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Abstract 

 

Radar Data Assimilation for the Simulation of Heavy Rainfall Cases 

over the Korean Peninsula Using Adjoint-based Methods 

 

Yonghan Choi 

School of Earth and Environmental Sciences 

The Graduate School 

Seoul National University 

 

In the first part of this study, I selected a heavy rainfall case over the Korean 

Peninsula, which was characterized by two localized rainfall maxima. This 

rainfall was caused by an air-mass thunderstorm related to surface heating. The 

atmosphere over the southwestern and east coast of the Korean Peninsula was 

convectively unstable with a large Convective Available Potential Energy 
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(CAPE) value, and lower-level convergence acted as a lifting forcing. Neither 

of two maxima is simulated accurately when no radar data are assimilated, or 

when radar data are assimilated using the Three Dimensional Variational (3D-

Var) method. Using the Four Dimensional Variational (4D-Var) method 

partially improves the simulated rainfall over the southwestern part of the 

Korean Peninsula. In order to obtain further improvements in the rainfall 

forecast, outer loops and the Quasi Static Variational Assimilation (QSVA) 

method are used. In the QSVA method, the length of the assimilation window is 

increased gradually, and the starting point of the current minimization task 

comes from the minimizer of the previous minimization task. 

The minimization of the cost function in the 4DVAR, OUTER, and QSVA 

experiments converges successfully after several iterations. The ending value of 

the cost function and Root Mean Square Error (RMSE) of O-A (observation 

minus analysis) for the OUTER and QSVA experiments are smaller than those 

for the 4DVAR experiment. This implies that the analysis of the OUTER and 

QSVA experiments is better than (i.e., closer to the observations) the 4DVAR 

experiment. RMSE of O-B (observation minus background) and RMSD of 

analysis increment (analysis minus background) for the OUTER and QSVA 

experiments are less than those for the 4DVAR experiment. Therefore, the 
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improved analysis of the OUTER and QSVA experiments is owing to a better 

background estimate (or first guess) of those experiments. Furthermore, more 

observations (maybe, critical in improving the rainfall forecast) get into the 

assimilation in the OUTER and QSVA experiments by reducing innovation (O-

B) value. 

The gap between nonlinear and linear growth (or the nonlinearity of the 

original minimization problem) is reduced in the OUTER and QSVA 

experiments compared to the 4DVAR experiment. This is because the 

background estimate and nonlinear model trajectory are progressively updated 

in those experiments. It should be also noted that the nonlinearity of the 

nonlinear minimization problem is increased with increasing length of the 

assimilation window in the minimization tasks of the QSVA experiment. 

Incremental wind in the 4DVAR (or OUTER) experiment is cyclonic and 

convergent over the southwestern part of the Korean Peninsula, and this 

modification leads to an improved rainfall forecast in the 4DVAR (or OUTER) 

experiment compared to the CONTROL or 3DVAR experiment. However, the 

simulated rainfall amount over the southwestern part of the Korean Peninsula is 

overestimated, and the rainfall distribution wrongly extends to the central part 

of South Korea in the 4DVAR (or OUTER) experiment. In the QSVA 
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experiment, the analysis increment of CAPE is negative over the western part 

of the Korean Peninsula, which results in a better rainfall forecast than in the 

4DVAR or OUTER experiment. The nonlinearity of the original minimization 

problem is increased gradually with increasing length of the assimilation 

window in the QSVA experiment. This quasi-static adjustment guarantees that 

the computed minimum at the current minimization is the global minimum and 

the starting point for the next minimization lies within the basin of the global 

minimum. Computational cost of the QSVA method is much cheaper than that 

of using multiple outer loops, and it can be reduced further via the use of a 

loose stopping criterion for the inner-loop minimization. 

The conclusion from one heavy rainfall case is convinced by analyzing 

additional heavy rainfall cases over the Korean Peninsula. Quality of the 

analysis (and background estimate) can be improved through the use of the 

multiple outer-loops or QSVA method compared to the 4D-Var method. 

Especially, the QSVA method is more effective than the outer-loop method 

when the nonlinearity of the original minimization problem is relatively high. It 

is expected that the QSVA method will be more useful when the length of the 

assimilation window is increased, or when horizontal resolution is enhanced, 

which is usually related to the high degree of nonlinearity. 
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In the second part of this study, I selected a heavy rainfall case over the 

Korean Peninsula, which occurred on 1800 UTC 26 July 2006. This case 

caused torrential rainfall over the central part of the Korean Peninsula. Synoptic 

environments related to the case were favorable for the development of 

Mesoscale Convective Systems (MCSs). The MCS related to the heavy rainfall 

can be classified as Training Line/Adjoining Stratiform (TL/AS)-type for the 

period of 1800 UTC 26 to 0600 UTC 27 July 2006 and Back Building (BB)-

type for the period after 0600 UTC 27 July 2006 based on the morphological 

analyses of radar reflectivity. Prolonged heavy convective rainfall was observed 

along the surface boundary, which was defined by large Equivalent Potential 

Temperature (EPT) gradient, and stratiform rainfall was adjacent to the 

convective rainfall during the TL/AS-type period. The Mesoscale Convective 

Vortex (MCV) induced by prior convective rainfall interacted with vertical 

wind shear, and this interaction destabilized the atmosphere by lifting 

conditionally-unstable air to its saturation level during the BB-type period. 

The Adjoint Sensitivity-based Data Assimilation (ASDA) method is proposed 

to evade high computational cost of the 4D-Var method, retaining the 

advantages of the 4D-Var method. In the ASDA method, an adjoint model is run 

backwards with forecast-error gradient as an input, and adjoint sensitivity of 
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forecast error to initial condition is scaled by an optimal scaling factor. The 

optimal scaling factor is determined by minimizing observational cost function 

of the 4D-Var method, and the scaled sensitivity is added to the original first 

guess (or background estimate). Finally, the observations at the analysis time 

are assimilated using the 3D-Var method with the improved first guess. 

The simulated rainfall distribution is shifted northeastward compared to the 

observations when no radar data are assimilated, or when radar data are 

assimilated using the 3D-Var method. The rainfall distribution and time series 

of hourly rainfall are improved through the 4D-Var method or ASDA method. 

In addition, simulated meteorological fields such as zonal wind, meridional 

wind, temperature, and water vapor mixing ratio are closer to the observations 

when the 4D-Var or ASDA method is used, based on the analyses of verification 

results. 

Negative increments of EPT, especially of water vapor mixing ratio, over the 

Yellow Sea enhance meridional gradient of EPT (i.e., baroclinic instability) in 

the 4DVAR and ASDA experiments, and simultaneously, this corrects the 

location of the surface boundary related to TL/AS-type MCS development. Due 

to the improvement of the analysis, subsequent forecasts appropriately simulate 

the observed features of TL/AS-and BB-type MCSs and the corresponding 
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rainfall in the 4DVAR and ASDA experiments. In CONTROL experiment, 

simulated rainfall related to TL/AS-type MCS is displaced northeastward 

compared to the observations. The interaction between MCV associated with 

prior rainfall and vertical wind shear occurs over the northern part of the 

Korean Peninsula, where transport of warm and moist air is not active. 

Therefore, rainfall related to BB-type MCS is not simulated well in the 

CONTROL experiment. However, in the 4DVAR and ASDA experiments, 

rainfall related to TL/AS-type MCS is properly simulated, and finally, rainfall 

related to BB-type MCS is also simulated well. It should be also noted that 

computational cost of the ASDA method is relatively low (not related to 

iterative minimization of cost function; one adjoint-model run, two 3D-Var 

analyses, scaling-factor determination) compared to the 4DVAR method, and 

the first-guess and observations errors are not correlated with each other. 

 

Key words: Radar data assimilation, Heavy rainfall, 4D-Var, QSVA method, 

Adjoint sensitivity, ASDA method 

Student Number: 2006-30788 
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Chapter 1. Introduction 

 

1.1. General aspects 

 

The predictability of Numerical Weather Prediction (NWP) is limited to a 

finite value due to uncertainties in the initial conditions although the numerical 

model is perfect. Bjerknes (1904) noted that enough information on the current 

state of the atmosphere is essential for predicting the future state of the 

atmosphere using the numerical model in his first attempt of NWP. The initial 

condition for NWP can be improved through the process called ‘data 

assimilation’. Talagrand (1997) pointed out that the purpose of data assimilation 

is using all the available information to determine the current state of the 

atmospheric flow as accurately as possible. The available information includes 

the observations, background (usually from short-range forecast), their error 

statistics, and physical laws which govern the evolution of the flow. Through 

data assimilation, all the available information is combined in a statistically-

optimal way to produce the improved initial condition. In most NWP centers, 
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data assimilation is used to reduce uncertainties in the initial conditions and to 

improve the quality of the subsequent forecasts. 

Data assimilation methods can be divided into two groups: sequential methods 

and variational methods. Sequential methods are based on the minimum-

variance approach, and examples are the Optimal Interpolation (OI; Gandin, 

1963), Extended Kalman Filter (EKF), and Ensemble Kalman Filter (EnKF; 

Evensen, 1994) methods. Variational methods are based on the maximum-

likelihood approach, and examples are the Three Dimensional Variational (3D-

Var) and Four Dimensional Variational (4D-Var; Lewis and Derber, 1985; Le 

Dimet and Talagrand, 1986) methods. The 4D-Var method has been studied 

extensively over the past two decades, and now it is one of the most 

sophisticated data assimilation methods. Several operational centers 

implemented the 4D-Var method in their data assimilation systems, including 

the European Centre for Medium-Range Weather Forecasts (ECMWF; Rabier 

et al., 2000), the Met Office (Rawlins et al., 2007), Météo France (Gauthier and 

Thépaut, 2001), the Japan Meteorological Agency (JMA; Honda et al., 2005), 

Environment Canada (Gauthier et al., 2007), the High-Resolution Limited-Area 

Model (HIRLAM; Huang et al., 2002), and the Naval Research Laboratory 

Atmospheric Variational Data Assimilation System (NAVDAS-AR; Xu et al., 
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2005). 

The 4D-Var method is superior to its predecessor, the 3D-Var method in the 

following respects. First, the observations can be assimilated at the time of their 

measurement, which suits most asynoptic data (e.g., radar observations). 

Second, flow-dependent background error covariance is used implicitly (static 

background error covariance in the 3D-Var method), which is of vital 

importance in fast-developing weather systems. Third, a forecast model is used 

as a constraint in the 4D-Var method, which enhances dynamic balance of the 

analysis (Huang et al., 2009). In spite of many advantages of the 4D-Var 

method, the 4D-Var method has limitations in its operational implementation, 

namely a huge amount of computational time, due to the iterative nature of its 

minimization algorithm. Furthermore, it is difficult to develop and maintain 

tangent linear and adjoint models required for the 4D-Var method, and solution 

to the minimization problem can be sub-optimal. 

In recent decades, assimilation of radar radial velocity/reflectivity data has 

shown potential for very-short-range numerical prediction of rapidly developing 

convective systems. Xiao et al. (2005) assimilated radar radial velocity data 

using the fifth-generation Pennsylvania State University-National Center for 

Atmospheric Research Mesoscale Model (MM5; Grell et al., 1994) and its 3D-
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Var system (Barker et al., 2004). In order to assimilate radial velocity data, 

vertical velocity increments were included through Richardson’s balance 

equation, and an observation operator for the Doppler radial velocity was 

developed. Xiao et al. (2007) used the MM5 3D-Var system to assimilate radar 

reflectivity data. The total water mixing ratio was selected as the control 

variable for moisture, and the warm-rain process was incorporated into the 

system to partition the water vapor and the other hydrometeor increments. 

Moreover, an observation operator for radar reflectivity was developed. The 

MM5 and its 3D-Var system have been replaced by the Weather Research and 

Forecasting (WRF) model (Skamarock et al., 2008) and its 3D-Var system. 

Multiple-Doppler radar data were assimilated using the WRF 3D-Var data 

assimilation system in order to improve the forecast of the squall-line 

convective system in Xiao and Sun (2007). More recently, Wang et al. (2013) 

assimilated radar data into the WRF model using the 4D-Var method in order to 

improve short-term precipitation prediction. The new development for the WRF 

4D-Var radar data assimilation system included the tangent-linear and adjoint 

models of a Kessler warm rain microphysics scheme and the new control 

variable of cloud water and rain water. 

Park and Županski (2003) reviewed the status and progress of the 4D-Var 
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method focusing on application to prediction of meso- and storm-scale 

meteorological phenomena. An overview of controversial issues on meso- and 

storm-scale 4D-Var, especially radar data assimilation using the 4D-Var method, 

were presented. They include high-resolution observations, nonlinearity and 

discontinuity problem, model error, treatment of lateral boundary condition, and 

precipitation assimilation. Additionally, practical strategies for implementation 

of the 4D-Var method were introduced. Examples are incremental 4D-Var, poor 

man’s 4D-Var, inverse 3D-Var, and hybrid approach. Sun (2005) reviewed 

techniques used in convective-scale radar data assimilation such as successive 

correction, nudging, 3D-Var, 4D-Var, and ensemble Kalman filter. She also 

mentioned the recent progresses in convective-scale radar data assimilation 

such as estimation of observation error, quality control/pre-processing of radar 

data, and development of observation operator. Finally, future challenges in 

convective-scale data assimilation were discussed. Especially, the operational 

implementation of the 4D-Var method at high resolution poses a number of 

challenges such as computational resources and nonlinearity. In this study, of a 

number of issues on radar data assimilation using the 4D-Var, issues related to 

the nonlinearity of the minimization problem and computational cost will be 

discussed. 
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1.2. Review of previous studies 

 

1.2.1. An alternative implementation method for 4D-Var 

 

In the 4D-Var method, an analysis is obtained by minimizing a cost function 

that measures the sum of distances between the observations and the solution of 

the model during an assimilation window, and between the background and the 

solution at the beginning of the assimilation window. Generally, the 4D-Var is 

implemented using an incremental formulation, which approximates the 

minimization of the nonlinear cost function by a sequence of minimizations of 

linear least-squares cost functions (Courtier et al., 1994; Haben et al., 2011). 

The incremental formulation has the advantage of allowing further 

approximations in the solution procedure, such as lower-resolution inner loop 

and simplified tangent linear and adjoint models, to make the minimization 

problem computationally feasible. An iterative method such as the conjugate 

gradient or quasi Newton technique is used to solve each linearized 

minimization problem. 
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In the incremental formulation, the linearized cost function is minimized in an 

inner loop, and the nonlinear model trajectory (or basic state), which is for 

linearization of the nonlinear model and observation operator, and background 

estimate (or first guess) are updated in an outer loop. Nonlinearities related to 

the model and the observation operator can be taken into account in the outer 

loop because the nonlinear model trajectory for linearization is consistently 

updated. The quality of the analysis can be improved and more observations can 

be utilized by using more-than-one outer loops (Rizvi et al., 2008). Outer loops 

have been implemented by a number of operational centers such as the 

ECMWF, Météo-France, the Met Office, and Environment Canada in spite of 

the increased computational cost. 

The cost function may have multiple minima when the original minimization 

problem involves highly nonlinear processes (Sneider, 1998). The nonlinearity 

of the original minimization problem increases as the time interval for the 

minimization increases. Multiple-minima problem related to the lengthening of 

the assimilation window was studied for the Lorenz model (Stensrud and Bao, 

1992; Miller et al., 1994), the model based on a barotropic vorticity equation 

(Tanguay et al., 1995), and a multilevel general circulation model (Thépaut and 

Courtier, 1991; Rabier and Courtier, 1992; Li et al., 1994; Rabier et al., 1998). 
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The nonlinearity of the minimization problem is also dependent on the 

horizontal resolution of the model (Tanguay et al., 1995) and the atmospheric 

phenomena considered (Gauthier, 1992). 

Pires et al. (1996) investigated how the accuracy of the state obtained at the 

end of the assimilation window varies when the length of the assimilation 

window is theoretically increased back to infinity using the three-variable 

system introduced by Lorenz (1963) under the assumption of a perfect model. 

In the limit of infinitely long assimilation periods, the chaotic nature of the 

system produces a number of local (or secondary) minima. The Quasi Static 

Variational Assimilation (QSVA) algorithm was proposed to determine the 

global (or absolute) minimum and to avoid getting trapped near a local 

minimum, which is based on successive small increments of the assimilation 

window and quasi-static adjustments of the minimizing solution. The algorithm 

was also applied to a quasi-geostrophic model, and it was effective in solving 

the minimization problem with the assimilation window of the order of 5-10 

days. 

The computational cost in the 4D-Var is usually concentrated just after the so-

called ‘cut-off-time’, i.e., after the end of the assimilation period. Järvinen et al. 

(1996) proposed an alternative implementation of the 4D-Var, the quasi-
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continuous variational assimilation approach (similar to the QSVA algorithm), 

to reduce the peak computational requirements of the 4D-Var after the cut-off-

time and to accelerate the convergence of the minimization of the cost function. 

The feasibility of the approach was first validated with a low-resolution 

barotropic grid-point model using synthetic observations, and the results were 

then confirmed with a multi-level primitive equation model using real 

observations. The QSVA algorithm was used by Swanson and Vautard (1998) to 

study the performance of 4D-Var assimilation of noisy observations in a multi-

layer quasi-geostrophic model within both perfect and imperfect model settings. 

Song et al. (2009) proposed a Retrospective Optimal Interpolation (ROI) 

system based on the QSVA algorithm, and the QSVA algorithm was also used to 

fit a nonlinear oceanographic model to altimeter observations for a lengthy 

assimilation window (Luong et al., 1998). 

 

1.2.2. Adjoint sensitivity as a means of improving initial condition 

 

The sensitivity gradient of 48-h forecast error with respect to the initial 

condition was calculated by using the adjoint method in Rabier et al. (1996). 
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The forecast error was defined as the difference between the 48-h forecast and 

the verifying analysis, which was considered as the truth, and the dry total 

energy norm was used. This gradient was multiplied by a scaling factor to make 

a perturbation, and the perturbation was added to the original initial condition. 

In their study, the scaling factor was derived by trial and error, and the order of 

magnitude was around 0.01. The forecast starting from the perturbed initial 

condition, the so-called ‘sensitivity integration’ was more accurate than the 

original forecast not only in the short-range but also in the medium-rage. 

However, the sensitivity integration was not better than the forecast with the 

latest initial condition (i.e., two days later than the initial condition for the 

sensitivity integration or the original forecast). Therefore, the sensitivity 

integration had limitations in being used in an operational mode, and it was 

recommended as a diagnostic tool. 

The short-range forecast error was minimized by using an iterative procedure, 

and after some iterations, that procedure led to the so-called ‘key analysis error’ 

in Klinker et al. (1998). A scaled gradient computed from the first step of the 

minimization procedure was similar to the sensitivity gradient of Rabier et al. 

(1996). In a case study, it was shown that the increment after the third iteration 

was the closest to the key analysis error which, when added to the analysis, both 
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significantly improved the fit to the observations and substantially improved the 

subsequent forecast. It was also found that more iterations were not beneficial 

because of the uncertainty in the definition of the forecast error, and 

approximations in the tangent-linear and adjoint models. Adjoint sensitivity-

based perturbations, such as the sensitivity gradient of Rabier et al. (1996) and 

the key analysis error of Klinker et al. (1998), minimizing the two-day forecast 

error were computed in Isaksen et al. (2005). It was found that forecasts starting 

from the perturbed analyses were further away from the observations than 

forecasts from control analyses during the first approximately 12 h of forecasts, 

and this feature was enhanced as the number of iterations increased. 

The adjoint sensitivity of short-range forecast error to the initial condition can 

be used as the perturbation which, when scaled appropriately and added to the 

original initial condition, improves the subsequent forecast and its consistency. 

However, the forecast from the perturbed initial condition is not better than the 

forecast starting from the initial condition at the time of the verifying analysis. 

In order to overcome these limitations, Huang et al. (1997) proposed the 

Poorman’s variational assimilation (PMV) system. The system was a hybrid one 

based on both an intermittent data assimilation method, an OI scheme and a 

variational data assimilation method, a 4D-Var scheme. The main idea of the 
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PMV is using the adjoint model to produce an improved first guess, which leads 

to an improved OI analysis. From five-day data assimilation experiments, it was 

shown that the analysis increments of the PMV were reduced (i.e., closer to the 

observations) and the subsequent forecasts of the PMV were improved 

compared to the OI. However, the PMV violates the basic assumption, that the 

first-guess error and the observational error should be uncorrelated, although 

the orthogonality between the barotropic OI analysis and the baroclinic PMV 

analysis alleviates the problem related to the violation. In Huang (1999), a 

generalized version of the PMV (GPV), which had implementation flexibility 

due to its incremental nature, was proposed. Running the variational component 

on lower resolutions and with a different model formulation did not alter the 

conclusion of Huang et al. (1997). In other words, the GPV led to smaller 

analysis increments, modified baroclinic structures at upper levels, and 

improved forecasts. Pu et al. (1997) proposed an ‘iterated cycle’ technique, in 

which the perturbed one- or two-day old analysis was used as an improved 

starting point for a repetition of the regular analysis cycle until the current 

analysis time was reached. This technique improved the future forecast skill, 

but it had the same problem as that of the GPV (or PMV). 

