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Abstract

The class number of an integral quadratic form is defined by the number of
inequivalent classes in its genus. Recently, Chan and Oh gave an explicit
relation between the class number of a (positive definite integral) ternary
quadratic form and the class number of its Watson transformation at an odd
prime. In this thesis, we consider the case when the Watson transformation
is taken at the prime 2 or 4 on arbitrary ternary quadratic forms and give an
explicit relation under this situation. We finally give an effective inductive
method on the computation of the class number of an arbitrary ternary
quadratic form. As an example, we provide the class number formula for any
Bell ternary quadratic form.
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Chapter 1

Introduction

A quadratic homogeneous polynomial of three variables

f($1,$2,3?3) = Z Qi TiT 5 (aij = aj; € Q)

1<i,j<3

is called a ternary quadratic form. We say that f is positive definite if the
corresponding symmetric matrix M; = (a;j) € Msx3(Z) is positive definite.
We say that f is integral if a,; € Z for any ¢,j. Throughout this thesis,
we always assume that every ternary quadratic form is positive definite and
integral, unless stated otherwise.

The class number of a ternary quadratic form f is defined by the num-
ber of isometry classes in the genus of f. Computing the class number of
a ternary quadratic form is an important problem in number theory and it
is related with many other areas of mathematics. One of the most impor-
tant connections is the correspondence between the class number of ternary
quadratic forms and the type numbers of orders in quaternion algebras, which
states that computing the class numbers of positive definite ternary quadratic
forms over Z is equivalent to compute the type numbers of orders in definite
quaternion algebras over Q. Pizer [12] obtained an explicit formula for the
type numbers of all Eichler orders by using the Selberg Trace Formula. A
formula for an arbitrary order is obtained by Kérner [7], but his formula
requires the computation of the restricted embedding numbers of quadratic
orders into quaternion orders, which can be obtained only for some special
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orders using results of [5, 10, 11, 12]. Recently, Chan and Oh [1] provided an
effective method to compute the class number of a ternary quadratic form
except some special cases by using, so called, Watson transformations which
are first used by Watson in his doctoral thesis [14].

In this thesis, we provide a method of computing class numbers of arbi-
trary ternary quadratic forms. Our main tool is to use Watson transforma-
tions, which is quite similar to that of [1].

Unexplained notations and terminologies from the theory of quadratic
spaces and lattices will follow those of O’Meara’s book [8]. For convenience,
a quadratic space is always a positive definite quadratic space over the field
of rational numbers QQ, and the term “lattice” always refers to an integral Z-
lattice on a (not necessarily fixed) quadratic space over Q. For a lattice L, the
genus of L is denoted by gen(L), and gen(L)/ ~ is the set of isometry classes
in gen(L). It is well known that the latter set is finite and its cardinality is
called the class number of L, denoted by h(L). The isometry class containing
L in gen(L) is denoted by [L]. The lattice L is integral if its scale ideal s(L)
is inside Z, and is “primitive” if its scale ideal s(L) is exactly Z. We write
L ~ A whenever A is a Gram matrix of L, and the discriminant dL is defined
to be the determinant of A. A diagonal matrix with a4,..., a,, on the diagonal
is denoted by {ay, ..., a, ).

Let L be a primitive ternary lattice, and let £ be a positive integer. We
define

Ap(L) ={xeL:Q(x+ z) = Q(2) (mod k) for any z € L}.

Then one may easily show that Ax(L) is a sublattice of L. The primitive
lattice obtained from Ay (L) by a suitable scaling is defined by A;(L). As one
of class invariants, the label of a lattice was first defined in [1]. We define the
modified label of a lattice L consisting of the order of the orthogonal group
of L, the norms of symmetries in the isometry group and some “additional
information” depending on the structure of L (for the exact definition, see
Definition 4.2.1). In fact, this additional information was not necessary in
[1], for they only consider A, transformation for some odd prime p.

The basic strategy of the method of computing h(L) provided in [1] is as
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follows:

(I) transform L, via a finite sequence of Watson transformations, to a
stable lattice K (for the definition of a stable lattice, see Definition
3.1.3):

k2

(#)  Lo=Losn e Mgk

where each k; is either 4 or a prime divisor of dL;

(I) determine the labels of all the classes in gen(K'), and hence obtain
h(K);

(IIT) for each i < m, use the labels of the classes in gen(L;), ..., gen(L,)
to determine the labels of all the classes in gen(L;_;). In particular,
h(L;_1) is computed. Finally, compute the class number of L = L.

These three steps altogether provide an effective procedure to compute the
class number A(L). The initial inputs are the labels of the classes in gen(K),
which will be determined without any prior information. Note that this
procedure will terminate in a finite number of iterations for any given lattice
L. Chan and Oh [1] proved that this method works whenever each index k;
of Watson transformations in () is an odd prime.

In this thesis, we show that this method, in principle, works even when
each index of Watson transformations in (*) is 2 or 4 if we use the modified
label explained above. There are some exceptional cases where Step (I) in the
above procedure does not work. For these exceptional cases, we also provide
the method on computing the labels by using some additional information.

In Chapter 2, we introduce some basic definitions and known results on
quadratic forms. Most of them will also be found in [8].

In Chapter 3, we explain our method as a whole. In particular, the
procedure on Step (I) is explained in this chapter.

As a main chapter, we compute the labels of lattices in Chapter 4. More
precisely, for any lattice K, we compute the labels of all lattices L such that
Aoe(L) ~ K, where e = 1 if L is odd, e = 2 otherwise. Since we add some
more information to the definition of the label which is originally given in [1],
we have to determine this additional information for each lattice L by using
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the modified label of K. In fact, there are some exceptional cases that we
can not determine the labels of lattices L even if the label of K is completely
given. At the end of this chapter, we summarize all of these exceptional cases
and describe the labels by using some more additional information such as
the label of Ao (K).

In Chapter 5, we consider stable lattices. We provide the class number
formula for an arbitrary stable lattice together with the method on computing
the labels of all lattices in the genus of the stable lattice. Hence Step (II) in
the above procedure will be considered in this chapter.

In Chapter 6, as an application of our main result, we provide a closed
formula for the class number of a Bell ternary form which is a lattice of the
form (1,2™,2™) for some positive integers m and n (m = n).

In Chapter 7 which is an appendix, we list all of our results given in
Chapter 4.



Chapter 2

Preliminaries

2.1 Quadratic spaces

Let F be an abstract field of characteristic not 2, and V' be a finite dimen-
sional vector space over F'. We call V' a quadratic space over F' if the vector
space V' is equipped with a symmetric bilinear form B, i. e. a mapping

B:VxV-—F
with the following properties:
B(z,y + z) = B(x,y) + B(x, 2),

B(ax,y) = aB(v,y), B(z,y) = B(y,z)

for all z, y, 2 € V and all a € F.. We say that a quadratic space is binary,
ternary, quaternary, quinary, ..., n-ary, according as its dimension is 2, 3, 4,
5,..., n. A quadratic map @ of the bilinear form B is defined as the map

Q:V—F
with Q(z) = B(x,z) for all z € V. Then the following identities hold:

Q(az) = a*Q(x),
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Qr +y) =Q(x) + Qy) + 2B(x,y)

for all z, y € V and all a € F'. For a non-zero vector x € V', we call x isotropic
if Q(x) = 0, we call it anisotropicif Q(x) # 0. For a non-zero quadratic space
V', we call V isotropic if it contains an isotropic vector, we call it anisotropic
if it does not contain an isotropic vector.

Two subsets V; and V, of V' are called orthogonal if B(xy,z5) = 0 for all
x1 € V7 and all 25 € V5. We say that V' has the orthogonal splitting

Vv=Wl1.---1V,
into subspaces V;(1 <4 < r) if V' is the direct sum
V=hae eV
with
B(V,,V;) =0 for 1<i<j<m

For any fixed non-zero element « in F', we define
B(z,y) = aB(z,y)

for all z, y € V. Then we let V' denote the quadratic space V equipped with
the bilinear form B* and called the quadratic space obtained from scaling V'
by «a.

The quadratic space V' is said to represent an element « in F' if there is a
vector x in V' such that Q(z) = a. Let V and W be quadratic spaces over F'
and let () denote the quadratic map on each of them. Let Lr(V, W) be the
set of all linear transformations of V' into W. Then a linear transformation
7 € Lp(V,W) is called a representation of V into W with respect to the
quadratic maps Q on V and W if

Q(rr) = Q(x)

for all z € V. If 7 is injective, we call 7 an isometry of V into W. If there
exists a bijective representation 7 of V' onto W, we say that V and W are
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1sometric and we write

V>W.

The set of all isometries of V' into W is written
OV, W).

If V=W, we write O(V) instead of O(V, V). Then the set O(V) is a subgroup
of the general linear group GLr(V) and called the isometry group of V' with
respect to the quadratic map ). For a fixed vector z € V with Q(x) # 0, we
define a mapping 7, : V' — V by

o ZB(y,x)x

Then we have 7, € O(V') and call 7, the symmetry with respect to the vector
x.

Let dimp(V) = n and zy,..., , be a base of V. Then we may associate
the n x n symmetric matrix M with the above base by taking M as

M = (B(LEZ, Ij))

We call M the matrix of the quadratic space V in the base zq,..., x,, and
write V' =~ M. The determinant of M is called the discriminant of V' and
denoted by dV. We note that the discriminant of V' is uniquely determined
up to unit squares of F'. We say that V is regular if dV # 0.

Let Q be the rational number field and Q, denote the field of p-adic
completion of Q for any prime p. Suppose that F' = Q, for some prime p and
V' is a regular n-ary quadratic space over F. Then we may take a splitting

Vdlagy L - 1L<{ay)

for some elements «; (1 < i <) in F. We define the Hasse symbol

s00- % (22),

Isisjsn
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where (—) is the Hilbert symbol.

Theorem 2.1.1. Let F' = Q,, for some prime p. Then two regular quadratic
spaces U and V' over F' are isometric if and only if

dimU = dimV, dU = dV, S,U =S,V

Proof. See 63:20 in [8].

2.2 Lattices on quadratic spaces

For any prime p, Z, denotes the p-adic integer ring. Let F' denote Q or Q,
and R denote Z or Z,, respectively, for a prime p. For a non-zero regular
quadratic space V over F', we consider a subset L of V which is a R-module
under the laws induced by the vector space structure of V' over F. We call
L a R-lattice in V' if there is a base x1,..., x, for V such that

L < Rxy + -+ Rax,.

We say that such L is a R-lattice on V' if we have F'L = V. In this case, the
term ‘on V'’ may be omitted for convenience. We say that a R-lattice L is
integral if B(z,y) € R for all z,y € L. We define scale s(L) of L to be the
ideal of R generated by B(x,y) for all x,y € L, norm n(L) of L to be the
ideal of R generated by Q(x) for all z € L. For non-zero element « in R, we
denote by L* the R-lattice obtained from scaling L by a. If L is a R-lattice
on V, there is a base x1, ..., x, for V such that

L =Rxi+ - -+ Rx,.

By the matrix of the lattice L in the base x1, ..., ,, we mean the n x n matrix
M = (B(z;,z;)), and we write

L~ M.

Let u denote the unit group in R. Then the canonical image of det(M) in Ou
(F/u?) is independent of the base chosen for L. It is called the discriminant

8
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of L, and written dL. We say a R-lattice L of rank n is a modular lattice if
(dL)R = s(L)™. In particular, a modular lattice L is said to be unimodular
if (L) = R. Suppose that L = L1 @ - - - @ L, with

B(L;,L;) =0 forl<i<j<r,

for some sublattices Ly, ..., L, of L. Then we say that L has the orthogonal
splitting
L=L1---1L,.

If L is a Z,-lattice for some prime p, L has an orthogonal splitting L = L; L
-+ L L, in which each L; (1 < i < r) is modular and s(L,) < s(L,_1) - - &
s(Ly). We call this splitting a Jordan decomposition (see 91c in [8]).

Consider a R-lattice L in V. Let W be some other non-zero regular
quadratic space over F' and K be a R-lattice in W. We say that K is
represented by L if there is a representation 7 : FK — FL such that 7K < L.
If there is an isometry 7 € O(W, V) such that 7KK < L, we say that there is
an isometry of K into L. We say that K and L are isometric, and write

K=>1L,

if there is an isometry 7 : FFK — F'L such that TK = L. We define the
1sometry group of L to be

O(L) ={reO(V)|TL = L}.

Then O(L) is a subgroup of O(V'). Consider R-lattices K, L on V. We say
that K and L are in the same class if K =~ L. This is an equivalence relation
on the set of all lattices on V', and we use

cls(L)

to denote the class of L.
Let L be a Z-lattice of rank n and M be the corresponding matrix. Then
we may write
L =2xy+ -+ Zaxy,
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for some base x1, ..., x, of the quadratic space QL. we say that L is positive
definite (or indefinite) if M is positive definite (or indefinite, respectively).
We say that L is even if Q(x) € 2Z for all x € L, and say that L is odd
otherwise. We define

Ly = Zpty + - - - + Ty

for any prime p. Then L, is a Z,-lattice. We define the genus gen(L) of the
lattice L on V to be the set of all lattices K on V with the following property:
for each prime p, there exists an isometry o, € O(V,,) such that K, = 0,L,.
We define the class number h(L) as the number of non-isometric classes in
gen(L). It is well known that the class number of a Z-lattice is always finite
(see 103:4 in [8]).

10
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Chapter 3

Watson transformations

3.1 Properties of Watson transformations
Let k be a positive integer. For any integral Z-lattice L, we define
Ap(L)={xeL:Qx+y)=Q(y) modk for all y € L},
and for any prime number p, we define
Ap(Ly) ={reLl,:Qz+y)=Q(y) mod k for all y € L,}.

Then it is clear that they are sublattices of L and L, respectively, and
Ay(L), = Ag(L,) for every prime number p. Moreover, Ax(L), = L, if p
does not divide k. For more properties of the operators Ay, see [3] and [2].
We denote by Ai(L) the primitive lattice obtained by scaling the quadratic
map on Ag(L) suitably. The mappings Ay are called Watson transformations.

Now we describe Ax(L) when m is a prime or 4, although only the case
when m is 2 or 4 will be used in this paper. For any prime number p,
we write L, = M, L U,, where M, is the leading Jordan component and
s(Up) < ps(M,).

Lemma 3.1.1. Suppose that M, is even unimodular and nw(U,) < 2pZ,.
Then
Aep(L)p = pM, L Uy,

11
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where e = 2 if p = 2, and 1 otherwise. In particular,
(a) if ord,(dL) = 2, then ord(dA,(L)) < ord,(dL);

(b) if m is an odd squarefree positive integer and ord,(dL) < 1 for allp | m,
then A2, (L) = L.

Proof. See [1].
Lemma 3.1.2. Suppose that L is a ternary integral lattice with w(Ly) = Zs.
(a) If rank(Msy) = 2 and s(Us) S 2Zs, then

(M, 1 U2 if dM =1 mod 8:
1
M3 LU if dM =5 mod 8;

2 1 1
Ao(L)g = < (1 2) 1 U ifdM = 3 mod §;

01 1
(1 O> 1 U3 ifdM =7 mod 8.
\

(b) If rank(Ms) = 1 and s(Us)  4Z,, then Ao(L)s = My L Uy.
(c) If rank(Ms) = 1 and s(Us) = 2Zs, then Ao(L)s = M2 L UZ.

In particular, if ords(dL) = 2, then ords(dX\y(L)) < ords(dL); and if ords(dL) =
1, then \o(L)s is unimodular.

Proof. See [1].

Definition 3.1.3. A primitive ternary lattice K is called stable if ord,(dK) <
1 for all primes p, and ordy(dK) = 1 if and only if K is even.

Corollary 3.1.4. A primitive ternary lattice L can be transformed, via a
finite sequence of Watson transformations at the primes dividing dL or at 4,
to a stable lattice.

Proof. See [1].

12
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Lemma 3.1.5. Let L be an integral lattice on a quadratic space V and k be
a fixed prime number or 4. Then

(1) coAg(L) = Apoa(L) for every o € O(V) in particular, the group O(L)
is a subgroup of O(Ax(L)).

(2) A induces a surjective function from gen(L)/ ~ onto gen(A(L))/ ~.

Proof. See [1]. The case when k = 4 may be shown by a similar way.

3.2 Definition of v}(K)

Let L be an integral lattice and £ be a prime number or 4. For any lattice
K in gen(\x(L)), we define

V() := {M € gen(L) | \y(M) = K} and

i (K)/ ~i={[M] € gen(L)/ ~| Ae(M) = K}

Clearly,

ML) = ) hiE)/ ~|

[K]egen(A (L))

Proposition 3.2.1. Let k be any prime number or4. For any K € gen(Ag (L)),

e (K)| =

where vo(L) and v (\y(L)) are the mass of gen(L) and gen(A,(L)) respec-
tively.

Proof. See [1]. The case when k = 4 follows a similar procedure.

Using Minkowski-Siegel mass formula, we have

w(L) :( dL )Qap(kk(Lp),Ak(L)p)
w(Ax(L))  \d(A(L)) ap(Lp, Lp)

13
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where a,(,) are the local densities and p = k if k£ is odd prime, p = 2
otherwise. These local densities can be computed by Theorem 5.6.3 of [13].

w(L)

The values of wOw. (D)) Are displayed in Table 3.1, where e = 2 if L, is even,
e = 1 otherwise. In this table, Ly is arranged by the Jordan decomposition
and €; € Z; (i = 1,2,3). The letter T denotes an even unimodular lattice of

rank 2 and the values e;; are equal to 1 if ¢; = ¢; (mod 4), and 0 otherwise.

For any integral lattice K, x(K3) = 1 if K3 is isotropic, and —1 otherwise,

and the quantity 7 is defined as follows;

1
T =
-1

Table 3.1: Values of m(‘;—

2e

if €165 = 7 mod 8,

if €165 = 3 mod 8.

(L)

@) 2 €3)
(L (L
| Lo m | 5o | L | m B B0 (L)
— _ 1—eas 3
T 1 (2™, m=0,1,2 1 (e1,4€,2Me3) m 2l-ea 3 —
m =3 24+ x(T) m =3 2
m =4 4 m =4 21+e12
(e L 2mT m=0,1,2 1 le1, 2%, 2P e3) a=3,8= ﬁ
-3 2+ x(T) a=4,8= 2
m =4 4 a=58=25 4
{e1,€2,2Me3) m=1 2_% a=3,8=4 1
€1 # €2 (mod 4) m =2 3 a=4,8=5 2
m >3 2(2—1) azb f=a+1 4
{e1,€2,2™e3) m=1 % a=34,8=a+2 2
€1 = €2 (mod 4) m =23 1 azb f=a+2 4
m =4 2 a=3,=26 2
{e1,2€2,2™e3) m =134 1 a=4,8=27 2
m=2,mz>=5 2 azbh f=za+3 4

14




Chapter 4

Labels of classes

4.1 Isometry groups

In this section, we will classify ternary quadratic forms into several types by
considering their isometry groups in order to define the ‘label’ of an isometry
class later. Throughout this section, K is a primitive ternary lattice and we
let S(K') be the set of symmetries of K. Given a non-zero vector x in the
quadratic space underlying K, 7, denotes the associated symmetry of the
space.

By a result of Minkowski [9], |O(K)| is a divisor of 48. More precisely, it is
one of the numbers 2, 4,8, 12,16, 24,48. Now we describe K in each case.

Lemma 4.1.1. Let K be a primitive ternary lattice whose isometry group s
of order 48. Then K =1, A, or J, where

210 3 -1 -1
I~{1,1,1), A=[12 0], and J=|-1 3 -1
01 2 -1 -1 3

The isometry groups of the above three lattices are isomorphic and they are
generated by —I and symmetries. If {x1,xq,x3} is the basis which yields any
one of the above Gram matrices, then

S(I> = {T5017T$27Tx3} o {Txiigjj: 1 < 7/ <] < 3}’

15



CHAPTER 4. LABELS OF CLASSES

S(-A-) = {Txl ) TIEQ ) Ta:gu Txlfmg T:B27237-$1722+x3} U {7‘3017137 Tm +x3) Tm172:v2+23}7

and
S(‘]) = {Tfl?i“rl'j: 1< <j < 3}

U {Tw1,m2 ) Txlf.’zg ) szfzg ) Tx1+2x2+23 ) Tx1+12+213 ) 7-2:[1 +xo+x3 } .

Proof. See [1].

Lemma 4.1.2. Let K be a primitive ternary lattice whose isometry group s
of order 12. Then K 1is isometric to a lattice of the form

20 —a —a
Kis(a,b) == | —a 2a 0 |,
—a 0 b

where a, b are relatively prime positive integers.

Conversely, for relatively prime positive integers a and b, we have |O(Ki2(a,b))]
= 12 unless (a,b) = (1,1), (1,2) or (4.3). The isometry group O(Ky2(a,b))
1s generated by —I and symmetries, and excluding the above three cases, we
have

S(K12(a7 b)) = {7—93177—13277_961-‘:-902}7

where {x1,To, x3} is the basis which yields the Gram matriz Kis(a,b).
P’FOOf. See [1] Note that K12(17 1) = I, K12<1, 2) ~ A and K12(4, 3) ~J.

Lemma 4.1.3. Let K be a primitive ternary lattice. Then the isometry
group of K is of order 24 if and only if it is isometric to a lattice of the form

a

Kalo) = (3 50) L,

where a, b are relatively prime positive integers. The isometry group O(Kay(a, b))
15 generated by —I and symmetries, and we have

S(K24 (CL, b)) = {Tml ) szu Txlfatg} U {TIE172:E27 7-2:8173@7 TIE1 +:B2} \ {Tw3}7

16
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where {x1,xa, x5} is the basis which yields the Gram matriz Kaq(a,b).

Proof. See [1].

Lemma 4.1.4. Let K be a primitive ternary lattice whose isometry group s
of order 16. Then K has only one of the forms

2 0 —a
Kig1(a,b) :=<a,a,by and Kypgu(a,b):=1 0 2a -—a
—a —a b

up to isometry, where a,b are relatively prime positive integers.

Conwversely, for relatively prime positive integers a and b, the isometry groups
of Kis1(a,b) and Kigu(a,b) are of order 16, except for Kis1(1,1),K161(1,2),
and Ki61(2,3). The isometry groups O(Kie1(a,b)) and O(Kien(a,b)) are
generated by —I and symmetries, and we have

S(K16,I(aa b)) = {7—1‘177—1‘2} o {Tx1+x2a 7—961—062} v {7—1‘3}

and

S(Klt‘),]l(aa b)) = {7-:1:177—902} o {Tx1+wza Txlfmg} o {Tz1+x2+2x3}-

Proof. See [1]. Note that Ki61(1,1) = I, Kign(1,2) = A, and Kisn(2,3) =
J.

Next, we consider primitive ternary lattices whose isometry groups are
of order 8. Let K be such a Z-lattice. Then, O(K) has precisely three
symmetries and their corresponding primitive vectors are orthogonal each
other by [1]. So let z, y, z be primitive vectors in K such that S(K) =
{Tw, 7y, T2}

Definition 4.1.5. For a primitive vector z in K with 7, € O(K), if Q(x)
divides B(z,y) for any y € K, then 7, is said to be of type 1, and type 2
otherwise.

First, without loss of generality, we assume that 7, is of type 1. Then =
splits K and two vectors y, z are contained in the orthogonal component of x
in K. If one of 7, and 7, is of type 1, the Gram matrix of K is represented as

17
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{a, b, ¢y for some pairwise relatively prime positive integers a, b, ¢. Otherwise

(@ L <2bb i)

for some relatively prime positive integers a, b, c¢. Next, assume that each

it is represented as

symmetry in O(K) is of type 2. Then we can take two vectors u, v in K such
that {z,u,v} is a basis of K with the corresponding Gram matrix

20 a 0
a b ¢
0 ¢ d

We denote the orthogonal component of z in K by z* and let K :=Zx 1
zt. Then, K = Zz + Z(z — 2u) + Zv and for any w € z*, B(r,(w),z) =
B(1,(w),7,(x)) = B(w,z) = 0. This implies that 7,(w) € z* for any w € 2+

and so 7,(zt) = at. Therefore 7, is also an isometry of K and we can

~

represent K as
~ ;o ;. 200 b
K =7x+Zy+7Z2 ={2a,V,c) or (2ay.l Yoo

for some positive integers &' and ¢ where Q(y) = b’ or 2’ respectively. It is
clear that [K : 2K] = 4 and there exists a basis {z, T2, 73} of K such that
Zxy + Z(2x5) + Z(2x3) = 2K. Then, all candidates of a lattice 2K are the
following lattices ;

Z(2z) + Z(2y) + 2.2, Z(2x) + Z(y) + Z(27'),
Z(2x) + Z(y + 2') + Z(27'),  Zx + Z(2y) + Z(22),

Z(x +y) + Z(2y) + Z(22'), Z(x + ') + Z(2y) + Z(27),
Z(x +y+2') + Z(2y) + 222

Suppose that K ~ (2a,b',c’). Considering their Gram matrices, we may

18
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conclude that only the last one is possible and then

=u
~

/
b 0 3
K~|0 ¢ S
vV 2atb+d
2 2 4
200 v

v

above list is possible since the last two lattices don’t have 7, as their isometry

Next, suppose that K = 2ay L ( > . Then, only the fifth lattice in the

and we have

2000 U

~ atb bV
K=V %5 3
b % c

Therefore we obtain the following result.

Lemma 4.1.6. Let K be a primitive ternary lattice whose isometry group s
of order 8. Then K 1is isometric to only one of the following forms;

Kgi(a,b,c) :={a,b,c), Kgu(a,b,c):={a)y L <2b b) |
C

b
2a 0 a 4a 2a 2a
Ksm(a,b,c):=10 2b b)), Ksw(a,b,c):=|(2a a+b a
a b c 2a a c

Proof. We have only to show that K is not isometric to two of the above forms
simultaneously. The sets of all symmetries of above forms are {7,,7,, 7.},
{Tws Ty, Ty—2: 3, {Tws Tys Twty—22}s {Ta» Tu—2y, Tu—2:}, Tespectively. For any lattice
L, let denote the product of all primitive vectors associated to each symmetry
of L by N(L). Then we obtain

ords(d(Ksi(a,b,c))) = ords(N(Ksi(a,b,c))),

ords(d(Ksu(a,b, c))) = dordy(N(Ksu(a,b,c))),
ords(d(Ksm(a,b,c))) = 4orda(N(Ksm(a, b, c))),
ords(d(Ksv(a,b, c))) = 16ordy(N(Ksv(a,b, c))).

Hence we have distinguished all pairs of structures except one pair, Kgn(a, b, ¢)
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and Kgm(a,b,c). Since all symmetries of Kgm(a,b,c) are of type 2, we are
done. O]

Finally, we discuss about the primitive ternary lattices whose isometry
groups are of order 4. Let K be a such lattice. Then it is clear that there
exists only one symmetry in O(K). Therefore we can obtain the following
result.

Lemma 4.1.7. Let K be a primitive ternary lattice whose isometry group is
of order 4. Then, K 1is isometric to only one of the following forms;

2
b ¢ ¢

a 0
Kyi(a,b,e,d) :=<ay L ( ) . Kyn(a,b,e,d) = b ¢
c d ’ . d

a
0
Proof. The first form occurs when the symmetry is of type 1, and otherwise
the second form occurs. O

4.2 Definition of labels

Let K be a ternary lattice. Every symmetry o in O(K) is of the form 7,
where z is a primitive vector of K. We define Qx (o) to be Q(z).

Definition 4.2.1. Let K be a ternary lattice, and oy, ..., o, be all symmetries
of K. If |O(K)|=2, 12, 24 or 48, the label of K is defined as

label(K) := [J0(K)]: Qo). .. Q)]
If |O(K)| =4, 8 or 16, the label of K is defined as
label(K) := [|O(K)], ‘the type of K’; Qg (01), ..., Qx(c1)],

where the type of K is a Roman numeral which denotes the type of the form
described in the above chapter. If |O(K)| = 24, or |O(K)| = 8 and K is of
type II, we add a dot on top of the norm of the symmetry of type 1.
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For example, if K =~ Kgy(a,b, c), we denote the label of K by
label(K) := [[8, IL; 4, 2b, —2b + 4c]).

In the cases dealt in [1], we do not need the information of ‘the type’ of
K and ‘a dot’ on a type 1 symmetry. But we need this information in our
cases.

Throughout this section, we always assume that L is a primitive ternary
Z-lattice such that ordy(dL) > 2, or orde(dL) = 1 and L is odd, and
K := Xge(L), where e = 1 if L is odd, e = 2 otherwise. Hence L is not
stable over Z,. The above assumption is the general setting of Step (II) in
our method provided in Chapter 1. Let label(v4 (K)) denote the multiset of
the labels of all classes in v£ (K )/ ~. In order to prove the possibility of Step
(I), we claim as follows.

Claim : One may determine the multiset label(vZ (K)) by the label and
discriminant of K, and the structure of L.

If the above claim is true in all possible cases, then we may execute Step
(II) successfully by the surjective map in Lemma 3.1.5 (2). Although there
are some exceptional cases in which the above claim does not hold, it can be
enough to recover to achieve our purpose. All exceptional cases are contained
in the case when |O(K)| = 4. Now we introduce two typical exceptional cases
of the above claim. First, let

L:=<1>L<g 48()), I

S N

2 0
7 4,
4 10

—_

K:=<2>L(i 24O>, and K’ :=<2>L(i 142).

Then we have A\y(L) = K and A\o(L') = K'. Furthermore, we may verify that
label(K) = label(K') = [4,1;2], dK = dK’ and Ly = L}. But

label(vs (K)) = {[[4,I; 1]} # {[4,1; 4]} = label(v3'(K"))
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since |74 (K)| = |[7&(K’)| = 1 by Table 3.1. Therefore we can not deter-
mine the multiset label(v(K)) by the given information in this case. In
such a case, we may determine label(v¥(K)) by using label(A2(K)). See
Subcase(4.7.1.19-2) below for details.

Next, we put
41 / 4 2 0
L:={&) 1 L 6) L':=(2 4 7|,
0 7 24

—<1>L<4 1), and K’:=<1>L(i 143).

Then we have A\y(L) = K and A\(L') = K'. Furthermore, we may verify that
label(K') = label(K’) = [[4,1; 1], dK = dK’ and Ly =~ L),. But

label(vf (K)) = {[4,L;4]} # {[4,1; 4]} = label(vf'(K")).

Therefore we also can not determine the multiset label(vZ(K)) by the given
information in this case. Let denote x be the primitive vector in K corre-
sponding to the symmetry in O(K). In such a case, we have to check that
the orthogonal complement of x in K is either even or odd. The method to
obtain this information is given in Section 2 of Chapter 5. This is an example
of Subcase(4.7.1.1) below.

From now on, we will check the above claim for every possible case.

4.3 The case when |O(K)| =24

Assume that |O(K)| = 24. Then K = Ky(a,b) for some relatively prime
positive integers a, b by Lemma 4.1.3. We define the notations

01 2 1
H:= (1 O) and A := (1 2).

Then it is clear that Ky =~ 2™A L {¢) or A L (2™¢) for some nonnegative
integer m and some unit € in Zy. Since Ag.(Lg) = K5, we may reduce the
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number of possible local structures of L.

