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ABSTRACT 

 
Understanding fluid flow and solute transport in a rough-walled 

fracture is important in many problems such as petroleum and geothermal 

reservoir exploitation, geological storage of CO2 and siting of radioactive 

waste repositories. 

 In order to understanding of fracture flow, we conducted the direct 

measurement of flow velocity across rough-walled fractures at Reynolds 

number (Re) of 0.014 to 0.086. The results were used for an order of 

magnitude analysis to evaluate assumptions underlying the Stokes and the 

Reynolds equations, which are derived from simplifying the Navier - Stokes 

equations. Even at very rough subregions, viscous forces were at least 2 

orders of magnitude greater than inertial forces, indicating that the Stokes 

equations are valid for Re < 0.1. However, the assumption made in the 

derivation of the Reynolds equation that 22 zu x ¶¶ /  is dominant over other 

viscous terms was not satisfied even at moderate roughness for Re < 0.1. 

The Reynolds equation overestimated flow rate. 

  Also, microscopic observation of solute transport through a rough-

walled fracture was made to assess the evolution of eddies and their effect 

on non-Fickian tailing, A noteworthy phenomenon was observed that as the 

eddy grew, the particles were initially caught in and swirled around within 

eddies, and then cast back into main flow channel, which reduced tailing. 
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This differs from the conventional conceptual model, which presumes a 

distinct separation between mobile and immobile zones. Fluid flow and 

solute transport modeling within the 3-D fracture confirmed tail shortening 

due to mass transfer by advective paths between the eddies and the main 

flow channel, as opposed to previous 2-D numerical studies that showed 

increased tailing with growing eddies.  

 

Key words: microPIV, breakthrough curve, rough-walled fracture, eddy 

flow, Navier-Stokes flow, Reynolds equation, tailing effect 
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CHAPTER I. INTRODUCTION 

 

1.1 Background theory 

 

Groundwater flow through fractured rocks 

 At depths of tens to hundreds of meters below the surface, which 

include fractured consolidated media like fractured bed rock, the matrix has 

extremely low hydraulic conductivity. This indicates that groundwater 

migrations through discrete fractures and faults are the dominant mechanism 

for flow and transport at the crystalline fractured rock medium. 

 Fractures with large aperture may generate preferential flows, 

which result in rapid groundwater migration [Borgne et al., 2006; Myers, 

2012]. Therefore, the hydraulic properties of fractures are important to basic 

groundwater flow, contaminant transport, cap rock integrity of radioactive 

waste disposal sites [Potter et al., 2004], and carbon dioxide storage sites 

[Bigi et al., 2013; Tongwa et al., 2013].   

 Numerous studies of fracture flow have been performed in various 

scales: micro-scale (e.g. pore scale flow considering the fracture wall 

boundary), experimental scale to field scale (e. g. fracture connectivity and 

preferential flow), as shown in Figure 1-1 [Berkowitz, 2002] 

 For a practical point of view, research in field scale, that involves 

massive heterogeneities have been conducted for characterizing hydraulic 
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properties. However, in order to reveal the fundamental causes of these 

phenomena, microscopic approaches need to be combined with large scale 

studies. This means that research related to flows in a single fracture can be 

a good start for a better understanding of field situations [Bodin et al.,2003a, 

2003b]. 

On the field scale, a wide groundwater velocity range through 

fractured zone is likely to occur due to the various aperture sizes and the 

hydraulic gradient. Groundwater flow in a porous medium is known to very 

slow, and it follows darcy’s law. In the case of crystalline fractured rock, the 

rock matrix is impermeable, and the effective fracture porosity is very low 

(10-2 to 10-5).   

Thus, despite the fact that the bulk hydraulic conductivity is low, 

actual flow velocity through a fracture is much greater than the bulk 

groundwater velocity. Therefore, groundwater flows in fractured rock need 

to be investigated while considering a wide velocity range.  

Figure 1-2 shows a wide fracture flow velocity range which is likely 

to occur on a field scale based on the cubic law assumption. The average 

velocity (ūx) in a single fracture is represented as: 

dl

dhge
ux

m

r

12

2

-=                     (1-1) 

where, ρ denotes the density, g is the gravitational acceleration, e is the 

hydraulic aperture, μ is the viscosity, and dh/dl is the hydraulic gradient.. 

To represent a wide velocity range in a fractured medium, a 
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hydraulic aperture range of 0.1 mm to 1 mm, a natural hydraulic gradient of 

0.001 to 0.01, and an artificial hydraulic gradient of  0.05 to 0.2 (e.g., a 

hydraulic gradient during pumping) were assumed. 

In this research, a series of experiment was conducted in velocity 

range of 1.38·10-5 m/s to 8.3·10-5 m/s (chapter 2, see range a in figure 1-2), 

and 8.3·10-5 m/s to 1.6·10-2 m/s (chapter 3, see range b in figure 1-2), 

which include the range of the natural fracture flow velocity and the 

artificial fracture flow velocity for a fractured rock medium, respectively. 
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Figure 1-1 Multiscale approaches to understand the flow mechanism in a 

fractured medium. 
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Figure 1-2 Fracture flow velocity range based on the cubic law assumption. 
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Fluid flow in a single fracture  

 The cubic law has been widely used to represent groundwater flow 

in a fractured medium due to its simplicity. It assumes an ideal, parabolic 

velocity distribution. The flux through the single fracture is proportional to 

the cube of aperture, and velocity vector magnitudes can exist only in the x - 

direction (i.e. flow direction) (Figure 1-3).  

 However, for a real flow system under the subsurface, the fractures 

are rough around the wall, which makes non-parabolic profiles, form an 

extremely low velocity zone near the wall. Furthermore, a velocity with 

regard to the z - direction is generated depending on the roughness, which 

causes differing fluid flow behaviors when compared to flow from cubic 

law assumptions. Under the same pressure gradient condition, the flux 

between parallel-walled cases and rough-walled cases can also be different 

due to the energy losses by fracture wall roughness. 

 The exact fluid flow behavior is represented based on the Navier-

Stokes equations (N-S equations) [Zimmerman and Bodvarsson, 1996]. The 

N-S equations can be simplified to Stokes and Reynolds equations based on 

several assumptions for a more efficient application. However, the reduced 

equations should be applied cautiously since the use of simplified equations 

for fluid flow and solute transport may lead to different conclusions 

[Koyama et al., 2008]. The results from the reduced equations might be 

meaningless if the assumptions do not satisfy the field situations. 

 The huge differences such in velocity profile deviation, immobile 
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zone generation, and solute mixture come from the wall roughness in a 

single fracture (Figure 1-3). For this reason, the effect of roughness on the 

fluid flow and solute transport have been investigated through both 

numerical approaches [Boutt et al., 2006; Cardenas et al., 2007; Koyama et 

al., 2008; Cardenas et al., 2009] and experimental approaches [Hakami and 

Larsson, 1996; Yeo et al., 1998; Nicholl et al., 1999].  

 The numerical simulations based on the N-S equations have a heavy 

computational problem when the fracture boundary is more complex. Thus, 

these studies based on the N-S flow in a single fracture are limited to two 

dimensional (2-D) simulations. 

 In the previous experimental approaches, due to the difficulty of 

investigating fracture inside, only the inlet and outlet information were only 

acquired, which hinders the full understanding of the inner fracture flow 

mechanism. Therefore, a direct visualization can be more intuitive than 

previously mentioned approaches for understanding the microscopic 

phenomena. 
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Figure 1-3 Conceptual flow characteristics in a parallel fracture (flow based on cubic law), and in a rough-walled fracture (real 

flow).
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1.2 Objectives of this study 

 

 Visualization approaches are useful for interpreting flow and 

transport phenomena in a single fracture. Directly visualized images that 

show velocities, solute mixing, and eddy growths can be utilized to analyze 

the hydraulic characteristics in a single fracture. The objective of this study 

is to understand the effects of wall roughness on fluid flow and solute 

transport mechanisms via microscopic observations.    

 This study is divided into 2 categories: microscopic visualization 

and numerical simulation (Figure 1-4). 

 The fluid flow and solute transport through an acrylic single 

fracture is directly visualized using a microscope with CCD camera and 

fluorescent materials (fluorescent particles and Rhodamine B). Analysis 

from the visualized images reveals (1) the velocity distribution changes 

depending on fracture roughness, (2) the applicability of the reduced 

equations like Stokes and Reynolds equations, and (3) the solute dispersion 

characteristics depending on fracture roughness and Reynolds number. The 

results were compared to numerical simulation results. 

 In chapter 2, 8 representative subregions in a rough-walled single 

fracture are selected. The magnitudes of the terms in the N-S equations are 

calculated from the velocity distributions using microPIV, and quantified at 

each subregion. The validity of Stokes and Reynolds equations were 
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assessed by analyzing the magnitude of each terms in the Navier-Stokes 

equations.  

 In chapter 3, breakthrough curves (BTCs) were plotted from a series 

of experiments to investigate the solute dispersion in a rough-walled single 

fracture. Based on the dispersion coefficient changes and the eddy evolution 

with the increased Reynolds number, the role of eddy flows on solute 

transport (e.g. tail shortening, Non - Fickian tailing) was investigated. These 

phenomena are confirmed by the numerical simulations based on N-S 

equations: 1) a 2-D simulation at identical conditions from the experiment 

and 2) simulations on an idealized, simple 3-D fracture.  

 The research will improve our understanding of flow and transport 

in a highly rough - walled, fractured medium. 
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Figure 1-4 Objectives of the study.
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CHAPTER 2. VISUALIZATION OF FLUID FLOW: 

Validity of Stokes and Reynolds equations for fluid flow 

through a rough-walled fracture with flow imaging 

 

 In this chapter, flow characteristics through a single rough-walled 

fracture are studied. 8 representative subregions in an acrylic rough-walled 

single fracture are selected considering tortuosity. At each subregion, 

velocity profiles were acquired, which were used for calculation of the 

magnitudes of the terms in the N-S equations. Through the magnitude 

analysis and images of eddy flow growth, validity of the assumptions on 

Stokes and Reynolds equations were evaluated. 

 

2.1 Introduction 

 The understanding of fluid flow through a rough-walled fracture is 

a starting point for a better interpretation of the flow through fracture 

networks and solute transport. Fluid flow through rough-walled fractures 

can be fully described by the Navier-Stokes (N-S) equations [Zimmerman 

and Bodvarsson, 1996]. However, the inertia term of the N-S equations, 

causing fluid flow to be nonlinear, makes the equations very difficult to 

solve, which naturally leads to the simplification to the Stokes equations and 

further to the Reynolds equation (or local cubic law) [Zimmerman and Yeo, 

2000].  



