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Abstract

In this thesis, we discuss some arithmetic relations on the representations
of (positive definite integral) ternary quadratic forms. Let r(n, f) be the
number of representations of an integer n by a ternary quadratic form f
and let p be a prime such that f is isotropic over Z,. We show that under
some restrictions, r(n, f) can be expressed as a summation of r(pn, g)’s and
r(p3n,g)’s with some extra term that can be explicitly computable, where
each quadratic form ¢ is contained in the same genus determined by f and p.

In the second part of the thesis, we discuss genus-correspondences be-
tween ternary quadratic forms respecting spinor genus. We modify the con-
jecture given by Jagy and prove this modified version. We also construct
genus-correspondences satisfying some additional properties. In particular,
we construct infinite family of genera of ternary quadratic forms that possess
(absolutely) complete systems of spinor exceptional integers.

Key words: Representation of ternary quadratic forms, Watson transforma-
tions, Graph of ternary quadratic forms, Genus-correspondences, Complete
system of spinor exceptional integers

Student Number: 2011-30096
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Chapter 1

Introduction

For a positive definite (non-classic) integral ternary quadratic form

flzy,29,. .. 28) = Z ;T (ai; € Z)

1<i<j<k

and an integer n, we say that n is represented by f if the diophantine equation
f(x1,29,...,75) = n has an integer solution (x1, Ty, ..., 7;) € Z*. The set of
all integers that are represented by f is denoted by Q(f). It is quite an old
and important problem to determine the set Q(f) explicitly. If the rank of f
is two, then the set Q(f) is related with many other number theory subjects
such as class field theory, and in fact, general theory of quadratic forms
only gives some restricted information on the set Q(f). If f is an indefinite
form with rank greater than or equal to 3, then spinor genus theory gives an
effective way to determine the set Q(f). If f is a positive definite form with
rank greater than 4, then one may compute an effective bound N such that
every integer n greater than N is represented by f under the assumption
that n is locally represented by f. Here the term “effectiveness” means that
one may determine the set of integers less than N that are represented by f
in a reasonable time. Recently, in [9], Hanke considered this problem when
the rank is 4 and he computed an effective bound N such that every integer
n greater than IV that is primitively represented by f over Z,, for any prime
p is also represented by itself. When f is a positive definite form with rank
three, determining the set Q(f) is still remained unsolved.
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Let f be a positive definite (non-classic) integral ternary quadratic form
f. For an integer n, we define

R(n, f) = {(x1, 29, 23) € Z* : f(x1,72,23) =n} and r(n,f) = |R(n,f)|.

It is well known that R(n, f) is always finite if f is positive definite. The
theta series 0¢(2) of f is defined by

05(2) =Y _r(n, )™,

which is in fact, a modular form of weight % and some character with respect
to a certain congruence subgroup. Finding a closed formula for r(n, f) or
finding all integers n such that r(n, f) # 0 for an arbitrary ternary form f
are quite old problems that are still widely open. As a simplest case, Gauss
showed that if f is a sum of three squares, then r(n, f) is a multiple of the
Hurwitz-Kronecker class number.

Though it seems to be quite difficult to find a closed formula for r(n, f),
some various relations between r(n, f)’s are known. One of the important
relations comes from the Minkowski-Siegel formula. Let O(f) be the group
of isometries of f and o(f) = |O(f)|. The weight w(f) of f is defined by
w(f) = 2 p1egen(s) ﬁ, where [f'] is the equivalence class containing f’. The
Minkowski-Siegel formula says that the weighted sum of the representations
by quadratic forms in the genus is, in principle, the product of local densities,
that is, ,

1 r(n, .

w2, o - et
[f']€gen(f) p

where the constant ¢* can easily be computable and «, is the local density
depending only on the local structure of f over Z,. Hence if the class number
of f is one, then we have a closed formula on r(n, f). As a natural modifica-
tion of the Minkowski-Siegel formula, it was proved in [16] and [21] that the
weighted sum of the representations of quadratic forms in the spinor genus is
also equal to the product of local densities except spinor exceptional integers
(see also [20] for spinor exceptional integers).
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Another important relation comes from the Watson transformation. Let p
be a prime such that a unimodular component of f in a Jordan decomposition
is anisotropic over Z,. Then one may easily show that

r(pn, f) = r(pn, Ap(f)),

where A,(f) is defined in Section 2. Hence the theta series of f completely
determines the theta series of A\,(f). Unfortunately if a unimodular compo-
nent of the ternary form f over Z, is isotropic, one cannot expect such a nice
relation. In this article, we consider the case when a unimodular component
of the ternary form f over Z, is isotropic.

The subsequence discussion will be conducted in the more adapted geo-
metric language of quadratic spaces and lattices. The term “lattice” will
always refer to a positive definite non-classic integral Z-lattice on an n-
dimensional positive definite quadratic space over Q. Here, a Z-lattice is
said to be non-classic if the norm ideal n(L) of L is contained in Z. Let
L =7Zx,+ Zxy + - - - + Zzx,, be a Z-lattice of rank n. We write

L ~ (B(z;, ;).

The right hand side matrix is called a matriz presentation of L. We denote
by (a,b,c, e, f,g) for the ternary Z-lattice with a matrix presentation

a g f
g b el,
f e c

for convenience. Furthermore for any integer a, we say that 7 is divisible by
a prime p if p is odd and a = 0 (mod p), or p =2 and a =0 (mod 4). Any
unexplained notations and terminologies can be found in [15] or [17].

In this thesis, we discuss some arithmetic relations on the representations
of (positive definite integral) ternary quadratic forms. Parts of results in
Chapters 3,4 and 5 were proved in collaboration with Lee and Oh in [13],
and most results in Chapter 6 were done by joint work with Oh in [14].

In Chapter 2, we introduce notations and terminologies that will be used
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in this thesis.

In Chapter 3, we collect some results related with so called, Watson’s
transformation. In particular, we focus on the behavior of the number of
proper spinor genera under the Watson’s transformation. We also generalize
Watson’s transformation in some direction and provide some formula on the
weight sum of the representations of forms in a genus whose Watson’s trans-
formation is transformed to the same ternary form.

Let V be a (positive definite) ternary quadratic space and let L be a
(non-classic) ternary Z-lattice on V. Let p be a prime such that

L=(} ¢)Le

where € € Z). For any nonnegative integer m, let G, ,(m) be a genus on a
quadratic space W such that each Z-lattice T' € Gy, ,(m) satisfies

= O

1
2

Here W =V if m is even, W = VP otherwise.

In Chapter 4, we define a (multi-)graph whose vertices are ternary forms
in the same genus. The graph & ,(m) is defined as follows: The set of
vertices is equivalence classes in the genus G ,(m). For two equivalence
classes [T1] and [T3] are connected by an edge if there is a Z-lattice T" € [T7]
and a basis {1, xe,z3} of W such that

T' = Za, + Zas + Zrs and Tp = Z(pz1) + Z <ﬂ> + Zas.
p

This finite graph is closely related with the infinite graph defined by Benham
and Hsia in [1]. We prove various properties of this graph that are needed
in the next chapter. In particular, we give a relation between the incidence
matrix of this graph and Eichler’s Anzahlmatrix.

The aim of Chapter 5 is to show that if " € G, ,(m) for m = 0 or 1, then
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there are rational numbers a;, b; such that

r(n,T) = Z (agr(pn, S;) + bir(p’n, S;)) + (some extra term).
[Si]€GL,p(m+1)

We prove this statement in each case and compute the rational numbers a;’s,
b;’s and the extra term explicitly. For the case when m = 2, we give an
example such that the above statement does not hold, and prove that the
above statement still holds for m = 2 if we additionally assume that n is
divisible by p. In the case when m > 3, we show that under some restriction,
the above statement holds if we replace r(n, T) by r(p*n, T)—pr(n, T), and for
any integer n not divisible by p, both r(n,T") and r(pn, T') can be written as a
linear summation of r(pn, S)’s and r(n, S)’s, respectively, for S € G, ,(m+1).
In some cases, the extra term in the above equation can be removed. To
determine when it happens, we need to know some structure of the graph
& ,(m).

In Chapter 6, we discuss genus-correspondences between ternary quadratic
forms respecting spinor genus. Let n be a positive integer. Let M, N be
ternary Z-lattices such that there is a representation ¢ : M™ — N such that
[N : ¢(M™)] = n. For two Z-lattices M’ € gen(M) and N’ € gen(N), assume
that (M’)™ is represented by N’. Under this situation, Jagy conjectured in
[12] that if g™ (M) = g*(N), then M’ € spn(M) if and only if N’ € spn(N).
In fact, this conjecture is not true. We slightly modify this conjecture and
prove it. We also construct genus-correspondences satisfying some additional
properties. In particular, we construct infinite family of genera of ternary
quadratic forms that possess (absolutely) complete systems of spinor excep-
tional integers.



Chapter 2

Preliminaries

In this chapter, we introduce some definitions and properties which are
needed in this thesis. Any unexplained notations and terminologies can be
found in [15] or [17].

2.1 Definitions

Let Q be the field of rational numbers and €2 be the set of all primes including
0o. For a prime p € ) | we denote the fields of p-adic completions of Q by
Q,, in particular, Q. means the field of real numbers R. Let F' be a field Q
or Q,. A quadratic space V is a vector space over F' of finite rank equipped
with a non-degenerate symmetric bilinear form B : V x V' — F. So we have

B(ZL’,y—i-Z) :B<I,y)+B(ZE,Z)
B(azx,y) = aB(z,y), B(z,y) = B(y,x)

for any z,y,z € V and a € F. We put the quadratic map Q(x) = B(x,x)
for any x € V. Then the following equalities hold:

Q(ax) = o*Q(x)
Qr+y) =Q(z) + Qy) +2B(x,y)
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for any z,y € V and a € F. For a non-zero o € F, we denote by V< the
quadratic space obtained from scaling V' by a.

For two quadratic spaces V and W, a linear map o : V' — W is called a
representation of V' into W if

B(z,y) = B(o(x),0(y))

for any z,y € V. In this case we say that V' is represented by W. Furthermore
if o is bijective, o is called an isometry of V onto W. In this case, we say V'
is isometric to W and denote V' ~ W. An isometry group O(V) is the set
of all isometries V onto V. We call ¢ a rotation if detc = 1, and we define
O* (V) be the set of all rotations of V.

Let x1,...,x, be a basis of a quadratic space V over F'. The determinant

det(B(z;, x;))

of the n x n matrix (B(x;,x;)) is called the discriminant of the quadratic
space V' and denoted by dV. Note that the discriminant dV is uniquely
determined up to (F)2.

Let V be a n-ary quadratic space over F' with the quadratic map ). Any
o € OT (V) can be expressed as a product of symmetries by Theorem 43:4 in
[17], say

O =Ty " Ty,

T

We can attach a well-defined invariant to the isometry o, namely the canon-
ical image of Q(v;) -+ Q(v,) in F*/(F*)2. We call this invariant the spinor
norm of o and write

0(c) € F*/(F*)2.

So we have a group homomorphism
0:07(V)— F*/(F*).
The kernel of the homomorphism 6 is denoted by O'(V'). Thus

O'(V)y={c€0(V)]|0(c) =1}

¥ [ -1 ==
:-_'- Lh.
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Let Lp(V) be the algebra of linear transformations of V' into it self and
e1,...,e, be a fixed basis of V. Consider an element o € Lg(V), write

oej; = Eiaijei (Oéij € F)
for 1 < j < n and define the norm of ¢ as following:
|loflp = max{|al, | 1 < d,j < n}.

where | |, is the given p-adic valuation on F'.

For a quadratic space V over Q and a finite prime p, V, := Q, ® V is
a quadratic space over QQ,. We fix the basis for the quadratic space V' and
assume each norm || ||, on L, (V) is defined with respect to this fixed basis.

Theorem 2.1.1. Weak Approximation Theorem for Rotations. Let
V' be a quadratic space over Q and T be a finite set of primes. Suppose ¢,
is given in O (V,) at each prime p in T. Then for each € > 0 there is a
o€ OT(V) such that

o= dpllp <€

foranypeT.
Proof. See 101:7 in [17]. O

Theorem 2.1.2. Strong Approximation Theorem for Rotations. Let
V' be a quadratic space over Q with dim(V') > 3, S be an indefinite set of
primes for V., and T be a finite subset of S. A rotation ¢, is given in O'(V,)
at each prime p in T. Then for each € > 0 there is a rotation o in O'(V)
such that

llo— @pllp <€
for anyp € T and
o], =1
foranypeS—T.
Proof. See 104:4 in [17]. O
8
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Consider the product

I1 o*(v,).

peEQ

An element of this group is defined coordinatewise, say
U= (Dphpen (B, € OT(V))).

For two such elements ¥, A we have following equalities:
(BA)p = Sphp,  (B71), =37,

for any p € 2. An element Y of the above product is called a split rotation
of the quadratic space V' if ¥ satisfies the property

[|X,][, = 1 for almost all p.

The definition is independent of choices of the basis for V. We denote the
set of all split rotations by Jy. It is a subgroup of the above product and
called the group of split rotations. The set of all split rotations X satisfying
the property

5, € 0(V,)

for any prime p is denoted by J{,. Clearly .J;, is a subgroup of Jy .

For a finite prime p, the ring of p-adic integers is denoted by Z,. Let R
be the ring of integers Z or ring of p-adic integers Z, and F' be the quotient
field of R. Let L be a subset of the quadratic space V over F' that is an R-
module under the laws induced from the vector space V over F'. We define
a subspace F'L of V as follows:

FL={ax|a€ F,zelL}.

We call the R-module L a lattice on V' if there is a basis zq,...,x, for V
such that
L C Rxy+ -+ Rx,

and F'L = V. In particular, we say L is a Z-lattice (Z,-lattice) on V if R =7
(Z,, respectively). Sometimes, we omit the term “on V" for convenience.

9
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Let ey, es. .., e, be a basis of the lattice L on V. We define the symmetric
matrix My, by (B(e;, €;)), where B is the symmetric bilinear form defined on
V. We define the discriminant dL of L by the determinant of M. We
say L is positive definite (indefinite) it My, is a positive definite (indefinite,
respectively) matrix. We define the scale of L to the R-module generated by
B(z,y) for all 2,y € L, norm of L to be the R-module generated by Q(x)
for all x € L, which are denoted by s(L) and n(L), respectively. Note that
s(L) and n(L) are either a fractional ideal or 0. For a € R*, L* means the
lattice L which is regarded as a lattice on V.

Let U,V be quadratic spaces over F. Consider lattices K on U and
L on V. We say that K is represented by L, if there is a representation
o: FK — FL such that oK C L. We say that K and L are isometric, if
there is an isometry o : FK — FL such that 0 K = L, in this case we write

K~ L.

Let K, L be lattices on V. We say that K and L are in the same class if
K and L are isometric. This is clearly an equivalence relation on the set of
all lattices on V. We use

cls(L)
to denote the class of L. We define the subgroup O(L) of O(V') as follows:
O(L)={ce€O(V)|oL=L}
We denote the order |O(L)| of O(L) by o(L). And define
O (L) =0(L)nO*(V).

For a Z-lattice L on V', L, means a Zy,-lattice Z, ® L on V,. The genus
gen(L) of the Z-lattice L on V' is the set of all Z-lattices K on V satisfies the
following property: for each finite prime p there is a isometry X, € O(V,)
such that

K,=%,L,.

The genus can be described in terms of split rotations: K belongs to gen(L)

10
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if and only if
K=XYL

for some > € Jy. We say that the Z-lattice K on V is contained in the
same spinor genus as L if there is an isometry ¢ € O(V') and a rotation
¥, € O'(V,) at each finite prime p such that

K, =0,%,L,

for any finite prime p. This condition can be expressed in terms of split
rotations: there is a 0 € O(V') and a ¥ € J{, such that

K =o0XL.