Lemma 4.3.1. Let L be a primitive ternary lattice which is not stable over Zs
and let K := X\o(L). Suppose that K =~ Ky4(a,b) for some relatively prime
positive integers a and b. Then Lo is isomorphic to one of the following
forms;

(e1,4€9,4€3), A L 2Me) (m=2), {e) L2"A (m = 1),

H 1 8y, <(ey L8H, (1,3,2"e) (m =1),
where m is a positive integer and €, ¢; (i = 1,2,3) are unit elemints in Zs.

Proof. By taking the Watson transformation, we may easily verify that Lo
is isometric to one of the following forms;

(€1,4€9,4€3), A 1 (2Me) (m = 2), ey L2mA (m > 1),
H 18, {e LSH, (1,3,27¢) (m >
(1,7,4¢), (€1,€9,2€3) (€1 =€3 (mod 4)).

By changing basis, we may show that the last two forms are included in the
fom (1, 3,2™e€), and so we proved the assertion. O

Let M be a primitive Z-lattice and let N be a sublattice of M which
is primitive. If there is a basis {x1,xs, 23} for M such that {xy,2%1,, 2" 23}
forms a basis of N for some nonnegative integers s and ¢, we write

M > N.
(1,25,2t)
Suppose that the leading Jordan component of Ly is odd. Then, there is
a basis {x1,z9, x5} for L such that {1, xs, 223} forms a basis of Ay(L), and
then
L o AyL) o 2L.

(1,1,2) (1,2,2)

Let Ao(L)* = Ao(L), where s = 1 or 4. Then for any L' € v5(K),

K = X(L)=MA(L) o (L)*. (4.3.1)

(1,2,2)
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By the assumption, K =~ Ky(a,b) and let {x, y, z} be the corresponding
basis of K. Then all candidates of the lattice (L’)** are the following seven
lattices;

Ly :=7Z(2x) + Z(2y) + Zz, Ly :=7Z(2z) + Zy + Z(2z),
Ly := Zx + Z(2y) + Z(22), Ly :=Z(z +y) + Z(2y) + Z(2z),
Ly :=7Z2x)+ Z(y + z) + Z(22), Lyt = Z(x + z) + Z(2y) + Z(22),
Lvi :=Z(x + y + 2) + Z(2y) + Z(2z).
(4.3.2)
We may easily show that Ly, Ly and Ly are isometric to each other and so
are Ly, Lvi and Lyy. The Gram matrices of them are as follows;

8a 4a
L= (4a 8@) LG, Ln = 7amy(Lm) = Ta2y(Lv) = (20, Ga, 40),

4 2 2b
LV = Tz—y(LVI) = T:c—2y(LVII) ~ |20 6a—+b b
2b b 2a + b

Next, suppose that the leading Jordan component of Ls is even. Then by a
similar argument as above, we obtain

and hence, for any L' € v (K),

PN

K = ML) = M(L)F S 1 (4.3.3)

(1,1,2)

since L is not stable over Zs . In this case, we obtain all candidates of the
lattice L’ as following seven lattices;

Lt :=7Z(2x) + Zy + Zz,

Ly = Z(x + y) + Z(2y) + Zz,

Ly :=Z(x + 2) + Zy + Z(2z2),

Liyg =72z + 2) + Z(y + z) + Z(2z).

Ly = Zx + Z(2y) + Zz,
Ly = Zx + Zy + Z(2z2),
Ly = Zx + Z(y + z) + Z(2z),

(4.3.4)

24
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Furthermore we may obtain

Li = Tm—y<Lil) = Tx—?y(L;]I) = <2CL, 6&, b>a Li\/ = <2aa 2aa) J‘ <4b>’

2a 0 a
/v = Tx,y([/w) = TI<L/VH) =~ 0 4b 2b
a 2b 2a+0b

Now, we will show the above claim in this case.

Theorem 4.3.2. Let L be a primitive ternary lattice which is not stable
over Zo. Let K := Xgo(L) and suppose that |O(K)| = 24. Then the multiset
label(v4 (K)) is completely determined by the label of K and the structure of
Ls.

Proof. We note that label(K) = [[24;2a, 2a, 2a, 6a, 6a, 6a, b]| for some rela-
tively prime positive integers a and b. Hence it is possible to determine the
values a and b from the label of K and hence it decides the class [K] itself.
By Lemma 4.3.1, we only have to check the assertion for the reduced struc-
tures for Lo.

Case(4.3.2.1) Ly =~ A 1 (2™¢) (m = 2).

Subcase(4.3.2.1-1) m = 2. In this case, we obtain that |[y}/(K)| = 1 from
Table 3.1, and Ky = A\y(Lo) = A L {e). Since K = Ky4(a,b), two integers a
and b are odd. By the relation (4.3.3), we obtain

K =M\(L L. 4.3.5
(L) 2, (4.3.5)

Now we have to find all elements of vF'(K) among the seven candidates Lj,...,
Ly in (4.3.4) by considering their local structures. In this case, only possible
candidate is L, for Ls is an even unimodular lattice. By Lemma 4.1.3,

label(vX(K)) = {[[24; 2a, 2a, 2a, 6a, 6a, 6a, 4b]]}
Subcase(4.3.2.1-2) m = 3. In this case, we have |[y/(K)| = 1 and K, =

A(Lg) = A L (2¢). Since K = Kyy(a,b), the integer a is odd and b = 2
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(mod 4), and we get the same relation (4.3.5) as Subcase(4.3.2.1-1). The
lattice (L})2 is not isometric to Lg since it is an odd lattice. We may also
obtain that (Ljy)2 = H L (8¢) and it is not isometric to Ls. Hence we obtain
the same result as Subcase(4.3.2.1-1).

Subcase(4.3.2.1-3) m > 4. In this case, we have |y (K)| = 4 and K, =
M(Lg) = A 1 (2™ 2¢). Then the integer a is odd and ordy(b) > 2, and we
get the relation (4.3.5) again. Computing each local structure, we may show
that (Lj)2, (Lg)2 and (Lp)2 are not isometric to Lo, and the others are all
possible. Since the number of the possible cases coincides with the order of
vE(K), all elements in vf(K) are founded. Since M\(L{;) = K, the order
|O(LY)| divides |O(K)|. Then we may easily verify that the isometry group
of L, is of order 8 and the type of its lavel is Ill by observing the symmetries,
structure of Lj, and Lemma 4.1.6. Therefore

label(vF (K)) = {[[8, IIT; 2a, 6a, 4b]), [24; 2a, 2a, 2a, 6a, 6a, 6a, 4] }.

Case(4.3.2.2) Ly = {e) L 2"A (m = 1).
Subcase(4.3.2.2-1) m = 1. In this case, we have |7Z(K)| = 1 and K, =
Ao(Ly) = (2¢y L A. Then the integer a is odd and b = 2 (mod 4). By (4.3.1),
we obtain the relation

K =X(L) o L% (4.3.6)

(1,2,2)

Since (Ly)2 has no even modular component and (Ly)s has a 2-modular
component of rank 2, they are not isometric to (Ly)?. Now there is an only
possible candidate Ly and thus, L = (L;)2. Therefore

label(v2(K)) = {[[24; 4a,4a,4a,12a,12a,12a, g]]}

by Lemma 4.1.3.
Subcase(4.3.2.2-2) m = 2. In this case, we have |74 (K)| = 1 and K, =
Ao(Ls) = {ey L A. Then the integers a, b are odd and we obtain the relation

K=x(L) > L (4.3.7)

26



CHAPTER 4. LABELS OF CLASSES

by (4.3.1). Clearly (Ly)z is not isometric to Ly. Suppose that (Ly)s is
isometric to Lo. Since 2a + b is odd, we may write (Ly)s = (2a + by L K’
for some binary Zs-lattice K'. Since Ly = {¢) L 4A, we have d((K')s) =
d(4A) = 48. But d((K')3) = 48a%b(2a + b) # 48 and this is a contradiction.
Therefore only possible one is L; and we obtain

label(v3 (K)) = {[24; 8a, 8a, 8a, 24a, 24a, 24a, bl }.

Subcase(4.3.2.2-3) m = 3. In this case, we may obtain the same result as
Subcase(4.3.2.2-2) by the same procedure.

Subcase(4.3.2.2-4) m > 4. In this case, we have |7 (K)| = 4 and K, =
Ao(Ly) = {e) L 2™2A. Then ordy(a) > 2 and b is odd, and we get the
relation (4.3.7). It is clear that (Ly)2, (Lm)2 and (L )2 are not isometric
to Ly, and the other candidates are all possible by their local structures. In
addition, we may verify that the order of O(Ly) is 8 and the type of the label
for Ly is IV. Therefore

label(74(K)) = {[[8,1\/;8@, 24a, 4b]], [24; 8a, 8a, 8a, 24a, 24a, 24a, b]]}

Case(4.3.2.3) Ly =~ (1,3,2"¢) (m > 1).

Subcase(4.3.2.3-1) m = 1. In this case, we have |74 (K)| = 3 and K, =
Ao(Ly) = {ey L A. Then the integers a and b are odd and we get the relation
(4.3.6). Since s((L1)2) = s((Lv)2) = Zs, the four candidates are excluded.
The rest of three lattices are possible to be isometric to Lo. Therefore

label(v4 (K)) = {[[8. L a, 3a, 2b] }.

Subcase(4.3.2.3-2) m = 2. In this case, we obtain the same result as
Subcase(4.3.2.3-1) in a similar way.

Subcase(4.3.2.3-3) m > 3. In this case, we have |7£(K)| = 6 and K, =
Ao(Ly) = A L 2m~1(e). Then the integer a is odd and ordy(b) > 2, and we
get the relation (4.3.6). Among the candidates, (L;)2 is the only impossible
case and hence

label(v4 (K)) = {[[8, L a, 3a, 2b], [[8, IV; 4a, 12a, 2b] }.
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Case(4.3.2.4) Ly = (€1,4¢€,4¢e3). In this case, we have

|’72L(K)| = 21_623 and K2 = /\Q(LQ) = <€1, €9, €3>.

2+ x(L2)

Then the integers a and b are odd and we get the relation (4.3.7). Since
Ao(Lg) =~ (by L A, this is anisotropic and so is Ly. Therefore |y&(K)| = 3.
Then we may easily show that 74 (K) = {Ly, Lvi, Lyi} and hence

label(vy (K)) = {[8,1V; 8a, 24a, 4] }.

Case(4.3.2.5) Ly =~ {(¢) | 8H. In this case, we have |74 (K)| = 3 and
Ky = Xo(Ly) = {ey L 2H. Then we have a = 2 (mod 4) and the integer b is
odd, and we get the relation (4.3.7). By a simple calculation, we obtain

label(v3 (K)) = {[[8,1V; 8a, 24a, 4b] }.

Case(4.3.2.6) Ly, ~ H | (8¢). In this case, we have |y}/(K)| = 3 and
Ky = M\(Ly) =~ H L (2¢). Then the integer a is odd and b = 2 (mod 4),
and we get the relation (4.3.5). By a simple calculation, we obtain that
YH(K) = {L4, L1, iy} and hence

label(~y (K)) = {[[8, II; 2a, 6a, 4b] }.

4.4 The case when |O(K)| =16

Assume that |O(K)| = 16. Then K = Kig1(a,b) or Kigu(a,b). for some
relatively prime positive integers a and b by Lemma 4.1.4. First, we consider
the case when K =~ Kjg1(a,b). Then we obtain the following lemma.

Lemma 4.4.1. Let L be a primitive ternary lattice which is not stable over
Zs and let K := Xy (L). Suppose that |O(K)| = 16 and K is of type 1. Then
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Lo is isomorphic to one of the following forms;
AL ey, HL4e), <{ey L4A, <{e) L 4H,

(€1,€0,2¢3) (61 £ €2 (mod 4)), {e1,62,2Me3) (M =2, e =€ (mod 4)),
(€1,2€9,2™ez) (m = 1,2), {e1,4¢€3,2Me3) (m = 2), {€1,2Mez,2™e3) (M = 3),
where m is a positive integer and €, ¢; (i = 1,2,3) are units in Zs.

Proof. Using the Watson transformations, We may easily verify that the
above forms are only possible structures of Ly up to isomorphism. Note that
the form (e, €2, 2¢3) may always be assumed that €; # €5 (mod 4). O

Let K = Zz + Zy + Zz = Ky61(a, b) and suppose that the leading Jordan
component of Ly is odd. Then by a similar argument to the above case, we
may obtain the relation (4.3.1) and also obtain all candidates of the lattice
(L") for any L' € v&(K) as (4.3.2). By simple calculations, we may verify
that

Ly = {4a,4a,by, Ly = 7Ty,—y(Lm) = {a,4a,4b), L = (2a,2a,4b),

b 2 2a +b 2a 2b
Ly = Ty—y(Ly1) = (4ay L (a% 4b> . Lyp = 2¢  4a 0
2b 0 4b

Next, suppose that the leading Jordan component of L, is even. Then
we obtain the relation (4.3.3) and all candidates of a lattice L' € vF(K) as
(4.3.4). Further we may obtain that

Ly = 7,y (Ly) = {a,4a,by, Ly ={2a,2a,by, Ly ={a,a,4d),

2
/ / atb 2 / a+b b b
Ly = 1ay(Lyy) = (ay L o ) L= b a+0b 2b

2  2b  4b

Theorem 4.4.2. Let L be a primitive ternary lattice which is not stable over
Zo and let K := Xge(L). Suppose that |O(K)| = 16 and K is of type 1. Then
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the multiset label(vL, (K)) is completely determined by the label of K and the
structure of Lo.

Proof. Since label(K) = [[16,1; a, a, 2a, 2a, b]] for some relatively prime inte-
gers a and b, it is possible to determine the values of a and b from the label
of K and hence it decides the class [K]. To prove the theorem, we consider
each case for Ly given in Lemma 4.4.1.

Case(4.4.2.1) Ly =~ A | (4¢). In this case, we have |y/(K)| = 1 and
Ky = M\(Lsg) = A 1 (). Therefore the integers a and b are both odd and we
obtain the relation (4.3.5). Comparing the local structures, we may easily
show that vF(K) = {Liyg}. Since Liy = Kisu(a,a + b), we obtain

label(vF(K)) = {[[16, IT; 2a, 2a, 4a, 4a, 4b]]}

by Lemma 4.1.4.

Case(4.4.2.2) Ly, =~ H 1 (4e). This case is similar to Case(4.4.2.1) and we
obtain the same result.

Case(4.4.2.3) L =~ {¢) L 4A. In this case, we have |y/(K)| = 1 and
Ky = Xo(Ls) = () L A. Therefore the integers a and b are both odd and we
obtain the relation (4.3.7). Comparing the local structures, we may easily
show that v (K) = {Lvn}. Since Liy =~ Kis1(2a,2a + b), we obtain

label(vy (K)) = {[16,1I; 4a, 4a, 8a, 8a, 4b] }

by Lemma 4.1.4.

Case(4.4.2.4) L = {e¢) L 4H. This case is similar to Case(4.4.2.3) and we
obtain the same result.

Case(4.4.2.5) Ly = (e, €2, 2¢3), €1 # €5 (mod 4).

Subcase(4.4.2.5-1) €165 = 3 (mod 8). In this case, we have |vf(K)| = 3
and Ky = Ay(Ls) =~ A L (e3). Therefore integers a and b are both odd
and we obtain the relation (4.3.6). Since K is anisotropic, a = b (mod 4).
Comparing the local structures, we may easily show that (L), (Lv)2 and
(Ly)2 are isometric to (Ly)?, and the other lattices are not. By observing the
symmetries of O(Ly) and O(Lyi), we obtain their orders and types. Then
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we have
label(v4(K)) = {[[8,1[; 2a,2a,2b], [16,1; a, a, 2a, 2a,26]]}.

Subcase(4.4.2.5-2) ¢, = 7 (mod 8). This case is similar to the previous
case but (L) and (Ly)s are not isometric to (Ly)? since a # b (mod 4).
Therefore

label(v3 (K)) = {[[16,1; a,a, 2a, 2a, 2b] }.

Case(4.4.2.6) Ly = {€1,€2,2™e3) (m = 2), €, = €2 (mod 4).
Subcase(4.4.2.6-1) m = 2. In this case, we have |vF(K)| = 1 and K, =
Ao(Ly) = (€], €5, 2¢5). Therefore the integer a is odd and b = 2 (mod 4), and
we obtain the relation (4.3.6). Comparing the local structures, we may easily
show that 72 (K) = {(Ly)2}. Therefore

label(v4(K)) = {[[16, I;a,a,2a,2a, Qb]]}.

Subcase(4.4.2.6-2) m = 3. In this case, we have |[y/(K)| = 1 and K, =
Ao(Ly) = (€}, €y, 4e3) for some units €] and €, in Zy. Therefore the integer
a is odd and b =4 (mod 8), and we obtain the relation (4.3.6). Comparing
the local structures, we may easily show that v2(K) = {(Ly)2} if €, = €
(mod 8), and v£(K) = {(Lyr)z} otherwise. Therefore

{[[16, I;a,a,2a,2a, 2b]]} if 4 =€y (mod 8)

label(v4(K)) =
(72 ( )) {{[[167 H, 20/7 2@, 4@, 4@, 2b]]} lf €1 = €9 + 4 (mOd 8)

Subcase(4.4.2.6-3) m > 4. In this case, we have |y (K)| = 2 and K, =
Ao(Ly) = (€|, €y, 2™ Le3). Therefore the integer a is odd and b =0 (mod 8),
and we obtain the relation (4.3.6). Comparing the local structures, we may
easily show that (Lyy)s and (Lvyy)s are isometric to (L)? if €, = €, (mod 8)
and the others are impossible. Therefore

label(vy (K)) = {[[16,1; a, a, 2a, 2a, 2b], [16, 11; 2a, 2a, 4a, 4a, 2b] }.

Case(4.4.2.7) Ly =~ <€1,2€2,2m63> (m =1, 2)
Subcase(4.4.2.7-1) m = 1. In this case, we have |7 (K)| = 1 and K, =
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Ao(Ly) = (2¢€1, €9, €3). Therefore the integer a is odd and b = 2 (mod 4), and
we obtain the relation (4.3.6). Comparing the local structures, we may easily
show that v4(K) = {(L;)z}. Therefore

b
label(vy (K)) = {[[16,1; 2a, 2a, 4a, 4a, 5]]}.

Subcase(4.4.2.7-2) m = 2. In this case, we have |7 (K)| = 2 and K, =
Ao(Ly) = Ly = (261, €3,2¢3). Then we have a = 2 (mod 4) and the integer b
is odd, and we obtain the relation (4.3.6). Comparing the local structures,
we may easily show that 72 (K) = {(Ly)2, (Ly)2}. Therefore

label (74 (K)) = {[[8,T; g 2a,2b]}.

Case(4.4.2.8) Ly =~ (e1,4€2,2™e3) (m = 2).

Subcase(4.4.2.8-1) m = 2. In this case, we have Ky = \y(Lgy) = (€1, €3, €3).
Then the integers a and b are odd, and we obtain the relation (4.3.7). First,
we assume that a = b (mod 4). Then we may show that L, is anisotropic and
€2 = €3 (mod 4), and hence |74 (K)| = 3. Comparing the local structures,
we may easily show that 75 (K) = {Ly, Ly, Li}. Therefore

label(vy (K)) = {[[8,L; a, 4a, 4b], [16,1; 4a, 4a, 8a, 8a, b] } .

Next, suppose that a # b (mod 4). Then L, is isotropic and hence |v4 (K)| =
1 if e = €3 (mod 4), and 2 otherwise. Comparing the local structures, we
may easily show that

{[[16, I; 4a, 4a, 8a, 8a, b]]} if e=¢3 (mod 4),

label(v4(K)) =
(72 ( )) {{[[8, I; a, 4a, 4b]]} otherwise.

Subcase(4.4.2.8-2) m = 3. In this case, we have |74 (K)| = 2 and K, =
Ao(Lo) = €1, €9, 2e3). Therefore the integer a is odd and b =2 (mod 4), and

we obtain the relation (4.3.7). Comparing the local structures, we may easily
show that v/ (K) = {Ly, Ly} if a = €; (mod 4), and 74 (K) = {Ly, L1}
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otherwise. Therefore

label(X(K)) = {{[[8, I a,‘4a, 4]} ifa=e (mod4),

{[[8, IT; 4a, 4a, 4b]]} otherwise.
Subcase(4.4.2.8-3) m > 4. In this case, we have |y&(K)| = 212 and
Ky = \y(Ly) = (€1, €2,2™ 2€3). Then the integer a is odd and b = 0 (mod 4),
and we obtain the relation (4.3.7). We have |v5(K)| =4 if ¢, = €2 (mod 4),
and 2 otherwise. Comparing the local structures, we may easily show that

8,1;a,4a,4b], [8,11; 4a, 4a, 4] } if € = 44
label(fygL(K)):{{[[”a’ a,40]], [8,1; 4a, 4a,4b]]} if & =€ (mod 4),

{[[8, II; 4a, 4a, 4b]]} otherwise.

Case(4.4.2.9) Ly =~ {e1,2Mey,2™e3) (m = 3).

Subcase(4.4.2.9-1) m = 3. In this case, we have |vZ(K)| = 1+2623 and
Ky = \(Lo) = {€1,2¢€2,2¢3). Then we have a = 2 (mod 4) and the integer
b is odd, and we obtain the relation (4.3.7). Suppose that €3 = €3 (mod 4).
Then we have |[v2(K)| = 1, and 74 (K) = {Li} if ¢, = b (mod 8), and
VE(K) = {Lyy} otherwise. Next, suppose that e; # €3 (mod 4). Then we
have v2(K) = {Lv, Lvi}. Consequently,

label(14 (K)) =

{[[16,1;4a, 4a,8a,8a,b]]}  if ea=€; (mod4) and e; =b (mod 8),
{[[16, IT; 4a, 4a, 8a, 8a, 4b]]} if g =€e3 (mod4)and e; #b (mod 8),
{8, 1I; 4a,4a,4b]] } otherwise.
Subcase(4.4.2.9-2) m = 4. In this case, we have |74 (K)| = 2 and K, =
Ao(Ly) = {€1,4€5,4€3). Then we have a = 4 (mod 8) and the integer b is
odd, and we obtain the relation (4.3.7). We may easily show that v4(K) =
{L1, Lvp} if e, = b (mod 8), and 7' (K) = {Lv, Lyi} otherwise. Consequently
we have

16,1; 4a, 4a, 8a, 8a, b, [ 16, 1II; 4a, 4a, 8a, 8a, 4b ifeg =b (mod 8),
{ [8,1; 4a, 4a, 4b]| } otherwise.
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Subcase(4.4.2.9-3) m > 5. This case is similar to Subcase(4.4.2.9-2) but
Ly, Ly, Ly, Lyy are all in v2(K). Hence

label (74 (K)) = {[[8,]1;4&,4&, 4b], [16,1; 4a, 4a, 8a, 8a, b]|, [16, II; 4a, 4a, 8a, 8a, 4] }.

]

Next, we consider the case when K = Kjgn(a,b). In this case, we have
the following lemma.

Lemma 4.4.3. Let L be a primitive ternary lattice which is not stable over
Zo and let K := Xgo(L). Suppose that |O(K)| = 16 and K is of type II. Then
Loy 1s isomorphic to one of the following forms;

A 1 (16ey, H L (16¢e)y, <{e) L 16A, <{e) L 16H,

(€1,€0,8¢e3) (61 £ €2 (mod 4)), {e1,€2,2Me3) (m =3, e =€ (mod 4)),
(€1,4€2,2Me3) (M =5, € =€ (mod 4)),
(€1,2™€3,2™e3) (M =5, ea=¢€3 (mod 4)),

where m is a positive integer and €, ¢; (1 = 1,2,3) are units in Zs.

Proof. Suppose that the integer b is even. Then clearly the integer a is odd
since they are relatively prime. In this case, we obtain

Ky~ (2‘; _b“) IR

for some unit € in Z,. This local structure has an even unimodular component
of rank 2. Next, suppose that the integers a and b are both odd. Then we
have

Ky =~ (b,ab(2b — a),2™€)

for some positive integer m > 3. Since a(2b — a) = 1 (mod 4), we have
b=ab(2b—a) (mod 4). Let a = 2 (mod 4) and b is odd at third. Then we

obtain
2 1
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This local structure has and even 4-modular component of rank 2. Finally,
we assume that ordya = m > 2 and b is odd. Then we have

Ky ~ <b, 2a <1 — %) ,2a6>

for some unit € in Zy, and we also have (1 —g)e =1 (mod 4). Therefore we

may descrive the local structure of K as follows;
T L {de), {ey) L AT, {e1,€2,2™e3) (m =3, ¢ =¢€3 (mod 4)),

(€1,2Me9,2™e3) (M =3, e3¢5 =1 (mod 4)),

where T is an even unimodular lattice of rank 2. Now we choose the local
structures for Ly such that the Watson transformations of them have above
four types. O]

Let K = Zx+ Zy +Zz = Ky n(a,b) and suppose that the leading Jordan
component of Ly is odd. By scaling ﬁ to each lattice in (4.3.2), they are
the only possible candidates that may be contained in 7' (K) as above cases,
where s is the scaling factor of the Watson transformation of L. Furthermore
we may obtain

4
Ly = {4a,4a,4b — 4ay, Ly = 7_y(Em) = (2a) L ( sa “ ) ,

—4a 4b— 2a
b —2a —2a+2b
Lyt = 72(L1) = Tm—y(LV) = Ty(LV]I) ~ —2a 8a —4a

—2a+2b —4a 4b

Next, suppose that the leading Jordan component of Ly is even. Then
the lattices in (4.3.4) are only possible candidates that may be contained in
vE(K). Further we may obtain that

4a 4a —2a
Ly = (2a,2a,4b — 4ay, Ly =7p—y(Eyy) = | 4a  8a —2a |,
—2a —2a b
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2a —a —2a
L/V = Ta:(Li) = Tw+y(Lﬁ) = Tx—y(L/VI) = —a b 2b —2a |.
—2a 2b-—2a 4b

Theorem 4.4.4. Let L be a primitive ternary lattice which is not stable over
Zs and let K := Xge(L). Suppose that |O(K)| =16 and K is of type Il. Then
the multiset label(vL, (K)) is completely determined by the label of K and the
structure of Lo.

Proof. Since label(K) = [16,1I; 2a, 2a, 4a, 4a,4(b — a)] for some relatively
prime integers a and b, it is possible to determine the integers a and b from
the label of K and hence it decides the class [K]. To prove the theorem, we
consider each case given in Lemma 4.4.3.

Case(4.4.4.1) Ly =~ A | (16¢). In this case, we have |y (K)| = 4 and
Ky = M\(L2) = A L {4e). Therefore the integer a is odd and b =0 (mod 2),
and we obtain the relation (4.3.5). Comparing the local structures, we may
easily show that v} (K) = {L{, L}, L4, L;}. Since the order of O(L}) is 4 and
its symmetry is of type 2, we obtain

label(v; (K)) = {[4,1; 2a] }.

Case(4.4.4.2) L, =~ H 1 (16¢). This case is similar to Case(4.4.4.1) and we
obtain the same result.

Case(4.4.4.3) Ly =~ {¢) L 16A. In this case, we have |7¥(K)| = 4 and
Ky = Xo(Ls) = (e) L 4A. Then we may easily show that a = 2 (mod 4) and
the integer b is odd, and we obtain the relation (4.3.7). Comparing the local
structures, we may easily show that y/(K) = {L1, Ly, Lvi, Lvn}. Since the
order of O(Ly) is 4 and its symmetry is of type 2, we obtain

label(v3 (K)) = {[[4,1; 16a]]}.

Case(4.4.4.4) Ly, = {¢) 1 16H. This case is similar to Case(4.4.4.3) and we
obtain the same result.

Case(4.4.4.5) <€1, €9, 8€3> (61 §é €9 (mod 4))
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Subcase(4.4.4.5-1) €165 = 3 (mod 8). In this case, we have |v5(K)| = 6
and Ky = Ao(Lg) = A L {4e3). Therefore the integer a is odd and b = 0
(mod 2), and we obtain the relation (4.3.6). Comparing the local structures,
we may easily show that (L,)? is isometric to all candidates except Ly if
b =2 (mod 4). Therefore we obtain

label(vy (K)) = {[[4,1; 8a], [8,1I; &, 4a,8(b — a)] }.

Subcase(4.4.4.5-2) €;¢5 = 7 (mod 8). This case is similar to Subcase(4.4.4.5-
1) but Ly, Ly, Lyi and Lyy are excluded. Therefore

label(vs (K)) = {[[8,II; &, 4a, 8(b — a)] }.

Case(4.4.4.6) Ly = (e1,€2,2™€3) (m = 4), € = €2 (mod 4). In this case, we
have Ky = \y(Ly) = (€}, €5,2™ e3) and we obtain the relation (4.3.6). Since
72 (K)| = 2, the integer a is odd and so is b. Then we have

vy (K) ={L§, L}
and hence
label(v3 (K)) = {[[8,I; @, 4a, 8(b — a)]|}.

Case(4.4.4.7) Ly = {e1,4¢€2,2Me3) (Mm = 5), € = €2 (mod 4). In this case,
we have Ky = \y(Ly) = (€1, ¢€2,2™ %e3) and we obtain the relation (4.3.7).
Since |74 (K)| = 4, the integers a and b are odd, and then we have

vy (K) = {L1, Lv, L1, Lvx},
and hence
label (v} (K)) = {[4,11; 16a] }.

Case(4.4.4.8) Ly = {¢1,2™e€9,2Me3) (m = 5), €3 = €3 (mod 4). In this case,
we have |74 (K)| = 4 and Ky = A\y(Ly) = {e1,2™ 2€5,2™ 2¢3). Then we have
a =0 (mod 4) and the integer b is odd, and we obtain the relation (4.3.7).
Comparing the local structures, we obtain

7§(K> = {le LV7 LVIJ LVH}7
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and hence
label(vs (K)) = {[[4,1; 16a]]}.

4.5 The case when |O(K)| =12

Assume that |O(K)| = 12. Then K =~ Kjs(a,b) for some relatively prime
positive integers a and b by Lemma 4.1.2. If the integer a is odd, then
Ky~ A 1 (3(3b—2a)), and if a is even and b is odd, then

_ L2H  ifa=2mod4
K2;<b>La(2 b >; © o =2mod,
—b b(2b—a) ¢y L2mA if a=0mod 4,

for some units €, € € Z; and an integer m = ordy(a). But {¢) L 2H =~ {(¢”) |
2A for some unit ¢” € Z5. Therefore Lo is isometric to one of the forms in
Lemma 4.3.1 as the case when |O(K)| = 24.