 

 15

 The Stokes equations can be obtained by neglecting the inertia term 

in the N-S equations under the condition of the Reynolds number (Re) << 1 

[Oron and Berkowitz, 1998; Zimmerman and Yeo, 2000; Brush and Thomson, 

2003], where Re is defined as ρuem/μ, where ρ is density, u is the velocity, em 

is the arithmetic mean aperture, and μ is the viscosity. Although the Stokes 

equations are a linear form of the N-S equations, their solutions are still 

difficult to obtain. Further, the geometrical constraint that the aperture varies 

very gradually reduces the Stokes equations to the more tractable Reynolds 

equation. 

 The Reynolds equation has been widely used to quantify fluid flow 

through rough-walled fractures because of its simplicity [Brown, 1987; Yeo 

et al., 1998; Nicholl et al., 1999; Giacomini et al., 2008]. However, it has 

been reported that flow rate predicted by the Reynolds equation was 1.22 - 

2.4 times greater than that measured from laboratory flow tests [Hakami and 

Larsson, 1996; Yeo et al., 1998; Nicholl et al., 1999]. The overestimation of 

flow rate by the Reynolds equation was ascribed to abrupt aperture change 

and/or nonlinearity caused by inertial force. 

 Recent numerical developments have enabled a number of 

numerical studies using the N-S equations to be conducted for fluid flow 

through rough-walled fractures [Brush and Thomson, 2003; Zimmerman et 

al., 2004; Boutt et al., 2006; Cardenas et al., 2007; Koyama et al., 2008; 

Cardenas et al., 2009]. Zimmerman et al. [2004] showed that a weak inertial 

regime existed at Re = 1 to 10, but nonlinear flow became considerable for 
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Re > 20. However, it was reported that the recirculation zones were 

generated at large aperture area even for Re < 1 [Boutt et al., 2006; 

Cardenas et al., 2007], meaning that nonlinear flow could exist at Re < 1. 

The studies also demonstrated that the Reynolds equation, which itself tends 

to overestimate the flow, needed to be modified with a geometric mean 

aperture, arithmetic mean aperture, true aperture (measured normal to 

segment orientation), surface roughness factor, tortuosity, or friction factor 

[Ge, 1997; Oron and Berkowitz, 1999; Brush and Thomson, 2003; Konzuk 

and Kueper, 2004; Mallikamas and Rajaram, 2010; Qian et al., 2011]. 

 Geometric and kinematic constraints have been suggested for the 

validity of the Reynolds equation: L  > 3em [Zimmerman and Yeo, 2000], 

Re < 1 [Renshaw et al., 2000; Brush and Thomson, 2003; Konzuk and 

Kueper, 2004], 1<L/bRe m  [Brush and Thomson, 2003], and 

1<mb/Re s [Brush and Thomson, 2003], where, L  is wave length of 

dominant aperture variation and s  is the standard deviation of apertures, 

and Renshaw et al.[2000] used the hydraulic aperture for Re. There is a 

general consensus that the Reynolds equation is valid for rough-walled 

fractures at Re < 1. However, Nicholl et al. [1999] found that the Reynolds 

equation still over-predicted flow rate by 22 - 47%, especially at Re = 0.063 

to 4.3. It was not clear whether this overestimation at Re < 1 was due to 

nonlinearity and/or abrupt aperture changes. Moreover, the validity of the 

Reynolds equation even for low Re (< 1), at which fluid flow in rough-
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walled fractures mainly takes place, still remains questioned and unresolved.  

 In this study, the first direct microscopic observation of flow 

phenomena across a rough-walled fracture such as velocity vector and eddy 

structures was made, which has been carried out only numerically in the 

previous studies to investigate the geometrical effect on fluid flow [Boutt et 

al., 2006, Cardenas et al., 2007; Chaudhary et al., 2011, 2013; Qian et al., 

2012]. Flow velocity measured directly from a rough-walled fracture using 

microscopic particle image velocimetry (PIV) enables the first evaluation of 

relative magnitude between inertial and viscous force terms of the N-S 

equations and between the viscous force terms of the Stokes equations, 

which contributes to the examination of the validity of the Stokes and the 

Reynolds equations for fluid flow through rough-walled fractures at low Re.  
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2.2 Governing Equations of Fluid Flow 

 

2.2.1 From the N - S to the Stokes Equations 

 At steady state, fluid flow through the fracture is governed by the 

following the N-S equations: 

 

hgÑ-Ñ=Ñ× rmr uuu 2)( ,                (2-1) 

where ρ is the density, g is the gravitational acceleration, u is the velocity 

vector, μ is the viscosity, and h is the hydraulic head. The inertia term on the 

left-hand side makes the N-S equations nonlinear. The first term on the right 

represents viscous forces. For the two-dimensional flow, equation (2-1) can 

be reduced to 
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 To neglect inertial terms, viscous forces should be strong enough to 

damp down any perturbations from the linear laminar flow field 

[Zimmerman and Yeo, 2000]: 
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where mag indicates the magnitude of each term inside the bracket. Then, 

the N-S equations can be linearized to the Stokes equations: 
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2.2.2 From the Stokes to the Reynolds Equations 

 Simplification of the Stokes equations to the Reynolds equations 

requires further constraints that the second-order partial derivative of ux with 

respect to z dominates other viscous forces of equations (2-6) and (2-7): 
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 The constraints (equation (2-8)) can be achieved when the aperture 

varies gradually. If the above conditions are satisfied, the Stokes equations 

can be simplified to 

x

h
g

z

u x

¶

¶
=÷

÷
ø

ö
ç
ç
è

æ

¶

¶
rm

2

2

.                         (2-9) 

 

 Integration of equation (2-9) over z with no slip boundary condition 

and the continuity equation results in the one-dimensional Reynolds 

equation [Zimmerman and Bodvarsson, 1996]: 
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where e is the aperture. Equation (2-10) can be viewed as a local version of 

the cubic law.  
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 Abrupt variation of the apertures causes 
2

2

x

u x

¶

¶  to increase 

enough to be comparable to 
2

2

z

u x

¶

¶
, leading to failure of the condition 

(equation (2-8)) required for the validity of the Reynolds equations, Thus, 

if the aperture changes abruptly, the Reynolds equation tends to 

overestimate flow rate.  
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2.2.3 Use of the governing equations for fracture flow 

 As noted in Chapter 2.2.1 and Chapter 2.2.2, complex equations are 

simplified based on several assumptions. Figure 2-1 shows the 

representation of the fracture wall boundary (left) for each equation and its 

application to simulate a groundwater flow (right).  

 The N-S equation and the Stokes equation require continuous 

information about the fracture wall geometry to represent the exact behavior 

of water flows (figure 2-1a). In this case, numerical simulations through 

complex and irregular 3D geometry domains are difficult and require heavy 

computations. For this reason, simulations through the 2D domain structure 

are mainly performed to investigate fluid flows in the case of a single 

fracture [Zou et al., 2015].   

 For the Reynolds equation, the aperture distribution in a fracture 

can be discretely defined, as shown in Figure 2-1b. The Reynolds equation 

assumes a single aperture value at each element, and it satisfies the cubic 

law assumption, locally. Generally, the Reynolds equation or the modified 

Reynolds equation is widely used to simulate fracture flows in the 3D 

domain of a single fracture while taking into account the aperture 

heterogeneity [Ishibashi et al, 2012].  

For a field-scale simulation including a discrete fracture network 

(DFN), characterizing the aperture distribution and implementing it into the 

model are impossible. In this case, a single representative hydraulic aperture 
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value per single fracture is defined as shown in figure 2-1c [Blessant et al., 

2011]. The simplified form of the equation is more applicable to simulate a 

fracture flow on a large scale. 
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Figure 2-1 Conceptualization from a natural to a parallel plate [Modified 

from Dietrich et al., 2005]. 
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2.3 Experimental Methods 

 

Micro Particle Image Velocimetry (MicroPIV) technique 

 MicroPIV technique is an optical method for the fluid visualization 

to obtain velocity vectors using the continuous snapshots with time interval 

(△t) (Figure 2-2). The frames of captured images are split into a number of 

interrogation areas (Figure 2-3). As a tracer, fluorescent particles (various 

diameters from nanometer to micrometer scale for the tracking purposes) are 

mixed with deionized water. Under the specified flow condition, the mixed 

particles move along with water flow. By calculating the distance of 

particles’ movement between the snapshots, representative velocity in the 

interrogation area can be determined.  

 Through the cross-correlation of the images between two snapshots 

at interrogation areas, displacement of particles is adopted as the movement 

distance during the △t between adjacent snapshots (Figure 2-2). Finally, 

velocity sets from the hundreds of snapshots are averaged to reduce the 

unexpected movement by Brownian motion (i.e. particle movement by 

diffusion mechanism). 

 The micro-PIV system in this study consists of an inverted 

microscope (Olympus IX-50), syringe pump, CCD camera, mercury lamp, 

and computer (Figure 2-3b), which has been used before in the field of fluid 

mechanics [Li and Olsen, 2006; Zheng and Silber-Li, 2008]. Deionized 
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water mixed with 1 mm sized fluorescent particles was injected into the 

rough-walled acrylic fracture using a syringe pump at different injection 

rates. The arithmetic mean aperture and injection flow rate were used to 

calculate the representative Re for the whole fracture. Continuous snap shots 

were captured using a CCD camera, and velocity vectors in the observed 

frame were calculated by analyzing the relative movement of particles 

between snap shots with time intervals. Velocity vectors were measured at 

every 0.05 mm in both x and z directions. However, at high velocity, 

particles passing through the observed frame were too fast to trace (i.e., 

observed as a line rather than a dot), preventing calculating representative 

velocity vectors. The optimum Re at which flow velocity could be measured 

with our micro-PIV system is limited to 0.086. 
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Figure 2-2 Principle of Micro PIV technique to obtain the velocity vectors at an each interrogation area. 
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Figure 2-3 Examples of the velocity field acquisition near the top boundary of subregion e at the rough-walled fracture sample. 
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Properties of the rough-walled fracture sample 

 Both surfaces of a rough-walled fracture were scanned and were 

then duplicated on acrylics using a numerically controlled computer 

modeling machine, which produced a rough-walled acrylic fracture that was 

20 cm long. The aperture varied from 387 to 2487 mm with an arithmetic 

mean aperture and a standard deviation of 1030 mm and 411 mm, 

respectively (Figure 2-4a and Figure 2-4c).  

