and human related to
environmental chemical exposures has increased in the past decade. Fetal
exposure to PCBs caused neuro-developmental toxicity (Huisman et al., 1995a;
Weisglas-Kuperus, 1998), and leading to significant negative effects in infancy
(Huisman et al., 1995b). Postnatal exposure to PBDEs was also continuously
reported to be associated with neurodevelopmental toxicity in infants (Chao et al.,
2011; Gascon et al., 2011). More recent studies show that prenatal POPs exposure
directly causes growth inhibition, and overweight of babies (Murphy et al., 2010;
Valvi et al., 2012). Likewise, slight decreases in thyroid function (subclinical or
mild hypothyroidism) may lead to negative health outcomes, especially over a
long term and during pregnancy. Even though thyroid hormone levels are within
the reference range, small changes (< 25%) of maternal T4 or TSH during the
early fetal period are associated with adverse health outcomes. Thus, the exposure
to POPs at early stages of life could have considerable and long-lasting advers
health consequences. Therefore, exposure to POPs among pregnant and lactating

women has received growing attention.



Importance of thyroid hormones and adipokines and their association with

POPs exposure

In early stages of life, growth related hormones play an important role in
metabolism and development. Thyroid hormones are among the most important
hormones that regulate normal development. Disturbance of the thyroid hormone
regulation system by POPs exposure was observed in experimental studies and
human epidemiological studies (Boas et al., 2012). Many reports showed that the
associations between POPs body burden and developmental delay or metabolic
disorders were linked to the thyroid hormone regulation system. Substantial
evidence has been accumulated on thyroid hormone toxicity of most POPs,
including PBDEs in animal or cell line toxicity test.

Compared to experimental results, relatively few studies exploring the
relationship between POPs exposure and thyroid hormone homeostasis in human
population were published. In PubMed search, titles including both name of POPs
chemical and thyroid hormone were found in over 550 reports; however, there is
still insufficient direct evidence in the human literature supporting the hypothesis
that effects on thyroid hormone signaling mediate the association between
chemical exposures and human disease (WHO/UNEP, 2012).

Adipokines are another important group of hormones that play a role in
regulation and development of the lipid metabolic system in our body.
Adiponectin and leptin are among the most studied adipokines, which are secreted
in the adipocytes. Both are active players in the development and regulation of
metabolism during early stages of life, e.g. fetal and infant period. As adiponectin
levels in breast milk were highly correlated with the levels in serum of mothers,
breast milk can serve as an alternative biological specimen for measurement of
adipokines.

Since thyroid hormones affect adipose tissue metabolism, which regulate



adipokine secretion, there is an obvious relationship between thyroid hormones
and adipokines function. A continuous interaction between the thyroid hormone
and regulatory mechanisms localized in adipose tissue and brain is important for
the human body weight control and maintenance of optimal energy balance
(Santini et al., 2014). It has been established that leptin is an important factor in
the development of hypothalamic pathways, which involve in the regulation of
energy balance (Savino et al., 2011). For hypothalamic-pituitary-thyroid axis,
leptin acts on the expression of thyrotropin releasing hormone (TRH), and
decreased T4 and T3 levels can be reversed by leptin (Ahima et al., 1996; Flier et
al., 2000). The in vivo administration of human TSH can induce the proportional
release of leptin compared to the adipose mass, thus confirms the function of TSH
receptors on the surface of white adipocytes (Santini et al., 2014). Adiponectin
secretion increases insulin action by increasing fat oxidation, which is controlled
by thyroid hormone activity (Lihn et al., 2005). Although the role of thyroid
hormones in adipokine modulation remains unclear (Luvizotto et al., 2012),
adverse health consequences, such as elevated cholesterol level or diabetes, could
be caused by slight decreases of thyroid hormone levels within the reference range.

Considering the importance of thyroid hormones and adipokines and their
interaction during fast developmental stage, finding the association between there
hormone levels and POPs exposure is of a great public health interest and needs to

be addressed.
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1.2. Thyroid hormone disruption by POPs in pregnant women and

neonates

Thyroid hormone system plays a crucial role in maintenance of
homeostasis, activation of metabolic function, neurodevelopment, and cognitive
functioning. Thyroid hormones are particularly relevant for normal growth and
development of the fetus throughout the gestation period (Forhead and Fowden,
2014). Several POPs have been documented for their potentials to alter thyroid
hormone balance. For example, PCBs and their metabolites which have structural
similarity to T4 may compete with endogenous thyroid hormones for thyroid
binding globulins, which would eventually lead to clearance of thyroid hormones.
PBDE:s also share similar structure with T4, and cause thyroid hormone disruption
through the same mechanism (Zhou et al., 2001). Thyroid disruption toxicity of
many OCPs has been reported in experimental studies (Darras, 2008; Hallgren
and Darnerud, 2002). Several kinds of environmental chemicals have been
identified that can directly interfere with thyroid hormone receptor or other

processes controlling the thyroid hormone regulation system (Figure 1-2).
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As accurate regulation of thyroid hormone balance is essential for
developing fetus and newborn infants, even smaller-scale changes in thyroid
hormones should be considered with caution. Moderate changes of thyroid
hormone levels may be associated with adverse outcomes for the mother or her
offspring (Berbel et al., 2009; Idris et al., 2005; Sahu et al., 2010). In previous
studies, within the reference range, higher maternal thyroid stimulating hormone
(TSH) levels were associated with an increased risk of miscarriages, fetal and
neonatal distress (Benhadi et al., 2009) and preterm delivery (Stagnaro-Green et
al., 2005). In addition, high free thyroxin (T4) levels within the normal reference
range were associated with the reduced preterm delivery rate (Torremante et al.,
2011).

Relatively fewer studies have been conducted on the association between
POPs exposure and thyroid hormones among newborn infants compared to the
body of research that focused on pregnant women. Moreover, epidemiological
observations generally yielded inconsistent results. For example, while several
studies reported the increase of TSH and decreases of T3 or T4 with PBDEs,
PCBs, and OCPs body burden (Abdelouahab et al., 2013; Chevrier et al., 2007,
Maervoet et al., 2007), the associations in opposite directions or no association
were also reported (Chevrier et al., 2011; Zhang et al., 2010), even within the
same study (Ribas-Fito et al., 2003). The reason for these inconsistent associations
may be explained by (1) confounding effect by the maternal origin to cord serum
thyroid hormone levels (Thorpe-Beeston et al., 1991; Vulsma et al., 1989), and (2)
influence of maternal, fetal, and delivery conditions to thyroid status of the fetus
(Herbstman et al., 2008). Thyroid hormones measured in cord serum could be
influenced by the physiological or environmental factors that could affect
maternal thyroid hormone levels. Also, in studies involving human populations,
controlling labor-related factors beforehand is difficult, those variables that may

influence the fetal thyroid hormones should be identified and adjusted in the



statistical analytical model. Thus, it is quite challenging to identify the true
association, if any, between POPs exposure and thyroid hormone levels in cord
serum. In this context, bloodspot sample by hill prick method from newborns can
be regarded as an alternative to cord serum. Since TSH level may vary
significantly within 24 hrs from delivery, bloodspot TSH levels of the newborn
infants on 2 day post-partum are considered relatively independent from the
influence of the maternal thyroid hormones (Kim et al., 2005). Also, compared to
the use of the cord serum TSH, the use of bloodspot TSH was regarded to have a
greater sensitivity for screening congenital hypothyroidism (Hardy et al., 2008).

11 1



1.3. Adipokines disturbance and POPs exposure

There is a growing body of evidence on many POPs may act as
environmental obesogens, by altering energy balance, promoting adiponenesis and
lipid accumulation (Grun and Blumberg, 2006). OCPs, particularly DDE, have
been linked to the increased BMI in children (Valvi et al., 2012). In addition, low-
dose exposure to OCPs and PCBs is associated with a greater risk of type 2
diabetes and obesity (Lee et al., 2007; Lee et al., 2011; Lim et al., 2010; Taylor et
al., 2012).

Imbalance in adipokines production and adipose tissue dysfunction are
suggested as risk factors for obesity and associated metabolic disorders. Since the
discovery of leptin and adiponectin in adipocytes in 1994 and 1995, several other
adipokines, i.e., ghrelin, resistin, and obestatin, have also been documented. These
adipokines play a role in the inhibition of fatty acids synthesis, improvement of
insulin sensitivity, inhibition of adipocyte differentiation, and modulation of
insulin secretion. Leptin is the most well-known adipokine that is associated with
increased energy expenditure, satiety signals in hypothalamus, and caloric intake
reduction (Metwally et al., 2008).

POPs can be stored within the adipose tissue and may affect the function
of adipocytes. The association between POPs exposure and adipokine expressions
has been studied in order to explain the underlying mechanisms of obesity-related
disorders caused by POPs. In experimental studies, expressions of adipokine and
leptin have been altered following the exposure to several POPs. Pp’-DDE, oxy-
chlordane (oxyCHD), and CB 153 exposure alters adipogenesis, and both
adiponectin and leptin are increased in adipocytes (Howell and Mangum, 2011;
Taxvig et al., 2012). In vivo studies have also shown alteration of adipokines in
mouse and rat (Provost et al., 2007; Wahlang et al., 2013), but the trend was

inversed by exposure duration (Provost et al., 2007). Based on previous results, it
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is obvious that alteration of adipokine by POPs exposure is one of the
mechanisms of obesogenic effect. However, very few cross-sectional studies has
been conducted regarding the association between POPs exposure and adipokine
concentrations. Two cross-sectional studies have consistently shown negative
associations between PCBs levels and adiponectin concentrations (Lim and Jee,
2014; Mullerova et al., 2008). Serum leptin was decreased by CB 138, CB 180,
and BDE 153 levels in obese adult (Pereira-Fernandes et al., 2014), and similarly,
S-HCH and p,p ’-DDE exposure was negatively related with serum leptin levels in
8-9 years old boys (Burns et al., 2011). Among these five epidemiological studies,
only one study targeted general population (Lim and Jee, 2014) and looked only at
the levels of PCBs. Generally, while circulating adiponectin is inversely
associated with overweight and obesity in children (Asayama et al., 2003; Stefan
et al., 2002), the biological explanation for the positive association of adiponectin
in milk with BMI of mothers is still challenging and difficult to interpret. Breast
milk adipokines reflect the serum adipokine levels of lactating mothers (Savino et
al., 2012).

In breast-fed infants, serum adiponectin is significantly related to the
breast milk adiponectin concentrations, suggesting possible transport across the
human intestinal mucosa. It was reported that adiponectin could be absorbed
through the intestinal tract of mice (Newburg et al., 2010). Therefore, dietary
intake of adipokines may directly affect the metabolic processes in infants.
However, no study to date has reported the association between breast milk

adipokines and POPs exposure.



1.4. CHECK Panel study

Since 2011, Children’s Health and Environmental Chemicals in Korea Panel,
or CHECK Panel, was developed with matching pregnant women and their
newborn infant pairs. CHECK Panel is composed of pregnant women-fetus pairs
without any known occupational exposure pathways to major POPs such as OCPs,
PCBs, and PBDEs; the pairs were recruited from six university hospitals located
in Seoul, Anyang, Ansan and Jeju of South Korea. These cities are representative
for residential (Seoul and Anyang), industrial (Ansan), and rural (Jeju) regions of
Korea. By 2013, a total of 352 pairs of mothers and their matching newborn
infants have been recruited.

CHECK Panel was developed (1) to determine the levels of the exposure to
various environmental pollutants including POPs in newborns and their mothers,
and (2) to assess potential adverse health effects due to the exposure to POPs. For
these purposes, several biological specimens were collected from the panel
participants and were measured for several chemical contaminants. Questionnaire
surveys were also carried out (Figure 1-3).

Biological samples from pregnant women included blood at 6 months of
pregnancy, blood, spot urine, and placenta tissue at the delivery. Umbilical cord
blood, fetal meconium, and neonatal urine were also collected. Breast milk
samples were collected at 7 days, 14 days, 1 month, and 3 months after the
delivery. In addition, duplicate food samples including homemade babyfood,
repeated urine and hair samples of infants at 6-27 months age were collected.
After birth, questionnaire about living patterns, use of furniture or home appliance,
and house dust sampling were conducted to find out exposure sources of target
environmental chemicals.

Alongside with 19 OCPs, 19 PCBs and 19-21 PBDEs, endocrine disruptors

including phthalates, bisphenol A, and heavy metals including lead and mercury
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were analyzed in appropriate biological samples. Possible effect biomarkers to
assess negative health effects, i.e., stress-related markers, endocrine hormones,
growth, as well as development-related markers were selected and measured.

On the CHECK Panel study, several findings related to exposure, risks, and
association with health effects have been published up to now, i.e., the occurrence
of PBDEs in maternal-fetal serum samples (Choi et al., 2014), POPs
concentrations and risk assessment via breast milk consumption (Lee et al., 2013b;
Lee et al., 2013c), baby food consumption (Jeong et al., 2014a; Jeong et al.,
2014b), and phthalate metabolite concentrations in breast milk (Kim et al., 2015).

In a study by Choi et al. (2014), 198 maternal blood samples and 118
matching umbilical cord blood samples were determined for 19 PBDE congeners.
Average concentration of total PBDEs in maternal blood serum was 3.34+8.42
ng/g Iw at delivery and 3.14+7.46 ng/g Iw at 6 months of pregnancy, respectively.
In cord blood serum, an average of 9.37 + 12.60 ng/g lw was detected. Among the
measured PBDE congeners, BDE 47, BDE 99 and BDE 153 were most dominant
in both maternal and cord blood sera. Relatively higher levels of BDE-99 were
detected in cord blood serum. Strong positive correlations were found between
maternal and cord blood serum samples, indicating the importance of maternal
transfer.

After the birth, breast milk samples during lactation period were collected
from 89 mothers at <7, 15, 30, and 90 days. ZPBDE ranged from 0.23 to 68.4
(mean: 2.73) ng/g lw, and were within the ranges reported for European and Asian
countries. Within a month of lactation after delivery, no significant changes were
found in the PBDE concentrations. The predominance of BDE 153 rather than
BDE 47 was found in the most samples that BDE 153 was detected, and was
likely to be associated with stepwise debromination of BDE209. No associations
were found between PBDE concentrations in breast milk and demographic

parameters, except for SPBDE with maternal age and delivery mode. Certain



types of diet such as corn, seafood and nut correlated significantly with PBDEs
levels in breast milk. The estimated daily intakes of ZPBDE for breast-feeding
infants were lower than the guidelines proposed by the USEPA, indicating limited
health risk from PBDEs through breastfeeding (Lee et al., 2013b).