Hello et al. (2000) proposed an analysis correction method in which the 
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perturbation to the original analysis came from the adjoint sensitivity to the 

initial condition, and its sign and magnitude were determined by minimizing the 

distance to the available observations at the locations where the sensitivity was 

of significance. In their approach, the response (or objective) function was the 

mean sea-level pressure, and hence the verifying analysis acting as the truth 

was not necessary. However, if the forecast from the original analysis are far 

away from the truth, it is difficult to expect a significant improvement of the 

analysis. 

Kalnay et al. (2000) proposed an alternative data assimilation method using 

the quasi-inverse model, the inverse 3D-Var (I3D-Var) method. The quasi-

inverse model is simply the model integrated backward but changing the sign of 

dissipative terms in order to avoid computational blow-up. In the I3D-Var 

method, the background term is estimated at the end of the assimilation window, 

and multiple time-level data can be assimilated by averaging increments 

corresponding to the different time-levels. The I3D-Var does not need to 

compute the Hessian or gradient, and hence computational cost is significantly 

reduced compared to the 4D-Var. However, in general, dynamics and physics of 

a model may not be written in a reversible fashion. Park and Kalnay (2004) 

suggested the I3D-Var as a preconditioner for carrying out minimization in the 



14 

 

4D-Var framework. By using the initial conditions (a kind of first guess) 

obtained through the I3D-Var, the minimization of the 4D-Var cost function was 

converged much faster. 

 

1.3. Objectives of this study 

 

Radar radial velocity data are assimilated for a heavy rainfall case over the 

Korean Peninsula, which occurred on 6 August 2006, by using the Weather 

Research and Forecasting Data Assimilation (WRFDA) system (Huang et al., 

2009). The WRFDA system includes 3D-Var and 4D-Var capabilities, and outer 

loop can be used within the 4D-Var capability. The QSVA algorithm is 

implemented to the WRF 4D-Var, and it is compared with single outer-loop 4D-

Var (i.e., normal 4D-Var) and multiple outer-loop 4D-Var. Despite the 

usefulness of the outer loop, there have been few studies on its effect on the 

analysis and subsequent forecast. The QSVA algorithm is known to be effective 

in finding optimal solution to minimization problem when the nonlinearity of 

the minimization problem is high. The first objective of this study is to compare 

the QSVA method with the 4D-Var and outer-loop methods, focusing on the 
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quality of the first guess (or background estimate) and the nonlinearity of the 

minimization problem. In addition, a strategy for the implementation of the 

QSVA method in an operational environment is suggested. The QSVA method 

is also applied to a variety of heavy rainfall cases over the Korean Peninsula in 

order to get robustness for the single-case results. 

Forecast of a heavy rainfall case, which occurred on 26 July 2006, is improved 

by assimilating radar radial velocity data using the 4D-Var method of the 

WRFDA system. However, computational cost, including CPU and memory 

requirements, is high in the 4D-Var due to its iterative minimization of the cost 

function. A new data assimilation method based on the adjoint sensitivity of 

forecast error to the initial condition is proposed: Adjoint Sensitivity-based Data 

Assimilation (ASDA) method. In the ASDA method, the adjoint sensitivity of 

forecast error is calculated by running the adjoint model backwards, and this 

sensitivity is used to improve the original first guess. The forecast error is 

defined as the difference between the forecast from the original analysis and the 

verifying 3D-Var analysis at the forecast time, and the sensitivity is rescaled 

using a scaling factor determined by minimizing the observational part of the 

4D-Var cost function. Finally, the scaled sensitivity is added to the original first 

guess to make an improved first guess, and an improved analysis is produced by 
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performing the 3D-Var with the improved first guess and the observations at the 

analysis time. The second objectives of this study are to suggest a new data 

assimilation method, namely the ASDA method and to compare the ASDA 

method with the existing data assimilation methods such as the 3D-Var and 4D-

Var methods for a heavy rainfall case over the Korean Peninsula. In the ASDA 

method, the first-guess error and the observational error are not correlated with 

each other unlike the PMV (or GPV), and the computational cost is 

significantly reduced compared to the 4D-Var, maintaining the merits of the 4D-

Var method. 
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Chapter 2. Algorithms 

 

2.1. The Quasi Static Variational Assimilation (QSVA) algorithm 

 

In the 4D-Var method, the cost function is a measure of the weighted sum of 

squared distances to the background and to the observations distributed over the 

assimilation window, and it is minimized to find the analysis. 

 

J(x0) =
1
2
�x0 − x0b�

T
B0
−1�x0 − x0b�

+
1
2
�[yno − 𝐻𝑛�𝑀𝑛(x0)�]TRn

−1[yno − 𝐻𝑛�𝑀𝑛(x0)�]
N

n=0

 

, (1) 

 

where x0 is a control variable of the above minimization problem, the subscript 

0 denotes the time t=t0, xb is the background state defined at t=t0, and B0 is the 
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background error covariance also defined at t=t0. yo is the observations at t=tn, 

the subscript n varies from 0 to N, and Rn is the observation error covariance. 

Hn is the nonlinear observation operator and Mn is the nonlinear model operator, 

which evolves over time from x0 to xn valid at t=tn. 

When an analysis increment is defined as the difference between x0 and the 

first guess, the cost function can be rewritten, after some manipulation, as 

follows. 
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where δx0 is the analysis increment, xg is the first guess defined at t=t0, and dn is 

the innovation. Hn and Mn are the linearized observation and model operators, 

respectively. 

In the QSVA algorithm, the time interval of an assimilation window is 

gradually increased from [t0,t0] to [t0,tN]. If we define the cost function of 4D-

Var with simplified notation, 

 

JN = Jb + JNo  
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, (3) 

 

the cost function for each step of the QSVA algorithm can be written as follows. 
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A0: J0 = Jb + J0o 

A1: J1 = Jb + J1o 

⋮ 

An: Jn = Jb + Jno 

⋮ 

AN−1: JN−1 = Jb + JN−1o  

AN: JN = Jb + JNo  

, (4) 

 

where An is the nth minimization task of the QSVA algorithm. It is noted that for 

the nth minimization task, An, the starting point for the minimization of the cost 

function comes from the minimizer of the previous minimization task, An-1. In 

other words, in the QSVA algorithm, the first guess, not the background, is 

updated, which is similar to an outer-loop in 4D-Var. 
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2.2. The Adjoint Sensitivity-based Data Assimilation (ASDA) 

algorithm 

 

A nonlinear evolution of a state vector can be expressed by using a nonlinear 

model: 

 

xt = M(x0) 

, (5) 

 

where xt and x0 are the state vectors at time t (i.e., final time) and 0 (i.e., initial 

time), and M is a nonlinear model. A linear evolution of a small perturbation for 

the state vector can be described by a tangent linear model, the first-order 

derivative of the nonlinear model (operator): 

 

δxt =
∂M
∂x
�
x=x0

δx0 = Lδx0 
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, (6) 

 

where δxt and δx0 are the perturbations at time t and 0, and L is a tangent linear 

model. 

A response function (or objective function), R is defined as a function of the 

state vector at time t, and it is differentiable to the state vector. 

 

R = f(xt) 

, (7) 

 

Variation of the response function at time t can be derived from Taylor 

expansion: 

 

∆R ≈ δR = 〈
∂R
∂xt

, δxt〉 = 〈
∂R
∂xt

, Lδx0〉 

, (8) 
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where < , > denotes an inner product, and the definition of the tangent linear 

model (operator) is used for the last equality. By using an adjoint relationship, 

 

∆R ≈ δR = 〈L∗
∂R
∂xt

, δx0〉 

, (9) 

 

where L* is an adjoint model (operator). 

Variation of the response function at time 0 is as follows: 

 

∆R ≈ δR = 〈
∂R
∂x0

, δx0〉 

, (10) 

 

Consequently, an equation for adjoint sensitivity to initial condition is derived 

by equating the right-hand sides of Eqs. (9) and (10): 
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∂R
∂x0

= L∗
∂R
∂xt

 

, (11) 

 

The above equation implies that sensitivity gradient of the response function 

at the initial time can be obtained by running the adjoint model with the 

sensitivity gradient of the response function at the final time as an input. 

In this study, forecast error at time t measured in dry total energy is selected as 

the response function, and the forecast error is defined as the difference 

between the forecast from time 0 to t and the verifying 3D-Var analysis at time t. 

 

R =
1
2
〈P�xt − xtref�, AP(xt − xtref)〉 

, (12) 

 

where xt is the forecast obtained by running the nonlinear model with x0 as an 
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initial condition, xref is the verifying analysis, A is the matrix defining the dry 

total energy norm, and P is a local projection matrix. The above response 

function can be rewritten as follows. 

 

R =
1
2
�[u′2 + v′2 + �

g
NTr

�
2

T′2 + �
1
ρcs

�
2

p′2]
η,Σ

dΣdη 

, (13) 

 

where u, v, T, and p are zonal wind, meridional wind, temperature, and pressure 

components of the state vector, and prime denotes a perturbation. Gravitational 

acceleration, Brunt-Väisälä frequency, density of air, and speed of sound are 

denoted by g, N, ρ, and cs, respectively, and Tr is a reference temperature. 

Horizontal integration domain defined by the local projection matrix is denoted 

by Σ, and η is a vertical coordinate. 

The adjoint sensitivity of forecast error to initial condition given in Eq. (11) 

with the response function of Eq. (12) or (13) can be used as a perturbation to 

improve the original first guess. 



26 

 

 

δx0
for fg = αA−1

∂R
∂x0

 

, (14) 

 

where α is a scaling factor, and A-1 is for a unit conversion from the adjoint 

sensitivity to the state vector. 

In order to determine the optimal value of the scaling factor, observational part 

of the cost function for 4D-Var is minimized using the observations to the final 

time. It should be noted that the observations at the initial time are excluded in 

determining the scaling factor. 
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where Jo denotes observational part of the cost function, H' is a linearized 

version of an observation operator, H. The observation operator computes 

model equivalents to the observations through a transform from model space to 

observation space. do is an innovation, yo is an observation, R is an observation 

error covariance matrix, and subscript i is for time dimension. 

The above cost function is a quadratic function of the scaling factor: 
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, (16) 

 

The optimal value of the scaling factor, αopt, which corresponds to the 

minimum of the cost function, can be found by equating the first-order 

derivative of the cost function to zero: 
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, (17) 

 

Finally, the adjoint sensitivity of forecast error scaled by the optimal scaling 

factor is added to the original first guess to make the improved first guess, and 

3D-Var analysis is carried out using the improved first guess and the 

observations at the initial time to make the improved analysis. 

 

x0
new fg = x0 + δx0

for fg = x0 + αoptA−1
∂R
∂x0

 

, (18) 
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δx0ASDA = minimizer of J3dvar(δx) 

J3dvar(δx) =
1
2

(δx)TB−1δx +
1
2

(H′δx − do)TR−1(H′δx − do) 

do = yo − H(x0
new fg) 

, (19) 

 

x0ASDA = x0
new fg + δx0ASDA 

, (20) 

 

where xnew fg is the improved first guess for 3D-Var analysis at the initial time, 

J3dvar is a cost function for 3D-Var at the initial time, and xASDA is the final 

initial condition (analysis) of ASDA method. 

In the ASDA method, the original first guess is improved through the adjoint 

sensitivity-based perturbation, and the amplitude of the perturbation is 

determined objectively using the observations. By using the ASDA method, 

radar data can be assimilated effectively owing to its characteristics such as 
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flow-dependency. Unlike the PMV method, first-guess and observation errors 

are not correlated with each other in the ASDA method. In contrast to the 4D-

Var method, the computational cost of the ASDA method is not high because it 

is not involved in iterative minimization of cost function. 
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Chapter 3. Numerical model, data assimilation system, 

and radar data 

 

3.1. The Weather Research and Forecasting (WRF) model 

 

The Weather Research and Forecasting (WRF) model is a flexible, state-of-

the-art numerical weather prediction and atmospheric simulation system 

designed for both operational and research applications. The development of the 

WRF model has been a collaborative one among the National Center for 

Atmospheric Research (NCAR) Mesoscale and Microscale Meteorology 

(MMM) Division, the National Oceanic and Atmospheric Administration 

(NOAA)’s National Centers for Environmental Prediction (NCEP) and Earth 

System Research Laboratory (ESRL), Department of Defense’s Air Force 

Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center 

for Analysis and Prediction of Storms (CAPS) at University of Oklahoma, and 

the Federal Aviation Administration (FAA). The WRF model is suitable for use 

in a broad range of applications across scales ranging from meters to thousands 
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of kilometers (from large eddy to global simulations), including idealized 

simulations, regional and global applications, real-time NWP, parameterization 

research, forecast research, data assimilation research, hurricane research, 

regional climate simulations, air quality modeling, and atmosphere-ocean 

coupling. 

Governing equations are fully compressible, Euler nonhydrostatic, and scalar-

conserving flux form for prognostic variables. Prognostic variables are 

horizontal velocity components, vertical velocity, perturbation potential 

temperature, perturbation geopotential, and perturbation surface pressure of dry 

air. Optionally, water vapor mixing ratio, rain/snow mixing ratio, cloud 

water/ice mixing ratio, turbulent kinetic energy, and chemical species are 

included as prognostic variables. Terrain-following, dry hydrostatic-pressure is 

a vertical coordinate, and horizontal grid system is an Arakawa C-grid 

staggering. Time-split integration based on the second- or third-order Runge-

Kutta scheme with smaller time step for acoustic- and gravity-wave modes is 

used as a time integration scheme. The second- to sixth-order advection options 

are available in horizontal and vertical directions. Full Coriolis and curvature 

terms are included, and one-way, two-way, and moving nest options are 

available. A number of sophisticated physics schemes are provided, including 
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microphysics, cumulus parameterization, planetary boundary layer, surface 

physics, and atmospheric radiation schemes. 

 

3.2. The WRF Data Assimilation (WRFDA) system 

 

The WRF Data Assimilation (WRFDA) system has both 3D-Var and 4D-Var 

capabilities (variational components), and it also includes the capability of 

hybrid data assimilation (i.e., combined use of variational and ensemble 

methods). It can be used for both global and regional applications. The 

variational problem can be summarized as the iterative minimization of the cost 

function to find the analysis. The solution to the minimization problem 

represents the a posteriori maximum likelihood estimate of the current state of 

the atmosphere. The WRF Variational data assimilation (WRFVAR) system is 

based on a model-space and incremental formulation (Barker et al., 2004). In 

this approach, observations, background, their errors, and physical laws are 

combined to produce analysis increments, which are added to the first guess to 

provide an improved analysis (compared to the background estimate). The 

conjugate-gradient or Lanczos method is utilized to minimize the cost function 
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in the control variable space, and a variational analysis is performed on an 

unstaggered Arakawa A grid. Analysis increments on Arakawa A grid are 

interpolated to staggered Arakawa C grid, and they are added to the first guess 

to obtain the final analysis. 

There are three inputs to the WRFVAR system: the first guess, observations 

(and the corresponding errors), and background error covariances. In cold-start 

mode, the first guess is typically from WRF preprocessing system. In cycling 

mode (e.g., in an operational system), the first guess is a short-range WRF 

forecast. Currently, conventional observations, radar radial velocity/reflectivity 

observations, satellite radiance observations, and precipitation can be 

assimilated in the WRFDA system. 

Preconditioning of the background part of the cost function is done through 

the control variable transform, U defined as B=UUT. Horizontal component of 

the background error is represented by a recursive filter (for regional 

application) or power spectrum (for global application). The vertical component 

is applied via projections on climatologically-generated averaged eigenvectors 

and its corresponding eigenvalues. Horizontal and vertical background errors 

are non-separable. In other words, each eigenvector has its own horizontal 

climatologically-determined length scale. Finally, multivariate covariances are 
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modeled by computing regression coefficients between velocity potential and 

streamfunction, temperature and streamfunction, and surface pressure and 

streamfunction (optionally, moisture variables can be included). Climatological 

background error covariances are estimated through the NMC method of 

averaged forecast differences or suitably averaged ensemble perturbations. 

 

3.3. Radar data 

 

In South Korea, a total of 18 operational radars have been operated since the 

summer of 2006, all of which have Doppler capability. The radars are separated 

by a distance of approximately 120 km on average, and their unambiguous 

ranges are greater than 100 km; hence, most areas over the Southern Korean 

Peninsula are overlapped by the coverage of two or more radars. The United 

States Air Force (USAF) radars (RKSG and RKJK) are the Weather 

Surveillance Radars-1988 Doppler (WSR-88D) and operated near 10.0-cm 

wavelength. The Korea Air Force (KAF) radars (RKWJ, RSCN, RTAG, RYCN, 

and RWNJ) are operated near 5.5-cm wavelength. The other radars are operated 

near 5.5- or 10.0-cm wavelength and by Korea Meteorological Administration 
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(KMA). Details on radar network over the Southern Korean Peninsula can be 

found in Park and Lee (2009). 

Radar data used in data assimilation experiments are preprocessed by the 

method given in Park and Lee (2009). Noises and errors embedded in the radar 

measurements were processed, and the remaining ground clutter signals and 

anomalous echoes were eliminated. Further, the radial velocity measurements 

were processed in terms of the aliasing effect and the dual-Pulse Repetition 

Frequency (PRF) velocity error. After the quality-control procedures for the 

radar measurements, the radar data were interpolated and thinned to Cartesian 

grids at a resolution that is compatible with the analysis system by the Sorted 

Position Radar INTerpolation (SPRINT; Mohr and Vaughan, 1979; Miller et al., 

1986) and Custom Editing and Display of Reduced Information in Cartesian 

coordinate (CEDRIC; Mohr et al., 1986) packages from the NCAR. The radar 

data were finally hole-filled and smoothed by the CEDRIC package and then 

converted to the WRFDA input ASCII format. The final radar data have a 

horizontal resolution of approximately 6 km, vertical resolution of 0.5 km 

above a height of about 3 km, and temporal resolution of approximately 10 

minutes. 
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Chapter 4. The QSVA method and its comparison to 

outer-loop method 

 

4.1. Case description 

 

The heavy rainfall case for this study can be categorized as an air-mass 

thunderstorm that developed as a result of daytime solar heating. Figure 4.1 

shows the 6-h accumulated rainfall distribution over South Korea and the time 

series of hourly rainfall at Taebaek and Namwon for the period of 0600 UTC to 

1200 UTC 6 August 2006. Rainfall was concentrated over the east coast and the 

southwestern part of the Korean Peninsula. Over the east coast, hourly rainfall 

at Taebaek peaked at 0800 UTC 6 August 2006 and the 6-h accumulated rainfall 

was 37.5 mm. Over the southwestern part, the 6-h accumulated rainfall at 

Namwon was 33.5 mm and it peaked at 1000 UTC 6 August 2006. Note that 

rainfall was localized over a small area and it was concentrated near the peak 

time. 

In this case, the atmosphere over the Korean Peninsula was unstable because 
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the Korean Peninsula was located along the edge of a North Pacific high-

pressure system. Warm and moist air was transported to the Korean Peninsula 

along the edge of the North Pacific high at the 850 hPa level. In contrast, cold 

air surged into the Korean Peninsula by a northwesterly flow related to a cold 

trough at the 200 hPa level (figures not shown). This synoptic environment 

caused the atmosphere over the Korean Peninsula to be convectively 

(conditionally) unstable. 

Figure 4.2a shows skew T-log p diagrams for Gwangju, which is 

approximately 50-km southwest of Namwon, at 0000 UTC and 0600 UTC 6 

August 2006. The thermodynamic quantities obtained by analyzing the 

diagrams are given in Table 4.1. Convective Available Potential Energy (CAPE) 

and Convective Inhibition (CIN) at 0000 UTC 6 August 2006 were 124 J kg-1 

and 217 J kg-1, respectively. Cold air was supplied continuously at upper levels 

by an upper-level trough, and after sunrise, the land surface was heated by solar 

heating. This destabilized the atmosphere near Gwangju and raised (lowered) 

CAPE (CIN) to 1970 (6) J kg-1 at 0600 UTC 6. During the same period, the 

Level of Free Convection (LFC) was lowered from 3836 m to 1456 m. It can be 

also found that winds below 700 hPa were weak, and hence, wind shear did not 

play an important role in the development of the storm in this case. 
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The vertical structures of the potential temperature and equivalent potential 

temperature for Gwangju at 0000 UTC and 0600 UTC 6 August 2006 are 

shown in Fig. 4.2b. Both at 0000 UTC and 0600 UTC, the atmosphere at 

Gwangju was statically stable based on the analysis of the potential temperature. 

At 0000 UTC 6, the atmosphere was also conditionally stable, except for the 

very shallow layer near the 850 hPa level. The decrease in the equivalent 

potential temperature from the 850 hPa to 700 hPa level was approximately 10 

K at 0600 UTC 6 August 2006, and thus the mid atmosphere at Gwangju was 

conditionally unstable. 