We denote the set of all lattices in the same spinor genus as L by spn(L).
Then we have
cls(L) C spn(L) C gen(L).

The number of classes and spinor genera in gen(L) is denoted by h(L) and
g(L), respectively. Note that h(L) and g(L) are always finite.

2.2 Spinor norms of local integral rotations
Consider the product

IT @

peN

An element of this group is defined in terms of its p-coordinates, say

i=(ip)pe (ip € Q));

and the multiplication in the product is defined coordinatewise. An element
of the above product is called idele if it satisfies the following condition:

i, = 1 for almost all p € Q.

11
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The set of all ideles is a subgroup of the product called the group of ideles
and denoted by Jg. Let D be the set of all positive rational numbers and
Pp be the group of principal ideles of the form («)yeq with a € D. For a
Z-lattice L, we define the subgroup J(é of Jg as follows:

J§={i€ Jg|i, € (0 (L,)) for any finite prime p}.

Let K and L be Z-lattices on V. We say that K is contained in the same
proper spinor genus as L if there is a rotation ¢ € OT (V) and a rotation
¥, € O'(V,) at each finite prime p such that

Ky =o0p2,L,

for any finite prime p. This condition can be expressed in terms of split
rotations : there is a 0 € OT(V) and a ¥ € J'(V) such that K = o3 L. We
denote the set of all lattices in the same proper spinor genus as L by spn™(L).
The number of proper spinor genera in gen(L) is denoted by ¢g*(L). The
number ¢ (L) can be computed by means of an ideélic index formula:

Theorem 2.2.1. For a Z-lattice L, assume that rank(L) > 3. Then
gt (L) = (Jg : PpJ§).
Proof. See 102:7 in [17]. O

Above theorem shows that to compute the number of proper spinor genera
in the given genus, it is necessary to compute the spinor norm of local integral
rotations at each finite prime p. For this, we introduce some notations and
definitions. Let il, be the group of units in Z, and A = 1+ 4p be a non-
square unit of quadratic defect 4Z,. We use the symbol A(«, 3) to denote

the 2 x 2 matrix
a 1

where «, § € Z. For any lattice L, we define

P(L) ={v € L|v maximal and 7, € O(L)}.

12
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Let L be a Z,-lattice of rank n and p be a prime. At first, we consider
modular cases. We may assume that L is unimodular by scaling. If n = 1,
then clearly #(O* (L)) = (Q))? for any prime p. When p is an odd prime,
0(O* (L)) = 4,(Qy)* for n > 2 (See 92:5 in [17]). So we have only to consider
the 2-adic cases. The following two theorems complete the answer for 2-adic
cases.

Theorem 2.2.2. Let L be a unimodular Zs-lattice with rank(L) = 2. If L is
isometric to one of the lattices A(0,0), A(2,2p), A(1,0) and A(1,4p), then
O(OF (L)) = Us(Q3)?. If L is isometric to Ac,2f), where c, f are units, then
0(0*(L)) = Q((1,d))(Q3)* where d = d(A(c,2f)).

Proof. See Remark (a) in [10]. O
Theorem 2.2.3. Let L be a unimodular Zs-lattice with rank(L) > 3. Then,
O(OT(L)) = U(Q5)? if and only if n(L) = 2Zy. If n(L) = Zy, then
6(07(L)) = Qs

Proof. See Proposition A in [10]. O

Next, we determine the spinor norm (O (L)) for arbitrary Z,-lattice L.
If p is an odd prime, we can directly compute the spinor norm #(O* (L)) from
the following lemma.

Lemma 2.2.4. Assume p is an odd prime and L is a Z,-lattice. For a
primitive vector x in L, the symmetry 7, is contained in O(L) if and only if

Q(x) splits L.

Proof. The symmetry 7, is contained in O(L) if and only if

2B(z, L)
Q) =™

From the above, the lemma is proved immediately. O

In the remaining of this section, we determine the spinor norm of the
group of local integral rotations for the arbitrary 2-adic lattices. Assume L
is a binary Z-lattice. If L is a modular lattice, then §(O* (L)) is already

13
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determined. So we deal only with the non-modular case. By scaling we may
assume that
L~(1) 1L (2q),

where r > 1 and o € 4.

Theorem 2.2.5. Under the above assumptions, 0(O* (L)) is completely de-
termined as follows:

{veQ* | (v, —2a) = +1} ifr=1,3,
9(O+(L)) _ {7 € LLQ(Q;)Q | (77 —Oé) - +1} Zf?“ = 2,
(@)U a(QF)? UA(QF)? UaA(Qs)*  ifr=4,
(Q3)? U2 (Q5)? if r > 5.
Proof. See [6]. O

Next, we consider the higher dimensional cases with 1-dimensional com-
ponents. Let L be a Zy-lattice of rank > 3 with Jordan decomposition

L=(1) L (2%a) L - L (2"ay),

where r; € Z, a; € Uy forte =1,... ., nand r; < rjpq fori =1,....,.n—1,
ry=0. For j=1,...,n— 1, we define

Ljj = (27a;) L (27" i),
T(Ljj41) = Tjp1 — 1

Theorem 2.2.6. Suppose that there is at least one k for which r(Lyg+1) = 1
or3. Ifrg —ry =2 or 4 for some s,t =1,...,n, we have 6(O*(L)) = Q7.

Proof. See Theorem 2.2 in [6]. O

Theorem 2.2.7. Suppose that L does not satisfy the hypothesis of Theorem
2.2.6. Then

0(O+(L)) = { H Q(UZ) | v; € P(Lji,ji+1)’ I<jgi<n-— 1}'

=1

14
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Proof. See Theorem 2.7 in [6]. O

Finally, we consider the higher dimensional cases with arbitrary compo-
nents. Assume that L is a Zs-lattice of rank > 3 with at least one Jordan
component of rank > 2.

Definition 2.2.8. We say Zy-lattice L has even orderif Q(P(L)) C Uy (Q5)?
and L has odd order if Q(P(L)) C 24y (Q5)2.

Proposition 2.2.9. Let L be unimodular.

(1) Suppose rank(L) = 2. Then

L has odd order <= L ~ A(0,0) or A(2,2p),
L has even order <= L ~ A(1,0) or A(1,4p).

(2) Suppose rank(L) > 3. Then

(01 (L)) # Q5 = L has odd order.

Proof. See Proposition 3.2 in [6]. O

Theorem 2.2.10. Let L = 2" Ly 1 2Ly | --- L 2™ L;, where L; is uni-
modular and 0 = ry < re < --- <1y are natural numbers. Then we have:

(a) If at least one Jordan component has rank > 3, then (OT(L)) # Q*
(in fact, = Us(QX)?) if and only if all 27 L; have the same order for
i=1,... 1

(b) If rank(L;) < 2 for every i of which at least one component, say L;,,
is binary, then 6(O1 (L)) # Q5 if and only if one of the following three
Cases occurs:

(1) all Jordan components have odd order,
(2) all Jordan components have even order,
(3) whenever rank(L;) = 2, L; ~ A(a;, 2b;), a;, b; € hy; moreover,

(1) the associated spaces of all binary components are isometric,

15



CHAPTER 2. PRELIMINARIES

(13) for any unitary component, say Ly ~ (cir), ¢ € i, the Hilbert
symbol (27 Toq; c;r, —dL;,) = 1,

(i13) rjp1 —1; >4, orrjp —r; = 2 with rank(L;) = rank(Lj1,) =1
and d(2VL; L 27+ L) - d(270 L) € {(Q5)% A(Q5)*} for
j=1,.. .. t—1.

Finally, in case (1) and (2), (0T (L)) = Us(Q5)?; and in case (3) it is
equal to (01 (Ly,)) = {c € Q) | (¢, —dL;,) = 1}.

Proof. See Theorem 3.14 in [6], 1.2 in [7] and [4]. O

2.3 Spinor exceptional integers

Let L be an integral Z-lattice and a be an integer. Assume rank(L) > 4. If a
is represented by gen(L) (i.e., there is a lattice in the genus of L representing
a), then a is represented by every spinor genus in genus of L (i.e., there is
a lattice in each spinor genus representing a). However this does not hold
when rank(L) = 3. Assume that rank(L) = 3. If a is represented by gen(L),
then either every spinor genus in the genus of L represents a or precisely half
of all the spinor genera do. In the latter case, ¢ is called a spinor exceptional
integer for gen(L) and the half-genus that represents (doesn’t represent) c is
called good (bad, respectively) half-genus with respect to ¢ (see [1]).

Let L be a ternary Z-lattice on V. Recall that Jg is the group of ideles,
Jy is the group of split rotations and Pp is the group of principal ideles,
where D is the set of all positive rational numbers. We define the subgroup
Jr, of Jy by the equation

Jp={X € Jy | 0, € O*(L,) for any finite prime p}.

For a split rotation ¥ = (3,),cq in Jy, 0(X) is the set of ideles i = (i,),eq
with i, € §(X,) for any prime p € Q (6 is spinor norm) and 6(.J;,) is the union
of all §(3) with ¥ € Jy.

Theorem 2.3.1. Let L be a ternary Z-lattice on V. Assume that a non-zero
integer a is represented by gen(L). Let d = —a -dV, E = Q(v/d). Then a

16
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is either represented by all spinor genera in the genus of L of exactly half of
them. The latter case occurs only when the followings hold:

a#0, d¢(Q*)? 0(Jr) C Ne(Je) (2:3.1)

If these conditions are satisfied, the genus of L decomposed into two half
genera such that for ¥ € Jy, L and XL lie in the same half genus if and only
if 0(3) € PpNgio(Jr). A half genus consists of spinor genera; two spinor
genera in the same half genus represents a or not simultaneously.

Proof. See Satz 1 in [19]. O

We now investigate when an integer a which satisfies the condition (2.3.1)
is actually a spinor exceptional integer of L.

Definition 2.3.2. Let p be a finite prime, a € Q(L,) and = € L, with
Q(z) = a. Then the subgroup of Q, generated by

{ce Q) | thereis ¢ € OT(V,) with z € ¢(L,) and c € 6(¢)}
is denoted by 6(L,,a).
Note that 0(L,,a) is independent of choices of x (see [19]).

Theorem 2.3.3. Let L,a, d, E be as in Theorem 2.3.1. For any prime
p € , we denote Ngyq,(Ey) by Ny(E), where B is an extension of p to
E. Then a is a spinor exceptional integer for genus of L exactly when the
condition (2.3.1) is satisfied and also

0(Ly,a) = N,y(E) (2.3.2)
holds for any finite prime p.

Proof. See Satz 2 in [19]. O

To apply Theorem 2.3.3, it is need to compute the 6(L,,a). Let L be
a ternary Z-lattice and p be a finite prime. Assume that sL, = Z,. Fur-
thermore we assume, a € Q(L,), a # 0, d, E as in Theorem 2.3.1, B is an

17
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extension of p to E, N,(E) as in Theorem 2.3.3 and 6(O"(L,)) C N,(E).
In addition, we assume d & (@;)2, otherwise the condition 2.3.2 is trivially
satisfied. We denote the quadratic defect of an element £ of Qg by ().

Theorem 2.3.4. Let p be an odd prime.
(a) If Ex/Q, is unramified, (O*(L,)) € N,(E) if and only if
L, =~ {(by) L {p*"by) L (p**b3) (b; € 4h,, 0 <71 < 5).
Then 0(L,,a) # N,(E) if and only if one of the following conditions is
satisfied:
(1) —biby € (Q))* and ordy(a) > 2r + 1,
(i) —biby & (QX)* and ord,(a) > 2s+ 1.

P

(b) If Ex/Q, is ramified, it follows from 6(O*(L,)) C N,(E) that
L, >~ (by) L (p"by) L (p°b3) (b € Y, 0 <1 < 5).

Then 0(L,,a) # N,(E) if and only if one of the following conditions
holds:

(i) 7 is even and ord,(a) > r,

(i1) r is odd and ord,(a) > s.
Proof. See Satz 3 in [19]. O
Theorem 2.3.5. Let p be an even prime.

(a) If Ex/Q, is unramified , then 8(O"(Ly) € No(E) if and only if Lo is
not unimodular and either its all Jordan components have even order or
have odd order. In this case, 0(La,a) # No(E) if and only if one of the
following conditions is satisfied:

(i) La =~ (by) L (22"by) L (2%b3) (b; € thy, 0 <7 < 8) and
(@) 0(=biby) = 2Zs, ordy(a) > 2r, or
(B) 0(=b1by) = 4Zs, ordy(a) > 2s, or

18
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(7) 9(=bibe) =0, ordy(a) > 1+ 2r + 2t (t := min(1,s — 1)).
(i7) Lo does not have an 1-dimensional orthogonal decomposition and
(@) Ly =~ A(0,0) L (221p) (b € Uy, 7 > 0), ordy(a) > 1+ s
(s :=min(1,7)), or
(B) Lo~ A(2,2p) L (22771b) (b € 8y, r > 0), ordy(a) > 2r+1, or
(7) Ly = (b) L M (b € $hy, M is 22" -modular with even order,
r >0), ordy(a) > 2r 4+ 2.

(b) If the extension Ey/Q, is ramified and ordy(d) is even, it follows from
0(OT(Ly)) C No(E) that
Ly = (b1) L (202) L (2°b3) (b € Uz, 0 <7 <o)

In this case, 0(Ly,a) # No(E) if and only if one of the followings is
satisfied with
K = < 1 <2Tb2> 1 <25b3>,

27 2p,)
K':=(2"by) L (27by) L (2°b3) :
(i) r is even, O(O1(K)) € No(E), ordy(a) > r — 2,
(1) r is even, 0(OT(K)) C No(E), 0(OT(K')) € No(E), ordy(a) >,
i1i) 1 is even, 0(O1(K)) C No(E), 0(OT(K')) S Ny(E), ordy(a) > s—2,
(v) r is odd, ordy(a) > r — 3.

(c) If the extension Ey/Q, is ramified and ordy(d) is odd, it follow from

Lo~ <b1> 1 <2rb2> 1 <2Sb3> (bz € 112, O<r< S)

In this case, 0(La,a) # Nao(E) if and only if one of the following condi-
tions holds with

K = (2773b;) L (27by) L (2°b3) :

(1) r is even, ordy(a) > r — 4,

(it) r is odd, (OT(K)) € No(E), ordy(a) > 1 — 3,

19
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(it3) r is odd, 0(OT(K)) C No(E), ordy(a) > s — 4.

Proof. See Satz 4 in [19]. O
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Chapter 3

Watson transformations

In this chapter, we discuss the Watson transformations and its generalization.
Let L be a non-classic integral Z-lattice on the quadratic space V. For a prime
p, we define

A(L)={z e L|Q(x+z) =Q(2) (mod p) for any z € L}.

Let A\,(L) be the primitive lattice obtained from A, (L) by scaling V = L®Q
by a suitable rational number. Here a Z-lattice L is called primitive, provided
n(L) = Z. For general properties of A,-transformation, see [2] and [3].

3.1 H-type lattices

For L' € gen(L) (L' € spn(L)) and any prime p, it is easy to show that
Mp(L') € gen(A\,(L)) (A(L') € spn(A,(L)), respectively). It is well known
that as a map,

A gen(L) — gen(A,(L)) (3.1.1)

is surjective. Furthermore, A,(spn(L)) = spn(A,(L)). If we define gen(L)g
the set of all spinor genera in the gen(L), then the map

Ap s gen(L)s — gen(A,(L))s

21



CHAPTER 3. WATSON TRANSFORMATIONS
given by spn(L’) — spn(A,(L')) for any spn(L') € gen(L)s is well-defined
and surjective. In particular, g(L) > g(\,(L)) for any prime p.

Definition 3.1.1. For a Z-lattice L and a prime p, if g(L) = g(A\,(L)), then
we say the lattice L is of H-type at p.