Suppose that the leading Jordan component of Ly is odd. By scaling
+ to each lattice in (4.3.2), they are the only possible candidates that may
be contained in 7' (K) as above cases, where s is the scaling factor of the
Watson transformation of L. Furthermore we may obtain

8a —4a —2a
Lyt = 7,(L1) = 7y(Lvn) = | —4a  8a 0 |,
—2a 0 b
20 —2a —2a
Ly = Tysy(Ln) = 7y(Lv) = | —2a  8a 0 |1,
—2a 0 4b

8a —4a —4a
Lv>=|—-4a 2a+b 2b
—4a 2b 4b

Next, suppose that the leading Jordan component of Ls is even. Then we
obtain the relation (4.3.3) and all candidates of a lattice L' € vF(K) as
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(4.3.4). It is easy to show that

2a —2a —2a

L, :Ty(Li) =T$+y<L/\/]I) ~ | —2a 2a+b 2b |,
—2a 2b 4b
b —a —2a
=) == a2 0 |,
—2a+2b 0 4b
20 —a —a
Ly=|-a 2a 0
—a 0 4b—2a

Theorem 4.5.1. Let L be a primitive ternary lattice which is not stable
over Zo and let K := Aoo(L). Suppose that |O(K)| = 12. Then the multiset
label(vZ,(K)) is completely determined by the label of K and the structure of
Lo.

Proof. We note that label(K) = [12;2a, 2a, 2a] for some integer a. Hence
it is possible to determine the value a from the label of K. By the above
argument, we only have to check the assertion under the assumption that Lo
is isometric to one of the forms in Lemma 4.3.1.

Case(4.5.1.1) Ly = A 1 (2™e) (m = 2).

Subcase(4.5.1.1-1) m = 2. In this case, we obtain that [y} (K)| = 1 from
Table 3.1 and Ky = M\(Ls) = A L {¢). Since K = Ky5(a,b), the integers a
and b are odd. By (4.3.3), we obtain the relation (4.3.5).

Now we have to find all elements of y}(K) among the seven candidates
Li,..., Liy by considering their local structures. In this case, only possible
candidate is Ly, for Ly is an even unimodular lattice. Since |O(L},)| divides
12, we may conclude that |O(Ly,)| = 12 by the local structure of (Lf)s.
Therefore

label(v; (K)) = {[12; 2a, 2a, 2a]]}.

Subcase(4.5.1.1-2) m = 3. In this case, we have |y(K)| = 1 and K, =
A(Lg) = A 1 (2¢). Since K = Kjs(a,b), the integer a is odd and b = 0
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(mod 4), and we get the same relation (4.3.5) as Subcase(4.5.1.1-1). The
lattice (L4 )q is not isometric to Lo since it is isometric to H L (8¢). We
may also obtain that (L{;)s = 2H L (2¢) and it is not isometric to Lo either.
Hence we obtain the same result as Subcase(4.5.1.1-1).
Subcase(4.5.1.1-3) m > 4. In this case, we have |y (K)| = 4 and K, =
M(Ly) = A 1 (2™ 2¢). Then the integer a is odd and b = 2 (mod 4), and we
get the relation (4.3.5) again. Computing each local structure, (L})z2, (Li;)2
and (Li{y)s are not isometric to Ly and the others are all possible. Since the
number of the possible cases coincides with the order of vF(K), all elements
in v£(K) are founded. Since A\;(L{;) = K, the order |O(L},)| divides |O(K).
Then we may easily verify that the isometry group of Lf, is of order 4 and
the type of its lavel is I by observing the symmetries, structure of L5, and
Lemma 4.1.2. Therefore

label(vF(K)) = {[[4,]:[; 2a], [12; 2a,2a,2a]]}.

Case(4.5.1.2) Ly = {e) L 2"A (m = 1).

Subcase(4.5.1.2-1) m = 1. In this case, we have |7Z(K)| = 1 and K, =
Ao(Ly) = (2¢y L A. Then the integer a is odd and b =0 (mod 4). By (4.3.1),
we obtain the relation (4.3.6). We may easily show that the only possible
candidate is Ly and thus, L = (Ly)z. Therefore

label(vs (K)) = {[[12; 4a, 4a, 4a] }.

Subcase(4.5.1.2-2) m = 2. In this case, we have |74 (K)| = 1 and K, =
Xo(Ls) = {(¢y L A. Then the integers a and b are odd and we obtain the
relation (4.3.7) by (4.3.1). Since (L) has an odd 4-modular component
and s((Ly)a) = 27Z,, the lattices L; and Ly are not isometric to Ly . By
the Jordan decomposition of (Ly)s2, we may conclude that Ly is possible.
Therefore

label(vy (K)) = {[12; 8a, 8a, 8a]]}.

Subcase(4.5.1.2-3) m = 3. In this case, we may obtain the same result as
Subcase(4.5.1.2-2) by a similar way.
Subcase(4.5.1.2-4) m > 4. In this case, we have |74 (K)| = 4 and K, =
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Ao(Ly) = {e) L. 2™ 2A. Then we have ordy(a) > 2 and the integer b is odd,
and we get the relation (4.3.7). It is clear that Ly, Ly and Ly are not
possible and the other candidates are all possible by their local structures.

Therefore
label(vy (K)) = {[[4,1; 8a]}, [12; 8a, 8a, 8a] }.

Case(4.5.1.3) Ly = (1,3,2™¢) (m > 1).

Subcase(4.5.1.3-1) m = 1. In thls case, we have |v2(K)| = 3 and K, =
Ao(Ly) = () L A. Then the integers a, b are odd and we get the relation
(4.3.6). Since s((L1)2) = s((Lv)2) = Zo, the four candidates are excluded.
The rest of three lattices are all possible to be isometric to Ly and hence

label(v3 (K)) = {[4,1; a]l}.

Subcase(4.5.1.3-2) m = 2. In this case, we obtain the same result as
Subcase(4.5.1.3-1) in a similar way.

Subcase(4.5.1.3-3) m > 3. In this case, we have |7 (K)| = 6 and K, =
Ao(Lo) =~ A L 2™ ey, Then the integer a is odd and b = 2 (mod 4), and we
get the relation (4.3.6). Among the candidates, (Ly)? is the only impossible
case since s((Ly)2) = 4Z,, and hence

label(vy (K)) = {[[4,L; ], [4, I; 4a] }.

Case(4.5.1.4) Ly = (€1,4¢€,4€3). In this case, we have

3
")/2[/(K)| _ 217623% and K2 = )\2(L2) = <€1, €9, €3>.

Then the integers a and b are odd and we get the relation (4.3.7). Since
Aa(Lg) = (3(3b — 2a)) L A, this is anisotropic and so is Ls. Therefore we
have |74 (K)| = 3. Then we may easily show that v*(K) = {Li, Lyi, Lvi}
and hence

label(~3 (K)) = {[[4,1;8a] }.

Case(4.5.1.5) Ly =~ {(¢) | 8H. In this case, we have |y&(K)| = 3 and
Ky = Xo(Ly) = {ey L 2H. Then we have a = 2 (mod 4) and the integer b is
odd, and we get the relation (4.3.7). Considering the Jordan decompositions
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of all candidates, we obtain
label(vy (K)) = {[[4,1; 8a] }.

Case(4.5.1.6) Ly, =~ H 1 (8¢). In this case, we have |y}/(K)| = 3 and
Ky = M\(Lg) = H L (2¢). Then the integer a is odd and b =0 (mod 4), and
we get the relation (4.3.5). By a simple calculation as above, we obtain that
YH(K) = {L}, L, Ly} and hence

label(vy (K)) = {[4,1;2a] }.

4.6 The case when |O(K)| =8

Assume that |O(K)| = 8. Then we classified such lattices into four types in
Section 1 of this chapter. First, we consider the case when K =~ Kgi(a,b,c),
where a, b, ¢ are relatively prime positive integers. Let K = Zx + Zy + Zz =~
Ksi(a,b,c). Then we may obtain

Ly =~ {4a,4b,c), Ly = {4a,b,4cy, Ly = {a,4b,4c),

a+b 2b b+c¢ 2¢c
LN:<4C>J_<2() 4b)’ LVZ<4&>J—(20 40)7

a+b+c 2b 2¢
2b 4 0 |,
2c 0 4c

lle

a+c 2¢
Ly = 4b) L L
v = (4b) (20 4c>’ vi

and we may also obtain

a+b 2b
Lxtano. Lo s (" 1)L

+c 2¢c
L, ~ 4 Lo~ (¢ 1
v <a7 b> C>7 Vv ( 20 40) <b>7
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a+c c 2c
c b+c 2c
2c 2c  4c

e

;o b+c 2¢ ,
Lw:<a>L<20 4c>’ Ln

Theorem 4.6.1. Let L be a primitive ternary lattice which is not stable over
Zsy and let K := Age(L). Suppose that |O(K)| = 8 and K is of type 1. Then
the multiset label(vL (K)) is completely determined by the label of K and the
structure of Lo.

Proof. Since label(K) = [[8,1;a,b, c]] for some relatively prime integers a, b
and c¢, it is possible to determine the set {a,b,c} from the label of K and
hence it decides the class [K].

Case(4.6.1.1) Ly, =~ T 1 {4e¢). In this case, we have |[y/(K)| = 1 and
Ky = M(Ly) = T L {e). Therefore the integers a, b and ¢ are odd and we
obtain the relation (4.3.5). Comparing the local structures, we may easily
show that v} (K) = {L{y}. Since Liy = Ks(c,b,a + ¢), we obtain

label(vy (K)) = {[[8,1V;4a, 4b, 4c] }

by Lemma 4.1.6.

Case(4.6.1.2) Ly =~ {¢) L 4T. In this case, we have [y&(K)| = 1 and
Ky = My(Ly) = {e) L T. Therefore the integers a, b and ¢ are odd and we
obtain the relation (4.3.7). Comparing the local structures, we may easily
show that v} (K) = {Lvn}. Since Lyy =~ Ksm(2b,2c,a + b + ¢), we obtain

label(v3 (K)) = {[[8, III; 4a, 4b, 4c] }

by Lemma 4.1.6.

Case(4.6.1.3) Ly = {e1,€9,2¢3), €1 # €5 (mod 4). In this case, we have
VE(K)| = 2% and Ky = A\y(Lo) = T L (e3). Therefore the integers a, b
and ¢ are odd and we obtain the relation (4.3.6). If K is anisotropic, then
we have a = b = ¢ (mod 4) and |y&(K)| = 3. On the other hand, if K,
is isotropic, then there is one integer in a, b and ¢ which is not equivalent
modulo 4 to the others, and [y (K)| = 1. Without loss of generality, we may

assume that a % b = ¢ (mod 4). Comparing the local structures, we may
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easily show that

{(L)z, (Lv)2, (Lv)2}  if K, is anisotropic,
{(Lv)z} if Ky is isotropic and a #b=c¢ (mod 4).

VI

7 (K) = {
Therefore, if K5 is anisotropic, we obtain
label(v4 (K)) = {[[8, II; 2a, 2b, 2¢], [8, 1I; 2b, 2a, 2¢]], [[8, II; 2c, 2a, 2b] },
and if K is isotropic and a # b = ¢ (mod 4),
label(v4 (K)) = {[[8,II; 2a, 2b, 2] }.

Case(4.6.1.4) Ly =~ {(€1,€9,2¢3), €, = €3 (mod 4). This case is similar to
Case(4.6.1.3) and we obtain the same result.

Case(4.6.1.5) Ly =~ {e1,€9,4€3), € = €3 (mod 4). In this case, we have
V(K)| = 1 and Ky = A\o(Ly) = (€}, €,,2¢e3). Then we may assume that
a = 2 (mod 4) and the integers b, ¢ are odd, and we obtain the relation
(4.3.6). Comparing the local structures, we may easily show that

R {{@V)Zl} Po=2ie=t fmodd)
{(Lvi)2} ifa=2,bc=3 (mod4).

Therefore we obtain

{I8,1;2a,2b,2c]} ifa=2,bc=1 (mod4),

label(v2 (K)) =
) {{[[8,1]1;2a,2b,2c]]} ifa=2bc=3 (mod4).

Case(4.6.1.6) Ly =~ {e1,€,8¢3), € = €5 (mod 4). In this case, we have
V(K)| = 1 and Ky = Ao(Ly) = (€|, €,,4e3). Then we may assume that
a =4 (mod 8) and the integers b and ¢ are odd, and we obtain the relation
(4.3.6). Comparing the local structures, we may easily show that

L {(Lv)z}  ife = be (mod 4),
5 (K) = )
% () {{(Lvu)2} otherwise.
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Therefore we obtain

{[8,1;2a,2b, 2¢]} if e, =2 (mod 4),

2

label(yy (K)) =
(02 (K)) {{[[8,]]1;2@,2(),2@]]} otherwise.

Case(4.6.1.7) Ly = {e1,€69,2Me3) (m = 4), €, = €3 (mod 4). This case is
similar to Case(4.6.1.6) and we obtain

label(v4(K)) = {[[8,]1; 2a,2b, 2¢], [8, III; 2a, 2b, 26]]},

where @ = 0 (mod 8) and the integers b and ¢ are odd.

Case(4.6.1.8) Ly = (e, 2¢y,2¢3). In this case, we have |y&(K)| = 1 and
Ky = Xy(Lo) = (2€1,€2,€3). Then we may assume that a = 2 (mod 4) and
the integers b and ¢ are odd, and we obtain the relation (4.3.6). Comparing
the local structures, we may easily show that v2(K) = {Lél}. Therefore we
obtain

label(} (K)) = {[8.1: 520, 2]}

where a = 2 (mod 4) and the integers b and ¢ are odd.

Case(4.6.1.9) L, =~ (e, 2¢y,4¢€3). In this case, we have |y (K)| = 2 and
Ky = Xo(Lg) = (2¢1, €9,2€3). Then we may assume that the integer a is odd
and b = ¢ =2 (mod 4), and we obtain the relation (4.3.6). Comparing the
local structures, we may easily show that v2(K) = {LI% , Lé}. Therefore we
obtain

label (74 (K)) = {[[8,T; 2a, 2b, g]], I8, 1; 2a, g 2],

where the integer a is odd and b = ¢ =2 (mod 4).

Case(4.6.1.10) Ly = {1, 2¢3,8¢3). In this case, we have |[7Z(K)| = 1 and
Ky = Xo(Ls) =~ (2€1,€3,4€3). Then we may assume that the integer a is
odd, b =2 (mod 4) and ¢ = 4 (mod 8), and we obtain the relation (4.3.6).
Comparing the local structures, we may easily show that

}oifeieo =2 (mod 4),

-2

L {<LH)
2 K) =
) {«LV)

ol NI

} otherwise.
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Therefore we obtain

{[[8,1; 2a, %,20]]} if €169 = %” (mod 4),

label(vs (K)) = :
(72 (K)) {{[[8,]1;2&,21),20]]} otherwise,

where the integer a is odd, b = 2 (mod 4) and ¢ =4 (mod 8).
Case(4.6.1.11) Ly =~ {€1,2¢€3,16€3). This case is similar to Case(4.6.1.10)
and we obtain

{[[8,1; 2a, 3,20]]} if €169 = %b (mod 8),

label (s (K)) = :
(72 (K)) {{[[8,]1;2@,%,20]]} otherwise,

where the integer a is odd, b =2 (mod 4) and ¢ =8 (mod 16).

Case(4.6.1.12) Ly =~ (€1,2¢3,2™e3) (m > 5). This case is also similar to
Case(4.6.1.10) and we obtain

b )
label(vz (K)) = {[8,1; 2a, 5, 2¢], [8, TG; 2a, 2b, 2¢[ },

where the integer a is odd, b =2 (mod 4) and ¢ =0 (mod 16).
Case(4.6.1.13) Ly = (¢, 4¢q, 4e3). In this case, we have

Iy (K)| = 2" and Ky = \o(Lg) = (€1, €, €3).

2+ x(L2)

Then the integers a, b and ¢ are odd and we obtain the relation (4.3.7). We
may assume that a # b = ¢ (mod 4) if Ly is isotropic. Comparing the local
structures, we may easily show that

{Ly, Ly, Ly} if e =¢€3 (mod 4) and L, is anisotropic,
V5 (K) = { {Luy} if e =¢3 (mod 4) and L, is isotropic,
{LI, L]I} if €9 §—£ €3 (mod 4:) .
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Therefore, if €5 = €3 (mod 4) and L, is anisotropic, we obtain

label (74 (K)) = {[[8, I;4a, 4b, ||, [[8, I; 4a, b, 4¢c]|, [[8, I; a, 4b, 40]]}.

We also conclude that if €3 = €3 (mod 4) and L, is isotropic, we have

label(v% (K)) = {[18,T; a, 4b, 4c] },

and if €5 # €3 (mod 4), we have

label(vy (K)) = {[[8,1; 4a,4b, c]|, [8,1; 4a, b, 4c] },

where a # b = ¢ (mod 4).

Case(4.6.1.14) L, = (¢, 4ey,8¢3). In this case, we have |v2(K)| = 2 and
Ky = \y(Lg) = {€1,€2,2€¢3). Then we may assume that a = 2 (mod 4) and
the integers b and ¢ are odd, and we obtain the relation (4.3.7). Comparing

the local structures, we may easily show that

{L1, Ly} fb=c=¢

{LIV,LVI} ibeC§é61
7 (K) = .

{Lu,Lvi} ifc#b=¢

{LI,LI\/} ifbgéczel

Therefore we have
{|I8, I;4a,4b, c], [[8,1; 4a, b, 46]]}
label(v4'(K)) = i
2 {[8,T; 4a, b, 4c]|, [, 11; 4b, 4a, 4c] }
{[8,1;4a, 4b, c]|, [8,1; 4c, 4a, 4b] }

{[[8, II; 4b, 4a, 4c], [8, II; 4¢, 4a, 4b]]}

ifb=c=¢

ifb=c=# e
ifc£Eb=¢
ifb£c=e

where a = 2 (mod 4) and the integers b and ¢ are odd.

Case(4.6.1.15) L2 = <€1,462, 2m63> (m = 4)

Subcase(4.6.1.15-1) ¢; = ¢; (mod 4). This case is similar to Case(4.6.1.14)

and we obtain

label(4' (K)) = {[[8, I; 4a, 4b, c]), [[8, I; 4a, b, 4c]), [8, II; 4c, 4a, 4b]), [8, II; 4b, 4a, 46]]},
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where a =4 (mod 8) and the integers b and ¢ are odd.
Subcase(4.6.1.15-2) Ly =~ {e1,4€3,2™e3), m = 4, ¢ # €3 (mod 4). This
case is also similar to Case(4.6.1.14) and we obtain

label(v4(K)) = {[[8,1;4@, b, 4c]), [8, TI; 4c, 4a,4b]]},

where a = 0 (mod 4), the integers b and ¢ are odd, and ¢ # b = ¢; (mod 4).

Case(4.6.1.16) Lo =~ (e1,8¢9,8¢3). In this case, we have Ky = A\o(Lq) =
(€1, 2€9,2€3). Then we may assume that the integer a is odd and b = ¢ = 2
(mod 4), and we obtain the relation (4.3.7).

Subcase(4.6.1.16-1) ¢, = €3 (mod 4). Then we have [y4(K)| = 1. Com-
paring the local structures, we may easily show that

{[[8,1;a,4b,4c]}  if % = § (mod 4) and a = ¢; (mod 8),
{[8,1II; 4a, 4b, 4c] } if & = £ (mod 4) and a + b + ¢ = € (mod 8),
{[8,1; 4c, 4b, 4a]} i (mod 4) and a + b =¢; (mod 8),
{[[8,]1;4b,4a, } i (mod 4) and a + ¢ =¢; (mod 8),

label (7} (K)) =

Subcase(4.6.1.16-2) ¢; # e3 (mod 4). Then |44 (K)| = 2. Comparing the
local structures, we may easily show that

{[[8,]1;46, 4a,4c]), [8, 1I; 4c, 4a,4b]]} if % =
{[[8,1;a,4b,4c], [[8,1II; 4a, 4b,4c] } ~ otherwise.

1&@@&K»={ (mod 4),

Case(4.6.1.17) Ly = {e1, 16¢9, 16€3). In this case, we have |y&(K)| = 2 and
Ky = Mo(Ls) = {1,465, 4€5). Then we may assume that the integer a is odd
and b = ¢ =4 (mod 8), and we obtain the relation (4.3.7). Comparing the
local structures, we may easily show that

2

L(K) = {Lm, Lvi} ifa=e (mod 8),
{Lw, Lvi} otherwise.
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Therefore we have

{[[8,1;a,4b,4c], [8,1I; 4a, 4b,4c]} ifa=e; (mod 8),

label(7L(K)) = : :
) {{[[8,H;4b,4a,4c]],[[8,11;40,4@,41?]]} otherwise,

where the integer a is odd and b = c=4 (mod 8).

Case(4.6.1.18) Ly = {€1,2M€2,2™e3y (m > 5). This case is similar to
Case(4.6.1.17) and we have

label(v4 (K)) = {[[8,T; a, 4b, 4c]|, [[8, I1; 4b, 4a, 4c]), [8, II; 4c, 4a, 4b]), [[8, IIT; 4a, 4b, 4c] },

where the integer a is odd and b = c¢=0 (mod 8).

Case(4.6.1.19) Ly = {e1, 8¢y, 16€3). In this case, we have [vJ(K)| = 1 and
Ky = Mo(Ls) = {e1,2€5,4€3). Then we may assume that the integer a is
odd, b =2 (mod 4) and ¢ = 4 (mod 8), and we obtain the relation (4.3.7).
Comparing the local structures, we may easily show that

{[[8,1; a,4b,4c] } ifa=¢ (mod 8),

{[[8, IT; 4c, 4@,41)]]} ifa+b=¢ (mod8),
{[[8, II; 4b, 4a, 4(:]]} ifa+c=¢ (mod 8),
{[[8,1II; 4a, 4b,4c]} fa+b+c=¢ (modS8).

label(nyL(K)) =

Case(4.6.1.20) Ly =~ (e, 1662, 32¢3). In this case, we have |74 (K)| = 2
and Ky = \y(Lg) = (€1,4€9,8¢3). Then we may assume that the integer a
is odd, b = 4 (mod 8) and ¢ = 8 (mod 16). We obtain the relation (4.3.7).
Comparing the local structures, we may easily show that

label(7y (K)) =

{8, T;a,4b,4c]|, [8,1;4b, da,4c]}  ifa=e (mod 8),
{[[8, I; 4c, 4a, 4b]), [8, IIT; 4a, 4b, 40]]} otherwise,

where the integer a is odd, b =4 (mod 8) and ¢ =8 (mod 16).
Case(4.6.1.21) Ly =~ {¢1,2™ey,2™ " e3) (m = 5). This case is similar to
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Case(4.6.1.20) and we obtain
label(y4 (K)) = {[[8, I; a, 4b, 4c], [8, II; 4b, 4a, 4c], [[8,11; 4c, 4a, 4b]), [[8, TI; 4a, 4b, 40]]},

where the integer a is odd, b =0 (mod 8) and ¢ =0 (mod 16).

Case(4.6.1.22) Ly = {e1, 8¢, 32¢3). In this case, we have [y (K)| = 2 and
Ky = Xo(Ls) = {e€1,2€5,8¢3). Then we may assume that the integer a is
odd, b = 2 (mod 4) and ¢ = 8 (mod 16). We obtain the relation (4.3.7).
Comparing the local structures, we may easily show that

{8, T;a,4b, 4c]|, [8,1;4b, da,4c]}  ifa=e (mod 8),

label(7(K)) = :
) {{[[8,H;4c,4a,4b]],[[8,111;4@,46,46]]} otherwise,

where the integer a is odd, b =2 (mod 4) and ¢ =8 (mod 16).

Case(4.6.1.23) Ly = (¢, 16¢€y, 64¢5). This case is similar to Case(4.6.1.22)
and we obtain the same result, where a is odd, b = 4 (mod 8) and ¢ = 16
(mod 32).

Case(4.6.1.24) Ly =~ {(¢1,2™€y,2™ 23y (m = 5). This case is also similar to
Case(4.6.1.22) and we obtain

label (74 (K)) = {[[8, T; a,4b, 4c], [8, IL; 4b, 4a, 4c]), I8, I0; 4c, 4a, 40]), [I8, II; 4a, 4b, 4c]]},

where a is odd.

Case(4.6.1.25) Ly = (€1,8¢2,2™e3) (m = 6). This case is similar to Case(4.6.1.20)

and we obtain the same result, where the integer a is odd, b = 2 (mod 4)
and ¢ =0 (mod 16).

Case(4.6.1.26) Ly = (e, 16€3,2™e3) (m > 7). This case is also similar to
Case(4.6.1.20) and we obtain the same result, where the integer a is odd,
b=4 (mod 8) and ¢ =0 (mod 32).

Case(4.6.1.27) Ly = (€1,2"€3,2™e3) (n = 5, m = n+3). This case is similar
to Case(4.6.1.24) and we obtain the same result.

Note that the other cases are impossible because of their local structures. [J
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Next, we consider the case when K =~
and c are relatively prime positive integers.

Ksq(a,b,c), where integers a, b
Then we have dK = ab(2c — b).

Put ¢ :=2c—band let K = Zx + Zy + Zz = Kgy(a, b, c). Then we have

bicd  b=d
K=Zae+7Zy—z2)+27Zz=ay L (ﬁ bfc/>.

and the label of K is [[8,1I; a, 2b,2¢']]. Now
bte
K=Zs+2Zy+2Zz={ay L (bQ
2
Then we may obtain

2(b+c) b—
Li=7y..(Ly) = (4a) L < (b—cC) bif),

2

4a 2a
Ly = 7ys-(Lvi) = [ 2a a+% b-—
0 b—c 20b
8a 4b
LV]I = 4b 2(b + C)
4b 2b

and we may also obtain

bic  b—c
M%@%ﬁiJ

2 2

S

> (a,20,20), Ly = 7.(I4)

2 0

Ly = 0 2
& a
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2(b+¢) b—rc
L=ty =@ L (09 00,

2 2
we may set as follows;

b—c

biﬁ) s Kgy(a,b,c).

2

Ly = {ay L <i2 2(b4ji C)) ’

0
Ly = {4a,2b,2c),

c )
+¢)

4b
2b ,
a+ 2b

2

4a 2a 0
~ btc  b—c
~ | 2a anr 2 3 ,
b—c otc
0 2 2
+b+c

___;rx_-l! E CI.'II

1_'_] |
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Theorem 4.6.2. Let L be a primitive ternary lattice which is not stable over
Zy and let K = Age(L). Suppose that |O(K)| = 8 and K is of type Il . Then
the multiset label(vL (K)) is completely determined by the label of K and the
structure of Lo.

Proof. Since label(K) = [[8,1I; a, 2b, 2¢]| for some integers a, b and ¢, it is
possible to determine the value a and the set {b,c} from the label of K and
hence it decides the class [K].

Case(4.6.2.1) Ly =~ T 1 {4e). In this case, we have |[y/(K)| = 1 and
Ky = M(Lg) = T L (e). Therefore the integers a, b, ¢ are all odd and we
obtain the relation (4.3.5). Comparing the local structures, we may easily
show that

{L}}  otherwise.

K = {{L (n} ifb=c (mod 4),

Therefore we have

{[[8,1II; 4a,2b,2c[|} ifb=c (mod 4),

label(v1 (K)) = :
(74 (K)) {{[[8,]1;4&726726]]} otherwise.

Case(4.6.2.2) Ly =~ T 1 (8¢). In this case, we have Ky = \y(Lo) =T L
(2¢). Then a = 2 (mod 4) and the integers b and ¢ are odd, and we obtain
the relation (4.3.5). Comparing the local structures, we may easily show that

{L} if '=Aand bce=3 ( )
{Liy} ifT=Aandbc=7 ( )
{Lj, Ly, Ly} T =Hand bc=3 (mod 8),
{Ly, Ly, Ly} T =Hand be=T7 ( ).

Vi (K) =

Therefore we have

{[8,11; 4a, 2b, 2] } if T=A and be=3 (mod 8),
label(vF(K)) = {[[8,[[1;4.1@, 20, 2c]]} ifT=Aand bc=7 (mod 8),
{[[8,1;4a,2b,2c], [4,1;4a]]} if T =Hand bc=3 (mod 8),
{[[8,1L; 4a, 2b,2c], [4,I;4a]]} T =Hand bc=7 (mod 8).
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Case(4.6.2.3) Ly =T 1 (2™¢) (m > 4). This case is similar to Case(4.6.2.2)
and we obtain

label(vX(K)) = {[[8, II; 4a, 2b, 2c]), [8, IIT; 4a, 2b, 2¢]), [4, 1I; 4a]]}.

Case(4.6.2.4) Ly =~ {(¢) 1 2T. In this case, we have |[y&(K)| = 1 and
Ky = Xo(Ly) = T 1L (2¢). Therefore a =2 (mod 4) and the integers b and ¢
are odd, and we obtain the relation (4.3.6). Comparing the local structures,
we may easily show that 72 (K) = {(Ly)2}. Therefore we have

label(v3 (K)) = {[8, H 4b, 4c] }.

Case(4.6.2.5) Ly ~ {¢) L 4T. In this case, we have |7¥(K)| = 1 and
Ky = Xy(Lo) = T L {(e). Therefore the integers a, b and ¢ are odd, and we
obtain the relation (4.3.7). Comparing the local structures, we may easily
show that

V2

L(K):{{LVH} ifb=c (mod 4)

{Lm} otherwise.

Therefore we have

{[[8.1V;4a,8b,8c]} ifb=c (mod 4)

label(v3 (K)) =
(72 (K)) {{[[8, 1I; ¢, 8b, 80]]} otherwise.

Case(4.6.2.6) Ly =~ (¢) | 8T. In this case, we have |y (K)| = 2 + x(T)
and Ky = \y(Lo) = (e) L 2T. Therefore the integer a is odd and b = ¢ = 2
(mod 4), and we obtain the relation (4.3.7). Comparing the local structures,
we may easily show that

{Lm} fT~Aandb+c=8 ( )
{Lvn} ifT’'~Aandb+c=0 (mod 16),
{Lm, Ly, Lvi} T =~Handb+c=0 (mod 16),
{Lvi, Ly, Lvy} fT>~Handb+c=8 ( ).

73 (K) =
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Therefore we have

{[[8,1; a, 8b, 8] } if 7'~ A and b + ¢ =8 (mod 16),
{[[8,1V;4a,8b,80]]} if T~ A and b+ ¢ =0 (mod 16),
{[[8,1; a, 8, 8]|, [4,I;4a]]} if T =~ H and b+ ¢ =0 (mod 16),
{[[8,1V;4a,8b,8¢c]|, [4,IL;4a])} if T =~ H and b + ¢ = 8 (mod 16).

label (v (K)) =

Case(4.6.2.7) Ly = {¢) L 2™T (m > 4). This case is similar to Case(4.6.2.6)
and we have

label(v4(K)) = {[[4, II; 4a ], [[8, I0; a, 8b, 8], [8, IV; 4a, 8b, 86]]}.

Case(4.6.2.8) Ly =~ (€1, €9, 2€3). In this case, the integers a, b and ¢ are odd
and we obtain the relation (4.3.6). Then we may show that K5 is isotropic
if and only if b+ ¢ = 0 (mod 8), or b+ ¢ = 2 (mod 4) and a + ¢ = 0
(mod 4). We may also show that |v*(K)| = 1 if K, is isotropic, and 3
otherwise. Comparing the local structures, we obtain

{(Lv)%} if K> is isotropic,
(Ln)2, (Ly)2}  ifb+c=4 (modS8),
(Lv)z,(Lvi)z} ifb+c=2and a+ % =2 (mod 4).