Figure 4.3 shows the horizontal cross section of the horizontal wind and 

divergence at a height of 4 km and the vertical cross section of the vertical wind 

and divergence along the line in the horizontal cross section. At Namwon, the 

hourly rainfall from 0900 UTC to 1000 UTC 6 August 2006 was greatest, and 

therefore the cross sections for 0900 UTC are shown. As previously mentioned, 

the atmosphere near Namwon was conditionally unstable. In other words, if 

there is a forcing for lifting of the air parcel to its LFC, a strong upward motion 

and (if there is enough moisture) a large amount of rainfall can be induced. A 

northerly or northwesterly flow and a southwesterly flow met near Namwon, 

and this formed a convergence zone (Fig. 4.3a). This convergence acted as a 
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lifting forcing, and there was torrential rainfall near Namwon, lasting 

approximately one hour from 0900 UTC. The updraft related to the convective 

instability extended to near the tropopause with a maximum value of 

approximately 2 m s-1 at a height of 7 km. There was also a compensating 

downdraft beside the updraft, which was related to upper-level convergence and 

lower-level divergence (Fig. 4.3b). It should be noted that Jiri Mountain, which 

is southeast of Namwon, may play an important role in the initiation and 

development of the storm. 
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Figure 4.1. (a) Observed 6-h accumulated rainfall (mm 6h-1) distribution over South Korea 
from 0600 UTC to 1200 UTC 6 August 2006. Time series of hourly rainfall (mm h-1) from 
0600 UTC to 1200 UTC 6 August 2006 for the observations (black), CONTROL (blue), 
3DVAR (yellow), 4DVAR (green), QSVA (orange), and OUTER (red) experiments at (b) 
Namwon and (c) Taebaek. In the case of numerical experiments, hourly rainfalls at the grid 
points corresponding to Namwon and Taebaek are shown. 
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Figure 4.2. (a) Skew T-log p diagram computed from radiosonde observations of Gwangju 
at 0000 UTC (blue) and 0600 UTC (red) 6 August 2006. (b) Vertical profile of potential 
temperature (K, solid line) and equivalent potential temperature (K, dashed line) for 
Gwangju at 0000 UTC (blue) and 0600 UTC (red) 6 August 2006. 
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Table 4.1. Convective Available Potential Energy (CAPE, J kg-1), Convective 

Inhibition (CIN, J kg-1), Lifting Condensation Level (LCL, m), and Level of Free 

Convection (LFC, m) computed from sounding observations of Gwangju at 0000 UTC 

and 0600 UTC 6 August 2006. 

 

 CAPE CIN LCL LFC 
0000 UTC 6 
August 2006 

124 217 451 3836 

0600 UTC 6 
August 2006 

1970 6 1152 1456 
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Figure 4.3. Radar analyses near Namwon area at 0900 UTC 6 August 2006. (a) Horizontal 
distribution of divergence (10-4 s-1, shading) and winds (m s-1, vector) at 4-km height. (b) 
Vertical cross section along the line shown in (a) of vertical wind (m s-1, shading) and 
divergence (10-4 s-1, negative values are denoted by dashed contours). 
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4.2. Experimental design 

 

In this study, the Advanced Research Weather Research and Forecasting 

(ARW-WRF) model (Skamarock et al., 2008) was used as a forecasting model. 

A total of six experiments are carried out, and details of the experiments are 

given in Table 4.2. Triply-nested domains, focusing on South Korea, with 

horizontal resolutions of 54 km (domain 1), 18 km (domain 2), and 6 km 

(domain 3) are employed (Fig. 4.4). The number of horizontal grid points for 

each domain is 120 × 102, 121 × 103, and 121 × 127, respectively, and the 

number of vertical levels for all of the domains is 35 with the model top at 50 

hPa. The selected physics schemes are the WRF Single-Moment 6-class 

(WSM6) with graupel microphysics scheme (Hong and Lim, 2006), the Kain-

Fritsch cumulus parameterization scheme (Kain, 2004), the Yonsei University 

(YSU) planetary boundary layer scheme (Hong et al., 2006), the Rapid 

Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 

1997), and the Dudhia shortwave radiation scheme (Dudhia, 1989). The global 

final analysis (FNL) data from the National Center for Environmental 

Prediction (NCEP) with a horizontal resolution of approximately 100 km are 
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used to create initial and boundary conditions. Initial time for domain 1, domain 

2, and domain 3 is 1200 UTC 5, 0000 UTC 6, and 0600 UTC 6 August 2006, 

respectively, and only the 6-h forecast of domain 3 is considered in this study. 

The WRFDA system version 3.4 (Huang et al., 2009) is used for all the data 

assimilation experiments, and the data assimilation experiments are conducted 

only on domain 3. The WRFDA system has both 3D-Var and 4D-Var (and outer 

loop) capabilities, and the QSVA algorithm introduced in section 2.1 is 

implemented. Background for all the data assimilation experiments is the initial 

condition of the CONTROL experiment (i.e., cold start), and the 6-h forecast 

from 0600 UTC to 1200 UTC 6 August 2006 is made using the analysis of each 

data assimilation experiment. The background error covariance is calculated 

using the National Meteorological Center (NMC) method (Parrish and Derber, 

1992), in which the background error statistics are derived from the differences 

between 24- and 12-h forecasts for the one-month period of August 2006. 

Radar radial velocity data from 13 radar observation sites over the Korean 

Peninsula are assimilated in this study. A detailed description of the radar data 

over the Korean Peninsula can be found in Park and Lee (2009). In advance of 

being assimilated, radar data are preprocessed using the methods given by Park 

and Lee (2009). The preprocessing includes quality control, 
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interpolation/thinning to Cartesian grids by the Sorted Position Radar 

INTerpolation (SPRINT; Mohr and Vaughan, 1979; Miller et al., 1986) and 

Custom Editing and Display of Reduced Information in Cartesian coordinate 

(CEDRIC; Mohr et al., 1986) packages, and hole-filling/smoothing by the 

CEDRIC package. Finally, radar data are converted to the WRFDA input format. 

The radar data have a horizontal resolution of approximately 6 km and a 

vertical resolution of about 0.5 km. The assimilation window covers the period 

from 0600 UTC to 0630 UTC 6 August 2006, and radar data are provided every 

10 minutes within the assimilation window. 
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Table 4.2. Brief description for each numerical experiment. 

 

Experiment name Description 
CONTROL No radar data are assimilated 

3DVAR Radar data are assimilated using the 3D-Var method 
4DVAR Radar data are assimilated using the 4D-Var method 

(with single outer loop) 
OUTER Radar data are assimilated using the 4D-Var method 

with 3 outer loops 
QSVA Radar data are assimilated using the QSVA method 

QSVA_LC Same as QSVA experiment except for loose inner-
loop stopping criterion (eps = 0.1) 
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Figure 4.4. Domain configuration. (a) Geographical area for domains 1, 2, and 3 and (b) 
model terrain height (m) for domain 3. Locations of Namwon, Taebaek, and Gwangju cities 
are also indicated. 
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4.3. Results and discussion 

 

Radar radial velocity data are assimilated to simulate the heavy rainfall 

described in section 4.1. The 3D-Var method shows no significant improvement 

in rainfall forecast. When radar data are assimilated using the 4D-Var method, 

the heavy rainfall is not simulated perfectly, but the rainfall forecast is partially 

improved compared to the 3D-Var method. In order to enhance the heavy 

rainfall forecast, more-than-one outer loops and the QSVA method are used. 

Figure 4.5 shows values of the cost function as a function of iteration number 

for the 3DVAR, 4DVAR, and OUTER experiments. The conjugate gradient 

method is used to solve a linearized minimization problem iteratively, and the 

minimization is terminated when the gradient norm decreases by two orders of 

magnitude (i.e., eps = 0.01), as suggested by Daley and Barker (2001). In the 

3DVAR experiment, the minimization converges after 12 iterations, and the cost 

function decreases from 1735.87 to 976.95 (Fig. 4.5a). The minimization 

converges in 21 iterations in the 4DVAR experiment, and the cost function is 

reduced to approximately 46.2% of its starting value (from 7877.05 to 3640.80; 

Fig. 4.5b). Originally, a total of 4 outer loops are used in the OUTER 
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experiment. Inner-loop minimization for each outer loop converged after 21, 26, 

26, and 29 iterations respectively. Through the inner-loop minimization, the 

cost function decreases from 7877.05 to 3640.80 (same as in the 4DVAR 

experiment) in the first outer loop, from 3789.28 to 3597.56 in the second outer 

loop, and from 3643.60 to 3561.16 in the third outer loop (Fig. 4.5c). When 

comparing the ending value of the cost function in the current outer loop with 

the starting value of the cost function in the following outer loop, there is a 

jump-up. This is attributed to two factors: the first is the nonlinearity of the 

forecast model and/or observation operator, and the second is additional 

observations getting into the assimilation, which are rejected in the previous 

outer loop (Table 4.3). In the fourth outer loop, the cost function is reduced 

from 3619.12 to 3565.03 (Fig. 4.5c). Although the cost function decreases to 

98.5% of its starting value, its ending value is greater than that of the third outer 

loop. This implies that there is a divergence at the outer-loop level, and the 

divergence may be related to an inconsistency between the physics schemes in 

the nonlinear model and those in the linear model. In the remainder of this 

section, the OUTER experiment refers to the use of the 4D-Var method with 3 

outer loops. 

In the QSVA experiment, the length of the assimilation window for each 



52 

 

minimization task increases from 0 minute (equivalent to that of the 3DVAR 

experiment) to 30 minutes (equivalent to the 4DVAR experiment) in 10-minute 

interval, and the starting point of the current minimization comes from the 

minimizer of the previous minimization 1 . The minimization for each 

assimilation window converges after 12, 20, 22, and 25 iterations, respectively. 

The cost function decreases from 1735.87 to 976.95 (same as in the 3DVAR 

experiment) for the 0-minute assimilation window, from 1971.65 to 1788.47 for 

the 10-minute assimilation window, and from 2961.01 to 2796.00 for the 20-

minute assimilation window. When the length of the assimilation window is 30-

minute, the cost function decreases from 3821.66 to 3563.56 (Fig. 4.6). It is 

noted that the ending value of the cost function in the final minimization of the 

QSVA experiment is less than that in the 4DVAR experiment, and it is similar to 

that in the third outer loop of the OUTER experiment. 

Table 4.3 shows the Root Mean Square Errors (RMSEs) of O-B (observation 

minus background or first guess) and O-A (observation minus analysis) for the 

radial velocity and the number of assimilated observations. In all of the data 

                                           
1 In the OUTER and QSVA experiments, the first guess, not the background, is 
updated. One of basic assumptions in variational data assimilation is that there should 
be no correlation between background and observations errors. Updating the 
background violates this assumption. 
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assimilation experiments, the RMSE of O-A is smaller than that of O-B, which 

is a natural result of data assimilation. In the 4DVAR experiment, the RMSEs of 

O-B and O-A are 2.270 and 1.446, respectively. When more-than-one outer 

loops are employed, the RMSE of O-A is reduced to 1.431 (two outer loops) 

and 1.417 (three outer loops). In the QSVA experiment, as the length of the 

assimilation window increases, the RMSE of O-A is reduced consistently in 

spite of the increase in the number of assimilated observations. When the length 

of the assimilation window is 30-minute, the RMSEs of O-B and O-A are 1.508 

and 1.424, respectively. The RMSEs of O-B and O-A for the OUTER or QSVA 

experiment are much smaller than those for the 4DVAR experiment. The 

number of assimilated observations in the OUTER and QSVA experiments is 

greater than that in the 4DVAR experiment although the difference is not 

significant. 

Vertical distribution of the Root Mean Square Difference between the analysis 

and background estimate (RMSD of analysis increment) for the 4DVAR, 

OUTER, and QSVA experiments are shown in Fig. 4.7. For the OUTER 

experiment, analysis increments are calculated by using the analysis and the 

original first guess or updated first guesses from the analyses of the first and 

second outer-loops. Likewise, for the QSVA experiment, the original first guess 
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or updated first guesses from the analyses of assimilation tasks with 0, 10, and 

20-minute assimilation window is used when analysis increments are calculated. 

In the 4DVAR experiment, analysis increments of both zonal and meridional 

wind are the largest at about 600 hPa, where radial velocity data are plentiful. In 

other words, analysis increments between 700 and 400 hPa (i.e., mid-levels) are 

large because more observations are assimilated at those levels. Analysis 

increments at lower or upper levels, where radial velocity data are relatively 

scarce, have some values greater than zero due to the spreading effect of 

background error covariance and model dynamics in assimilating radial 

velocity data. Analysis increments of the OUTER experiment are reduced 

progressively as more outer-loops are applied, especially at mid-levels. 

Similarly, analysis increments of the QSVA experiment are reduced 

progressively as the length of the assimilation window is increased. This 

indicates that the background estimates (or first guesses) of the OUTER and 

QSVA experiments become closer to the observations than the 4DVAR 

experiment as more outer-loops are applied, or the assimilation window is 

lengthened. It is also noted that overall structures of RMSDs of analysis 

increments for the OUTER and QSVA experiments are similar to the 4DVAR 

experiment when the original first guess is considered. This is consistent with 
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horizontal distribution of incremental wind shown in Fig. 4.14. 

Based on analyses of the cost function, O-B/O-A statistics, and the RMSD of 

the analysis increment, it can be concluded that the background estimate and 

the analysis of the OUTER and QSVA experiments are better than those of the 

4DVAR experiment. In detail, the ending value of the cost function and the 

RMSE of O-A for the OUTER and QSVA experiments are smaller than those 

for the 4DVAR experiment, and this implies that the analyses of the OUTER 

and QSVA experiments are closer to the observations than that of the 4DVAR 

experiment. These improved analyses of the OUTER and QSVA experiments 

are due to a better background estimate, which can be deduced from the RMSE 

of O-B and the RMSD of the analysis increment. Furthermore, the number of 

assimilated observations in the OUTER and QSVA experiments increases 

compared to the 4DVAR experiment because additional observations, which are 

rejected in the 4DVAR experiment, get into the assimilation in the OUTER and 

QSVA experiments. In the WRFDA system, the observations whose innovations 

(O-B) are larger than a threshold value (defined as a multiple of the 

observations error) are rejected. In the OUTER and QSVA experiments, the 

background estimate is improved consistently, and hence O-B decreases 

accordingly. 
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Figure 4.5. Cost-function values as a function of iteration number for the (a) 3DVAR, (b) 
4DVAR, and (c) OUTER experiments. In the OUTER experiment, a total of 4 outer loops 
are used, and cost-function values for the first- (blue), second- (green), third- (orange), and 
fourth-outer-loop (red) are shown. Maximum and minimum values of cost function are 
indicated at the maximum/minimum points of each curve. 
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Figure 4.6. Cost-function values as a function of iteration number for assimilation tasks of 
the QSVA experiment with assimilation window of (a) 0 minute, (b) 10 minutes, (c) 20 
minutes, and (d) 30 minutes. Maximum and minimum values of cost function are indicated 
at the maximum/minimum points of each curve. 
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Table 4.3. Root Mean Square Errors (RMSEs, m s-1) of O-B and O-A for radar radial 

velocity and the number of assimilated observations for the 3DVAR, 4DVAR, OUTER, 

and QSVA experiments. The number in parenthesis in the OUTER experiment means 

the number of outer loops applied and that in the QSVA experiment means the length 

of the assimilation window (in minute) for each assimilation task. 

 

 3DVAR 4DVAR OUTER 
(2) 

OUTER 
(3) 

QSVA 
(0) 

QSVA 
(10) 

QSVA 
(20) 

QSVA 
(30) 

O-B 2.272 2.270 1.479 1.441 2.272 1.616 1.545 1.508 
O-A 1.603 1.446 1.431 1.417 1.603 1.479 1.465 1.424 
# of 

assimilated 
OBSs 

2691 12226 12228 12228 2691 5694 9142 12228 
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Figure 4.7. Vertical distribution of RMSD of analysis increment for the 4DVAR (green), 
QSVA (orange), and OUTER (red) experiments. (a) Zonal wind (m s-1) and (b) meridional 
wind (m s-1). For the QSVA experiment, original first guess (solid) and updated first 
guesses from analysis of assimilation task with 0-min (dashed), 10-min (dotted), and 20-
min (dash-dotted) assimilation window are used in calculating analysis increment. 
Likewise, for the OUTER experiment, original first guess (solid) and updated first guesses 
from analysis of the first (dashed) and second (dotted) outer loop are used. 
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The nonlinearity of the original minimization problem is investigated using 

two measures, namely the percentage error in linearization and the pattern 

correlation. It should be noted that the linearized minimization problem is 

solved using an iterative method in the 4DVAR, OUTER, and QSVA 

experiments, and hence, the nonlinearity refers to that of the original nonlinear 

minimization problem, and the nonlinearity measures can be used to indicate 

the gap between nonlinear and linear growth (i.e., the nonlinearity can be 

interpreted as the gap). In order to compute these two measures, the nonlinear 

and linear growths of a perturbation are estimated according to Trémolet (2004) 

as follows. An analysis increment is used as the perturbation. The nonlinear 

growth of the perturbation is defined as the difference between two nonlinear-

model runs, one from an unperturbed initial condition, and the other from a 

perturbed initial condition. The unperturbed initial condition is from the 

background estimate, and the perturbed initial condition is the sum of the 

unperturbed initial condition and the perturbation. The linear growth of the 

perturbation is from a linear-model run of the perturbation with nonlinear model 

trajectory for linearization coming from the nonlinear-model run of the 

unperturbed (perturbed) initial condition in the case of the 4DVAR (OUTER or 

QSVA) experiment. The typical maximum amplitude of the perturbation is of 
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the order of 7.6 m s-1/3.0 K, 0.63 m s-1/1.0 K, and 1.9 m s-1/3.0 K for the 

4DVAR, OUTER, and QSVA experiments, respectively. The percentage error in 

linearization is defined as follows: 

 

Error (%) =  
NLG − LG

LG
× 100 

DTE =  
1
2
�[u′2 + v′2 + �

g
NTr

�
2

T′2 + �
1
ρcs

�
2

p′2]
η,Σ

dΣdη 

, (21) 

 

where NLG stands for the nonlinear growth of the perturbation and LG stands 

for the linear growth of the perturbation. Each growth is calculated in terms of 

dry total energy (DTE) over the whole domain. u, v, T, and p are the zonal wind, 

meridional wind, temperature, and pressure components of the state vector, and 

a primed symbol denotes the evolved perturbation. The gravitational 

acceleration, Brunt-Väisälä frequency, density of air, and speed of sound are 

denoted by g, N, ρ, and cs, respectively, and Tr is a reference temperature. The 
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pattern correlation between nonlinearly- and linearly-evolved fields is 

calculated for each component (u, v, T, and p), and the pattern correlations of all 

the components are averaged. 

Figure 4.8 shows the percentage error in linearization and the pattern 

correlation within the assimilation window for the 4DVAR, OUTER, and QSVA 

experiments. The percentage error in linearization can be interpreted as follows. 

A value of zero indicates that there is no error in linearization; a positive value 

indicates that nonlinear growth is greater than linear growth; and a negative 

value indicates that linear growth is greater than nonlinear growth. During the 

assimilation window, the percentage errors for all of the experiments are 

negative, and hence linear growth is greater than nonlinear growth. From 0 to 

15-minute into the forecast, the difference in the percentage errors among the 

4DVAR, OUTER, and QSVA experiments is not large. However, the percentage 

error of the 4DVAR experiment increases abruptly for the next 15 minutes, and 

the percentage error of the 4DVAR experiment at 30-minute into the forecast is 

less than -20%, whereas the percentage errors of the OUTER and QSVA 

experiments remain close to zero (Fig. 4.8a). This implies that the gap between 

nonlinear and linear growth is reduced in the OUTER and QSVA experiments 

compared to that in the 4DVAR experiment because nonlinearity in the forecast 



63 

 

model and/or observation operator is taken into account by updating the 

nonlinear model trajectory. From 0 to 10-minute into the forecast, the 

percentage error of the minimization task with a 10-minute period is larger than 

those of minimization tasks with 20- and 30-minute periods in the QSVA 

experiment. Similarly, from 10 to 20-minute into the forecast, the percentage 

error of the minimization task with a 20-minute period is larger than that of the 

minimization task with a 30-minute period (Fig. 4.8a). This is because of the 

improved nonlinear model trajectory and background estimate with increasing 

length of the assimilation window in the QSVA experiment. However, the 

percentage error at the end of the assimilation window increases with increasing 

length of the assimilation window because a lengthy assimilation window is 

usually related to a greater degree of nonlinearity. Thus, the nonlinearity of the 

minimization problem is smallest for an assimilation window of 10-minute in 

the QSVA experiment. 