In Lee et al. (2013a), 19 PCBs and 19 OCPs were analyzed in 206 breast
milk samples at <7, 15, 30, and 90 days. The concentrations of ZPCBs and XOCPs
ranged from <LOQ to 84.0 (median: 12.1) ng g/lw and from <LOQ to 559
(median: 144) ng g/lw, respectively. The residue levels of PCBs and OCPs in our
study were relatively lower than those reported for European, African and Asian
populations. Within a month postpartum typically after day seven the levels of
YPCB and XOCP significantly increased. Some OCP compounds were correlated
with maternal age, BMI, parity, and delivery mode. Certain types of dietary habits
such as seafood and noodle consumption were significantly associated with XPCB
and XOCP. The estimated daily intakes of ZPCB and ZOCP were 45.2-127 ng/kg
bw-day and 625-1259 ng/kg bw-day during lactation, respectively, which are
lower than the threshold values proposed by the US EPA and Health Canada. The
exposure of Korean infants to CHDs via breast milk had a potential health risk
which deserves further investigation.

PBDEs, PCBs, and OCPs were also analyzed in babyfood samples (Jeong et
al., 2014a; Jeong et al., 2014b). 24 PBDE congeners were determined in 147
homemade babyfood samples collected from 97 households for 6-, 9-, 12-, 15-,
and from 24 to 27-month-old infant groups. The concentrations of XPBDE ranged
from 24.5 to 6000 (mean: 263) pg/g fresh weight, higher than those found in
commercial formulae from the United States. The predominant congeners were
BDE 209 and BDE 47, accounting for 92 % of the XPBDE concentrations,
reflected by high deca-BDE consumption in Korea. The detected levels and
detection rates of BDE 47 in the babyfood samples showed an increasing trend

with an increase in infant ages, probably due to changes in the food ingredients



from hypoallergenic to greasy. The daily intakes of BDEs 47 and 209 via
babyfood consumption ranged from 0.04 to 0.58, 0.80 to 20.3, and 1.06 to 22.3
ng/kg bw-day for 6-, 9-, 12-, 15-, and 24-27-month-old infant groups,
respectively; these intakes were lower than theoral reference doses proposed by
the USEPA. Together with three exposure sources, babyfood, breastmilk and dust
ingestion for 6-month-old infants, the daily intake of XPBDE was 25.5 ng/kg bw-
day, which was similar to the intake via babyfood consumption only for over 24-
month-old infants in our study. This indicates that babyfood is an important
exposure pathway of PBDEs for over 24-month-old infants (Jeong et al., 2014a).

The average concentrations of XPCBs, XDDTs, XHCHs and XCHD in baby
food samples were 37.5, 96.6, 26.0, and 13.2 pg/g fresh weight, respectively. The
major compounds were CBs 28, 153, 52, and 33 for PCBs and p,p"-DDE, p,p-
DDT and p-HCH for OCPs. The contribution of DDTs to the total OCPs
concentrations increased from 30% (6-month-old infants) to 67% (15-month-old
infants) with increasing infant age, while the concentrations of PCBs, HCHs and
CHLs gradually decreased with increasing infant age, suggesting that highest
priority for risk reduction of DDTs. The estimated daily intakes (EDIs) of OCs in
Korean infants from baby food consumption were lower than the thresholds
proposed by the United States Environmental Protection Agency and Health
Canada, implying limited potential health risks. However, considering
simultaneous exposure from baby food and breast milk consumption, CHDs and
heptachlor epoxide posed potential health risks (Jeong et al., 2014b).

Two studies above are valuable as the first report on the occurrence and
exposure assessment of PBDEs via homemade babyfood (Jeong et al., 2014a), and
also add the information on the occurrence and exposure assessment of PCBs and
OCPs by homemade babyfood (Jeong et al., 2014b).

Phthalates were analyzed in breast milk samples. There is limited

information available on phthalate exposure and its associated risks among breast-



fed newborn infants. Thus, breast milk samples were collected from 62 lactating
mothers at 1 month post-partum from four cities of Korea in 2012 and were
evaluated for six phthalate metabolites (mono-isobutyl phthalate (MiBP), mono-n-
butyl phthalate (MnBP), mono(2-ethyl-hexyl) phthalate (MEHP), mono-(2-ethyl-
5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate
(MEOHP) and monoethyl phthalate (MEP)). MEP was detected in all samples,
with a median concentration of 0.37 pg/L, and MiBP, MnBP and MEHP were
detected in 79-89 % of samples, with median concentrations of 1.10, 1.70, and
2.08 pg/L, respectively. However, MEHHP and MEOHP, the oxidized forms of di-
ethyl-hexyl phthalate (DEHP), were detected in only one sample. For exposure
assessment, the levels of phthalate diesters were estimated based on the parent :
metabolite ratios in the breast milk that are reported elsewhere. For risk
assessment, the endocrine-related toxicity of the monoester was assumed to be the
same as that of its diester form. Median daily intake estimates of phthalates,
including both monoester and diester forms, through breastmilk consumption
ranged between 0.91 and 6.52 pg/kg body weight (bw) for DEHP and between
0.38 and 1.43 pg/kg bw for di-n-butyl phthalate (DnBP). Based on the estimated
daily intake, up to 8 % of infants exceeded the reference dose of anti-
androgenicity (RfD AA) for DEHP, and 6 % of infants exceeded the tolerable
daily intake (TDI) for DnBP (Kim et al., 2015).

Follow-up studies are being designed with >160 pairs of the subjects to
develop thorough exposure profiles for participating children, as well as to
understand the association of these profiles with health effects during young

childhood.
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1.5. Study design and objectives

There are two knowledge gaps that should be filled to better understand the
effects of POPs on endocrine systems of susceptible human population, namely:
(1) current knowledge about toxicity of POPs on thyroid hormone and adipokine
regulation system is still limited in vulnerable population; (2) existing human
epidemiological studies often show inconsistent directions of association between
POPs exposure and endocrine effects.

This study consists of three parts (Figure 1-4). In the first part (Chapter 2),
the association between major groups of POPs and thyroid hormone balances was
investigated in pregnant women. Furthermore, the association between thyroid
hormone levels and prenatal POPs exposure was assessed using both cord serum
thyroid hormone measurement and bloodspot sample measurement (Chapter 3). In
the third part (Chapter 4), to establish the link between POPs exposure and
adipokine regulations which can directly affect infants, maternal POPs levels and
breast milk adipokine concentrations were compared. Taken together, our results
allow for identification of adverse endocrine effects by POPs exposure in

vulnerable populations.
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Chapter 2. Association between several persistent organic
pollutants and thyroid hormone levels in serum among
the pregnant women of Korea

2.1. Introduction

Widespread exposure to POPs among general human populations raises
concerns about their potential public health consequences. Potential toxicities of
POPs include disruption of thyroid function. For PCBs and their metabolites,
relatively firm evidences on thyroid hormone disruption are present in humans
(Boas et al. 2012). PCBs and their hydroxylated metabolites are structurally close
to thyroxine (T4), hence may disturb thyroid hormone balance by competing for
thyroid binding proteins. Even at environmentally occurring concentrations, PCBs
may decrease blood triiodothyronine (T3) or T4 concentrations or elevate TSH in
humans (Chevrier et al., 2008; Osius et al., 1999; Persky et al., 2001; Schell et al.,
2008; Takser et al., 2005). PBDEs are structurally more similar to T4 than PCBs,
and have been hypothesized to interfere with thyroid hormone transport and
metabolism (Birnbaum and Staskal, 2004; McDonald, 2002).

Results of animal experimental studies generally support the thyroid
disrupting effects of PBDEs. For example, several PBDEs were shown to reduce
the circulating thyroid hormones in rats and fish (Lema et al., 2008; Stoker et al.,
2004; Zhou et al., 2001). PBDEs are also suspected to cause thyroid disruption in
humans (Dallaire et al., 2009; Turyk et al., 2008), but whether PBDEs are
negatively associated with T3 or T4 is not clear. Turyk et al. (2008) reported, for

This chapter has been published in Environment International 2013; 59:442-8.
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example, a negative association between serum PBDE and T3 or TSH, and a
positive association with T4. OCPs such as DDT and HCB are also reported to
alter thyroid hormones (Bloom et al., 2003; Gocmen et al., 1989; Sala et al., 2001).
For example, accidental exposure to HCB led to an enlarged thyroid in humans
(Gocmen et al., 1989). Several other studies have reported negative associations
between HCB and total thyroid hormones (Bloom et al.,, 2003; Sala et al.,, 2001)
but neither for TSH nor for free thyroid hormones (Sala et al., 2001).

Thyroid hormones are crucial for neurodevelopment and cognitive
functioning of fetus. Even marginal changes of T4 level in a pregnant mother may
affect the cognitive function of the fetus (Berbel et al., 2009; Haddow et al., 1999;
Pop et al., 2003; Porterfield, 1994). Therefore even subtle effects on thyroid
hormone balances due to prenatal exposure to POPs could be of potential public
health concern (Zoeller et al., 2002).

In the present study, we examined the association between the exposure to
several POPs and the thyroid hormone status in pregnant women of Korea. While
relatively great number of studies has investigated the association between
exposure to POPs and thyroid status, most studies have been focused on narrow
range of POPs, or limited to occupational or general human populations. Due to
the susceptibility of fetus to prenatal exposure to POPs, and to disturbance of
maternal thyroid hormone balance, pregnant women are important group which
deserves such investigation. In the present study, we measured extensive list of
chemicals that incorporate three groups of major POPs that have been suggested
for thyroid disruption in the literature. The results of this study will help identify
important environmental chemicals that may influence the thyroid hormone

balance in pregnant women.
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2.2. Materials and methods

Study population and sample collection

Study population of this study was one of the subgroup of a matched
pregnant woman and fetus panel of Korea, i.e., Children’s Health and
Environmental Chemicals in Korea Panel. CHECK Panel is composed of pregnant
women-fetus pairs without any known occupational exposure pathways to major
POPs such as OCPs, PCBs, and PBDEs and was recruited from five university
hospitals located in Seoul, Anyang, Ansan and Jeju of South Korea since 2011.
Upon the recruiting, occupational exposure, gestational diabetes, thyroid disease,
surgical disease, and congenital deformity cases were excluded. Blood samples
were collected from the women within a day before delivery. Blood serum was
separated on site and stored in polypropylene cryovials at -70°C until analysis. For
this study, 138 pregnant women were recruited and collected appropriate amount
maternal blood samples between February and December, 2011.

One-on-one interview with participating pregnant women were conducted
at the time of enrollment for demographic parameters, physiological data, and
pregnancy history. Medical records regarding current or previous health status and
gestational period were abstracted. The present study was conducted with 105
participating pregnant women finally, because of missing information such as pre-
pregnancy body mass index (BMI) in some subjects.

Institutional Review Boards of School of Public Health, Seoul National
University, and all participating university hospitals approved the study, and the
informed consents were obtained from the participating women. All samples and

data were processed blind.
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Chemical analysis

A total of 19 PCB congeners, 19 PBDE congeners and 19 OCPs were
measured in serum samples. Measured PCB congeners were CB 18, 28, 33, 44, 52,
70, 101, 105, 118, 128, 138, 153, 170, 180, 187, 194, 195, 199 and 206. Measured
PBDE congeners were BDE 17, 28, 47, 49, 66, 71, 77, 85, 99, 100, 119, 126, 138,
153, 154, 156, 183, 184 and 191. OCPs included DDTs, CHDs, HCHs, HCB,
heptachlor, heptachlor epoxide and mirex. DDTs included p,p -DDE, o,p -DDE,
p.,p-DDD, o,p’-DDD, p,p’-DDT and o,p ’-DDT; CHDs included oxyCHD, trans-
chlordane, cis-chlordane, trans-Nonachlordane (tNCHD) and cis-nonachlordane;
and HCHs included a-, -, y- and 5-HCH. For quantification, '*C-labeled 8 PCBs
(EC9605-SS; Wellington Laboratories, Guelph, ON, Canada), 1*C-labelled 6
PBDEs (MBDE-MXE; Wellington) and *C-labeled 19 OCPs (ES-5349-L;
Cambridge Isotope Laboratories, Andover, MA, USA) were used as surrogate
internal standards.

Methanol (MeOH), hexane and dichloromethane (DCM) of ultra-trace
residue-analysis grade were purchased from J. T. Baker (Phillipsburg, NJ, USA),
and nonane (pesticide analysis grade) was purchased from Sigma-Aldrich (St
Louis, MO, USA). Formic acid (90%) was purchased from Merck (Darmstadt,
Germany). A Sep-Pak VacCis (500 mg/6 cc), Sep-Pak Plus NH2 (360 mg), Sep-
Pak Vac silica gel (1 g/6 cc) and Sep-Pak Vacflorisil (500 mg/6 cc) cartridges
(Waters, Milford, MA, USA) were used for solid phase extraction (SPE). Empty
polypropylene columns (6 mL) for clean-up were purchased from Supelco

(Bellefonte, PA, USA).
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Sample preparation

The experimental procedures of analysis of OCPs, PCBs and PBDEs in
serum were optimized with some modifications of previous studies (Dmitrovic et
al., 2002; Kang et al., 2008). In brief, serum samples (2 mL) were fortified with
formic acid and Milli-Q water for protein denaturation, after '*C-labeled OCPs,
PCBs and PBDEs were spiked. The samples were extracted by SPE using Sep-Pak
Ci8 SPE cartridge, which was pre-washed with MeOH and conditioned with Milli-
Q water. The extracted cartridge was rinsed with Milli-Q water and subsequently
dried. A Sep-Pak Plus NHz2 cartridge, pre-washed with 6 mL of hexane, was
connected to the lower end of the Cis cartridge. Eight milliliter of hexane was
passed through the combined NH2-Cis cartridges and was collected. After
removing Cisg cartridge, 6 mL of 5% DCM in hexane was passed through NH2
cartridge and was combined to a previous fraction. The pooled eluents were
cleaned up onto a silica gel/florisil SPE cartridge, using 12mL of 50% DCM in
hexane. The purified eluents were concentrated and dissolved in 100uLnonane for
instrumental analysis. POPs concentrations were normalized by lipid weight of
serum. Total lipid (mg/dL) was calculated from concentrations of total cholesterol
and triglyceride that were analyzed by enzymatic methods in a commercial
clinical laboratory, by the equation of Total lipid = 2.27 * total cholesterol +
triglyceride + 62.3 (Bernert et al., 2007). Measured lipid content of maternal

serum was on average 882 mg/dL in the present population.
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Instrumental analysis and quality control

A high-resolution gas chromatography interfaced with a high-resolution
mass spectrometer (HRGC/HRMS; JMS 800D, JEOL, Tokyo, Japan) was used for
the identification and quantification of OCPs, PCBs and PBDEs. Details of
instrumental parameters have been reported elsewhere (Moon et al., 2007; Moon
et al., 2009). In brief, OCPs, PCBs and PBDEs were quantified using the isotope
dilution method based on relative response factors of individual compounds. The
HRMS was operated under positive EI mode, and ions were monitored by
selected ion monitoring using molecular ions of target compounds. A DB5-MS
(30 m length, 0.25 mm inner diameter, 0.25um film thickness; J&W Scientific,
Palo Alto, CA, USA) was used for the separation of OCPs and PCBs. A DB5-MS
(15 m length, 0.25 mm inner diameter, 0.1 pm film thickness; J&W Scientific)
was used for the separation of from tri- to heptaBDE congeners.