Therefore we have

{[[8,1;2a,b, ]|} if K is isotropic,
label(yy' (K)) = < {[[8,1;2a,b,c]|, [4,1;2a]]} if b+ c =4 (mod 8),
{[8,L;2a,b,c], [4,I;2a]l} if b+ c =2 and a + &£ = 2 (mod 4).

Case(4.6.2.9) Ly = {e1,€9,4€3), €1 # €5 (mod 4). In this case, we have
VE(K)| = 3 and Ky = Ay(La) = T L (2¢3). Therefore a = 2 (mod 4) and
the integers b and ¢ are odd, and we obtain the relation (4.3.6). Comparing
the local structures, we may easily show that

Ly {(L1)2, (Ly). (Ly)?}  ifb+c=4 (mod8),
’}/2 (K) - 1 1 1 . o
{(Lwv)2,(Lv)z,(Lv1)z} ifb+c=0 (mod 8).
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Therefore we have

{[8,1;2a,b,c]|, [4,;2a]} ifb+c=4 (mod ),

label(y; (K)) = {{[[8,1; 2a,b,c[], [4,I;2a]]} ifb+c=0 (mod 8).

Case(4.6.2.10) Ly = (€1, €,2™e3) (m = 3), €1 # €3 (mod 4). In this case,
we have |74 (K)| = 2(2 — 7) and Ky = \y(Ly) = T L (2™ 'e3). Therefore
a =0 (mod 4) and the integers b and ¢ are odd, and we obtain the relation
(4.3.6). Comparing the local structures, we may easily show that

L _ {(LV)%a (LVH)%} if e;e2=3 (mod 8),
Y (K) = 1 1 1 1 1 1 .
{(L1r)2,(Lu)2, (Lv)2, (Lv)2, (Lvi)2, (Lvm)2} otherwise.

Therefore we have
label(v4(K)) = {[[8,1; 2a,b, c], [[8,1V; 2a, 4b, 40]]}
if €160 = 3 (mod 8),
label(v4(K)) = {[[8, I;2a,b,c], [[8,1V; 2a, 4b, 4], [4, L; 2a]], [[4, II; Qa]]}

otherwise.

Case(4.6.2.11) Ly = (€1, €9,4€3), € = €5 (mod 4). In this case, we have
V(K)| = 1 and Ky = Xo(Ly) = (€}, ¢),2¢e3). Therefore we have a = 2
(mod 4) and the integers b and ¢ are odd, and we obtain the relation (4.3.6).
Comparing the local structures, we may easily show that v£(K) = {(Ly)2}.
Therefore we have

label(vy (K)) = {[[8.L; 2a,b, [ }.
Case(4.6.2.12) Ly =~ (€1, €9,8¢3), €, = €3 (mod 4). In this case, we have

VE(K)| = 1 and Ky = \o(Ly) = (¢}, €}, 4e3). Therefore a = 4 (mod 8) and
the integers b and ¢ are odd, and we obtain the relation (4.3.6). Comparing
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the local structures, we may easily show that

VLK) = {{(Lv)2l} ?f bc f €162 (mod 8),
{(Lvn)z} ifbc=e1ea+4 (mod 8).

Therefore we have

label(7(K)) = {{[[8’ I; 2a,, ] } if be = €165 (mod 8),

{[[8,1V;2a,4b,4c]|} if bc = €er1ea +4 (mod 8).

Case(4.6.2.13) Ly =~ {e1,€69,2Me3) (m = 4), ¢ = €3 (mod 4). In this case,
we have |74 (K)| = 2 and Ky = \y(Ly) = (€}, €, 2™ te3). Hence we obtain
the relation (4.3.6). Comparing the local structures, we may easily show that

L {(le)%, (LVI)%} if a is odd,
2 K — 1
) {{(Lv) 2

o=

,(Lvi)z} otherwise.

Therefore we have

label(v2(K)) = {{[[4’ I; 2a]]} if a is odd,

{[[8, I;2a,b, ], [[8,1V; 2a, 4b, 40]]} otherwise.

Case(4.6.2.14) L, =~ {e1,2¢,2¢3). In this case, we have |72 (K)| = 1 and
Ky = Xy(Ls) = (2¢1, €9, €3). Therefore a =2 (mod 4) and the integers b and
c are odd, and we obtain the relation (4.3.6). Comparing the local structures,
we may easily show that v£(K) = {(Ly)2}. Therefore we have

label(vs (K)) = {[[8, II; 3,46, 4c])}.
Case(4.6.2.15) Ly =~ (e1, 2¢y,4€3). In this case, we have |72 (K)| = 2 and
Ky = Xo(Ls) = (261, €9,2€3). Therefore a is odd and b = ¢ = 2 (mod 4),

and we obtain the relation (4.3.6). By the structure of K, we may also have
b+c=4 (mod 8). Comparing the local structures, we may easily show that
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V5 (K) = {(LI)%, (LH)%}. Therefore we have
label(v£(K)) = {[[4,1; 2a]}.

Case(4.6.2.16) Ly =~ (€1,2¢9,8¢3). Comparing the structures of K and
Aa(Lsy), we may easily show that this case does not occur.

Case(4.6.2.17) Ly = {e1, 2¢9,16€3). In this case, we have [y (K)| = 1 and
Ky = Xo(Ls) = (2€1, €9, 8¢3). Then we may show that a = 2 (mod 4), b = 2
(mod 4) and ¢ =4 (mod 8), and we obtain the relation (4.3.6). Comparing
the local structures, we may easily show that

LK) = {(Lm)z}  if 25 = 2¢e,  (mod 16),
? {(Lvn)2} otherwise.

Therefore we have

{[[8,]1; %,4(), 40]]} if 249 = 9¢ ¢, (mod 16),

2

label(yy (K)) =
(72 (K)) {{[[871\/;2@,4@46]]} otherwise.

Case(4.6.2.18) Ly = {e1, 269, 2™e3) (m = 5). In this case, we have |74 (K)| =
2 and Ky = M\o(Ly) = (2¢y, €3, 2™ Le3). Clearly we obtain the relation (4.3.6).
Comparing the local structures, we may easily show that

L {(L))2, (Lp)2}  if ais odd,
o (K) = ) ,
) {{(Lﬂl)za (Lvp)z} otherwise.

Therefore we have

label(7F(K)) = {{[[4, I; 2a] } if a is odd,

{[[8,]1‘ & 4p, 4c]), 18, 1V; 2a, 4b, 40]]} otherwise.

)92

Case(4.6.2.19) L, =~ (€1, 4€9, 4e3). In this case, we have

3

L 1—

K)=2""———— and Ky= My(Ls) = .
|72( )| 2 X([2> 2 2( 2) <€17€2763>
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Then the integers a, b and ¢ are odd, and we obtain the relation (4.3.7).
Comparing the local structures, we may easily show that

r{Lm} ifb+c=2and ¢ # e =¢€3 (mod 4),
{Ly, Ly, Ly} ifb+c=2ande =€ =€ (mod4),

I {Ly, Ly} ifb+c=2and e #¢e3 (mod 4),
7 () = {Lvu} ifb+c=0and € £e;=¢€3 (mod 4),
{Liy, LviLvi} ifb+c=0and e =¢e =¢; (mod4),

{ L, L} ifb+c=0and e #e3 (mod 4).

Therefore we have

{[[8.1; a, 8b, 8] } ifb+c=2and € # e2 = €3 (mod 4),

{[[4.1;4a], [8,1L; a, 8b, 8]} ifb+c=2and ¢; = €3 = €3 (mod 4),
4,1;4a ifb+c=2ande €3 (mod 4),

{[[8,1V;4a,8b,8c]]} ifb+c=0and ¢ # e2 = €3 (mod 4),

{[[4,1[; 4a]), [[8,1V; 4a, 8b, 80]]} ifb+c=0and e; = €3 = €3 (mod 4),

{[[4,11; 4a] } if b+c=0and e # €3 (mod 4).

Case(4.6.2.20) Ly =~ (€1, 4€9, 16€3). In this case, we have €; # € (mod 4)
and hence |y&(K)| = 4, and Ky = \y(Ly) = {ey,€,4€3). Therefore a =
4 (mod 8) and the integers b and ¢ are odd, and we obtain the relation

(4.3.7). Comparing the local structures, we may easily show that v (K) =
{Ly, Ly, Ly, Lv1}. Therefore we obtain

label(vA(K)) = {[[4,1; 4a]], [4,1I; 4a] }.

Case(4.6.2.21) Ly = (€, 4¢9,2Me3), m = 5. In this case, we have [v(K)| =
4, and Ky = A\y(Ly) = {e1, €2,2™ %¢3). Then we obtain the relation (4.3.7).
Comparing the local structures, we may easily show that

{LI,LH,L]]I,LVH} if a is Odd,
7 (K) = .
{Ly, Ly, Ly, L} otherwise.

o8



CHAPTER 4. LABELS OF CLASSES

Therefore we obtain

{[[4,1; 4a]), 8, I; a, 8b, 8], [[8, IV; 4a, 8b, 80]]} if a is odd,

abe L =
label(7y'(K)) { ([4.T: 4a]), [4, T 4a]} otherwise.

Case(4.6.2.22) Ly = {e1, 8¢, 8¢3). In this case, we have |v(K)| = 1+2€23

and Ky = \y(Lo) = {e1,2€9,2€3). Then the integer a is odd and b = ¢ = 2
(mod 4), and we obtain the relation (4.3.7). Comparing the local structures,
we may easily show that

{Lm} if eo=€3 (mod4)anda=e¢ (mod8),
Y5 (K) = { {Lyn} if eo=¢3 (mod4)anda#e (mod8),
{Li, Lvi} if ea % €3 (mod 4).

Therefore we obtain

{[[8,1;a,8b,8¢c]]} ifez=e3 (mod4) anda=¢€ (mod38),
label(4(K)) = {[[8,1V;4a,8b,8¢]|} ifez=e3 (mod4)and az#e; (mod8) ,
{14, 10; 4a]|} if 2% €3 (mod 4).

Case(4.6.2.23) Ly = (e, 16¢€y, 16€3). This case is similar to Case(4.6.2.22)
and we have

{[I8,1; a, 8b, 8], [8,IV;4a,8b,8¢]|} ifa=¢€ (mod38),

L _
label(vy (K)) = {{[[4711; 4a])} otherwise.

Case(4.6.2.24) Ly =~ {(€,2™€3,2™e3) (m = 5). In this case, we have
V(K| = 4 and Ky = A\y(Ly) = {e1,2™ 2€5,2™ 2e3). Then we obtain the
relation (4.3.7). Comparing the local structures, we may easily show that

L {L]]LLIVaLVI;LV]I} if a is Odd,
72 (K) = .
{LI, L]I, LI\/L\/I} otherwise.
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Therefore we obtain

{[[4,]1; 4a]), [8,1I; a, 8b, 8], [[8, IV; 4a, 8, 80]]} if a is odd,

abel(v& =
label(7y'(K)) { (4. T: 4], [4, T 4a])} otherwise.

Case(4.6.2.25) Ly >~ (e, 8€q, 16€3). We may easily show that this case does
not occur.

Case(4.6.2.26) Ly =~ (¢, 1665, 32¢3). In this case, we have |y&(K)| = 2 and
Ky = A\o(Lg) = {€1,4€3,8¢3). Then we may assume that a = ¢ =4 (mod 8)
and b =2 (mod 4), and we obtain the relation (4.3.7). Comparing the local
structures, we may easily show that

{LI, LI[} if bie — €1 (mod 8),
% (K) = -
{Lw, Lvi} otherwise.

Therefore we obtain

{[4,L;4a]l} if%c=¢ (mod 8),

label(vy (K)) = {{[[4 II;4a]]} otherwise

Case(4.6.2.27) Ly =~ {(;,2™ey,2™ " e3) (m > 5). This case is similar to
Case(4.6.2.26) and we obtain

label(yy (K)) = {[4,T; 4a]], [4, 11; 4a] }.
Case(4.6.2.28) Ly = (e, 8¢€9,32¢3). This case is similar to Case(4.6.2.26)

and we obtain the same rsult.

Case(4.6.2.29) Ly = (e, 16¢€y, 64¢3). This case is similar to Case(4.6.2.26)
and we obtain the same rsult.

Case(4.6.2.30) Ly =~ {¢1,2™€y,2™ €3y (m = 5). This case is similar to
Case(4.6.2.27) and we obtain the same result.

Case(4.6.2.31) Ly = {e1, 86, 2™e3) (m = 6). In this case, we have |74 (K)| =
2 and Ky = \y(Lo) = {e1,2¢69,2™ 2€3). Then we obtain the relation (4.3.7).
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Comparing the local structures, we may easily show that

{Li,Ly} ifa=2 (mod4)andt=¢ (mod ),
{Lwv,Lvi} ifa=2 (mod4)and %< +#¢ (mod 8),
{Lm, Lvy} ifaisodd and a=¢; (mod 8),
{Lw,Lvi} ifaisoddand a=#¢e (mod 8).

Therefore we obtain that

{[4.L;4a]} if%c=¢ (mod ),

2

label(yy (K)) = {{[[4’ 1 4a]]} if b%c # ¢ (mod 8),

if the integer a is even, and

{[8,1; a,8b,8¢c], [8,IV;a,8b,8¢c]|} ifa=e (mod 8),

tabel(r (K)) = {{[[4, IT; 4a]]} fae (mod8)

otherwise.

Case(4.6.2.32) Ly = (e,16¢€9,2me3) (m > 7). This case is similar to
Case(4.6.2.31) and we obtain the same result.

Case(4.6.2.33) Ly = (¢,2"€9,2™e3) (m = n + 3 > 8). This case is similar
to the Case(4.6.2.31) and we obtain the same result. O

Third, we consider the case when K =~ Kgm(a,b,c) for some positive
integers a, b, c. Then we have dK = 2ab(2¢ —a —b). Put ¢ :=2c—a—10
and rewrite the local structure of K as

20 0 a
K0 20 b = Kgy(a,b,c).
a b a+l;+c’

Then it is clear that 2abc’ = 0 (mod 4). Note that any lattice of the form
K ém(a, b, ¢) is independent of the order of integers a, b and ¢ up to isometry.
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Let K = Zx + Zy + Zz = Kgy(a, b, c). Then we may obtain

8a 0  2a
Ly = Ty(LV) = TQC(LVI) = Tsz:rfy(LVII) = 0 8b 2b ,

2a Zb%b“

8a 2a 8b 4b
L =2 L <2a 2a+20> o Im= Qo l (4b 2 + 2c> ’

8 4b
L = 2e) L <4b 2 + Zb) ’

and we may also obtain

8 0 2a 2a¢ 0 a
Li = Tx(L/V) ~ 1 0 2b b ) Lﬁ = Ty(L/VI) ~ | 0 8 2b ,
a+b+c a+b+c
2a b % a 2b %
2¢ 0 c
L;H = Ty(L/V]I) ~ 10 8 2b , Li\, >~ (2a, 2b, 20}.

a+b+c
c 2b

Theorem 4.6.3. Let L be a primitive ternary lattice which is not stable over
Zy and let K := Aoo(L). Suppose that |O(K)| = 8 and K is of type L. Then
the multiset label(vE (K)) is completely determined by the label of K and the
structure of Lo.

Proof. Since label(K) = [[8,IIT; 2a, 2b, 2¢]| for some positive integers a, b and
¢, it is possible to determine the set {a, b, ¢} from the label of K and hence it
decides the class [K]. We only have to check the assetion for possible local
structures of L.

Case(4.6.3.1) Ly =T 1 (2™¢) (m > 4). In this case, we have |vf(K)| = 4
and Ky = M\(Lo) = T 1 (2™ 2¢). Then exactly two of a, b, ¢ are odd and we
obtain the relation (4.3.5). Comparing the local structures, we may easily
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show that
{L}, Ly, Ly, Ly} if a, b are odd,

VO(K) = { {L}, Ly, Lk, Ly} if a, ¢ are odd,
{Ly, Ly, Ly, Ly} if b, ¢ are odd.

Therefore we obtain

{[[4,10; 2a]], [[4,1;2b] }  if @, b are odd,
label (v (K)) = {[[4,10; 2a]), [4, I; 2¢] }  if @, ¢ are odd,
{[[4,15; 2], [[4,IL; 2¢]|}  if b, ¢ are odd.

Case(4.6.3.2) Ly =~ {(¢) L 8T. Observing the local structure of K», we may
verify that this case does not occur.

Case(4.6.3.3) Ly =~ (¢) L 2™T (m > 4). In this case, we have |yZ(K)| = 4
and we may easily show that 72 (K) = {Ly, Ly, Lv1, Lyvi}. Therefore we have

label(v}(K)) = {[2]}

Case(4.6.3.4) Ly = {€1,€2,2Me3) (m > 3), €1 # €5 (mod 4). In this case,
we have |[v2(K)| = 2(2—7) and Ky = X\y(Lo) = T 1 (2™ 1e3). Then we may
assume that the integers a and b are odd and the integer c is even, and we
obtain the relation (4.3.6). Comparing the local structures, we may easily
show that

L

LK) = {{LH, Ly} if 46 =7 (mod 8),

{LI,L]],LI]I,L\/,LVI,LV]I} if €160 =3 (mod 8)

Therefore we obtain

8,1L; b, 4a, 4c]), [[8, II; a, 4b, 4 iferer =7 d8),
label(’yQL(K))—{{[[ a, 4], [ a [} 1T €1€2 (mod 8)

{[2]], 8, I0; b,4a,4c]], [8,1L; a, 4b, 46]]} if ;e =3 (mod ).
Case(4.6.3.5) Ly = {e1,€9,8¢€3), € = € (mod 4). In this case, we have

VE(K)| = 1 and Ky = \y(Ly) = (¢}, €, 4e3). Then we may assume that
the integers a and b are odd and ¢ = 2 (mod 4), and we obtain the relation
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(4.3.6). Comparing the local structures, we may easily show that

oo [{Ln} ifb=e (mod 4),
VQ(K)_{{LHI} ifa=e (mod 4).

Therefore we obtain

{[[8, 1I; b, 4a, 40]]} ifb=¢; (mod4),

label(yy (K)) = {{ﬂgy[{;a,zﬂ), 4} ifa=e (mod 4).

Case(4.6.3.6) Ly = (€1,€3,2™e3) (m = 4), €, = €, (mod 4). This case is
similar to Case(4.6.3.5) and we obtain

label(v4 (K)) = {[[8. II; b, 4a, 4c], [[8,11; a, 4b, 4c]}.

Case(4.6.3.7) Ly >~ (€1,2¢9,2™e3) (m = 2). In this case, there is no lattice
which is isometric locally to (Lg)? in the seven candidates, and hence this
case is impossible.

Case(4.6.3.8) Ly = (¢, 4€3,2™e3) (m = 4). In this case, we have [v(K)| =
21e2 and Ky = My(Lo) = {e1,€,2™ %e3). Then we may assume that the
integers a and b are odd and the integer c is even, and we obtain the relation
(4.3.7). By the local structure of K5, we may show that ¢;eo = 1 (mod 4)
and so [v4(K)| = 4. Comparing the local structures, we may easily show
that

label(v4 (K)) = {[2]}.

Case(4.6.3.9) Ly =~ {e1, 8¢y, 8¢3) or (€1, 166y, 16¢3). These lattices have an
unimodular component of rank 1. Then we may show that the integers
a, b and c are all even by the local structure of K. Therefore dK = 0
(mod 16) and the former lattice is impossible. If Ly = (€1, 16€5, 16€3), we have
Ao(Lz) = (€1, 4€2,4€3) and hence a = b= c =2 (mod 4). Then Kgy(a,b,c)s
is not isometric to Ay(Ly) and this is a contradiction. Hence the latter lattice
is also impossible.

Case(4.6.3.10) L2 = <€1,862,3263>, <€1, 1662,32€3> or <61, 1662,6463>. By
the similar argument as in Case(4.6.3.9), these lattices are impossible.
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Case(4.6.3.11) L2 = <€1, 862, 2m€3> (m = 6) or <€1, 1662, 2m€3> (TTL = 7)
These cases are impossible since the possible values of |y (K)| are not equal
to the values in Table 3.1.

Case(4.6.3.12) Lo =~ {(€,2™€3,2™e3) (m = 5). In this case, we have
72 (K)| = 4 and we may easily show that

label(~y (K)) = {[[2]}.

Case(4.6.3.13) Ly = {(€1,2™e3,2™ 2¢3) (m = 5). In this case, we have
72 (K)| = 4 and we may easily show that

label(v4 (K)) = {[2]}-

Case(4.6.3.14) Ly = {€1,2"€3,2Me3y (m = n + 3 > 8). In this case,
72 (K)| = 4 and we may easily show that

label(v4 (K)) = {[2]}.
]

Finally, we consider the case when K = Zx + Zy + Zz = Kg(a, b, c) for
some integers a, b and c. Then we have dK = 4abc and S(K) = {7, Tu—2y,
Tr—2.}. In this case, we note that any lattice of this form is independent of
the order of integers a, b and ¢ up to isometry. By simple calculations, we

have
16a 8a 4a 16a 4a 8a
Li=1,(Lvi)= | 8a 4(a+b) 2a |, Lu=7(Llw)=| 4a a+b 2a ,
da 2a a+c 8a 2a 4(a+c)
16a 8a 8a

Ly =Tp—oy(Lvn) = | 8a 4a+b+c 4da+2c |, Lm={4a,4b,4c),
8a 4da+2c 4(a+c)
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and we also have

16a 4a 4a
Li = T;tf2y<L§]]) = TfoZ(LQI) = TI<L/V]I) = da a+b @ ’
4q a a+c

L;I;<4b>J_<a+c a—c)7 Livz<4c>J_<a+b a—b))
a—

a—c¢ a-+c b a+b

Loy = (da L (b” b_c).

b—c b+c

Theorem 4.6.4. Let L be a primitive ternary lattice which 1s not stable over
Zs and let K = Xg.(L). Suppose that |O(K)| = 8 and K is of type IV. Then
the multiset label(v2 (K)) is completely determined by the label of K and the
structure of Lo.

Proof. Checking the possible local structures of Ky, we may reduce the possi-
ble structures of Ly. Let K = Kgy(a,b,c) for some integers a, b and c¢. Sup-
pose that the integers a, b and ¢ are all odd. Then Ky =~ T 1 (4¢). Next, we
suppose that a is even and b, ¢ are odd. Then we have Ky = (e, €3, 27792 2¢3)
for some ¢; € Z; . Finally, we suppose that a is odd and b, ¢ are even. Then
we have

Ky={a+c) Ll (a+c) <4ac 2ac )

2ac ab + ac + be

and we may assume that ords(b) < ordy(c). Now we may consider the fol-
lowing five cases.

(i) If ordy(b) < ordy(c), then Ky = {a + ¢, 20742()¢, 20rd2(e)+2¢,

(ii) If ordy(b) = ordy(c) = 1 and 2 = £ (mod 4), then K> = {a + ¢) L 4T.
(iii) If ordy(b) = ordy(c) =1 and ;é (mod 4), then Ky = (a + ¢, 4ey, 4e3).
(iv) If ordy(b) = ords(c) = 2 and QOrdz(b) = s (mod 4),

then Ky = (a + ¢, 2020 +1¢, gorda(b)+1e

(v) If ordy(b) = ords(c) = 2 and 20rj’2<b) # et (mod 4),

then Ko =~ ¢ | 20720+

Therefore we may conclude that if Ky =~ {¢,2%,,2%¢;) , then a = 3 > 2
or B = a+ 3, and if K, is even, then Ky = T 1 {4e). Since label(K) =
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[8,1V; 4a, 4b, 4c]|, it is possible to determine the set {a, b, ¢} from the label of
K. Now we only have to check the assetion for possible local structures of
L.

Case(4.6.4.1) Ly =~ T 1 (16¢). Then we may easily show that
v (K) = {Lj, Ly, Ly, Ly}
Therefore we obtain
label(vF(K)) = {1121}
Case(4.6.4.2) Ly = {e) L 2™T (m = 4). Then we may easily show that
v (K) = {Ly, Lu, Ly, Lvi}
if we assume that a is odd and b, ¢ are even. Therefore we obtain

label(vs (K)) = {[[4,1I; 16b], [4, I; 16c] }.

Case(4.6.4.3) Ly = (1, €9, 8¢€3), €1 # €5 (mod 4). Then we may easily show
that

ﬁ(K):{{<LI>%’<LH>5=<LN>57<LV>?<LVI>5,<LW>%} fe =3 (mods),

{(LV)%, (Lvu)%} if 4o =7 (mod 8),
where a # b = ¢ (mod 4) in the latter case. Therefore we obtain

{[[4,11; 8a]], [[4,11; 8b], [4,11; 8[|} if €162 =3 (mod 8),

label(yy (K)) = {{[[47 IL; 8a]]} if ee, =7 (mod 8).

Case(4.6.4.4) Ly = {e1,€63,2e3) (m = 4), €, = €5 (mod 4). Then we may
easily show that
% () = {(Lv)?, (Lvn)?},

where a is even and b, ¢ are odd. Therefore we obtain

label(v4 (K)) = {[[4,1I; 8a] }.
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Case(4.6.4.5) Ly = (€1,2€62,2Me3) (m = 5), €1 = €3 (mod 4). Then we may
easily show that
1 1
7 (K) = {(Lv)2, (Lvn)2},
where a is odd and b, ¢ are even. Therefore we obtain

label(vs (K)) = {[[4,1I; 8a] }.

Case(4.6.4.6) Ly =~ (e1,4€2,2™e3) (m = 5), €1 # €5 (mod 4). Then we may
easily show that

{LI, L]I, LN, LVI} if €1 = €9 (IHOd 4),
v (K) = < {Ly, L1} ifa+c=e¢ #e (mod 4),
{Ly, L} ifa+b=¢€ #e (mod4),

where a is even and b, ¢ are odd. Therefore we obtain

{[[4, II; 160]], [4, II; 160]]} if e, =€ (mod 4),
label(v2(K)) = {14, 10; 16b] } ifa+c=e #e (mod4),
{[[4,11; 16¢] } ifa+b=e #e (mod4).

Case(4.6.4.7) Ly = (€1, 16¢€3, 16€3). Then we may easily show that

{Li,Lvi} ifa+c=¢ (mod8),
% (K) = .
{Ly, Ly} ifa+b=¢ (mod8),

where a is odd and b, ¢ are even. Therefore we obtain

{[4,1;160])} fa+c=¢ (modS8),

label(7y (K)) = {{[[4,]1; 16c]} ifa+b=e (mod8).

Case(4.6.4.8) Ly =~ {€1,2™€y,2™e3) (m = 5). Then we may easily show that

7211(K) = {L17 L]Ia LIV7 LVI}v
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where a is odd and b, ¢ are even. Therefore we obtain
label(vy (K)) = {[[4, 1; 16b], [[4, II; 16¢] }.
Case(4.6.4.9) Ly = (€1, 862,2™e3) (m = 6). Then we may easily show that

L {{LI, Ly} ifa=¢€ (mod 8),
2 (K) =
{Ly, Ly} ifaz#e  (mod 8),

where a is odd and b, ¢ are even. Therefore we obtain

{[[4,1;160]} ifa=e (mod 8),

label(y (K)) = {{[[4, I;16c]} ifa# e (mod 8).

Case(4.6.4.10) Ly = {e,16¢€2,2me3) (m > 7). This case is similar to
Case(4.6.4.9) and we have the same result.

Case(4.6.4.11) Ly =~ (€1,2"€3,2™e3) (m = n + 3 > 8). This case is similar
to Case(4.6.4.8) and we obtain the same result. O

4.7 The case when |O(K)| = 4

Assume that |O(K)| = 4. Then we classified such lattices into two types in
the above section. As mentioned above, there are some exceptional cases in
which our claim does not hold. These cases are listed in the last theorem of
this section.

First, we consider the case when K = Zx + Zy + Zz = Kyi1(a,b,c,d),
where a, b, ¢ and d are relatively prime integers. Then we may obtain

4b 2c¢ b 2c
LI:<4a>J_(QC d)’ LH:<4a>J_<2C 4d>’

i 4 a+b 2b 2c
Ly = {a) L (4 42) L Ly | 2v 4b 4e,
¢ 2% dc 4d
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a+d 2c 2d
Ly = {4a) L (b;(fj ;d 2(64; d)) CLux| 2 4 4c),
2d  4c 4d
a+b+2c+d 2(b+c) 2(c+d)
Ly = 2(b+c) 4b 4e :
2(c+d) 4c 4d

and we also have

b ¢ 4b 2c
I~ I~
LI:<4a>J_< b)’ LH_<a>J_(26 d)’

C

a+b 2b ¢

2
Lp=| 20 4b 2|, Ly =<)L (ch 42),
c 2¢c d
a+d ¢ 2d
b+2c+d 2(c+d
Ly = c b 2|, L;/I;<G>J_(2(c+d) (4d )),
2d  2c¢ 4d
a+d c+d 2d

Lig=|c+d b+2c+d 2(c+d)
2d  2(c+d) Ad

Theorem 4.7.1. Let L be a primitive ternary lattice which is not stable
over Zy and let K := Xoo(L). Suppose that |O(K)| = 4 and K is of type 1.
Then the multiset label(vL (K)) is completely determined by dK, label(K),
label(Ay(K)) and the structure of Ly except only the case when Ky is a uni-
modular lattice. In the exceptional case, the multiset label(v2 (K)) depends
on whether K' is even or odd, where

K=>~{a) L K

for some positive integer a and some binary lattice K'.
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Proof. Since K = Kyj(a,b,c,d) for some integers a, b, ¢ and d, we have

Kg<a>L(i fz)

and the label of K is [4,1;a].

Case(4.7.1.1) Ly = T 1 {4¢). Then we may assume that a, b, d are odd
and c is even, or a, ¢ are odd and b, d are even by a suitable base change.
Then we have

{Liy} if b, d are odd,
YK) =<
{L;}  if b, d are even.

Therefore we have

{[[4,0;4a]} if K" is odd,

label(%f(K)) - {{[[4 1.4a]]} if K’ is even.

But we can not determine that K’ is either even or odd by label(K’). This
problem is dealt in Section 2 of Chapter 5.

Case(4.7.1.2) Ly, =~ A 1 {8¢). In this case, we have |[y/(K)| = 1 and
Ky = M(Lg) = A L (2¢). Then a = 2 (mod 4), b and d are even and c is
odd, and we obtain the relation (4.3.5). Comparing the local structures, we
may easily show that

{Li}  ifb=d=2 (mod4),
{Lyt ifb=0 (mod4)andd=2 (mod 4),
{Ly} ifb=2 (mod4)andd=0 (mod 4),
{Liy} ifb=d=0 (mod4).

Vi (K) =

Therefore we have

{[4,T;4a]l} if 3 =< (mod 8),
{[4,I;4a]} if =4 (mod 8).

2

label (v{ (K)) = {

Case(4.7.1.3) Ly =~ H 1 (8¢). This case is similar to Case(4.7.1.2) and we
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have

{[4,10; 4a], [4,1; 4a]), [4, 0; 4a]} if 32 = 945 (mod 8),

label(’Y4 (K>) = {{[[4717 4@]], [[4’ I; 4CL]], [[47 II; 4@]]} if % = 4K (mod 8)

Case(4.7.1.4) Ly =~ T 1 (2™e) (m = 4). This case is also similar to
Case(4.7.1.2) and we have

label(vX(K)) = {[[4, L;4all, [4,1T; 4a]], [[4, IT; 4a]), [[4, IT; 4a]]}.