The percentage error in linearization can be interpreted as a measure of the 

nonlinearity in terms of amplitude, and the pattern correlation can be interpreted 

as a measure of the nonlinearity in terms of phase. Roughly, the pattern 

correlation decreases as the forecast length increases. As in the analysis of the 

percentage error in linearization, the differences in the pattern correlation 
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among the 4DVAR, OUTER, and QSVA experiments increases after 15-minute 

into the forecast. The pattern correlation of the 4DVAR experiment decreases 

rapidly for the final 15 minutes, and at 30-minute into the forecast, it is less 

than 0.7. Contrastively, the pattern correlations of the OUTER and QSVA 

experiments are greater than 0.8 and 0.9, respectively, even at 30-minute into 

the forecast (Fig. 4.8b). As the length of the assimilation window increases in 

the QSVA experiment, the gap between nonlinear and linear growth in terms of 

pattern correlation decreases consistently owing to the improved nonlinear 

model trajectory and background estimate. It should be noted that the 

nonlinearity of the minimization problem, which is expressed as the pattern 

correlation at the end of each assimilation window, increases with increasing 

assimilation window in the QSVA experiment. 

Based on the analyses of the percentage error in linearization and pattern 

correlation, it can be seen that the gap between nonlinear and linear growth is 

reduced in the OUTER and QSVA experiments. In the OUTER experiment, as 

more outer loops are applied, the background estimate and nonlinear model 

trajectory for linearization are updated. Similarly, in the QSVA experiment, as 

the length of the assimilation window increases, the background estimate and 

nonlinear model trajectory are updated. Improvement of the background 
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estimate and nonlinear model trajectory leads to a better analysis in the OUTER 

and QSVA experiments. Furthermore, as the length of the assimilation window 

increases in the QSVA experiment, the nonlinearity of the original minimization 

problem also increases because a high degree of nonlinearity usually results 

from a lengthy assimilation window, high resolution, etc. 

Figure 4.9 shows the running time for the 4DVAR, OUTER, and QSVA 

experiments on a LINUX cluster with 8 Central Processing Units (CPUs) and 

50-GB of memory2. 21 iterations in the 4DVAR experiment take about 7.5 h of 

wall-clock time. In the OUTER experiment, 3 outer loops are used with 21, 26, 

and 26 inner-loop iterations, and a total of 73 iterations take approximately 

27.25 h of wall-clock time. In the QSVA experiment, for each assimilation 

window, 12, 20, 22, and 25 iterations are required, respectively, with a total 

wall-clock time of approximately 12.95 h. The computational cost of the QSVA 

experiment is greater than that of the 4DVAR experiment, but it is much less 
                                           
2 In this study, data assimilation experiments are conducted on LINUX cluster system. 
This system contains Quad-Core AMD Opteron Processor 2376 HE, and it has a total 
of 8 CPUs. Its theoretical performance is about 73.6 GF (Giga Flops), and its memory 
is 8 GB. KMA’s third supercomputer is based on CRAY XE6 system. It has a total of 
90,240 CPUs (16-Core AMD Opteron Processor 6300) and 120-TB memory. Its 
theoretical performance is approximately 758 TF (Tera Flops), and hence the 
performance of the LINUX cluster system used in this study is not good compared to 
KMA’s supercomputer. As another example, NCAR’s supercomputer, Yellowstone has 
a total of 72,288 CPUs (8-Core Intel Xeon E5-2670 Processor), and its theoretical 
performance is about 1.5 PF (Peta Flops). 
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than that of the OUTER experiment, in which nonlinearity of the forecast 

model and observation operator is taken into account as in the QSVA 

experiment. This saving in computational time in the QSVA experiment is to the 

result of a shorter assimilation window of prior minimization tasks than in the 

4DVAR or OUTER experiment. Generally, in operational environments, all the 

computations related to data assimilation are carried out after the so-called ‘cut-

off-time’, i.e., after the end of the assimilation window. Therefore, the 

computational cost is concentrated near this cut-off-time. Through the QSVA 

method, some computations can be done before the cut-off-time, and hence the 

computational burden can be distributed efficiently (Järvinen et al., 1996). The 

computational cost required for the QSVA experiment can be reduced further by 

using different stopping-criterion in the minimization of the cost function in 

prior minimization tasks. In an additional experiment, QSVA_LC, the 

minimization of the cost function is finished when the gradient norm is reduced 

by just one order of magnitude when the length of the assimilation window is 0, 

10, or 20 minutes. Since the final minimization task (i.e., when the length of the 

assimilation window is 30 minutes) is of main concern, the prior minimization 

tasks need not to be solved precisely, and hence this method to reduce the 

computational cost can be justified. It is known that the minimization process 
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acts on the largest scale first (Thépaut and Courtier, 1991; Navon et al., 1992; 

Tanguay et al., 1995), and hence this method enables the large scale to be 

resolved by prior minimization tasks, then the small scales to be sought for only 

during the final minimization task. In the QSVA_LC experiment, a total of 

(6+12+12+25=) 55 iterations take about 12.05 h of wall-clock time, 

representing a saving of approximately 1-h compared to the QSVA experiment. 

Note that the quality of the analysis and subsequent forecast in the QSVA_LC 

experiment is very similar to those in the QSVA experiment (not shown). 
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Figure 4.8. (a) Percentage error in linearization (%) and (b) pattern correlation as a function 
of forecast length for the 4DVAR (green solid line), QSVA_10 (orange dotted line), 
QSVA_20 (orange dashed line), QSVA_30 (orange solid line), and OUTER (red solid line) 
experiments. 
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Figure 4.9. Computing time (hour) for the 4DVAR, OUTER, QSVA, and QSVA_LC 
experiments. In the OUTER experiment, computing times for the first, second, and third 
outer loop are shown. In the QSVA and QSVA_LC experiments, computing times for 
assimilation tasks with assimilation window of 10, 20, and 30 minutes are shown. Note that 
computing time for assimilation task with assimilation window of 0 minute is less than one 
minute. 
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Figure 4.10 shows the 6-h accumulated rainfall distributions from 0600 UTC 

to 1200 UTC 6 August 2006 for the CONTROL, 3DVAR, 4DVAR, OUTER, 

and QSVA experiments. In the observations, there were two localized rainfall 

maxima: one over the southwestern part of the Korean Peninsula and the other 

over the east coast, as mentioned in section 4.1. The 6-h accumulated rainfall 

amount was 33.5 mm at Namwon and it was 37.5 mm at Taebaek. In the 

CONTROL experiment, there is rainfall over the southwestern part of the 

Korean Peninsula with maximum rainfall amount of about 62.9 mm (Fig. 4.10a). 

However, rainfall distribution is too localized to be regarded as rainfall caused 

by an organized system, and the 6-h accumulated rainfall amount is 

overestimated compared to the observations. When the radar radial velocity 

data are assimilated using the 3D-Var method, no significant improvement in 

rainfall distribution can be found compared to the CONTROL experiment (Fig. 

4.10b). In the 4DVAR experiment, rainfall distribution over the southwestern 

part of the Korean Peninsula is relatively well simulated compared to the 

CONTROL and 3DVAR experiments. However, the 6-h accumulated rainfall 

amount at the maximum rainfall point (~155.8 mm) is highly overestimated 

compared to the observations, and the rainfall distribution incorrectly extends to 

the central part of South Korea. In addition, rainfall over the east coast is not 
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simulated at all in the 4DVAR experiment (Fig. 4.10c). Rainfall distribution in 

the OUTER experiment is similar to that in the 4DVAR experiment, but the 6-h 

accumulated rainfall amount in the OUTER experiment is even greater than that 

in the 4DVAR experiment (Fig. 4.10d). The 6-h accumulated rainfall 

distribution in the QSVA experiment is similar to the observations. Both of the 

localized rainfall maxima in the observations are simulated in the QSVA 

experiment although the localized rainfall maximum over the east coast, which 

corresponds to Taebaek, is displaced eastward compared to the observations. 

The 6-h accumulated rainfall amount at the maximum point over the 

southwestern part of the Korean Peninsula, which corresponds to Namwon, is 

approximately 34.2 mm, and that over the east coast is approximately 31.7 mm 

in the QSVA experiment (Fig. 4.10e). Both of them are similar to the 

observations. 

The time series of the hourly rainfall at Namwon and Taebaek (or at the grid 

points corresponding to Namwon and Taebaek in the case of the model 

experiments) from 0600 UTC to 1200 UTC 6 August 2006 for the CONTROL, 

3DVAR, 4DVAR, OUTER, and QSVA experiments are shown in Figs. 4.1a and 

b along with the observations. At Namwon, the observed rainfall peaked at 

1000 UTC with rainfall amount of 30.5 mm, and the rainfall was concentrated 
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around the peak time. In the CONTROL and 3DVAR experiments, the rainfall 

peak appears at 0800 UTC, and the rainfall amount at the peak time is 

approximately 47.9 mm and 59.1 mm, respectively. The peak time is earlier 

than the observations, and in these experiments the rainfall amount at the peak 

time is overestimated compared to the observations. In the 4DVAR experiment, 

the rainfall peaks at 1000 UTC with rainfall amount of about 78.2 mm. 

Although the peak time is well simulated, the rainfall amount at the peak time is 

highly overestimated compared to the observations. This is consistent with the 

result of the 6-h accumulated rainfall distribution shown in Fig. 4.10c. The 

simulated hourly rainfall amount in the OUTER experiment is greater than 20.0 

mm after 0900 UTC, which is different from the observations. The rainfall peak 

appears at 0900 UTC (earlier than the observations) with rainfall amount of 

47.8 mm (overestimated) in the OUTER experiment. In the QSVA experiment, 

hourly rainfall peaks at 1000 UTC, which is identical to the observations, 

although the rainfall amount at the peak time (~21.9 mm) is slightly 

underestimated compared to the observations. At Taebaek, in the observations, 

rainfall was concentrated around the peak time, 0800 UTC, with rainfall 

amount of about 34.0 mm. The rainfall maximum at Taebaek is simulated only 

in the QSVA experiment, as shown in Fig. 4.10. In the QSVA experiment, 
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rainfall peaks at 0800 UTC like the observations in spite of an underestimation 

of the rainfall amount at the peak time (~24.6 mm). 

Figure 4.11 shows RMSEs of rainfall as a function of forecast time for 

CONTOL, 3DVAR, 4DVAR, OUTER, and QSVA experiments. For the first 2-h 

forecast, RMSEs of rainfall of 4DVAR and OUTER experiments are the largest 

because rainfall is wrongly simulated over the central part of South Korea in 

4DVAR and OUTER experiments. Simulated rainfall over the southwestern 

part of the Korean Peninsula in CONTROL and 3DVAR experiments is earlier 

than the observations in timing, and hence RMSEs of CONTROL and 3DVAR 

experiments are also large during this period. For the second 2-h forecast, 

RMSEs of rainfall of 4DVAR and OUTER experiments are the largest due to 

the overestimation of rainfall over the southwestern part of the Korean 

Peninsula during this period. RMSEs of CONTROL and 3DVAR experiments 

are also large because the observed rainfall over the southwestern part of the 

Korean Peninsula is missed in CONTROL and 3DVAR experiments. In contrast, 

RMSE of QSVA experiment during this period is relatively small since the 

observed rainfall over the southwestern part of the Korean Peninsula is 

simulated well in QSVA experiment. For 6-h forecast, although 6-h 

accumulated rainfall distributions of 4DVAR and OUTER experiments are 
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better than those of CONTROL and 3DVAR experiments in a certain manner 

(e.g., forecast of rainfall over the southwestern part of the Korean Peninsula), 

RMSEs of rainfall of 4DVAR and OUTER experiments are larger than those of 

CONTROL and 3DVAR experiments. This is due to the overestimation of 

rainfall over the southwestern part of the Korean Peninsula and false simulation 

of rainfall over the central part of South Korea. RMSE of rainfall of QSVA 

experiment is the smallest among all the experiments, and this is consistent with 

the qualitative analyses of simulated rainfall (e.g., distribution and time series 

of rainfall). 

RMSEs of radial velocity as a function of forecast time for CONTROL, 

3DVAR, 4DVAR, OUTER, and QSVA experiments are shown in Fig. 4.12. 

Error is defined as the difference between observed radial velocity from 13 

radar observation sites over the Korean Peninsula and simulated radial velocity 

derived from simulated wind components. RMSE of radial velocity of 

CONTROL experiment increases with increasing forecast time. On the whole, 

RMSEs of data assimilation experiments are smaller than that of CONTROL 

experiment during 6-h forecast. However, in 3DVAR experiment, RMSE of 

radial velocity increases rapidly during the period from 0800 UTC to 0930 UTC, 

which is related to rainfall over the southwestern part of the Korean Peninsula, 
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and at 1200 UTC, the difference in RMSE between CONTROL and 3DVAR 

experiments is not large. In 4DVAR, OUTER, and QSVA experiments, RMSE 

of radial velocity is the smallest in the middle of 30-minute assimilation 

window, and this is consistent with previous studies (Pires et al., 1996; 

Swanson and Vautard, 1998). RMSEs of radial velocity of 4DVAR, OUTER, 

and QSVA experiments remain relatively small compared to CONTROL and 

3DVAR experiments during the whole forecast. Among 4DVAR, OUTER, and 

QSVA experiments, RMSE of QSVA experiment is the smallest. 

Fit to the observations (i.e., bias) of zonal wind, meridional wind, temperature, 

and water vapor mixing ratio for CONTROL, 3DVAR, 4DVAR, OUTER, and 

QSVA experiments are shown in Fig. 4.13. Fit to the observations is calculated 

using sounding observations from 7 radiosonde observation sites over the 

Korean Peninsula at 1200 UTC 6 August 2006. In CONTROL experiment, 

negative bias of zonal wind appears below 800 hPa, positive bias appears 

between 800 hPa and 600 hPa, and again negative bias appears above 600 hPa 

except for 200 hPa. These biases in CONTROL experiment are reduced in data 

assimilation experiments, especially in QSVA experiment and at mid-levels. 

Bias of meridional wind is negative almost at all pressure levels in CONTROL 

experiment. Through assimilation of radar data, bias of meridional wind is 
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reduced at all levels except for above 300 hPa. Among data assimilation 

experiments, decrease in bias of meridional wind is the largest in OUTER and 

QSVA experiments. Bias of temperature is the largest at lower levels, it is close 

to zero at mid-levels, and it is slightly negative at upper levels. Positive bias of 

temperature below 800 hPa in CONTROL experiment is lessened only in QSVA 

experiment. Bias of water vapor mixing ratio is positive at all levels except for 

450 hPa in CONTROL experiment. Below 900 hPa, bias of water vapor mixing 

ratio in QSVA experiment is negative, which is different from the other 

experiments. Positive bias of water vapor mixing ratio between 800 hPa and 

500 hPa is reduced in data assimilation experiments, and decrease in bias is the 

largest in QSVA experiment. 

In order to figure out the reason why the rainfall forecast of the QSVA 

experiment is different from that of the 4DVAR (or OUTER) experiment, 

analysis increments of the 4DVAR and QSVA experiments are investigated. 

Figure 4.14 shows analysis increments of the horizontal wind, divergence, and 

CAPE at 850 hPa for the 4DVAR and QSVA experiments with the 

corresponding background fields. In the CONTROL experiment (i.e., in 

background fields), CAPE over the southern part of the Korean Peninsula is 

greater than 1500 J kg-1, and the water vapor mixing ratio is also large over 
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South Korea. However, in the CONTROL experiment, the rainfall distribution 

is too localized to be considered as rainfall caused by an organized system (Fig. 

4.10a). In the CONTROL experiment, the horizontal wind over the Yellow Sea 

and the Korean Peninsula is anti-cyclonic, and divergence is dominant over the 

southern part of the Korean Peninsula (Fig. 4.14a). As a result, there is not 

enough lift forcing in the CONTROL experiment, which is necessary in 

simulating rainfall over the southwestern part of the Korean Peninsula. 

Incremental wind of the 4DVAR experiment is cyclonic and convergent over 

the Yellow Sea and the southwestern part of the Korean Peninsula. In particular, 

the analysis increment of convergence is maximized near Namwon (Fig. 4.14b). 

Consequently, through the assimilation of radial velocity data using the 4D-Var 

method, the horizontal wind over the southwestern part of the Korean Peninsula 

is modified, and this modification provides continuous forcing for lift, which is 

necessary for simulating rainfall centered at Namwon. However, simulated 

rainfall over the southwestern part of the Korean Peninsula is highly 

overestimated, and it extends erroneously to the central part of South Korea in 

the 4DVAR experiment. This is because the analysis increment of CAPE over 

the western part of the Korean Peninsula is positive, and excessive convective 

instability is simulated over that region. Incremental wind in the QSVA 
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experiment over the southwestern part of the Korean Peninsula is cyclonic and 

convergent as in the 4DVAR experiment. In contrast to the 4DVAR experiment, 

however, the analysis increment of CAPE over the western part of the Korean 

Peninsula is negative, and this improves the rainfall forecast over the 

southwestern part of the Korean Peninsula in the QSVA experiment. It is also 

noted that in the QSVA experiment, the analysis increment of CAPE over the 

east coast is positive, and this may enable the simulation of the observed 

rainfall near Taebaek (Fig. 4.14c). 

Vertical cross sections of the vertical wind and divergence, and equivalent 

potential temperature and reflectivity along the line in Fig. 4.10d at 0900 UTC 

6 August 2006 are shown in Figs. 4.15a and b. A convective system 

characterized by a strong upward motion can be found in the vertical cross 

section of the vertical wind and divergence for the QSVA experiment. The 

upward motion extends to near the tropopause with a maximum value of 

approximately 2 m s-1 at a height of about 8 km. This upward motion is related 

to convergence at lower levels and divergence at upper levels. These features 

are consistent with the observations shown in Fig. 4.3b. In the vertical cross 

section of the equivalent potential temperature and reflectivity, high values (> 

40 dBZ) of the reflectivity correspond well to the strong upward motion. The 
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equivalent potential temperature decreases by approximately 10 K, going from 

2 km to 8 km, and this implies conditional instability. Note that near the 

convection center, the decrease in the equivalent potential temperature is not 

significant because the conditional instability is partly relieved by the 

convective system. The improvement of the analysis shown in Fig. 4.14, 

especially of the wind fields, leads to a better forecast of rainfall and 

meteorological fields in the QSVA experiment. 

Figure 4.15c shows the skew T-log p diagram at the grid point corresponding 

to Gwangju at 0900 UTC 6 August 2006 in the QSVA experiment. Compared to 

the observations at 0600 UTC in Fig. 4.2a, development of the vertical structure 

of the temperature and dew-point temperature are simulated well. In addition, 

there is a Moist Absolutely Unstable Layer (MAUL) near 850 hPa, which is 

frequently observed in the developing stage of many MCSs and lasts 

throughout their mature stage (Bryan and Fritsch, 2000). The simulated value of 

CAPE is approximately 2564 J kg-1, which is reasonable when the observed 

value of 1970 J kg-1 at 0600 UTC is considered (Table 4.1). These results 

indicate that the vertical structure of the thermodynamic fields over the 

southwestern part of the Korean Peninsula is reproduced well in the QSVA 

experiment. 
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Figure 4.10. 6-h accumulated rainfall (mm 6h-1) distribution over South Korea from 0600 
UTC to 1200 UTC 6 August 2006 for the (a) observations, (b) CONTROL, (c) 3DVAR, (d) 
4DVAR, (e) QSVA, and (f) OUTER experiments. Note that different color scales are used 
for the QSVA and OUTER experiments. 
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Figure 4.11. Root Mean Square Errors (RMSEs) of rainfall (mm 6h-1) as a function of 
forecast time for the CONTROL (blue), 3DVAR (yellow), 4DVAR (green), QSVA (orange), 
and OUTER (red) experiments. Surface observations from 76 observation sites over South 
Korea are used. 
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Figure 4.12. Root Mean Square Errors (RMSEs) of radial velocity (m s-1) as a function of 
forecast time for the CONTROL (blue), 3DVAR (yellow), 4DVAR (green), QSVA (orange), 
and OUTER (red) experiments. Radial velocity observations from 13 radar observation 
sites over the Korean Peninsula are used. 
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Figure 4.13. Vertical distribution of fit to the observations using sounding observations 
over the Korean Peninsula at 1200 UTC 6 August 2006 for the CONTROL (blue), 3DVAR 
(yellow), 4DVAR (green), QSVA (orange), and OUTER (red) experiments. (a) Zonal wind 
(m s-1), (b) meridional wind (m s-1), (c) temperature (K), and (d) water vapor mixing ratio 
(kg kg-1). 
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Figure 4.14. (a) Convective Available Potential Energy (CAPE, J kg-1, shading), divergence 
(10-5 s-1, negative values are denoted by dashed contours), and winds (m s-1, vector) of 850 
hPa at 0600 UTC 6 August 2006 for the CONTROL experiment. Analysis increments of 
CAPE (J kg-1, shading), divergence (10-5 s-1, negative values are denoted by dashed 
contours), and winds (m s-1, vector) at 850 hPa for the (b) 4DVAR and (c) QSVA 
experiments. 
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Figure 4.15. Vertical cross section along the line in Fig. 4.10d of (a) vertical wind (m s-1, 
shading) and divergence (10-4 s-1, negative values are denoted by dashed contours) and (b) 
reflectivity (dBZ, shading) and equivalent potential temperature (K, contour interval of 5 K) 
at 0900 UTC 6 August 2006. (c) Skew T-log p diagram of Gwangju for the QSVA 
experiment at 0900 UTC 6 August 2006. 
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In summary, incremental wind of the 4DVAR (or OUTER) and QSVA 

experiments is cyclonic and convergent over the southwestern part of the 

Korean Peninsula, and this modification to the wind field provides forcing for 

lift, which is essential in simulating rainfall near Namwon. However, in the 

4DVAR (or OUTER) experiment, the analysis increment of CAPE over the 

western part of the Korean Peninsula is positive, and this results in excessive 

rainfall over the western part of the Korean Peninsula compared to the 

observations. In contrast, a negative (positive) increment of CAPE over the 

western part (east coast) of the Korean Peninsula in the QSVA experiment leads 

to better forecasts of rainfall and meteorological fields. 