From the above definition, if L is of H-type at p, then so is L’ for any
L' € gen(L).

Henceforth, L is always a positive definite non-classic integral ternary
Z-lattice.

Lemma 3.1.2. Let L be a primitive ternary Z-lattice and let p be an odd
prime. Assume that after suitable scaling,

LP = <1apa617p662>7

where a, (o < B) are non-negative integers and €, ey € {1, A}. If L is not
of H-type at p, then the pairs («, B), (€1, €2) satisfy one of the conditions in
Table 1.

Proof. By 102:7 of [17], note that

gt (L) =[Jp: PpJE]  and gt (\(L)) = [Jr: PpJpr™).

Clearly, 0(OT(\y(L),)) = 0(OT(L,) for any prime g # p. Now one may easily
check that if the pairs («, ), (€1, €2) do not satisfy one of the conditions in
Table 1, then (01 (\,(L),)) = 6(O*(L,)), which implies that the equality
gt (L) = g"(A\y(L)) holds. O

Table 1 (odd case)

(a, ) (€1, €2)
(1,2) (1,1)
(1,2) (A1)
(2,k), k>3 (1,1)
(2,2k+1), k>1 (1,4)
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Lemma 3.1.3. Let L be a primitive ternary Z-lattice. If L is not of H-type
at 2, then there is an n € Z; such that

(LM)g =~ (1,2%y, 2562>,

and the pairs («, 8), (€1, €2) satisfy one of the conditions in Table 2, where

a, B(a < B) are non-negative integers and €y, €y € Zs .

Proof. The proof is quite similar to the above lemma. For the computation

of the spinor norm map, see Section 2.2.

Table 2 (Even case)

]

€1 £ €y =€ 0reg =1 (8)

(a, 8) (€1, €2) (a, 8) (€1, ¢€2)

(0,4) a=e=1(4) (5,6) 261 + €2 € Q((1, 2€1))
(1,6) €2 € Q((1,2¢1)) (5,7) crez =1 (4)

2,2) =1, =34 | (558 €2 =21 +5 (8)
(2,4) e =1(4) (5,9) erez =1 (4)

(2,6) (=1 (4) (5,2k), k>5 142 #e (8)
(22k—1), k>4 e=2+3(8) | (5,2k+1), k>5 142 £ eren (8)
(2,2k), k>4 e =1(4) (6,7) 5 ¢ Q((e1,2€2))
(3,6) e2=1(8) (6,9) 5 ¢ Q({e1,2€2))
(4,4) a=e=1(4) 6,2k —1), k>6 € £5 (8)

(5,5) =36 +6(8) | (6,2k), k>6 €162 25 (8) and

Remark 3.1.4. For a primitive ternary Z-lattice L, if L is of H-type at p,

then

Ap i gen(L)s — gen(A,(L))s

is bijective. Furthermore, if L is not of H-type at p, then we have

|9(0+(Ap(Lp)))|={

23

4-10(0T(Ly))| iftp=2, (o,0) =(2,4) and e, =e2=1 (4),
2-16(0O*(L,))| otherwise.
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Assume \,(spn(L)) = spn(M) with A\,(L) = M. Let spn(M’) € gen(M)s.
Then there is a split rotation 3 € Jy such that M’ = X M. Since

A(SL) = SN (L) = SM = M,

we have \,(spn(XL)) = spn(M’). Note that spn(L’) = spn(L”) if and only if
spn(XL') = spn(XL") for any L', L" € gen(L). Therefore

Ap s gen(L)s —> gen(A,(L))s
is a four-to-one or two-to-one map if L is not of H-type at p. Note that A,
could be a two-to-one map even if [§(OT (A, (L)) =4 - |0(OT(Ly,))|.
3.2 Generalization of Watson transformations

Let L be a positive definite non-classic integral ternary Z-lattice. Assume p
is an odd prime. If a unimodular component in the Jordan decomposition of
L, is anisotropic, then one may easily show that

r(pn, L) = r(pn, A,(L)) (3:2.1)
for every integer n. Therefore, we know that

r(pn,L) if pZ,-modular component of L, is non-zero,

r(n, Ap(L)) = {

r(p*n, L) otherwise.

Furthermore, One may easily show that (3.2.1) still holds for p = 2 unless

Lgﬁ(

In the remaining of this section, we always assume that in a Jordan

= O
O o=

> 1{a), (a€Z).

decomposition of L,,

1
the §Zp—modular component is non-zero isotropic. (3.2.2)
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In this section we want to find similar results to (3.2.1) under the above
assumption. For this, we generalize the Watson transformation variously.

1 1 0 1
(l i) 1 (§) ~ (l 8) 1 (50) over Zy
2 2

for any § € ZJ, any Z-lattice L with above structure over Z, will also be

Since

considered when p = 2.
This section is a part of [13], we bring it here intactly.

Definition 3.2.1. Assume that p is odd. For e = 0 or £1, we define
(@)}
p

S2(0,L)={x € L|Q(x)=0 (mod 2)}

Sp(e, L) = {x €L

We also define

and

SQ(*, L) =L — SQ(O, L)
Let B = {x1, 29,23} be a (ordered) basis of a ternary Z-lattice L and p
be a prime. We define a natural projection map

65 : L —pL — (L/pL)" — P,

where P? is the 2-dimensional projective space over the finite field F,. The
set ¢n(S,(€, L) —pL) is denoted by sf(e, L) for any € € {0,1, —1} if p is odd
and € € {0, x} otherwise. If the basis B is obvious, we will omit it. For each
element s € P2, we define a Z-sublattice Ls := ¢g' (s) U pL of L, and

Qp(e, L) ={Ls | s € sy(e,L)}.
Note that if T : B — € is the transition matrix between ordered bases, then

one may easily show that T'(s?(e, L)) = s5(e, L). Hence the set Qp(e, L) is
independent of choices of the basis for L.
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Lemma 3.2.2. Assume that a ternary Z-lattice L and a prime p satisfies
the condition (2.2). If 4 -dL, € Z), then

—dL
p(r= ()
550, D) =p+ 1, Isy(1, L) = —— and sy(x,T) =4
and
_ _ _plp—1) _
|sp(0, L) =2p+1, |[sp(1,L)| =]s,(—1,L)| = e and  so(*, L) = 2,

otherwise.

Proof. Since everything is trivial for p = 2, we assume that p is odd. For
the unimodular case, see Theorem 1.3.2 of [15]. Assume that L, is not
unimodular. Fix an ordered basis B = {x, z9, 23} of L such that

(B(x;,x;)) = diag(1, —1, porde(dl) §) (mod pordl’(dm“)7

for some 6 € Z — pZ. Note that such a basis always exists by Weak Approx-
imation Theorem for Rotations. Assume = = a2y + asxs + azxrs € S,(0, L).
Then a? = a2 (mod p). Therefore

sp(0,L) ={(0,0,1),(1,+1,d)},  whered € F,,.

The lemma follows from this. The case when € = £1 can be done in a similar
manner. O

Lemma 3.2.3. Under the same assumptions given above, assume that p is
an odd prime. If € #0 or e =0 and L, is unimodular, then every Z-lattice
M € Q,(e, L) is contained in one genus. Furthermore for the former case,

5. —p28. —p2dL if g =
Mq:{hp,p ) ifg=np,

L, otherwise,
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where § € Z; such that (%) =€ and,

q

—p. —p2dL g =
Vo~ Sl ifg=p,
L, otherwise,

for the latter case. If L, is not unimodular and € = 0 then every Z-lattice
M € Q,(0,L) is exactly contained in two genera. More precisely

otherwise.

A 4 WPt —dL) or (p,—p,—p*dL) ifq=p,

q Lq

Proof. Let L = Zxy + Zxy + Zxs and M € Q,(€, L). Since pL C M, we may
assume without loss of generality that

M = Z(x1 + baxa + b3xs) + Z(px2) + Z(pxs).

First assume that € # 0. We may further assume that <w> = €.
Since Q(ZEl + by + bg[Eg) S Z;,

Mp ~ <Q(I1 + le’Q + b3l’3)> 1 mp

for some binary sublattice m, of M, whose scale is p?Z,. The assertion
follows from this. Assume that € = 0 and L, is unimodular. In this case we
may assume that Q(x1 + boxg + bsxs) € pZ,. Then B(xy + boxg + bsxs, x3) or
B(zy + baxa + bsxs, x3) is a unit in Z,, for L, is unimodular. The assertion
follows from this.

Finally assume that L, is not unimodular and ¢ = 0. In this case we
may assume that the ordered basis B = {1, xa, x3} satisfies every condition
in Lemma 3.2.2. Then by a direct computation we know Lo 1) € §2,(0, L)
satisfies the first local property and the others satisfy the second local prop-
erty. O

Lemma 3.2.4. Under the same assumptions given above, assume thatp = 2.
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Let M be a Z-lattice in Qq(e, L). If =4 -dLy =6 € Z5, then

0 1 L
(1 O)J_(45) if e =0,

0 2
(1,—1,46) or (2 O>J_<5> otherwise,

MQZ

and M, ~ L, for any prime q # 2. If =4 -dLy = 0 € 2Z,, then

0 1 0 2 L
M, = (1 O>J_<45> or (2 O)J_<(5> if e =0,

(1,—1,40) otherwise,

and M, ~ L, for any prime q # 2.
Proof. The proof is quite similar to the above. O]

Lemma 3.2.5. Assume that a ternary Z-lattice L and a prime p satisfies

the condition (2.2). For any positive integer n such that <%> =e,
r(n, L)y =Y r(nM) = (Is)(e,L)| = Dr(n.pL).
MeQ,(e,L)

This equality also holds for p = 2 if either ¢ = 0 and n is even or € = x and

n 1s odd.

Proof. The lemma follows from the facts that
{reSy(e,L)=pL | Qx) =n, ¢(x)=s}={re L|Qx)=n}—R(n,pL),

and
L;NL;=pL if and only if s #t,

for any s,t € P2 O

Under the same assumptions given above, one may easily show that
dM = p*dL for any M € Q,(¢, L). Furthermore L/M ~ Z/pZ & Z/pZ.
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Remark 3.2.6. If a %Zp—modular component of L, is zero or anisotropic,
the above lemma implies the equation (3.2.1). So we may consider the above
lemma as a natural generalization of Watson’s transformation.

Let L and ¢ be ternary Z-lattices such that d¢ = p*dL. We define
R(U,L)y={oc:0—=L|Ljo(t)~7Z/pZ®Z/pZ} and #({,L)=|R((,L)|.

One may easily show that [{M € Q,(e, L) | M ~ {}| = 7(¢, L)/o({) for any
e €{0,%+1} or e € {0, *}.

Lemma 3.2.7. For any ternary Z-lattices { and L such that dl = p*dL, we
have

7(¢, L) = r(pt*, L*) = r(pL,{).

Proof. Assume that T' € R(¢, L). Then T*M;T = M, and pT~" is an integral
matrix. Since

(pT_l)Mgl(pT_l)t — pQMg_l,
(pT~Y)t € R(pt#, L#). Conversely if StM;'S = p?M, ", then d(S) = +p.
Hence pS~! is an integral matrix and (pS—!)* € R(¢, L). This completes the
proof. n

Assume that a ternary Z-lattice L and a prime p satisfies the condition
(3.2.2). In the remaining of this section, we further assume ord,(4 - dL) > 2.
Let K = A\,(L) and let

gen (L) = {L' € gen(L) : \,(L') ~ K}.

For any integer n, we also define

r(n, L'

rngenf (D) = Y 0l
[L']egen(L)

Ap(L))~K

In fact, every Z-lattice in genff (L) is isometric to one of Z-lattices in

IE(A(L)) ={M C K | M € gen(L)}.
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Furthermore, the isometry group O(K) acts on I'/(A,(L)). Each orbit under
this action consists of all isometric lattices in FIE (Ap(L)), and hence there are

(;(([L{)) lattices that are isometric to L in FZE(AP(L)). There are exactly

p? + p + 1 sublattices of K with index p. They are, in fact,

exactly

Ko = Z(px1)+Zas+Zas, Ky, = Z(x1+uzs)+Z(pre)+Zas (0 <u<p-—1)
and
Ks o p =Z(x1 + axy) + Z(x2 + Br3) + Z(pzs) (0<a,f <p—1).

Among these sublattices of K, there are exactly @ lattices (p? lattices)
that are contained in the genus of L if ord,(4 - dL) = 2 (ord,(4 - dL) > 3,
respectively) (for details, see [5]).

Proposition 3.2.8. Assume that Z-lattices L and K and a prime p satisfies
the above condition. Then for any integer n not divisible by p, we have

( _ (=ndi
: <2 : ) T(OT(l}(K) if p# 2 and ordy(4 - dL) = 2,
r(n, genff (L)) = § (. ) 0(7}57)1’/\18}()) if p=2 and ordy(4 - dL) = 2,
\pr<oT(L’KI)() if ord,(4-dL) > 3,

where Ay (K) ={z € K : B(x,K) C Z} is a sublattice of K.

Proof. Since proofs are quite similar to each other, we only provide the proof
of the first case. Assume that Q(z1) = n for some z; € K. We will count
the number of lattices containing the vector ; in T (A,(L)). Note that for
any vector y € K and any integer d not divisible by p, dy € M if and only if
y € M for any M € I'l(A,(L)). Hence we may assume that z; is a primitive
vector in K. Then there is a basis {1, x2, 23} of K such that for some integer
t not divisible by p,

(B(x;, x;)) = diag(n,n,t) (mod p).
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Among all sublattices of K with index p that are contained in the genus of L,

fnzfn/ﬂdK) -1

those Z-lattices containing ; are K 3, for any [ satisfying ( ;

and K only when (#) = 1. Therefore one may easily show that the

_( =nmdK
total number of such lattices is %

. The proposition follows from

—ndK
o(K) p= (T)
Z r(n, M) = Z O(M)r(n,M):#T(n,K).
MeTE(Ap(L)) [M]egenf (L)
This completes the proof. O

Proposition 3.2.9. Under the same assumption given above, if n is divisible
by p, then we have

r(n, K) p(p—l)T<z%’K>
o(K) 2 o(K)
oK) LT 2 ) 0, A (K))
o(K) o(K)

if ord,(4 - dL) = 2,
r(n, gen, (L)) =

otherwise.

Proof. First we define
R*(n,K) ={x € K | Q(z) =n, x is primitive as a vector in K},

r*(n,K) = |R*(n,K)|, and r°(n,K) = r(n,K) — r*(n,K). Let z; € K
be a vector such that Q(x;) = n. We will compute the number of lattices
containing x1 in '} (A,(L)). By the similar reasoning to the above, we may
assume that there is a primitive vector z; € K and a nonnegative integer
k such that z; = pFz;. If £ > 0, then z; is contained in all lattices in
TE(A(L)).

Assume that £ = 0. If ord,(4 - dL) = 2, then there is a basis {z1, z2, 23}

of K such that
0

b 0
(B(zi,z;))=|b 0 0 (mod p),
0 0 e

where 2b and e are integers not divisible by p. Among all sublattices of K
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with index p that are contained in the genus of L, those Z-lattices containing
xy are Ky 3 for any . Therefore if ord,(4 - dL) = 2, we have

Z O(K)r(n,M) :p~7“*(n,K)+p(p;— 1)r°(n,K)

=p~r(n,K)+p(p_1)r(]%,K>.

2

Suppose that ord,(4 - dL) > 3. If there is a vector y € K such that
2B(x1,y) # 0 (mod p), then there are exactly p lattices in T'}(A,(L)) con-
taining z;. However if 2B(x1, K) C pZ, then there does not exist a lattice
in I'(A,(L)) that contains x;. Note that

{z € R*(n,K) | 2B(z, K) C pZ}| = r(n, A,(K)) — r°(n, K).