Case(4.7.1.5) Ly =~ {¢y) L 2T. In this case, we have [y&(K)| = 1 and
Ky = Xo(Ls) = (2¢) L T. Then a = 2 (mod 4), b and d are even and c is
odd, and we obtain the relation (4.3.6). Comparing the local structures, we
may easily show that v4(K) = {(Ly)2}. Therefore we have

label (v4 (K)) = {[[4,T; g]]}.

Case(4.7.1.6) L, =~ {¢) L 4T. In this case, we have [y&(K)| = 1 and
Ky = Mo(Lg) = {ey L T. Then a is odd and we may assume that b, d are
both even or both odd. we obtain the relation (4.3.7). Comparing the local
structures, we may easily show that

{Lvy} if b and d are odd,
f - |

{Lm} if b and d are even.

Therefore we have

label(%L(K)) = {{[[47 . 4a]]} s 0dd,

{[4,L;a]}  if K’ is even.

But we can not determine whether K’ is even or odd by label(K). This
problem is dealt in Section 2 of Chapter 5.

Case(4.7.1.7) Ly =~ {¢) L 8A. In this case, we have [y¥(K)| = 1 and
Ky = \y(Lo) = <{ey L 2A. Then a is odd, b = d = 0 (mod 4) and ¢ = 2
(mod 4), and we obtain the relation (4.3.7). Comparing the local structures,
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we may easily show that

{Lp} ifb=d=4 (mod38),
{Lyy} ifb=4 (mod8)andd=0 (mod 8),
{Lvi} ifb=0 (mod8)andd=4 (mod 8),
{Lvi} ifb=d=0 (mod 8).

75 (K) =

Therefore we have

label(v3 (K)) = {{[[4’1? all} it ¢ =3a (mod8),

a
{[4,0;4a]} if £ =7a (mod 8).

Case(4.7.1.8) Ly = {¢) L 8H. This case is similar to Case(4.7.1.7) and we
have

{[[4,1; 4a], [[4, I; 4a], [4,1; 4a] }  if 4 =3a  (mod 8),

label(yy (K)) = {{[[4’1;@]7 [4,10;4a], [4, T 4a]]}  if % =7a  (mod 8).

Case(4.7.1.9) Ly = {ey L 2™T (m > 4). This case is also similar to
Case(4.7.1.7) and we have

label(v3 (K)) = {[[4,L; o], [4, I; 4a], [4,II; 4a]), [[4, I; 4a] }.

Case(4.7.1.10) Ly = {¢1, €9, 2¢3). In this case, the integers a and bd — ¢ are
odd, and we obtain the relation (4.3.7). Then we may assume that b and d
are odd, or b and d are even. Suppose that b and d are odd. Comparing the
local structures, we may easily show that

{(L)z, (Lv)2, (Lv)2}  if K, is anisotropic,
if Ky is isotropic and a = dK (mod 4),
} if Ky is isotropic and a # dK (mod 4).

S
=
I
=
h
=
\_[:DLH

NI

{(Lw)?} or {(Lvi)

Therefore if K, is anisotropic, we have

label(vs (K)) = {[[4,L; 2a]], [4, II; 2a]], [4, II; 2a] },
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and if K is isotropic, we have

{[4.5;2a]} ifa=dK (mod4),

label(vy (K)) = {{[[4’ I; 2a]]} if a £ dK (mod 4).

Next, suppose that b and d are even. Then we may easily show that

(ST

{(Ln)
{(L1)2, (Ly)2, (Ly)2} if Ky is anisotropic.

} if K is isotropic,

’VQL(K)={

Therefore we have

{[[4, I 2a]]} if K5 is isotropic,

label(v(K)) =
(72 (K)) {{[[47 I;2a], [4, I; 24], [4.1; Qa]]} if K5 is anisotropic.

But we can not determine whether K’ is even or odd by label(K). This
problem is dealt in Section 2 of Chapter 5.

Case(4.7.1.11) Ly = (€1, €9,4€3), €, = €3 (mod 4). In this case, we have
VE(K)| = 1 and Ky = \y(Ly) = (¢}, €),2¢3). Then we may assume that
a =2 (mod 4), bd = 1 (mod 4) and c is even, or a, b are odd and ¢, d are
even. We obtain the relation (4.3.6). Comparing the local structures, we
may easily show that

{(Ly)2} ifa=2 (mod 4),
YH(K) = { {(Ly)2} ifaisoddand a+b=2 (mod 4),
{(Lyn)2} ifaisoddand a+b=0 (mod 4).

Therefore we have

label (v£(K)) — {{[[471;%]]} ifa=2 (mod4),

{[[4,1;2a]]} if a is odd.

Case(4.7.1.12) Ly = (€1, €9,4€3), €1 # €5 (mod 4). In this case, we have
VE(K)| =3 and Ky = Ag(La) =T L {e3). Thena =2 (mod 4),b=d=0
(mod 2) and ¢ is odd, and we obtain the relation (4.3.6). Comparing the
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local structures, we may easily show that

{(Lw)3, (Ly)}, (Ly)?} ifb=d=0 (mod 4),
L {(Ly)%, (L)%, (Lvp)?} ifb=2and d=0 (mod 4),
’72 (K): 1 1 1 X
(L)%, (L)%, (Lyn)?} ifb=0andd=2 (mod 4),
(L)%, (L)%, (Ly):}  ifb=d=2 (mod 4).

Therefore we have

{{[[4,1; 2a]), [4,1; 2a]), [4,T; 2a])} if 4€ =7 (mod 8),

label(y; (£)) = {[4.L;2a], [4,1; 2a],, [4,1;2a] }  if € =3 (mod 8).

Case(4.7.1.13) Ly =~ {€1,€9,8¢3), €, = €3 (mod 4). In this case, we have
V(K)| = 1 and Ky = A\o(Ly) = (€|, €y, 4e3). Then we may assume that
a =4 (mod 8), bd =1 (mod 4) and c is even, or a, b are odd, ¢ is odd and
d = 0 (mod 4). We obtain the relation (4.3.6). Consider the former case.
Then the possible candidates are (Ly)z and(Lyy)? and we may show that

b ¢\ 1 b+2c+d 2(c+d)
det (c d>_4det(2(c+d) 4d >

1 a+b+2c+d 2(c+d)
gézdet( 2 e+ d) Ad ) (mod 8).

Therefore we have

Lo AIv)2) i = ey (mod 8),
72 () = {{(LVH);} otherwise.

Hence we obtain

{[[4,1; 2a]]} if dTK = €165 (mod 8),

1abel(72L(K)> - {{[[4 I Qa]]} otherwise.

Next, consider the latter case. Then the possible cadidates are (LN)% and
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(Lvi)?z. Therefore in any case, we have

label(vy (K)) = {[[4,1I; 2a] }.

we have |72 (K)| = 2 and Ky = Mo(Lo) = (€|,€5,2™ te3). Then we may
assume that a, b are odd and ¢ = d = 0 (mod 8), or a = 0 (mod 8), b
and d are odd and c is even. we obtain the relation (4.3.6). First, consider
the former case. Then we have a + b = 2 (mod 4) since €; = €5 (mod 4).

Case(4.7.1.14) Ly = (€1,€,2™e3) (m = 4), e = €3 (mod 4). In this case,
)

Therefore we have
v (K) = {(Lw)2, (Lvn)>}

and hence we obtain
label(vy (K)) = {[[4,1; 2a]}, [4, II; 2a] }.

Next, we consider the latter case. Then we have bd = 1 (mod 4) since €] = €,
(mod 4). Therefore we have

1 1
V5 (K) = {(Lv)?, (Lvn)?}
and hence we obtain

label(vy (K)) = {[[4.L 2a], [4, I; 2a] }.

Case(4.7.1.15) Ly = {e1,€2,2™€3) (m = 3), €162 = 7 (mod 8). In this case,
we have W2 (K)| = 2 and Ky = My(Ly) =~ H L (2™ te;). Then a = 0
(mod 4), bd = 0 (mod 8) and ¢ is odd, and we obtain the relation (4.3.6).
Comparing the local structures, we may easily show that

{(Ln)?, (Ly)2} ifb=2and d=0 (mod 4),
W(K) =3 {(L)z?, (Lv1)2} ifb=0andd=2 (mod 4),
{(Ly)2, (Lyn)2} ifb=d=0 (mod 4).
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Therefore we have
label(vy (K)) = {[[4.L; 2], [[4, II; 2a] }.

Case(4.7.1.16) Ly = (€1, €9,2™e3) (m = 3), €162 = 3 (mod 8). This case is
similar to Case(4.7.1.15) and we have

label(v4 (K)) = {[4.L; 2a], [4,; 2a], [4, I; 2a], [4, I; 2a]}, [4, IT; 2a]), [4, II; 2] }.

Case(4.7.1.17) Ly = (€1, 2¢,2¢3). In this case, we have |72 (K)| = 1 and
Ky = M(Ly) = (2¢1,€9,€3). Then we may assume that a, b are odd and
¢c=d=0 (mod2), ora =0 (mod8), b and d are odd and ¢ is even.
We obtain the relation (4.3.6). First, consider the former case. Then two
candidates (Ly)? and (Lyy)? are impossible since

a+b 2b and a+b+2c+d 2(b+c)
2b  4b 2(b+ ¢) 4b

are 2-modular matrices. Therefore only (LI)% is possible and we have
label(v3 (K)) = {[4,1; 2a] }.

Next, we consider the latter case. Then only (Lm)% is possible and we have
label(vy (K)) = {[[4.L; ]]}

Case(4.7.1.18) Ly = (€1, 2¢9,4€3). In this case, we have

J(Lp)z} ifaisodd,b=d=2and c=0 (mod 4),
J(Lm)2} ifa=d=2 (mod4),bisodd and c is even.

{(L1)
{(L1)

Therefore we obtain

= N

%L(K)Z{

{[[4.L;2a], [4,5;2a] } if a is odd,

label(yy (K)) = {{[[47 I Qa]]v [[4’ I %]]} otherwise.
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Case(4.7.1.19) Ly = (e, 262, 8¢3). In this case, we have |74(K)| = 1 and
Ky = \y(Lg) = (2¢€1, €9, 4€3). Clearly we obtain the relation (4.3.6).
Subcase(4.7.1.19-1) First, suppose that the integer a is odd. Then we may
assume that b = 2 (mod 4), ¢ =0 (mod 4) and d = 4 (mod 8). Comparing

the local structures, we may easily show that

L {<LH)
5 (K) =
) {« Ly)

2
}  otherwise.

ol NI=

Therefore we have

label(vy (K)) = {[[4,1;2a] }.

Subcase(4.7.1.19-2) Next, suppose that a = 2 (mod 4).

}oifeiea =2 (mod 4),

Then we may

assume that b is odd, ¢ is even and d = 0 (mod 4). Furthermore we have

bd — ¢* =4 (mod 8). Comparing the local structures, we have

wl= NI

. {(Lu)
2 K) =
) {{<Lw>

} otherw1se.

}oifee=%2 (mod4),

In order to determine the integer b modulo 4, we need more consideration.

Suppose that § = % (mod 4). Then Sy(K) = (2,‘%()(

5 %)

where Sy(K) is the Hasse symbol of K at 2. Since b = 7.55(K)

where 7 = (2, 2)(4, 45)(2, %), we have

label(’ygL(K)) = {{[[4 I;2a]} otherwise

where
o 1 if 2+ 4 =2 (mod 8)
—1 otherwise.

{[[4,1; %]]} if €165 = §S55(K)T

2,5)(b,b),

(mod 4),

(mod 4),

Next, we suppose that § % (mod 4). Then we have bd 2 =
By the previous results, we have label(\(K)) = [[4,1; ]] or [81II; §, =, «].
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Suppose that O(Ay(K)) is of order 4. Then we may write

)= (5 (5 5).

where V¥ = d’ = 2 (mod 4) and ¢ = 0 (mod 4). Then we have WT_C =

# =3 (mod 4) and hence % = %l (mod 4). By Case(4.7.1.18), we obtain

W a(K))/ ~={[M, [}

where y
2 ~ z
v-@L (% 5) oL (y )

Therefore we have
{label (v2 (M), label (vF (M)} = {{[[4, I, g]]}, {[4,1; 2@]}}.

Here, it is clear that [K] e {[M], []\7 1}. Actually, this result does not mean
that we determined the multiset label(vZ(K)). But this kind of determina-
tion enable us to excute Step (II) of our procedure successfully. Next, sup-
pose that |O(A(K))| = 8. Then we may write

a V4 V=
)\Q(K) = <§> 1 (blgcl b’-?—c’) R

2 2
where i’ = ¢ =2 (mod 4) and ¥ + ¢ = 4 (mod 8) by Case(4.6.2.15). But
a'd _ dK Y+c
8 = 8 4
Therefore there is no such a case.
Subcase(4.7.1.19-3) Finally, suppose that a = 4 (mod 8). Then we may

assume that b is odd, ¢ is even and d = 2 (mod 4). We may easily show that

is even and this is a contradiction.

since (mod 8), the integer

L _ {(Ly)?} if 295 = ¢1e5  (mod 4),
72 R = {{(Lw)é} otherwise.
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Therefore we have

{[4.5;2a]} if ¢- 2 = €6, (mod 4),

L
label (o2 (%)) {{[[4, II;2a]} otherwise.
Case(4.7.1.20) Ly = {e1, 2¢, 16€3). In this case, we have |74 (K)| = 1 and
Ky = \y(Ls) = (2€1, €9,8¢3). Then the integer a is odd or a = 2 (mod 4) or
a = 8 (mod 16), and we obtain the relation (4.3.6). First, assume that the
integer a is odd. Then we may assume that b = 2 (mod 4), ¢ =8 (mod 16)
and d =4 (mod 8). Then we may easily show that

. {(Ln)
2 K) =
) {{(Lv)

b if 2L =66 (mod4),

}  otherwise.

ol NI

Therefore we have
label(vs (K)) = {[[4,1; 2a]}.

Next, suppose that @ = 2 (mod 4). Then we may assume that b is odd, ¢ = 4
(mod 8) and d = 8 (mod 16). Then we may easily show that

L {(L]]I)%} if %b = €162 (mod 8),
2 (K) = ,
) {{(LVI)2} otherwise.

Therefore we obtain

{[[4, I; %]]} if %b = €162 (mod 8),

1abel<72L<K)) - {{[[4 II: Qa]]} otherwise.

We may determine b modulo 8 by the congruent relation %b = €162 (mod 4)
and Table 4.1 for Sy(K). Finally, suppose that ¢ = 8 (mod 16). Then we
may assume that b is odd, d = 2 (mod 4) and c is even. We may easily show
that )
{((L)z} if 9.2 =¢¢ (mod 8),
) = { o

{(Lvi)z} otherwise.
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Table 4.1: Values of Sy(K)

$=1(mod4) | §=3 (mod 4)
4% =1 (mod 8) (b, —2) —(b,2)
4% =3 (mod 8) (b,2) (b, —2)
4% =5 (mod 8) —(b, —2) (b,2)
4% =7 (mod 8) —(b,2) —(b, —2)

Therefore we obtain

{[4,5;2a]} if 4.2 =€ (mod 8),

label(vy (K)) = {{ [4,1;2a]} otherwise

Case(4.7.1.21) Ly = {e1, 269, 2™e3) (m = 5). In this case, we have |y (K)| =
2. This case is similar to Case(4.7.1.20) and we may easily obtain

{[[4,1;2a]], [4,I;2a]}  if a is odd,
label(v2(K)) = {[4,L; 4], [4,I;2a]} ifa=2 (mod 4),
{[[4,1;2a]], [4,0;2a]]} ifa=0 (mod 16).

Case(4.7.1.22) Ly =~ (e1,4€y,4¢€3). Then Ky = \y(Ly) = (€1, €9, €3) and we
obtain the relation (4.3.7). Clearly the integer a is odd, and we may assume
that b and d are both odd or both even.

Subcase(4.7.1.22-1) Suppose that K is isotropic and €3 = €2 (mod 4). In
this case, we have |y(K)| = 1. Comparing the local structures, we may
easily show that

{Lm} if b, d are odd and a = dK (mod 4),
5 (K) = {L;} or {Ly} if b, d are odd and a # dK (mod 4),
{Liv} or {Lyi} or {Lvyn} if b, d are even.
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Therefore we have

{[4,I;a]}  if K'isodd and a = dK (mod 4),
label(v3 (K)) = { {[4,I;4a]]} if K" is odd and a # dK  (mod 4),
{[[4, II; 4a]]} if K’ is even,

Subcase(4.7.1.22-2) Suppose that K is isotropic and €3 # €2 (mod 4). In
this case, we have |[v2(K)| = 2 and ¢; # dK (mod 4). Comparing the local
structures, we may easily show that

(L, Ly} if b, d are odd and a = dK  (mod 4),
{Ly, Ly} or {Ly, Lm} if b, d are odd and a # dK (mod 4),
Y5 (K) = { {Lw, Lvi} ifb=d=0 (mod 4),
{Lv1, Lvn} ifb=2andd=0 (mod 4),
| { L1, Lvn} ifb=0and d=2 (mod 4),

Therefore we have

{[4,1;4a]l, [4,1;4a]]}  if K" is odd and a = dK (mod 4),
label(vs (K)) = < {[4,1;4a], [4,T;a]]}  if K" is odd and a # dK (mod 4),
{[[4,1;4a]], [4,X;4a]} if K" is even.

Subcase(4.7.1.22-3) Suppose that K, is anisotropic. In this case, we have
7E(K)| = 3. Then we may easily show that

{LI, L]I, L]]I} if b, d are Odd,

{Lw, Lv1, Lyp} if b, d are even.

7§(K)={

Therefore we have

{[[4.1;all, [4,1; 4a], [[4,1; 4a] } if K’ is odd,

label (V2 (K)) =
0 tE)) {{[[4,H;4a]],[[4,H;4a]],[[4aﬂ;4a]]} if K" is even.

But we can not determine whether K’ is even or odd by label(K). This
problem is dealt in Section 2 of Chapter 5.
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Case(4.7.1.23) Ly =~ (¢, 4€3,8¢3). In this case, we have |74(K)| = 2 and
Ky = Xo(Ls) = (€1, €2,2¢3). Then the integer a is odd or a = 2 (mod 4), and
we obtain the relation (4.3.7).

Subcase(4.7.1.23-1) Suppose that the integer a is odd. Then we may
assume that b is odd, cis even and d = 2 (mod 4). Then we may easily show
that

L(K) = {Lu, L} or {Lm, Ly} ifa=e (mod4),
B {Ly, L\i} or {Ly, Lvi} otherwise.

Therefore we have

{[4.L;a],[4,5;4a]} ifa=e (mod4),

label(vy'(K)) = {{[[4’ I 4a]), [4, 1I; 4a]]} otherwise.

Subcase(4.7.1.23-2) Suppose that a = 2 (mod 4). Then we may assume

that b and d are odd and c is even. If 2 # ¢ (mod 4), then b # d (mod 4)

and we may easily show that
VE(K) = {Ly or Ly, Ly or Lyi}.

If %€ = 2 (mod 4), then b = d (mod 4) and we have b = (—1)759(K)

2
(mod 4), where

) 1 if¢+9% =6 (modS8),
0 otherwise.

Comparing the local structures, we may show that

LK) = {L1, Ly}  if e = (=1)"5(K) (mod 4),
7 B {L, Lvi} otherwise.

Therefore we have

{[4,T;4a]l, [4, I 4a])} if € £ 2 (mod 4),
label(yy (K)) = < {[4,1;4a], [4,T; 4a]]} if € = 2 and ¢; = (—1)"S5(K) (mod 4),
{[[4, IT; 4a]), 14, I0; 4a]]} otherwise.
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Case(4.7.1.24) Ly = {€1,4€2,2™e3) (m = 4), €; = €3 (mod 4). In this case,
we have |72 (K)| = 4 and Ky = \o(Lo) = (€1, €3,2™ %¢e3). Then the integer a
is odd or a =0 (mod 4), and we obtain the relation (4.3.7).
Subcase(4.7.1.24-1) Suppose that the integer a is odd. We may assume
that b is odd, ¢ is even and d = 0 (mod 4). Then we may easily show that

’}é/(K) = {L]L LHI: LV; LVI}
Therefore we have
label(yy (K)) = {[[4,T; o], [4, 1; 4a]), [4, T; 4a], [4, 11; 4a] }.

Subcase(4.7.1.24-2) Suppose that a =0 (mod 4). We may assume that b
and d are odd and c is even. Then we may easily show that

72[1(K) = {LI7 L]L LIV7 LVI}
Therefore we have
label(yy (K)) = {[4,T; 4a], [4, 1; 4a]), [4, 11; 4a]), [4, T1; 4a] }.

Case(4.7.1.25) Ly = {¢1,4€2,2™e3) (m = 4), €1 # €3 (mod 4). In this case,
we have |y4(K)| = 2 and we obtain the relation (4.3.7).
Subcase(4.7.1.25-1) Suppose that the integer a is odd. We may assume
that b is odd, ¢ is even and d = 0 (mod 4). Since €; # €, (mod 4), we have
a# b (mod 4). Then we may easily show that

{Lm, Lvi} ifa=¢€ (mod4),
% (K) = .
{Ly, Ly} otherwise.

Therefore we have

{[[4,1; all, [4, I0; 4a]]} ifa=¢€ (mod4),

label(yy (K)) = {{[[4, I;4a]], [4,1; 4a]]} otherwise.

Subcase(4.7.1.25-2) Suppose that a =0 (mod 4). We may assume that b
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and d are odd and ¢ is even. Since €; # €, (mod 4), we have b # d (mod 4).
Then we may easily show that

VH(K) = {L; or Ly, Ly or Lyi}.
Therefore we have
label(yy (K)) = {[4,1; 4a], [4, IL; 4a] }.

Case(4.7.1.26) Ly =~ {¢1,8¢2,8¢3), €5 = €3 (mod 4). In this case, we have
72 (K)| = 1 and the integer a is odd or @ = 2 (mod 4). We obtain the
relation (4.3.7).

Subcase(4.7.1.26-1) Suppose that the integer a is odd. We may assume
that b=d =2 (mod 4) and ¢ =0 (mod 4). Then we may easily show that

{Ln} if a=¢ (mod 8),
Y5 (K) = 3 {Lyn} ifa=¢ +4 (mod 8),
{L} or {Lyi} ifaz#e (mod4).

Therefore we have

{[4.;a]} ifa=e (modS8),

label(vy (K)) =
(2 (K) {{[[4,]1;4a]]} otherwise.
Subcase(4.7.1.26-2) Suppose that a = 2 (mod 4). We may assume that b
isodd, c=0 (mod 4) and d = 2 (mod 4). Then we have K, = {a,b,ab- &),
d = ab- % (mod 8) and €, = % (mod 4). Consider the case that ¢ =
(mod 4) and % = 1 (mod 8). Then a = 2 (mod 8), d = 2b (mod 8) and

So(K) = (b,b)(b,2). We may show that

{Ln} or {Ly} ife;=1 (mod 8) and Sa2(K) =1,
I {L} or {Lyg} ifeg =1 (mod 8) and S3(K) = —1,
V2 (K) = .
{Liv} or {Lyp} ife; #1 (mod 8) and S»(K) =1,
{Ly} or {Ly} ife #1 (mod 8) and Sy(K) = —1.

85



CHAPTER 4. LABELS OF CLASSES

Ovserving the other cases, we have

{Lu} or {Ly} ife; =4 (mod 8) and So(K) =24 9%  (mod 4),
LK) = {Liv} or {Lyn} if e = % (mod 8) and Sy(K) # % - 2 (mod 4),
? {Liv} or {Lvi} if e # % (mod 8) andSy(K) =2 - 44 (mod 4),
{Lu} or {Lv} ifer # % (mod 8) and Sy(K) # % -4 (mod 4).

Therefore we obtain
{[4,L4a]l} if e =4 (mod 8) and So(K) = 4 - 4 (mod 4),
label (v} () = {[[4,I;4a])} if &1 = L (mod 8) and Sy(K) # % - 4 (mod 4),
2 (mod 8) andSs(K) = § - dK (mod 4),

( )

4
{[4,1;4a]} if e # 4
TK

4
{[4,L;4a]} if e # mod 8) and S»(K) # 4 - 4 (mod 4).

Case(4.7.1.27) Ly = {¢1,862,8¢3), €3 # €3 (mod 4). In this case, we have
7E(K)| = 2 and the integer a is odd or @ = 2 (mod 4). We obtain the
relation (4.3.7).

Subcase(4.7.1.27-1) Suppose that the integer a is odd. We may assume
that b=d =2 (mod 4) and ¢ =0 (mod 4). Then we may easily show that

{Lm, LVH} ifa=e (mod 4),
5 (K) = X
{Lw, Lvi} otherwise.

Therefore we have

{[4,L;a],[4,;4a]}  ifa=e (mod 4),

label(vy'(K)) = {{[4’]1;4@]]’ [[4,]1;4@]]} otherwise.

Subcase(4.7.1.27-2) Suppose that a = 2 (mod 4). We may assume that b
is odd, ¢ is even and d = 2 (mod 4). Then we may easily show that

v (K) = {Ly or Ly, Ly or Lyg}.
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Therefore we have
label(yy (K)) = {[4,T; 4a]], [4, 11; 4a] }.

Case(4.7.1.28) Ly = (€1, 16€9, 16€3). In this case, we have |y4(K)| = 2 and
the integer a is odd or a = 4 (mod 8). We obtain the relation (4.3.7).

Subcase(4.7.1.28-1) Suppose that the integer a is odd. We may assume
that b=d =4 (mod 8) and ¢ =0 (mod 8). Then we may easily show that

L(K) = {Lm,Lvi} ifa=¢ (mod8),
0 {L, v} otherwise.

Therefore we have

{[[4, L al, 4, II; 4a]]} if a=¢; (mod 8),

label(vy (K)) = {{[[47 I1; 4a]), [4, II; 4a]]} otherwise.

Subcase(4.7.1.28-2) Suppose that a =4 (mod 8). We may assume that b
is odd, ¢ =0 (mod 4) and d = 4 (mod 8). Then we may easily show that

vE(K) = {Ly, Lyr} or {Lw, Lv}.
Therefore we have
label(yy (K)) = {[[4, T; 4a]), [4, T1; 4a] }.

Case(4.7.1.29) Ly = {(€1,2™€3,2™e3) (m = 5). In this case, we have
7E(K)| = 4 and the integer a is odd or @ = 0 (mod 8). We obtain the
relation (4.3.7).

Subcase(4.7.1.29-1) Suppose that the integer a is odd. Then we may easily
show that

72L<K) = {LHI7 LIV7 LVI; LVH}

Therefore we have

label(v3 (K)) = {[[4,L; o], [4, I; 4a], [4,II; 4a]), [[4, II; 4a] }.
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Subcase(4.7.1.29-2) Suppose that a =0 (mod 8). We may assume that b
is odd, c is even. Then we may easily show that

V5 (K) = {Lu, L, Lv, Lvx}.
Therefore we have
label(yy (K)) = {[4,T; 4a], [4, 1; 4a]), [4, 11; 4a]), [4, T1; 4a] }.

Case(4.7.1.30) Ly = (¢, 8¢, 16¢3). In this case, we have [yJ(K)| = 1, and
the integer a is odd, a = 2 (mod 4) or a = 4 (mod 8). We obtain the relation
(4.3.7).

Subcase(4.7.1.30-1) Suppose that the integer a is odd. Then we may
assume that b = 2 (mod 4), ¢ = 0 (mod 4) and d = 4 (mod 8). We may
easily show that

L(K) = {{Lm} if a = 6'1 (mod 8),
{Lw} or {Lyi} or {Lyy} otherwise.

Therefore we have

{[4,;a]} ifa=e (modS8),

label(%L(K)) - {{[[4 II: 4a]]} otherwise.

Subcase(4.7.1.30-2) Suppose that a = 2 (mod 4). We may assume that b
is odd, ¢ =0 (mod 4) and d = 4 (mod 8). Then we may easily show that

Lo Jmbor{Lv} ifb=e (mod4),
)= {{LIV} or {Lyy} otherwise.

Therefore we obtain

{[4.L;4a]]} ifb=e (mod 4),

label(’YQL(K)) = {{[[4 1I: 4(1]]} otherwise

In order to determine label(v(K)), we have to compute the value b modulo
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4. Suppose that £ = € (mod 4). Then Sy(K) = (a, 2)
Therefore we have

Sy(K) (mod4) if%=1 (mod4)and$%=49 (mod83),
- —Sy(K) (mod4) if%=1 (mod4)and%# % (mod 8),
Sy(K) (mod4) if2=3 (mod4)and$#% (mod 8),
—Sy(K) (mod4) if =3 (mod4)and =% (mod 8)

Next, suppose that § # dK (mod 4). Then we use a similar argument as
Case(4.7.1.19-2). We may show that label(Ay(K)) = [4,1; 5] by the above
results and if we put 74 (A2 (K))/ ~= {[K], [K]}, we have

{mbel(ﬁ(m) label(vE (K } {{[[4 4@]},{[4,11;4@]}}.

Subcase(4.7.1.30-3) Suppose that a =4 (mod 8). We may assume that b
isodd, c=0 (mod 8) and d =2 (mod 4). Then we have K, = (a,b,b-§

and d = 2b-%-%5 (mod 8). Consider the case that ¢ =1 (mod 8) and % dK = 1
(mod 4). Then a=4 (mod 8), d=2b (mod 8) and S2(K) = (b, b)(b, 2) We
may show that

((Ly}or {Ly} ife;=1 (mod 8) and Sy(K) = 1,
{Liv} or {Lyp} ife;=1 (mod 8) and Sy(K) = —1,
{Lp} or {Ly} ife; =3 (mod 8) and Sy(K) =1,
H(K) = | {L} or {Lyg} ifeg =3 (mod 8) and S3(K) = —1,
{Liv} or {Lyp} ife; =5 (mod 8) and Sa(K) =1,
{Ly} or {Ly} ifeg =5 (mod 8) and S3(K) = —1,
{Lu} or {Ly} ife; =7 (mod 8)and S»2(K) =1,
({Lw} or {Lyn} ifeg =7 (mod 8) and Sy(K) = —1.

Observing all cases, we may obtain

{[4,L;4a]l} if (%, 2) (22K —e)) (e, —2) = So(K),

label(yy (K)) = {{[4 II;4a]]} otherwise
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Case(4.7.1.31) Ly = {e1, 1669, 32¢3). In this case, we have |y4(K)| = 2 and
the integer @ is odd or @ = 4 (mod 8) or a = 8 (mod 16). We obtain the
relation (4.3.7).
Subcase(4.7.1.31-1) Suppose that the integer a is odd. Then we may
assume that b = 4 (mod 8), ¢ = 0 (mod 8) and d = 8 (mod 16). We may
easily show that

N {{LM,LVI} ifa=¢; (mod 8),

{Lw, Lyg} otherwise.
Therefore we have

{[4, L a], [4, 10 4a]]} ifa=e¢; (mod 8),

label(’YQ (K)) = {{[[4’ H; 4&]], [[47 ]1; 4@]]} otherwise.