The recoveries of spiked 13C-labeled compounds were 91 + 10%
(average+ SD) for OCPs, 62 + 5.5% for PCBs and 87 + 13% for PBDEs. Solvents
injected before and after the injection of standards showed negligible
contamination or carryover. Procedural blanks (n = 10) were processed with every
set of 15 serum samples to check laboratory contamination. Blanks did not
contain quantifiable amounts of target contaminants. Limit of quantification (LOQ)
was calculated as 10 times the signal to noise ratio. The respective LOQs for
OCPs, PCBs and PBDEs were from 0.7 to 1.7 ng/g lw, from 0.8 to 8.3 ng/g Iw
and from 0.2 to 0.8 ng/g Iw. All the POP concentrations were adjusted to the lipid

contents of serum.
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Hormone analysis

Concentrations of free and total T3, free and total T4, and TSH of serum
samples were measured using the electrochemiluminescence immunoassay at
Samkwang Medical Laboratories (Seoul, Korea). Commercial kits for T3, T4 and
TSH were used and conducted with Elecsys automatics analytics Modular E170 (F.
Hoffmann-La Roche Ltd., Basel, Switzerland). Determinations and quality control
were made following the manufacturer’s instruction. Calibration curve and master
curve from 2-point and 5-point calibration were used for calculating
concentrations of hormones by relative light unit measurements, and tolerance
limit for quality control was three times of standard deviation of repeated
measurement. Assay ranges were 0.26-32.55 pg/mL, 0.20-6.51 ng/mL, 0.02-7.77
ng/dL,0.42-24.86 ng/dL and 0.01-100.00 plU/mL for free T3, total T3, free T4,
total T4 and TSH, respectively.
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Statistical analysis

Multiple regression analysis was conducted to evaluate associations
between the levels of POPs and thyroid hormones among the study population.
Thyroid hormone levels as dependent variables and POPs levels as independent
variables of regression model were natural log-transformed and normality
assumption of residuals was confirmed. Covariates that have been reported for
associations with the thyroid hormones elsewhere (Franklin et al., 1985;
Herbstman et al., 2008) were adjusted using a multivariate model (PROC GLM in
SAS 9.1). These covariates include age, pre-pregnancy BMI, gestational duration,
mode of delivery (e.g., vaginal or C-section delivery), or parity. In addition to
general linear model analysis, a multiple logistic regression was carried out with
hormone levels expressed as a dichotomous variable of high and low. Cutoft for
high or low concentrations was arbitrarily selected at top or bottom 20th
percentile depending on the direction of hypothesized association with POPs
(Chevrier et al., 2010). Since we hypothesized that POPs exposure would lead to
lower levels of T3 or T4, and higher levels of TSH, the bottom 20th percentile
value was selected as a cutoff for T3 or T4, while top 20th percentile was selected
for that of TSH. None of the participating pregnant women declared smoking
during pregnancy, therefore smoking was not considered as covariate. Non-detects
were treated with proxy value (LOQ divided by square root 2) following each
detection frequency, to prevent biased estimators and incorrect statistical
conclusions. For chemicals that were detected >=75% of the population, a proxy
value was used to replace the non-detect and was used for statistical analysis. For
chemicals that were detected in <75% but >=60%, however statistical analysis
was conducted with the detected values only, in order to minimize the influence of

non-detects.
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2.3. Results

Characteristics of study population

The participating pregnant women comprised mostly in their early 30’s
(mean of 33 years of age, and SD of 4 years), and about a half of the women were
primipara. Two thirds of the participating women gave birth to babies by
spontaneous, vaginal delivery. Most women were within normal weight range
before pregnancy, with mean pre-pregnancy BMI of 22.1 kg/m? (SD 10). General
characteristics of the participating women along with the levels of measured
hormones are summarized in Table 2-1. Maternal total T3 and total T4
concentrations were influenced by pre-pregnancy BMI, and TSH levels at delivery

were also significantly associated with parity and mode of delivery.
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Table 2-1. Demographic characteristics of the study population

Thyroid Hormone levels

Median (IQR)
n (%)
Free T3 Total T3 Free T4 Total T4 TSH
(pg/mL) (ng/mL) (ng/dL) (ug/mL)  (ulU/mL)
Pregnant 105 2.51 1.42 0.87 9.03 1.79
women (2.24-2.70) (1.24-1.61) (0.80-0.95) (7.84-9.81) (1.25-2.91)
Age (year)
2.49 1.40 0.86 8.16 137
22-29 43 219267) (1.12-1.63) (0.77-091) (735-9.33) (1.19-2.33)
2.48 1.41 0.89 9.16 179
30-39 81D 224271y (124-161) (0.80-0.97) (8.01-9.85) (1.27-2.89)
2.67 1.53 0.89 9.60 1.90
40-46 1000 9 42270) (1.39-1.62) (0.84-1.03) (8.30-103) (1.25-3.14)
Parity
0 SLae) 245 137 0.89 8.95 1.92+
(2.19-2.66) (1.17-1.59) (0.81-0.99) (7.84-9.61) (1.41-3.14)
o sy 25 1.47 0.87 9.25 1.64+
2 (228-2.74) (130-1.61) (0.80-0.95) (7.67-10.1) (1.12-2.38)
Delivery
2.52 1.42 0.87 8.95 1.70%
Normal 7007) 225274 (126-1.61) (0.80-0.95) (7.97-9.61) (1.14-2.62)
. 2.47 1.41 0.91 9.46 234+
Csection  3533) 5 19.066) (1.17-1.60) (0.82-0.98) (7.59-10.6) (1.50-3.14)
BMI before pregnancy (kg/m?)
243 14154 0.83 8.58* 1.69
<18.5 143 023265) (1.15-1.62) (0.73-091) (7.59-9.20) (1.10-2.91)
2.52 1.43% 0.87 8.85% 1.72
18.5-22.9 56 (33)  (98273) (124-1.61) (0.80-0.98) (7.53-9.69) (1.22-2.81)
2.53 1.55% 0.92 9.89+ 1.88
23.0-249 133 047267) (150-1.62) (0.86:0.99) (9.61-10.7) (1.35-3.35)
237 1.33+ 0.87 8.94%+ 1.90
225 2CD 223271) (1.17-1.54)  (0.80-0.94) (8.30-9.66) (1.62-3.01)
Gestational age at delivery (days)
<259 i 2.30 121 0.91 8.90 2.02
(37wks) (1.96-232) (1.02-132) (0.85-0.93) (8.02-9.49) (1.41-2.69)
260-294 101 2.52 1.43 0.87 9.03 179
(37-42wks)  (96)  (2.242.71) (1.25-1.61) (0.80-0.96) (7.84-9.85) (1.25-2.91)

Values in parentheses are interquartile range (IQR), showing the 25" and 75%

percentile values. Different symbols (*, ) means significant differences between
groups (p < 0.05) based on Wilcoxon rank-sum test or ANOVA post-hoc LSD test.
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POPs concentrations in serum

Several target compounds were detected with high frequencies (Table 2-
2). Among the target POPs, CB 138, CB 153, BDE 47, f-HCH, p,p’-DDE, and
p.p -DDT were detected in 100% of serum samples (n=105).
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Table 2-2. Serum concentrations of OCPs, PCBs, and PBDEs in pregnant

women (n=105)

Variable N>LOQ ?rzge]:z:’c'; (4  Median 1QR)

PCB
CB 28 65 62 2.70 (1.80-4.16)
CB 52 60 57 1.88 (1.24-2.80)
CB 118 66 63 2.29 (1.67-3.20)
CB 138 105 100 4.60 (1.90-6.76)
CB 153 105 100 9.02 (5.86-12.17)
Total PCB 99 94 24.69 (15.63-34.35)

PBDE
BDE 47 105 100 1.05 (0.59-2.10)
Total PBDE 94 90 2.13 (1.35-4.34)

ocp
B-HCH 105 100 7.58 (4.02-11.42)
Total HCH 87 83 9.62 (5.81-12.36)
p.p’-DDE 105 100 57.37 (38.85-78.87)
p,p’-DDT 105 100 5.20 (2.94-8.99)
Total DDT 104 99 64.40 (42.15-92.35)
OxyCHD 73 70 1.83 (1.44-2.40)
tNCHD 87 83 2.27 (1.85-3.03)
Total CHD 96 91 3.75 (2.58-5.03)
HCB 76 72 9.48 (5.10-14.59)

Units of concentration are in ng/g lipid weight. Values in parentheses are
interquartile range (IQR) showing the 25 and 75" percentile values. Values were
presented only when the frequency of detection was > 60%.
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Association between POPs and hormone concentrations in serum

Several POPs showed significant associations with levels of thyroid
hormones and TSH, after adjustment of covariates (Table 2-3). In pregnant
women, several PCBs showed consistently significant negative associations with
free /total T3, and free/total T4 concentrations (Table 2-3, Figure 2-1). CB 52 and
CB 118 showed significant negative association with free or total T3
concentrations. CB 28 showed significant negative associations with free T4.
Total PCB showed significant negative association with total T3 and total T4.
While not significant, all PCB congeners that were detected in frequencies of >60 %
showed the same negative trends with thyroid hormones. For TSH, all PCBs
showed positive associations, but statistical significance was not observed. By
logistic regression analysis, results similar to those by liner regression were
observed (Table 2-4): PCBs were generally related to increased odds of low (<20™
percentile) T3 or T4 levels. CB 118 was related to significantly increased odds of
low free T3 (adjusted odd ratio (ORadj) of 1.92) and total T3 (ORagj of 2.65). CB
153 was also related to significantly increased odds of low free T4 (ORagj of 1.11)
and total T4 (ORagj of 1.08). In addition, CB 138 was associated with increased
odds of low total T4 (ORagj of 1.15).

BDE 47 showed significant negative associations with total T3 (Table 2-
3). Total PBDE showed significant negative association with total T3 and free T3;
however, positive relationship between total PBDE and free T4 concentration was
also observed at the same time. BDE 47 levels were significantly related to
increased odds of low total T4 concentrations.

Some OCPs showed negative trends of association with T3 or T4 levels,
but other directions of association were also noted (Table 2-3). Most of the
associations were not statistically significant. Among OCPs, p,p -DDT and total

DDT showed negative associations with free T4 and total T3, respectively. HCB
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was also negatively associated with free T4 concentration, and was related to
increased odds of low total T4 concentration (ORagj of 1.08). While tNCHD, HCB,
and p,p -DDT showed generally negative trends with T3 or T4 but positive trend
with TSH, statistical significance was absent or marginal (p<0.1) in multiple

linear regression analysis (Table 2-3).
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Figure 2-1. Simple association between thyroid hormone concentrations and
PCB levels in blood of pregnant women (n=105). (a) Free T3 and CB 118, (b)
total T3 and CB 118, (c) total T3 and total PCB, (d) free T4 and CB 28, (e) free T4
and CB 153, and (f) free T4 and total PCB. PCBs that showed significant
associations with thyroid hormones based on multiple regression analysis are
shown. All PCBs concentration was natural log transformed.
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2.4. Discussion

Our observations that several PCBs are significantly associated with
thyroid hormones (Table 2-3 and 2-4; Figure 2-1) were generally comparable to
those observed in most of epidemiological and experimental studies that
demonstrated decrease of thyroid hormones, e.g., T3 or T4. For PBDEs and OCPs,
our observations suggest their potential thyroid disrupting effects, however, the

associations were not consistent.
PCBs and thyroid hormones

Our observations of significant inverse associations between several PCB
congeners such as CB 28, 52, and 118, or total PCB, and thyroid hormones in
pregnant women clearly support the thyroid disrupting effects of PCBs at the
levels occurring among general population. Because of structural resemblance,
PCBs have been considered to compete for common receptors and hence decrease
the levels of T3 or T4 (Boas et al., 2012). In addition, PCB may enhance hepatic
metabolism that may lead to elimination of thyroid hormones (Lyn 2009).
Although a few evidences have been suggested otherwise, e.g., among adults > 60
years of age participated in either 1999-2000 and 2001-2002 cycles NHANES,
PCB levels showed a positive association with TSH in women but a negative
association among men (Turyk et al., 2008); Bloom et al. (2009) reported a
positive association between PCB170 and free T4 in the New York State Angler
Cohort (n=38); and Alvarez-Pedrerol et al. (2009) reported PCBs 138, 153, or 180
measured at first trimester of pregnancy showed negative associations with T3 but
positive associations with T4 in two pregnant women cohort (n=520~570) of
Spain, most epidemiological studies on general population indeed showed

negative associations between PCBs and thyroid hormones like T3 or T4 (Osius et
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al., 1999; Persky et al., 2001; Schell et al., 2008; see Table 2-5), and positive
associations with TSH (Schell et al., 2008). For pregnant women, however, only
limited number of reports is available, but is generally comparable to our
observations. For example, Takser et al. (2005) reported negative correlation
between three non-coplanar PCBs such as CB 138, 153, and 180, and total T3
levels among pregnant women. Chevrier et al. (2008) also reported negative
association between total PCB or PCB44, 52, or 183, and free T4 among 334
pregnant women in California, USA. Our observations among the pregnant
women in Korea again confirm the same negative association between PCBs and

thyroid hormones.
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PBDEs and thyroid hormones

The significant negative associations between BDE 47 and total T3, and
between total PBDE and free T3 or total T3 observed in the present study (Table
2-3) suggest the potential thyroid disruption effects of PBDEs in pregnant women.
The effect of PBDESs on circulating thyroid hormone balance has been quite
consistently demonstrated in experimental animal studies (Fernie et al., 2005;
Kodavanti et al., 2010; Zhou et al., 2001). Occupationally exposed human
populations, e.g., Chinese workers in an electronic waste dismantling site, who
had high serum PBDE levels (n=49) did also exhibit higher TSH concentrations
than control (Yuan et al., 2008). However epidemiological evidences of such
association between PBDEs and thyroid hormones are generally limited (Meeker,
2012). Instead, the opposite direction of association has been frequently reported
(Table 2-5), and our study also showed positive relationship between total PBDE
and free T4 levels. Among 140 pregnant women, BDE 47, 99, 100, or 153 were
positively associated with free or total T4 after adjustment of smoking, maternal
age, race, gestational age, and parity (Stapleton et al., 2011). Positive associations
between PBDEs and T4levels have been also reported in other human populations
(Meeker et al., 2009; Turyk et al., 2008).