Therefore we have

[M]€egenff (L)

This completes the proof. O
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Chapter 4

Finite (multi-) graphs of
ternary quadratic forms

In this chapter, we introduce a graph & ,(m) which is first defined in [13].
For most results in Section 4.1 and 4.2, one may also see [13].

4.1 Definition of the graph & ,(m)

Let V be a (positive definite) ternary quadratic space and let L be a (non-
classic) ternary Z-lattice on V. Let p be a prime such that

Lp:(

where € € Z. For any nonnegative integer m, let Gy ,(m) be a genus on W
such that each Z-lattice T' € Gy, ,(m) satisfies

%) 1 {e), (4.1.1)

= O

o

1
T, ~ <l 8) 1 {ep™) and T, =~ (L"), for any q # p.
2

Here W =V if m is even, W = VP otherwise.

Lemma 4.1.1. Let T € G ,(m) and S € G, ,(m + 1) be ternary Z-lattices.
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Then we have

5 #(N?,T) {p—l—l if m =0,

[N]€GL ,(m+1) o(N) 2p otherwise
and
> rMn5)
olM) 7
[M]€GL,p(m)
Proof. Note that Z[N]egL,p(mH) % is the number of sublattices X of T

such that
T/X ~7Z/pZ & Z/pZ and X» € Gp,(m+1).

Hence the first equality is a direct consequence of Lemmas 3.2.2, 3.2.3 and
3.2.4.

To prove the second equality, it suffices to show that there are exactly two
sublattices of S with index p whose norm is pZ. By Weak Approximation
Theorem for Rotations, there exists a basis {1, x9, z3} for S such that

) L (™15) (mod p™)

O o=

(Bl = (

= O

where 0 is an integer not divisible by p. Then for the following two sublattices

defined by
Fp,l(S) = Zpl’l + ZfL‘Q + Zfbg, prg(S) = ZZL‘l + ZpIQ + ZZL‘g,

one may easily show that FN(S)% € Grp(m) for any i = 1,2. Furthermore,
norms of all the other sublattices of S with index p are not contained in pZ.
This completes the proof. O

Note that I',;(S) for ¢ = 1,2 depends on the choices of basis for S.
However, the set {I',1(5),T',2(S)} of sublattices of S is independent of the
choices of basis for S. In fact, they are unique sublattices of S with index
p whose norm is pZ. We say that a Z-lattice T" is a I',-descendant of S if
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1
T =T, ,(S) for some i = 1,2.

Lemma 4.1.2. Let p,q be distinct primes and let S € G, ,(m + 1) for some
nonnegative integer m.

(a) If T is a I'p-descendant of S, then A\y(T') is a I',-descendant of A\,(S).

(b) Assume that S € G 4(m' + 1) for some nonnegative integer m’. Then
any I'g-descendant of a I'p)-descendant of S is a I',-descendant of some
I';-descendant of S.

Proof. If p,q are distinct primes, then (I',;(5)), = S, and (A,(5)), = 5,
The lemma follows directly from this. ]

Now we define a multi-graph &, ,(m) as follows: the set of vertices in
&1 ,(m) is the set of equivalence classes in Gy, ,(m), say,

{[Tl]v [T2]7 BRI [Th]}
The set of edges is exactly the set of equivalence classes in Gy, ,(m + 1), say,
{[S1]7 [82]7 SRR [Sk]}

For each equivalence class [S,,] € G ,(m + 1), two vertices contained in the
edge named by [S,,] are defined by

=

J

where the lattice vai(Sw)% that is defined in Lemma 4.1.1 is contained in
Grp(m). Note that the graph & ,(m) is, in general, a multi-graph that
might have a loop. We define an h x k integer matrix My, ,(m) = (m;;) as

T)1(S,)7] and [Tps(S,)

follows:

2 if [S}] is a loop of the vertex [T}],
mi; =9 1 if [S;] is not a loop of the vertex [T;], though it contains [T;],

0 otherwise.
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Therefore My, ,(m) is the incidence matrix of &y, ,(m) if the graph &, ,(m)
is simple.

4.2 Connected components

Let p be a prime and L be a non-classic ternary Z-lattice on V' satisfying the
equation (4.1.1).
For any Z-lattice T' € G ,(m), we define

Q,(T)={S€Grp(m+1): Fp,i(S)% =T for some i = 1,2}
and
U,(T)={M € Grp(m+2): \(M) =T}

Then Lemma 4.1.1 implies that |®,(T)| = p+1ift m =0, |®,(T)| = 2p
otherwise.

Lemma 4.2.1. Let T € G, ,(0) and S, 5" € ©,(T) (S # S') be ternary Z-

lattices on V' and VP, respectively. Then there is a unique Z-lattice M in
1 1

U, (T) such that {I'p1(M)»,I',o(M)?} ={S,5"}.

Proof. For any S,S" € ®,(T"), we have pS C S’. Furthermore since S # 5’
and ord,(4 - dS) = 1, S'/pS ~ Z/pZ & 7/p*Z. Therefore, there is a basis
X1, Ta, x3 for S’ such that

S' = Zay + Zay + Zas, pS = Zay + Lpxs + Zp*zs

and
p’a pb d
(B(zi,x;)) = | pb pc e,
d e f

where a,c, f € Z, b,d, e € %Z and p 1 2d. Define a Z-lattice

p
M = (Z (ﬂ) + Ty + ng) €Gr,(2).

p
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Then one may easily show that A\,(M) =T and

(T, (M), Tpa(M)r} = {S,S'}.

As pointed out earlier, the number of ternary Z-lattices M' € Gy, ,(2) such
that A\,(M') = T for any T' € G ,(0) is @. Furthermore for any such a

Z-lattice M’ we have Fm(M’)% € ¢,(T) for any i = 1,2 and |®,(T)| = p+1.

Now the uniqueness of M follows from this observation.

The above lemma says that if 7" € Gy, ,(0), then there is always an edge
containing [S] and [9’] for any S,S” € ®,(T). However this is not true in

general if T' € Gy, ,(m) for a positive integer m.

Lemma 4.2.2. For a positive integer m, let T' € Gy, ,(m) and S, 5" € ©,(T)

be ternary Z-lattices on V' and VP, respectively. If

B =

M(S) =Tpu(T)7 and A(S") = T,a(T)7,

then there is a unique Z-lattice M € U, (T') such that

1

(D1 (M), Tpa(M)r} = {S, 5.

Proof. By Weak Approximation Theorem for Rotations, there is a basis

T1, To, x3 for T such that

Bl = (] ) L6ma) (mod ),

1
2

where ¢ is an integer not divisible by p. We may assume that

1 1 1 1
Fp,l (T)p = (Zpl’l + ZHZ’Q + Z.I'g)p, Fp72(T>p = <Z$1 + Zpl'g + Zl’g)p.

One may easily check that

®,(T) = {M. 3 = (Zpzxy + Z(x2 + Prs) + meg)% 0<p<p-—1}

1

U{M,. = (Z(x1 + axs) + Zpxy + Zpxs)r : 0 < a < p—1}
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and
U,(T) = {M,p = Z(x1 + axs) + Z(xa + Bas) + Zprs : 0 < a, f < p— 1}.

Since A\,(M, p) = FN(T)% and A\, (M,.) = FM(T)% forany 0 < o, 8 < p—1,
there are 7,7 such that S = M, ; and S’ = M, ..

§
RN
S =M., A S =My,
\ /
N\
Lpa ET)% Fp,ng)%

3.1 )\ -transformation and connectivity(different vertices)

Now, one may easily check that M, , is the unique lattice in ¥, (7") satisfying

1 1
{Fp,l(Mn,T)pvFp,2(Mn,T)p} = {M*m Mn,*}-

This completes the proof. n

Lemma 4.2.3. For an integer m > 2, let My, My € Gy, ,(m) be distinct Z-
lattices such that N\y(My) = A\,(Mz) = T. Then there is a path from [M;] to
[Ms] of length 4.

PTOOf. Note that if {Fp71(M1),Fp72<M1)} = {Fp71(M2>,Fp72(M2)}, then we

know that M; = M,. Hence, without loss of generality, we may assume that
1

S1 =11 (My)? is different from Sy = Fp72(M2)%. If m > 3, then

}

1

(ot (M)7), Ap(Tpa(Mi)#)} = {Tp(T)7, Tpo(T)

3=

38



CHAPTER 4. FINITE (MULTI-) GRAPHS OF TERNARY FORMS

for any ¢ = 1,2. Hence we further assume that \,(S1) # A,(S2). Then
by Lemmas 4.2.1 and 4.2.2, there is a Z-lattice M € G ,(m) such that
Ap(M) =T and {Fpﬁl(M)%,FpQ(M)%} = {51, 52}. We define Z-lattices T}
and Ty satisfying

{FpJ(Sl)%, Fp72(5’1)%} = {T, Tl} and {Fp,1<52)%, Fp72(82)%} = {T, TQ}

Let M! € G ,(m) be a Z-lattice in ®,(S;) such that A\,(M]) = T; for any
i =1,2. Then by Lemma 4.2.2, there are Z-lattices N1, No, Nj, N} such that
two vertices [M;] and [M]] are connected by the edge [V;], and two vertices
[M] and [M/] are connected by the edge [N]] for i = 1,2. Therefore two
vertices [M;] and [Ms] are connected by a path of length 4 (see Figure 3.2).

3.2 \,-transformation and connectivity(same vertex)

The Lemma follows from this. O

Lemma 4.2.4. For an integer m > 2, let [M], [M’] be vertices of the graph
&1 ,(m). Then there is a path from [M] to [M'] of length e([M], [M’]) in
&1 ,(m) if and only if there is a path from [A,(M)] to [A\,(M')] of length
e([Ap(M)], [A\p(M")]) in & p(m —2). Furthermore, in both cases, there is a
path satisfying

e([M], [M']) = e((Ap(M)], [Ap(M")])  (mod 2).

Proof. Note that “only if” part is trivial. Assume that [A,(M)] and [A,(M")]
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are connected by a path with edges [S1], [S2], ..., [Sk] as in Figure 3.3, where

1

(0,157, Tpa(Si)7} = {Ti-1, T}

forany 1 =2,3,...,k— 1.

M M, M, . M4 M, M’
WA )\\ ) /)\ . -
)\p ‘\\ ’,/ )\7 ' \ 3 p/ \ 3 p/ g )\p \\\ l, )\p
Ap(M) T : Ty Ap(M)

3.3 )\,-transformation and connectivity(general case)

Then for any ¢ =0, 1,...,k, there are ternary Z-lattices M; such that

My € Uy(Ap(M)) N @,(S1), My € Uy(A(M')) N @,(Sk),

and
Mj S \IIP(TJ') N q)p(sj) N q)p(Sj—&-l)

forany j =1,2,...,k—1. Now by Lemma 4.2.2, there are Z-lattices N; such
that

(T (N7, Tpa(N)7} = {Miy, M} and A, (N,) = S

for any i = 1,2,..., k. Since both [M], [My] and [My], [M'] are connected by
a path of length 4 by Lemma 4.2.3, [M] and [M’] are connected by a path of
length £ + 8. O

We investigate the graph &g ,(0) in more detail. Let T" € G, ,(0) be a
Z-lattice. Note that the graph Z (T, p) constructed in [18] is slightly different
from our graph (see also [1]). In fact, the graph Z(T,p) is a tree having
infinitely many vertices. However our graph is finite and might have a loop.
Two vertices [T;], [1}] € &1,(0) are connected by an edge if and only if there
are Z-lattices T} € [T;] and T} € [T}] such that T} and T} are connected by an
edge in the graph Z(T',p). If two lattices T}, T; € Gy, ,(0) are spinor equiva-
lent, then both [7;] and [T}] are contained in the same connected component.
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Moreover, each connected component of &, ,(0) contains at most two spinor
genera, and it contains only one spinor genus if and only if j(p) € PDJé ,
where D is the set of positive rational numbers and

i(p) = (j,) € Jo such that j, = p and j, = 1 for any prime ¢ # p.

We say that &y, ,(0) is of O-type if each connected component of &, ,(0)
contains only one spinor genus, and it is of E-type otherwise. If & ,(0) is
of E-type, then adjacent classes are contained in different spinor genera (for
details, see [1]), that is, each connect component of the graph &, ,(0) is a
bipartite graph.

Assume that

Grp(0) = {[0], [T2] .. [Th]} and  Grp(1) = {[S], [Sa], -, [Sk]} (42.1)

are ordered sets of equivalence classes in each genus. We define

M = (T(TP—SJ)) € My, x(Z) and M = N, (0) = (T(Tip’ %)

o(T) ) € M)

In fact, M equals to M, ,(0), which is defined earlier. There is a nice relation
between M, N and the Eichler’s Anzahlmatriz m,(T") defined in [8].
Definition 4.2.5. Under the assumptions given above, the matrix

7, (T) = (% - 5¢j) (1<i,j<h)

is called the Eichler’s Anzahlmatrix of T at p.
Note that m,(7") is independent of the choice of the lattice T" € Gy, ,(0).

Lemma 4.2.6. For any Z-lattices T € G ,(0) and S € G (1), we have
r(SP,T)=r(T",5S).

Proof. First we show that R(S?,T) = R(S?,T). Suppose that there is a
o € R(SP,T) such that T'/o(SP) ~ Z/p*Z. Then there is a basis for T such
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that
T =Zx, + Zao + Zawz and  o(SP) = Zay + Zag + Z(p*xs3).
Since n(o(S?)) C pZ, we have
Q(z1) = Q(x2) = 2B(21,22) =0 (mod p).

This is a contradiction to the fact that 4 - dT is not divisible by p. Therefore
the lemma follows from Lemma 3.2.7. [

For Z-lattices X, X, Y] and Y3, we write (X, X3) ~ (Y1, Ys) if X3 ~ Y
and Xo ~ Y5, or X; ~ Y5 and Xy ~ Y.

Proposition 4.2.7. Under the notations and assumptions given above, we
have

m(T) + (p+ 1)1 = M- N
Proof. Let 4;; be the set of sublattices X of T} such that
X ~pl;, and T;/X #Z/pZ S Z/pZ & L/pZL,
and let 2U;; be the set of sublattices Y of T} such that

Vi eG,1) and (T,u(V3),Tpa(Y?)) = (T7,17),

where FW’(Y%) is a sublattice of Y7 with index p defined in Lemma 4.1.1.
Note that m,(T);; = |;;|. Now we define a map ® : il;; — U,; as follows.
Assume that X € $1;;. Then one may easily show that T/ X ~ Z/pZ&Z/p*Z.
Hence there is a basis x1, x9, 3 for T such that

T; = Zay + Zag + Zay and X = Zxy + Z(pxs) + Z(p*x3).
Since the integer 4 - d(T}) is not divisible by p and Q(z1) = 0 (mod p?),

2B(x1,22) =0 (mod p), neither Q(z3) nor 2B(xy, z3) is divisible by p. De-
fine ®(X) :=Y = Zzy + Z(px2) + Z(pxs). Clearly, Y = A, (T; N %X). Hence
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it is independent of the choice of basis for 7;. Furthermore one may eas-
ily check that ®(X) =Y € 9,;. Conversely, there are exactly two sublat-
tices of Y'# with index p whose norm is contained in pZ, and one of them is
equal to T7. If we define the other one, as a sublattice of Y, by ¥(Y’), then
GRCRVAES \Il o ® = Id. Therefore m,(T");; = |U;;|. Now from the definition,

k
T(‘SiuT)
’mw‘ :Z O(S )J T,

w=1

where
1 if (val(Sw%Fp,?(Sw)) (T]p71—;p)7
N = .
0 otherwise.

Since (17, S,) = r(S, T;) by Lemma 4.2.6, each [Uj;| equals to

i r(S5,T) (r(T;’ Su) _ s ) e M () if i # ,
] - k + e
>t M (Mg — (p+ 1) if i = 5,

by Lemma 4.1.1. The proposition follows from this. n

The following theorem states that the rank of M, ,(0) = 9 is related
with some properties of the graph &, ,(0).