Subcase(4.7.1.31-2) Suppose that a =4 (mod 8). We may assume that b
is odd, ¢ =0 (mod 4) and d = 8 (mod 16) . Then we may easily show that

%L(K):{{LH’M ifb=e (mod8),

{Lw, Lvi} otherwise.

Therefore we have

{[[4.1;4a], [4,1;4a]} ifb=e (mod 8),

label(% (K)) = {{[[47 ]1; 4(1]]7 [[4’ ]I; 4@]]} otherwise.

We may determine b modulo 8 by the congruent relation b = ¢; (mod 4) and
Table 4.2 for Sy(K).

Table 4.2: Values of Sy(K)

H g =1 (mod 8) ‘ 5 =3 (mod 8) ‘ g =5 (mod 8) ‘ 5 =7 (mod 8) ‘
% =1 (mod 4) (b, —2) (b,2) -(b,-2) -(b,2)
1K= 3 (mod 4) —(b,2) (b, —2) (b,2) (b-2)
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Subcase(4.7.1.31-3) Suppose that a = 8 (mod 16). We may assume that
bisodd, c=0 (mod 4) and d =4 (mod 8) . Then we may easily show that

75 (K) = {Ly, L} or {Ly, Lyn}.

Therefore we have label(v4(K)) = {[[4,1; 4a]], [4, II; 4a] }.

Case(4.7.1.32) Ly = {(€,2™e3, 2™ es) (m = 5). In this case, we have
72 (K)| = 4 and the integer a is odd or @ = 0 (mod 8). We obtain the
relation (4.3.7). Then we may easily show that

L {Lm, Ly, Lyt, Lyp}  if a is odd,
V5 (K) = )
{Lu, Ly, Ly, Lyi}  otherwise.

Therefore we have

{[[4.T; a], [4,11; 4a], [4,I; 4a], [4, 0; 4a]l}  if a is odd,

label(74(K)) =
(’72 ( )) {{[[4, I; 4&]], [[4’ I; 4&], [[4’ H; 4@], [[4’ H; 4@]]} otherwise.

Case(4.7.1.33) Ly = {e1, 8¢, 32¢3). In this case, we have [y (K)| = 2 and
the integer @ is odd or @ = 2 (mod 4) or a = 8 (mod 16). We obtain the
relation (4.3.7).
Subcase(4.7.1.33-1) Suppose that the integer a is odd. Then we may
assume that b = 2 (mod 4), ¢ = 0 (mod 8) and d = 8 (mod 16). We may
easily show that

vQL(K):{{Lm’LW} ifa=e (mod8),

{Lw, Lyp} otherwise.

Therefore we have

label(yy (K)) =

{[[4, Lal, [4, I 4a]]} ifa=e¢; (mod 8),
{[[4, II; 4a]|, [[4, T; 4a]]} otherwise.

Subcase(4.7.1.33-2) Suppose that a = 2 (mod 4). Then we may assume
that b is odd, ¢ =0 (mod 4) and d = 8 (mod 16). Since b = Se1€; (mod 4),
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we may easily show that

Y2

L) = {Ln,Lv} if§=e (mod4),
{Ly, Lyn} otherwise.

Therefore we have

{[[4,T;4a]l, [4,L;4a]]} if ¢ =€ (mod4),

label(’Vz (K)) = {{[[4’ H; 4@]], [[47 ]I; 4@]]} otherwise.

Subcase(4.7.1.33-3) Suppose that a = 8 (mod 16). Then we may assume
that b is odd, ¢ = 0 (mod 2) and d = 2 (mod 4). Since b = §e1€; (mod 4),
we may easily show that

vE(K) = {Ly, L} or {Lv, Lyx}.
Therefore we have
label(yy (K)) = {[4, T; 4a]), [4, T; 4a] }.

Case(4.7.1.34) Ly = {e1, 1669, 64€3). In this case, we have |y&(K)| = 2 and
the integer a is odd or a = 4 (mod 8) or @ = 16 (mod 32). We obtain the
relation (4.3.7).

Subcase(4.7.1.34-1) Suppose that the integer a is odd. This case is similar
to Subcase

(4.7.1.33- 1) and we obtain the same result.

Subcase(4.7.1.34-2) Suppose that a = 4 (mod 8). This case is similar to
Subcase(4.7.1.33-2) but we can not determine b modulo 8. By the similar
argument as Subcase(4.7.1.19-2), if we put 72 (A(K))/ ~= {[K], [[N(]}, we
have

{1abe1<7§(f()), label(nyL(I?))} - {{[[4, I; 4a]), [4, 1; 4a] }, {[4, T; 4a], [4, TI; 4a]]}}.

Subcase(4.7.1.34-3) Suppose that a = 16 (mod 32). This case is similar
to Subcase(4.7.1.33-3) and we obtain the same result.

Case(4.7.1.35) Ly =~ {e1,2™e2,2™ 2e3) (m = 5). In this case, we have
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[7£(K)| = 4 and the integer a is odd or even. We obtain the relation (4.3.7).
We may easily show that

{[[4, Lal, [4, 1 4a]], [4, IT; 4a]), [[4, TT; 4a]]} if a is odd,

label(+£ (K)) =

{[[4,1; 4a]l, [4, I; 4], [4, I; 4a]), [4, 0; 4a]]}  otherwise.
Case(4.7.1.36) Ly = (€1, 8¢, 2™e3) (m = 6). In this case, we have [/ (K)| =
2 and the integer a is odd or a = 2 (mod 4) or a = 0 (mod 16). We obtain
the relation (4.3.7). We may easily show that

r{L]]I,LVI} ifa= €1 (mod 8),
{Ltv, Lvn} if a is odd and a # €; (mod 8),
Y5 (K) = < {Lu, Ly} if £ =¢ (mod8),
{Lt, Lvn} ifa=2 (mod4)and § #e (mod8),
{Ly, Ly} or {Lv,Lyi} otherwise.

Therefore we have

({[4,L;a],[4,1;4a]]} ifa=e (mod 8),

{[[4,1; 4a]], [[4,1;4a]]} if a is odd and a # €; (mod 8),
label(ys (K)) = < {[[4,1;4a]), [4,1;4a]}  if 2 =¢; (mod 8),

{[4,1;4a]], [4,0;4a]l} ifa=2 (mod4)and § #e (mod 8),
{14,1;4a], [4,0;4al]}  otherwise.

Case(4.7.1.37) Ly = {e1,16¢€9,2me3) (m > 7). This case is similar to
Case(4.7.1.36) and we obtain the same result.

Case(4.7.1.38) Ly = {(€1,2"€3,2me3) (8 < n+ 3 < m). This case is also
similar to Case(4.7.1.36) and we obtain

label(v£(K)) = {{II4> L all, [[4, I 4a]), [4, 1T; 4a]], [[4, 1T 4a]]} if a is odd,

{[[4, I;4all, [4,1; 4a], [[4, IT; 4a]), [[4, IT; 4a]]} otherwise.

]
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We need to determine whether the binary lattice K’ is even or odd in
the four cases Case(4.7.1.1), Case(4.7.1.6), Case(4.7.1.10) and Case(4.7.1.22).
We are going to deal this problem in Section 2 of Chapter 5.

Next, we consider the case when K = Zx + Zy + Zz = Kyx(a,b,c,d).
Then we may obtain

8a 4a 0 8a 2a 0
Li=|4a 4b 2c¢|, Lp=71.(Lyv)=|2a b 2],
0 2¢ d 0 2c¢ 4d
2a+d 2(a+c) 2d
Lm;<2a>J_< 4d) 2(a +¢) 4b 4e |,
2d 4c 4d

0

)

0
Ly = 7, (Lvy) = (2@ b+20+d 2(c+d)

2(c+d) 4d
and
8&a 2a 0
D—n) =20 b ¢|, =caL (P72 %),
2¢ d
0 ¢ d
20 a O 2a+d a+c 2d
Ly=la b 2|, Ly=7(Liyg) =|a+c b 2],
0 2c¢ 4d 2d 2¢  4d

2a a 0
Ly=|a b+2c+d 2(c+d)
0 2(c+d) 4d

Theorem 4.7.2. Let L be a primitive ternary lattice which is not stable
over Ly and let K := Xoo(L). Suppose that |O(K)| =4 and K is of type 1I.

Then the multiset label(vL, (K)) is completely determined by dK , label(K),
label(A2(K)) and the structure of Ls.
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Proof. Since K = Ky y(a,b,c,d) for some integers a, b, ¢ and d, we have

and the label of K is [[4,1I; 2a]).

Case(4.7.2.1) Ly =~ T 1 (4¢). In this case, we have |y/(K)| = 1 and
Ky = M\(Ly) =T L {e). Then we may assume that a, b and d are odd by a
suitable base change since dK = 2a(bd — ¢*) — ad®. Then we have

1 (K) = {Ly} or {Li;}.
Therefore we have
label(vy (K)) = {[[4,1I; 2a] }.

Case(4.7.2.2) Ly = T 1 (8¢). In this case, we have |y} (K)| = 2+ x(T) and
Ky = M\(Ls) = T 1 (2¢). Then we may assume that the integer a is odd,
b=0 (mod 4) and d is even by a suitable base change. Then we have

{Ly, Ly, Lyt ifd=2 (mod4)and 7'~ H,

VW(K) =3 {L|, Ly, Ly} ifd=0 (mod4)and T =~ H,
it T =~ A.
{L} f A

Therefore we have

{[2],[4.10; 2]} if T ~H,

label('M (K)) = {{[[4’ II; 2(1]]} if T ~ A.

Case(4.7.2.3) Ly =T 1 (2™¢) (m > 4). In this case, we have |[vF(K)| = 4
and Ky = M\y(Ly) = T 1 (2™ 2¢). Then we may easily show that

{[[2]], 14, T0; 2a]), [4, T, 2a]]} if a is odd,

label<74L(K>) = {{[[2]]7 [[2]]} otherwise.

95



CHAPTER 4. LABELS OF CLASSES

Case(4.7.2.4) Ly =~ {¢) L 2T. In this case, we have [y (K)| = 1 and
Ky = Xo(Ls) = (2¢) 1L T. Then we may assume that the integer a is odd,
b=0 (mod 4) and d is even by a suitable base change. Then we have

,YLLL(K):{{(LI)i} ?fde (mod 4),
{(Lv1)2} ifd=0 (mod 4).

Therefore we have

label(vs (K)) = {[[4,1I; 4a] }.

Case(4.7.2.5) Ly =~ {(e¢) 1 4T. In this case, we have |y&(K)| = 1 and
Ky = A\(Lg) = {ey L T. Then the integers a and d are odd, and we may
assume that b and c are even. Then we have

71 (K) = {L1}.

Therefore we have
label(vy (K)) = {[[4,1; 8a] }.

Case(4.7.2.6) Ly =~ {(¢) L 8T. In this case, we have |y4(K)| = 2+ x(T) and
Ky = Mo(Ls) = (¢) L 2T. Then we may show that a = 2 (mod 4) and may
assume that b= 0 (mod 4), c=0 (mod 16) and d is odd by a suitable base
change using the fact that bd — ¢*> = 0 (mod 4). Then we may easily show

that
{LI, Lv, LV]I} ifT~Hand b=0

( )
{Lv,Lvi,Lyy} ifT>~Handb=4 (mod ),
{Lvi} fT~Aandb=0 ( )
{Li} fTr~Aandb=4 ( )

Therefore we have

{[2],[4,1;8a]} if T ~H,

label(yy (K)) = {{[[47 II; 8@]]} if T~ A.

Case(4.7.2.7) Ly = {¢) L 2™T. In this case, we have |y5(K)| = 4 and K, =
Ao(Ly) = {e¢) L 2m72T. Then we may show that the integer a is even and may
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assume that b is odd. By the structure of K5, we have ordy(2ab—a?) = m—1
and ordy(abc) = m — 2. We may verify that if a = 2 (mod 4), then ¢ and d
are both even, and if a = 0 (mod 4), then ords(a) = m — 2 and ¢ and d are
both odd. In the latter case, we may assume that b is even and d is odd by
a suitable base change. Then we may easily show that

L

{LH,LI\/,L\/,LV]I} ifa=2 (mod 4),
7 (K) = {

{LI,L\/,L\/I,LVH} ifa=0 (HlOd 4)
Therefore we have

{121, 1211} ifa=2 (mod 4),

label(yy (K)) = {{[[2]], [4,M;8a]l} ifa=0 (mod4).

Case(4.7.2.8) Ly = (€1, €9, 2¢3). In this case, the lattice K5 is odd unimod-
ular and we obtain the relation (4.3.6). Then we may show that the integers
a and d are odd and may assume that b is even by the suitable base change.
Comparing the local structures, we may easily show that

L {(Ln)
Y (K) =
) {{<Lm>

N|=

J(Lm)z, (Lw)z}  if K, is anisotropic,

N

} if K is isotropic.
Therefore we have

{[2],[4,L;a]} if K, is anisotropic,

label(v2(K)) =
(’Yz ( )) {{[[47 I; a]]} if K5 is isotropic.

Case(4.7.2.9) Ly = {e1,€9,4€3), € = €5 (mod 4). In this case, we have
V(K)| = 1 and Ky = Xo(Lo) = {€},¢€h,2e3). Then the integers a and d
are odd and d is even. We obtain the relation (4.3.6). Comparing the local
structures, we may casily show that v2(K) = {(Ly)2} and hence we have

label(v3 (K)) = {[4,1; a]l}.

Case(4.7.2.10) Ly = {€1,€9,8¢3), € = €5 (mod 4). In this case, we have
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IV (K)| =1 and Ky = \o(Lo) = (€}, €),4e3). Then we may assume that the
integer b is odd, and we obtain the relation (4.3.6).

Subcase(4.7.2.10-1) Suppose that the integer a is odd and d = 2 (mod 4).
Then clearly ¢ is odd since bd — ¢? is odd. Comparing the local structures,
we may show that

{(Lp)2} ifa=1 (mod4)and Sy((ey, ) =1, or
15 (K) = ifa=3 (mod 4) and Sy({ey, 60)) = —1,
{(L))2}  otherwise.

Therefore we have

{[4.La]} ifa=1 (mod4)and S({e,e)) =1, or
label(v&(K)) = ifa=3 (mod 4) and Sy({e, €9)) = —1,
{[[4,1;4a]]} otherwise.

Subcase(4.7.2.10-2) Suppose that the integer a is odd and d = 0 (mod 4).
Then ¢ is even and d = 4 (mod 8) since dK = 4 (mod 8). This case is
similar to the previous case and we have the same result.
Subcase(4.7.2.10-3) Suppose that a = 2 (mod 4). Then ¢ is odd and we
may easily show that v4(K) = {(L;)2} or {(Lvi)2}. Therefore we obtain

label(vy (K)) = {[[4,1I; 4a] }.

Case(4.7.2.11) Ly =~ {e1,€69,2Me3) (m = 4), ¢ = €3 (mod 4). In this case,
we have |74 (K)| = 2 and we may assume that b is odd. Clearly we obtain
the relation (4.3.6).

Subcase(4.7.2.11-1) Suppose that the integer a is odd. Then we may easily
show that

Y (K) = {(L1)%, (Lm)2} or {(Lm)?, (Lv1)?}.

Hence we obtain

label(vy (K)) = {[[4.L a], [4,1I; 4a] }.
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Subcase(4.7.2.11-2) Suppose that a = 2 (mod 4). Then ¢ is even and
bd =1 (mod 4). Comparing the local structures, we may easily show that

VE(K) = {(Lv)?, (Lyn)? }.

N|=

Therefore we obtain
label (74 ( = {[2]}-

Subcase(4.7.2.11-3) Suppose that a =0 (mod 4). Then ¢ or d is odd since
the unimodular component of K, has rank 2. Therefore we have bd — ¢? =
1 (mod 4). If ¢ is odd and d is even, v4(K) = {(L)2,(Lyv;)2} and then
label(A2(K)) = [[4,1;a] by the previous results. If ¢ is even and d is odd,
we may also show that 7F(K) = {(Lv)2, (Lyy)2} and then label(Ay(K)) =
[4,1; a]l. Therefore we obtain

{[[4,1;4a]), [4, 0; 4a]} if label(Xo(K)) = [4,T; a],

label(yy (K)) = { (2 if label(Ao(K)) = [[4, I; a].

Case(4.7.2.12) Ly = (€1, €9,4€3), €1 # €5 (mod 4). In this case, we have
VE(K)| = 3 and Ky = M\y(Ly) = T 1 (2e3). Then a is odd and b, d are even.
we obtain the relation (4.3.6). Comparing the local structures, we may easily
show that

label (+4(K)) = {[2], [4,1; ]}
Case(4.7.2.13) Ly = {e1,€,2Me3) (m = 3), €162 = 7 (mod 8). In this case,
we have VI (K)| = 2 and Ky = \y(Ly) = H L (2™ 1e3). We obtain the
relation (4.3.6).
Subcase(4.7.2.13-1) Suppose that the integer a is odd. Then we may easily

show that
L {(L1)7, (L
2 K) =
) {{<Lm>

(Lm)2}  if cis odd,
,(Lvi)2}  otherwise.

w\»—t

Therefore we have
label(yy (K)) = {[4,T; o], [4, TT; 4a] }.
Subcase(4.7.2.13-2) Suppose that the integer a is even. Then c¢ is odd and
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bd =0 (mod 8). We may easily show that

{(Ly)2, (Ly)2} ifb=2 (mod4)andd=0 (mod 4),
YW(K) =< {(L)2, (Lv)2} ifb=0 (mod4)andd=2 (mod 4),
{(Lv)?, (Lvp)2} ifb=d=0 (mod 4).

Therefore we have

2 ifd=0 d4
label(y (1)) — 4 {20} 1 (mod 4)
{[[4,1; 4a], [4,; 4a]]} ifd=2 (mod 4).
Now we have to determine the value d modulo 4. Suppose that a = 2
(mod 4). Then we obtain d = —% — € (mod 8) since dK = 4 (mod 8).
Next, suppose that a = 4 (mod 8). Then we obtain d = (—4%—%) (mod 4)

since dK = 8 (mod 16). Finally we suppose that a = 0 (mod 8). Then we
have )
2a 2a 0\"

p_a
M(K) = |20 40 4c :<%>L( > cci)
0 4dc 4d

and we may show that label(Ay(K)) = [4,1; 5] or [[8,II; 5, *, #] by the pre-

’y 99
vious results. Suppose that O(Ay(K)) is of order 4. Then we have

label(v;* (\(K))) = {[[4,1; 2a]), [4,IL; 2], [[4, II; 2a], [4, IT; 2] }.

Observing each entry corresponding to d in the three Gram matrices of type
I, we may verify that two of them are divisible by 4 and the rest one is not.
Put v (\(K))/ ~= {[K],[K.1],[K2], [K3]}, where K, K; and K are of type
II. Then we may conclude that

{label(y} (K), label (44 (1)), label (v (K2))} = { {120}, {[2D}, {[4, T 4a, [4, T 4a] }}.

Next, suppose that O(A\4(K)) is of order 8. Then we have

71 (Aa(K)) = {[[4.15; 2a] },
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and the entry corresponding to d in the Gram matrix is divisible by 4. There-
fore we have

label(~3 (K)) = {[[2]}.

Case(4.7.2.14) Ly = {e1,€2,2™e3) (m = 3), €162 = 3 (mod 8). In this case,
we have |72 (K)| = 6 and Ky = M\y(Ly) = A | (2™ e3). Clearly we obtain
the relation (4.3.6). Comparing the local structures, we may easily show that

{(LI)%a (L]I)%, (L]]I)%, (le)%, (Lv)%, (LVH)%} if a, ¢ are odd,
5 (K) = {(LI>%7 (L]I)%; (LIV)%7 (Lv)%, (L\/I)%, (Lv]])%} if a is even,
{(LH)%v (Lﬂl)%» (LIV)%, (LV)%, (L\/I)%, (Lvn)%} otherwise.

Hence we obtain

{[[2]], 121, [4,T; a]l, [4, I; 4@]]} if a is odd,

label(yy (K)) = {{[[2]], 121, 4, I0; 4a]], [[4, H;4a]]} if a is even.

Case(4.7.2.15) Ly = {1, 2¢,2¢3). In this case, we have |vZ(K)| = 1 and
Ky = \y(Lo) = (2¢1, €9, €3). Clearly we obtain the relation (4.3.6). We obtain
that a is odd and d is even. Comparing the local structures, we may easily
show that

YE(K) = {(L1)2} or {(Lvi)?}.
Therefore we obtain

label(vy (K)) = {[[4,I; 4a] }.

Case(4.7.2.16) Ly =~ (e1,2¢y,4€3). In this case, we have |v2(K)| = 2 and
Ky = X(Lg) = (2€1,€9,2€3). Clearly we obtain the relation (4.3.6). We
obtain that ¢ = 2 (mod 4), b = ¢ (mod 2) and d is odd. Comparing the
local structures, we may easily show that

VW (K) = {(Ln)?., (Lw)?} or {(Lv)?, (Lvn)?}.

Therefore we obtain
label(+# (K)) = {[21).
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Case(4.7.2.17) Ly =~ {¢1,2€2,8¢3). In this case, we have |74(K)| = 1 and
Ky = Mo(Lg) = (2¢1, €2,4€3). We may easily show that a = 2 (mod 4) since
K has no unimodular component of rank 2 and dK =8 (mod 16). Further,
we may show that the integers d and ¢ are even and b is odd. Then we have
dK =0 (mod 16) and this is a contradiction. Therefore this case does not
occur.

Case(4.7.2.18) Ly = {e1, 2¢9, 16€3). In this case, we have [v4(K)| = 1 and
Ky = My(L2) = (2€y, €9, 8¢3). Clearly we obtain the relation (4.3.6) and the
integer a is even. Comparing the local structures, we may show that the
possible lattices are (L) and (Lyi)2. We may verify that (Li)y 2 (Lvi)a
and hence

72 (K) = {(L1)2} or {(Lv1)?}.
Therefore we have
label(v3 (K)) = {[[4,; 4a] }.
Note that bd — ¢* =2 (mod 4).
Case(4.7.2.19) Ly = {e1, 265, 2™e3) (m = 5). In this case, we have |74 (K)| =
2 and Ky = \o(Lo) = (2€y, €2,2™ Le3). Clearly we obtain the relation (4.3.6)

and the integer a is even. Comparing the local structures, we may easily
show that

{(L1)7, (Lv1)?} ifa=2 (mod 4),
) - @R Ew)3Yor (L)% (L3} ifa=4 (mod ),
’ {(Lu)?, (L)2} or {(Ly)?, (Lvn)?} ifa=0 (mod 8) and d is odd,
{(LI)%, (LVI)%} ifa=0 (mod 8) and d is even.
Therefore we have
{[[4,1; 4a], [4,0;4a]} fa=2 (mod 4),
Iabel(E(FY) — {21} if a=4 (mod 8),
abel(r2 (1)) {[21} ifa=0 (mod 8) and d is odd,
{[[4,1; 4a], [4,1;4a]} ifa=0 (mod 8) and d is even.

In the last two cases, we have to determine the parity of the integer d. Put

102



CHAPTER 4. LABELS OF CLASSES

K =7x +Zy+7Zz = Kyn(a,b,c¢,d). If d is even, we have

2a 2a 0\’
M(K) = (Zzx + Z(2y) + Zz)% ~ |22 4b 2¢c| ={ayl <
0 2 d

2b—a
c

s O
N~

and we may show that label(A\y(K)) = [[4,1;a]] by the previous results. If
the integer d is odd, we may assume that b is odd, and we have

a a 5
MK)= (Ze+Z2y+Zy+2))" =~ |a 26 b+e
2 bte Hlyc

Then we may show that label(A\2(K)) = [[4,; a] or [[8,IV;a, =, #]]. Therefore
we conclude that

{21} ifa=0 (mod 8) and
label(A2(K)) = [4,I; a]] or [[8,IV;a, *, ],
{[[4,1;4a]], [4,X;4a]l} ifa=0 (mod 8) and
label(A2(K)) = [4,L; a]],

label(v4/(K)) =

in the above two cases.

Case(4.7.2.20) Ly =~ {€1,4€q,4€3). In this case, we have Ky = A\o(Lq) =
(€1, €2, €3) and we obtain the relation (4.3.7). It is clear that the integers a
and d are both even and we may assume that b is odd. Since 2ab — a? = 1
(mod 4), we may represent that

Ky =~ (b, eb, edK),

where ¢ = 1 (mod 4). Therefore K5 is isotropic if and only if b # dK
(mod 4).

Subcase(4.7.2.20-1) Suppose that L is isotropic and €2 = €3 (mod 4).
Then we have |v2(K)| = 1 and b # dK (mod 4). We may show that v (K) =
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{L1} or {Ly1} and we obtain
label(vy (K)) = {[[4,1I; 8a] }.

Subcase(4.7.2.20-2) Suppose that L, is anisotropic and €2 = €5 (mod 4).
Then we have |[v2(K)| = 3 and b= dK (mod 4). We may show that

{L1, Ly, Lyy}  if bd — ¢* is odd,
7 (K) = . ).
{Ly, Ly, L\i}  if bd — ¢* is even.

Therefore we have

label(vs (K)) = {[2]], [4,1L; 8] }.

Subcase(4.7.2.20-3) Suppose that €5 # €3. Then we have |74 (K)| = 2 and
b# dK (mod 4). We may show that

v (K) = {Ly, L }.
Therefore we have

label (4 ( = {[[2]}-

Case(4.7.2.21) Ly = (¢, 4€y,8¢3). In this case, we have |vZ(K)| = 2 and
Ky = Xo(Lg) = {€1,€9,2¢3), and we obtain the relation (4.3.7). It is clear
that a, b are odd and d is even. We may easily show that

label(v4 (K)) = {[2]}.

Case(4.7.2.22) Ly =~ {e1,4¢€9,2™e3) (m = 4). In this case, we have |y (K)| =
212 and Ky = A\y(Ls) = (€1, €2, 2™ 2¢3), and we obtain the relation (4.3.7).
Subcase(4.7.2.22-1) Suppose that the integer a is odd. Then we may ver-
ify that d is even and b is odd. Since 2ab —a? =1 (mod 4), we have ¢; = ¢,
(mod 4) and hence |74 (K)| = 4. Consequently, we may easily show that

label (v (K {[[2]] [[2]]}

Subcase(4.7.2.22-2) Suppose that the integer a is even. Then we may
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assume that b is odd and then bd —c? is odd. Comparing the local structures,
we may show that

{21, 21} if dis even and €; =€ (mod 4),
{[21} if d is even and €; # €2 (mod 4),
label(yg'(K)) = 4 {[2]l, [4,T; 8a], [4,T;8a]} if dis odd and €; = ¢, (mod 4),
{21} if dis odd and €1 £ e2 =d  (mod 4),
{[4,1; 8a]], [4, I; 8a]|} if dis odd and d = ¢; # €2 (mod 4).

Now, we have to determine the parity of d. Observing the previous results,
we may verify that

[4,L; «] or [[8,II; ]| if d is even,

label(Ao(K)) =
(A2(K)) {[[4’1[;*]],[[8,1\/;*]]’[[12;*]] or [16,1;+] if d is odd.

Finally, we have to determine the value of d modulo 4 when d is odd and
€1 # € (mod 4). If m = 4, we may easily show that d is even. Hence we
assume that m > 5. If a =2 (mod 4) and m = 5, then we have

ad dK

bd —c* — — = — =2 (mod 4).
2 2a

Therefore we obtain
a

d= 5 (mod 4).

If a =2 (mod 4) and m > 6, we obtain d # § (mod 4) by a similar calcula-
tion as above. If a =4 (mod 8), then we obtain m = 5 and

2&(6162) —dK
16

d

(mod 4).

Finally, suppose that a = 0 (mod 8). Then we may easily show that
label(\2(K)) = [4,10; a].

Put 7 (\2(K))/ ~= {[K], [[N(]} Then by a similar argument in Subcase
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(4.7.2.13-2), we obtain

{1abe1(~y§(K)), label(nyL(IN())} - {{[[2]]}, {[14,11; 8a], [4, I; 8a]]}}.

Case(4.7.2.23) Ly =~ (e1,8¢,8¢3). In this case, we have |[v2(K)| = —2

1+e€03

and Ky = Ao(Lg) = (€1, 2¢9,2¢3). Clearly we obtain the relation (4.3.7). We

may easily show that a = 2 (mod 4) and may assume that b, ¢ and d are

odd. By a simple calculation, we obtain dTK = d (mod 4) and hence we have

Py (mod 4) if eo=¢3 (mod 4),
e +2 (mod 4) otherwise.

Comparing the local structures, we may easily show that

L( ) _ {LI} or {LVI} if €9 = €3 (mod 4),
? {Ly, L} otherwise.

Therefore we have

{[[4,I;8a]]} ifex=e3 (mod 4),

label(vyy (K)) = { {[[2]]} otherwise.

Case(4.7.2.24) Ly = {e1, 16€9, 16€3). In this case, we have |y (K)| = 2 and
Ky = Mo(Lg) = {e1,4€s,4€3). Clearly we obtain the relation (4.3.7) and the
integer a is even. We may assume that b is odd.

Subcase(4.7.2.24-1) Suppose that a = 2 (mod 4). Then we obtain that
bd — c* =4 (mod 8) and hence c is even and d = 0 (mod 4). Comparing the
local structures, we may easily show that

75 (K) = {Ln, L} or {Ly, Lyn}.

Therefore we have
label(vy (K)) = {[[2]}.
Subcase(4.7.2.24-2) Suppose that a = 4 (mod 8). Then we may show that
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the integers ¢ and d are both odd and we have
Ky ~ <b, b(bd — C2>, *> = <€1, 462, 4€3>.
Since bd — ¢* = 4 (mod 8), we have

dK

a
16 4 2

bd—cl@?dzdzel (mod 4)

bd—c?
4

and hence €2 = €3 (mod 4). Consequently, modulo 4 is determined by

the structure of (ey, €3). Therefore we obtain

dK
c€1€Q — —— (mod 8)

a
d= =
4 16

Comparing the local structures, we may easily show that

{LI, LVI} if €1 = d (mod 8),
% (K) = .
{Ly, Ly} otherwise.

Therefore we obtain

{[[4, II; 8al, [[4, II; 8a]]} if e, =d (mod 8),

label(’)/g (K)) = {{[[2]]} otherwise.