While inconsistent with free T4, the significant negative associations
between T3 and BDE 47 or total PBDE observed in the present study, however
support the observations of animal experimental studies, and add another line of
evidence for potential effects of PBDEs on lowering thyroid hormones in humans
at the levels occurring among general pregnant women. PBDEs are thought to
influence thyroid hormone balance by induction of hepatic enzymes involved in
conjugation or by down-regulation of trans-membranal thyroid hormone transport,
which would eventually lead to enhanced biliary elimination of thyroid hormones

(Boas et al., 2012; Lyn, 2009).
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Interactions among the POPs including PBDEs are possible and may
complicate the interpretation of the data. The Spearman correlation analysis
showed that BDE 47 concentrations were significantly positively associated with
those of HCB, CB 28, CB 52, and CB 118, but the associations between BDE 47
and total PCB, and total PBDE and individual PCB congeners were not significant
(Table 2-6). Since some PBDEs especially with less number of bromine atoms
may share the same source, e.g., food, with PCBs, the observed significant
associations between PBDEs and thyroid hormones may in fact be related to
PCBs, which were identified as significant modulators of serum thyroid hormones.
While total PBDE concentration was not associated any other POPs in our study,
BDE 47 showed weak correlations with HCB, CB 28, CB 52, or CB 118 (Table 2-
6). Among these, CB 52 was identified as significant determinant of free T3, and
CB 52/CB 118, as significant determinants of total T3 in multivariate model. The
significant associations between BDE 47 and free T3 or total T3 were not
remained when the PCBs were included as covariates in the model: With free T3,
the significance of CB 52 remained but that of BDE 47 became marginal (Table 2-
7). Therefore, the influence of BDE 47 on thyroid hormones appeared to relatively
weak compared to that of PCBs among the study population. This observation
should be confirmed in other populations to differentiate the effect of PBDE

exposure on thyroid hormones in relation to that of PCBs.
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Table 2-7. Adjusted associations with significant PCBs as covariates between

serum concentrations of PBDEs and free or total T3 in pregnant women

free T3
Variables

p 95% CI
BDE 47 -0.039* -0.081, 0.003
CB 52 -0.072%** -0.141. -0.004

total T3
Variables

p 95% CI
BDE 47 -0.006 -0.076, 0.063
CB 52 -0.114 -0.305, 0.076
CB 118 -0.078 -0.259, 0.104

Significant results from multiple regression analysis using each individual
congener (Table 2-3) were reanalyzed by adding CB 52 for testing relationship
between BDE 47 and free T3, and CB 52 and 118 in model for testing relationship
between BDE 47 and total T3 as covariates. Here, CB 28, 52, and 118 showed
significant relationships with BDE 47 in Spearman rank correlation test. **, *
indicate statistical significance at p=0.05, and 0.1, respectively.
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OCPs and thyroid hormones

While several OCPs appeared to be associated with T3, T4, or TSH in the
present study, the directions of association were less consistent and generally
insignificant. DDTs and HCB were shown to be generally associated with
reduction of T3 or T4, or increase of TSH (Table 2-3). Serum HCB concentrations
were also shown to be related with increased odds of low (<20%) total T4 levels
(Table 2-4). The effects of HCB exposure on thyroid disruption have been
reported in several studies. For example, negative associations between HCB and
free or total T4 were observed among 334 pregnant women in California, USA
(Chevrier et al., 2008), but in their study, HCB and PCB were strongly correlated
together, thus independent association of HCB with thyroid function could not be
confirmed. Similar negative association between HCB and total T4 was reported
in a preliminary study with a selected sample of New York State Angler Cohort
(n=66) (Bloom et al., 2003). While DDTs are reported to inhibit TSH receptor and
may result in decreased circulatory T3 and T4 concentrations (Lyn, 2009), most
epidemiological studies that reported potential associations failed to control the
influence of other chemicals with possibly more powerful thyroid disrupting
potentials, e.g., PCBs. Since PCBs may often have similar sources of exposure
with DDTs depending on the population, therefore true association between DDTs
and thyroid hormones might be masked. In the present study, strong associations
were observed between DDTs and several PCBs, and their significant associations
on thyroid hormones disappeared when CB 52, CB 118, or total DDT were
included as covariates in the regression model. Thus thyroid hormone disrupting
potential of DDTs suggested in the present study need to be further investigated in

other populations.
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2.5. Summary and implications

In this study, several PCBs such as CB 28, 52, and 118 showed negative
associations with T3 or T4 in pregnant women. BDE 47 and total PBDE showed
significant associations with T3 or T4. For OCPs, DDTs and HCB were
generally associated with reduction of T3 or T4.

Major limitations of the current study include (1) no measurement of
iodine intake or urinary iodine concentrations, and (2) relatively small sample size.
Iodine ions are necessarily for synthesis of thyroid hormones, and additional
intake of iodine is recommended for pregnant women (WHO/UNICEF, 2007).
However the influence of iodine intake on the association between POPs exposure
and thyroid hormone levels is not clear yet in humans. Based on a large sample of
pregnant women from two population-based cohort studies of Spain (n=1090),
iodine intake was identified not to modify the association between organochlorine
compounds and thyroid hormones (Alvarez-Pedrerol et al., 2009). However
potential influence of iodine intake should not be ignored and should be subject to
further assessment. The sample size of the present study (n=105) is relatively
small compared to those of other studies (n=140-570; Stapleton et al., 2011;
Chevrier et al., 2011; Chevrier et al., 2008; Alvarez-Pedrerol et al., 2009).
However, the present study is unique in that we have measured as many as 57
different chemicals including PCBs, PBDEs and OCPs, and all five types of
thyroid hormones at the same time. With the limited sample size, the results of the
present study clearly show consistent effect of several POPs on thyroid function,
similar to those reported from several animal and epidemiological studies. While
the validation of our result in larger populations would be needed, the results of
the present study provide a strong line of evidence that the current POPs exposure
among humans in sensitive life stage could influence the balance of thyroid

hormones.



Thyroid hormone levels in blood are tightly regulated within an
individual, hence intra-individual variation would often be negligible compared to
the inter-individual variations or the wide reference ranges. Therefore, small
changes in thyroid hormone levels by the exposure to environmental chemicals
may not be easily detected in a small human population (Boas et al., 2012). While
all the subjects were within the reference range, PCBs and PBDEs at the current
exposure levels among pregnant women are clearly related with potential for
disrupting thyroid hormone homeostasis in the present study. Although subtle, the
changes in thyroid hormones should be seen with caution because even minor
changes within a given pregnant woman may have significant consequences
especially on sensitive population like fetus. Therefore it is important to identify

and control the potential sources of POPs exposure among the pregnant women.



Chapter 3. Association between several persistent organic
pollutants and thyroid hormone levels in cord blood

serum and bloodspot of the newborn infants of Korea

3.1. Introduction

POPs have been detected in various environmental media and biota
worldwide, even though many of these compounds including OCPs, and PCBs
had been banned for use several decades ago. DDT, one of best known OCPs,
which had been widely used for vector control, has been frequently detected in
human worldwide (Fujii et al., 2011; Smith, 1999). PBDEs are a group of
emerging POPs that have been relatively recently recognized for widespread
contamination and adverse health effects (Eriksson et al., 2001; Siddiqi et al.,
2003). Both in wildlife animals and humans, adverse reproductive, developmental,
neurologic, and endocrine health effects have been well-documented for many
POPs (EPA, 2009).

POPs can cross the placenta during pregnancy (Vizcaino et al., 2014), occur
in breast milk (Lee et al., 2013b; Lee et al., 2013c; Gomara et al., 2007), and
therefore affect the endocrine system of fetuses and breastfed infants. The early
life stages of life are particularly vulnerable to chemical exposures because of
incomplete metabolic activities (Dencker and Eriksson, 1998), and rapid somatic
growth and development (Birnbaum, 1994). The exposure to chemicals including
POPs of developing fetus has been suggested to be possibly linked to the health of
later stages of life (Eriksson and Talts, 2000; Gascon et al., 2011).

This chapter has been submitted to PLoS One (August 28, 2014).
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Exposure to POPs has been associated with disruption of thyroid hormones in
several human epidemiological studies (Alvarez-Pedrerol et al., 2009; Meeker et
al., 2007; Stapleton et al., 2011). Thyroid hormones are essential for normal
growth and development of the fetus during the most of gestation period (Forhead
and Fowden, 2014). Among pregnant women, even moderate changes of thyroid
hormone levels may be associated with adverse outcomes for the mother or her
offspring (Berbel et al., 2009; Idris et al., 2005; Sahu et al., 2010). In previous
studies, while within reference range, higher maternal TSH levels were associated
with an increased risk of miscarriages, fetal and neonatal distress (Benhadi et al.,
2009) and preterm delivery (Stagnaro-Green et al., 2005). In addition, high free
T4 levels within the normal reference range were associated with reduced preterm
delivery rate (Torremante et al., 2011). Thus, considering the importance of
thyroid hormones in developing fetus and newborn infants, even small changes in
thyroid hormones in these vulnerable populations are of potential concern.
Associations between prenatal POPs exposure and thyroid hormone levels among
newborn infants have been investigated by several groups, but the results are
generally inconsistent and often controversial (Abdelouahab et al., 2013; Chevrier
et al., 2007; Chevrier et al., 2011; Eggesbo et al., 2011; Herbstman et al., 2008b;
Longnecker et al., 2000). Since thyroid hormone levels of cord blood serum are
significantly influenced by maternal hormones (Fisher, 1997; Thorpe-Beeston et
al., 1991b) and show significant fluctuations during and shortly after the delivery
(Kim et al., 2005), it is quite challenging to identify the true association between
POPs exposure and thyroid hormone levels in cord serum.

This study is conducted as a part of a matched pregnant woman and fetus
panel of Korea, i.e., CHECK Panel study, which has been investigated the levels
of POPs exposure and their associations with adverse health outcomes including
thyroid hormone levels (Lee et al., 2013a; Lee et al., 2013b; Choi et al., 2014).

The CHECK Panel is composed of pregnant women-fetus pairs without any
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known occupational exposure pathways to major POPs such as OCPs, PCBs, and
PBDEs and was recruited since 2011 from four cities of Korea. In Chapter 2,
negative associations between PBDEs/PCBs exposure and thyroid hormone levels
from the pregnant women (n=105) of this panel were reported.

In the present study, the associations between prenatal exposure to various
POPs, and thyroid hormone status of the newborn infant population of the same
CHECK Panel were investigated. In order to account for the influence of maternal
thyroid inputs, cord serum models were adjusted for maternal thyroid hormone
concentrations. The results of this study will help better understand the influences
of prenatal POPs exposure on newborn infants, and identify the areas that warrant

further investigations in the future.



3.2. Materials and methods

Study population and sample collection

A total of 148 healthy pregnant women with neither pre-pregnancy thyroid
disease history nor pregnancy induced thyroid diseases and diabetes were
recruited before delivery from five university hospitals located in four cities of
Korea, i.e., Seoul, Anyang, Ansan, and Jeju. These four cities were representatives
of a residential megacity, a mid-sized residence city, a mid-sized industrial city,
and a mid-sized island city, respectively. Their matching fetuses were also
recruited after full-term normal delivery. Details about the participating women
can be found in Chapter 1 and 2. During delivery, maternal blood and umbilical
cord blood were collected, separated for serum on site, and stored in
polypropylene cryovials at =70 °C until analysis.

Among them, POPs and thyroid hormones were analyzed in blood serum of
104 matching pairs. In addition, on day 2 post-partum, bloodspot was obtained
from each participating newborn infant by heel prick method, except for 5 infants
who were sampled at day 5 and 7 post-partum.

Institutional Review Boards of School of Public Health, Seoul National
University, and all participating university hospitals (Soon Chun Hyang
University Seoul Hospital Institutional Review Board, Hallym University Sacred
Heart Hospital Institutional Review Board, Institutional Review Board of Korea
University Ansan Hospital, and Institutional Review Board of Jeju National
University Hospital) approved the study, and the informed consents were obtained

from the participating women. All samples and data were processed blind.
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Data collection

Umbilical cord serum samples were processed and measured for 19 PCB
congeners, 19 PBDE congeners, and 19 OCPs, consistently with previous study
(Chapter 2). In addition, levels of five thyroid hormones, i.e., free/total T3,
free/total T4, and TSH, were obtained (Chapter 2). All thyroid hormones were
analyzed by electrochemiluminescence immunoassay, and details for thyroid
hormone measurements were provided in Chapter 2. For POPs quantification, '*C-
labeled 8 PCBs (EC9605-SS; Wellington Laboratories, Guelph, ON, Canada),
13C-labelled 6 PBDEs (MBDE-MXE; Wellington) and *C-labeled 19 OCPs (ES-
5349-L; Cambridge Isotope Laboratories, Andover, MA, USA) were used as
surrogate internal standards.

Concentrations of five thyroid hormones in cord serum samples were
measured using the electrochemiluminescence immunoassay at Samkwang
Medical Laboratories (Seoul, Korea) consistently with Chapter 2. TSH levels
from bloodspots (n=96) were analyzed as a part of a national screening program
of Korea, by radioimmunoassay.

One-on-one interview with participating pregnant women were conducted at
the time of enrollment. Demographic characteristics, physiological data, and

pregnancy related record were obtained.
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Sample preparation

The experimental procedures of analysis of OCPs, PCBs and PBDEs in
serum were optimized with some modifications of previous studies (Dmitrovic et
al., 2002; Kang et al., 2008). In brief, serum samples (2 mL) were fortified with
formic acid and Milli-Q water for protein denaturation, after '*C-labeled OCPs,
PCBs and PBDEs were spiked. The samples were extracted by SPE using Sep-Pak
Ci8 SPE cartridge, which was pre-washed with MeOH and conditioned with Milli-
Q water. The extracted cartridge was rinsed with Milli-Q water and subsequently
dried. A Sep-Pak Plus NHz2 cartridge, pre-washed with 6 mL of hexane, was
connected to the lower end of the Cis cartridge. Eight milliliter of hexane was
passed through the combined NH2-Cis cartridges and was collected. After
removing Cisg cartridge, 6 mL of 5% DCM in hexane was passed through NH2
cartridge and was combined to a previous fraction. The pooled eluents were
cleaned up onto a silica gel/florisil SPE cartridge, using 12mL of 50% DCM in
hexane. The purified eluents were concentrated and dissolved in 100uL nonane
for instrumental analysis. POPs concentrations were normalized by lipid weight of
serum. Total lipid (mg/dL) was calculated from concentrations of total cholesterol
and triglyceride that were analyzed by enzymatic methods in a commercial
clinical laboratory (Samkwang Laboratory, Seoul, Korea), by the following
equation (Bernert et al., 2007).