The analyses of both the OUTER and QSVA experiments are better than the 

4DVAR experiment, but the rainfall forecast of only the QSVA experiment is 

improved. In the OUTER experiment, a 30-minute assimilation window is used 

in the inner-loop minimizations of all the outer loops. However, in the QSVA 

experiment, the length of the assimilation window is increased gradually from 

0-minute to 30-minute in 10-minute interval, and the nonlinearity of the original 

minimization problem is increased accordingly. Therefore, the relatively-low-

quality background estimate is used when the nonlinearity (and chance of 

multiple minima) of the nonlinear minimization problem is comparatively low, 
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and vice versa. In other words, by increasing the length of the assimilation 

window step by step, the orbit minimizing the cost function is determined at 

each step, and that orbit is used as the starting point for the next minimization in 

the QSVA method. This quasi-static adjustment ensures that the computed 

minimum at every step is the absolute minimum, and the starting point of the 

minimization of the cost function always lies within the attractive basin of the 

absolute minimum of the next minimization (Pires et al., 1996). Although it is 

not possible to show that the analysis of the QSVA experiment is closer to the 

global minimum than that of the OUTER (or 4DVAR) experiment, this may be 

convinced indirectly by the improved forecasts of the QSVA experiment. 

 

4.4. Extension to heavy rainfall cases in 2006 and 2008 

 

In order to obtain robustness of the conclusion drawn in section 4.3, a total of 

9 heavy rainfall cases over the Korean Peninsula are selected. Data assimilation 

and forecast results from these 9 cases are analyzed and compared to the heavy 

rainfall case in section 4.3. Selected 5 heavy rainfall cases occurred in 2006 

(including the heavy rainfall case in section 4.3) and 5 heavy rainfall cases 



89 

 

occurred in 2008 are summarized in Table 4.4. 24-h accumulated rainfall 

distributions for 9 heavy rainfall cases (excluding Case 4; refer to Fig. 4.1a of 

section 4.3) are shown in Figs. 4.16 and 17. 

In Case 1, rainfall was broadly distributed over South Korea, and it was 

locally-concentrated over the central part and south coast of the Korean 

Peninsula. 24-h accumulated rainfall amount was maximized at Ganghwa, west 

of Seoul, and rainfall amount was approximately 153.0 mm. Rainfall was 

induced by the low-pressure system developing over the Central China and 

passing through the southern part of the Korean Peninsula. In Case 2, main 

rainfall band was line-shaped, and 24-h accumulated rainfall amount at Seosan 

was about 95.5 mm. This case was related to upper-level tough located over the 

northern part of the Korean Peninsula. Rainfall in Case 3 was caused by 

typhoon EWINIAR. Rainfall was concentrated over the south coast of South 

Korea, and 24-h accumulated rainfall amount at Namhae was approximately 

264.5 mm. In Case 5, cold and moist air over the northern East Sea was 

transported to the east coast of South Korea by northeasterly flow. This cold 

and moist air was lifted by Taebaek Mountains parallel to the east coast, and a 

large amount of orographic rainfall was induced over Youngdong areas. 24-h 

accumulated rainfall amount at Gangneung was about 292.5 mm. 
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In Case 6, interaction between upper-level trough and surface disturbance 

induced heavy rainfall over the broad areas of the Korean Peninsula. 24-h 

accumulated rainfall amount at Seogwipo (in Jeju Island) was approximately 

214.5 mm. In Case 7, a blocking-high was located over the areas north of Japan, 

and cold air was surged to the Korean Peninsula at upper levels. This synoptic 

environment caused the atmosphere over the Korean Peninsula to be 

convectively unstable, and finally, induced torrential rainfall and lightning. 24-h 

accumulated rainfall distribution was line-shaped, and it was maximized at 

Seoul with rainfall amount of about 80.5 mm. Rainfall in Case 8 and 9 was 

induced by Jangma front, and it was concentrated over the central part of the 

Korean Peninsula. 24-h accumulated rainfall amount at Hongcheon (Paju) was 

108.5 mm (282.5 mm) in Case 8 (Case 9). Finally, in Case 10, rainfall was 

induced by mid-level tough, and rainfall was concentrated over the central part 

and south coast of the Korean Peninsula. 24-h accumulated rainfall amount at 

Yanggu was approximately 121.5 mm. 

A total of 4 experiments are conducted for each case: CONTROL, 4DVAR, 

OUTER, and QSVA experiments. In CONTROL experiment, no radar data are 

assimilated. In 4DVAR, OUTER, and QSVA experiments, radar radial velocity 

data are assimilated using the 4D-Var (with single outer loop), 3 outer-loop 4D-
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Var, and QSVA methods, respectively. Like in section 4.3, initial condition of 

CONTROL experiment is used as a first guess for data assimilation experiments 

(i.e., cold-start). Background error covariance is calculated by using the NMC 

method, and radar data are preprocessed before the assimilation. Assimilation 

window starts at the initial time of domain 3 and its length is 30 minutes. 

Results of additional 9 cases are compared to that of Case 4 in section 4.3. It 

should be noted that radar data from USAF, which are known to be effective in 

data assimilation, are available only for Cases 1-5. 

Figure 4.18 shows normalized cost-function values as a function of iteration 

number for heavy rainfall cases in 2006 (i.e., Cases 1-5). In order to be 

compared with 4DVAR experiment, OUTER experiment refers to minimization 

of cost function for the third outer-loop, and QSVA experiment refers to 

minimization of cost function for assimilation window of 30-minute. In 4DVAR 

experiments, minimizations of cost function for all the cases are converged 

successfully after several tens of iterations. After minimization, cost function 

decreases to less than 50% of its starting value, especially, in Case 5, its ending 

value is less than 20% of the starting value (Fig. 4.18a). When inner-loop 

minimization for the third outer-loop is considered (Fig. 4.18b), ending values 

of normalized cost function for all the cases are relatively large compared to 
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4DVAR experiment. This implies that decreasing rate of cost function is not 

large, and hence ratio between starting and ending values of the cost function 

remains large in spite of greater number of iterations in OUTER experiment. In 

OUTER experiments, first guess is updated progressively through the use of 

outer-loop, which results in relatively-slow rate of convergence in minimization 

of cost function. In terms of both total number of iterations and ending value of 

cost function, minimization of cost function in QSVA experiment is between 

4DVAR and OUTER experiments (Fig. 4.18c). Total number of iterations for 

Case 3 is the greatest in all the experiments, and decreasing rate of cost function 

for Case 1 is relatively large even in OUTER and QSVA experiments. 

Normalized cost functions for heavy rainfall cases in 2008 (i.e., Cases 6-10) 

are shown in Fig. 4.19. Minimization of cost function in 4DVAR experiment for 

Cases 6-10 is converged after 19, 7, 40, 41, and 21 iterations, respectively. The 

ending value of cost function is approximately 0.3 for Cases 8, 9, and 10, and it 

is less than 0.2 for Cases 6 and 7 (Fig. 4.19a). In OUTER experiment, more 

iterations (36, 11, 58, 65, and 44 iterations for Cases 6-10) are needed for 

convergence of cost-function minimization, and the ending value of cost 

function is relatively large compared to 4DVAR experiment. Like in 4DVAR 

experiment, the number of total iteration for Case 9 is the greatest, and the 
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ending value of the cost function for Case 6 is the smallest (Fig. 4.19b). Unlike 

the heavy rainfall cases in 2006, total number of iterations in QSVA experiment 

is greater than those in OUTER experiment except for Case 10. In addition, 

decrease in cost-function value in QSVA experiment is not much different from 

OUTER experiment as opposed to heavy rainfall cases in 2006 (Fig. 4.19c). 
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Table 4.4. Summary of heavy rainfall cases in 2006 and 2008. 

 Initial time for 

domain 3 

(YYYYMMDDHH

, UTC) 

Forecast 

length for 

domain 3 

(h) 

Maximum point of 

24-h (or 6-h) 

accumulated 

rainfall amount 

24-h (or 6-h) 

accumulated rainfall 

amount at maximum 

point (mm) 

Case 1 2006050512 24 Ganghwa 153.0 

Case 2 2006060918 24 Seosan 95.5 

Case 3 2006070918 24 Namhae 264.5 

Case 4 2006080606 6 Namwon 33.5 

Case 5 2006102218 24 Gangneung 292.5 

Case 6 2008052712 24 Seogwipo 214.5 

Case 7 2008060200 24 Seoul 80.5 

Case 8 2008071200 24 Hongcheon 108.5 

Case 9 2008072312 24 Paju 282.5 

Case 10 2008081112 24 Yanggu 121.5 

 Peak time in time series 

of hourly rainfall at 

maximum point (UTC) 

Peak hourly rainfall 

amount at maximum 

point (mm) 

Characteristics 

Case 1 1700 UTC 05 23.5 Low pressure 

Case 2 0100 UTC 10 27.0 Trough 

Case 3 0100 UTC 10 36.5 Typhoon 

Case 4 1000 UTC 06 30.5 Thunderstorm 

Case 5 0200 UTC 23 64.5 Orographic rain 

Case 6 0300 UTC 28 30.5 Trough 

Case 7 1100 UTC 02 38.0 Thunderstorm 

Case 8 2000 UTC 12 29.0 Jangma front 

Case 9 2000 UTC 23 55.0 Jangma front 

Case 10 0700 UTC 12 18.0 Trough 
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Figure 4.16. Observed 24-h accumulated rainfall distribution (mm 24h-1) for (a) Case 1, (b) 
Case 2, (c) Case 3, and (d) Case 5. 



96 

 

 

 

 

 



97 

 

 

 

 

Figure 4.17. Observed 24-h accumulated rainfall distribution (mm 24h-1) for (a) Case 6, (b) 
Case 7, (c) Case 8, (d) Case 9, and (e) Case 10. 
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Figure 4.18. Normalized cost function as a function of iteration number for Case 1 (blue), 
Case 2 (green), Case 3 (orange), Case 4 (yellow), and Case 5 (red). (a) 4DVAR, (b) 
OUTER, and (c) QSVA experiments. 

 



99 

 

 

 

 

 

Figure 4.19. Same as Figure 4.18 but for Case 6 (blue), Case 7 (green), Case 8 (orange), 
Case 9 (yellow), and Case 10 (red). 
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Figure 4.20 shows RMSEs of O-B/O-A for radial velocity and the number of 

assimilated observations in 4DVAR, OUTER, and QSVA experiments for heavy 

rainfall cases in 2006 (i.e., Cases 1-5). O-B/O-A statistics are calculated for the 

second and third outer loop in OUTER experiment, and they are calculated for 

the assimilation window of 0, 10, 20, and 30-minute in QSVA experiment. The 

number of assimilated observations in OUTER or QSVA experiment is greater 

than that in 4DVAR experiment for all the cases, and the increase in the number 

of assimilated observations is the greatest for Case 1. RMSEs of O-A are 

reduced compared to RMSEs of O-B in 4DVAR, OUTER, and QSVA 

experiments for all the cases, and this implies successful assimilation of radar 

data. RMSEs of O-B are reduced consistently in OUTER experiment as more 

outer-loops are applied. Likewise, RMSEs of O-B are reduced progressively in 

QSVA experiment as the length of the assimilation window is increased. RMSE 

of O-A in OUTER (the third outer-loop) or QSVA experiment (30-min 

assimilation window) is smaller than that in 4DVAR experiment for Cases 1, 4, 

and 5. Although RMSE of O-A in OUTER or QSVA experiment is greater than 

4DVAR experiment for Cases 2 and 3, the difference is not significant when 

considering the increase in the number of assimilated observations. 

RMSEs of O-B/O-A and the number of assimilated observations for Cases 6-
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10 are shown in Fig. 4.21. As for Cases 1-5, the number of assimilated 

observations in OUTER or QSVA experiment is greater than that in 4DVAR 

experiment although the difference among experiments is case-dependent. 

RMSEs of O-B in OUTER experiment are decreased progressively as more 

outer-loops are applied. Similarly, RMSEs of O-B in QSVA experiment are 

reduced consistently as the assimilation window is lengthened. For Cases 6, 9, 

and 10, RMSE of final O-A in OUTER or QSVA experiment is less than 

4DVAR experiment. Although RMSE of final O-A in OUTER or QSVA 

experiment is larger than that in 4DVAR experiment for Cases 7 and 8, the 

difference is not large when considering the increase in the number of 

assimilated observations. As a result, the improvement of first guess in OUTER 

and QSVA experiments results in the improved analysis and use of more 

observations compared to 4DVAR experiment, which is consistent with results 

of Cases 1-5. 

Figure 4.22 shows computational time on Linux cluster with 24 CPUs for 

Cases 1-5 (Fig. 4.22a) and Cases 6-10 (Fig. 4.22b). For reference, the number 

of total iterations for each experiment is also indicated. In OUTER experiment, 

the number of total iterations refers to sum of iterations for three inner-loop 

minimizations. In QSVA experiment, the number of total iterations refers to 
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sum of iterations for four assimilation windows (i.e., 0, 10, 20, and 30 minutes). 

For all the cases, the number of iterations in OUTER experiment is about 3-5 

times of 4DVAR experiment due to the use of three outer loops, and hence 

computing time in OUTER experiment is much greater than 4DVAR 

experiment (approximately 3-5 times, proportional to the number of iterations). 

Although the number of iterations in QSVA experiment is slightly greater than 

that in OUTER experiment, computing time in QSVA experiment is less than 

OUTER experiment and it is less than twice of 4DVAR experiment. 

Based on the analyses of cost-function values and O-B/O-A statistics, it can be 

said that the quality of first guess and analysis in OUTER or QSVA experiment 

is better than that in 4DVAR experiment via the consistent update of first-guess 

field. Computing time in OUTER experiment is increased significantly 

compared to 4DVAR experiment due to multiple outer loops. However, the 

increase in computing time in QSVA experiment is not large compared to 

OUTER experiment despite the nearly the same quality of analysis. It should be 

also noted that computing time in QSVA experiment can be reduced further by 

using loose inner-loop stopping criterion for prior minimizations of the QSVA 

method. 
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Figure 4.20. RMSEs of O-B and O-A for radial velocity (m s-1) computed from 4DVAR 
(green), OUTER (red), and QSVA (orange) experiments. Results for (a) Case 1, (b) Case 2, 
(c) Case 3, (d) Case 4, and (e) Case 5 are shown. In case of OUTER experiment, results for 
the second and third outer loops are shown, and in case of QSVA experiment, results for 
assimilation window of 0, 10, 20, and 30 minutes are shown. (f) The number of total 
assimilated observations in 4DVAR (green), OUTER (red), and QSVA (orange) 
experiments. 
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Figure 4.21. Same as Figure 4.20 but for Cases 6, 7, 8, 9, and 10. 



107 

 

 

Figure 4.22. Computing time (hour) on Linux cluster with 24 CPUs for 4DVAR (green), 
OUTER (red), and QSVA (orange) experiments. (a) Cases 1-5 and (b) cases 6-10. The 
number of total iterations for each experiment is indicated. 
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24-h forecast (6-h forecast in case of Case 4) is made using the analysis of 

each experiment. Figure 4.23 shows threat scores and bias scores of 24-h (6-h 

for Case 4) accumulated rainfall for threshold value of 20 mm. In 3 (Cases 2, 3, 

and 4) out of 5 heavy rainfall cases in 2006, rainfall forecasts of data 

assimilation experiments (i.e., 4DVAR, OUTER, and QSVA experiments) are 

improved compared to CONTROL experiment in terms of both threat and bias 

scores. For Case 2, threat score and bias score in OUTER experiment are better 

than those in QSVA experiment. However, for Cases 3 and 4, threat and bias 

scores in QSVA experiment are better than those in OUTER experiment. For 

Case 5, rainfall forecasts in 4DVAR and OUTER experiments are degraded 

compared to CONTROL experiment in terms of both threat and bias scores, but 

rainfall forecast in QSVA experiment is improved compared to CONTROL 

experiment, especially in terms of bias score. For Case 1, threat score is one and 

bias score is also one for threshold value of 20 mm because rainfall is 

distributed widely over the Korean Peninsula. Overall rainfall forecasts in data 

assimilation experiments are similar to CONTROL experiment for Case 1. 

Threat scores and bias scores of 24-h accumulated rainfall for threshold value 

of 20 mm computed from 5 heavy rainfall cases in 2008 are shown in Fig. 4.24. 

For Case 6, rainfall forecasts in data assimilation experiments are degraded 
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compared to CONTROL experiment in terms of two scores (except for bias 

score of OUTER experiment). For Case 7, although overestimation of rainfall 

amount in CONTROL experiment is reduced in data assimilation experiments, 

threat scores in data assimilation experiments are worse than CONTROL 

experiment. It should be noted that the degradation in rainfall forecasts of Cases 

6 and 7 in data assimilation experiments is due to unavailability of USAF radar 

data and relatively small amount of radar data. For these cases, the use of outer 

loops or the QSVA method is pointless, and hence threat score and bias score 

for OUTER or QSVA experiment are not better than those for 4DVAR 

experiment. Rainfall forecasts for Cases 9 and 10 are improved via the 

assimilation of radar radial velocity data. For Case 9, threat and bias scores in 

OUTER experiment are better than those in QSVA experiment. In contrast, for 

Case 10, rainfall forecast in QSVA experiment is better than OUTER 

experiment in terms of threat and bias scores. For Case 8, in 4DVAR and 

OUTER experiments, rainfall forecasts are degraded compared to CONTROL 

experiment, however, through the assimilation of radar data using the QSVA 

method, rainfall forecast is improved compared to CONTROL experiment. 

Consequently, in 7 out of 10 heavy rainfall cases, rainfall forecasts are 

improved in at least one of data assimilation experiments. Among these 7 cases, 
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rainfall forecast in QSVA experiment is better than OUTER experiment for 5 

cases. The reason for this forecast result will be investigated further at the end 

of this section. 

Figure 4.25 shows temporally-averaged RMSE of radial velocity for heavy 

rainfall cases in 2006 (Cases 1-5) and 2008 (Cases 6-10). Error is calculated by 

using radar radial velocity observations over South Korea and derived model 

radial velocity at an interval of 30 minutes. Overall, RMSE of radial velocity is 

in the range of about 3.0 to 5.0 m s-1. RMSEs of radial velocity in data 

assimilation experiments are reduced compared to CONTROL experiment for 

all the cases except for Case 1. In 6 out of 9 cases, where forecasts are 

improved compared to CONTROL experiment in terms of RMSE of radial 

velocity, RMSE of radial velocity in QSVA experiment is smaller than those in 

4DVAR and OUTER experiments. In data assimilation experiments, wind 

forecasts as well as rainfall forecasts are improved compared to CONTROL 

experiment. Especially, it should be noted that forecasts of QSVA experiment 

are better than those of OUTER experiment based on the analyses of threat/bias 

scores and RMSE of radial velocity. 

Analyses of both OUTER and QSVA experiments are better (i.e., closer to the 

observations) than that of 4DVAR experiment. However, forecasts of rainfall 
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and/or meteorological fields are better in OUTER experiment for some cases, 

and they are better in QSVA experiment for the other cases. In order to 

investigate the factor which has an influence on forecast skill, percentage error 

in linearization at the end of 30-minute assimilation window is calculated 

(Table 4.5). Percentage error in linearization is calculated by using nonlinear 

and linear growth of perturbation (from analysis increment) in terms of dry total 

energy as mentioned previously. In interpreting percentage error in linearization, 

positive value denotes that nonlinear growth is greater than linear growth, and 

vice versa. On the whole, percentage errors in OUTER and QSVA experiments 

are reduced compared to 4DVAR experiment. This is because in OUTER and 

QSVA experiments, first guess is updated progressively through the use of outer 

loop or gradually-increasing assimilation window, and nonlinear model 

trajectory is also updated accordingly. Percentage error in QSVA experiment is 

reduced further compared to OUTER experiment due to quasi-static adjustment 

of minimizing solution. In other words, in QSVA experiment, length of 

assimilation window is gradually increased, nonlinearity of original 

minimization problem is also gradually increased, and hence probability of 

getting trapped near local minima remains relatively low during assimilation 

window. Consequently, in the cases where percentage error in linearization is 
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relatively high (Cases 3, 4, 5, 8, and 10), forecast of QSVA experiment is better 

than OUTER experiment due to quasi-static adjustment of minimizing solution, 

and in the other cases (Cases 2 and 9), forecast of OUTER experiment is better 

than QSVA experiment. 
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Figure 4.23. (a) Threat score and (b) bias score of 24-h (or 6-h) accumulated rainfall for 
threshold value of 20 mm in CONTROL (blue), 4DVAR (green), OUTER (red), and QSVA 
(orange) experiments. Results for Cases 1, 2, 3, 4, and 5 are shown. 
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Figure 4.24. Same as Figure 4.23 but for Cases 6, 7, 8, 9, and 10. 
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Figure 4.25. RMSE of radial velocity (m s-1) for CONTROL (blue), 4DVAR (green), 
OUTER (red), and QSVA (orange) experiments. (a) Cases 1-5 and (b) cases 6-10. RMSEs 
of radial velocity during 24-h (or 6-h) forecast are averaged. 
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Table 4.5. Percentage error in linearization (%) at the end of an assimilation window 

for 4DVAR, OUTER, and QSVA experiments. 