Case(4.7.2.25) Ly = {(€1,2™€3,2™e3) (m = 5). In this case, we have
V(K)| = 4 and Ky = Xo(La) = {e1,2™ %6, 2™ 2¢5). Clearly we obtain
the relation (4.3.7) and the integer a is even. Then we may assume that the
integer b is odd. By a simple calculation, we have

({Ly, Ly, Lv,Lyr} ifa=2 (mod4)ora=4 (mod8),
{L1,Lv, Lvi,Lyp} ifa=0 (mod 8) and
7 (K) = 3 label(A2(K)) = [4, I «]), [8, IV; +]] or [16, IL; ]),
{Lu, L, Lv,Lyvg} ifa=0 (mod 8) and
label(A\2(K)) = [4,L; =] or [[8,IL; «]].
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The last two cases are similar to Subcase(4.7.2.22-2). Therefore we obtain

{21, 21} ifa=2 (mod4)ora=4 (mod8),
{[2], [4,15;8a], [4,I;8a]]} ifa=0 (mod 8) and
label(A2(K)) = [4,1; <], [8,IV; ] or
[16,10; ],
{21, 21} ifa=0 (mod 8) and
label( Ao (K)) = [4,1; #]] or [[8,1L; «]).

label(+} (K)) =

Case(4.7.2.26) Ly = {¢1, 8¢y, 16€3). In this case, we have [v4(K)| = 1 and
Ky = \o(Ls) = {€1,2€9,4€3). Clearly we obtain the relation (4.3.7) and the
integer a is even. We may assume that b is odd. Since dK =8 (mod 16), we
may show that a = 2 (mod 4) and d is even. Then the possible candidates
are Ly, Ly, Ly, Lyy. But this contradicts to the fact that |y&(K)| = 1.
Therefore this case does not occur.

Case(4.7.2.27) Ly = {e1, 16€9, 32¢3). In this case, we have |y&(K)| = 2 and
Ky = Xo(Lg) = (€1, 4€9,8¢3). Clearly we obtain the relation (4.3.7) and the
integer a is even. We may assume that b is odd. Since dK = 32 (mod 64),
we may show that a = 2 (mod 4) or a = 4 (mod 8). Comparing the local
structures, we may easily show that

label(+4 (%)) = {[21}.

Case(4.7.2.28) Ly =~ {e1,2™e,2™ e3) (m = 5). In this case, we have
74 (K)| = 4. We may show that

({121, 2]} if ordy(a) < 3,
{[2], [4,15; 8a], [4,1;8a]]} if orda(a) > 4 and
label(v4' (K)) = { label(\2(K)) = [4,1I; +],
{21, 21} if orda(a) = 4 and
label(A2(K)) = [[4,1; =] or [[8,10; «]).

\

Case(4.7.2.29) Ly =~ {1, 8¢5, 32¢3). In this case, we have |v2(K)| = 2. We
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may show that
label (vX( = {[2]}.

Case(4.7.2.30) Ly = {1, 16¢3, 64(—:3>. In this case, we have |y (K)| = 2. We
may show that

label(v4(K)) = {[[2]]}

Case(4.7.2.31) Ly =~ {€1,2™€9,2™ 2¢3) (m > 5). In this case, we have
72 (K)| = 4. We may show that

{21, 21} if ords(a) <
label(n (K)) = {[2], [4,1; 8a]], [4, I; 8a]l } if orda(a) = 4 and label(A2(K)) = [4, II; «],
{21, 21} if ords(a) = 4 and
label(A2(K)) = [[4,1; ] or [[8,1II; «]).

Case(4.7.2.32) Ly = {e1, 8¢, 2™e3) (m = 6). In this case, we have |4 (K)
2 and Ky = \y(Lo) = (€1, 262,2™ 2€3). Clearly we obtain the relation (4.3.
and the intege a is even. We may assume that b is odd.
Subcase(4.7.2.32-1) Suppose that a = 2 (mod 4). Since dK = 0 (mod 32),
we may show that d is even and we may easily show that

label(v4(K)) = {21}

Subcase(4.7.2.32-2) Suppose that a = 4 (mod 8). Then we may show that
the integers ¢ and d are both odd and b # d (mod 4). We may easily show
that

| =
7)

{[[4,1; 8a]], [4,I; 8a]]} if ey =d (mod 4),

label(yy (K)) = {{[[2]]} otherwise,

where
€16 —2 (mod 4) if m =6,

€162 (mod 4) ifm=7.

S

Il
—
ININTS

Subcase(4.7.2.32-3) Suppose that a = 0 (mod 8). Then we may show that
bd — ¢ =2 (mod 4) and hence ordy(2a(bd — ¢*)) = 2 + ordy(a). Since a =0
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(mod 8) and ords(a®d) = 2ords(a), we have
2 + ordy(a) < 2ordy(a) < ordy(a’d).

Therefore ords(a) = m — 3. If m = 6, we may show that

{I21} if label (Ay (K)) = [[4,T; «]],
label(yy (K)) = { {[4,1; 8]}, [4, II; 8a]} if label (Ao (K)) = [4,TI; #]) and €, = d(mod 4),
{21} if label(\o(K)) = [[4,1L; *]] and €; # d(mod 4),
where QK
_ae€j€g an
d= TR (mod 4).

If m > 7, we may use a similar argument as in Subcase(4.7.2.13-2). If we
put v (\o(K))/ ~= {[K],[K]}, the isometry group of K is of order 4 and
its label is of type II. Using the fact that ordy(a) = m — 3, we may verify
that

{1abe1(»y§(K)), label(nyL(IN())} — {{[[2]]}, {[4,15; 8a]), [4, T; 8a]]}}.

Case(4.7.2.33) Ly = (€1, 16€9,2™e3) (m = 7). In this case, we have |7 (K)| =
2 and Ky = \y(Lo) = {1, 4€3,2™ 2¢3). Clearly we obtain the relation (4.3.7)
and the integer a is even. We may assume that b is odd.
Subcase(4.7.2.33-1) Suppose that a = 2 (mod 4) or a =4 (mod 8). Then
d is even and we may show that

label(v4 (%)) = {[2]}.

Subcase(4.7.2.33-2) Suppose that a = 8 (mod 16). Then bd — ¢* = 4
(mod 8) and bd = 5 (mod 8). Then we may show that

{[[4,10; 8a]], [4,I;8a]]} if ey =d (mod 8),

label(yy (K)) = { {[[2]]} otherwise,
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where IK
%6162 %6 (mod 8).
Subcase(4.7.2.33-3) Suppose that a = 16 (mod 32). Then we may easily

show that ordy(dK’) = 7 and hence

d=

2d = gﬁlﬁg

If {Ge162 = 4% (mod 4), then d is even and we have

label (4 ( = {[2]}-

Suppose that ‘ejes # 45 (mod 4). If we put 75 (A(K))/ ~= {[K], [[N(]},

oy
the isometry group of K is of order 4 and its label is of type II. Since
d # 4b — 2a — 4c + d (mod 8), we may verify that

{label(’yg(K)) label (v& (K } {{[[2]]} {4, 10 8a]), [4, Tr; 8‘1]]}}

Subcase(4.7.2.33-4) Suppose that a = 32 (mod 64). This case is similar
to the previous case. If f5ejep = 22( (mod 8), then d is even and we have

label (4 ( = {[2]}-

If Le16, # 45 (mod 8), then we have
{1abe1(7§(K)) label(r (K } {{[[2]]} {[4,11; 8a], [4, I; Sa]]}}
where 5 (Ao(K))/ ~= {[K], [K]}.

Subcase(4.7.2.33-5) Suppose that a = 0 (mod 64). This case is similar to
the previous cases. If label(A\o(K)) = [[4,1; «]| or [[8,II; «]], then d is even and
we have

label(vy (K)) = {[2]}

and we also have

{label(5 (K) label (¢ (K) | = { {121} {[14.11:8a]. [ 4. 0:8a] } .
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where 5 (A(K))/ ~= {[K], [[?]}7

Case(4.7.2.34) Ly = {(€1,2"€9,2Me3) (m = n+ 3 = 8). In this case, we have
72 (K)| = 4. Clearly we obtain the relation (4.3.7). This case is similar to
Case(4.7.2.28) and we obtain

{21, 2} if ords(a) < 3,
{21, [4,I; 8a]|, [4, I; 8a]]}  if orda(a) > 4 and
label(v£(K)) = label(\2(K)) = [4,10; +] or [[8,1IV; ],
{21, 21} if ords(a) > 4 and
label(Ao(K)) = [[4,I; #] or [8,1I; .

]

Finally, we state a summary of all results in this chapter.

Theorem 4.7.3. Let L be a primitive ternary lattice which is not stable over
Zs, and let K := Xy (L).

(1) Suppose that |O(K)| # 4. Then the multiset label(vi (K)) is completely
determined by the label of K and the structure of L.

(2) Suppose that label(K) = [[4,1;a]] for some positive integer a, and let
K =~ {ay L K'. Then the multiset label(vi(K)) is completely determined
by the label of K, the discriminant of K and the structure of Ly except the
following exceptional cases. ( Exceptional case 1 ~ Exceptional case 7)

(3) Suppose that label(K) = [[4,10;2a] for some positive integer a. Then
the multiset label(vE (K)) is completely determined by the label of K, the
discriminant of K and the structure of Lo except the following exceptional
cases. ( Exceptional case 8 ~ Exceptional case 15)

Exceptional case 1. Ly =T | (4¢). In this case, we have

{[[4,1;4a]]} if K' is even,

label(%; (K)) = {{[[47]1;4&]]} Zf K’ is odd.

112



CHAPTER 4. LABELS OF CLASSES

Exceptional case 2. Ly = {(¢) L 4T. In this case, we have

{[[4,1;@]]} if K' is even,

label(vy (K)) = {{[[4’]1;4&]]} if K" is odd.

Exceptional case 3. Ly = (€1, €5, 2¢3). If K5 is isotropic, then we have

{4.5;2a]l}  if K’ is even or a =dK (mod 4),

L _
tabel Oz (R)) = {{[[4,11; 2a]|} if K’ is odd and a # dK  (mod 4).

If Ky is anisotropic, then we have

label(v4(K)) = {{IM’I; 2a], [[4,T; 2a], [4, T; 2@]]} if K' is even,

{[[4, I; 2a]), [4, 10; 2a ]|, [[4, T; 2(1]]} if K is odd.

Exceptional case 4. L, = (e1,4¢€y,4€e3). If Ky is isotropic and €3 = €3
(mod 4), then we have
{4, I;4a]l} if K is even,
label(v4(K)) = {[4,L;a]}  if K is odd and a=dK (mod 4),
{|I4, I; 4a]]} if K" is odd and a # dK (mod 4).

If K5 is isotropic and €3 # €3 (mod 4), then we have

{[[4,]1;4@]], 4, I[;4a]]} if K' is even,
label(vg (K)) = { {[4,1;4a]], [4,;4a]]}  if K" is odd and a = dK (mod 4),
{[4,1;a]l, [4,1; 4a] } if K' is odd and a # dK (mod 4).

If K5 is anisotropic, then we have

{[[4, I; 4al|, [[4, T; 4a]], [[4, T; 4a]]} if K' is even,

label(vy (K)) = {{[[4,1;@]], [[471;4@]7 [[4,1;4a]]} if K’ is odd.

Exceptional case 5. Ly = (1, 2¢,8¢3), a =2 (mod 4), % # % (mod 4).
In this case, we have v (A2(K))/ ~= {[K],[K]} withlabel(K) = label(K) =
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[4,L;a]), and then

{tabel (44 (1)), label (v () } = {{I141; ST}, {14 1 2a] }}.

Exceptional case 6. Ly = (¢, 8¢, 16¢3), a =2 (mod 4), § # ‘%{ (mod 4).
In this case, we have v (A2(K))/ ~= {[K],[K]} withlabel(K) = label(K) =
[4,L;a], and then

{1abel(v (K)), label (4 (K)) } = { {14, T 4a]l}, {[4, 1 4a] } }.

Exceptional case 7. Ly = (€1, 1662,64¢3), a =4 (mod 8). In this case, we
have 5 (M2 (K))/ ~= {[K], [K]} with label(K) = label(K) = [[4,L;a], and
then

{label(vz( ), label(vE (K } - {{[[4 4a], [4,1; 4a]]},{[[4,11;4a]],[[4,11;4a]]}}.

Exceptional case 8. Ly = {€1,€2,2™¢3) (m = 4), ¢, = €2 (mod 4), a =0
(mod 4). In this case, we have

{[[4,1; 4a], [4,1; 4a] } if label(Xo(K)) = [[4,1;a],

label(vy (K)) = {{[[2]]} if label(Ao(K)) = [4,1L; a].

Exceptional case 9. Ly = (€1, €,2"e3) (m = 3), €16 =7 (mod 8), a =0
(mod 8). In this case, we have v (A\(K))/ ~= {[K], [K1], [K2], [K5]} with
label(K;) = label(Ky) = [4,1,2a]] and label(K3) = [4,1;2a]l. Then we
obtain

{label('yzL(K))7label(%L(Kl)) label(vF (K>) } {{[[4 4a]],[[4,1;4a]]},{[[2]]},{[[2]]}}.

Exceptional case 10. Ly = {e1,2¢3,2™e3) (m = 5), a =0 (mod 8). In this
case, we have

{[4,1; 4a], [4,I; 4a]l}  if label(A2(K)) = [[4,T;a]],

label(v4(K)) =
(72 (K)) {{[[2]]} if label(A2(K)) = [[4,I; a]] or [[8,1V; «].
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Exceptional case 11. Ly = {¢1,4€,2™e3) (m = 4), a = 0 (mod 2). If
label(A\o(K)) is of type [[4,1; =] or of type [8,1L; +]], we have

{I2],[2]} ifer=e (mod 4),

label(y5 (K)) =
(2 () {{[2]]} ife £ e (mod 4).

If label(A\o(K)) is neither of type [4,1; #]| nor of type [8,1L; #]|, we have

{[4,1;8a], [4,1;8a]l, [2]]} ife1 =e2 (mod 4),

label(nyL (K)) = {21} ifeg £ea=d (mod4) and a# 0 (mod 8),
{[[4,11; 8a]), [4,11; 8a] } ifd=e€1 #e (mod4) andaz#0 (mod 8),

5 (mod 4) ifa=2 (mod4) and m =5,

where d=45+2 (mod4) ifa=2 (mod4) and m > 6,

299-dK  (mod 4) ifa=4 (mod 8).

Finally, we suppose that label(Ao(K)) is neither of type [4,1;«]] nor of type
8, I0; «]|, €1 # €2 (mod 4) and a = 0 (mod 8). In this case, we obtain that
5 (Ao(K))/ ~={[K],[K]} withlabel(K) = [4,1I;2a], and then

{label(%( ), label (v (K } {{[4 IT; 8all, [4, 11; 8] }, {[[2]]}}
Exceptional case 12. Ly = {¢1,862,2™e3) (m = 6), a = 0 (mod 8). If
label(\2(K)) = [4,L;af], we have

label (74 ( = {[2]}.
If m = 6 and label(A\2(K)) = [[4,10; a]], we have

{[4,1;8a]l, [4,1;8a]]} if e, = *222=9K  (mod 4),

label(vy(K)) = {{[[2]]} if 6 # 92—t (mod 4).

If m =7 and label(A(K)) = [4,1;a]], we have v§(M2(K))/ ~= {[K], [IN(]}
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~

with label(K') = [[4,1I; 2a]|, and then

{label('yQL(K)),label(nyL(IN())} - {{[[4, IT; 8a]), [4, T; 8a] }, {[[2]]}}.

Exceptional case 13. Ly = (¢, 16¢€9,2™e3) (m = 7). If a = 16 (mod 32)
and 292 # 4 (mod 4), we have 75 (M (K))/ ~= {[K], [K]} withlabel(K) =
[4,10;2a]l. Then we obtain

{label(ﬁ(K)),label(%L(f())} - {{[[4, 1T; 8al, [4, IL; 8a] }, {[[2]]}}.

If a =32 (mod 64) and “%2 # 45 (mod 8), we have the same result as the
above case. If a = 0 (mod 64) and label(Ay(K)) = [4,1; §]|, we also have
the same result as the above two cases. But if label(M\o(K)) = [4,1; 5], we

have

label(v}(K)) = {[2]}

Exceptional case 14. Ly = {(€1,2™¢y,2™e3) (m = 5), a = 0 (mod 8). In
this case, we have

label(fyL(K)) _ {Hﬂ]a [[2]]} Zf label()\Q(K)) = |I47 I; *]] or [[8, H; >x<]]7
’ {[[47 II; 8&]]7 [[47 II; 8&]]7 [[2]]} if label()\2 (K)) #* [[47 I; *]] or |:[87 1I; *]]

Exceptional case 15. Ly = (€1,2"%€,2™¢3) (m >n = 5), a=0 (mod 16).
In this case, we have

{[[2]], [[2]]} if label(A2(K)) = [4,L; =] or [8,1L; =],

L —
label (> (K)) = {{[[4,]1;8a]], [4,1:8a]l, [2]}  if label(A2(K)) = [[4,10; +].
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Chapter 5

Stable lattices

5.1 Labels of stable lattices

Let K be a stable ternary lattice defined in Chapter 3. The method of
determining the labels of all classes in gen(K) is almost provided in [1]. First
we are going to restate these results. In order to complete the determination
of labels, we have to compute the number of labels corresponding to isometry
classes whose isometry groups are of order 4, by type. A method of computing
these numbers is provided in Theorem 5.1.12 and Theorem 5.1.13.
Henceforth, K is always a stable ternary lattice. For any integer a, let
v(a) be the number of distinct prime divisors of a. If ¢ is a prime, we define

1 if g divides a,
eqla) := )
0 otherwise.

For any positive integer t, let b;(K) be the number of classes in gen(K') whose
isometry groups are of order t. Let P be the product of odd prime divisors
q of dK such that K, is anisotropic, and Q be the product of odd prime
divisors ¢ of dK such that K, is isotropic. For positive integers «, 3, v, we

define
eeto) =TT (1- ()T 0+ (7))
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and

o) < ] (1+(2) (+ (22) (0 + (-22))
B-ENE-E)-E)

Lemma 5.1.1. Up to isometry, there is at most one lattice in gen(K) whose
isometry group is of order 24, and its label is [|24;2,2,2,6,6,6, %]] Fur-
thermore,

0 if K is odd and Sa(K) = —1,
bu(K) = { es(dK)

wamTPr(3) otherwise.

Proof. See [1].

Lemma 5.1.2. Up to isometry, there is at most one lattice in gen(K) whose
isometry group is of order 12 and its label is [12;2,2,2]. Furthermore,

bio(K) = 0 if K is odd and So(K) = —1,
- 1;(3.;%[)()@;((3) otherwise.

Proof. See [1].

Lemma 5.1.3. Up to isometry, there is at most one lattice in gen(K) whose
isometry group is of order 16, and its label is [16,1;1,1,2,2,dK]|. Further-
more,
1— 62(dK)
bis(K) = — gay— 2x(1)-

Proof. See [1].

For the convenience, let T be the set of triples (a, b, ¢) of positive integers
such that abc = dK, and we define

{(a,b,c) e T;a > b> c},
{(a,b,¢) e T;b> ¢, (b,c) # (3,1), a=2(mod 4) and bc = 3 (mod 4)},
{(a,b,c) € T;b > ¢, and (b,c) # (3,1)}.

Ry
Ry
R
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Lemma 5.1.4. If K is even, then

1
bs(K) = Z W(I)K(aaQbaQC))
(a,b,c)ER2

and any label of a lattice in gen(K) whose isometry group is of order 8 is

[8,1; a,2b,2c]|. If K is odd, then

1
bg(K) = Z 21/(%3) (a,b,c) + Z (a,2b,2c).
(a,b,c)eRy (ab c)emg,

Here, the first term denotes the number of labels of the form [[8,1;a, b, c]| and
the second term denotes the number of labels of the form [[8,1I; a, 2b, 2¢].

Proof. See [1].

Remark 5.1.5. The label of any K € gen(K) with |O(M)| = 8 can be
determined. For, if K = Kgi(a,b,c) with (a,b,c) € Ry, then the label of K
is [[8,L;a,b,c]l. On the other hand, K = Kgy(a,b,c) with (a,b,c) € Ry or
N3, then the label of K is [[8,11; a, 20, 2¢]|.

From now on, ¢ is either 1 or 2. For any integer ¢ and lattice L, r(t, L)
denotes the number of representations of ¢ by L. Let m be a positive odd
square free integer dividing dK. We define

beom = 2. {7 € O(K);Q(x) = om}|.
[Klegen(K)
|O(K)|=k

Lemma 5.1.6. For any positive odd square free integer m which divides dIK,

we have
2 2 2 2 2 hg
—b m b m —b m —b m —b m = Zfm : 2V(m)—u(‘}31}) M
040 + gUs0 =+ 19012 + 16169 + 5 /240 ) i

where hg is the class number of the quadratic field E = Q(+/—0d(An(K))),
and pg be the number of roots of unity in E. The values t,, s are displayed
in Table 5.1.
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Table 5.1: Values of ¢, s
An(K)a 6 tngs Am (K2

0 tms
1,1,3) 1 3 (3,3,3) 1 1
LLTY 1 2 dK=1 (mod4) 1 1
ALG 2 4 ALY 2 1
ALG 2 1 A 1(10) 2 2
odd 2 %

Proof. See [1].

By Lemma 5.1.6, we may effectively compute the number of classes of
lattices in gen(K') with label [4,I; 0m]| or [[4, I; ém]| once we know the labels
of all the classes of lattices whose isometry groups are of order greater than
4,

In order to determine the number of classes in gen(K') with label [[2]], all
we need is the class number of K which is given by the following lemma.

Lemma 5.1.7. The class number h(K) of K is equal to

h 1 1
0(K)+ Yty 2L 22 3 (b12(E) + b2a(K)) + 7 bis (K.
MR, oe{1,2) He
d—gen(Am (K))
Proof. See [1].

Now we have only to determine the number of labels [4,I;ém] and
[[4,1; m]| , respectively, for any odd integer m dividing BQ. We will define
several transformations on gen(K) to do this work.

Let K be a ternary stable lattice. Then dK is odd or K is even with
dK = 2 (mod 4). Suppose that K is even, and write dK = 2. If there
exists a lattice K’ € gen(K) such that label(K”) = [4.1; 2a]| for some integer
a, then we may write K’ = (2ay L M for some binary lattice M such that
Mj is a binary even unimodular lattice. This implies that if g =1 (mod 4),
then all lattices in gen(K) of order 4 are of type II. Therefore we may assume
that £ =3 (mod 4).
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Lemma 5.1.8. Let K be an even stable lattice with dK = 20 for some odd
integer 6 and let

K =Zx+2Zy+Zz= Kyu(a,b,c,d)
for some integers a, b, ¢, d. ]fg = 3 (mod 4), we have
K =~ Kyn(a,b,d,d)

with ¢ =1 (mod 2) and d' =0 (mod 8) by a suitable base change.

Proof. Tt is clear that the integer a is odd and 20 = 2a(bd — ¢* — ad') where
d = 2d'. Hence we have bd — ¢* — ad’ = 3 (mod 4). If d’ is even, then d = 0
(mod 8) and ¢ is odd. Therefore we may assume that d’ is odd. Then we
have ad’ =1 (mod 4) since b is even, and we obtain

2a a 0
K=Zes+Zy+Z(zx—-2y+z2)=| a b a—2b+c
0 a—2b+c —2a+4b—4c+d

This is a desired form for our assertion. O]

Let K = Zx + Zy + Zz. We define a transformation A by
~ 1
K=Zz+Z(zx—2y)+ Z (52) .
Then we have the following lamma.
Lemma 5.1.9. Let K and K’ be even stable lattices such that
K =Z7Zx+Zy+Zz = Kyx(a,b,c,d)

and
K =72+ 7y + 72 = Kyqn(a, V', d)

with c=c¢ =1 (mod 2) and d=d =0 (mod 8). If there is an isometry o
of K" onto K such that o(2') = z, then K = o(K").
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Proof. Let K = oK'’ and o(2’) = x for some isometry o. We put o(y’) =
ax + fy + vz and o(2') = /x + 'y + 2. Then we obtain a = B(z',y) =
2ac + af and hence 2a+ = 1. We also have 0 = B(2/, 2’') = 2aa’ + aff’ and
hence ' = —2¢/. Since B(y', 2')

o # 7 (mod 2). Since Q(2') =
and 7' is odd. Therefore we have

= =1 (mod 2), we may easily show that
d = 0 (mod 8), we obtain that o' is even

—~ 1 ~
o(K') = Zx + Z(x — 2(ax + (1 — 2a)y + 72)) + Z(é(a’x —2d'y++'2)) € K.

~

and hence 0[/(\’ =K. O

Let K be an even stable lattice with dK = 24 for some odd integer 5. We
assume that
K =7Zx +Zy+ Zz = Ky41(2a,b,c,d)

for some odd integer a and some integers b, ¢ and d. If g = 7 (mod 8), we
may choose a basis so that

K=Zx+7Zy + 72 =~ Ky1(2a,b', ¢, d')

with 2a+b =0 (mod 8) and d =0 (mod 4). For alattice K = Zx+Zy+7Zz,
we define a transformation ~ by

~ 1
K =7Zx + Zé(a: +y) + Z(2z).

Then we have the following lemma.

Lemma 5.1.10. Let K and K’ be even stable lattices such that
K = Zx + Zy + 7z = K41(2a,b, ¢, d)

and
K' =Zx' +Zy + 72 = K41(2a,0, ¢, d')

with b =V = —2a (mod 8) and d = d = 0 (mod 4). If there exists an
isometry o of K’ onto K such that o(2') = x, then K = o(K").
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Proof. Let K = oK' and o(2') = z for some isometry . We may put
o(y') = ay + Bz and o(2') = vy + dz. Then we obtain

b=V =Q() = Qlay + Bz) = ba® + dB* + 2aBc (mod 8).

Therefore o is odd and = 0 (mod 4) since b =2 (mod 4), d =0 (mod 4)
and c is odd. Therefore

~ 1 1 ~
o(K') = Zx+Z§(x+ay+ﬁz)+Z2('yy+5z) c Zm+Z§(x+y)+Z(22) =K,

and hence K = o(K'). O
Lemma 5.1.11. Let K and K’ be even stable lattices such that
K =7Zx+ Zy + Zz = K41(2a,b,¢,d)
and
K' =Zx +7Zy + 72 = Kyqn(a',V,d,d)

with 2a +b = 0 (mod 8), d = 0 (mod 4), ¢ is odd and d = 0 (mod 16).
Then we have N .
K=K and K =K'

Furthermore, we have [K] € gen(K) and [K'] € gen(K").

Proof. This proof is straightforward.
Note that we may choose a basis of K’ such that the assumption for entries
in the above lemma is satisfied, if 2 =7 (mod 8).

We define notations

and
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By(K) = {[K'] € gen(K) | [O(K")| = t}.

Theorem 5.1.12. Let K be an even stable lattice, and let a be any positive
odd integer dividing dK with ¢ =7 (mod 8). Then

b&ga(l) + b472a(1) = b8,2a(2) + b472a(2) Zfa #* ]_, 3,
6872(1) + b4,2<1) = b8,2(2) + b472(2) + blg(K) + b24(K) zfa = 1,
bg,ﬁ(l) + b4’6(1) = 68,6<2) + b476(2) + b24(K> Zf(l = 3

Proof. We may assume that |O(K)| # 48 and it is clear that big(K) = 0 by
Lemma 5.1.3. Define

Bl = B&Qa(l) U B4,2a(1)7 BQ = BS,Qa(2> U B4,2a(2) ) Blg(K) U BQ4(K>

By Lemma 5.1.8, Lemma 5.1.9, Lemma 5.1.10 and Lemma 5.1.11, the trans-
formation ~ induces a bijection from B; onto By and we have an equation

b&za(l) + b472a(1) = bg’ga(Q) + b4’2a(2) + blg(K) + b24(K>

If a #* ]., 3, then blg(K) = b24<K) =0 and if a = 3, then blg(K) =0 by
Lemma 5.1.1 and Lemma 5.1.2. Note that a # % since $ =7 (mod 8). O

Since we may calculate all terms in the above equations except by 24(1)
and by 24(2), and we also know the value by 2, (1) + by 24(2), we may determine
the values by 2,(1) and by 2,(2).

Next, we suppose that K is an even stable lattice and dK = 24 with
g =3 (mod 8). If K = Zx + Zy + Zz = K41(2a,b, ¢, d), then the integers a
and ¢ are odd and b= d =2 (mod 4). Furthermore, we may assume that

b=d (mod8), 2a+b=0 (mod8), b+2c=0 (mod8) (51.1)

by a suitable base change. We define transformations

¥ [ -1 ==
| = Lh.
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Then we may easily show that K; € gen(K) (i = 1,2,3). Take any primitive
vector w = ay + [z € Zy + Zz such that 2a + Q(w) = 0 (mod 8) and write

K = Zx + Zw + Z2' for some vector 2z’ € K. Then we have

K, ifaisoddand 8=0 (mod 4),
) +72(22) =<3 K, ifBisoddand a=0 (mod 4),

~

T+ w

Zx+Z(

K3 if a, fare odd and a = (mod 4),

and they are all cases.

Theorem 5.1.13. Let K be an even stable lattice, and let a be any positive

odd integer dividing dK with ¢ =3 (mod 8). Then

26824 (1) + 3bs24(1) = bg24(2) + bs24(2) ifa#1,3, %,
2052(1) + 3bs2(1) = bs ( )+ b42(2) + b1a(K) + bou(K) ifa=1,
2056(1) 4+ 3bs6(1) = bs6(2) + bag(2) + bou(K) if a =3,
208.24(1) + 3bs24(1) + bas(K) = bg24(2) + bs24(2) if a =%

Proof. 1f a # %, we define a correspondence ® from B into B, by

Q([K) = {[K]], [K3]. [K3]),

where B, By are defined in the proof of Theorem 5.1.12. Then we may
show that this correspondence is well defined. If a = %, then €2 induces a
well defined correspondence from Bj into Bj, where B} = By U Byy(K) and

B, = B1\Ba4(K). Furthermore, we may verify that

|| QUKD =B, (or By,

[K']eBi(orB})

by considering the map A. Let [K'] be an element of B; or Bj.
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If K" = Ks(1,2b), we may verify that

<6>J_<i é) ifb=3 (mod 4),

2

<2>¢<6 bfg) ifb=1 (mod 4).

2

Next, suppose that |O(K’)| = 8. Then the Gram matrix of K’ is of the
form

b+c
2 2

b+c b—c
K' =Zx+Zy+7Zz=ay L (bzc 2 )
Since dK = 2abc, we have bc = 3 (mod 4).
i) Suppose that 2a—|—% = 0 (mod 8). Then we may assume that b%c +b—c=
0 (mod 8) and then this form satisfies the condition (5.1.1). We may show

that K| = }?g and claim that l?{ £ }?; Since

~ 2
K= 2 + 2y + 22 = (2) (aa ﬂ)
2

we may verify that |O(l?é))| = 8. Hence, if a(l?{) = }A(; for some isometry
o, then o(z) = £3/, and this implies that 2t in [?Z is isometric to (y')*
in I?; But we may show that two lattices are not isometric and this is a
contradiction.

ii) Suppose that 2a+ ¢ # 0 (mod 8). Then we may assume that 2a+2b =0
(mod 8) and obtain

2b  3b
K’=Zx+Zy+Z(y+Z)§<2a>J—<3b %)’
2

This form satisfies the condition (5.1.1) and we obtain [?{ % If(vé ~ [?Z’,) by a
similar argument as above.