 Velocity vectors, measured at eight representative subregions of the 

rough-walled fracture: a to h (Figure 2-4a). The subregions were classified 

into smooth-walled regions (c and h: tortuosity < 1.2), moderately rough-

walled regions (a, b, d, and g: 1.2 < tortuosity< 2.0), and highly rough-

walled fracture regions (e and f: 2.0 < tortuosity), where tortuosity is 

defined in Figure 2-4. Table 2-1 represents the local arithmetic mean 

aperture, standard deviation, and tortuosity of top and bottom boundary. A 

parallel-walled fracture with an aperture of 1100 mm was also prepared, and 

flow velocities were measured for comparison purposes. The measurements 

were carried out at Re from 0.014 to 0.086 for both rough- and parallel-

walled fractures. Flow phenomenon such as eddy structures were visualized 

experimentally up to Re = 17.1. 

 

 



 

 30

 

Figure 2-4 (a) Eight representative subregions of the rough-walled fracture, (b) the experimental setup of micro-PIV, and (c) 

histogram of aperture. 
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Table 2-1 Basic statistics at eight representative subregions 

 

Sub-

region 

Local mean aperture 

(micrometer) 

Local Standard Deviation 

(micrometer) 

Tortuosity (top) 

(dimensionless) 

Tortuosity (bottom) 

(dimensionless) 

a 701.5 202.98 1.61 1.36 

b 573.3 164.98 1.38 1.10 

c 396.3 58.96 1.18 1.03 

d 746.2 135.15 1.10 1.44 

e 1507.6 588.51 2.76 1.67 

f 1239.8 174.21 1.10 2.26 

g 660.2 189.16 1.54 1.08 

h 357.8 40.13 1.14 1.09 
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2.4 Results 

 

2.4.1 Validity of the Stokes equations 

 To assess the validity of stokes equations, the velocity vectors for 

all the subregions (a to h) at Re = 0.014, 0.029 and 0.086 are measured 

(Figure 2-5). Velocity vectors, measured at Re = 0.029 for a subregion of the 

parallel-walled fracture and subregion f (see Figure 2-4a for locations of 

subregions) of the rough-walled fracture with micro-PIV, are represented in 

Figures 2-7a and 2-7b, respectively. In contrast to the parabolic velocity 

profile in a parallel-walled fracture, a large low- velocity zone was observed 

near the bottom wall of the rough-walled fracture, indicating a nonparabolic 

velocity distribution.  

According to Lee et al. [2007], slip occurs under the condition of a 

hydrophobic surface. Our constructed acrylic micromodel, having the 

characteristics of a hydrophobic surface, is quite different from the surface 

of natural rock, which is assumed to be hydrophilic. Therefore, the slip 

induces a non-zero velocity near the fracture wall, which has the potential to 

influence measurement of velocity distributions. Figure 2-6a shows directly 

visualized velocity distributions using the microPIV technique under the 

condition of a parallel fracture wall.  

In our measuring system, the length of each interrogation area is 50 

micrometers, implying that the average velocity in a rectangular area (i.e., 



 

 33

one velocity vector per interrogation area 50μm × 50μm in size) is 

represented. Therefore, an investigation of the exact behavior at the point of 

a fracture wall is impossible at our resolution. Considering the principle of 

the microPIV method, the measured velocity near the fracture wall is likely 

to be faster than the actual velocity.  

However, the measured velocity profile appears to be parabolic, and 

np noticeable slip was observed, as shown in figure 2-6b. Although slip 

occurred on our acrylic surface, the effect was sufficiently negligible, 

meaning that the slip did not cause an error in the magnitude analysis 

conducted in this experiment. 

 The measured velocity vectors were used to evaluate the magnitude 

of the inertial force and viscous force terms shown in equation (2-4) and (2-

5). The magnitudes of the terms were approximated by constructing a finite 

difference equation replacement for the second-order partial differential 

equations.  

 The magnitudes of the inertial force terms and viscous force terms 

at each interrogation area of row i, column j were defined using adjacent 

velocity vectors (Equation (2-11) to Equation (2-14)).  
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 The magnitudes of inertial and viscous forces estimated at each 

measuring grid point were added up for the whole subregion, which was 

taken as the representative magnitude of the subregion (Table 2-2).  

 For the parallel-walled fracture, the magnitude of the inertial forces 

fell far below that of the viscous forces by as low as 10-4 at Re = 0.014 to 10-

3 at Re = 0. 086 (Figure 2-7a). Even for the highly rough-walled subregion, f, 

the magnitudes of the inertial forces were at least 10-3 to 10-2 times smaller 

for the range of Re = 0.014 to 0.086 than that of viscous forces (Figure 2-7b).  
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Figure 2-5 Velocity vectors measured by microPIV technique for all subregions a to h at Re 0.014, 0.029 and 0.086. The letters of a 

to h in the figures represent the relevant sub-regions (i.e. a for subregion a), and the velocity vectors around the upper and bottom 

walls of subregion e are shown in separate images. The horizontal scale of each sub-region is 0.5 mm and the y axis is on the same 

scale
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Figure 2-6 (a) Visualized velocity distributions using the microPIV 

technique under the condition of parallel fracture wall, and (b) velocity 

distributions at vertical section A. 
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Figure 2-7 (a) Measured velocity vectors and the magnitude of inertial and 

viscous force terms in the parallel-walled fracture at Re = 0.029 and (b) 

those in subregion f of the rough-walled fracture at Re = 0.029. The bar 

represents the ratio of viscous forces, and the number in the bar indicates the 

estimated overestimation of flow rate by the Reynolds equation. 

 

 

 

 

 

 

 



 

 38

Table 2-2 Magnitude of inertial force and viscous force terms in equations ((2-2) and (2-3)). The complete data of the magnitudes 

and overestimations at sub regions presented in Figure 2-8. 

Sub-

regions 

Reynolds 

number 

Terms in equation (2-2) 

(kg/m2∙s2) 

Terms in equation (2-3) 

(kg/m2∙s2) 

x

u
u x

x
¶

¶
r  

z

u
u x

z
¶

¶
r  

2

2

x

u x

¶

¶
m  

2

2

z

ux

¶

¶
m  

x

u
u z

x
¶

¶
r  

x

u
u z

z
¶

¶
r  

2

2

x

u z

¶

¶
m  

2

2

z

u z

¶

¶
m  

a 0.014 0.129 0.096 32.180 67.468 0.078 0.066 27.695 46.048 

 
0.029 0.334 0.246 49.270 102.881 0.203 0.169 48.368 71.170 

 
0.086 2.327 1.836 206.806 363.955 1.313 1.304 183.605 243.451 

b 0.014 0.090 0.063 23.515 71.607 0.050 0.026 22.766 35.825 

 
0.029 0.257 0.187 40.500 127.735 0.117 0.068 35.736 60.951 

 
0.086 1.691 1.302 166.957 368.143 0.910 0.501 122.846 160.710 

c 0.014 0.031 0.009 17.229 99.880 0.039 0.001 9.296 7.992 

 
0.029 0.091 0.028 29.507 146.280 0.131 0.003 18.493 15.476 
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0.086 0.586 0.220 111.406 460.420 0.900 0.029 63.671 71.053 

d 0.014 0.021 0.013 18.408 62.237 0.037 0.001 11.755 10.621 

 
0.029 0.072 0.055 37.136 108.536 0.165 0.008 31.258 24.394 

 
0.086 0.628 0.448 143.196 294.961 1.289 0.061 105.965 68.914 

e 0.014 0.056 0.039 32.122 56.192 0.071 0.029 31.660 34.505 

 
0.029 0.160 0.111 49.880 93.723 0.211 0.049 48.213 64.980 

 
0.086 1.056 0.765 168.381 260.480 1.455 0.329 140.405 170.584 

f 0.014 0.040 0.018 20.973 52.168 0.058 0.003 19.627 14.105 

 
0.029 0.102 0.048 32.586 71.568 0.166 0.010 36.678 24.917 

 
0.043 0.211 0.123 61.762 100.044 0.373 0.030 58.154 43.501 

 
0.057 0.378 0.223 80.418 144.355 0.619 0.055 72.210 66.276 

 
0.071 0.569 0.340 107.882 168.389 0.938 0.079 92.747 85.437 

 
0.086 0.893 0.527 172.650 220.356 1.397 0.123 117.328 103.098 

g 0.014 0.045 0.026 21.288 57.049 0.045 0.008 19.567 20.354 
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0.029 0.176 0.112 49.531 107.936 0.195 0.032 48.135 39.758 

 
0.086 1.377 1.015 198.362 361.465 1.750 0.301 149.171 122.955 

h 0.014 0.037 0.018 12.702 57.544 0.037 0.004 13.308 12.709 

 
0.029 0.160 0.089 30.801 115.685 0.155 0.023 26.652 37.826 

 
0.086 1.264 0.708 140.321 415.512 1.135 0.171 93.130 146.978 
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The magnitude ratio of inertial forces to viscous forces ranged from 

0.0003 (at subregion c) to 0.0023 (at subregion a) at Re = 0.014, 0.0007 (at 

subregion c) to 0.0038 (at subregion a) at Re = 0.029, and 0.0014 (at 

subregion c) to 0.0073 (at subregion a) at Re = 0.086 (Figure 2-8). For the 

rough-walled fracture, the magnitude of the inertial forces did not exceed to 

0.7% of that of the viscous forces. These results indicated that inertial forces 

were small enough to be neglected. Thus, the simplification from the N-S 

equation to the Stokes equation can be justified for low Re (< 0.1). The 

complete magnitude data of the inertial and the viscous forces are provided 

in Table 2-2. 
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Figure 2-8 Magnitude of inertial force and viscous force terms estimated at the various sub-regions of the rough-walled fracture. 

Refer to the legend shown in Figure 2-7. The letter in the upper right corner of each box represents the sub-region of the rough-

walled fracture. 
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Although the velocity measurement was limited to low Re in our 

microPIV system, flow phenomena were observed for Re > 0.1 through 

rough-walled fractures. The start of a recirculation zone (eddy) was 

observed near the rough wall at Re = 8.6 (not for Re = 5), and it became 

enlarged with an increase in flow velocity (Figure 2-9), indicating that linear 

flow could prevail for Re < 1. Together with the magnitude comparison 

between the inertial and viscous force terms, the microscopic observation 

showed that nonlinear flow did not occur, and the Stokes equations can be 

used as replacement for the N-S equations for Re < 1. 
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Figure 2-9 Microscopic observation of the generation of recirculation zone at Re = 8.6, and its enlargement with an increase of Re 

to 17.1 at the sub-region e. 
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2.4.2 Validity of the Reynolds Equation 

 It is known that the Reynolds equation tends to overpredict the flow 

rate when aperture changes abruptly and/or nonlinear flow occurs. As 

analyzed above, abrupt aperture change can be a cause of the overestimation 

of fluid flow by the Reynolds equation for Re < 1 rather than nonlinearity. 