Theorem 4.2.8. The followings are all equivalent:
1) &1,(0) is of O-type;
3) m,(T) does not have an eigenvalue —(p + 1);

(1)
(2) rank(9M) = h;
(3)
(4) g

(GrLp(0)) = g7 (GLp(1)).

Furthermore, if &1,(0) is of E-type, then g™ (G ,(0)) = 297 (G (1)), where
g7(GL(0)) is the number of spinor genera in Gy, ,(0).

Proof. (1) < (2):  Assume that & ,(0) is of O-type. Without loss of
generality, we may assume that &, ,(0) is connected, that is, every Z-lattice
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in &,,(0) is spinor equivalent. It is well known that the rank of an incidence
matrix of a connected graph G(V, E) over Fy is |V| — 1. Furthermore if the
graph G contains an odd cycle, then the rank of the incidence matrix of G over
Q is equal to the number of vertices. Hence it suffices to show that the graph
&1 ,(0) contains an odd cycle, even though it might contains a loop. Assume
that [T7] and [T3] be adjacent vertices in &y, ,(0). Since they are spinor
equivalent, there is an isometry o € O(V) and ¥ = (3,) € J{, such that
Ty = 0X(Ty), where V = Q®T;. Let ® = {g € P—{p} | (c 1 (Th)), = (T2),}
and ¥ = P — (® U {p}), where P is the set of all primes. Now by Strong
Approximation Theorem for Rotations, for any € > 0, there is a rotation
7 € O'(V) such that

|7 —34|l;, <€ forany g€ ¥ and |7|,=1 for any ¢ € .
Therefore we have
0'_1(T1>q =71(T3), forany ¢#p and 3,0 T_1<T(T2)p) = 0'_1<T1)p,

where X,077! € O'(V},). Consequently, there is an even integer n and a basis
{21, 29,23} for 7(T3) such that

7(Ty) = Zxy + Zxy + Zxs and o (1)) = Z(p"x1) + Z(p "x2) + Zas,

by Lemma 4.2 of [1]. This implies that there is a path from [T}] to [T5] with
even edges, and hence the graph &, ,(0) contains an odd cycle.

Assume that &y, ,(0) is of E-type. Since any two adjacent vertices are
contained in different spinor genera in this case, it is a bipartite (multi-)
graph. Therefore the rank of the matrix 9, ,(0) is h — 1.

(2) & (3) : Note that rank(97) = rank(9N"). Hence the assertion follows
directly from Proposition 4.2.7.

(1) & (4) : Note that g*(£) = [Jg : PpJ§] for any genus £ with rank
greater than 2. Since

PDJgL,p(l) — PDJ(gL,p(O) Uj(p) . PDJ(gLYp(O)J

44



CHAPTER 4. FINITE (MULTI-) GRAPHS OF TERNARY FORMS

g (Grp(1)) = g7(G1,(0)) if and only if j(p) € PpJg-”, that is, &,,(0) is of
O-type. Furthermore if &, ,(0) is of E-type, then g™ (G ,(0)) = 297 (G »(1)).
[l

Now, we consider the general case. For any positive integer m, we say
that a graph & ,(m) is of E-type if m is even and &, ,(0) is of E-type, and
O-type otherwise.

Assume that &, ,(m) is of E-type and M € G, ,(m). Since the map

m m

Ap o spn(K) — spn(Ay (K))

is surjective for any K € Gp ,(m), there is a Z-lattice M’ € Gy, ,(m) such
that M’ & spn(M) and [M’] is connected to [M] by a path by Lemma 4.2.4.
Furthermore, since g™ (G, ,(m)) = g+ (G ,(0)) for any even m, every Z-lattice
M’ satisfying the above condition forms a single spinor genus. From the
existence of such a Z-lattice [M’], we may define

spn(M) if &1,,(m) is of O-type,
spn(M) U spn(M') otherwise,

Cspn(M) = {
Lemma 4.2.9. For a Z-lattice M € G ,(m), the set of all vertices in the
connected component of & ,(m) containing [M] is the set of equivalence
classes in Cspn(M).

Proof. First, we prove the case when m = 1. Assume that M’ € spn(M).
Then there are 0 € Py and ¥ € J{, such that M’ = ¢XM (see [17]). Since
[',i(M)’s are the only sublattices of M with index p whose norm is pZ, we
have

{08 (Tp1 (M)?),05(Tpa(M)7)} = {1 (M')7, Tpa(M')7 ).

Hence ]-_‘p,l(M>% € spn(prl(M’)%) U spn(Fp72(M’)%). Therefore by Lemma
4.2.1, [M'] and [M] are connected by a path in & ,(1). Furthermore, as
edges of the graph &, ,(0), [M] and [M’] are contained in the same connected
component. Since the number of connected components in &, ,(0) equals to
g7 (G (1)) by Theorem 4.2.8, each spinor genus in Gy, ,(1) forms a connected
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component in &y, ,(1). Furthermore, since g7 (G ,(2m + 1)) = g7 (G (1)),
spn()\p%(M)) = spn()\p%(M’)) if and only if spn(M) = spn(M’) for any
M, M € Gr,(2m + 1). Therefore by Lemma 4.2.4, the set of all vertices
in the connected component of &, ,(m) containing [M] is the set of equiv-
alence classes in Cspn(M) for any odd m. The proof of even case is quite
similar to this. O

Lemma 4.2.10. Let [N] € G ,(m + 1) be an edge of the graph &, ,(m).
Then the set of all edges in the connected component of &, ,(m) containing
[N] is the set of all classes in Cspn(N).

Proof. 1t suffices to show that the set of edges in the connected component
of & ,(m) containing [N] is exactly the set of vertices in the connected
component of &, ,(m + 1) containing the vertex [N] by Lemma 4.2.9. Note
that if N; and N, are different I'j-descendant of K for some K € Gy, ,(m+2),
then \,(K) is a I',-descendant of both Ny and N,. This implies that every
class in Cspn (V) is contained in the set of edges in the connected component
of & ,(m) containing [N]. Conversely, assume that [N'] is contained in the
set of edges in the connected component of &, ,(m) containing [N]. Without
loss of generality, we may assume that there is a ternary Z-lattice M that is
a I')-descendant of both NV and N’. If m =0 or m > 1 and \,(N) # A\, (N'),
then there is a Z-lattice K whose I',-descendants are both N and N’ by
Lemmas 4.2.1 and 4.2.2, that is, as vertices, [N] and [N'] are contained in
the edge [K]. Now suppose that A,(N) = A\, (N’). Then in this case, there
exists a ternary Z-lattice S € G ,(m + 1) such that A\,(N) # A, (S) and
M is a I')-descendant of S. Hence there are edges containing {[N], [S]} and
{[S],[N']}. This completes the proof. O

Theorem 4.2.11. For any non-negative integer m, the graph &r, ,(m) has
an odd cycle (including a loop) if and only if &, ,(m) is of O-type.

Proof. We already proved the case when m = 0 in Theorem 4.2.8. Assume
that m = 1. Let T' € G, ,(0) be any Z-lattice. Then there are at least three
Z-lattices, say Sy, 52,53, in ©,(7) N Gr,(1). Now by Lemma 4.2.1, [S;] and
[S;] are connected by an edge for any 1 < i # j < 3. Hence the graph &, ,(1)
contains a cycle of length 3 or a loop. For the general case, we may apply
Lemma 4.2.4 to prove the theorem. O
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4.3 Simplicity and Regularity

In this section, we assume that p is a prime and L is a positive definite non-
classic ternary Z-lattice on V' satisfying the equation (4.1.1). We investigate
some properties of the graph & ,(0). As noted earlier, the graph &y, ,(0)
might contain a loop. Let T be a Z-lattice in € G ,(0). One may easily
verify that it has a loop if and only the trace of the Anzahlmatix m,(7T") is
not zero. Note that m,(T) is independent of choices of the lattice T' € Gy, ,(0).
If the graph &, ,(0) is of E-type, then it does not have any loop.

Proposition 4.3.1. Letaw =1 (1 or 2) if p = 2 (p > 2, respectively). Assume
T € G1,(0). There is a lattice T' € G, ,(0) such that o(T) < r(pT,T) if the
following conditions hold:

(a) anp is represented by G, ,(0),
(b) (anp) splits T, for any prime q dividing n,

where n s an integer not divisible by p. In particular, if dT" or 4 - dT is
squarefree, then then &, ,(0) has a loop.

Proof. By the first condition, there is a vector x € V' such that Q(x) = anp.
Note that there is an isometry ¢, € O(v,) such that Z,¢,(z) splits T for
any prime ¢ dividing n. If we define U = {q | Z,x C T}, ¢ 1 n}, then almost
all primes are contained in U. For each prime ¢ ¢ U not dividing n, we
fix an isometry ¢, € O(V,) such that ¢,(x) € T,. Now define a Z-lattice
T € Gr,,(0) such that

- T, ifge U,

T, =
¢, (T,) otherwise.

Then the vector © € T satisfies B(z,T) = 0 (mod n). For any z € T,

23(1}71)2) T
- &

T.(pz) = pz — cT.

anp

Therefore 7,(pT") € T. Since 2B(z,T) € pZ, we have 7, ¢ O(T). Note that
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if dT or 4 - dT is squarefree, then p or 2p is represented by the genus of T
Therefore one may easily show that there is a loop in & ,(0) . O

Recall that a graph is called simple if it has neither loops nor multiple
edges between two vertices. A simple graph is called k-regular if every vertex
has exactly k adjacent vertices. In the remaining of this section, we find an
equivalent condition for &, ,(0) to be a (p + 1)-regular simple graph, when
p is an odd prime. From now on we assume that p is an odd prime. Recall
that the ordered set of all equivalence classes of G, ,(0) is

{[N], 7] (1]}

and the ordered set of all equivalence classes of Gy, ,(1) is
{[5],[52], -+ [S]}-

Note that the graph & ,(0) does not have a loop if and only if
R(pTi, To) = O(T;)

for any T; € G, ,(0).
Let U be a Z-lattice such that

U, >~ (2
2

Then one may easily show that the A,-transformation induces a bijection

)

(@R Y]

) L{e), Uy=Ly (p#q).

from the set of all equivalence classes of Gy, ,(1) to the set of all equivalence
classes of gen(U). We assume that the ordered set of equivalence classes of
gen(U) is

{[Ul]a [Uﬂ T [Uk]}a
where U; = A\, (5;) for i =1,2,... k. If a vertex [T;] is adjacent to a vertex

[T;] by the edge [S;], then there are isometries 0,7 € O(V) such that SP =
Zxy + Zp~tay + Zxs and

o(T;) = Zay + Lo + Zas, 7(Ty) = Zpxy + Zp~ 'x9 + Zas.
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Then o(T;) N 7(1;) = Zpzy + Ly + Zaxz = A\y(S) € gen(U). Conversely, if

U’ € gen(U) is contained in o(7;) and 7(7}), then o(T;) N 7(T;) = U’, for
[0(T) : o(T3) N7 (T5)] = [o(T) : U'] = p.

Lemma 4.3.2. Suppose that p is an odd prime and R(pT;,T;) = O(T;) for
any 1 <i < h. Then the graph &, ,(0) is simple if and only if
r(pTi, T;) o(T})

oTy)  oo(T)NT)) (4.3.1)

for any 1 < 4,5 < h with r(pT;,T;) # 0, where the isometry o € O(V)
satisfies o(pT;) C Tj.

Proof. We define a set
Ap(Ty) ={T" € Grp(0) = {T}} | pT" C T3}

Note that this set may contain a lattice that is isometric to 7. We know
that there are p + 1 lattices in A,(7}). Let 7" € A,(T;). Without loss of
generality, we may assume that 77 = T; for some i = 1,2, ..., h. Furthermore
since the equality holds for i = j, we may assume that ¢ # j. Note that the
number of lattices in A,(7}) isometric to 7 is

_ r(pT, Ty)

m(T)ij = TTi) (say 1).

In fact, for the group action ® : R(pT;,T;) x O(T;) — R(pT;,T;) defined by

®(0,n) = oon, the number of lattices in A,(7}) isometric to T; equals to the
number of orbits in R(pT;,T;). We assume that

ANT) = {0u(T) | o € RGIT, T5)/O(T), 1 < u <1
Note that for any n € O(7}), since

pn(T;) € n(pTy) € n(T;) =T
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we have n(T;) € A,(T;). For n,n € O(T}), one may easily show that
() =1(T) <= 0 ' e0(T;NT)).

Hence we have

oll;NT;) = oT;)
First, suppose that &, ,(0) is simple. Then there is an 1, € O(V') such
that
0u(Ti N T;) = nu(T3) N (1) = 0u(T3) N T5,

for each 1 < w < [. Therefore we have n,(T;) = 0,(7;) and 7, € O(1}).
Conversely, suppose that the equality (4.3.1) holds. Then we know that
for any o,(7;) € A,(Tj), there is an n € O(Tj) such that n(T;) = o,(T;).
Hence n(17; N 1;) = o0,(1;) N T};, which implies that the number of edges
between [T;] and [1}] is one. O

Lemma 4.3.3. Let p be an odd prime. The graph &, ,(0) is a (p+1)-regular
simple graph if and only if R(p*T;,T;) = O(T;) for any i =1,2,...,h.

Proof. Under the same notations and assumptions given above, if ¢ is an
element of R(pT;,T}), then

o(p°T;) = po(pT;) C pTy C T;.

Hence if R(p*T;,T;) = O(T;) for any @ = 1,2,...,h, then we know that
o € R(p*T;, T;) = O(T;). This implies that any p + 1 lattices in A,(7}) are
non isometric with each other for any 1 < j < h. Therefore, & ,(0) is a
(p + 1)-regular simple graph.

Conversely, suppose that &, ,(0) is (p + 1)-regular and simple. Assume
o € RG’T;, ). Since d(o(p’T})) = pd(Ty) and p14-d(T}), Tj/o(p°T)) has
three possibilities. If Tj/o(p*T}) is isomorphic to

LIPL®L/p*L O L/p°L,
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then clearly o(7};) = T;. If T;/o(p*T}) is isomorphic to
Z)pZ ® 7./]p*7. & 7./ p’Z,
then there is a basis {z,y, z} for T} such that
T;=Zx+Zy+Zz and o(p°T}) = Zpx + Zp*y + Zp*=.

Since there is no loops in &, ,(0), o € O(Ty). Finally, if Tj/c(p*T;) is
isomorphic to
Z/p'Z & L/p'L,

then there is a basis {z,y, z} for T; such that
T, =Zx+Zy+Zz and o(p°Ty) = Za + Zp°y + Zp*z.

If we define T = Zp 'z + Zy + Zpz € gen(T), then Tj,0(T;) € A, (T).
Since every lattice in A,(T") is non-isometric to each other by assumption,
o(T;) = T;. The lemma follows from this. O

Lemma 4.3.4. Let p be an odd prime. Suppose that &, ,(0) is a (p + 1)-
regular simple graph. Then o(T;) = o(S;) = 2, for any 1 < i < h and
1<j<k.

Proof. Assume that two end points of the edge [S)] are [T;] and [T}]. Then,
without loss of generality, we may assume that there is a basis {z,y, 2z} for
T} such that

T, =Zx+Zy+Zz and T;=Zpx+Zp 'y+ Zz.

For any o € O(T;), we know that po(T;) = o(pT;) C o(T})

o(T;) € A,(T}). Since &,(T) is (p + 1)-regular simple, o(T;) =
we have O(T;) = O(1j).