Total lipid = 2.27 * total cholesterol + triglyceride + 62.3

Measured lipid content of maternal blood and cord blood serum was on average

881 mg/dL and 231 mg/dL in the present population.
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Instrumental analysis and quality control

A high-resolution gas chromatography interfaced with a high-resolution
mass spectrometer (HRGC/HRMS; JMS 800D, JEOL, Tokyo, Japan) was used for
the identification and quantification of OCPs, PCBs and PBDEs. Details of
instrumental parameters have been reported elsewhere (Moon et al., 2007; Moon
et al., 2009). In brief, OCPs, PCBs and PBDEs were quantified using the isotope
dilution method based on relative response factors of individual compounds. The
HRMS was operated under positive EI mode, and ions were monitored by
selected ion monitoring using molecular ions of target compounds. A DB5-MS
(30 m length, 0.25 mm inner diameter, 0.25um film thickness; J&W Scientific,
Palo Alto, CA, USA) was used for the separation of OCPs and PCBs. A DB5-MS
(15 m length, 0.25 mm inner diameter, 0.1 pm film thickness; J&W Scientific)
was used for the separation of from tri- to heptaBDE congeners.

The recoveries of spiked *C-labeled compounds were 91 £ 10%
(average+ SD) for OCPs, 62 + 5.5% for PCBs and 87 + 13% for PBDEs. Solvents
injected before and after the injection of standards showed negligible
contamination or carryover. Procedural blanks (7 = 10) were processed with every
set of 15 serum samples to check laboratory contamination. Blanks did not
contain quantifiable amounts of target contaminants. LOQ was calculated as 10
times the signal to noise ratio. The respective LOQs for OCPs, PCBs and PBDEs
were from 0.7 to 1.7 ng/g lipid weight (Iw), from 0.8 to 8.3 ng/g Iw and from 0.2
to 0.8 ng/g lw. All the POP concentrations were adjusted to the lipid contents of

serum.
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Statistical analysis

Among 57 kinds of target POPs, 8 chemicals which were detected > 60% in
cord serum and sum of the isomers (XPCB, £PBDE, ~XDDT, ZCHD, XHCH) were
used in statistical analysis. For chemicals that were detected > 75% of the
population, a proxy value, i.e., LOQ divided by square root 2, was used to replace
the non-detects (Hornung and Reed, 1990). For chemicals that were detected in <
75% but > 60%, statistical analysis was conducted only with the detected values,
in order to minimize the influence of non-detects (Chapter 2).

Multivariate analysis was conducted with natural log transformed dependent
and independent variables to minimize the effect of highly right-skewed data. To
determine associations between POPs and thyroid hormone measurements in cord
serum, covariates that have been reported for associations with the thyroid
hormones elsewhere (Franklin et al., 1985; Herbstman et al., 2008a) including age
(continuous variable), pre-pregnancy BMI (continuous), gestational day
(continuous), mode of delivery (categorical), parity (categorical), maternal
weight-gain during pregnancy (continuous) were included. In addition, where
related, respective thyroid hormone concentrations of the matching mother were
also added into the model because cord serum thyroid levels can be affected by
the maternal input (Fisher, 1997; Thorpe-Beeston et al., 1991b). For example, we
included maternal free T4 level as a covariate (continuous) in the cord free T4
regression model. Inclusion of maternal thyroid hormone was decided following
Spearman correlation test with whole CHECK population pair (n=258). Unlike
cord serum thyroid hormones, bloodspot TSH was considered to be independent
of maternal TSH. As infant sex was determined to be significantly associated with
bloodspot TSH, infant sex was added as covariate for analysis of bloodspot TSH.
In multivariate analysis, ANOVA test results (p < F) for significance of linear

model and normality of the residuals were checked. P for trend was determined
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p<t for parameter estimates in general linear model. P for trend < 0.05 was set as
significant results, but considering small sample size, we also commented on p <
0.10 as marginal significance. To interpretation of regression results, we provided
back-calculated value of regression coefficient to show a change in thyroid
hormone levels associated with increase of interquartile range (IQR) in each target
chemical concentrations.

Sensitivity analysis was conducted with covariates to identify major
predictors among them. When two or more independent variables were
determined as significant predictors to the same dependent variable, and also
simultaneously correlated each other in Spearman correlation test, those predictors
were included in the same multivariate model. SAS 9.3 (SAS Institute Inc., Cary,

NC, USA) was used for statistical analyses.
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3.3. Results

Characteristics of study population

General characteristics of the participating women and their newborn
infants, along with the levels of thyroid hormones are summarized in Table 3-1.
The ages of the participating pregnant women are generally in their early 30s
(mean of 33 years of age, SD of 4 years), and about a half of the women were
primiparae. Approximately two thirds of the participating women gave birth to
babies by spontaneous vaginal delivery. Before pregnancy, most women were
within normal weight range, with a mean pre-pregnancy BMI of 21.8 kg/m* (SD
3.4). All TSH measurements in bloodspot papers were below 20 plU/mL and
determined no newborn infants with congenital hypothyroidism (Kim et al., 2005;
Lee etal., 2001).

Respective thyroid hormones were generally correlated each other in case of
total T3, free T4, and total T4 in whole CHECK population (data not shown).
Therefore, to keep consistency, matching maternal free T3, total T3, free T4, total
T4, or TSH was included as a covariate in all respective multivariate models for

each cord thyroid hormone.



Table 3-1. Characteristics of the study population

Variable n Mean +SD Median Range
Maternal characteristics
Maternal age (years) 104  333+39 33 25-46
Gestational age (days) 104 276=+7.6 276 261-293
BMI (kg/m?) 99 21.8+21.1  21.1 15.6-33.6
xz;erf:iyw(eﬁgn gainduring o0 1400037 137 3-32
Mode of delivery 104  NSVD* 72 (69%), C-section”: 32 (31%)
Parity 104  Primipara: 55 (53%), multipara: 49 (47%)
Maternal serum hormones
Free T3 (pg/mL) 104 253+034 252 1.49-3.68
Total T3 (ng/mL) 104  1.44+0.28 1.46 0.62-2.20
Free T4 (ng/dL) 104 092+0.16 0.90 0.65-1.58
Total T4 (ug/mL) 104 9.18+1.55 9.24 5.45-14.09
TSH (ulU/mL) 104  2.11+£1.20 1.87 0.01-5.61
Infants characteristics
Infants sex 104  Female: 51 (49%), Male: 53 (51%)
Birth weight (kg) 104 33+04 33 2.5-43
Birth Iength (cm) 103 50.1+1.9 50.0 45-54
Cord serum hormones
Free T3 (pg/mL) 104 1.43+0.23 1.39 1.00-2.39
Total T3 (ng/mL) 104 0.65+0.11 0.63 0.48-1.08
Free T4 (ng/dL) 104 1.24+0.11 1.24 0.94-1.52
Total T4 (ug/mL) 104 865+1.19 8.61 5.65-11.59
TSH (nlU/mL) 104 10.27+5.74 8.24 1.59-31.94
Bloodspot TSH® (ulU/mL) 96 559+3.08 5.05 0.10-15.90

4 Normal spontaneous vaginal delivery.

® Caesarean section.

“Bloodspot TSH was measured from bloodspot samples collected at day 2-7 post-
partum. Most newborn babies were collected for bloodspot on day 2 (within 48
hrs) post-partum, but 3 and 2 infants were collected on day 5 and 7 post-partum,
respectively.
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POPs concentrations in cord blood serum

Several target compounds were detected in > 60% of samples (Table 3-2). Among
the target POPs, only p,p’-DDE was detected in > 90% of cord serum samples.
Detection levels of POPs were generally similar with maternal population data.
However, detection frequencies were generally lower. Thus cord serum CB 28,
CB 118, CB 138, oxyCHD, and p,p -DDT were excluded from the statistical
consideration because of their low detection frequencies (< 60%), and BDE 99
was included (> 60%), compared to the analysis in their maternal population. The
concentration of ZPCB and XPBDE were higher in the cord serum than in the
maternal serum. In cord serum, XPCB and XPBDE were detected at a median of
34.7 ng/g Iw (interquartile range (IQR) of 18.4-55.5) and 8.8 ng/g lw (4.9-14.3),
respectively, while those were detected at 23.5 (15.7-33.5) and 2.23 ng/g lw (1.5-
4.6) in maternal serum. Most of the POPs were correlated with each other in both
cord and maternal serum. CB 153 was correlated with many other chemicals in
cord serum, and p,p -DDE was correlated with other chemicals like CB 153, BDE
47, f-HCH, and tNCHD in maternal serum.
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Table 3-2. Cord blood serum concentrations of OCPs, PCBs, and PBDEs

among the newborn infant population (n=104)

Cord blood serum Maternal serum
Chemical Detection 40 gian (IQR)*  Detection v dian (IQR)
frequency frequency
n>LOQ (%) (ng/g lw) n>LOQ (%) (ng/g lw)

PCB

XPCB 97 93.3 34.7 (18.4-55.5) 96 92.3  23.5(15.7-33.5)

CB 52 66 63.5 5.4 (3.5-9.9) 69 66.3 1.0 (0.6-2.0)

CB 153 78 75.0 10.5 (7.2-14.1) 95 91.3 8.4 (5.9-11.3)
PBDE

XPBDE 88 84.6 8.8 (4.9-14.3) 97 93.3 2.2 (1.5-4.6)

BDE 47 77 74.0 3.0 (2.0-4.5) 92 88.5 1.2 (0.6-2.1)

BDE9%9 67 64.4 3.0 (1.8-4.5) 29 27.9 0.7 (0.6-1)
OoCP

p-HCH 70 67.3 7.5 (5.3-10.0) 88 84.6 7.5 (4.0-11.8)

YHCH 71 68.3 10.4 (7.8-13.9) 90  86.5 9.4 (6.0-12.9)

p, p’-DDE 101 97.1 63.0 (44.0-91.5) 101 97.1  55.2(38.7-73.9)

XDDT 103 99.0 65.2 (46.3-97.2) 102 98.1  62.3 (42.6-81.3)

tNCHD 70 67.3 1.8 (1.4-2.7) 92 88.5 2.1(1.4-2.7)

XCHD 82 78.8 2.6 (1.6-3.9) 96 92.3 3.9 (2.8-5.1)

HCB 69 66.3 12.7 (2.8-22.3) 80  76.9 5.5(1.5-12.2)

% Interquartile range (IQR) showing the 25" and 75 percentile values.

Only the compounds of which frequency of detection was > 60% in cord serum
were shown here.

>PCB is the sum of all target PCB congeners (CB 18, 28, 33, 44, 52, 70, 101, 105,
118, 128, 138, 153, 170, 180, 187, 194, 195, 199 and 206), and ZPBDE is the sum
of all target PBDE congeners (BDE 17, 28, 47, 49, 66, 71, 77, 85, 99, 100, 119,
126, 138, 153, 154, 156, 183, 184 and 191). XHCH included a-, f-, y- and -HCH,
YDDT included p,p-DDE, o,p"-DDE, p,p"-DDD, o,p-DDD, p,p"-DDT and o,p’-
DDT, and XCHD included oxyCHD, trans-chlordane, cis-chlordane, tNCHD and
cis-nonachlordane.
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Association between cord serum POPs and thyroid hormone concentrations of

newborn infants

Out of eight target POPs, four chemicals showed significant associations
with thyroid hormone levels of newborn infants after adjustment of the covariates
at p <0.05 (Table 3-3). Cord serum HCB and total T4 showed negative
associations with each other, showing a 5.8 % (95% confidence interval (CI), -
10.9 to -0.4) decline in total T4 by IQR increase in HCB. BDE 47, and BDE 99
showed positive associations with cord TSH and blood spot TSH, respectively.
IQR increase of BDE 47 and BDE 99 was associated with a 30.4 % (95% CI, 2.6
to 65.7) increase of bloodspot TSH, and a 21.2 % (95% CI, 0.1 to 46.8) increase
of cord TSH, respectively. Pp’-DDE showed significant positive association with
bloodspot TSH, and marginal negative association with total T3, simultaneously.
A 16.5 % (95% CI, 1.9 to 33.2) increase of bloodspot TSH was associated with
IQR increase of p,p -DDE in cord serum. XCHD and TSH in cord serum was
positively related with marginal significance as well. In contrast, ZPCB and f-
HCH concentrations showed negative association with bloodspot TSH, but only at
the level of p <0.1. Cord blood CB 52, CB 153, and tNCHD were not associated
with any thyroid hormones in neonates in our study.

In the sensitivity analysis, all three marginally significant results were
disappeared. For total PCB and total T3, positive association was disappeared
after adjustment of p,p -DDE, and negative association with bloodspot TSH and
total PCB was disappeared after adjustment of BDE 47. Similarly, marginal
significance of XCHD with bloodspot TSH became insignificant after inclusion of
BDE 99 in the multivariate model. However, positive association between p,p -
DDE and bloodspot TSH (XCHD: =0.041, p>0.1; p,p’-DDE: =0.539, p<0.01)

was remained significant even after the sensitivity analysis (Table 3-4).
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Table 3-4. Associations between serum POPs concentrations and thyroid

hormones after adding all the POPs with significant association in the model

Cord or Bloodspot
Cord POPs Thyroid hormoges P O5% C)
>PCB TT3 %0 0.02 (-0.02, 0.06)
p.p -DDE TT3 -0.04" (-0.09, 0.00)
BDE 99 Cord TSH 57 0.22*(0.00, 0.42)
>CHD Cord TSH 0.13 (-0.06, 0.33)
>PCB Bloodspot TSH 65 0.07 (-0.13, 0.27)
BDE 47 Bloodspot TSH 0.38(0.08, 0.67)
>CHD Bloodspot TSH 7 0.04 (-0.20, 0.28)
p.p -DDE Bloodspot TSH 0.54(0.25, 0.82)
Cord or Bloodspot
Maternal POPs Thyroid hormoﬁes n B (95% CI)
S-HCH fT3 95 -0.04" (-0.08, 0.01)
p,p -DDE fT3 -0.02 (-0.07, 0.03)
>CHD fT4 28 -0.03 (-0.07, 0.01)
p.p -DDE T4 -0.01 (-0.05, 0.02)
BDE 47 Bloodspot TSH 0.02 (-0.13, 0.18)
>DDT Bloodspot TSH 89 -0.13 (-0.58, 0.32)
p.p -DDE Bloodspot TSH 0.45™ (0.14, 0.76)

Signs ** and * indicate statistical significance of regression parameter (f3) at
p=0.05, and 0.1, respectively. ‘CI’ confidence interval; ‘fT3’ free T3; ‘TT3’ total
T3; ‘fT4’ free T4. For the calculation of association, two or more independent

variables that were determined as significant effectors to a given thyroid hormone,

and at the same time were correlated each other, were added in the multiple

regression analysis, in order to identify major effectors.
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Association between maternal serum POPs and thyroid hormone concentrations

of newborn infants

Among seven target chemicals, three kinds of maternal POPs, i.e., f-HCH,
YCHD, 2DDT, and p,p -DDE, were significantly associated with thyroid
hormones of newborn infants, and BDE 47, tNCHD, and HCB were marginally
associated (Table 3-5). Maternal CB 52 and CB 153 were not associated with fetal
thyroid hormone status (Table 3-5). f/-HCH showed negative associations with
free and total T3 both, and IQR increase of f-HCH was related with 4.7 % (95%
ClI, -8.4 to -0.7) decrease of free T3 and 4.1 % (95% ClI, -8.0 to -0.1) decrease of
total T3. ZCHD were negatively related with free and total T4 both (p for trend =
0.07 for total T4), and 2.3 % (95% CI, -4.4 to -0.1) decline of free T4 was
associated with IQR increase of ZCHD in maternal serum. Although at p for trend
<0.1 level, maternal tNCHD concentration was also negatively related with cord
total T3 concentrations. Both XDDT, and p,p -DDE showed significant positive
associations with bloodspot TSH, but the negative associations between p,p -DDE
and free T3, free/total T4 were observed with marginal significance. Increased
maternal BDE 47 was marginally related with increased bloodspot TSH, but no
relationships were observed with the other cord thyroid hormones.