 

Case 4DVAR OUTER QSVA 
Case 1 -9.44 -5.27 -3.56 
Case 2 4.97 3.11 2.86 
Case 3 -21.19 -15.46 -5.36 
Case 4 -22.06 -9.62 -5.53 
Case 5 -18.47 -12.28 -4.09 
Case 6 -6.90 -4.10 -2.49 
Case 7 1.03 0.95 0.85 
Case 8 -18.66 -13.79 -5.07 
Case 9 9.64 6.05 4.14 

Case 10 24.87 19.36 5.24 
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Chapter 5. The ASDA method and its comparison to 

variational methods 

 

5.1. Case description 

 

Figure 5.1 shows 18-h accumulated rainfall distribution from 1800 UTC 26 to 

1200 UTC 27 July 2006. Rainfall was concentrated over the central part 

(including Gyeonggi and Gangwon provinces) of the Korean Peninsula and it 

was band-shaped. There were two localized rainfall maxima: one at Seoul and 

the other at Hongcheon. 18-h accumulated rainfall amount at Seoul and 

Hongcheon was 187.5 mm and 189.0 mm, respectively. 1-h accumulated 

rainfall amount in time series of rainfall at Seoul and Hongcheon peaked at 

0700 UTC and 0900 UTC 27 July 2006 with maximum rainfall amount of 32.0 

mm and 37.0 mm, respectively (Fig. 5.9). Horizontal distribution of 18-h 

accumulated rainfall and time series of rainfall at two localized maxima will be 

investigated again in section 5.3, being compared with experiment results. 

Synoptic environments related to heavy rainfall at 0000 UTC 27 July 2006 are 
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shown in Fig. 5.2. At 850 hPa, North Pacific high-pressure system extended to 

the Korean Peninsula, and this made the atmosphere over the Korean Peninsula 

very unstable. Warm and moist air was transported to the Korean Peninsula by 

southerly or southwesterly flow between cyclonic circulation and anti-cyclonic 

circulation (Fig. 5.2a). Maximum wind speed of southerly or southwesterly 

flow was greater than 20 m s-1 and hence it could be considered as Low Level 

Jet (LLJ). It is known that low-level convergence appears at the nose of LLJ, 

where wind speed decreases abruptly (Astling et al., 1985; McCorcle, 1988; 

Chen and Kpaeyeh, 1993; Jiang et al., 2007). Over the Yellow Sea, low-level 

convergence related to LLJ appeared, and it could provide forcing for upward 

motion (Fig. 5.2b). At 500 hPa, mid-level trough was located west of the 

Korean Peninsula. Cyclonic vorticity was found over the Yellow Sea although 

its amplitude was small compared to that related to low-pressure system (e.g., 

Aleutian Low; Fig. 5.3c). The role of this Mesoscale Convective Vortex (MCV) 

will be investigated further at the end of this section. At 200 hPa, the Korean 

Peninsula was located on the right of the entrance of Upper Level Jet (ULJ) and 

divergence related to this ULJ was locally maximized over the Yellow Sea (Fig. 

5.3d). Both upper-level divergence related to ULJ and low-level convergence 

related to LLJ were favorable for upward motion, which was essential for the 
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development of Mesoscale Convective Systems (MCSs). 

Radar reflectivity and wind vector over the Korean Peninsula at 4-km height 

are shown in Fig. 5.3. In order to show morphological transition in the MCS 

development, radar reflectivity and wind vector from 1800 UTC 26 to 1200 

UTC 27 July 2006 at an interval of 1-hour are plotted. From 1800 UTC 26 to 

0600 UTC 27 July 2006, the MCS, which affected the Korean Peninsula, could 

be classified as Training Line/Adjoining Stratiform (TL/AS)-type defined in 

Schumacher and Johnson (2005). Prolonged heavy convective rainfall was 

observed along the training (or convective) line and stratiform rainfall was 

adjacent to the region of convective rainfall. The MCS moved 

east/northeastward due to west/southwesterly flow over the Korean Peninsula. 

After 0600 UTC 27, the MCS affecting the Korean Peninsula had 

characteristics of Back Building (BB)-type MCS also defined in Schumacher 

and Johnson (2005). Convective cells formed over the west coast of the Korean 

Peninsula continuously, and they moved eastward slowly, or sometimes were 

quasi-stationary and merged into bigger cells. This characteristic of BB-type 

MCS, namely linear development and slow movement caused heavy rainfall 

over a localized area and a short period of time. 
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Figure 5.1. Observed 18-h accumulated rainfall (mm 18h-1) distribution from 1800 UTC 26 
to 1200 UTC 27 July 2006. 
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Figure 5.2. Synoptic environments at 0000 UTC 27 July 2006. (a) geopotential height 
(black solid, contour interval of 30 m), temperature (red dashed, contour interval of 3°C), 
water vapor mixing ratio (shaded, greater than 0.012 kg kg-1), and wind vector (knot) at 
850 hPa, (b) geopotential height (black solid, contour interval of 30 m), wind speed (red 
solid, contour interval of 5 knots), and divergence (shaded, 10-5 s-1, only negative values 
are plotted) at 850 hPa, (c) geopotential height (black solid, contour interval of 60 m), 
temperature (red dashed, contour interval of 5°C), relative vorticity (shaded, 10-5 s-1, only 
positive values are plotted), and wind vector (knot) at 500 hPa, (d) geopotential height 
(black solid, contour interval of 120 m), wind speed (green solid, contour interval of 25 
knots), and divergence (shaded, 10-5 s-1, only positive values are plotted) at 200 hPa. 
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Figure 5.3. Observed radar reflectivities (dBZ) at 4-km height from 1900 UTC 26 to 1200 
UTC 27 July 2006 with an interval of one hour. 
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Figure 5.4 shows vertical wind shear vector between surface and 925 hPa, and 

that between 925 hPa and 500 hPa superimposed on 850-hPa equivalent 

potential temperature at 1800 UTC 26 July 2006. There existed large gradient in 

equivalent potential temperature over the Korean Peninsula, and TL/AS-type 

MCS developed on the cool side of this synoptic-scale boundary. The large 

gradient in equivalent potential temperature implied baroclinic instability over 

the Korean Peninsula. Continuous transport of warm and moist air to the 

Korean Peninsula by LLJ increased convective instability, and subsequently, it 

might induce upward motion. These conditions were responsible for convective 

rainfall related to TL/AS-type MCS. 

The mid-level (925-500-hPa) wind shear vector had a large component 

parallel to the convective line (Fig. 5.4b). In contrast, the low-level (surface-

925-hPa) wind shear vector had a large component perpendicular to the 

convective line (Fig. 5.4a). Above 925 hPa, thermal wind balance could be 

assumed and hence the shear was largely boundary-parallel. However, below 

925 hPa, thermal wind balance was not valid, and the shear was nearly 

perpendicular to the boundary. According to Rotunno et al. (1988), this 

condition favors updrafts leaning over the cool side of the boundary, and this 

leaning updrafts contribute to stratiform rainfall farther to the cool side of the 
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boundary. These features of vertical wind shear are consistent with properties of 

TL/AS-type MCS mentioned in Schumacher and Johnson (2005). 

Figure 5.5 shows hodograph and skew T-log p diagram for Osan at 0600 UTC 

27 July 2006. Upper-level wind was relatively weak compared to mid- and 

lower-level wind. As a result, wind shear vector reversed its direction sharply 

with height, and this reversal in the wind shear was reflected by a ‘hairpin’ 

shape hodograph (Fig. 5.5a). According to Schumacher and Johnson (2008 and 

2009), MCV interacts with vertical wind shear in the development of BB-type 

MCS. In this heavy rainfall case, MCV was generated by prior convective 

rainfall related to TL/AS-type MCS and this MCV interacted with the vertical 

wind shear. This interaction destabilized the atmosphere by lifting 

conditionally-unstable air (i.e., warm and moist air) to its saturation level as 

noted in Schumacher and Johnson (2008 and 2009). Due to the vortex-related 

destabilization, Convective Available Potential Energy (CAPE) increased from 

0 J kg-1 to 862 J kg-1 and Convective Inhibition (CIN) decreased from 84 J kg-1 

to 4 J kg-1 compared to 0000 UTC 27 (Fig. 5.5b). 

Cold pool and meso high are usually observed beneath mid-latitude squall 

lines and heavy rainstorms (Maddox et al., 1979; Johnson, 2001). Cold-pool-

related MCSs are linearly developed and propagate rapidly. Relative humidity 
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over the central part of the Korean Peninsula at 0600 UTC 27 July 2006 was 

greater than 90%, and hence evaporation of falling rainfall might not occur. As 

a result, no cold pool and corresponding meso high was observed, and instead 

meso low was located over the central part of the Korean Peninsula (Fig. 5.6). 
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Figure 5.4. Horizontal distribution of 850-hPa equivalent potential temperature (shaded, K) 
and vertical wind shear vector (knot hPa-1) between (a) surface and 925 hPa and (b) 925 
hPa and 500 hPa at 1800 UTC 26 July 2006. 
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Figure 5.5. (a) Hodograph and (b) skew T-log p diagram of Osan at 0600 UTC 27 July 
2006. 

(b) 
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Figure 5.6. Surface analyses of (a) relative humidity (black solid, contour interval of 5%) 
and wind vector (m s-1), and (b) pressure (black solid, contour interval of 1 hPa) and 
temperature (red dashed, contour interval of 2°C) at 0600 UTC 27 July 2006. 

(a) 

(b) 
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5.2. Experimental design 

 

The Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) 

version 3.4 is used as a nonlinear forecasting model in this study. Figure 5.7 

shows geographical areas of triply-nested domains with horizontal resolutions 

of 54 km, 18 km, and 6 km, respectively. The 54-km domain covers East Asia 

including Korea, Japan, Taiwan, and Eastern China. The 18-km domain covers 

the Korean Peninsula and the surrounding areas, and the 6-km domain focuses 

on South Korea. The number of horizontal grids for 54-, 18-, and 6-km domain 

is 120 × 102, 121 × 103, and 121 × 127, respectively. The number of vertical 

levels for all the domains is 35, and model top is set at 50 hPa. 

The physical parameterization schemes used for the nonlinear model run 

include the WRF Single-Moment 6-class (WSM6) with graupel microphysics 

scheme (Hong and Lim, 2006), the Kain-Fritsch cumulus parameterization 

scheme (Kain, 2004), the Yonsei University (YSU) planetary boundary layer 

scheme (Hong et al., 2006), the Rapid Radiative Transfer Model (RRTM) 

longwave radiation scheme (Mlawer et al., 1997), and the Dudhia shortwave 

radiation scheme (Dudhia, 1989). The National Centers for Environmental 
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Prediction (NCEP) Final analysis (FNL) data are used as initial and lateral 

boundary conditions for all the domains. The initial time for the forecast of the 

54-, 18-, and 6-km domain is 0000 UTC, 1200 UTC, and 1800 UTC 26 July 

2006, respectively. Data assimilation is conducted only in the 6-km domain and 

18-h forecast from 1800 UTC 26 to 1200 UTC 27 July 2006 will be analyzed 

throughout this chapter. 

In this study, the WRF Data Assimilation (WRFDA) system version 3.4 

(Barker et al., 2004; Huang et al., 2009), including Three Dimensional 

Variational (3D-Var) and Four Dimensional Variational (4D-Var) methods, is 

used. The initial condition for the experiment without data assimilation 

(denoted as CONTROL experiment in Table 5.1) is used as a first guess for all 

the data assimilation experiments (i.e., cold start). Background error covariance 

is calculated by using the National Meteorological Center (NMC) method 

(Parrish and Derber, 1992), where the background error statistics are derived 

from the differences between the 24- and 12-h forecasts for one-month period 

of July 2006. 

Radar radial velocity data from 14 radar observation sites over the Korean 

Peninsula (Fig. 5.7b) are used in this study. In advance of being assimilated, 

radar data are preprocessed by the methods given in Park and Lee (2009). The 
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preprocessing includes quality control, interpolation/thinning to Cartesian grids 

by the Sorted Position Radar INTerpolation (SPRINT; Mohr and Vaughan, 1979; 

Miller et al., 1986) and Custom Editing and Display of Reduced Information in 

Cartesian coordinate (CEDRIC; Mohr et al., 1986) packages, and hole-

filling/smoothing by the CEDRIC package. Finally, radar data are converted 

into input format appropriate to the WRFDA. The final radar data have a 

horizontal resolution of 6 km, a vertical resolution of 0.5 km at heights above 

approximately 3.0 km, and a temporal resolution of 10 minutes. 

 

 

  



133 

 

 

Figure 5.7. (a) Geographical areas of domains 1, 2, and 3 and (b) locations of radar 
observation sites operated by Korea Meteorological Administration (black), Korea Air 
Force (red), and United States of America Air Force (blue). Locations of Automatic 
Weather Station observation sites over South Korea are also indicated with crosses. 
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Table 5.1. Brief descriptions of numerical experiments. 

 

Experiment name Description 
CONTROL Experiment without data assimilation 

3DVAR Experiment with radar data assimilation using 3D-Var method 
4DVAR Experiment with radar data assimilation using 4D-Var method 
ASDA Experiment with radar data assimilation using ASDA method 
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5.3. Results and discussion 

 

Experiment without data assimilation fails to simulate the heavy rainfall 

described in section 5.1. In order to improve the heavy rainfall forecast, radar 

radial velocity data are assimilated using WRF 3D-Var and 4D-Var systems. 

Additionally, radar data are assimilated using the proposed ASDA method. 

Radar data are available every 10 minutes during an assimilation window of 30 

minutes from 1800 UTC to 1830 UTC 26 July 2006. Cost function is 

minimized using conjugate gradient algorithm with a stopping criterion of 

reduction in gradient norm to 0.01 of its starting value. A brief description of 

experiments conducted in this study is given in Table 5.1. 

Figure 5.8 shows 18-h accumulated rainfall distribution from 1800 UTC 26 to 

1200 UTC 27 July 2006 for CONTROL, 3DVAR, 4DVAR, and ASDA 

experiments. In CONTROL experiment, simulated rainfall band is shifted 

northeastward compared to the observations, and 18-h accumulated rainfall 

amount near Seoul (~ 93.8 mm) is underestimated. When radar radial velocity 

data are assimilated using the 3D-Var method (i.e., 3DVAR experiment), 

simulated rainfall band is slightly moved southwestward compared to 
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CONTROL experiment. However, it is still shifted northeastward compared to 

the observations, and 18-h accumulated rainfall amount near Seoul (~ 104.2 

mm) is also underestimated. Additional experiment, 3D-Var analysis at +30 min, 

is conducted, and it is named as 3DVAR_30min experiment. When 18-h 

accumulated rainfall distribution for 3DVAR_30min experiment is analyzed, 

rainfall band is shifted northeastward compared to the observations, and 18-h 

accumulated rainfall amount at the grid point corresponding to Seoul is 

approximately 87.62 mm (underestimated). Overall, rainfall forecast for 

3DVAR_30min experiment is very similar to 3DVAR experiment (not shown). 

Verification results of 3DVAR_30min experiment for the other variables such 

as winds and temperature are also similar to 3DVAR experiment, and hence 

results of 3DVAR_30min experiment will not be mentioned any longer. 

Simulated rainfall band in 4DVAR experiment is similar to the observations, 

and locations of two localized rainfall maxima are close to the observations. 18-

h accumulated rainfall amount at the grid point corresponding to Seoul and 

Hongcheon is approximately 171.5 mm and 178.5 mm, respectively. Although 

18-h accumulated rainfall amount at the point corresponding to Seoul and 

Hongcheon is underestimated compared to the observations (~ 187.5 mm and ~ 

189.0 mm), its error is within 10% of the observed value. In ASDA experiment, 
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rainfall band is well simulated both in terms of shape and location when 

compared to the observations. Especially, locations of two localized rainfall 

maxima are very close to the observations. 18-h accumulated rainfall amount at 

the grid point corresponding to Seoul and Hongcheon is about 205.7 mm and 

216.5 mm, respectively. Compared to the observations, simulated rainfall 

amount is slightly overestimated in ASDA experiment. 

Time series of hourly rainfall amount at the point corresponding to Seoul and 

Hongcheon for CONTROL, 3DVAR, 4DVAR, and ASDA experiments is 

shown in Fig. 5.9 with the observations. In the observations at Seoul, time 

series of hourly rainfall was bimodal-shaped, and it peaked at 0700 UTC 27 

July 2006 with rainfall amount of about 32.0 mm. In CONTROL and 3DVAR 

experiments, simulated time series of rainfall is unimodal-shaped, and rainfall 

peak appears at 0400 UTC and 0500 UTC 27 July 2006 with rainfall amount of 

about 25.5 mm and 49.9 mm, respectively. Correlation between time series of 

the observations and that of CONTROL or 3DVAR experiment is 0.295 and 

0.298, respectively. In 4DVAR experiment, overall pattern of simulated time 

series is similar to the observations, and rainfall peak appears at 0900 UTC 27 

July 2006 with rainfall amount of approximately 48.6 mm. Due to the delay in 

peak timing, lag-0 correlation between the observations and 4DVAR 
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experiment is small, but lag-2 correlation is about 0.418. Simulated time series 

of rainfall in ASDA experiment is similar to the observations with correlation 

value of 0.683. Hourly rainfall peaks at 0700 UTC 27 July 2006 like the 

observations although peak amount (~ 42.7 mm) is slightly overestimated 

compared to the observations. At Hongcheon, the observed time series of 

rainfall peaked at 0900 UTC 27 July 2006 with rainfall amount of 

approximately 37.0 mm. In CONTROL and 3DVAR experiments, localized 

rainfall maximum corresponding to Hongcheon is far from the observations as 

can be seen in Fig. 5.8. Time series of hourly rainfall in 4DVAR experiment is 

similar to the observations except for two-hour delay in peak timing. Hourly 

rainfall amount at the peak is about 40.0 mm, which is similar to the 

observations, and correlation between the observed time series and 4DVAR 

experiment is 0.748. In ASDA experiment, overall pattern of time series is well 

simulated although correlation coefficient is relatively small (~ 0.352) due to 

the overestimation of rainfall at earlier times. 

Figure 5.10 shows Threat Scores (TSs) and Bias Scores (BSs) of 6-h or 18-h 

accumulated rainfall for threshold values of 5, 10, 25, and 50 mm. Both TS and 

BS are calculated using contingency table as follows. 
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TS =
C

F + O − C
, BS =

F
O

 

, (22) 

 

where O is the number of the events that occurred, F is the number of the events 

that are forecasted, and C is the number of the events that are correctly 

forecasted. TS measures how well the forecasted “yes” events correspond to the 

observed “yes” events and value of 1 means the perfect forecast. Overall, TSs 

of data assimilation experiments are greater than that of CONTROL experiment. 

For 6-h forecast from 0000 UTC to 0600 UTC 27 July 2006, TS of 3DVAR 

experiment is greater than those of 4DVAR and ASDA experiments when 

threshold values are 5, 10, and 25 mm. For 6-h forecast from 0600 UTC to 1200 

UTC 27 July 2006, TS of 4DVAR or ASDA experiment is greater than that of 

3DVAR experiment, especially when threshold value is 50 mm. When 18-h 

forecast is considered, TSs of 4DVAR and ASDA experiments are greater than 

that of 3DVAR experiment for all the threshold values. From 0000 UTC to 

0600 UTC 27 July 2006, in the observations, convective rainfall related to 

TL/AS-type MCS was mainly located over the northern part of the Korean 

Peninsula, where surface rainfall observations are not available (refer to Fig. 



140 

 

5.7b). In 3DVAR experiment, simulated rainfall band is shifted northeastward 

compared to the observations; however, stratiform rainfall is simulated broadly 

over the central part of the Korean Peninsula. In contrast, in 4DVAR and ASDA 

experiments, simulated stratiform rainfall, south of main convective rainfall 

band, is not well simulated during that period. After 0600 UTC 27 July 2006, 

convective rainfall band related to BB-type MCS in the observations moved 

southward, and the improvement in rainfall forecast such as rainfall distribution 

and time series in 4DVAR and ASDA experiments is appropriately reflected in 

TS. 