This can be analyzed by evaluating equation (2-8) at the sub-regions 

representing various roughness conditions.  

 Figure 2-7a shows the viscous forces estimated for the parallel-

walled fracture, showing that the ratio of magnitude of 22 / xux ¶¶ to that of 

22 / zux ¶¶  ranged from 0.12 to 0.21 for Re = 0.014 to 0.086. The viscous 

force with regard to x, 22 / xux ¶¶ , should be theoretically zero for a parallel-

walled fracture. This non-zero value is very likely due to measurement error. 

This ratio was taken into account for later analysis for the rough-walled 

fracture.  

 For the rough subregion, f, the ratio of 22 / xux ¶¶ to 22 / zux ¶¶  

increased from 0.40 to 0.78 with an increase in Re of 0.014 to 0.086 (Figure 

2-7b). The measured ratio was higher than 0.1, suggested by Zimmerman 

and Yeo [2000], even though the above measurement error was taken into 

account. Figure 2-8 shows the ratio of viscous forces at various roughness 

and velocity conditions. For all the observed sub-regions, the magnitude 

ratio of 22 / xux ¶¶  to 22 / zux ¶¶  was 0.17 (subregion c) to 0.57 (subregion 

e) at Re = 0.014, 0.20 (subregion c) to 0.53 (subregion e) at Re = 0.029, and 
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0.24 (subregion c) to 0.78 (subregion f) at Re = 0.086. It is clear that the 

ratio increases with increasing roughness. 

 The magnitude of 2222 zuxu zz ¶¶+¶¶ // becomes larger than that 

of  
22 zu x ¶¶ /  (see Table 2-2) at the rough-walled subregions a and e, 

while 22 zu x ¶¶ /  prevails over the other viscous forces at the smooth-

walled subregion c. This magnitude analysis indicates that the constraints 

(equation (2-8)) for the simplification of the Stokes to the Reynolds 

equations are not satisfied for Re < 0.1, when the roughness varies 

significantly along with the x-direction. 
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2.4.3 Quantifying the Overestimation by the Reynolds 

Equations 

 An attempt was made to quantify the overestimation by the 

Reynolds equation. The average value of uz are relatively small compared to 

that of ux except to subregion e, where strong upward flows are developed 

(Table 2-3). As its positive value for the fracture dipping upward offset its 

negative ones when the fracture dips downward, the average value of uz is 

likely vanish over the entire fracture plane. The average value of uz 

measured over eight subregions is 1 order smaller than that of ux, and it 

seems reasonable to calculate the volumetric flux using ux. For the Reynolds 

equation, average velocity (ūx) across the aperture can be calculated by 

[Zimmerman and Bodvarsson, 1996]. 

 

dx

dhge
ux

m

r

12

2

-=                        (2-15) 

 

Because of very low Re condition (< 0.1) in the experiment, the 

hydraulic head gradient could not be measured. Instead, the head gradient 

was estimated using measured velocity vectors. The head gradient in the 

Stokes equation (equation 2-6) and the Reynolds equation (equation 2-9) 

was substituted into equation (2-15), yielding the volumetric flux through 

the fracture with a width w (perpendicular to the x-z plane): 
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where Reye  and he  are hydraulic apertures estimated by the Reynolds 

equation and the Stokes equation. Equation (2-17) has an additional viscous 

term of 22 xu x ¶¶ / , which cannot be neglected when the roughness varies. 

Thus, as the roughness increases, equation (2-17) yields a smaller hydraulic 

aperture than equation (2-16). Equating the two equations and correcting the 

measurement error at the parallel-walled fracture, the overestimation rate 

can be estimated: 
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Table 2-3 Average measured velocities (ūx, ūz) at each subregions, (ūx: 

average velocity in the x- direction ūz: average local velocity in the z- 

direction). 

Sub-regions Re ūx(m/s) ūz(m/s) 

a 

0.014 2.39E-05 -1.32E-05 

0.029 3.80E-05 -2.10E-05 

0.086 1.02E-04 -5.64E-05 

b 

0.014 2.64E-05 -6.34E-06 

0.029 4.50E-05 -1.15E-05 

0.086 1.17E-04 -3.02E-05 

c 

0.014 4.11E-05 2.36E-08 

0.029 6.95E-05 1.94E-07 

0.086 1.75E-04 5.63E-07 

d 

0.014 2.12E-05 -6.50E-07 

0.029 4.08E-05 -1.40E-06 

0.086 1.07E-04 -4.46E-06 

e 

0.014 9.74E-06 1.15E-06 

0.029 1.70E-05 1.66E-06 

0.086 4.50E-05 4.39E-06 

f 

0.014 1.92E-05 1.46E-06 

0.029 3.00E-05 2.63E-06 

0.043 4.51E-05 4.07E-06 

0.057 5.86E-05 5.16E-06 

0.071 7.19E-05 6.24E-06 

0.086 8.83E-05 7.70E-06 

g 

0.014 1.83E-05 2.13E-06 

0.029 3.61E-05 4.72E-06 

0.086 1.02E-04 1.41E-05 

h 

0.014 3.15E-05 -3.77E-06 

0.029 6.12E-05 -8.37E-06 

0.086 1.67E-04 -2.16E-05 
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The overestimation rate was estimated for Re of 0.014 to 0.086 

(Figure 2-8 and Table 2-4) at all the sub-regions. It was -4 to 8 % and 1 to 

16 % for smooth-walled subregions c and h, respectively, 36 to 47 % and 19 

to 60 % for highly rough-walled subregions e and f, respectively, and 12 to 

27 % and 16 to 37 % for moderately rough-walled regions b and g, 

respectively. Thus, the flow overestimation is caused by the roughness, not 

inertial forces. The overestimation by the Reynolds equation became larger 

with roughness (Figure 2-10). Because the magnitude of 22 xu x ¶¶ /  and 

22 zu x ¶¶ / in the viscous forces grew comparable to that of 22 zu x ¶¶ /  with 

increasing velocity, the average overestimation rate in the eight observed 

subregions was calculated as 14% at Re =0.014, 26% at Re = 0.029, and 

33% at Re = 0.086. This analysis demonstrates that even for low Re (< 0.1), 

the Reynolds equation is valid only at nearly parallel-walled fractures and 

tend to overestimate the flow rate even at moderately rough-walled regions. 

 In the 2-D fracture, the forced flow through small aperture zones 

leads to higher velocity than in the 3-D fracture, where preferential flow is 

generated through the large aperture region. Subregion c and h with a small 

aperture but little variation in the roughness show a much smaller 

overestimation rate than other subregions, a, e, f, and g, with larger 

apertures and variable roughness, where overestimation occurred even at 

low Re. Thus, this issue is does not fundamentally diminish the findings of 
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this study that roughness plays an important role in the degree of 

overestimation rather than the aperture size at low Re. 
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Table 2-4 Ratio of viscous force terms (( 22 zu x ¶¶ / )/( 22 xu x ¶¶ / )) and 

overestimation ration by equation (2-18) 

 

 

Sub-

regions 

Reynolds 

number 
Ratio of viscous forces () Overestimation (%) 

a 0.014 0.477 26.5 

 
0.029 0.479 36.0 

 
0.086 0.568 38.7 

b 0.014 0.328 11.6 

 
0.029 0.317 19.8 

 
0.086 0.454 27.3 

c 0.014 0.173 -3.9 

 
0.029 0.202 8.3 

 
0.086 0.242 6.1 

d 0.014 0.296 8.4 

 
0.029 0.342 22.3 

 
0.086 0.485 30.5 

e 0.014 0.572 36.0 

 
0.029 0.532 41.3 

 
0.086 0.646 46.6 

f 0.014 0.402 19.0 

 
0.029 0.455 33.6 

 
0.043 0.617 48.1 

 
0.057 0.557 41.2 

 
0.071 0.641 49.7 

 
0.086 0.784 60.3 

g 0.014 0.373 16.1 

 
0.029 0.459 34.0 

 
0.086 0.549 36.8 

h 0.014 0.221 0.9 

 
0.029 0.266 14.7 

 
0.086 0.338 15.7 
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Figure 2-10 Relationship between predicted overestimation (%), tortuosity, 

and Reynolds number. 
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2.5 Conclusions 

 

 It is generally agreed that as long as the Reynolds number is below 

1, then the Reynolds equation rarely overestimates the fluid flow. At the 

same time, the validity of the Reynolds equation has been questioned 

because of its overestimation of flow rate even at low Re (< 1). The main 

causes are attributed to nonlinearity by inertial forces and/or abruptly 

varying apertures. Nonlinearity is also related to the validity of the Stokes 

equations that are based on a linear flow regime. In this study, the first direct 

measurement of flow velocity in the parallel- and rough-walled fractures 

using micro - PIV was made to assess the validity of the Stokes and the 

Reynolds equations. 

 Measured velocity vectors were used for the magnitude analysis of 

inertial and viscous force terms. The analysis showed that inertial forces 

were much smaller than viscous forces even in the highly rough-walled 

region for Re < 0.1, indicating that nonlinearity is not a cause of the 

overestimation. Further visual observation of the generation of a 

recirculation zone about Re = ~ 8.6 indicates that the nonlinear flow hardly 

occurs for Re < 1 and the Stokes equations is valid, regardless of fracture 

roughness. 

 The Reynolds equation is based on the assumption that 22 / zux ¶¶ of 

viscous forces should be a dominant term over 22 / xux ¶¶ . The viscous 
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terms were evaluated with measured velocity vectors at various roughness 

conditions for Re < 0.1. The assumption was not satisfied at rough-walled 

regions, where the magnitude of 22 / xux ¶¶  was comparable to that of 

22 / zux ¶¶ . It became evident with increasing roughness, which indicates 

that abrupt aperture change is a main cause of the overestimation at low Re 

< 1. 

 Further analysis was also conducted to quantify the overestimation 

by the Reynolds equation. The estimated overestimation became large with 

increasing roughness and was as high as 47 - 60 % at highly rough-walled 

regions. The Reynolds equation overestimated the flow rate even at 

moderate roughness regions for low Re (< 0.1). It was found that a little 

roughness change in the fracture makes the Reynolds equation overestimate 

the flow through the fractures even for Re < 1. 
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CHAPTER 3. VISUALIZATION OF SOLUTE 

TRANSPORT 

 

Tail shortening with developing eddies in a rough-

walled rock fracture 
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CHAPTER 3. VISUALIZATION OF SOLUTE 

TRANSPORT: 

Tail shortening with developing eddies in a rough-walled rock 

fracture 

 

 In this chapter, solute transport characteristics in a single rough-

walled fracture were investigated. Breakthrough curves (BTCs) were plotted 

from the series of experiments to quantify solute dispersion. Based on the 

dispersion coefficient changes and eddy growths with an increased 

Reynolds number, the role of eddy flows on solute transport (e.g. tail 

shortening, Non - Fickian tailing) was analyzed. The experimentally 

visualized phenomena were confirmed with the aid of numerical simulations 

based on N-S equation: 2-D simulation at identical conditions from the 

experiment, and the simulations on idealized, simple 3-D fracture.  