Suppose that O(T};) # 2. Since O(Tj) is generated by symmetries and

—1I (see [5]), there is a symmetry 7,, € O(T}), where z; is a primitive vector

of Tj. Then one may easily show that there is a basis for 7T} such that

= Tj, that is,
T;. Therefore
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T; = Zxy + Zao + Zaxs with

Q(xy) a b
B(xi7$j) = a pQC pd )
b pd e

where a, b, ¢, d and e are contained in %Z. If we define
T = Zpxy + Zp ‘ay + Zas € gen(T),

then T' € A,(T}). By the above observation, we know that 7,, = 7,s, € O(T).
This is a contradiction to the fact that 4-d(7}) is not divisible by p. Therefore
the isometry group of any lattice in the genus of T is trivial. Now by Lemma
4.3.2, O(T; NTy) is also trivial. As mentioned earlier, \,(S;) ~ T; N T;. This
completes the proof. O

Combining all these lemmas, we have the following theorem.

Theorem 4.3.5. Assume that for an odd prime p, a ternary Z-lattice L
satisfies the equation (4.1.1). The graph &1 ,(0) is a (p + 1)-reqular simple
graph if and only if r(p*T;, T;) = o(T;) = 2 for any 1 <i < h.

Remark 4.3.6. Assume that for an odd prime p, a ternary Z-lattice L
satisfies the equation (4.1.1).

(a) If &1,(0) is (p+1)-regular simple, then the Eichler’s Anzahlmatrix m,(7")
is the adjacent matrix of &, ,(0).

(b) If &7,(0) is (p + 1)-regular simple, then for any Z-lattice N such that
A(N) ~ T for a prime g # p, the graph &y ,(0) is also (p + 1)-regular
simple. This follows from the fact that the map

R(p"N,N) = R(p"Ag(N), Ag(N))

is injective (see [5]).
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(c) Let T be a ternary Z-lattice whose matrix presentation is

4 1 1
1 14 3
1 3 383

Then one may easily show that h(T) = 15 and R(3*T",T") = O(T") = 2
for any 7" € gen(7). Hence &73(0) is a regular quartic graph by the
above theorem.
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Chapter 5

Arithmetic relations of the
representations of ternary
quadratic forms

Throughout this chapter, we assume that a ternary Z-lattice L and a prime
p satisfy all conditions given in chapter 4. For a nonnegative integer m, let
T € Gp(m) be a ternary Z-lattice and let S € Gr,(m + 1) be a ternary
Z-lattice such that r(7T?,S) # 0. This implies that [T] is one of vertices
contained in the edge [S] in the graph & ,(m). We assume that

Cspn(T) = {[T1], [T3]. .., [T} and Cspu(S) = {[S1], [Sal, ... [S.]} (5.0.1)

are ordered sets of equivalence classes. The aim of this chapter is to show
that if m < 2, then there are rational numbers a; and b; such that for any
integer n (any integer n divisible by p only when m = 2),

(2

r(n,T) = Z (a;r(pn, S;) + bir(p®n, S;)) + (some extra term).  (5.0.2)

=1

This chapter is a part of [13], we bring it here intactly.
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5.1 The case when m =0

In this section, we prove the equation 5.0.2 in case of m = 0. In some cases,
the extra term in the above equation can be removed. The types of the graph
Gr(0) defined in chapter 4 is used to determine when it happens.

For a while, we assume that m is an arbitrary nonnegative integer. The
following two propositions will be used repeatedly.

Proposition 5.1.1. For any integer n,

u

r(pn.5) _ S r(TES) (L) rlom. A(S)
o(S) o(S) olTy) oS)

=1

Proof. By Weak Approximation Theorem for Rotations, there exists a basis
{1, 29,23} for S such that

0 1

(Blawa) = (1 3) L 6m8) mod ),

1

2

where ¢ is an integer not divisible by p. As in Lemma 4.1.1, let
Fp’1<S) = prl -+ Z.I'Q —+ Zng, Fp72(S> = le + Zpl'g + Zl’g.

Since Q(z) = ajaz (mod p) for any x = a;x1 + aswy + azxz € S, we have
Q(z) =0 (mod p) if and only if a; = 0 (mod p) or az = 0 (mod p). Hence

xz € R(pn,S) ifand only if x € R(pn,[,1(S)) U R(pn,T',2(95))
Furthermore since I', 1 (S) N, 2(S) = Ap(S), we have
r(pn, ) = r(pn, Tpa(S)) +7(pn, Tp2(S)) — r(pn, Ay(S))

for any integer n. Note that I',;1(S) and I',2(S) € gen(7?) are the only
sublattices of S that are contained in gen(7?). Furthermore, since the edge
[S] in &, ,(0) contains the vertex [T] by assumption, we have

T,1(S)7,Tpa(S)r € Cspn(T).
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Now for any Z-lattice T; € Cspn(T'), the number of sublattices in S that are

r(T?,S) Th L. .
o) - e proposition follows from this. O

isometric to T7 is

Proposition 5.1.2. For any integer n,

—~ (S}, T) r(n, S, r(n, TP
3 (n,55) (n,T7)

r(pn,T) |52 o(T) o(S;) P o(T) if m=0,
oT) )< f(S?7T) r(n,S;)  r(pn, A, (T)) . r(n,TP) I
Z o(T) o(S;) o(T) 2p o(T) th ‘

j=1

Proof. 1f we take e =0 and L =T in Lemma 3.2.5, then we have

r(pn,T)= > r(pn, M) — (5,(0,T) — L)r(n, T?).
MeQ,(0,T)

First, assume that m = 0. Let M € Q,(0,T) be a Z-lattice. Then by Lemmas
3.2.3 and 3.2.4,

=
[
N
o
O v

) 1 (—4p*dT) and M, ~T, (q# p).

Hence M € gen(SP). Furthermore, since T(TP,M%) = (M, T) # 0 and
r(T?,S) = 7(SP,T) # 0 by Lemma 3.2.7, My € Cspn(S) by Lemmas 4.2.1
and 4.2.9. Conversely, if M?v € Cspn(S) satisfies 7(M,T) # 0, then M is
isometric to a Z-lattice in §2,(0,7"). Note that the number of lattices in
Q,(0,T) that are isometric to S? is T(f(lzq’)T) and s,(0,7") = p + 1. The proof
of the case when m > 1 is quite similar to this, except that there is a unique
Z-lattice in €,,(0,T’) that is not contained in gen(S?), which is, in fact, A,(7"),
and s,(0,7) = 2p + 1. O

We define

(17, 55) (17, 5;)

M p(m) = (W) € My,(Z) and N, ,(m) = (()(TJ)]) € M,.(Z).

Note that these two matrices depend on the order of each set Cspn(-), and
M, ,(0) is one of block diagonal components of M, ,(0) if we take a suitable
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order in (4.2.1). For any integer n, we define vectors

~ (r(n,T1) r(n,T3) r(n,T,) t
R(n,Cspn(T))—< T o) o) ) ,

Similarly, we define R(n, Cspn(S)) and R*(n, Cspn(A7'(S))). If Cspn(M) is
spn(M), then we use R(n,spn(M)) rather than R(n, Cspn(M)).

Theorem 5.1.3. Let T' and S be ternary Z-lattices satisfying all conditions
given above when m = 0. If the graph &1 ,(0) is of O-type, then we have

pR(n, spn(T7)) = M- R(n, spn(S)) — Z - (R(p"n, spn(S)) + R(n, spn(S))),

where Z = (M - N*")~I M.

Proof. By Lemma 4.2.6 and Propositions 5.1.1, 5.1.2, we have the following
two equalities:

R(pn,spn(S)) = N* - R(n,spn(T)) — R (pn, spn(A,(9))), (5.1.1)
R(pn,spn(T)) = M- R(n,spn(5)) — pR(n,spn(T%)). (5.1.2)
Since A,(A\p(Si)) =~ S; for any S; € spn(S), we have
R*(p*n, spn(A,(S))) = R(n, spu(S)).
Hence
R(p*n,spn(S)) = N* - R(pn, spu(T)) — R(n, spn(S)). (5.1.3)

Note that
O(spn(T)) - N = M - O(spn(5)),

where O(spn(T')) is the u x u diagonal matrix with entries o(T;)~!. Further-
more, since we are assuming that rank(M) = wu, the u X u square matrix
M- N*is invertible. Therefore the equation follows directly from (5.1.2) and
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(5.1.3). 0

Now assume that &y, ,(0) is of E-type, then Cspn(7’) consists of two
spinor genera and each connected component is a bipartite graph. Hence the
rank of the matrix M is u — 1 and M - N'* is no longer invertible. To get a
similar result for an E-type graph, we need to make some adjustments.

Assume that Cspn(7') = spn(7") Uspn(7’) and

spu(T) = {[T5,], .-, (L]}, spn(T) = {[T5,], -, (T3]},

where {i1,49,...,%4,71,---,Jp} = {1,2,...,u}. Note that

wipn(T) = Y g

[K]€spn(T”)

is independent of 7" for any 7" € gen(7T'). Define

QZ{W@mUW* i 1€ {ir,... 10},
—w(spn(T))™"  ifl € {j,..., 5},

and define a u x (v 4 1) matrix N = (n;;) by

T(Tz’pa SJ)

if j <w,

Lemma 5.1.4. The rank of the matriz N defined above is u.

Proof. Let n; be the i-th row vector of the matrix N. Suppose that
a1n1+---—|—aunu:0

for some integers «;, that is,

P Q. P q.
T(T178]> %M:o forany j=1,...,v,
o(S5;)

(6%
' o(S)) (5.1.4)
o€ + -+ aye, = 0.
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For any j such that 1 < j < v, the edge named by [S;] contains two vertices,
one of them, say [T},], is contained in spn(7") and the other, say [T},], is

contained in spn(7"). Hence the first equation in (5.1.4) implies that

", 5, r(T?,S;
7"( le J) +a ( Jf J)

oS T sy

(6%}

Therefore a;, - aj, < 0. Since the subgraph of &, ,(0) consisting of vertices
in Cspn(T') is a connected bipartite graph, each a;, (a;,) is 0, or it has the

same sign to oy, (a;,, respectively). Therefore oy = 0 for any [ = 1,...,u
and rank(N') = u. This completes the proof. O
For a vector v = (vy,...,v,), we define
(Vywr, o ws) = (U1, ey Uy W, e, W)

Note that the equation (5.1.3) implies that

R(p*n, spn(S)) + R(n, spn(S))

R :=N"'-R(pn, Cspn(T)) = , (5.1.5)

r(pn,spn(T')) — r(pn,spn(T))

where
1 Z r(pn, T;)

r(pn,spn(T)) = w(Epn(T)) o(T))

[T;]espn(T)

Theorem 5.1.5. If &, ,(0) is of E-type, then we have

pR(n, Cspn(T?)) = M - R(n, spn(S)) — (N - N)"'N - R.

Proof. From the above lemma, we know that rank(N) = u. The theorem
follows directly from the equations (5.1.2) and (5.1.5). O

Note that r(pn,spn(T)) — r(pn,spn(T)) can easily be computed by the
formula given in [20].
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Example 5.1.6. Let p =11 and L = (1,1,16). Then we know that
0 2 0 -1
0 5 T2 - O 2 },

1 1
6 —1], Sy =
-1 11

S = O

1
gL,p<0) - {Tl - 0
0
3
1
1

W N D

2
Grp(l) = {51 = 6
1

11 8 4
Since rank(M) = 1, the graph &, ,(0) is of E-type by Theorem 4.2.8. Note

11 8 4
up to isometry. One may easily compute that M = ( ) and N = ( )

~ 4 1
that N' = (2 4 166) Therefore, by Theorem 5.1.5, we have
38 2 39 1
1r(n,Ti) = gr(n, S1) — gr(llgn, S1) + Er(n, Sa) — Er(HQn, Ss)
1 1
— | =r(11n,T7) — =r(11n,T3) |,
2 2
38 2 39 1
1r(n,Ty") = gr(n, S1) — 57“(11271, S1) + Er(n, Sy) — ET(H n, Ss)
1 1
+ (ﬁr(lln,TI) - §r(11n,T2))

Note that by Korollar 2 of [20], one may easily check that

0 if n # 11m?2,

r(11n,Ty) — r(11n,Ty) = (#) . (_1)’”7“ . 44m, if n = 11m2.

5.2 The case when m > 1

In this section we prove the equation (5.0.2) in case of m = 1. For the
case when m = 2, we give an example such that the above statement does
not hold, and prove that the above statement still holds for m = 2 if we
additionally assume that n is divisible by p. In the case when m > 3, we
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show that under some restriction, the above statement holds if we replace
r(n,T) by r(p*n, T) —pr(n,T), and for any integer n not divisible by p, both
r(n,T) and r(pn,T) can be written as a linear summation of r(pn, S)’s and
r(n, S)’s, respectively, for S € G ,(m + 1).

Theorem 5.2.1. Let T € G (1) and S € G ,(2) be ternary Z-lattices
satisfying r(T?,S) # 0. Then we have

2 e (W o b
@)= 5 (% rm.5) )

1 r(pn, S) r(p*n, S)
+—— | o(Tpa(T) = +o([pa(T) ) =
p—1 N o(5) . o(S)
[S]€gen(S) . [S]€gen(S) )
Ap(8)~L'p1(T)P Ap(8)=L'p2(T)P

Proof. First, we assume that
O,(N\(9)) ={T="1,T5,...,T)+1}

and
\PP(AP(S)) = {S = Sla SZ7 SR SP(P+1) }

2

Without loss of generality, we may assume that \,(S) = I‘pJ(T)%. Define,
for any integer n,

R(nv (I)p()‘p(s))) = (r(n, Tl)ﬂ T(nv TQ)? ce 7T(n7 Tp+1))t

and

R(n, ¥,(A\,(9))) = (r(n, S1),r(n,Ss),...,r (n, Sp(p;l)))t .

We also define a vector I(n, \,(S)) = r(n, \,(S)) - (1,1,...,1)" of length

p—(p;l). Now by Proposition 5.1.1, we have

R(pn, Uy(A(S))) = U - Rin, &, (Ay(S))) — T (g Ap<s>) |
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where Ut € M (1) x 221 (Z) is the incidence matrix of the complete graph
2
of order p + 1 by Lemma 4.2.1. Therefore U'U = (p — 1) + J and

1
— if r(T7,5;) # 0,
(U'U)'UN; =4 4

p(p—1)

lf T(]jzp, SJ) =0.

Here J is a matrix of ones. Therefore we have

r(n,T) = 1Zr(pn, S) — ! Zr(pn, S) + %r (g, /\p(S)> , (5.2.1)

P4 plp—1) 5

where ), is the summation of all lattices S’ contained in W,(\,(S)) such
that r(17,5") # 0 and ) _, is the summation of all lattices S" in W, (\,(5))
such that r(7%7,5") = 0. We define, for simplicity, U;(pn,S) = >, r(pn,S)
and Us(pn, S) = >, r(pn,S). Now, by Proposition 3.2.9, we have

Q

(A(S))r(pn, geny” ™ (9))

p(p+1)

2 5.2.2

=S (. S) (5:22)
=1

= Ui(pn, S) + Us(pn, S).

pr(pn, Ap(5)) + p(p; b, (g Ap(S)) -

Let S be a Z-lattice such that )\p(g) = FM(T)%. We may similarly
define R(n, ¥,(Ay(5))), Ui(pn,S) and Ux(pn,S). Then, equations (5.2.1)

and (5.2.2) hold even if we replace S by S. Furthermore, by Proposition
5.1.2,

r(p*n,T) + (2p — V)r(n,T) = Z Mr(]m, S’

e 00 . (5.2.3)
= Ul(pn,S)—l—Ul(pn,S).
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By combining (5.2.1)~(5.2.3), we have

?’pQT_pr(n,T):p(Ul(pn, S) + Uy (pn, §)) —p (%Ul(p3n, S) — ng(p:Sn, S))
— 2220 (107 (pn, ) — oL Ua(pn,$) )5 (Ur(pn,S) +Ua(pn, )

p(p—1)

= BUi(pn, S) + pUr(pn, S) — <U1(p3n, S) — p%lUQ (pSn,S)) .
Since the above equation holds even if we exchange S for S , we have

(3p? — p)r(n,T)= % (Ul(pn, S)+Ui (pn, §)> = (Ul(p3n, S)+Ui(p>n, §)>
+ zﬁ (Ul(p3n, S) + Us(pPn, S) + Uy (p3n, S) + Us(pn, §)> .