In sensitivity analysis, p,p -DDE appeared to be a predominant effector on
bloodspot TSH. Multivariate model analysis with bloodspot TSH and its three
significant effectors, i.e., BDE 47, total DDT and p,p’-DDE, showed that the 3
coefficient of regression equation of p,p -DDE became greater (p,p -DDE:
=0.451, p<0.01) compared to the model with p,p ’-DDE only (=0.209, p<0.05)
(Table 3-4). However, both maternal f-HCH and XCHD became insignificant
after adjustment of maternal p,p’-DDE in the free T3 and free/total T4 models
(Table 3-4).
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3.4. Discussion

Influence of maternal thyroid hormones on the effect of POPs exposure to
neonatal thyroid hormones

Relatively few studies have been conducted on the association between
POPs exposure and thyroid hormones among newborn infants (Table 3-6), and
these observations generally showed inconsistent results. For example, while
several studies reported the increase of TSH and decreases of T3 or T4, which are
similar to the results of experimental studies on PBDEs (Abdelouahab et al., 2013;
Herbstman et al., 2008b; Kim et al., 2011; Lin et al., 2011), PCBs (Chevrier et al.,
2007; Herbstman et al., 2008b; Zhang et al., 2010), or OCPs (Asawasinsopon et
al., 2006; Maervoet et al., 2007; Ribas-Fito et al., 2003), the associations of the
opposite directions or no association were also reported (Chevrier et al., 2011;
Dallaire et al., 2008; Kim et al., 2009b; Longnecker et al., 2000; Takser et al.,
2005; Zhang et al., 2010), even within the same study (Ribas-Fito et al., 2003).
Seemingly inconsistent associations between prenatal POPs exposure and the
thyroid hormones in cord serum may be explained by several reasons. First,
thyroid hormone levels in cord serum could be confounded by maternal transfer of
thyroid hormones. Maternal thyroid hormones can be transferred to the fetus by
perfusion system of placenta and blood exchange via cord. Fetuses depend
entirely on the maternal supply of T4 during the first trimester and continue to
depend on to varying degrees throughout the pregnancy (Contempre et al., 1993).
At birth, around 30-60 % of thyroid hormones in cord blood are of maternal origin
(Fisher, 1997; Thorpe-Beeston et al., 1991a). Therefore, thyroid hormones
measured in cord serum could be confounded by the physiological or
environmental factors that could influence maternal thyroid hormone levels.
Second, several factors related to maternal, fetal, and delivery conditions may

influence the thyroid status of the fetus. For example, delivery associated factors,



such as mode of delivery, time of labor, emergency cesarean section, and induced
labor, are reported to be related with intrapartum stress of mother and fetus
(Herbstman et al., 2008a), leading to rapid changes of thyroid hormone levels
shortly after birth (Kim et al., 2005). Because, in studies involving human
populations, controlling labor-related factors beforehand is difficult, those
variables that may influence the fetal thyroid hormones should be identified and
adjusted in the statistical analytical model.

In the present study, in order to minimize the influences of the factors that
would confound the between cord serum thyroid hormone levels and prenatal
POPs exposure, we included maternal thyroid hormone level as covariate in the
multivariate analysis model. In addition, TSH levels measured in bloodspot
collected at 2 day post-partum were also analyzed for the association with prenatal
POPs exposure. Since TSH is maintained consistent after 24 hrs of delivery,
bloodspot TSH levels of the newborn infants at 2 day post-partum are considered
relatively independent from the influence of the maternal thyroid hormones (Kim
et al., 2005). In this context, Hardy et al. (2008) reported that bloodspot TSH
showed better sensitivity than cord serum TSH, and greater sensitivity than cord
serum T4 for screening congenital hypothyroidism. The use of maternal thyroid
hormones as covariates and inclusion of bloodspot TSH are among the strengths
of our study. Adjusting with maternal thyroid hormones appeared to successfully
control, at least to certain extent, the confounding influences of maternal input on
cord thyroid hormone levels. One example is the influence of maternal tNCHD on
cord total T3. The association between maternal tNCHD and cord total T3 was
marginally significant (f=-0.049, p=0.074, 3.2 % (95% CI: -6.4 to 0.0) of total T3
decline by tNCHD IQR increase) with maternal total T3 adjustment (Table 3-4).
While, following the removal of maternal total T3 level as a covariate in the
model, the association between maternal tNCHD and cord total T3 became

insignificant (=-0.040, p>0.10), 2.6 % (95% CI: -5.7 to 0.7) of total T3 decrease
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by tNCHD IQR increase (Table 3-7), and this observation implies that the
maternal total T3 could in fact confound the association and could lead to a wrong
conclusion. In our previous study, maternal T3 was not affected by tNCHD
exposure (Chapter 2). However, these observations warrant further confirmation

in other pregnant women-fetus pair populations.
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Table 3-7. Results of multivariate analysis with or without maternal thyroid

hormone as covariates in the model

Neonatal  Yithout maternal thyroid With maternal thyroid
Fetal thyroid hormone hormone
O hormone
n B (95% CI) n B (95% CI)
SPCB Cord TT3 89  0.03 (-0.07, 0.07) 89 0.03*(0.00,0.07)
p, p-DDE 96 -0.04 " (-0.08, 0.00) 96 -0.04 " (-0.08, 0.00)
HCB Cord TT4 64 -0.03 " (-0.06,-0.01) 64  -0.03 ™ (-0.06, 0.00)
BDE99 Cord TSH 62  0.22™(0.01,0.42) 62 0.21"(0.00, 0.42)
TCHD 76 0.157(0.00, 0.31) 76 0.16 " (0.00, 0.30)
XPCB  Bloodspot 84  -0.16"(-0.33,0.01) 81  -0.18"(-0.36, 0.01)
BDE 47 TSH 66 033 (0.03,0.62) 63 0357 (0.04, 0.66)
», p-DDE 91  0.21 ™ (0.03,0.39) 88 0.25 ™ (0.06, 0.44)
Neonatal  Yithout maternal thyroid With maternal thyroid
Maternal thyroid hormone hormone
HOLE hormone
n B (95% CI) n B (95% CI)
B-HCH  CordTT3 95 -0.04"(-0.08,0.00) 95  -0.04 " (-0.08, 0.00)
{NCHD 95  -0.04 (-0.09, 0.01) 95  -0.05" (-0.10, 0.00)
YCHD Cord fT4 88 -0.04 " (-0.08,-0.01) 88 -0.04 ™ (-0.08, -0.00)
», p-DDE 95  -0.02 " (-0.04, 0.00) 95  -0.02 " (-0.04, 0.00)
YCHD  Cord TT4 88  -0.06"(-0.12, 0.00) 88  -0.06"(-0.12, 0.01)
», p-DDE 95  -0.03 " (-0.07,0.01) 95  -0.03 " (-0.07, 0.00)
HCB Cord TSH 95  0.10 " (0.00, 0.21) 95  0.09 " (-0.02,0.19)
BDE47  Bloodspot 90  0.13 * (-0.01, 0.27) 87  0.12(-0.04,0.23)
SDDT TSH 90 035 (0.00, 0.69) 87 0.43 ™ (0.06,0.81)
», p’-DDE 91  0.26 " (0.07, 0.45) 88 0.317(0.11,0.50)

Signs ** and * indicate statistical significance of regression parameter at p=0.05,
and 0.1, respectively. Bold values (shaded) represent difference in significance of
association after adjustment of maternal thyroid hormones in the model. ‘CI’
confidence interval; ‘fT3’ free T3; ‘TT3’ total T3; ‘fT4’ free T4; ‘TT4’ total T4.
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Association between POPs exposure and thyroid hormones

Several POPs appeared to be associated with the changes in thyroid
hormone levels in newborn infants, which is comparable to our recent
observations on pregnant women (Chapter 2) and several experimental studies
(Darras, 2008; Hallgren and Darnerud, 2002; Scollon et al., 2004; Zhou et al.,
2001). Negative associations of several POPs exposure with total T3 and positive
associations with cord serum or bloodspot TSH, which remained significant after
controlling relevant covariates in multivariate models, clearly showed the thyroid
disrupting potentials of POPs among newborn infants even at the current low
exposure levels.

Our findings that prenatal exposure to OCPs (p,p -DDE, HCB, f-HCH, and
> CHD) appeared to be associated with T3, T4 of cord serum, and TSH of
bloodspot was consistent with experimental study results. There are several
experimental studies that support thyroid disruption toxicity of OCPs (Foster et al.,
1993; Scollon et al., 2004; Alvarez et al., 2005). In the 30-days exposure,
increased T4 to T3 conversion and enlarged liver were observed following HCB
treatment in rats (Alvarez et al., 2005). In experiment using sparrows, p,p -DDT
exposure led to decreased thyroid hormone levels, and inhibition of TSH receptor
function was one of the suggested thyroid hormone disruption of DDTs (Scollon
et al., 2004; Santini et al., 2003). CHDs can interfere in the cellular uptake of
thyroid hormones, resulted in T3 or T4 reduction (Shimada et al., 2004).

The effect of OCPs appeared to be more evident among newborn infants
compared to their matching mothers (Chapter 2). Early developmental stages are
considered to be more sensitive to exposure to OCPs (Vesselinovitch et al., 1979).
Potential epigenetic transgenerational action of several OCPs on endocrine system
(Schug et al., 2011; Skinner et al., 2013) could also in part explain the greater

sensitivity among newborn infants.
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The significant positive associations between BDE 47 and bloodspot TSH,
and between BDE 99 and cord serum TSH, even after adjustment of other related
chemicals (Table 3-3 and 3-5) suggest the effects of PBDEs thyroid hormone
homeostasis disruption in newborn infants. PBDEs, especially BDE 47, were
suggested to act through increase of hepatic enzyme related with glucuronidation,
or decrease of transport protein transthyretin (Hallgren et al., 2001; Richardson et
al., 2008). Although human study is still sparse and the results are not consistent,
our observation among newborn infants is comparable to those of experimental
studies (Abdelouahab et al., 2009; Hallgren et al., 2001; Kim et al., 2009a;
Kodavanti et al., 2010), warranting further confirmation in the epidemiological
studies.

There was no significant association between prenatal PCBs exposure and
thyroid hormone levels among newborn infant population in the present study,
opposite to the result in maternal serum which significant relationships between
PCBs exposure and total T3 or T4 were observed (Chapter 2). Total PCB in cord
serum shows only weak effects (p < 0.10) on cord total T3 and bloodspot TSH
levels (Table 3-3). However, these weak influences of total PCB disappeared by
adding p,p ’-DDE and BDE 47 of cord serum in the model (Table 3-5), suggesting
that the effects of total PCB on thyroid hormones was probably confounded by
PBDEs and OCPs. This null-association is not consistent with experimental
results in rats (Gauger et al., 2004; Donahue et al., 2004; Zoeller et al., 2000),
however, several epidemiological studies regarding thyroid hormone and PCB in
newborns also failed to detect such observations (Table 3-6). For example, no
effects on thyroid hormones were observed with prenatal PCB exposure
(Longnecker et al., 2000; Takser et al., 2005), even though significant associations
with other POPs were observed in the same population (Abdelouahab et al., 2013;
Dallaire et al., 2008; Ribas-Fito et al., 2003).

Why do PCBs influence thyroid hormone levels differently among pregnant
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women and newborn infants? While direct answer to this question is not ready, a
couple of reasons can be considered in the future studies. First, potential
differences in thyroid-related metabolic pathways between pregnant women and
newborn infants should be considered (Glinoer, 1997). Even in the same condition
of marginal iodine deficiency, newborns were protected from hypothyroxinemia
unlike mothers, suggesting different physiological responses (Glinoer et al., 1992).
Second, compared to other chemicals, PCBs are regarded to possess more

complex mechanisms of action of thyroid-disruption, e.g., on the function of the
TSH receptor, binding transport proteins, hormone receptor and gene expression,
and excretion/clearance of thyroid hormones (Boas et al., 2006). Such complex

dynamics may have obscures true associations.
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3.5. Summary and implications

We tried to explore the associations between thyroid hormone levels and
prenatal POPs exposure in matching pregnant-infant pair, and several POPs were
appeared as significant determinant of decrease of T3/T4 and increase of TSH
concentrations. This study has some limitations: (1) cross-sectional study design
and small sample size, and (2) possible measurement error of free form thyroid
hormone. Cross-sectional origin can lead to achievement of statistical significance
due to chance with numerous regression model generations. We tried to make
complementary result with sensitivity analysis, and many kinds of POPs
measurements made it possible although our sample size is not enough to have
statistical power. Also, it believes that serum albumin, abnormal binding proteins,
high free fatty acid, or hormone binding inhibitors may alter the free hormone
immunoassay measurements (Spencer, 2013). Although the relationships between
binding protein and free thyroid hormones were controversial in direct liquid
chromatography-tandem mass spectrometry (LC/MS/MS) method (van Deventer
et al., 2011; Jonklass et al., 2009), this should be considered and double-checked
with TSH results when we interpret results for free thyroid hormones. These
limitations might be lead that the associations in our study were somehow
inconsistent within chemicals, across hormones (e.g. positive associations with
TSH were not found in parallel with negative associations with fT4), or measured
media (maternal vs cord serum, or cord serum vs bloodspot).