 

3.1 Introduction 

 

Non-Fickian tailings in fracture flow 

 Accurate estimation of travel and residence times of solutes in 

fractured rock masses is important for risk assessment of geologic storage of 

radioactive waste and CO2 and for cleanup and monitoring strategies for 
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contaminated sites. Field tracer tests, conducted in rock fractures, often 

exhibit long tails in breakthrough curves, which deviates from Fickian 

dispersion predictions [Raven et al., 1988; Becker and Shapiro, 2000]. Qian 

et al. [2011] showed that long tails were observed under non-Darcian flow 

regimes in a sand-filled single fracture. 

 Non-Fickian tailing has been attributed to (1) diffusive mass 

transfer between the fracture and the matrix [Neretnieks, 1983; Novakowski 

et al., 1995; Lapcevic et al., 1999; Zhou et al., 2006], (2) advective 

processes within the fracture such as channeling or tortuous flow due to 

variable apertures [Neretnieks, 1983, Moreno et al., 1985; Tsang and Tsang, 

1987, Roux et al., 1998] and trapping of solutes in immobile (or stagnation) 

zones near the fracture walls [Boutt et al., 2006; Cardenas et al., 2007, 

2009], or (3) sorption of solutes on the fracture walls [Neretnieks et al., 

1982]. 

 Unlike the other causes of heavy tailing mentioned above, until 

recently, the role of immobile fluid zones within the fracture on heavy 

tailing was mostly speculative. This is because these immobile zones and 

their interaction with mobile zones were impossible to observe in 

microscopic rough-walled fractures.  

 However, the recent development of numerical techniques has 

enabled the simulation of fluid flow and solute transport in a microscopic 

rough-walled fracture by directly solving the Navier-Stokes equations [Boutt 

et al., 2006; Cardenas et al., 2007; Koyama et al., 2008; Bouquain et al., 
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2012; Qian et al., 2012; Bolster et al., 2014] (Figure 3-1). These studies 

revealed that eddies develop in regions with abrupt change in aperture and 

enlarge with increasing fluid velocity, which results in predicted 

breakthrough curves with heavy tails. However, the fracture geometries for 

these computational studies all consisted of two-dimensional (2-D) rough-

walled fractures. In 2-D fractures, the apertures do not change in the 

direction perpendicular to the flow direction. This differs significantly from 

real fractures, which have three-dimensional (3-D) void spaces.  

 In real 3-D fractures, it is well established that surface roughness 

leads to variations in fracture aperture in all directions so that large- aperture 

regions tend to be isolated [e. g., Keller, 1998; Karpyn et al., 2009; Lee et al., 

2010], resulting in a complex 3-D velocity field in these regions. Therefore, 

the role of associated eddies on observations of non-Fickian transport needs 

to be thoroughly investigated in the context of the 3-D nature of rough-

walled rock fractures. 

 Our previous work succeeded in directly observing microscopic 

flow phenomana occurring in a rough-walled fracture with a micro Particle 

Image Velocimetry (microPIV) system [Lee et al., 2014]. Here we present 

the first attempt to directly measure the influence of the flow characteristics 

between the walls of a rough-walled fracture on solute transport which is 

used to quantify the onset of eddies and their effect on non-Fickian tailing 

under flows ranging from Reynolds number (Re) of 0.08 to 17.13, where 

local eddies becomes fully developed. In addition, we present numerical 
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analysis that provides insight into the role of local eddies on fluid flow and 

transport in 3-D rough-walled fractures 
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Figure 3-1 Numerically visualized eddies in previous research based on 2-D Navier-Stokes flow simulation. 
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Relationship between hydrodynamic dispersion and Peclet number 

 The influence of fracture roughness on a relationship between 

hydrodynamic dispersion coefficient and average fluid velocity has been 

studied [Dronfield and Silliman, 1993; Ippolito et al. 1994; Roux et al. 1998; 

Keller et al., 1999; Detwiler et al., 2000]. Detwiler et al. [2000] developed 

the analytical expression between dispersion coefficient and the Peclet 

number, and showed that dominant dispersion mechanisms highly depends 

on the Peclet number (proportional to fluid velocity).  

 Especially, relationship between dispersion coefficient (D), and 

Peclet number (Pe) in a single fracture has been reported in the previous 

researches as D ∝ Pe1.04 [Keller et al., 1999], D ∝ Pe1.1 [Keller et 

al.,1995], D ∝ Pe1.4~ [Dronfield and Silliman, 1993]. According to the 

studies, the dispersion of solutes in a variable-aperture fracture was affected 

by the combination of the molecular diffusion, wall-roughness (macro 

dispersion) and parabolic velocity distribution (Taylor dispersion) (Figure 3-

2). 

 

2PePe
D

D
Taylormacro

m

L aat ++=             (3-1) 

where LD is dispersion coefficient, mD is diffusion coefficient, t is 

tortuosity, macroa  is coefficient for the contributions of macrodispersion, 

Taylora  is coefficient for the contributions of Taylor dispersion and Pe  is 
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peclet number. 

 Ippolito et al. [1994], Roux et al. [1998] and Detwiler et al. [2000] 

suggest that DL can be expressed as sum of the three components using 

equation (3-1). 
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Figure 3-2 Solute transport mechanisms (molecular diffusion, macro 

dispersion, and Taylor dispersion) in a single rough-walled fracture. 
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3.2 Methodology 

 

Experiment 

 Our micro-PIV system enables direct measurement of fluid flow 

and solute transport in microscopic rough-walled fractures. The system 

consists of an inverted microscope (Olympus IX-50), syringe pump, CCD 

camera, mercury lamp, and computer (Figure 3-3). The fracture was 

prepared by scanning both surfaces of a rough-walled fracture and 

engraving them on acrylics using the computer numerical control drilling 

machine resulting in a 200 mm long × 1 mm wide rough-walled fracture. 

Apertures varied from 387 to 2487 mm with an arithmetic mean aperture and 

a standard deviation of 1030 mm and 411 mm, respectively (See the Figure 

2-3 for more detailed information on the experimental setup).  

 Fluorescence intensity is linearly proportional to dye concentration 

in dilute samples [Lakowicz, 2006]. For tracer test, Rhodamine B (a 

fluorescent dye) was diluted with deionized water to achieve a maximum 

dynamic range (i. e. peak concentration occurred near the sensitivity limit of 

the light/camera system). Deionized water was injected into the left inlet of 

the fracture at constant flux to form representative flow conditions at Re = 

0.08, 0.29, 2.86, 8.57, and 17.13 (Re = ρUb/μ), where U is the macroscopic 

fluid velocity, calculated by injection flow rate divided by fracture cross-

sectional area, i.e., arithmetic mean aperture times fracture width, b is the 



 

 66

arithmetic mean aperture, ρ is the water density, and μ is the water viscosity). 

As intended flow condition was first established, 5 μL of diluted 

Rhodamine B (a fluorescent dye) with deionized water was instantaneously 

injected at the point 1 cm distant from the inlet and filled the fracture fully 

around the injection point, the flow was restarted for the tracer test. 

Molecular diffusion coefficient of Rhodamine B (Dm) is 10106.3 -´  m2/s. 

The corresponding Peclet number (Pe = Ub/Dm ) was 238, 795, 7948, 

23,843, and 47,658 for Re = 0.08, 0.29, 2.86, 8,57, and 17.13, respectively. 

 During the tracer test, continuous snapshots were captured at two 

observation points (OP1 and OP2) at time interval (e.g., 16 and 0.08s for Re 

= 0.08 and 17.13) using a CCD camera (Figure 3-3). We estimated the 

development length (L) for the fully turbulent flow using L = 4.4bRe1/6
 

[White, 2011]. We found the expected development length on the order of 7 

mm for the largest Re = 17.13, which was far away from the observation 

points. This development length was related to a time scale on the order of 

0.4s. The fluorescence intensity measured across the fracture aperture (128 

pixels) at the observation point was summed (Figure 3-3) to provide a 

measure of the total fluorescence intensity at each time. 

Then, the intensity at each time was normalized by the cumulative 

intensity, which was calculated by summing up the intensities measured at 

the observation point over the entire observation time period. The 

normalized fluorescence intensity at a given time, hereafter called the 

relative concentration, was used to plot the breakthrough curve (BTC) for 
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each experiment. 

 Understanding the distribution of velocities within a rough-walled 

fracture is important for better interpretation of solute transport. The 

potential formation of eddies within large-aperture regions is particularly 

important to solute transport. Therefore, we also measured the development 

of eddies at a representative large-aperture area (OP3) just upstream from 

OP1 for the same representative Re as in the tracer test (Figure 3-3). 

Deionized water mixed with 1 mm diameter fluorescent particles was 

injected into the left inlet of the fracture at constant rate. Images acquired at 

the same frame rate as above yielded flow paths (stream lines) traced out by 

fluorescent particles moving with the flow. 
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Figure 3-3 Schematic drawings of (a) experimental setup of micro-PIV. (b) Solute are monitored at OP1 and OP2. Flow trajectories 

are observed at the large-aperture regions located at OP3. 
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Numerical simulation 

 Micro-PIV provides a depth-integrated view of fluid flow and 

solute transport; to complement these measurements and develop a more 

thorough understanding the 3-D nature of the velocity field, we modeled 

flow and transport through the experimental geometry using COMSOL 

Multiphysics, the commercial finite element method software [COMSOL AB, 

2013]. The single-phase flow of incompressible Newtonian fluid in steady 

state is governed by the Navier-Stokes equations:  

 

 pÑ-Ñ=Ñ× uuu 2)( mr ,                 (3-2) 

 

where ρ is the density, g is the gravitational acceleration, u is the 3-D 

velocity vector, μ is the viscosity, and p is total pressure. The Navier-Stokes 

equations must be supplemented by the continuity equation:  

.                         