BS measures how the forecasted frequency of “yes” events compare to the 

observed “yes” events and value of 1 means the perfect forecast. For the first 6-

h forecast (i.e., from 1800 UTC 26 to 0000 UTC 27 July 2006), rainfall is 

overforecasted in ASDA experiment while it is underforecasted in the other 

experiments. This is related to the overestimation of rainfall during the early 

period of forecast in ASDA experiment. For the second 6-h forecast, BS of 

3DVAR experiment is closer to one than those of 4DVAR and ASDA 

experiments except for threshold value of 50 mm. In contrast, for the last 6-h 

forecast, BSs of 4DVAR and ASDA experiments are closer to one compared to 

that of 3DVAR experiment. These results are consistent with TS results. When 
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threshold value is 25 or 50 mm (i.e., heavy rainfall), rainfall is underforecasted 

in CONTROL and 3DVAR experiments, while it is slightly overforecasted in 

4DVAR and ASDA experiments, especially for the last 6-h forecast. This 

implies that rainfall missed in CONTROL and 3DVAR experiments (related to 

BB-type MCS) is correctly forecasted in 4DVAR and ASDA experiments. 

Figure 5.11 shows Root Mean Square Errors (RMSEs) of rainfall for 

CONTROL, 3DVAR, 4DVAR, and ASDA experiments. For the first 6-h 

forecast, RMSE of ASDA experiment is greater than the other experiments, and 

this is due to the overestimation of rainfall during this period in ASDA 

experiment. For the second 6-h forecast, RMSE of 3DVAR experiment is the 

smallest, and for the last 6-h forecast, RMSE of ASDA experiment is the 

smallest among all the experiments. When 18-h forecast from 1800 UTC 26 to 

1200 UTC 27 July 2006 is considered, RMSEs of 4DVAR and ASDA 

experiments are smaller than those of CONTROL and 3DVAR experiments, 

and 4DVAR experiment performs the best. These RMSE results are consistent 

with the previous results on rainfall forecast. 
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Figure 5.8. 18-h accumulated rainfall (mm 18h-1) distributions from 1800 UTC 26 to 1200 
UTC 27 July 2006 for (a) CONTROL, (b) 3DVAR, (c) 4DVAR, and (d) ASDA experiments. 
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Figure 5.9. Time series of hourly rainfall amount (mm h-1) at (a) Seoul and (b) Hongcheon 
(or the corresponding grid points in case of model experiment) for the observations (black), 
CONTROL (blue), 3DVAR (green), 4DVAR (yellow), and ASDA (red) experiments. 
Maximum hourly rainfall amount is also indicated. 
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Figure 5.10. Quantitative precipitation forecast skill of CONTROL (blue), 3DVAR (green), 
4DVAR (yellow), and ASDA (red) experiments for threshold values of 5, 10, 25, and 50 
mm. (a) Threat score and (b) bias score. 
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Figure 5.11. Root Mean Square Errors (RMSEs) of rainfall (mm 6h-1 or mm 18h-1) as a 
function of forecast time for CONTROL (blue), 3DVAR (green), 4DVAR (yellow), and 
ASDA (red) experiments. 
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Not only rainfall forecast but also forecasts of meteorological fields such as 

winds, temperature, and moisture are also improved through radar data 

assimilation, especially in 4DVAR and ASDA experiments. Figure 5.12 shows 

RMSEs verified against FNL data for CONTROL, 3DVAR, 4DVAR, and 

ASDA experiments as a function of forecast length. At forecast initial time, 

RMSEs of zonal wind, meridional wind, temperature, and water vapor mixing 

ratio for data assimilation experiments are greater than those for CONTROL 

experiment. Initial conditions of data assimilation experiments are altered by 

the assimilation of radar data while that of CONTROL experiment is solely 

based on FNL data. This causes RMSEs of data assimilation experiments at the 

initial time to be greater than CONTROL experiment when verified against 

FNL data. RMSEs of zonal wind and meridional wind for 4DVAR and ASDA 

experiments become smaller than those for CONTROL and 3DVAR 

experiments at 6-h into the forecast, and this remains unchanged during the next 

12 hours. RMSEs of temperature and water vapor mixing ratio for 4DVAR and 

ASDA experiments are greater than those for CONTROL and 3DVAR 

experiments even at 6-h into the forecast. This may be due to the large analysis 

increments of temperature and water vapor mixing ratio for 4DVAR and ASDA 

experiments shown in Figs. 5.15b and c. However, RMSEs of temperature and 
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water vapor mixing ratio for 4DVAR and ASDA experiments are smaller than 

those for CONTROL and 3DVAR experiments during the last 12 hours. 

Consequently, forecasts of 4DVAR and ASDA experiments are better than 

CONTROL and 3DVAR experiments except for the initial time when evaluated 

using RMSE verified against FNL data. 

Fits to the observations (i.e., biases) of zonal wind, meridional wind, 

temperature, and water vapor mixing ratio for CONTROL, 3DVAR, 4DVAR, 

and ASDA experiments are shown in Fig. 5.13. Fit to the observations is 

calculated by using sounding observations from 7 radiosonde observations sites 

over the Korean Peninsula at 0000 UTC 27 July 2006. Positive biases of zonal 

wind for 4DVAR and ASDA experiments are greater than those for CONTROL 

and 3DVAR experiments below 800 hPa. However, biases of zonal wind for 

4DVAR and ASDA experiments are smaller than those for CONTROL and 

3DVAR experiments between 800 hPa and 400 hPa, where radar data are 

relatively plentiful. Negative biases of meridional wind below 800 hPa are 

noticeable in CONTROL and 3DVAR experiments. These biases are reduced 

significantly in 4DVAR and ASDA experiments. Positive biases of meridional 

wind between 700 hPa and 400 hPa in 4DVAR and ASDA experiments are 

decreased slightly compared to those in CONTROL and 3DVAR experiments. 
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Positive (negative) biases of temperature between 800 (600) hPa and 600 (400) 

hPa are reduced in 4DVAR and ASDA experiments compared to those in 

CONTROL and 3DVAR experiments. In all the experiments, positive bias of 

water vapor mixing ratio prevails throughout the atmosphere (except for 450 

hPa in 4DVAR experiment). These positive biases are reduced remarkably in 

4DVAR and ASDA experiments compared to CONTROL and 3DVAR 

experiments, especially below 700 hPa. This is related to the large analysis 

increments of water vapor mixing ratio over the Yellow Sea (Figs. 5.15b and c) 

in 4DVAR and ASDA experiments. On the whole, in terms of fit to the 

observations, forecasts of 4DVAR and ASDA experiments are improved 

compared to those of CONTROL and 3DVAR experiments, particularly at mid-

levels, where effects of data assimilation are the greatest. It should be also noted 

that biases of meridional wind and water vapor mixing ratio are reduced in 

4DVAR and ASDA experiments even at lower levels due to the information-

spreading effects of background error covariance and model dynamics. 

Figure 5.14 shows RMSEs of radial velocity for CONTROL, 3DVAR, 

4DVAR, and ASDA experiments as a function of forecast length. RMSE of 

radial velocity is calculated by using radar radial velocity observations from 14 

radar observation sites over the Korean Peninsula (refer to Fig. 5.7b) and 
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forecasted radial velocity derived from forecasted wind components. At 

analysis time (i.e., 1800 UTC 26 July 2006), RMSEs of radial velocity for 

CONTROL, 3DVAR, 4DVAR, and ASDA experiments are 3.099, 2.123, 2.092, 

and 2.083, respectively. Compared to CONTROL experiment (RMSE of O-B), 

RMSEs of data assimilation experiments (RMSE of O-A) are reduced. This 

implies that radar data are assimilated successfully in terms of O-B/O-A 

statistics in data assimilation experiments and analysis of ASDA experiment is 

the closest to the observations at the analysis time. RMSEs of radial velocity 

increase rapidly during the first 6 hours and they oscillate with small amplitude 

of oscillation in all the experiments. Overall, RMSEs of radial velocity for data 

assimilation experiments are smaller than that for CONTROL experiment. 

RMSEs of radial velocity for 4DVAR and ASDA experiments are smaller than 

that for 3DVAR experiment except for during the first 2 hours into the forecast. 

Forecasts of radial velocity in 4DVAR and ASDA experiments are improved 

compared to that in 3DVAR experiment because radar data are assimilated more 

efficiently in those experiments. It is noted that RMSE of radial velocity for 

ASDA experiment is smaller than that for 4DVAR experiment during the last 6 

hours. This is consistent with results of TS/BS (especially, for threshold value 

of50 mm) and RMSE of rainfall. 
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Figure 5.12. Root Mean Square Differences (RMSDs) against FNL data of (a) zonal wind 
(m s-1), (b) meridional wind (m s-1), (c) temperature (K), and (d) water vapor mixing ratio 
(kg kg-1) as a function of forecast length for CONTROL (blue), 3DVAR (green), 4DVAR 
(yellow), and ASDA (red) experiments. 
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Figure 5.13. Vertical distributions of fit to the observations using sounding observations 
over South Korea at 0000 UTC 27 July 2006 for CONTROL (blue), 3DVAR (green), 
4DVAR (yellow), and ASDA (red) experiments. (a) Zonal wind (m s-1), (b) meridional 
wind (m s-1), (c) temperature (K), and (d) water vapor mixing ratio (kg kg-1). 
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Figure 5.14. RMSEs of radial velocity (m s-1) as a function of forecast length for 
CONTROL (blue), 3DVAR (green), 4DVAR (yellow), and ASDA (red) experiments. Radar 
radial velocity data from 14 radar observation sites over the Korean Peninsula are used. 
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In order to investigate the reason why forecasts of 4DVAR and ASDA 

experiments are improved compared to CONTROL and 3DVAR experiments, 

analysis increments (analysis minus background) of 4DVAR and ASDA 

experiments are analyzed. Figure 5.15 shows horizontal distribution of 850-hPa 

Equivalent Potential Temperature (EPT) at 1800 UTC 26 July 2006 for 

CONTROL, 4DVAR, and ASDA experiments. Analysis increments of EPT for 

4DVAR and ASDA experiments are also shown. In CONTROL experiment, 

meridional gradient of EPT is not large, especially over the central part of the 

Korean Peninsula. However, in 4DVAR experiment, meridional gradient of 

EPT is approximately 44 K over the Yellow Sea. As a result of data assimilation, 

negative increment of EPT appears over the areas north of 37°N, and positive 

increment of EPT appears south of 37°N. This change in EPT field is related to 

an increase of baroclinic instability over the areas upstream of the Korean 

Peninsula, and it also corrects the location of surface boundary for TL/AS-type 

MCS development. It is also noted that increment of water vapor mixing ratio is 

greater than that of temperature. In ASDA experiment, meridional gradient of 

EPT over the Yellow Sea is increased to approximately 16 K although the 

gradient is not as large as that in 4DVAR experiment. Unlike 4DVAR 

experiment, positive increment of EPT appears over the continental areas north 
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of 37°N. This may be partly related to overestimation of rainfall in ASDA 

experiment during the early period of forecast. Consequently, via the data 

assimilation, EPT gradient is modified in 4DVAR and ASDA experiments, and 

this modification improves rainfall forecast related to TL/AS-type MCS. 

Analysis increments of 850-hPa wind vector and wind speed for 4DVAR and 

ASDA experiments are shown in Fig. 5.16 with the corresponding analysis 

fields. In 4DVAR experiment, incremental wind is anti-cyclonic over the 

Korean Peninsula and it is cyclonic over the Yellow Sea. This feature is also 

found in ASDA experiment although anti-cyclonic incremental wind is not 

dramatic compared to 4DVAR experiment. Due to the increment of wind, 

simulated LLJ in 4DVAR and ASDA experiments is enhanced compared to 

CONTROL experiment, and this implies that favorable conditions for heavy 

rainfall are formed in 4DVAR and ASDA experiments. 

Finally, analysis increments of Sea Level Pressure (SLP) superimposed on the 

corresponding analysis fields for 4DVAR and ASDA experiments are shown in 

Fig. 5.17. Both in 4DVAR and ASDA experiments, positive increment of SLP 

appears over the southeastern part of the Korean Peninsula and negative 

increment appears over the Yellow Sea. Due to the increment of SLP, low-level 

trough is created over the Yellow Sea, and pressure gradient over the Yellow 
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Sea, which is related to the intensity of LLJ, is increased in 4DVAR and ASDA 

experiments. 
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Figure 5.15. Horizontal distributions of 850-hPa equivalent potential temperature (contour 
interval of 4 K) at 1800 UTC 26 July 2006 for (a) CONTROL, (b) 4DVAR, and (c) ASDA 
experiments. In case of data assimilation experiments, analysis increments of equivalent 
potential temperature (shaded, K) are also shown. 
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Figure 5.16. 850-hPa analysis increment of wind vector and speed (shaded, m s-1) for (a) 
4DVAR and (b) ASDA experiments. 

(a) 

(b) 
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Figure 5.17. Horizontal distributions of Sea Level Pressure (SLP, contour interval of 1 hPa) 
at 1800 UTC 26 July 2006 for (a) CONTROL, (b) 4DVAR, and (c) ASDA experiments. In 
case of data assimilation experiments, analysis increments of SLP (shaded, hPa) are 
superimposed on the corresponding analysis fields. 

 

(a) 

(b) (c) 
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Figure 5.18 shows simulated reflectivity at 4-km level for 0300, 0600, 0900, 

and 1200 UTC 27 July 2006. Reflectivities of CONTROL, 4DVAR, and ASDA 

experiments can be compared to the observations shown in Fig. 5.3. At 0300 

UTC 27 July 2006, when the MCS affecting the Korean Peninsula had the 

characteristics of TL/AS-type, convective rainfall was observed over the cool 

side of the boundary, which was distinguished by large EPT-gradient, and 

stratiform rainfall was adjacent to the region of convective rainfall in the 

observations. In 4DVAR and ASDA experiments, convective rainfall and 

stratiform rainfall are simulated appropriately while they are shifted northward 

in CONTROL experiment. At 0600 UTC 27, when the MCS affecting the 

Korean Peninsula had the characteristics of BB-type, convective cells were 

formed over the west coast of the Korean Peninsula and they moved 

northeastward slowly in the observations. In CONTROL experiment, rainfall 

distribution is shifted northward compared to the observations. In 4DVAR and 

ASDA experiments, it is located over the central part of the Korean Peninsula 

like the observations although rainfall band is not tilted in the southwest-

northeast direction. At 0900 and 1200 UTC, convective cells continuously 

passed Seoul in the observations. In 4DVAR and ASDA experiments, 

convective rainfall related to BB-type MCS is simulated well. Even in 
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CONTROL experiment, simulated reflectivity is not much different from the 

observations although it is overestimated over the east coast of the Korean 

Peninsula due to the fast movement of the simulated MCS. 

Figure 5.19 shows horizontal distributions of 500-hPa absolute vorticity and 

vertical wind shear vector between 500 hPa and 800 hPa at 0600 UTC 27 July 

2006 for CONTROL, 4DVAR, and ASDA experiments. As explained in section 

5.1, the interaction between MCV and vertical wind shear destabilizes the 

atmosphere by lifting conditionally-unstable air to its saturation level. In 

CONTROL experiment, until 0600 UTC 27 July 2006, rainfall is mainly 

concentrated over the areas north of 38°N, where transport of warm and moist 

air by LLJ is not significant, and hence MCV related to rainfall is also 

distributed over those areas. This northward-shifted rainfall band in CONTROL 

experiment contributes to failure of simulating BB-type MCS and finally, it 

results in northeastward-shifted 18-h accumulated rainfall distribution. However, 

in 4DVAR and ASDA experiments, movement of rainfall band from 1800 UTC 

26 to 0600 UTC 27 July 2006 is appropriately simulated as in the observations. 

MCV related to prior rainfall interacts with vertical wind shear over the central 

part of the Korean Peninsula. As a result of this interaction, warm and moist air 

transported by LLJ is lifted, and the atmosphere is destabilized. Consequently, 
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in 4DVAR and ASDA experiments, conditions for development of BB-type 

MCS are met, and simulated rainfall is concentrated over the localized areas 

after 0600 UTC 27 July 2006 due to the stationarity of BB-type MCS. 

Simulated hodographs of Osan (one of radiosonde observation sites in South 

Korea) at 0600 UTC 27 July 2006 for 4DVAR and ASDA experiments are 

shown in Figs. 5.20a and b. Like the observations (Fig. 5.5a), simulated 

hodograph is hairpin-shaped, and this implies that wind shear vector reverses its 

direction with height. This reversal in the wind shear can be also found in 

simulated skew T-log p diagrams of Osan at 0600 UTC 27 July 2006 for 

4DVAR and ASDA experiments (Figs. 5.20c and d). Winds at mid-levels are 

weaker than at lower levels. Interaction between this wind shear and MCV 

destabilizes the atmosphere, and finally, it results in Moist Absolutely Unstable 

Layer (MAUL; Bryan and Fritsch, 2000; Bryan et al., 2007) between 500 hPa 

and 700 hPa, where isotherms nearly coincide with isolines of dew-point 

temperature in simulated skew T-log p diagram. The MAUL is often observed 

in the developing stage of many MCSs and it lasts throughout their mature 

stage. Vertical structures related to BB-type MCS (e.g., vertical wind shear, 

MAUL) are well simulated in 4DVAR and ASDA experiments compared to the 

observations. 
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Figure 5.21 shows vertical cross sectional areas of vertical wind and relative 

humidity along the line shown in Figs. 5.19b and c for 4DVAR and ASDA 

experiments. In 4DVAR experiment, updrafts related to convective cells are 

maximized at mid-levels and they are extended to upper troposphere, even to 

tropopause-level. Maximum value of updraft is approximately 2 m s-1, and 

compensating downdrafts are located between neighboring updrafts. Relative 

humidity below 6-km level is greater than 95%, and it is almost 100% (i.e., 

saturated) over the updraft regions. Due to the high relative humidity over the 

rainfall regions, there is no evaporative cooling and the corresponding cold pool. 

This is consistent with the observations shown in Fig. 5.6. These characteristics 

of vertical wind and relative humidity shown in 4DVAR experiment are also 

observed in ASDA experiment. 

Consequently, in terms of both rainfall forecast and meteorological-field 

forecast, 4DVAR and ASDA experiments are superior to CONTROL or 3DVAR 

experiment. However, it should be noted that computational cost of 4DVAR 

experiment is much greater than that of 3DVAR experiment. As a reference to 

computational cost, detailed running time on Linux cluster with 8 CPUs and 8-

GB memory is given here. One-iteration for minimization of cost function in 

4DVAR experiment takes about 0.5-h wall clock time (i.e., ~24-h for 48-
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iteration 4D-Var analysis). In contrast, several tens of iterations in 3DVAR 

experiment takes about less than 5 minutes on the same machine. One-iteration 

for minimization of cost function in 4DVAR experiment includes runs of 

nonlinear, tangent linear, and adjoint models, and hence computational cost of 

4DVAR experiment is much greater than 3DVAR experiment. Total 

computational cost of ASDA experiment is approximately less than one hour 

because the ASDA method does not require iterative minimization of cost 

function. 
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Figure 5.18. Radar reflectivies (dBZ) of 4-km height from 0300 UTC to 1200 UTC 27 July 
2006 with 3-hour interval for CONTROL (top), 4DVAR (middle), and ASDA (bottom) 
experiments. 
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Figure 5.19. Horizontal distributions of 500-hPa absolute vorticity (shaded, 10-5 s-1) and 
vertical wind shear vector between 500 hPa and 800 hPa (m s-1 hPa-1) at 0600 UTC 27 July 
2006 for (a) CONTROL, (b) 4DVAR, and (c) ASDA experiments. 
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Figure 5.20. Simulated hodographs of Osan at 0600 UTC 27 July 2006 for (a) 4DVAR and 
(b) ASDA experiments. Simulated skew T-log p diagrams of Osan at 0600 UTC 27 July 
2006 for (c) 4DVAR and (d) ASDA experiments. 

(c) (d) 
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Figure 5.21. Vertical cross sections of vertical wind (shaded, m s-1) and relative humidity 
(contour interval of 2.5%) along the line shown in Figs. 5.19b and c at 0600 UTC 27 July 
2006 for (a) 4DVAR and (b) ASDA experiments. 

 

(a) 

(b) 
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Chapter 6. Summary and conclusion 

 

The heavy rainfall case selected in the first part of this study is characterized 

by two localized rainfall maxima over the southwestern part and east coast of 

the Korean Peninsula. This rainfall was caused by an air-mass thunderstorm 

related to daytime surface heating. The atmosphere over the southwestern part 

and the east coast of the Korean Peninsula was convectively unstable with a 

large CAPE value, and lower-level convergence acted as a lift forcing. When no 

radar data are assimilated (CONTROL experiment), or when radar data are 

assimilated using the 3D-Var method (3DVAR experiment), neither of the two 

localized rainfall maxima is simulated accurately. 