However, our study is unique in that we have measured three groups of
POPs and all five thyroid hormones in both maternal and fetal serum samples at
the same time. While the validation of our result in larger populations would be
needed, the results of the present study provide another line of evidence that the
current OCPs and PBDEs exposure among humans in sensitive life stage could

influence the balance of thyroid hormones. Controlled for maternal thyroid



hormones, the observed associations are believed to more accurately reflect the
response of cord serum thyroid hormones against the prenatal POPs exposure. The
observed associations between POPs exposure and bloodspot TSH of newborn
infants also support the same influence of the POPs toward thyroid hormone
disrupting potential among newborn infants. Slight decreases in thyroid function
(subclinical or mild hypothyroidism) may lead negative health outcomes,
especially over the long term and during pregnancy. Even though thyroid hormone
levels are within the reference range, small changes (< 25%) of maternal T4 or
TSH during the early fetal period are associated with adverse health outcome
(WHO/UNEP, 2012). Thus, considering the importance of thyroid hormones in
rapidly developing bodies, public health implications of thyroid hormone
disturbance among newborn infants should receive further investigations. This
observation also emphasizes importance of further studies on later life stage

implications of the hormonal alteration among developing infants.
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Chapter 4. Association between several persistent organic
pollutants in serum and adipokine levels in breast milk

among Korean lactating women

4.1. Introduction

Several hormones, synthesized and secreted by adipocytes, i.e., adipokines,
have been identified in serum and breastmilk, and associated with regulation of
food intake and energy balance (Savino et al., 2013). For this reason, adipokines,
such as leptin and adiponectin, have been often employed to understand the
etiology of obesity among human population (Briffa et al., 2013; Boeke et al.,
2013; Gillman and Mantzoros, 2007; Mantzoros et al., 2009). Recently several
POPs have been suggested to cause obesity by alteration of lipid metabolism of
humans (Lind and Lind, 2012; Thayer et al., 2012). For example, low-dose
exposure to OCPs and PCBs has been associated with a greater risk of obesity
(Lee et al., 2007; Lee et al., 2011; Lim et al., 2010; Taylor et al. 2012) even
among childhood (Valvi et al. 2012).

POPs exposure has been associated with altered adipokine levels in many in
vitro and in vivo experiments (Howell and Magnum, 2011; Wahlang et al., 2013;
Taxvig et al., 2012; Provost et al., 2007). Epidemiological observations are

relatively limited but also increasing in number. Serum leptin showed negative

This chapter has been submitted to Environmental Science & Technology

(January 29, 2015).
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associations with serum CB 138, CB 180, and BDE 153 levels in obese adults
(Pereira-Fernandes et al., 2014). Leptin mainly acts to regulate energy balance,
and decreased leptin may lead to increased adiposity. Adiponectin acts to increase
uptake and catabolism of fatty acids, and energy expenditure to regulate the
energy homeostasis. Adiponectin is correlated to adiposity (Savino et al., 2013),
but the directions of the association vary by population (Mullerova et al., 2008;
Lim and Jee, 2014).

Among infants and children, blood adipokines have been also associated
with obesity. In a prospective cohort study, perinatal leptin (maternal plasma at
26-28 weeks of gestation, and cord blood) was negatively correlated with
adiposity at 3 years of age, but age 3 leptin was positively correlated with
adiposity at age 7 (Boeke et al., 2013). Similarly, serum leptin levels were
inversely correlated with f-HCH or p,p ’-DDE exposure in boys of 8 to 9 years of
age (Burns et al., 2011). Adiponectin in cord blood was inversely associated with
weight gain for the first 6 months after birth and adiposity at 3 years of age
(Mantzoros et al., 2009).

Adipokines in breast milk can influence their circulating levels in breastfed
infants (Savino et al., 2012; Ucar et al., 2000). Furthermore, adiponectin in breast
milk is reported to possess a greater biological activity and greater gastrointestinal
absorption rate than the forms existing in blood (Newburg et al., 2010). Therefore
breast milk adipokines have been recognized as important hormones that are
associated with obesity (Ahima and Osei, 2008; Leal Vde and Mafra, 2013;
Nakamura et al., 2014). Doneray et al. (2009) reported that breast milk leptin
concentration is inversely associated with BMI increase during the first one month
of age. Adiponectin levels in breast milk are positively associated with weight
gain among 2 year old infants (Brunner et al., 2014; Woo et al., 2012).

Despite the importance of breast milk adipokines among infants, to our

knowledge its association with maternal POPs exposure has never been



investigated. In the present study, we investigated the association between the
breast milk adipokine levels and the serum POPs levels among lactating women
of Korea. The utility of breast milk as an alternative medium to maternal serum
for measuring adipokines could be assessed. In addition, since breast milk
adipokines are important for infant growth and possibly for obesity in the later
stages of the life, this study will also shed light on the implication of maternal
POPs exposure on the potential adverse health outcome of her offspring through

lactational transfer of adipokines.
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4.2. Materials and methods

Study population and sample collection

A total of 138 healthy pregnant women without chronic disease history were
recruited before delivery from five university hospitals located in four cities of
Korea, i.e., Seoul, Anyang, Ansan, and Jeju, from February to December 2011, as
a part of the CHECK (Children’s Health and Environmental Chemicals in Korea)
Panel. Details about the demographic characteristics of the participating women
were shown in Chapter 1. On arrival at the hospital for delivery (within 1 day
before delivery), maternal blood samples were collected, separated for serum on
site, and stored in polypropylene cryovials at =20 °C until analysis. Breast milk
samples were collected from the same women at 7, 15 or 30 days after delivery, in
polypropylene tubes following a detailed instruction with pictorial guide. The
breast milk samples were then frozen and transported on ice to the laboratory.
Samples were stored in the laboratory at —70 °C until further analysis. Among 138
recruited mothers collected for blood serum at delivery, 87 mothers provided
breast milk samples but only 82 samples were analyzed for adipokines due to the
limited amount of the samples. Most of breast milk samples were collected at the
15th day after delivery (n=74), and one and seven samples were collected at days
7 and 30 after delivery, respectively.

One-on-one interview with participating pregnant women was conducted at
the time of enrollment. Demographic characteristics such as age, body weight, and
height, medical history, or pregnancy related records were obtained from this
interview.

Institutional Review Boards of School of Public Health, Seoul National
University, and all participating university hospitals (Soonchunhyang University

Seoul Hospital, Hallym University Sacred Heart Hospital, Korea University



Ansan Hospital, and Jeju National University Hospital) approved the study. The
informed written consents were obtained from the participating women. All

samples and data were processed blind.
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Chemical analysis

Maternal serum samples were processed and measured for 19 PCB
congeners, 19 PBDEs congeners, and 19 OCPs, as shown in a previous studies
(Chapter 2 and 3). For POPs quantification, *C-labeled 8 PCBs (EC9605-SS;
Wellington Laboratories, Guelph, ON, Canada), '*C-labelled 6 PBDEs (MBDE-
MXE; Wellington) and '*C-labeled 19 OCPs (ES-5349-L; Cambridge Isotope
Laboratories, Andover, MA, USA) were used as surrogate internal standards.

The experimental procedures of analysis of OCPs, PCBs and PBDEs in
serum were optimized with some modifications of previous studies (Dmitrovic et
al., 2002; Kang et al., 2008). In brief, serum samples (2 mL) were fortified with
formic acid and Milli-Q water for protein denaturation, after '*C-labeled OCPs,
PCBs and PBDEs were spiked. The samples were extracted by SPE using Sep-
Pak Cis SPE cartridge, which was pre-washed with MeOH and conditioned with
Milli-Q water. The extracted cartridge was rinsed with Milli-Q water and
subsequently dried. A Sep-Pak Plus NHz cartridge, pre-washed with 6 mL of
hexane, was connected to the lower end of the Cis cartridge. Eight milliliter of
hexane was passed through the combined NH2-Cis cartridges and was collected.
After removing Cis cartridge, 6 mL of 5% DCM in hexane was passed through
NH: cartridge and was combined to a previous fraction. The pooled eluents were
cleaned up onto a silica gel/florisil SPE cartridge, using 12mL of 50% DCM in
hexane. The purified eluents were concentrated and dissolved in 100uL nonane
for instrumental analysis. POPs concentrations were normalized by lipid weight of
serum. Total lipid (mg/dL) was calculated from concentrations of total cholesterol
and triglyceride consistently with Chapter 2 and 3.

A high-resolution gas chromatography interfaced with a high-resolution
mass spectrometer (HRGC/HRMS; JIMS 800D, JEOL, Tokyo, Japan) was used
for the identification and quantification of OCPs, PCBs and PBDEs. Details of



instrumental parameters have been reported elsewhere (Moon et al., 2007; Moon
et al., 2009). In brief, OCPs, PCBs and PBDEs were quantified using the isotope
dilution method based on relative response factors of individual compounds. The
HRMS was operated under positive EI mode, and ions were monitored by
selected ion monitoring using molecular ions of target compounds. A DB5-MS
(30 m length, 0.25 mm inner diameter, 0.25um film thickness; J&W Scientific,
Palo Alto, CA, USA) was used for the separation of OCPs and PCBs. A DB5-MS
(15 m length, 0.25 mm inner diameter, 0.1 um film thickness; J&W Scientific)
was used for the separation of from tri- to heptaBDE congeners.

The recoveries of spiked *C-labeled compounds were 91 + 10%
(average+ SD) for OCPs, 62 + 5.5% for PCBs and 87 = 13% for PBDEs. Solvents
injected before and after the injection of standards showed negligible
contamination or carryover. Procedural blanks (n = 10) were processed with every
set of 15 serum samples to check laboratory contamination. Blanks did not
contain quantifiable amounts of target contaminants. LOQ was calculated as 10
times the signal to noise ratio. The respective LOQs for OCPs, PCBs and PBDEs
were from 0.7 to 1.7 ng/g Iw, from 0.8 to 8.3 ng/g lw and from 0.2 to 0.8 ng/g Iw.

All the POP concentrations were adjusted to the lipid contents of serum.



Adipokines measurements

For adipokine measurement, 2 ml of all breast milk samples were thawed at
room temperature, and then centrifuged at 10,000 rpm for 1 minute to separate fat
layers. Only the liquid phase of the samples were used and diluted to within the
assay concentration range. Commercially available enzyme-linked
immunosorbent assay (ELISA) kit (Human Leptin DuoSet®, and Human
Adiponectin/Acrp30 DuoSet®, R&D systems, Minneapolis, MN, USA) was
applied. Analytical method was validated following the manufacturer's
instructions. Recoveries were calculated by comparing to the spiked internal
standard, and were 86 % and 95 % for leptin and adiponectin, respectively.
Recoveries for linearity within spiked matrix, 2-, 4-, and 8-fold diluted matrix
ranged between 88 and 92 % for leptin assay, and between 130 and 140 % for
adiponectin assay. Standard curves were generated in 96 well plates with R? >
0.99 and R? > 0.96 for leptin and adiponectin measurements, respectively. All
assays were performed in duplicate. Detection limits for leptin and adiponectin

were 15.63 and 62.5 ng/L, respectively.



Statistical analysis

Nine chemicals which were detected > 60%, i.e., HCB, f-HCH, p,p -DDE,
p.p’- DDT, oxyCHD, tNCHD, BDE 47, CB 138, and CB 153, and the sum of each
group (ZPCB, XPBDE, £DDT, XCHD, XHCH), were used in statistical analysis.
However, we did not differentiate f-HCH from XHCH, because most of the
>HCH was B-HCH, and the statistical results were basically the same. There was
possibility to decline of adipokine expression following increase of breast feeding
duration, so we conducted statistical analysis with dataset from breast milk at 15
days postpartum only (n=74), to minimize potential variation of adipokine levels
by duration of lactation. For chemicals that were detected > 75% of the population,
a proxy value, i.e., LOQ divided by square root 2, was used to replace the non-
detects (Hornung and Reed, 1990). In addition, the subjects with non-detects for
any of the target chemicals were excluded from the statistical analysis (n=24).
Thus, final dataset for statistical analysis was limited to 50 subjects.

Multivariate analysis was conducted following natural log transformation to
minimize the effect of a highly right-skewed data. To determine the associations
between POPs and adipokine measurements, age (continuous) and pre-pregnancy
BMI (categorical) were included as covariates in the models. We also evaluated
group difference according to the quartiles of the serum POPs levels with
ANCOVA to consider the possible non-monotonic dose-responses (Beausoleil et
al., 2013; Lee et al., 2011; Vandenberg et al., 2012). Statistical significance was
defined at p < 0.05. SAS 9.3 (SAS Institute, Cary, NC, USA) was used for

statistical analyses.
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4.3. Results

Characteristics and POPs exposure level of study population

The participating pregnant women were generally in early 30s (median 33
years of age) and approximately a half of the participating women were
primiparae (Table 4-1). About 70 % of the participating women gave birth to
babies by normal spontaneous vaginal delivery. Before pregnancy, most women
(61%) were within normal BMI range with a median of 20.5 kg/m?.

Among 57 POPs analyzed, nine chemicals were detected in > 60% of
samples (Table 4-2). p,p’-DDE and CB 153 was detected in > 90% of the serum
samples. XHCH, ZDDT, and XCHD were detected at a median of 9.20
(interquartile range (IQR) of 5.82-13.3), 67.3 (47.8-92.7), and 3.8 ng/g lw (2.77-
5.06), respectively. Median serum concentrations of ZPCB and ZPBDE were
determined at 27.3 ng/g Iw (16.2-34.7) and 2.20 ng/g Iw (1.49-4.93), respectively.
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Table 4-1. Demographic parameters of study population

Parameter Basic characteristics (n=82)
Mothers
Age (years) Median (range) 33 (25-46)
Gestational age (days) Median (range) 276 (261-293)
Parity ? N (%) primipara: 42 (51)
multipara: 40 (49)
Delivery mode ° N (%) NSVD: 56 (68)
C-section: 26 (32)
;;‘;'Ip(rlf;‘:l‘giy N (%) Underweight: 10 (12)
Normal range: 61 (76)
Overweight: 10 (12)
Sampling time (weeks) N (%) <lwks: 1 (1)
2 wks: 74 (90)
4 wks: 7 (9)
Infants
Sex N (%) male: 39 (48)

female: 43 (52)
Weight at birth (Kg) Median (range)  3.29 (2.51-4.01)

2 Parity is the number of pregnancies carried and a women who has given birth
once before is referred to as a primipara and other is referred to as a multipara.
® NSVD: Normal spontaneous vaginal delivery, C-section: Caesarean section.
¢ BMI were reported with 81 cases because of 1 missing data.
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Table 4-2. Serum POPs concentrations in Korean lactating mothers (n=82)

n (% DF) GM Median (IQR)
OCPs
HCB 60 (73) 4.24 4.2 (1.18-11.1)
>HCH 68 (83) 7.67 9.2 (5.82-13.29)
p.p -DDE 80 (98) 57.57 62.2 (43.37-83.88)
p,p’-DDT 69 (84) 4.68 5.1 (3.35-8.04)
>DDT 81 (99) 65.93 67.3 (47.81-92.72)
oxyCHD 62 (76) 1.30 1.6 (0.49-2.27)
tNCHD 65 (79) 1.73 2.0 (1.04-3)
> CHD 73 (89) 3.66 3.8 (2.77-5.06)
PBDEs
BDE 47 70 (85) 0.96 1.1 (0.59-2.05)
> PBDE 73 (89) 2.60 2.2 (1.49-4.93)
PCBs
CB 138 65 (79) 4.02 5.2 (1.9-6.78)
CB 153 76 (93) 8.42 9.4 (6.21-13.05)
>PCB 77 (94) 24.67 27.3 (16.24-34.69)

DF: Detection frequency. GM: Geometric mean. Interquartile range (IQR): the
25" and 75" percentile values.