0=×Ñ u                        (3-3) 

 

The Reynolds number range in our experiment, and in the 

simulation is limited to 17.1. For a case of simulation based on the Navier-

Stokes equation, there is the potential to generate a turbulent flow, 

representing a time-dependent velocity, which may violate the steady-state 

assumption. Zou et al. [2015] performed transient flow simulations on a 



 

 70

single rough-walled fracture with the range of Re = 1 to 1000. They showed 

that the  steady state assumption is satisfied in the range of Re = 1 to 100. 

A turbulent flow, evident time-dependent eddy behavior, occurred when Re 

reached nearly 1000. Furthermore, many studies assumed a steady-state 

flow when simulating a fluid flow in a single rough-walled fracture when 

the Reynolds number was less than 100, as represented in Table 3-1. 

Therefore, the steady-state assumption appears to be reasonable when Re is 

less than 100. 

 The numerically-calculated velocity was then coupled with the 

advection-diffusion equation for solute transport through the fracture: 

 

,                CCD
t

C
u×Ñ+Ñ=

¶

¶ 2                 (3-4) 

 

where C is the solute concentration, t is the time, and D is the molecular 

diffusion coefficient set at 10100.3 -´ m2/s. The boundary conditions and 

fracture geometries in the study are graphically summarized in Figure 3-9, 

and described in Chapter 3.3.2. 
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Table 3-1 Reynolds number range in previously performed N-S flow 

simulations in a single rough-walled fracture. 

Previous studies Reynolds number range  

This study 0.09 ~ 17.1  

 

Brush & Thomson, 2003 0.01 ~ <1000  

Cardenas et al., 2007 0.15 ~ 0.98  

Koyama et al., 2008 About 0.1~100 steady state assumption 

Cardenas et al., 2009 0.01 ~ 100  

Bolster et al., 2014 1 ~ 100  

Zou et al., 2015 ~ 1000 transient simulation 
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3.3 Results 

 

3.3.1 Experimental results 

Breakthrough curves at observation point 

 Figure 3-4 shows the variation of the intensity as fluorescent tracer 

entered and left at OP1 and OP2. As solute entered the observation window, 

the images became brighter and darker as the tracer plume exited.  

 The relative concentration measured at OP1 and OP2 was plotted 

against pore volume (PV) in Figure 3-5. At Re = 0.08, the BTCs indicated 

Fickian transport with no appreciable tails. As the flow rate increased up to 

Re = 2.86, the BTC became increasingly skewed to later times, and the peak 

arrived earlier and decreased in magnitude. However, as the flow rate 

increased further, the amount of tailing began to decrease. 

 At Re = 8.57, the tail was still observed, but the tailing decreased 

and the BTC peak concentration increased. This trend persisted through the 

largest flow rate (Re = 17.13) (Figure 3-5). The same flow rate dependence 

of the BTC was observed at OP2. The reduced tailing observed at both OP1 

and OP2 for the highest flow rates differs from results of previous 

computational studies, which showed monotonically increased tailing with 

increasing velocity due to eddies that grow with velocity. 

 The tail shortening, observed at both OP1 and OP2, is contrary to 

our understanding from the previous studies that tailing grows stronger with 
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increasing velocity due to eddies that are enlarged with velocity [Boutt et al., 

2006; Cardenas et al., 2007; Koyama et al., 2008; Bouquain et al., 2012]. 

The tracer tests were repeated many times, but produced the same results, 

which strongly indicates that tail shortening can take place physically in the 

fracture. 
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Figure 3-4 (a) Snapshot images showing the intensity variation under 0.4, 

0.66, 0.93, and 1.19 pore volume injection at OP1, (b) at OP2. 
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Figure 3-5 The BTCs showing relative concentration at (a) OP1 and (b) OP2 with pore volumes (PVs). 
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Eddy growth with an increased Reynolds number 

 Tail shortening observed at higher flow rates at OP1 and OP2 

appears to be closely related to characteristics of the flow within the fracture. 

Figure 3-6 clearly shows the flow paths traced out by fluorescent particles 

moving with the flow.  

 At Re ≤ 2.86, the fluorescent particles moved along parallel layers 

with no appreciable eddies. Figure 3-6 clearly show much slower velocities 

near the upper wall of the large aperture area than within the main flow 

channel as velocity increases. The difference in fluid velocity between the 

near-wall portion and the main flow channel within the large aperture region 

grew larger with increasing velocity. These results suggest that the increased 

tailing observed in the BTCs results from increasing differences in velocities 

across the fracture width in the absence of eddies.  

 At Re = 8.57, as the particles exited the narrow aperture region, they 

flowed backward into the near-wall portion of the large-aperture region 

(Figure 3-6), indicating formation of an eddy. The eddy observed at OP3 is 

representative of eddies observed in other rapid expansions throughout the 

fracture. These observations are consistent with previous numerical studies 

that showed eddies growing in local large-aperture regions with increasing 

velocity.  

 However, unlike the previous numerical studies, our experiments 

showed that particles that entered eddies were relatively quickly cast back 

into the main flow channel. That is, there was no well-defined separation 
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stream surface delineating so-called immobile (recirculation) and mobile 

zones as is predicted by purely two- dimensional simulations [Boutt et al., 

2006; Cardenas et al., 2007; Bouquain et al., 2012]. This phenomenon 

became very clear at Re = 17.13 (Figure 3-6). The eddies observed at other 

subregions under the condition of Re = 17.13 (Figure 3-7), also indicate that 

eddies formed in highly aperture variable areas possibly act as advective 

flow path between mobile zone and immobile zone.  

 Repeated tests produced the same results, which leads to the 

hypothesis that three-dimensional effects in the velocity field lead to mass 

transfer by advective paths connecting eddies and the main flow channel. 

This mass transfer decreased tailing at large velocities because the residence 

time in eddies is significantly reduced. However, because our experiments 

provide a depth-integrated view of the velocity field within the fracture, it is 

not possible to directly test this hypothesis.  
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Figure 3-6 Images showing the evolutions of eddies at OP3 with increasing fluid velocity. 
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Figure 3-7 Generation of eddies at the highly aperture-variable subregions 

at Re = 17.13. 

 

 

 

 

 

 

 

 

 

 



 

 80

Estimation of dispersion from experimentally observed BTCs 

 There are two approaches to estimate dispersion coefficient from 

breakthrough curves: (1) curve fitting method: dispersion coefficient is 

determined by minimizing the sum of the squared differences between 

observed and fitted break-through curves [Toride et al., 1995], and (2) 

moment method: pore water velocity (v) and dispersion coefficient of the 

advection-dispersion equation can be directly calculated from following 

expressions [Kreft and Zuber, 1978;  Leij and Dane, 1991; Yu et al, 1999].

 According to Yu et al. [1999], the normalized moment (Mn)  and  

the nth central moment (μn)  is represented as:  
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where C is the solute concentration, t is the time, mn is the nth order time 

moment, μn is the nth central moment, z is the distance downward.  

From the 1st normalized moment and the 2nd order central moment, 

pore water velocity (v) and dispersion coefficient (D) is estimated as 

equation (3-7) and equation (3-8). 

1M

z
v =                          (3-7) 
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z

v
D

2

3
2m=                         (3-8) 

 Using the experimentally derived BTCs from the OP1 and the OP2, 

dispersion coefficients at each condition of Pe are determined as shown in 

Figure 3-8. According to the Equation (3-1), diffusion mechanism is 

dominant at low velocity (gradient of Pe versus DL/Dm in log-log scale: 0), 

macro dispersion is dominant at the medium velocity (gradient of Pe versus 

DL/Dm in log-log scale: 1), and Taylor dispersion is dominant at high 

velocity (gradient of Pe versus DL/Dm in log-log scale: 2).  

 In the results, distinctive pattern was observed at Re > 2.87 

compared to the pattern at Re < 2.87. In the case of Re < 2.87, D was 

proportional to the power of 1.53 of the velocity, which can be explained by 

the combination of the macro dispersion and Taylor dispersion. On the other 

hand, D was proportional to the power of 0.79 of velocity in the case of Re 

> 2.87. 

 The theoretical curves were compared to the estimated D which was 

derived from the BTCs based on moment method approach. The curves 

show that dispersion coefficient should converge to the Tayler dispersion 

with an increased velocity. However, there are some deviations over the Pe 

> 104, suspecting whether the theoretical curves satisfy the experimental 

results in a highly rough-walled fracture. The graph clearly shows the 

deviation start to occur after Pe around eddy generation in the experiment. 
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Figure 3-8 DL/Dm against Pe (Comparison of the theoretical curves from 

equation (3-1), and estimated D from the series of experiment).  
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3.3.2 Numerical simulation results. 

 Numerical study, using COMSOL Multiphysics, was carried out to 

assess the cause of tail shortening by mass transfer by advective paths 

connecting eddies to the main flow channel. Firstly, flow and transport 

simulations on 2-D domain which is identical to experimental condition are 

conducted. Secondly, flow simulation on local 3-D domain at the OP3 is 

carried out to identify advective flow paths in the condition of 1mm depth. 

Finally, idealized 3-D model including large-aperture area was constructed. 

In the model, solute BTCs with an increased velocity was analyzed to 

investigate the relationship of tail shortening and eddy generation in detail. 
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Figure 3-9 The boundary and initial conditions used for numerical 

modellings: (a) for 2-D simulations, (b) for local 3-D simulation at OP3, and 

(c) for 3-D simulations for idealized 3-D model. 
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2-D simulations 

 As shown in Figure 3-9a, the 2-D domain of fracture was 

constructed, which is same size of the sample in the experiment. The flow 

conditions with Re = 0.08, 0.29, 2.86, 8.57, and 17.13 (pressure drop 

conditions at each Reynolds number were summarized in Table 3-1) were 

simulated.  

 Constant pressure boundary conditions were set for the left 

(upstream) and the right (downstream) boundary. And, no flow conditions 

were set at the upper and at the lower walls of the fracture (Figure 3-10). At 

each pressure drop condition, steady flow simulations were conducted. 

Through the flow simulations, velocity fields were determined over the 

whole 2-D fracture domain. The velocity vectors were coupled with the 

advection-diffusion equation (equation 3-4), which enabled to the transient 

solute transport simulations. Through the transient simulations, time series 

of solute concentrations over the whole 2-D fracture were determined. The 

concentration changes as injected pore volume at OP1 and OP2 were used 

to plot the BTCs from the numerical simulations. The information of mesh 

construction, initial condition, boundary condition, and procedure of 2-D 

simulations were summarized in the Figure 3-10.  

 The BTCs from the simulations showed that Fickian distribution 

under low velocity. In the simulations, consistent changes to non-Fickian 

tailing distribution with an increased velocity were observed even after the 

generation of eddies (Figure 3-11). These simulation results are consistent 
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with the previous numerical studies. The trajectories of eddies from the 2-D 

simulations were represented as recirculation zone (immobile zone), 

indicating no advective flow paths were generated between eddies and main 

flow channel. 