This completes the proof. O

Remark 5.2.2. In the above theorem, one may easily check that the sets

U, (A,(S)) and W, (A, (S)) are contained in Cspn(.S).

Assume that m = 2. Recall that 7" € Gy, ,(2) and S € G ,(3) are ternary
Z-lattices satisfying r(TP,S) # 0. If we define ¢ and N as before for the
E-type, then Lemma 5.1.4 still holds under this situation.

Theorem 5.2.3. Let T' and S be ternary Z-lattices satisfying all conditions
given above. Assume that the graph &, ,(2) is of O-type. If n is not divisible
by p, then we have

R(n, spn(T)) = (N - N)'N - R(pn, spn(S)). (5.2.4)

If n is divisible by p, then R(n, spn(T)) is equal to

1
2p—1

(M-R(pn, spn(S)) =N -N*) "N (R(pn, spn(S)) +R(p’n, spn(S5)))) -

If &1,(2) is of E-type, then we have

R, Cspn(m)—{ AR o
n, Lspn = 2p+1 <M.R(pn,$pn(S))—(./\N[‘Nt)_lj\?"ﬁ2) otherwise,
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where

= R(pn, spn(S))

T(n’ spn(T)) - T(nv Sp’l?,(T))

and

R, R(pn, spn(S)) + R(p>n, spn(S))

(2p = 1)(r(n, spn(T)) = r(n, spn(T)))

Proof. The proof is similar to that of Theorem 5.1.3. First, assume that
&1 ,(2) is of O-type. Since the rank of N is u, we may define

Z=N -NY'N.

From the equation (5.1.1), we have

Rin,spn()) = 2 (Rim,spn(5) + B (5 sonn(5) ) ), (529
and

R(pn,spu(T)) = Z (R(p*n. spn(S)) + RE (pn.spn(A,(5)) . (5.2

1

If (T,p1(S)7, Tpa(S)?) ~ (T, T3), then

1

(Tp1(Ap(S5))7

=

Tp2(Ap(9))7) = (Ap(Th), Ap(T2)).

Hence we have
Rf(pn, spn(A,(S))) = N* - R¥(n,spn(,(T))) — R¥(n, spn(A5(S))), (5.2.7)
that is,

RF(n,spn(A(T))) = Z(RF(pn, spn(A,(9))) + R¥ (n,spn(A2(S))).  (5.2.8)
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By Proposition 5.1.2, we also have

R(p*n,spn(T)) + 2p R(n,spn(T))

(5.2.9)
= M - R(pn,spn(S)) + R¥(n,spn(\,(T))).

If n is not divisible by p, then (5.2.4) comes directly from (5.2.5). Assume
that n is divisible by p. Since A3(S) ~ A,(S), we have

R! (%,spn()\p(S))> — R¥(n, spn(\2(S))). (5.2.10)

Therefore, the theorem follows from equations (5.2.5), (5.2.6), (5.2.8) and
(5.2.9).

If we replace N by A, then the proof of the case when &1 ,(2) is of E-
type is quite similar to this. O

Example 5.2.4. Letp =3 and let L = (1,1,2). ThenT = (1,2,9) € G ,(2)
and S1 = (1,2,27) € G1,(3). In fact, the graph &1 ,(2) is of O-type and

3 11 10 0 200
QL7p(3) - {Sl, SQ - 1 4 2 5 Sg - 0 5 1 y S4 - 0 41 }7
1 26 01 11 017

up to isometry. In this case, one may easily check that there are no rational
numbers a; and b; satisfying the equation

4 4
r(n,T) = Z a; - r(3n,S;) + Z b; - r(27n,S;)  for any integer n.
i=1

i=1

Finally, assume that m > 3. Let T € Gy ,(m) and S € Gr,(m + 1)
be Z-lattices such that r(77,5) # 0. We additionally assume that &, ,(m)
is of O-type. Recall that M = (T(g;jj)> and N = (T(ifs’f)j)) We define
Z = (NNHTIN.

Theorem 5.2.5. Under the assumptions given above, if n is not divisible by
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p, then
R(n, spn(T)) = Z (R(pn, spn(S))) and R(pn, spn(T)) = M-R(n, spn(S)).
For an arbitrary integer n, we have

pR(p°n, spn(T)) — p*R(n, spn(T))
=Z <2pR(p3n, spr(S)) +p*R(pn, spn(S))+R’ (pn, spn(S ))) —pM-R(pn, spn(S)),

where

o(Ap(S1))

R, spn()) = ("2 o, gen 9 51)...

Proof. By Propositions 5.1.1 and 5.1.2, we have
Ripn.spa(S)) = A" Rinspn(T) - R (L)), (G210
and
R(pn, spn(T)) = M - R(n, spn(S))
5.2.12
F R (Zsmm()) = 2R (B spu(r) ) 0212

The first two equations follow directly from (5.2.11) and (5.2.12).
Now by applying A,-transformation to the equation (5.2.11), we also have

RF(pn,spn(A\y(S9))) = Nt - R¥(n,spn(\,(T))) — RF (Z spn(Ag(S))> . (5.2.13)

Our final ingredient is the following equation which is directly obtained from
Proposition 3.2.9:

PR (pn, spn(A,(5))) + p*R? (Z,spn@p(s») R (Z,spnu,%(s»)

= R’(pn, spn(S9)).

(5.2.14)
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By multiplying Z to (5.2.11), we have

R(n,spu(T)) = 2 (Rl spn(5) + R ( 2.spm(0,(5))) ).
Hence we have
2pR(p*n, spn(T)) +p*R(n, spn(T)) = 2pZ (R(p’n, spn(S)) + R (pn, spn(Ay (S))))
+p?Z <R(pn, spn(S)) + R (p’ Spn()\p(S))>> .
On the other hand, by combining (5.2.12) and (5.2.13), we have
R (p*n, spn(T))+2pR(n,spn(T)) — M - R(pn,spn(S))

= 2 (R spnOy(5)) + R (Zsmn(2(5)) )

The theorem follows from the above two equations and (5.2.14). O
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Chapter 6

Genus-correspondences and
representations of ternary
quadratic forms

In this chapter, we consider genus-correspondences that respect spinor genus.
We disprove the conjecture that every genus-correspondence between two
ternary quadratic forms respects spinor genus, which was given Jagy in [12].
We modify this conjecture and prove this modified version. As samples of
genus-correspondences, we define a reduced genus Rgen(N) for any ternary
Z-lattice N, and we construct genus-correspondences satisfying some addi-
tional properties by using the reduced genera.

Finally, we construct infinite family of genera of ternary Z-lattices that
possess (absolutely) complete systems of spinor exceptional integers.

6.1 Genus-correspondences

Let M be a ternary Z-lattice on the quadratic space V and let N be a
ternary Z-lattice on V"™ such that dN = n - dM for some positive integer
n. For an M’ € gen(M) and an N’ € gen(NV), if there is a representation
¢ (M) — N’ then [N : ¢((M')")] = n. This implies that nN" C ¢((M')")
and hence (N')™ is represented by M’. The pair (N’, M') € gen(N) x gen(M)
satisfying the above property is called a representable pair by scaling n, or
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simply representable pair. As pointed out by Jagy in [12], Chan proved that
if (N, M) is a representable pair by scaling n, then for any M’ € gen(M),
there is a ternary Z-lattice N’ € gen(NN) such that (N’, M’) is a representable
pair by scaling n, and conversely for any N” € gen(N), there is a ternary
Z-lattice M" € gen(M) such that (N”, M") is a representable pair by scaling
n.

Let n be a positive integer. Let N and M be ternary Z-lattices such that
(N, M) is a representable pair by scaling n. A subset & C gen(NN) x gen(M)
is called a genus-correspondence if it satisfies following conditions:

(i) each element of & is a representable pair by scaling n;

(ii) for any N’ € gen(NV), there is a lattice M’ € gen(M) such that the pair
(N', M') is contained in &;

(iii) for any M"” € gen(M), there is a lattice N” € gen(N) such that the
pair (N”, M") is contained in &.

Furthermore, if the genus-correspondence & satisfies the additional condi-
tion:
N" € spn(N') <= M" € spn(M’),

for any (N, M’),(N",M") € G, then & is called a genus-correspondence
respecting Spinor genus.
The following conjecture was given by Jagy in [12]:

Conjecture. Given two genera G1, Gy of positive ternary forms, with inte-
gral squarefree discriminant ratio and with a genus-correspondence, suppose
that G, Gy have exactly the same number of spinor genera. Then the genus-
correspondence respects spinor genus.

The following example shows that the above conjecture is not true.

15 5

5 135
one may easily check that gt (M;) = g*(Ny) = 2, dN; = 15- My, and M} is
represented by Ny. The genus of Ny consists of, up to isometry, the following

Example 6.1.1. Let Ny = (12) L ( ) and M; = (1, 20, 80). Then
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12 lattices:

Ny = (12,15,135,5,0,0), Np = (3,7,1200,0,0,1), N3 = (3,60, 140, 20,0, 0)
Ny = (3,27,300,0,0,1), N5 = (27,27,40,10,10,3), Ng = (12,28,83,12,4, —4),
Ny = (12,28,75,0,0,4), Ng = (15,35,48,0,0,5), Ng = (7,12,300,0,0,2),
Ny = (12,43, 60,20,0,6), Nyj = (8,12,303,4,—2,4), N1 = (,12,35,60, 10,0, 0).

Note that
N17 N27 N37 N47 N57 N6 € Spn(Nl) a/nd N77 N87 N97 NlO; Nll; N12 S Spn<N7>
The genus of My consists of, up to isometry, the following 6 lattices:

M; = (1,20,80,0,0,0), M, = (5,16,20,0,0,0), M; = (4,20,25,10,0,0),
My = (4,5,80,0,0,0), M;=1(9,9,20,0,0,1), Ms= (4,20,21,0,2,0).

Note that
My, My, M3 € spn(My) and My, Ms, Mg € spn(My).
Define a genus-correspondence & as follows:

G = {(va M1)> (N9’ Ml)v (N37 MQ)’ (N77 M2)7 (N5a M3)7 (Nllv M3)7
(No, My), (Ns, My), (Ng, Ms), (N1o, Ms), (N, Mg), (N12, Mg) }.

Then one may easily check that the genus-correspondence & does not respect
SPINOT gENUS.

We will prove that if (IV, M) is a representable pair and g*(N) = g™ (M),
then there is a genus-correspondence respecting spinor genus.

Lemma 6.1.2. For ternary Z-lattices N and M, assume that (N, M) is
a representable pair by scaling n. Then for any N' € spn(N), there is a
ternary Z-lattice M' € spn(M) such that (N',M') is a representable pair.
Conversely, for any M" € spn(M) there is a Z-lattice N” € spn(N) such
that (N, M") is a representable pair.

Proof. Since (N, M) is a representable pair, there is an isometry o € O(V)
such that o(M") C N. Let N' € spn(N). Then there are o/ € O(V) and
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> € Jy such that N' = ¢’ N. Note that

o'Yo(M™) C o'SN = N'.
Since 0'Y0 (M) = o’'c(07'30)(M) € spn(M), the lemma can be proved if we
take M’ = 0’3o (M). The proof of the converse is quite similar to this. [

For a representable pair (N, M), define a bipartite graph &(N, M) as
follows:

e the set of all vertices of the graph & (N, M) is gen(N)g U gen(M)s;
e the bipartition of the graph & (N, M) is given by (gen(NV)gs, gen(M)g);

e two vertices spn(N’) € gen(N)g and spn(M’) € gen(M)g of the graph
& (N, M) are contained in an edge if and only if there exist lattices
N" € spn(N') and M" € spn(M’) such that (N”, M") is a representable
pair.

For a vertex spn(N') € gen(N)g of the graph & (N, M), we define
N (spn(L')) = {spn(M’) € gen(M)s | spn(M’) adjacent to spn(N')}.
For a vertex spn(M') € gen(M)g, the set N (spn(M')) is defined similarly.

Lemma 6.1.3. For ternary Z-lattices N and M, assume g*(N) = g* (M)
and (N, M) is a representable pair. Then the graph &(N, M) is a regular
bipartite graph.

Proof. For vertices spn(NN’) € gen(NN)g and spn(M’) € gen(M)g of the graph
&(N, M), assume that spn(M’) € N(spn(N')). By Lemma 6.1.2, we may
assume that (N’, M') is a representable pair. Furthermore we may assume
that (M’)™ is a sublattice of N’. Let spn(N") be another vertex in gen(N)g.
There is a ¥ € Jy such that N = ¥ N’. Then clearly, (XN',XM") is
a representable pair, so spn(XM’) € N(spn(N”)). Note that for any two
lattices M', M" € gen(M),

M' € spn(M") if and only if XM’ € spn(XM").
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Therefore

N (spn(N'))| = [V (spn(N))].

Hence, we know that there are same number of vertices in A (spn(N’)), for
any spn(N') € gen(N)s. The lemma follows directly from the fact that
gr(N) = g™ (M). O

A matching of a graph is a set of edges without common vertices. A
perfect matching of a graph is a matching in which every vertex of the graph
is incident to exactly one edge of the matching. The following theorem known
as Hall’s Marriage Theorem is quite useful in our situation:

Theorem. Suppose that G is a bipartite graph with bipartition (A, B). Then
G has a perfect matching if and only if |A| = |B| and for any S C V(G),
|INc(S)| > |S|, where V(G) is the set of all vertices of G and Ng(S) is the
set of all vertices adjacent to v for some v € S.

As a corollary of this theorem, it is well known that any regular bipartite
graph has a perfect matching.

Theorem 6.1.4. Let N and M be ternary Z-lattices such that (N, M) is a
representable pair and gT(N) = g*(M). Then there is a genus-correspondence
respecting Spinor genus.

Proof. Since the graph &(N, M) is a regular bipartite graph by Lemma 6.1.3,
there is a perfect matching, say P, in the graph &(N,M). We define a
genus-correspondence & as follows: for a pair (N', M’) in gen(N) x gen(M),
(N',M") € & if and only if (N’, M') is a representable pair and two vertices
spn(N'), spn(M’) in &(N, M) are contained in an edge which is in the perfect
matching P. Now the genus-correspondence & respects spinor genus by
Lemma 6.1.2. O

Example 6.1.5. In Example 6.1.1, define a genus-correspondence & as fol-
lows:

& = {(N1, M), (Na, My), (N3, My), (My, M), (N5, M3), (Ng, M3)
(N77 M4)> (N87 M4)7 <N97 M5)7 (Nl(b M5)7 (NH, Mﬁ); (N127 Mﬁ)}

One may easily check that the genus-correspondence & respects spinor genus.
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6.2 Reduced genera

Let N be a primitive ternary Z-lattice. In this section, we define a reduced
genus Rgen(NV) determined by N such that there is an N’ € Rgen(/N) such
that (IV, N) is a representable pair by scaling n, for some positive integer n.
We also define a subset R = SR(N) C gen(N) x Rgen(N) which is, in fact, a
genus-correspondence respecting spinor genus.

Recall that a non-classic ternary Z-lattice N is called an H-type at p if
gT(N) = g"(A\y(N)). Wesay N is of O-type (E-type) at pif N € G, ,(m) and
the graph &, ,(m) is of O-type (E-type, respectively), where the definitions
of G1,(m) and &, ,(m) can be found in Chapter 4.