Only the compounds of which frequency of detection was > 60% were shown
here. XPCB is the sum of all target PCB congeners (CB 18, 28, 33, 44, 52, 70, 101,
105, 118, 128, 138, 153, 170, 180, 187, 194, 195, 199 and 206), and ZPBDE is the
sum of all target PBDE congeners (BDE 17, 28, 47, 49, 66, 71, 77, 85, 99, 100,
119, 126, 138, 153, 154, 156, 183, 184 and 191). ZHCH included a-, -, y- and o-
HCH, ZDDT included p,p-DDE, o,p"-DDE, p,p'-DDD, o,p-DDD, p,p"-DDT and
o,p-DDT, and XCHD included oxyCHD, trans-chlordane, cis-chlordane, tNCHD

and cis-nonachlordane.
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Adiponectin and leptin concentrations in breast milk

Leptin was detected with a median of 17.9 ng/L (range ND-3356 ng/L) in
the breast milk samples analyzed in the present study (n=82). For adiponectin, the
median breast milk level was 16.5 pg/L (range 2.6-91.0 pg/L, Table 4-3). A
significant negative correlation was observed between pre-pregnancy BMI and
breast milk leptin levels (Spearman’s rho=-0.24, n=77, p<0.05). However no
significant relationship was observed between maternal BMI and adiponectin

levels.
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Association between maternal serum POPs and breast milk adipokines

concentrations

Among nine target POPs, oxyCHD, XCHD, BDE 47, and CB 153
concentrations showed significant negative associations with breast milk leptin
levels (see Table 4-4). One interquartile range (IQR) increase of oxyCHD and
2~CHD was associated with 81% (95% confidence interval: -92 to -56%) and 36%
(95% CI: -55 to -10%) decrease of leptin concentrations, respectively. With one
IQR increase of BDE 47, 62% decrease of leptin (95% CI: -76 to -39%) was
estimated. For CB 153, one IQR increase was associated with 42% decrease of
leptin (95% CI: -65 to -4%).

Adiponectin concentrations in breast milk were positively associated with
oxyCHD and BDE 47 levels in maternal serum, after being adjusted with age and
pre-pregnancy BMI (Table 4-4). An IQR increase of oxyCHD was associated with
42 % increase (95% CI: 8 to 87%) of adiponectin, and an IQR increase of BDE 47
was associated with 19% increase (95% CI: 2 to 39%)).

When the serum POPs levels were grouped in quartile ranges, and were
associated with leptin, the same significant negative associations were observed
for oxyCHD, XCHD, BDE 47, and CB 153 (data not shown). For adiponectin,
significant differences with generally increasing trend were observed with
quartiles of p,p’-DDT, tNCHD, and £PCB (Figure 4-1).

Associations between breast milk adipokines and serum POPs became
stronger among the women who reported normal pre-pregnancy BMI (Table 4-4).
The B coefficients for leptin and XCHD, and leptin and CB 153 among the women
with normal pre-pregnancy BMI (n=36) were -0.891 and -0.869, respectively,
which were greater than -0.739 and -0.744 determined for the all participating
women (n=50). Among normal pre-prenancy BMI group, one IQR increase of

>CHD or CB 153 resulted in an additional 6% decrease of leptin. In p values, the
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relationships between adiponectin and POPs became more significant in the
normal weight group. The association between XCHD and adiponectin became
more significant among the normal pre-pregnancy BMI group ( = 0.249, p<0.05)
compared to the all participating women (B = 0.168, p<0.1). Similarly, among the
normal BMI group, CB 138 level showed a marginally significant association
with adiponectin, while no significant association was detected in the all
population. This observation means one IQR increase of CB 138 corresponds to
additional 7 % increase of adiponectin among the normal BMI group, compared

to the all participating women.
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4.4. Discussion

Breast milk leptin and adiponectin levels of Korean mothers

To our knowledge, this is the first report of adiponectin and leptin
concentrations among Korean lactating women. The measured mean levels and
the range of breast milk adipokines in the present study are generally similar to
those reported elsewhere (Table 4-3; Bronsky et al., 2011; Martin et al., 2006;
Miralles et al., 2006; Savino et al., 2012; Weyermann et al., 2006; Woo et al.,
2009). The geometric mean and median of leptin are generally lower than those
reported elsewhere, indicating a highly right-skewed distribution of breast milk
leptin concentrations. Consistently with previous studies, breast milk adiponectin

levels are several times higher than leptin levels.
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Association between maternal serum POPs and leptin concentrations in breast

milk

Significant negative correlations between breast milk leptin and oxyCHD,
Y'CHD, BDE 47, or CB 138 levels, observed after the adjustment of age and BMI,
support the plausibility of association between POPs and obesity. Leptin plays a
critical role in the metabolism of whole body, e.g., by increasing energy
expenditure, and inhibiting food intake (Galic et al., 2010). For these reasons,
decrease of leptin has been often associatd with increased risk of obesity. In an
experimental study using rat under high fat diet, leptin given during the pregnancy
and lactation successfully prevented obesity at 6 months of age (Pico et al., 2007).
Human studies also demonstrated similar negative associations between breast
milk leptin and the risk of obesity development later. A negative association was
detected between leptin at 1 month of lactation and infant BMI at 18-24 months of
age (Miralles et al., 2006). In a prospective cohort study, lower leptin levels in
cord blood were associated with lower birth weight but with more pronounced
weight gain in the first 6 months of life and higher BMI at 3 years of age (Boeke
et al., 2013; Mantzoros et al., 2009).

Consistently with our observation, the same negative associations between
leptin and POPs exposure were reported in two epidemiological studies (Table 4-
5). CB 138, 180, and BDE 153 levels were negatively associated with serum and
adipocyte leptin levels among obese adult population (Pereira-Fernandes et al.,
2014). In 8-9-year-old boys, serum leptin concentration was also inversely
correlated f-HCH and p,p -DDE levels in serum (Burns et al., 2011). However,
experimental studies suggested often the other direction of the association:
Exposure to p,p -DDE, oxyCHD, CB 153 showed positive association with leptin
((Howell and Mangum, 2011; Taxvig et al., 2012; Wahlang et al., 2013). However

the in vitro experimental studies employing cell models often cannot reflect
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complex regulatory feed-back mechanisms that take place in vivo. Two in vivo
experimental studies employing mice (Male C57BL6/J) and rats (Sprague
Dawley), the directions of association between POPs and leptin varied by the
exposure duration: Longer term exposure to chlorinated POPs such as CB 153 (12
weeks) or Aroclor 1243 (30 days) were associated with increase of serum leptin,
but shorter term exposure (15 day) to Aroclor 1243 led to decrease in serum leptin
levels of the rodent models (Provost et al., 2007; Wahlang et al., 2013).

Intake of leptin via breast milk can be easily reflected in the circulation level
of leptin in breast-fed infants (Ucar et al., 2000). Therefore higher breast milk
leptin levels may help prevent obesity of the breastfed infants ((Boeke et al., 2013;
Mantzoros et al., 2009; Miralles et al., 2006). In the present study, POPs body
burden showed clear negative correlation with breast milk leptin levels, providing

another evidence supporting the ‘obesogen’ hypothesis for POPs.
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Association between maternal serum POPs and adiponectin concentrations in

breast milk

Different from leptin, significant positive associations were observed
between breast milk adiponectin and several POPs in serum, e.g., p,p -DDT,
oxyCHD, tNCHD, Y CHD, BDE 47, CB 153, or > PCB (Table 4- 4, Figure 4-1).
Our observations are generally supported by experimental studies. Exposure to
p.p -DDE, oxyCHD, or CB 153 showed positive associations with adiponectin
levels in NIH3T3-L1 cell and 3T3-L1 adipocyte (Howell and Mangum, 2011;
Taxvig et al., 2012). In rats, CB 153 exposure led to increased adiponectin levels
with decreased peroxisome proliferator-activated receptor-a (PPAR-a) in serum
(Wahlang et al., 2013).

However, among humans, the directions of the association varied. Turyk et
al. (2012) reported positive associations between PBDEs including BDE 47 and
adiponectin concentrations in the serum of general adult population (n=483).
However, negative associations between total PCB and adiponectin in Korean
adults with higher BMI value (Lim and Jee, 2014), and between CB 153 and
adiponectin levels among obese women (n=27; Mullerova et al., 2008) were also
reported. The reason for this inconsistent direction of associations is not clear.
However it should be noted that the opposite direction of association between
POPs and adiponectin was generally observed among adults with higher BMI, and
therefore may not represent the true direction of the association among general
population. The mechanisms underlying this phenomenon warrant further
investigation.

Generally, elevated adiponectin can be interpreted as a compensational
effort against increased adiposity, as in normal weight situation increased
adiponectin would increase energy expenditure. In this context, clear positive

association among the normal weight group of the present study population might
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reflect feedback effort toward homeostasis. However, due to the limited sample
size (n=36), the interpretation of this association warrants caution. More

epidemiological confirmation and experimental supports are warranted.
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Table 4-5. Association between adipokine levels and POPs body burden in

human cross-sectional studies

Chemicals  Adiponectin Leptin  Population n Country Reference
Obese Czech
B1 2 1
CB 153 | serum women ! Republic M
p-HCH, p,p -DDE | serum 8-9 yrs 350 Russia 2)
PP (boys)
> PBDE 1 serum Adult 483 USA 3)
CB 138, CB 180, | serum, .
. Obese Adult 50 Bel 4

BDE 153 adipocyte ese At e @
>PCB | serum Adult 98  Korea 5)
p,p -DDT,
oxyCHD, . .., Lactating .
{NCHD, YCHD, 1 breast milk | breast milk mothers 78 Korea  This study
BDE 47, YPCB

| and 1 mean direction of association, and serum or adipocyte show media in which

adipokine levels were measured. (1) Mullerova et al., 2008, (2) Burns et al., 2011, (3)

Turyk et al., 2012, (4) Pereira-Fernandes et al., 2014, (5) Lim and Jee, 2014.
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4.5. Summary and implications

To our knowledge, this is the first study which shows that several POPs
exposure might influence the adipokine productions of mothers. Breast milk could
serve as a non-invasive biological specimen for adipokine measurement. Our
observations clearly show that at the current levels of exposure, several POPs are
associated with altered adipokines such as leptin and adiponectin in breast milk.

The biological activity of orally ingested adipokines from human milk was
addressed in previous studies, showing the presence of adiponectin receptor in
fetal small intestine (Zhou et al., 2005) and the protective environment, i.e., low
acidity, and limited gastic proteolysis in infant stomach (Henderson et al., 2011;
Lonnerdal, 2003; Hamosh, 1996). In a mouse experiment, the highest molecular
form of adiponectin was absorbed within 2 hours after administration into the
stomach (Newburg et al., 2011). Also, breast milk adiponectin and leptin
concentration were reflected to serum adiponectin and plasma leptin level of
breast-fed infants (Newburg et al., 2011; Ucar et al., 2000).

As intake of adipokines through breastfeeding could contribute to their
circulating levels in infants, alteration of breast milk adipokine by POPs exposure
may have a significant public health implication among growing infants.
Consequences of the alteration in breast milk leptin and adiponectin levels by
POPs exposure, e.g. obesity in later stages of life, should warrant further follow-

ups.
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Chapter 5. Conclusion

The association between POPs exposure and thyroid hormones or adipokine
levels among pregnant women or matching newborns was determined in a series
of three studies. For this purpose, three groups of POPs (OCPs, PBDEs, and PCBs)
and health effect markers (thyroid hormones and adipokines) were measured in
CHECK Panel.

In the first part, the relationship between several POPs exposure and thyroid
hormone concentrations was assessed (n=105). PCBs, BDE 47, DDTs or HCB
were generally associated with the reduction of T3 or T4 and increase of TSH.
Only a small extent of change of maternal thyroid hormone within the reference
range has a significant impact on fetal development; thus, our findings on the
significant disruption of thyroid hormones by the current levels of exposure to
POPs in pregnant women should be emphasized.

In the second part, the associations between prenatal exposure to major
POPs and thyroid hormone levels among newborn infants were investigated
(n=104). Prenatal exposure to several POPs (BDE 47, BDE 99, p,p"-DDE, ZCHD,
or HCB) was found to be related to the decrease of T3 or T4 levels and the
increase of TSH in cord serum and neonatal bloodspot both. In the analysis which
explored the association between cord serum thyroid hormone and prenatal POPs
exposure, adjustment of maternal thyroid hormone level was suggested as the one
of the determinants of the fetal thyroid hormone levels.

In the third part, the relationship between several POPs levels in maternal
serum and adipokine levels in breast milk was assessed (n=50). We found the
significant influence of POPs exposure on the disturbance of adiponectin and

leptin production in breast milk. This significant result is meaningful as the first
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report on the association between breast milk leptin and adiponectin expression
and POPs exposure. Also, it might provide another piece of evidence on the
alteration of lipid metabolism effect of POPs at the currently occurring low-
exposure levels, as well as on the possibility of POPs’ functioning as ‘obesogens’.

Overall, this study is unique in that we have simultaneously measured three
groups of POPs and all five thyroid hormones in both maternal and fetal serum
samples. However, this study has several limitations, namely: (1) multiple
statistical testing and many predictors which might lead to the increase of type I
error; (2) sample size that was not sufficient enough to gain statistical power; (3)
there was still a possibility that we could not catch the effect of chemicals with
low abundance, although POPs analysis was conducted following appropriate
technical method and QA/QC. The third limitation can be overcome by the
development of analyzing technology with significant improvement of detection
limit. Also, possible low-dose effect of POPs should be further investigated. Due
to chance with numerous regression model generations, false-positive research
findings might rate. We tried to obtain complementary results with sensitivity
analysis, and several kinds of simultaneous POPs measurements made it possible,
although our sample size was not sufficient to have statistical power. To overcome
the limitations identified above, a validation in a larger population sample, a
follow-up study on the link between hormonal change in early life stage and
adverse health outcomes in later life of stage to confirm the causality, and a
prospective birth cohort should be conducted.

Thyroid hormones and adipokines are critical during gestation and early life
stages. Thus, considering the importance of endocrine hormones at this stage and
the effects of the interaction between thyroid hormones and adipokines

concentration on obesity or weight loss, health implication of endocrine disruption
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effects by low level POPs exposure deserves further follow-up investigations.
Although several findings in this study were supported by previous experimental

studies, they should be confirmed further in future work.
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