The recirculation zones near the upper and lower walls of the large-

aperture region, shown in the 2-D simulation, remained disconnected from 

the main flow channel. Although the sizes of eddies were similar between 

the 2-D simulation and the experiment, the trajectory of eddies were 

connected to main flow channel in the experiment (Figure 3-12). 
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Figure 3-10 Mesh construction, initial, and boundary conditions for 2-D simulations. 
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Table 3-2 Pressure differences between inlet and outlet for obtaining the 

same Reynolds number conditions of 2-D experiment. 

 

 

 

 

 

 

 

 

 

 

 

Pressure difference (△P)(Pa) Reynolds number (Re) 

1.134 0.08 

3.78 0.29 

38 2.86 

117 8.57 

245 17.13 
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Figure 3-11 The BTCs showing relative concentration at (a) OP1 and (b) OP2 with pore volumes (PVs) from the 2-D simulations. 
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Figure 3-12 Comparison between the flow path from the 2-D N-S flow 

simulation results (left) and that from the experiments (right) (a) Re = 8.57, 

(b) Re = 17.13. 
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Local 3-D simulation at OP3 

 To test whether 3-D effects may be responsible for mass transfer by 

advective paths from eddy to main flow channel, which was observed in the 

experiments, we extended the 2-D model to 3-D. For the 3-D modeling, the 

fracture was extended into 3-D with the width of 1 mm (i.e., the y axis in 

Figure 3-9b). Flow with Re = 19.29 (pressure drop of 5 Pa) was simulated 

between the upstream and downstream. Constant pressure boundaries with 

no-flow condition set at the upper and lower walls (Figure 3-9b). The front 

and rear lateral boundaries (the faces normal to the y axis) were also no-flow 

boundaries.  

 This boundary condition represents the experimental conditions 

during our tracer and flow tests, whereas for 2-D simulations (Figure 3-13a), 

the fracture is implicitly assumed to be infinite in the y direction. The results 

showed a clear 3-D trajectory of streamlines in the 3-D simulations. Flow 

trajectories swirled around the upper and lower near-wall portions of the 

large- aperture region and reentered the main flow channel (Figure 3-13c 

and 3-13d), which agreed very well with our observation shown in Figure 3-

6. The numerical studies suggest that 3-D effects resulting from introduction 

of no- flow lateral boundaries significantly enhance mass transfer by 

advective paths connecting eddies to the main flow channel. It is reasonable 

to expect that this mass transfer will cause shortening of the heavy tails as 

eddies are developed at larger Re. 
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Figure 3-13 Numerical results showing the flow characteristics between the 

recirculation zone and the main flow channel in (a) 2-D and (b) 3-D fracture 

geometries. The 3-D fracture has the front and rear lateral boundaries (the 

faces normal to the y axis are set at no flow), whereas the 2-D fracture is 

infinite. (c) The flow trajectories near the walls of the large-aperture region 

and (d) the clear view of the flow trajectories shown in Figure 3-13c. 
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3-D simulation at idealized 3-D model 

 Our experimental and computational results, in a fairly simple 

essentially 2-D flow geometry, suggest that 3-D effects caused by aperture 

expansions are likely significant in transport through more realistic 3-D 

fractures. To test this, we simulated flow through a simple 3-D fracture. 

 As mentioned in the introduction, in real fractures the aperture tends 

to vary in all directions. We developed an idealized 8 × 10 mm, 3-D fracture 

that includes a single large-aperture region as shown in Figure 3-14a. The 

large-aperture region has an arithmetic mean and maximum aperture of 1.28 

mm and 2.43 mm, respectively, and the surrounding relatively uniform 

apertures (i.e., not constant but slightly varying) has an arithmetic mean of 

0.5 mm. The 3-D flow field was meshed with 212,711 tetrahedral elements 

with mesh refinement in the large-aperture region to minimize numerical 

dispersion. 

 A constant pressure drop (ΔP) between the left upstream and right 

downstream boundaries was imposed at 0.05 (Re = 0.06), 0.2 (Re = 0.22), 1 

(Re = 1.10), 10 (Re = 10.92), 20 (Re = 21.36), and 30 Pa (Re = 31.31). The 

front and rear lateral boundaries were set at no flow (Figure 3-9c).  

 For pressure drops less than 10 Pa, no remarkable change in 

streamlines was observed (Figure 3-15). At ΔP = 10 Pa, the low velocity 

zone near fracture surface in the large-aperture region with no indication of 

eddy formation. A closer examination of the trajectories (by increasing 

trajectory density) revealed that small incipient eddies occurred near the 
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upper wall. At ΔP = 20 Pa and 30 Pa, these eddies became fully developed 

and the advective paths from inside the eddy to the main flow channel were 

clearly evident (Figure 3-14b and Figure 3-15). 
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Figure 3-14 (a) Numerical setup for the fracture with a large-aperture region 

and the surrounding relatively uniform aperture (b) The fluid flow 

trajectories at △P = 20 Pa. 
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Figure 3-15 The fluid velocity distribution and trajectories at pressure drops of 0.05, 0.2, 1, 10, 20, and 30 Pa. 
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Further numerical modeling was conducted to assess the amount of 

mass transfer by advective paths connecting the inside eddy to the main 

flow channel. Initially, the larger-aperture region was filled with solute at a 

concentration of C0 = 1 mol/m3; the initial concentration elsewhere in the 

fracture was C0 = 0 mol/m3. For the transport simulations, the flow 

boundary conditions were as described in the previous paragraph (Figure 3-

9c). The corresponding Pe was 1.84 × 102
, 7.36 × 102, 3.67 × 103 3.65 × 104, 

7.13 × 104, and 1.05 × 105 for △P = 0.05, 0.2, 1, 10, 20, and 30 Pa, 

respectively.  

 Figure 3-16 is the summarized residual solutes changes in a large 

aperture area, representing remarkable residual changes with respect to the 

pressure drop conditions of 0.05, 10, and 30 Pa. The pressure drop 

conditions are representative velocity conditions for no eddy, weak eddy, 

and fully developed eddies, respectively. The results show the increased 

amount of residual solutes until the △P = 10 Pa (Figure 3-16b), which was 

reduced with an increase of velocity (△P = 30 Pa) (Figure 3-16c). 

 Temporal changes of the residual concentration distributions at 

initial, 3PVs, 10PVs, 30PVs for all pressure drop conditions are represented 

(from Figure 3-17 to Figure 3-22). More solute remained in the large-

apeture region after equal number of PVs as fluid velocity increased up to 

△P = 10 Pa (Figure 3-17 to Figure 3-20), indicating the development from 

Fickian to non-Fickian transport. At △P = 10 Pa, some solute was flushed 

from the large-aperture region due to mass transfer by advective paths from 



 

 98

the eddy to the main flow channel, which became pronounced at △P = 20 Pa. 

As the eddy was fully developed at △P = 20 Pa and 30 Pa, the solute was 

more readily flushed from the large- aperture region such that less solute 

remained in the large- aperture region (Figure 3-21 and Figure 3-22). This 

observation of enhanced flushing within an eddy is consistent with our 

experimental observations that showed reduced tailing as flow rate 

increased. 
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Figure 3-16 The residual concentrations at the large-aperture area at (a) PV = 0, 3, 10, and 30 when △P = 0.05 Pa, (b) PV = 0, 3, 10, 

and 30 when △P = 10 Pa (c) PV = 0, 3, 10, and 30 when △P = 30 Pa. 
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Figure 3-17 Solutes initially set at the large aperture area, and the residual 

concentration at PV = 3, 10, and 30 when △P = 0.05 Pa. 
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Figure 3-18 Solutes initially set at the large aperture area, and the residual 

concentration at PV = 3, 10, and 30 when △P = 0.2 Pa. 
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Figure 3-19 Solutes initially set at the large aperture area, and the residual 

concentration at PV = 3, 10, and 30 when △P = 1 Pa. 
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Figure 3-20 Solutes initially set at the large aperture area, and the residual 

concentration at PV = 3, 10, and 30 when △P = 10 Pa. 
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Figure 3-21 Solutes initially set at the large aperture area, and the residual 

concentration at PV = 3, 10, and 30 when △P = 20 Pa. 
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Figure 3-22 Solutes initially set at the large aperture area, and the residual 

concentration at PV = 3, 10, and 30 when △P = 30 Pa. 
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Figure 3-23 shows the mean concentration within the large-aperture 

regions plotted against pore volumes. The concentration time series show 

that the most significant tailing occurred at △P = 10 Pa. At larger flow rates, 

the tails began to decrease. Our numerical simulation support the hypothesis 

that 3-D flow effects in the vicinity of large expansions in fracture aperture 

lead to mass transfer by advective paths that connect the eddy to the main 

flow channel. This mixing process leads to shortening of BTC tails at higher 

flow rates The experimental and numerical results imply that the tailing 

grows strong with increasing fluid velocity, reaching its peak when eddies 

are about to form, but when eddies become fully developed, the tails, 

decrease in length, which is contrary to results from previous 2-D 

computational studies. 
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Figure 3-23 The residual concentration of solutes in the large aperture area 

with PV. The BTCs show that tails reach the highest at ΔP = 10 Pa, but after 

that, tails turn shortened at ΔP = 20 and 30 Pa. 
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3.4 Conclusions 

 

 We present the first direct observation of fluid flow and solute 

transport in a microscopic rough-walled fracture using micro-PIV to assess 

the evolution of non-Fickian tailing as eddies developed at larger fluid 

velocities. These direct observations of solute transport in a rough-walled 

fracture demonstrated a previously unidentified, important phenomenon: 

normalized BTCs became highly skewed toward later times up until a 

limiting fluid velocity, beyond which tailing decreased and peak 

concentrations increased. Further microscopic observation of particle 

trajectories clarified the likely cause of the reduced tailing at higher 

velocities. Tailing increased until the onset of eddies in large-aperture 

regions. As eddies became fully developed, particles were initially entrained 

in the eddies, but then cast back into the main flow channel, which reduced 

tailing. 