Definition 6.2.1. Let NV be a primitive ternary Z-lattice. A prime p dividing
4-dN is called a removable prime for gen(N) if one of the following conditions
hold:

(i) if ord,(4-dN) > 2, then N is of H-type at p and is not of E-type at p;
(ii) iford,(4-dN) =1, then N € G ,(1) and the graph Gy, ,(0) is of O-type.

If there is no removable prime p dividing 4 - dN, then we say that gen(V) is
a reduced genus.

Let N be a primitive ternary Z-lattice and let p be a removable prime for
gen(N). A Z-lattice M is called a p-descendent of N if

M ~ )\,(N) if a prime p satisfies the condition (i),
1
M ~ Fpﬁl(N>T’ or FPVQ(N)

B =

if a prime p satisfies the condition (ii),

Furthermore, a Z-lattice M is called a descendent of N = Ny if there are
primes p; and Z-lattices N; for i = 1,2,...,t¢ such that for each 7, N; is a
pi-descendent of N,_; and N; = M.

Let M be a descendent of N such that there is no removable prime for
gen(M). Assume that M’ is another descendent of N such that there is no
removable prime for gen(M’). Then one may easily show that M’ € spn(M).
In general, for any N’ € spn(N) and any descendent M” of N’ such that
there is no removable prime for gen(M"), M" € spn(M). This comes from
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the fact that \,(N’) € spn(A,(N)) for any N’ € spn(/N) and if p satisfies the
condition (ii), then by Lemmas 4.2.9 and 4.2.10,

B =

spn(Ty1 (N)7) = spn(Tpa(N)7). (6.2.1)
From now on, the reduced genus Rgen(N) of N is defined by gen(M). Note
that there are same number of spinor genera in gen(N) and Rgen(/N), how-
ever, in general, the class number of Rgen(/N) is less than the class number
of gen(N).

Define a subset R = R(N) C gen(N) x Rgen(N) as follows: for a pair
(N', M") in gen(N) xRgen(N), (N, M') € R if and only if M’ is a descendent
of N'. Note that for any N’ € gen(NV), there is a lattice M’ € Rgen(/NV) such
that M’ is a descendent of N’ ans conversely for any M” € Rgen(N), there
is a lattice N” € gen(N) such that M"” is a descendent of N”. Furthermore
one may easily show that for pairs (N', M’), (M", N") € R,

N’ € spn(N") if and only if M’ € spn(M"), (6.2.2)

by Remark 3.1.4 and Lemmas 4.2.9, 4.2.10.

Let M be a descendent of N = Ny in Rgen(/V). Then, there are primes p;
and Z-lattices N; for ¢ = 1,2, ...t such that for each ¢, N; is a p;-descendent
of N;_; and N; = M. Define an integer 6(i) for 1 <1i <t — 1 as follows:

(1) if N; = A, (N;—1), then (i) = p or p?, which satisfies the equation

1

Ap(Ni—1)7D = Ap(Ni_1);

(ii) if N; ~ Tp1(Ni_1)? or Tpa(N;_1)7, then 6(i) = p.

Furthermore, define an integer

n=n(N)= ] o). (6.2.3)

Now, assume that (N’, M") € SR. Then one may easily check that (M’)" is
represented by N'. Furthermore, if dN' = n-dM’, then the condition (6.2.2)
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implies that the subset R is a genus-correspondence respecting spinor genus.
In fact, R satisfies the following additional property:

Lemma 6.2.2. Let N be a primitive ternary Z-lattice and let (N', M') be
a pair contained in R = R(N). For any integer k, there exists a lattice
R(N', k) € spn(M') such that k is represented by R(N', k) if and only if nk
is represented by N', where n = n(N) is the integer defined in the equation
(6.2.3).

Proof. Since M’ is a descendent of N’ = N/, there are primes p; and ternary
Z-lattices N; for ¢ = 1,2,...,t such that for each i, N is a p;-descendent of
N!_, and Ny = M.

Suppose that N/ = Fp,l(NZ-’_l)P% or Fp,g(NZ-’_l)P%‘, for some 1 < i <t. Note
that §(1)---9(i)k is represented by N/ ; if and only if 6(1)---d(z — 1)k is
represented by Fp,1(N{,1)”%’ or FI,’Q(Ni’fl)P%‘. Since &y,,(0) is of O-type, we
know that spn(Fp,l(N{_l)ﬁi):spn(f‘pg(]\fi’_l)?%.

Assume that N} = X\, (N/_;) for 1 < i < ¢. Furthermore, assume that
the $Z,-modular component in a Jordan splitting of (N/_,),, is non-zero
isotropic. Since N;_; is not of E-type at p;., we have

1 1
{Fpiy’L)(Fpi;U(N’ilfl) Pi )pi

w,v =1 or 2} € spn(dy, (N/_,)),

Similarly as above, one may easily show that 6(1)---(:)k is represented by
N! , if and only if §(1)---0(i — 1)k is represented by one of the lattices in

1 1
{Fpi,v (Fpi,U(NiLl) Pi ) Pi

u,v =1 or 2}.

If the %Zp-modular component is zero or non-zero anisotropic in a Jordan
splitting of (N/_;),,, then one may easily show that d(1)---0(i)k is repre-
sented by N/_; if and only if §(1)---6(i — 1)k is represented by A, (IV/_,).
This completes the proof. O

Corollary 6.2.3. Under the same notations given above, if k is represented
by all lattices in spn(M"), then nk is represented by all lattices in spn(N').

Proof. The corollary follows directly from the above lemma. O]
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CHAPTER 6. GENUS-CORRESPONDENCES & REPRESENTATIONS

The following example was first introduced by Jagy in [12] under the
assumption that n is squarefree.

Example 6.2.4. Let n be an integer that is represented by a sum of two
integral squares. Define a ternary Z-lattice N = (1,1,16n). Note that for
every prime p satisfying p = 3 (mod 4), the value ord,(n) is even. Then one
may easily check that (1,1,16) is a descendent of N and

Rgen(N) = gen((1,1, 16)).

Note that g™ ((1,1,16)) = 2 and the genus of (1,1,16) consists of, up to
isometry, following two lattices:

(1,1,16) and (2,2,5,1,1,0).

Let N € gen(N) be a Z-lattice whose descendent is (2,2,5,1,1,0). Since
gt (N) =2, we know that

gen(N) = {spn((1,1,16n), spn(N)}.

Since 1 is represented by (1,1,16) and is not represented by (2,2,5,1,1,0),
all lattices in spn((1,1,16n)) represent n, and all lattices in spn(N) do not
represent n by Lemma 6.2.2. Hence, for Z-lattices N', N" € gen(N), N’ and
N" are spinor equivalent if and only if N and N" represent n simultaneously,

or not.

6.3 Spinor character theory

In this section, we investigate the property explained in Example 6.2.4 in
detail. We show that in some particular case, spinor equivalences on a genus
can be completely determined by representations of spinor exceptional inte-
gers.

Let N be a non-classic ternary Z-lattice N and let ¢ be an integer that is
represented by the genus of N. Then we know either every spinor genus in the
genus represents ¢ (that is, there is a lattice in each spinor genus representing
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¢) or else precisely half of all the spinor genera represent c. In the latter case,
c is called a spinor exceptional integer for gen(N) and the half-genus that
represents (doesn’t represent) c is called good (bad, respectively) half-genus
with respect to c. (for details, see [1]). The integer ¢ is a spinor exceptional
integer for gen(N) if an only if

c#0, —c-dN & (Q*)*, 0(Jx) € Ng/r(Jg) and (63.1)
O(N,,c) = N,(E) for any finite prime p, o
where £ = Q(v/—c- dN) (see Theorem 2.3.3).
Assume that g™ (N) = 2". Suppose that for r spinor exceptional integers
C1,C, ..., ¢ of gen(N), multi-quadratic extension

Q (\/—cldN, L \/—crdN> /Q

has degree 2". Then the set {c1,...,c.} is called a complete system of spinor
exceptional integers for gen(N). Let {cy,...,¢.} be a complete system of
spinor exceptional integers for gen(/NV). For a spinor genus spn(N’) in gen(N),
we define y;(spn(N’)) = £1 with +1 if and only if spn(N’) represents ¢; for
1 <i<r. And define a map x : gen(N)s — {£1}" given by

X(spn(N')) = Oaa(spn(N')), ..., xr(spn(N'))). (6.3.2)

Then it is known that the map x is bijective(see [1]).
Now, we introduce the lemma proved by Hsia and Jochner in [11]:

Lemma. Let M be a positive integral Z-lattice of rank three or more and of
determinant d, C' a finite collection of primes such that for eachp € C, M, is
wsotropic. If t is a sufficiently large integer and divisible only by primes from
C, then tN is representable by M for every lattice N which is representable
by spnt(M).

From the above lemma, we can prove the following lemma:

Lemma 6.3.1. For a ternary Z-lattice N, let ¢ be a spinor exceptional in-
teger for gen(N). Then there is an integer t € Z such that ct® is a spinor
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exceptional integer for gen(N) and ct? is represented by all lattices belonging
to the good half-genus with respect to ct®.

Proof. Take a prime p such that —c-4dN is square at p and (p,2d) = 1. Let
t be a some power of p that is sufficiently large. Since N, is isotropic, ct?
is represented by all lattices in the good half-genus with respect to ¢ by the
above lemma. Show that ct? is a spinor exceptional integer for gen(N). By
the equation (6.3.1), it is enough to show that 6(N,, ct?) = N,(F) for any
finite prime ¢. Since —ct? - 4dN is square at p, O(N,, ct?) = N,(E). Assume
q # p. Note that ord,(c) = ord,(ct?). Since O(N,,c) = N,(E), we know that
O(N,, ct*) = N,(E) by Theorems 2.3.4, 2.3.5. O

Note that the good half-genus with respect to ¢ coincides with the good
half-genus with respect to ct? in Lemma 6.3.1.

Definition 6.3.2. Let {c,...,c.} be a complete system of spinor excep-
tional integers for a ternary Z-lattice N with g™ (N) = 2". If each ¢; is
represented by all lattices in the good half-genus with respect to ¢; for any
1 <4 < r, then we say {ci,...,c.} an absolutely complete system of spinor
exceptional integers for gen(N).

Proposition 6.3.3. Let N be a ternary Z-lattice with gt (N) = 2". Suppose
that there is a complete system of spinor exceptional integers {ci, ..., ¢} for
gen(N). There are integers ti, ..., t,. such that {cit?,... c.t2} is an abso-
lutely complete system of spinor exceptional integers for gen(N). In particu-
lar, the good half-genus with respect to c; coincides with the good half-genus
with respect to cit?, for any 1 < i <r.

Proof. The proposition follows directly from Lemma 6.3.1. [

Assume {ci,...,c.} is an absolutely complete system of spinor excep-
tional integers for gen(N). For N’ € gen(N), define X;(N') = +1 for
1 < ¢ < r with +1 if and only if N’ represents ¢;. And define a map
X : gen(N) — {£1}" given by

XAN') = (ad), - X6 (). (6.3.3)
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The following theorem shows that any spinor equivalences in gen(/N) are
completely determined by the map x.

Theorem 6.3.4. Let N is a ternary Z-lattice with g*(N) = 2" and let
{c1,...,¢.} be an absolutely complete system of spinor exceptional integers
for gen(N). Then for any two lattices N', N" € gen(N), N' € spn(N") if
and only if

X(N') = X(N"),
where X is the map from gen(N) to {£1}" defined above.

Proof. By the definition of x in (6.3.2), spn(N’) = spn(N”) if and only if

x(spn(L')) = x(spn(N")).

Equivalently, ¢; represented by spn(N') if and only if ¢; is represented by
spn(N”) for any 1 < ¢ < r. Equivalently, ¢; is represented by N’ if and only
if ¢; is represented by N”| for any 1 < ¢ < r. Then by the definition of Y in
(6.3.3), it is equivalent to X (N') = X(N"). O

Let N be a primitive ternary Z-lattice and M be a descendent of N = N,
in Rgen(N). Then, there are primes p; and Z-lattices N; for i = 1,2,...t
such that for each 7, IV; is a p;-descendent of N;_; and N, = M. As given in
Section 6.2, the subset R = R(N) C gen(N) x Rgen (V) is defined as follows:
for a pair (N’, M) in gen(N) x Rgen(N), (N', M’) € R if and only if M’ is
a descendent of N'.

Lemma 6.3.5. Let N be a primitive ternary Z-lattice. An integer ¢ is a
spinor exceptional integer for Rgen(N) if and only if nc is a spinor excep-
tional integer for gen(N), where n = n(N) is an integer defined in the equa-
tion 6.2.3. In particular, spn(N') is contained in the good half-genus with
respect to nc if and only if spn(M') is contained in the good half-genus with
respect to ¢, for any (N', M') € fR.

Proof. Let (N',M') be a pair in R. Assume that nc is represented by
spn(N’). Without loss of generality, we may assume that N’ represents nc.
Then there is a lattice R(N', ¢) € spn(M’) that represents ¢ by Lemma 6.2.2.
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Therefore ¢ is represented by spn(M’). Conversely, Assume c is represented
by spn(M’). we may assume that c is represented by a lattice M’. Then N’
represents nc since (M')" is represented by N'. O

Lemma 6.3.6. Let N be a primitive ternary Z-lattice with g*(N) = 2". If
{c1,..., ¢} is a complete system of spinor exceptional integers for Rgen(N),
then {nci,...,nc,.} is a complete system of spinor exceptional integers for
gen(N), where n = n(N) is an integer defined in the equation (6.2.3).

Proof. The proof follows directly from Lemma 6.3.5. ]

The following theorem shows that we can find an absolutely complete
system of spinor exceptional integers for gen(/N) from that of Rgen(/V) im-
mediately.

Theorem 6.3.7. Let N be a primitive ternary Z-lattice with g*(N) = 2".
Suppose that there is an absolutely complete system of spinor exceptional in-
tegers {c1,...,¢,.} for Rgen(N). Then {ncy,...,nc.} is an absolutely com-
plete system of spinor exceptional integers for gen(N), where n = n(N) is
an integer defined in the equation (6.2.3).

Proof. This follows directly from Corollary 6.2.3 and Lemma 6.3.6. m

Example 6.3.8. Let n be an integer whose prime factor is congruent to 1
or 9 modulo 20. Define a Z-lattice

N = (1,20, 400n).
Then one may easily show that (1,20,400) is a descendent of N, and
Rgen(N) = gen((1, 20, 400)).
The genus of (1,20,400) consists of, up to isometry, the following 12 lattices:

M; = (1,20,400,0,0,0), M, =(9,9,100,0,0,1),  M; = (4,45,45,5,0,0),

M, = (4,5,400,0,0,0), My = (16,20,29,0,8,0), Mg = (1,80,100,0,0,0),
My = (4,25,80,0,0,0), Mg = (5,16,100,0,0,0), My = (4,20,101,0,2,0),
Mo = (16,20,25,0,0,0), My = (4,20,105,10,0,0), My = (4,21,100,0,0,2),
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where g*((1,20,400)) =4 and

M17M27M3 S Spn(Ml)a M47M57M6 € Spn(M4>7
My, Mg, My € spn(Mz) and Mg, Miy, Myy € spn(M).

One may easily check that {1,5} is a complete system of spinor exceptional
integers for Rgen(N). Note that gt (N) = 4 and {n,5n} is a complete sys-
tem of spinor exceptional integers for gen(N) by Lemma 6.3.6. One may
also check that {172, 5-5%} is an absolutely complete system of spinor ex-
ceptional integers for Rgen(N). Therefore {7*n, 53n} is an absolutely com-
plete system of spinor exceptional integers for gen(N) by Theorem 6.3.7. For
N’ € gen(N), define X1(N') (X2(N")) = £1 with +1 if and only if N’ repre-
sents T°n (53n, respectively). And put

X(NV') = (X1 ('), X2(N).
Then for any lattices N', N" € gen(N), we have
N’ € spn(N") if and only if X(N') = X(N"),

by Theorem 6.3.4.
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