By using the 4D-Var method, the simulated rainfall over the southwestern part 

of the Korean Peninsula is partially improved compared to the CONTROL or 

3DVAR experiment. In order to obtain further improvements to the rainfall 

forecast, more-than-one outer loops (OUTER experiment) and the QSVA 

method (QSVA experiment) are used. In the QSVA experiment, the length of the 

assimilation window is increased gradually, and the starting point of the current 

minimization task comes from the minimizer of the previous minimization task. 
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The minimization of the cost function in the 4DVAR, OUTER, and QSVA 

experiments converges successfully after several iterations. The ending value of 

the cost function and RMSE of O-A for the OUTER and QSVA experiments are 

smaller than those for the 4DVAR experiment. This implies that the analysis of 

the OUTER and QSVA experiments is closer to the observations than that of the 

4DVAR experiment. RMSE of O-B and RMSD of analysis increment for the 

OUTER and QSVA experiments are less than those for the 4DVAR experiment, 

and hence the improved analysis of the OUTER and QSVA experiments is due 

to a better background estimate of those experiments. Moreover, additional 

observations, which are rejected in the 4DVAR experiment, get into the 

assimilation in the OUTER and QSVA experiments although the increase in the 

number of assimilated observations is not large. 

The gap between nonlinear and linear growth (or the nonlinearity of the 

original minimization problem) is investigated using two measures, namely, the 

percentage error in linearization and the pattern correlation. In terms of both the 

percentage error in linearization and pattern correlation, the gap between 

nonlinear and linear growth is reduced in the OUTER and QSVA experiments 

compared to the 4DVAR experiment. This is because the background estimate 

and nonlinear model trajectory are updated progressively in the OUTER and 
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QSVA experiments. It should also be noted that the nonlinearity of the nonlinear 

minimization problem is increased with increasing length of the assimilation 

window in the minimization tasks of the QSVA experiment. 

In the CONTROL and 3DVAR experiments, no organized rainfall is simulated 

although the atmosphere over the southwestern part of the Korean Peninsula is 

simulated to be conditionally unstable. Incremental wind in the 4DVAR 

experiment is cyclonic and convergent over the southwestern part of the Korean 

Peninsula, which acts as a lift forcing, and this modification to the wind field 

leads to an improved rainfall forecast in the 4DVAR experiment compared to 

the CONTROL or 3DVAR experiment. However, the 6-h accumulated rainfall 

amount over the southwestern part of the Korean Peninsula is overestimated, 

and the rainfall distribution extends wrongly to the central part of South Korea 

in the 4DVAR experiment. The simulated rainfall in the OUTER experiment is 

similar to that in the 4DVAR experiment except for more excessive rainfall 

amount. In the QSVA experiment, the analysis increment of CAPE is negative 

(positive) over the western part (east coast) of the Korean Peninsula, which 

results in a better rainfall forecast than in the 4DVAR and OUTER experiments. 

Besides rainfall forecast, forecasts of other meteorological fields such as wind, 

temperature, and water vapor mixing ratio are improved in the QSVA 
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experiment. Analyses of both the OUTER and QSVA experiments are improved 

compared to that of the 4DVAR experiment, but the rainfall forecast of only the 

QSVA experiment is improved. In the QSVA experiment, the nonlinearity of the 

original minimization problem is increased gradually with increasing length of 

the assimilation window. This quasi-static adjustment guarantees that the 

computed minimum at the current minimization is the global minimum (or 

close to the global minimum) and the starting point for the next minimization 

lies within the basin of the global minimum. 

Consequently, the quality of the analysis is improved in the OUTER and 

QSVA experiments compared to the 4DVAR experiment owing to the nonlinear 

model trajectory and background estimate being updated. However, the rainfall 

forecast is improved only in the QSVA experiment due to modifications in the 

analysis. The quasi-static adjustment of the QSVA method leads to a better 

analysis in spite of the high degree of nonlinearity of this heavy rainfall case. In 

addition, the computational cost of the QSVA method is much smaller than that 

of using multiple outer loops, and it can be further reduced through the use of a 

loose stopping criterion for the inner-loop minimization. The conclusion from 

one heavy rainfall case (Case 4) is convinced by analyzing the results of 9 

additional heavy rainfall cases over the Korean Peninsula. Quality of the 
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analysis can be improved through the use of outer-loop or QSVA method 

compared to 4D-Var method. Especially, the QSVA method is more effective 

than the outer-loop method when the nonlinearity of the minimization problem 

is relatively large. It is expected that the QSVA method will be more effective 

when the length of the assimilation window is increased and the nonlinearity of 

the minimization problem is increased accordingly. 

In the second part of this study, a heavy rainfall case over the Korean 

Peninsula, which occurred on 1800 UTC 26 July 2006, is selected. This case 

caused torrential rainfall over the central part of the Korean Peninsula. 18-h 

accumulated rainfall amount at Seoul and Hongcheon was 187.5 mm and 189.0 

mm, respectively. Synoptic environments related to the case were favorable for 

the development of MCSs. At lower levels, warm and moist air was transported 

to the Korean Peninsula by southerly or southwesterly flow (i.e., LLJ), and this 

made the atmosphere over the Korean Peninsula conditionally unstable. In 

addition, low-level convergence related to LLJ provided consistent forcing for 

lift. Upper-level divergence related to ULJ coincided with the low-level 

convergence, and this was responsible for upward motion over the Korean 

Peninsula. 

The MCS related to the heavy rainfall can be classified as TL/AS-type for the 
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period of 1800 UTC 26 to 0600 UTC 27 and BB-type for the period after 0600 

UTC 27 July 2006 based on the morphological analyses of radar reflectivity. 

Prolonged heavy convective rainfall was observed along the surface boundary, 

which was defined by large EPT gradient, and stratiform rainfall was adjacent 

to the region of convective rainfall during the TL/AS-type MCS period. MCV 

induced by prior rainfall interacted with vertical wind shear, and this interaction 

destabilized the atmosphere over the Korean Peninsula by lifting conditionally-

unstable air to its saturation level during the BB-type MCS period. 

The ASDA method is proposed to evade high computational cost of 4D-Var 

method, retaining the advantages of 4D-Var method such as flow-dependency 

and balanced-analysis. In the ASDA method, forecast error is defined as the 

difference between the forecast from the original analysis and the verifying 3D-

Var analysis at the forecast time, and adjoint model is run backwards with the 

forecast-error gradient as an input. The adjoint sensitivity of forecast error to 

initial condition is scaled by an optimal scaling factor. The optimal scaling 

factor is determined by minimizing observational cost function of 4D-Var 

method, and the scaled sensitivity is added to the original first guess. Finally, an 

improved analysis is made by carrying out 3D-Var with the improved first guess 

and the observations at the analysis time. 
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The simulated rainfall distribution is shifted northeastward compared to the 

observations when no radar data are assimilated (i.e., CONTROL experiment), 

or radar data are assimilated using 3D-Var method (i.e., 3DVAR experiment). 

The rainfall distribution and time series of rainfall are similar to the 

observations when radar data are assimilated using 4D-Var method (i.e., 

4DVAR experiment) or ASDA method (i.e., ASDA experiment). Quantitative 

Precipitation Forecast (QPF) skill is also improved in 4DVAR and ASDA 

experiments compared to CONTROL and 3DVAR experiments according to the 

analyses of TS, BS, and RMSE of rainfall. Simulated atmospheric fields such as 

zonal wind, meridional wind, temperature, and water vapor mixing ratio are 

verified against re-analysis data (FNL data) and the observational data. When 

forecasts are verified against FNL data, at the analysis time, RMSEs of 4DVAR 

and ASDA experiments are greater than those of CONTROL and 3DVAR 

experiments. Initial conditions (analyses) of 4DVAR and ASDA experiments 

are modified through the assimilation of radar data while those of CONTROL 

and 3DVAR experiments are nearly based on FNL data. Except for the analysis 

time, RMSEs of 4DVAR and ASDA experiments are smaller than those of 

CONTROL and 3DVAR experiments. When forecasts are verified against the 

observational data like sounding data or radar radial velocity data, fits to the 
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observations or RMSEs of 4DVAR and ASDA experiments are better than 

CONTROL and 3DVAR experiments. 

Analysis increments of 4DVAR and ASDA experiments are investigated to 

find out the reason for the improved forecasts in these experiments. Negative 

increments of EPT, especially of water vapor mixing ratio over the Yellow Sea 

enhance meridional gradient of EPT in 4DVAR and ASDA experiments, and 

this corrects the location of the surface boundary, distinguished by large EPT-

gradient, related to TL/AS-type MCS. Incremental wind of 4DVAR and ASDA 

experiments are anti-cyclonic over the Korean Peninsula and they are cyclonic 

over the Yellow Sea. This implies strengthening of LLJ transporting warm and 

moist air to the Korean Peninsula. Due to the improvement of the analysis, 

subsequent forecasts appropriately simulate the observed features of TL/AS- 

and BB-type MCSs and the corresponding rainfall in 4DVAR and ASDA 

experiments. In CONTROL experiment, simulated rainfall related to TL/AS-

type MCS is displaced northeastward compared to the observations. The 

interaction between MCV induced by prior rainfall and vertical wind shear 

occurs over the northern part of the Korean Peninsula, where transport of warm 

and moist air is not active. Therefore, rainfall related to BB-type MCS is not 

simulated well in CONTROL experiment. However, in 4DVAR and ASDA 
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experiments, rainfall related to TL/AS-type MCS is properly simulated, and 

finally, rainfall related to BB-type MCS is also simulated well. In detail, MCV 

interacts with vertical wind shear over the central part of the Korean Peninsula, 

and this interaction results in MAUL and upward motion related to the heavy 

rainfall. 

In conclusion, the heavy rainfall affecting the Korean Peninsula is not 

simulated appropriately when radar data are assimilated using 3D-Var method. 

Forecasts from 4D-Var analysis are similar to the observations, but 

computational cost of the 4D-Var method is very high (due to iterative 

minimization) compared to the 3D-Var method. Forecasts based on the 

proposed ASDA method are also similar to the observations, and the 

characteristics of TL/AS- and BB-type MCSs are properly simulated. It should 

be noted that computational cost of the ASDA method is relatively low (one 

adjoint-model run, two 3D-Var analyses, scaling-factor determination), and the 

first-guess and observations errors are not correlated with each other. The 

ASDA method will be applied to a variety of cases over the Korean Peninsula 

and statistical analysis will be conducted to get robustness of the method. 
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국문 초록 

 

논문의 첫 번째 부분에서는 한반도에서 발생한, 두 개의 국지적인 

강수 구역을 갖는 집중호우 사례를 선택하였다. 선택된 사례는 낮 시

간대 지표면의 가열로 인해 발달한 뇌우에 의해 강수가 야기된 사례

이다. 한반도 남서 지역과 동해안 지역은 대류 잠재 불안정 에너지의 

값이 크게 나타나는 등 대류 불안정 상태에 놓여 있었고, 같은 지역

에서 나타난 하층 수렴은 상승 운동에 기여하였다. 레이더 자료를 동

화하지 않거나, 레이더 자료를 3차원 변분 자료 동화 방법을 이용하

여 동화한 경우, 2개의 강수 구역 모두 제대로 모의되지 않았다. 4차

원 변분 자료 동화 방법으로 레이더 자료를 동화한 경우, 한반도 남

서쪽의 강수 구역이 일부 모의되었다. 강수 모의를 개선하기 위하여, 

레이더 자료 동화 시 outer loop와 QSVA 방법을 사용하였다. QSVA 

방법에서는 assimilation window의 길이가 서서히 증가하고, 현재 최소

화 문제의 시작점이 이전 최소화 문제의 해로부터 온다는 특성이 있

다. 

4DVAR (4차원 변분 자료 동화 방법 사용), OUTER (outer loop 사

용), 그리고 QSVA 실험 (QSVA 방법 사용)에서 다수의 iteration 후에 

비용 함수의 최소화 과정이 수렴하였다. OUTER와 QSVA 실험에 대한 

최종 비용 함수의 값과 O-A (관측과 분석장의 차)의 근제곱평균오차 
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값이 4DVAR 실험에 비해 작게 나타났다. 이는 OUTER 실험과 QSVA 

실험의 분석장이 4DVAR 실험의 분석장에 비해 관측에 가까운 것을 

의미한다. OUTER와 QSVA 실험에 대한 O-B (관측과 배경장의 차)의 

근제곱평균오차 값과 분석 증분 (분석장과 배경장의 차)의 근제곱평균

차이 값 역시 4DVAR 실험에 비해 작게 나타났다. 이를 통해 OUTER 

실험과 QSVA 실험의 분석장이 개선된 것은 배경장 (정확히는, 배경장

에 대한 예측값)이 개선되었기 때문이라 할 수 있다. 나아가, OUTER 

실험과 QSVA 실험에서는 4DVAR 실험에서는 사용되지 못한 관측값

이 사용되었고, 이는 분석장의 품질 및 예보 오차 감소에 기여할 수 

있다. 

OUTER 실험과 QSVA 실험에서는 비선형 성장과 선형 성장의 차이, 

혹은 최소화 문제의 비선형성이 4DVAR 실험에 비해 줄어든 것을 확

인할 수 있었다. 이는 OUTER와 QSVA 실험에서 배경장에 대한 예측

값 (혹은 최초 추측값)이 지속적으로 갱신되고, 이에 따라 선형화를 

위한 비선형 모형 궤적 또한 지속적으로 갱신되기 때문이다. 특히, 

QSVA 실험에서는 assimilation window의 길이가 서서히 증가함에 따

라 최소화 문제의 비선형성 역시 증가하여 국지적인 최소값이 아닌 

절대적인 최소값을 찾는 데 있어 유리한 면이 있다. 

4DVAR 혹은 OUTER 실험에서는 바람장에 대한 분석 증분이 한반도 

남서쪽에서 저기압성 회전 성분을 갖고, 동시에 수렴하는 특성을 갖

는다. 이러한 분석장의 수정을 통해 분석장이 관측과 가까워지고, 결
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국 CONTROL 실험 (자료 동화를 수행하지 않은 실험)이나 3DVAR 실

험 (3차원 변분 자료 동화 사용)에 비해 향상된 강수 모의 성능을 보

이게 되는 것이다. 그렇지만 4DVAR 혹은 OUTER 실험에서는 모의된 

강수량이 관측값에 비해 많고, 관측과 달리 한반도 남서쪽의 강수 구

역이 한반도 중부 지역까지 확장되어 나타나는 한계를 갖는다. QSVA 

실험에서는 대류 잠재 불안정 에너지에 대한 분석 증분이 한반도 남

서쪽에서 음의 값으로 나타나 4DVAR 혹은 OUTER 실험에 비해 모의

된 강수가 관측에 가깝게 나타난다. 앞에서도 언급했듯이, QSVA 실험

에서는 assimilation window의 길이가 서서히 증가함에 따라 풀어야 

하는 최소화 문제의 비선형성도 서서히 증가하게 된다. 이러한 quasi-

static adjustment는 현재 최소화 문제의 해가 절대적인 최소값이고, 

동시에 다음 최소화 문제에 대한 시작점이 절대적인 최소값이 속하는 

공간 안에 놓여 있음을 보장한다. 또한 QSVA 방법에 대한 계산 비용

은 outer loop를 여러 번 사용했을 때에 비해 매우 저렴하며, 

assimilation window의 길이가 짧은 경우에 대해서는 완화된 계산 기

준을 적용함으로써 계산 비용을 더욱 줄이는 것도 가능하다. 

QSVA 방법을 한 개의 강수 사례에 적용하여 얻은 결론을 통계적으

로 확증하기 위하여 2006년과 2008년 한반도에서 발생한 9개의 집중

호우 사례에 추가적으로 QSVA 방법을 적용하였다. 하나의 강수 사례

에서와 마찬가지로, 4DVAR 실험에 비해 OUTER 실험과 QSVA 실험

에서는 배경장에 대한 예측값, 그리고 분석장이 향상되었다. 향상된 
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분석장은 강수와 다른 기상 요소의 모의가 관측과 가까워지는 결과를 

도출하였다. 특히, QSVA 방법의 경우, 최소화 문제의 비선형성이 상

대적으로 클 때 outer loop 방법에 비해 효과적인 것으로 나타났다. 

이를 통해 assimilation window의 길이가 길어지거나 수평 해상도가 

더 높아질 경우, 최소화 문제의 비선형성이 증가하여 QSVA 방법을 

적용하는 것이 유리할 것으로 예상된다. 

논문의 두 번째 부분에서는 한반도에서 2006년 7월 26일에 발생한 

집중호우 사례를 선택하였다. 이 사례에서는 서울을 중심으로 하는 

중부 지방에 많은 양의 강수가 집중되었다. 또한 상·하층 바람장, 온

도 및 습도 분포 등 종관적인 배경이 중규모 대류계 발달의 호조건을 

제공하고 있었다. 레이더 반사도 이미지의 분석을 통해 2006년 7월 

26일 18 UTC부터 27일 06 UTC까지 한반도에 영향을 준 중규모 대류

계는 TL/AS 타입으로, 그리고 27일 06 UTC 이후에 영향을 준 중규모 

대류계는 BB 타입으로 구분할 수 있다. TL/AS 타입의 중규모 대류계

가 영향을 준 시기에는 지표면 경계 (상당 온위의 경도가 큰 지역)의 

북쪽 지역에서 대류성 강수가 나타나고 그 인접 지역에서는 층운형 

강수가 넓게 나타난다. BB 타입 중규모 대류계의 영향을 받는 시기에

는 앞선 강수에 의해 생성된 중규모 대류 와도가 연직 방향의 시어와 

상호 작용을 하면서 조건부 불안정한 공기를 상승시켜 불안정한 대기 

조건을 생성한다. 

4차원 변분 자료 동화 방법의 장점을 최대한 유지하면서 4차원 변분 
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자료 동화 방법의 계산 비용을 줄이기 위하여 ASDA 방법을 제안하였

다. ASDA 방법에서는 예보 오차에 대한 경도를 입력 자료로 수반 모

형을 적분하여 예보 오차의 초기 조건에 대한 민감도를 계산한다. 이

렇게 계산한 민감도의 크기 및 부호는 최적의 크기 조정 인자에 의해 

결정된다. 이 때, 최적의 크기 조정 인자는 4차원 변분 자료 동화 방

법의 관측 비용 함수를 최소화하여 얻게 되며, 크기 및 부호가 변경

된 민감도는 원래의 (배경장에 대한) 최초 예측값에 더해진다. 마지막

으로 향상된 최초 예측값과 분석 시각의 관측값을 이용하여 3차원 변

분 자료 동화가 수행된다. 

레이더 자료를 동화하지 않았거나, 3차원 변분 자료 동화 방법으로 

레이더 자료를 동화한 경우, 모의된 강수 분포는 관측에 비해 북동쪽

으로 치우쳐 나타났다. 하지만 4차원 변분 자료 동화 방법 혹은 새롭

게 제안된 ASDA 방법을 이용하여 레이더 자료를 동화한 경우, 모의

된 강수 분포 및 강수 시계열이 관측과 유사하게 나타났다. 강수 모

의뿐만 아니라, 동서 방향의 바람, 남북 방향의 바람, 온도, 수증기 혼

합비 등 다른 기상 요소에 대한 모의 성능 역시 4차원 변분 자료 동

화 방법이나 ASDA 방법을 사용했을 경우 향상되었다. 

4DVAR와 ASDA 실험 (ASDA 방법을 사용)에서는 황해에서의 상당 

온위의 분석 증분이 양과 음의 값이 남북 방향으로 분포하는 형태를 

갖는다. 이로 인해 한반도 서쪽에서의 경압 불안정성이 증가하고, 동

시에 TL/AS 타입 중규모 대류계의 발달과 연관이 있는 지표면 경계
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의 위치가 변화된다. 결론적으로, 4DVAR와 ASDA 실험에서는 레이더 

자료 동화를 통해 분석장이 관측에 가깝게 수정되고, 나아가 TL/AS 

그리고 BB 타입 중규모 대류계의 발달과 연관된 강수의 모의가 향상

되는 모습을 보인다. 반면 CONTROL 실험에서는 TL/AS 타입의 중규

모 대류계와 연관된 강수가 관측에 비해 북쪽으로 치우쳐 나타난다. 

이러한 강수에 의해 생성된 중규모 대류성 와도와 연직 바람 시어의 

상호작용이 한반도 북쪽에서 나타나면서 BB 타입 중규모 대류계의 

발달 및 관련된 강수의 모의가 제대로 이루어지지 않는다. 하지만, 

4DVAR와 ASDA 실험에서는 TL/AS 타입의 중규모 대류계에 의한 강

수가 관측과 유사하게 모의되면서 이어지는 BB 타입 중규모 대류계

에 의한 강수도 관측과 가깝게 모의되었다. 또한 ASDA 방법의 계산 

비용은 비슷한 성능 (적어도 한 사례에 대해서는)의 4차원 변분 자료 

동화 방법에 비해 크게 적으며, 최초 예측값과 관측 사이의 상관관계

가 존재하지 않아 자료 동화의 기본 가정에도 위배되지 않는다. 

 

주요어: 레이더 자료 동화, 집중 호우, 4차원 변분 자료 동화, 수반 모

형 민감도, QSVA 방법, ASDA 방법 
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