 To more clearly understand the 3-D nature of the flow and transport, 

numerical studies were carried out, which showed that the flow trajectory 

swirled near the fracture walls in a large-aperture region and turned back in 

the main flow channel, supporting the experimental observation. This study, 

based on combined direct observations and numerical simulations, clearly 

demonstrated that there was no well-defined separation stream surface 

delineating the so-called immobile (recirculation) and mobile zones in the 3-
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D nature of the flow and transport and the tails decreased with growing 

eddies due to mass transfer by advective paths from the inside eddies to the 

main flow channels. These experimental and numerical results contradict 

results from numerous previous studies based upon simulations in 2-D 

fracture geometries and highlight the need for caution when using 2-D 

simulations to understand 3-D transport processes. 
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CHAPTER 4. IMPLICATIONS & FURTHER 

STUDY 

 

4.1 Implications 

 

Our research demonstrates the generation of an eddy flow and its 

effect on the tail shortening concept via a microscopic approach. The 

visualized phenomenon was somewhat conceptual, and there remains a 

limitation with regard to its direct application in field scale experiments. In 

the future, an improved design of the experiment needs to be developed for 

linking with field-scale experiments. If the conceptual flow can be 

confirmed in the field, it would have a wide range of implications with 

reference to various subjects associated with hydrogeology. 

First, the tail shortening mechanism is useful for developing an in-

situ remediation scheme. By setting an appropriate groundwater velocity, 

the remediation efficiency can be increased. On the field scale, a rapid 

groundwater gradient can be generated by artificial pumping, and the flow 

velocity range which can occur in a fracture is similar to the range in our 

experiment. Thus, the eddy and tail shortening concept may be applicable to 

in-situ remediation techniques such as pump and treat or surfactant flushing. 

Contaminants near the fracture wall can be efficiently removed by 

implementing a proper pumping rate to generate an eddy flow. 
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Secondly, the present results are also applicable to the area of 

geothermal energy utilization, such as the extraction of heat from hot dry 

rock (HDR) or the operation of an open-loop geothermal energy system. For 

geothermal energy, hot water is extracted from a well, and cool water is 

reinjected through a separated well after utilizing the energy. In this case, 

regional groundwater velocity is likely to reach 1 m/s while operating the 

recirculating flow. Thermal dispersion occurs by groundwater advection, 

which is similar to the solute dispersion mechanism. Hence, an eddy flow 

and tail shortening concept can be applicable in this case. 

In a karst aquifer, medium consisting of limestone and dolomite are 

soluble, creating considerable degree of heterogeneity in the aquifer and 

regional fast flows. The flow velocity reaches the turbulent flow regime in 

nature, which affects the rapid migration of contaminants. Therefore, the 

transport mechanism in our research can be applied to groundwater transport 

associated with a karst aquifer. 

Lastly, the eddy flow effect may have implications for those who 

study magma flows. At the upper level of brittle crust, magma flows through 

discrete fractures. The magma flow regime (i.e., laminar or turbulent) can 

influence the composition mixing, the heat transfer, and the mass transfer. 
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4.2 Further study 

 

The Reynolds number in our experiment is limited to 17.1. 

Although the experiments include a wide range of groundwater flow 

velocity conditions (See Figure 1-2), they do not include the turbulent flow 

regime. In the future, the Reynolds number in experiments can be extended 

to the range of 1000 ~ 2000, by improving the experimental devices (e.g., a 

high speed CCD camera, a high resolution microscope, and light sources). 

An earlier experiment by the authors includes the laminar flow and the non-

linear laminar flow (weak or strong inertia) regimes. However, previously 

noted, in case such as a karstic aquifer, in flows during geothermal energy 

utilization, and during hydraulic fracturing, the fracture flow velocity is 

likely to reach 1 m/s, which is clearly in the turbulent flow regime. 

Therefore, an extended experiment including the turbulent flow regime 

would be meaningful for characterizing various solute transport schemes 

ranging from the laminar to the turbulent schemes. 

Our study was limited to conceptual 3D modeling and to the 

conceptual visualization of a pore scale flow. Although we present 

meaningful results for the solute transport mechanism, the results were not 

proved by directly linked in-situ solute transport experiments. The 

conceptual findings need to be specified in conjunction with in-situ field 

fracture experiments. Further, in-situ experiment data from a well to well 
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pumping test or a tracer test can be analyzed through a constructed 

micromodel representing in-situ pore geometry.  

Besides fracture flows, various situations of hydraulic flows can be 

visualized by taking advantage of micromodels. In previous research on a 

subject related to colloid transport, DNAPL remediation visualization, the 

flow characteristics in a double porous medium, and bio-clogging were 

investigated through a micromodel visualization technique. In the future, it 

will be necessary to design micromodels to represent various hydraulic 

flows so as to reveal the mechanisms associated with groundwater flows. 
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CONCLUDING REMARKS 
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CONCLUDING REMARKS 

 

This study focuses on the characterization of fluid flow and solute 

transport in a highly rough-walled fracture with visualization techniques. 

Understanding the flow and the transport in a fractured rock medium located 

tens to hundreds of meters below the surface is a challenging issue in 

hydrogeology. Due to the limited pore scale geometry information, it is very 

difficult to reveal the detailed transport mechanism with regards to fracture 

geometry. In this case, to understanding flow and transport in pore-scale, 

micro-scale approaches based on constructed micro-models provide a solid 

interpretation of the phenomena in field scale. 

The roughness conditions of the single fracture were duplicated for 

the experiment, and then an acrylic single rough-walled fracture called the 

micromodel was constructed. Through the experiment with the micromodel 

and microscope, a direct visualization of the hydraulic flow in a pore-scale 

was achieved. Although the single-phase flows were visualized in my 

studies, a visualization through the micromodel can be widely utilized to 

determine various phenomena under more complex flow conditions in 

hydrogeology (e.g. pore scale flow visualization, multi-phase interaction in 

the pore scale, investigating hysteresis in a saturated-unsaturated condition, 

interactions in double porous medium, and calculating the partitioning 

coefficient contact area between two immiscible phases). 
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An observation through a micromodel has obvious limitations in 

that the duplicated porous medium is not real rock material, but there are 

clear advantages. For example, fluid flow can be observed by the naked eye 

with an artificially constructed micromodel. The results of tracer tests under 

in-situ conditions do not provide an interpretation from pore scale effects. In 

the case, research associated with flow visualization in microscopic 

approaches gives insight to the field scale phenomena which is difficult to 

prove under in-situ conditions.  

In this research, micro particle image velocimetry (PIV) technique 

was applied to determine the velocity vectors in a constructed single rough-

walled fracture model. The velocity distributions are utilized to assess the 

validity of the Stokes and the Reynolds equations, which are the simplified 

forms of the Navier - Stokes equations. The study first attempted to utilize 

the microPIV to investigate the surface roughness of fracture wall on fluid 

flow. The MicroPIV technique is a powerful tool in understanding the fluid 

flow characteristics under various pore-scale geometry conditions. 

In addition, 2-D and 3-D numerical N-S flow simulations were carried out 

to support the experimentally observed phenomena. According to previous 

studies, the tailing effects of breakthrough curves occurred due to the 

growth of the recirculation zones under high velocity conditions. However, 

the previous studies are limited to 2-D N-S flow simulations. Our 2-D and 

3-D numerical simulation results with experimentally visualized images 

showed that the tail shortening of breakthrough curves (BTCs) occurred 
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from eddy flow, which is a noteworthy discovery. The concept of tail-

shortening in a rough-walled fracture under high velocity conditions will be 

useful for interpreting solute transport in the fractured medium. 
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국문 초록 

 

 거친 표면을 가진 단열대에서 유체의 유동과 용질의 거동

을 이해하는 것은 석유 저장층의 개발, 지열 발전, 이산화탄소 지

중 저장층 및 방사성 폐기물 심지층 처리의 안정성 평가 등의 문

제를 다룰 때 매우 중요하다.  

본 연구에서는 단열에서의 유체의 흐름을 이해하기 위하여 

거친 단일 절리조건에서 레이놀즈 수 0.014에서 0.086 범위에서 

microPIV 기법을 이용하여 단열 내 속도 분포를 측정하였다. 측정

된 속도 분포자료를 이용하여 나비에 스토크스 방정식의 간단화된 

형식인 스토크스 방정식과 레이놀즈 방정식의 가정들의 정당성을 

평가하기 위해서 나비에 스토크스 방정식의 각 항의 크기를 비교

하는 연구를 수행하였다. 그 결과, 굉장히 거칠기가 큰 지역이라도 

점성력 항은 관성력 항보다 2 order 이상 더 큰 크기를 가졌으며, 

이를 통해 나비에 스토크스 방정식에서 관성력 항을 제외시킨 스

토크스 방정식이 레이놀즈 수 0.1 이하의 범위에서 활용 가능하다

고 판단하였다. 하지만, 스토크스 방정식에서 레이놀즈 방정식으로 

간단화 시킬 때는 22 zu x ¶¶ /  항이 다른 점성력 항보다 매우 커야 

하지만, 속도 분포자료를 이용한 해석 결과 레이놀즈 수 0.1 이하 

범위의 거칠기가 큰 단열 흐름에서 이 가정은 맞지 않는 것으로 

나타났으며, 이는 레이놀즈 방정식은 실제 유량의 흐름을 과대평

가할 우려가 있다는 것을 의미한다. 

 또한, 거친 단열의 표면에서의 와류의 형성이 단열 내 용질

의 거동에 미치는 영향을 평가하기 위해서, 현미경을 이용한 미시

적인 용질거동의 관찰을 수행하였다. 그 결과, 거칠기가 큰 단열 
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공극에서 속도 증가에 따른 와류의 형성 및 성장이 관찰되었다. 

유체에 희석된 형광입자는 와류에 포획되어 회전하다가 다시 주 

흐름 경로로 돌아가는 형태를 보이는데 이는 용질이력곡선에서의 

tailing 현상을 감소시키는 역할을 하는 것이 발견되었다. 이는 기

존의 용질거동개념모델에서 알려진 유동구역과 비유동구역이 구분

된 흐름이 형성되어 두 유역간은 상호작용을 하지 않는다는 일치

하지 않는 내용이다. 또한, 본 연구에서 수행된 3-D 개념모델에서

의 유체유동과 용질거동 수치모델링 결과, 실험에서 관찰된 테일

링(tailing) 현상의 감소는 두 구역간의 용질 전달이 확산 기작이 

아닌 와류에 의한 이송 기작으로의 전달이 이루어 진다는 것을 확

인하였다. 이는 기존의 2-D 수치모델링 연구들에서 속도증가에 따

라 와류의 크기가 증가함에 따라 테일링(tailing)이 길어진다는 연

구에 대한 상반된 연구내용으로 2-D 수치모델링을 통해 실제 단열

대의 유동을 해석할 때 전혀 다른 결과를 가져올 수 있으므로 유

의해야 할 것 이다. 

 

주요어: 마이크로입자영상유속계, 용질거동이력곡선, 거친 단열, 와

류, 나비에 스토크스 방정식, 레이놀즈 방정식, 테일링 현상 
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