Finally, assume that |O(K')| = 4 and K’ = K,1(2a,b, c,d). By the above
discussion, we may assume that this form satisfies the condition (5.1.1) and
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we obtain
2a a 0 2a a 0
f?i ~ 2atb [?; ~ | o 20td
= 1 5 = 4 9
0 c 4d 0 c 4b
2a a 0

Ké ~ a 2a+b12c+d c+ d

0 c+d 4d

Since the binary lattices x1 in [?;’ (1 = 1,2,3) are not isometric to each other,
Ir(vi, Ir(vé and [?:’3 are also not isometric to each other.

By a similar argument as in Theorem 5.1.12, we may obtain the required
equations. ]

Finally, if dK is odd, we may easily verify that

byo(1) if ais odd,

byo(2) if ais even

b4,a(1) + b4,a(2> = {

for any positive integer a.

5.2 Information for exceptional cases

Let K be an odd stable lattice and a be a positive integer dividing dL. Then
we define notations

Bs o(3) = {[K'] € gen(K) | label(K’) = [8,L; a, =]},
By 4(3) = {[K'] € gen(K) | label(K") = [[4,1;a]] and ¢ is odd},
Bya(4) = {[K'] € gen(K) | label(K") = [[4,1;a]] and ¢ is even},

and

bS,a(g) = |BS,a(3)|a b4,a(i) = |B4,a(i)| (2 = 3’4)7

where K" = (a)y L ¢ for some binary lattice ¢ when label(K") = [[4,1;a]]. Now
we are going to calculate the values by ,(3) and by ,(4) for complete determi-
nation of label(v4(K)) (e = 1,2) when label(K) = [4,1;a]]. There are four
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cases, Case(4.7.1.1), Case(4.7.1.6), Case(4.7.1.10) and Case(4.7.1.22), which
need these values.

Let L be a binary lattice such that L, =~ H and let M be a binary lattice
such that M, = (1,7). Assume that L, = M? for any odd prime p. Then
we define a map ¢ from gen(M)/ ~ into gen(L)/ ~ as follows; for any class
[M'] € gen(M), ¢([M']) = [As(M’)2]. Then this map is clearly well defined.
Conversely, for any lattice L' € gen(L), choose a primitive vector = € L/
such that Q(z) = 2 (mod 4). Let L' = Zx + Zy and define a map ¢ by
(L") = (Z(3z) + Zy)*>. Then this map is also a well defined map from
gen(L)/ ~ into gen(M)/ ~ and furthermore, this is a bijection with the
inverse map ¢.

For an odd stable lattice K and an odd integer a dividing d K with % =7
(mod 8), define

= {[K"] e gen(K) | K" = (a) L ¢},
= {[K'] e gen(K) | K" = {a) L ¢},

and also define two maps ® and ¥ by

O(K') = {ay L ¢(¢) for any K' € C4
and

V(K" = {ay L (¢) for any K' € Cs,

respectively. Then it is clear that ® : ) — () is a bijection with the inverse
map V. By using these maps, we may obtain the following theorem.

Theorem 5.2.1. Let K be an odd stable lattice and let a be any positive odd
integer dividing dK. Then

b1a(3) = bao(4) if L =7 (mod 8),
0 if £ =3 (mod 8),
bia(4) =0 otherwise.

Proof. 1t € =1 or 5 (mod 8), then it is clear that by ,(4) = 0. Suppose that
4L = 7 (mod 8) and a # 1. Then we have C; = By,(3) U Bs,(3) and C; =
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Bya(4) U Bso(1). We may also show that W(Bg (1)) = Bs.(3) and hence we
have W(By,(4)) = By(3). Suppose that 2 = 7 (mod 8) and a = 1. Then
C1 = B41(3) u Bs1(3) U Big and Cy = By1(4) v Bs1(1), and U(Bg;(1)) =
Bs 1(3) U Byg. Therefore we get the same result as above. Finally, we suppose
that € = 3 (mod 8). Then it is clear that K> is anisotropic and we have
bia(3) = 0. ]
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Applications

Finally, we provide an application of the above results. An integral lattice
of the form (1,2™,2") (n = m > 0) is called a Bell ternary form and we are

going to give a precise formula for class number of this lattice.

First, we consider the case when m = 0. Then we may obtain the follow-

ing tree of labels.

1,1,2%)

,1,27)

1,1,2%

1,1,2%)

,1,2%

,1,2%)

,1,2%)

1,1,2)

L1 L

[16,1; =] [16,10; «]) 8, II; ]|

N

[16,1:1,1,2,2,64] [16,1;2,2,4, 4, 64]

N

[4,m2] [4,m2] [2]

N

[4, ;2] [4,5;1] [4,1;4]

N

18,151, 4, 64] 4, 11; 2]

S

[16,1;1,1,2,2,32] [16,1;2,2,4,4,32]  [[8,1;1,4,32]

NS

[16,1;1,1,2,2,16]
[16,1;1,

[16,1; 1,

[16,1; 1,

/

[16,11;2,2, 4,4, 16]]
1,2,2,8]

1,2,2,4]

1,2,2,2]

[48;1,1,1,2,2,2,2,2,2]
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CHAPTER 6. APPLICATIONS

Observing the above tree, we may find the following rules of ramification

when n > 3.

[16,1]] [16,0] [8,I] [4,1;2] [[4,1;2] [4,1;2] [4,L1] [4,1; 4]
[16,1] [16,1] [8,1] [4,1;1]] [4,1; 2]
2 [2

1 121
121

(4, I; 4]

For a lattice L, we define label(gen(L)) to be the multiset of labels which
are correspond to all isometry classes in gen(L). Then it is clear that there is
only one label of type [[16,I; «]| in label(gen((1, 1,2™))) for n > 5, and so are
labels of types [[16,1I; «]] and [[8,II; «]|, respectively. Furthermore, observing
the above tree, we may obtain

2" —1 if n(=5) is odd,
4, L1 =44, ;4] =< ,_
L 1= | {226 —1 if n(>6) is even,
2" —1 if n(=5) is odd,
ﬂ[[4,ﬂ; 2]] = n—d4 ) .
277 —1 ifn(>4) is even,
2] = om0 _3.2" +1 ifn(=9)is odd,
o6 _ 9" 41 if n(> 8) is even,

where f[[+]] denotes the multiplicity of the label [[+] in label(gen({1,1,2™))).
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Therefore for any n > 8, we have

=6 4+3.2" 41 ifnisodd,
on=6 L 9"3% 1 1 otherwise.

h(<17 1, 2n>) = {

Actually, this formula holds for any integer n > 5. By using the same method,
we may obtain the formulas for another cases as follows;

» on—6 4 9"7% 1 q if n(> 6) is even,
) 96 4 3.2"5" + 1 ifn(>7)is odd,

» on—6 4 9"7% 1 q if n(> 6) is even,

e on—6 4 3. 2"778 +1 if n(>8) is even,
ML 22 =T 4 5.2 +1 if n(>9)is odd,

Vo on=7 3. QnT_s +1 if n(>8) is even,
1t =T+ 5.2" +1 ifn(=9)is odd,

y 4 on=7 1 5.9"5° 11 if n(= 10) is even,

9n=6 4+ 3.2"3 £ 1 ifn(>7)is odd,
=641 9" 11 ifn(>6

h({1,2™,2"™)) = {

) is even,

h((1,2",271y) = 27042 41 ifa(>5) is odd,
o 275 132" +1 if n(= 6) is even,
h((1,2,2m2)) = 24432 1 i n(=5) is odd,
o 27~ 1 3.2"3° 41 if n(> 6) is even,
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M((L 27, 275 — 24 £ 3.2 41 if n(=5) is odd,
Y ot 4 5.2"° +1 if n(= 6) is even,
h((L 27, 27 278 +5.2" + 1 if n(=5) is odd,
T =3 4 5.2"3° + 1 if n(=> 6) is even,
n—7T n=7 m=3 n-—m=—4 .
 on 2" 43272 +2 2 42 2 if n(>5) is odd,
h(<]" 2 72 >) = n—"7 . n—8 m—3 n—m-—3 . .
2"+ 3272 +272 42 2 if n(> 6) is even,

(m(=5) is odd, n —m > 5)

n—"7 m—4 n—m-—3

2T 43.272 +2°2 +2 =2 ifn(=5)is odd,
h(<]" 2m7 2n>) = n—=_8 m—4 n—m-—4 ( ) =o

n_7 n—o m—= n—n—= . .

2043272 +272 42 2 if n(> 6) is even.

(m(=5) is even, n —m = 5)

The following table represents the class numbers of Bell ternary forms in the
cases which are not contained in the above closed formulas.

Table 6.1: Values of h({(1,2™,2"))

m\n|1]2[3[4]5]6|7|8
0 1717112
1 11111
2 111122
3 1112
4 2|2 314
> 2
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Appendix

Table 7.1: label(K) = [[24; 2q, 2a, 2a, 6a, 6a, 6a, b]]

Ly label(vZ (K)) (e = 1 or 2)

A L 2me) (m =2,3) | [24; 2a, 2a, 2a, 6a, 6a, 6a, 4b]]

A 1 (2Me) (m = 4) [24; 2a, 2a, 2a, 6a, 6a, 6a, 4], [8, 1IT; 2a, 6a, 4b]]
(&) L 2A [24; 4a, 4, 4a, 124, 12a, 124, ]

() L2mA (m =2,3) | [24;8a, 8a, 8a, 24a, 24a, 24a, b]]

ey L2MA (m = 4) [24; 8a, 8a, 8a, 24a, 24a, 24a, b]], [8,1V; 8a, 24a, 40|

ey L 8H [8,1V; 8a, 24a, 4b]|
H 1 () 8, III; 2a, 6a, 4b]]
(1,3,2™¢) (m 2) | [I8,1;a,3a, 2b]

=1,
(1,3,2"ey (m = 3) [8,L; a,3a, 2b], [|8,1V;4a, 12a, 2b]|
(e1,4€2,4€3) (m = 3) | [8,1V; 8a, 24a, 40]
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Table 7.2: label(K) = [[16,1; a, a, 2a, 2a, b]|

L, label(v£ (K)) (e = 1 or 2)

T 1 {4ey [16,1; 2a, 2a, 4a, 4a, 4]

{ey L 4T [16,1; 4a, 4a, 8a, 8a, 4]

(€1, €2, 2€3) ere2 = 3 (mod 8) | [16,1; a, a, 2a, 2a, 2b], [8,1; 2a, 2a, 2b]]
erea =7 (mod 8) | [16,1; a, a, 2a, 2a, 20]] x 2

(er, €3, 4€3) [16,1; a, a, 2a, 2a, 20]

{e1, €2, 8€3) €1 =€ (mod 8) | [[16,1;a,a,2a,2a, 2b]

(€1, €,2Me3) (M = 4)
(€1, 262, 2€3)

(€1, 262, 4€3)

{e1, 46z, 4€3)

a=b (mod 4)

a# b (mod 4)

<€1a 4627 8€3>
<€1, 462, 2m63> (TTL = 4)

<€17 8627 8€3>
€2 = €3 (mod 4)

€2 # €3 (mod 4)
<€17 16627 16€3>

{e1,2M€9,2Me3y (M = 5)

€1 # €5 (mod 8)

€2 = €3 (mod 4)
€2 # €3 (mod 4)
a=e¢ (mod 4)
a # ¢; (mod 4)
€1 = € (mod 4)
€1 # €2 (mod 4)

€1 =0 (mod 8)
€1 # b (mod 8)

€1 =b (mod 8)
€1 # b (mod 8)

[16,1; 2a, 2a, 4a, 4a, 2b]]

[16,1; a, a, 2a, 2a, 2b], [16,1I; 2a, 2a, 4a, 4a, 20]|
[16,1;2a, 2a, 4a, 4a,

[8.1;: %, 2a, 2b]

[8,1; a,4a, 4b], [16,1; 4a, 4a, 8a, 8a, b]
[16,1; 4a, 4a, 8a, 8a, b]]

[8,1; a,4a, 40]

[8,1; a,4a, 4b]

[8,1L; 4a, 4a, 40])

[8,1; a, 4a, 4b], [[8,1I; 4a, 4a, 4b]

[8, 1I; 4a, 4a, 4b]

[16,1; 4a, 4a, 8a, 8a, b]|

[8, 10 4a, 4a, 4b]

[8,10; 4a, 4a, 4b]

[16,1; 4a, 4a, 8a, 8a, b, [ 16, II; 4a, 4a, 8a, 8a, 4b]|
[8,11; 4a, 4a, 4b]]

[8,1L; 4a, 4a, 40], [16,1;4a,4a, 8a, 8a, b]|,
[16,10; 4a, 4a, 8a, 8a, 40
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Table 7.3: label(K') = [[16,II; 2a, 2a, 4a, 4a, 4(b — a)]|
Lo label(vZ (K)) (e = 1 or 2)
T 1 (16¢€) 4,10 2a]]
{ey L 16T 4, 1L; 16a]]
(€1, €2, 8€3) €162 =3 (mod 8) | [[8,1I; @, 4a, 8(b — a)], [[4, 1I; 8a]|
€162 =7 (mod 8) | [8,1I; a, 4a, 8(b — a)]|
(€1, €9,2Me3) (M = 4) €1 =€ (mod 4) | [8,1;a,4a,8(b—a)]
(€1,4€9,2Me3) (m =5) € =€ (mod4) | [4,1I;16a]
(€1,2™€3,2™e3) (M =5) €3 =¢€3 (mod 4) | [4,1I; 16a]
Table 7.4: label(K) = [[12; 2a, 2a, 2a]|

Ly label(vZ (K)) (e = 1 or 2)

A L2 (m=2,3) | [12;2a,2a,2a]

A 1L 2™e) (m = 4) [12;2a, 2a, 2a]], [[4,10; 2a]]

ey L 2A [12;4a,4a,4a]

ey L2mA (m =2,3) | [12; 8a, 8a, 8a]|

ey L2MA (m = 4) [12; 8a, 8a, 8a]|, [4, II; 8a]]

(ey L 8H [4,10; 8a]|

H 1 (8e) 4, 11; 2a]]

(1,3,2Mey (m =1,2) | [4,1;a]

(1,3,27 (m=3) | [4,T;a], [4, 1 4a]

(€1,4€9,4€3) (m = 3) | [4,11;8a]
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Table 7.5: label(K) = [[8,1;a,b,c]

L, label(v£(K)) (e = 1 or 2)
T 1 {4ey [8,1V; 4a, 4b, 4c]|
{ey L 4T [[8,10I; 4a, 4b, 4¢]|
€1, €2, 4€3) a=2 (mod 4), ¢ = € (mod 4)
b+c=2 (mod 4) [8,1I; 2a, 2b, 2¢]
b+ c=0 (mod 4) [8, II; 2a, 2b, 2¢]|
{e1, €2, 8€3) a=4 (mod 8), ¢ = € (mod 4)

(€1, €2,2™e3) (m = 4)

<€17 2627 2€3>
<€1, 262, 4€3>
<€11 2627 8€3>

<€1, 262, 1663>

<€17 262, 2m63> (m = 5)

<€1 ) 4627 4€3>

€2 = €3 (mod 4)

€9 §—é €3 (mod 4)

<€17 4627 8€3>

(e1,4€,2Me3) (m = 4)

<€17 862, 8€3>

(mod 4)

e1 = ¢ (mod 4)

e1 # %< (mod 4)

a=0 (mod 8), ¢, = € (mod 4)
a=2 (mod 4)

a=1 (mod 2)

a=1 (mod 2), b=2 (mod 4)
12 =% (mod 4)

€169 F %b (mod 4)

a=1 (mod 2), b=2 (mod 4)
12 =2 (mod 8)

€169 £ %b (mod 8)

a=1 (mod 2), b=2 (mod 4)
b=c (mod 4)

L, : isotropic

Lo : anisotropic

a=2 (mod 4)

€1 =b=c (mod 4)

€1 # b= c (mod 4)

€1 =b# ¢ (mod 4)

e1=c#b (mod 4)

a=0 (mod 4), b=¢ (mod 4)
€1 = € (mod 4)

€1 # €2 (mod 4)

a=1 (mod 2), e = €3 (mod 4)
€1 = a (mod 8)

e1=a+b+ ¢ (mod 8)
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[8,II; 2a, 2b, 2¢]

[8,10L; 2a, 2b, 2¢]|

[8,11; 2a, 2b, 2¢], [[8, IIT; 2a, 2b, 2¢]]
[8.1; 5,20, 2c]

[8.1;2a,2b, <], [[8,1; 2a, 2¢, L]

8, T; 24, 2¢, 2]
[8, IL; 2a, 20, 2|

[8,1; 24, 2¢, 3]]
[8,1L; 2a, 2, 2]
[8,1; 2a, 2¢, 21, [[8,I1; 2a, 2b, 2c]]

[8,1; a, 4b, 4c]
[8,1; 4a, 4b, c]|, [8,L; 4a, b, 4], [[8,1; a, 4, 4]
[8,1; 4a, 4b, c]|, [8,L; 4a, b, 4]

[8,1;4a,4b, c], [8,; 4a, b, 4c]]
[8.11; 4a, 4b, 4c]), [8,1I; 4a, 4b, 4]
[8.1; 4a, b, 4c]), [[8, 1I; 4a, 4b, 4¢]]
[8,1; 4a, 4b, c[|, [[8,1I; 4a, 4b, 4¢]]

[8,1;4a,4b, c], [I8,1; 4a, b, 4c],
[8.11; 4a, 4b, 4¢]), 8, 1I; 4a, 4b, 4]
[8,1; 4a, b, 4|, [[8,1I; 4a, 4b, 4¢]]

[8,1; a, 4b, 4c]
(8, I0; 4a, 4b, 4¢]|
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L,

label(v£ (K)) (e = 1 or 2)

<€1a 8627 8€3>
g # 5 (mod 4)

<61, 862, 8Efg>

<€1, 862, 1663>

<€1, 862, 32€3>

{€1,8¢€q,2™Me3y (m = 6)

<E17 1662, 16€3>

{e1, 1662, 32€3)

<€1 5 1662, 64€3>

<617 16627 2m63> (m = 7)

<€1a 2m€2> 2m€d> (m = 5)
<€17 2m€2, 2m+1€3> (m = 5)
<€1, 2m627 2m+263> (m = 5)

<617 2n€27 2m€3> (m =>n—+ 3 = 8)

a=1 (mod 2), e = e3 (mod 4)
€e1=a+b (mod 8)
€1 =a+ ¢ (mod 8)

a=1 (mod 2), €3 # €3 (mod 4)
% = § (mod 4)

5 # 5 (mod 4)

a=1 (mod 2), b=2 (mod 4)

€1 =a (mod 8)

e1=a+b (mod 8)

€1 =a+ ¢ (mod 8)
e1=a+b+ ¢ (mod 8)

a=1 (mod 2), b=2 (mod 4)
€1 =a (mod 8)

€1 # a (mod 8)

a=1 (mod 2), b=2 (mod 4)

€1 =a (mod 8)
€1 # a (mod 8)
a=1 (mod 2)
€1 = a (mod 8)

€1 # a (mod 8)
a=1 (mod 2),b=4 (mod 8)
€1 =a (mod 8)
€1 # a (mod 8)
a=1 (mod 2), b=4 (mod 8)
€1 = a (mod 8)
€1 # a (mod 8)
a=1 (mod 2),b=4 (mod 8)

€1 =a (mod 8)
€1 # a (mod 8)
a=1 (mod 2)
a=1 (mod 2)
a=1 (mod 2)
a=1 (mod 2)
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[8, II; 4a, 4b, 4¢]
[8,1; 4a, 4b, 4c]]

[8,10; 4a, 4b, 4c]l, [I8,11; 4a, 4b, 40]]
[8,1; a, 4b, 4c], (|8, IU; 4a, 4b, 4c|]

[8,1; a,4b, 4c]
[8,1I; a, 4b, 4c]]
[8,1L; a, 4, 4c]|
(8, I0; 4a, 4b, 4c]|

[8.1; a, 4b, 4c]), [[8, IL; 4a, 4b, 4¢]|
[8,11; 4a, 4b, 4¢], [8, IT; 4a, 4b, 4¢]]

[8,1; a, 4b, 4c], [[8,H;a,4b, 4]
[8, II; 4a, 4b, 4¢]), [[8, IIT; 4a, 4b, 4¢]

[8,1; a, 4b, 4c], [[8, I0; 4a, 4b, 4c]]
[8,1L; a, 4b, 4c], [8,11; 4a, 4b, 4c]]

[8.1; a, 4b, 4c], [[8.1I; a, 4b, 4c]|
[8, 1T; 4a, 4b, 4¢]), [[8, IIT; 4a, 4b, 4¢]

[8,1; a, 4b, 4c], [[8,]1;4@,4'1)7 4c]]
[8,1I; 4a, 4b, 4¢]), [8, IIT; 4a, 4b, 4¢]

[8,1; a, 4b, 4], [8, IL; a, 4b, 4c]|
[8,11; 4a, 4b, 4¢], [8, IT; 4a, 4b, 4c]|
[8,1; a, 4b, 4c], [[8,I0; 4a, 4b, 4c],
[8.11; a, 4b, 4¢]), [[8,11; 4a, 4b, 4c]]
[8,1; a,4b, 4c], [8,1; 4a, 4, 4c],
[8,10; a, 4b, 4c], [8,11; 4a, 4b, 4c]]
[8,1; a, 4b, 4c], (|8, I0; 4a, 4b, 4c],
[8,10; a, 4b, 4¢], [8,11; 4a, 4b, 4c]
[8,1; a,4b, 4c], [8,1; 4a, 4, 4c],
[8,1; a, 4b, 4c], [8,11; 4a, 4b, 4]
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Table 7.6: label(K) = [[8,1;a, b, ]|

Ly label(v£(K)) (e = 1 or 2)
T 1 {4e) b=c (mod 4) [8,1; 4a, 2b, 2]

b # ¢ (mod 4) [8,11; 4a, 2b, 2¢]
A L (8¢ [8,11; 4a, 2b, 2¢]
H 1 {8¢) [[8,1I; 4a, 2b, 2¢]), [[4, II; 4a]]
T 1 (27¢) (m = 4) 18, IL; 4a, 2b, 2c]), 8, 1IL; da, 2b, 2¢], [4, IL; 4a]
(&) L2T [8,15; &, 4b, 4c]
{ey L 4T b=c (mod 4) [8,1V; 4a, 8b, 8]

b # ¢ (mod 4) [8,1I; &, 8b, 8]
ey L 8A b+ ¢ =8 (mod 16) [8,10; &, 8, 8]

b+ c¢=0 (mod 16) [8,1V; 4a, 8b, 8]
{ey 1L 8H b+ c=28 (mod 16) [8,1V; 4a, 8b, 8], [[4, II; 4a]|

( )

{ey L2mT (m = 4)
{e1, €2, 2€3)

Lo : isotropic

Lo : anisotropic

<€11 €2, 463>
€1 = €39

€1 $ €9 (mod 4)

<€1a €2, 863>

(€1, €2,2™e3) (m = 4)

<t§17 €9, 2m63> (m = 3)

<€1, 262, 2€3>
<617 262, 4€3>
<€17 262, 16€3>

b+c¢c=0 (mod 16

b+ c=2 (mod 4)
b+ c=4 (mod 8)

b+ c=4 (mod 8)
b+c¢=0 (mod 8)
€1 = € (mod 4)
€162 = be (mod 8)
€162 # be (mod 8)
€1 = € (mod 4)
a=1 (mod 2)
a=0 (mod 2)

€1 # €2 (mod 4)
€162 = 7 (mod 8)
€162 = 3 (mod 8)

hd

2616 =a -
2e160 £ - L

+ N

2

¢ (mod 16)
¢ (mod 16)
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(8, IL; &, 8b, 8], [[4, T; 4a]
8, 1L; &, 8b, 8], [[8,1V; 4a, 8b, 8], [[4,1I; 4a]]

[8,1; 2a, b, ]
[8,1; 2a, b, c|, [4,1L; 2a]|
[8,1; 2a,b, ]|, [4,1; 2a]

[8,1; 2a, b, ]
8,1 2a,b, ]|, [4,L; 2a]
[8,1; 2a,b, ], [4,1L; 2a]|

[8,1;2a,b, ]
[8,1V; 2a, 4b, 4c]

4, IT; 2a]|
[8,1; 2a, b, c]|,[8, IV; 2a, 4b, 4]

[8,1; 2a, b, c]|, [4,1; 2a]|

[8,1; 2a,b, ], [8,1V;2a, 4b, 4], [4,1; 2a]],
4, IT; 2a]|

[8,1; 5,4b, 4c]
[4,1; 2a]
[8,11; &, 4b, 4c]

[8,1V; 2a, 4b, 4¢]|
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L,

label(v£(K)) (e = 1 or 2)

<61, 262, 2m63> (m = 5)
<t§17 462, 4€3>
b+c=2 (mod 4)

b+c=0 (mod 4)

<€17 4627 8€3>

<€1, 462, 1663>

<€17 462, 2m63> (m = 5)
<€1, 462, 2m63> (m = 4)
<€1a 8627 8€3>

€s = €3 (mod 4)

€9 §—é €3 (mod 4)
<€17 8627 32€3>

<Ela 8627 2m63> (m = 6)
a=1 (mod 2)

a=2 (mod 4)

<€1, 1662., 16€3>

<€17 16627 2”63> (m = 5, 6)

<€1, 16627 2m€3> (m = 7)

a=1 (mod 2)

a=2 (mod 4)

€1 =€ = €3 (mod 4)
€1 # €3 = ¢3 (mod 4)
€2 # €3 (mod 4)

€1 =€ = €3 (mod 4)
€1 % €2 = €3 (mod 4)
€9 # €3 (mod 4)

e1 = ¢ (mod 4)

€ #* % (mod 4)

€1 =€z (mod 4)

€1 =€z (mod 4)
a=1 (mod 2)
a=0 (mod 4)

€1 % €2 (mod 4)

€1 =a (mod 4)

€1 # a (mod 4)

€1 = a (mod 8)
€1 # a (mod 8)
e1 = ¢ (mod 8)
e1 # ¢ (mod 8)
€1 = a (mod 8)
€1 # a (mod 8)
e1 = ¢ (mod 8)
e1 # ¢ (mod 8)
€1 =a (mod 8)
€1 # a (mod 8)
e1 = ¢ (mod 8)
e1 # ¢ (mod 8)
a=1 (mod 2)

€1 =a (mod 8)
€1 # a (mod 8)
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4,1; 2a]

[8,11; ¢, 4b, 4c], [8,1V; 2a, 4b, 4c]]
[8,10; &, 8b, 8¢, [4,1; 4a]l
[8,1L; &, 8b, 8]

14, 1; 4a]

[8,1V;4a, 8, 8], [4,11; 4a
[8,1V;4a, 8b, 8]

4, IT; 4a]

4,1; 4a]

4, 1L; 4a]

[4,; 4a]), [4,1T; 4a]

[8,1L; &, 8b, 8], [8,IV; 4a, 8b, 8c]|, [[4,I; 4a]|
[4,1;4a]), [4,10; 4a]

[[8,1I; &, 8b, 8c], [[8, IV: 4a, 8b, &¢]
[4,1: 4a]]

[8,1L; &, 8b, 8]
[8,1V;4a, 8b, 8]
[4, IL; 4a]
[4,1;4a]

4, IT; 4a]

[8. IL; &, 8b, 8], [8, IV; 4a, 8b, 8¢]]
[4,10; 4a]
4, 1; 4a]
4, IL; 4a]
[8,10; a, 8b, 8], [8,1V;4a, 8, 8]
[4, IL; 4a]
[4,1; 4a]
4, IT; 4a]|

[8,10; a, 8b, 8], [8,1V;4a, 8, 8]
[4,10; 4a]



CHAPTER 7. APPENDIX

Ly label(7& (K)) (e = 1 or 2)

{e1,16€2,2Me3)y (m = T7) a=4 (mod 8)
e1 = ¢ (mod 8) | [[4,1;4a]
€ # b; (mod 8) | [4,1I; 4a]

(e1,2M€9,2Mez) (M = b) a=1 (mod 2) [8,10; a, 8b, 8], [8,1V;4a, 8b, 8], [[4, IL; 4a]
a=0 (mod 8) [4,1;4a]), [[4,1; 4a]

{e1,2Me, 2MF Les) (m = 5) [4,1;4a]), [4,10; 4a]

(€1,2Me9, 2™ 263y (m = 5) [4,T; 4a], [4,T; 4a]

(€1,2"€9,2Me3y (m=n+3=28) a=1 (mod 2) [8,10; a, 8b, 8¢, [8,1V;4a, 8b, 8], [[4, IL; 4a]]

a=0 (mod 8) [4,1; 4a]), [4,T; 4a]

Table 7.7: label(K) = [[8, III; 2a, 2b, 2¢]|

Ly label(v4 (K)) (e = 1 or 2)
T 12 (m =4) a=b=1 (mod 2) | [4,1;2a], [[4,1;2b]
ey L 2mT (m = 4) 2]
(€1, €2, 8€3) €1 =6 =a (mod 4) | [[8,1;a,4b, 4c]
(€1, €2,2Me3) (m = 4) a=b=1 (mod 2)
€1 = €2 (mod 4) (8, 1L; &, 4b, 4c], [[8, I; 4a, b, 4¢]|
(€1, €,2™e3y (m = 3) a=b=1 (mod 2)
€1 # € (mod 4) 16, =7 (mod 8) [8,10; @, 4b, 4c], [[8,1I; 4a, b, 4c]]
€16, =3 (mod 8) [8,1; @, 4b, 4], [8,1; 4a, b, 4c]), [2]
{e1,4€2,2Me3)y (m = 4) 2]
{e1,2M€9,2Me3y (M = 5) 2]
(€1,2Me9, 2™ esy (m = 5) M21
(e1,2"€2,2Me3y (m = n+ 3 = 8) 121
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Table 7.8: label(K) = [[8,1V; 4a, 4b, 4¢||

Ly label(v£ (K)) (e = 1 or 2)
T 1 (16¢) 2]

{ey L2™T (m = 4) a=1 (mod 2) [[4,11; 160], 14, IT; 16¢]|
(€1, €2,8€3) €1 # €2 (mod 4)

€162 =7 (mod 8)
€162 = 3 (mod 8)
(e1,€2,2™e3) (m =4
{e1,2€2,2Me3) (
{e1,4€2,2Me3) (
€1 =€z (mod 4)

€1 # €2 (mod 4)
{€e1,8¢€,2™Me3) (m = 6)

)
5)

m =
m = 5)

<€17 16627 16€3>
a=1 (mod 2)
{e1,16€2,2Me3) (m = T7)

<€17 2m€2, 2m€3> (m = 5)

(€1,2"€9,2M€3) (M =n+3 = 8)

a#b=c (mod 4)

a=0 (mod 2)
a=1 (mod 2)
b=c=1 (mod 2)

a+c=¢ (mod4)

a=1 (mod 2), b=2 (mod 4)
€1 =a (mod 4)

€1 # a (mod 4)

€1 =a+ ¢ (mod 8)

a=1 (mod 2), b=4 (mod 8)
€1 =a (mod 8)

€1 # a (mod 8)

a=1 (mod 2)

a=1 (mod 2)

4, IL; 8a]
[4,10; 8a], [4,1; 8b], [4,1I; 8]
[[4,1L; 8a])
[[4,1L; 8a])

[4,11; 165], [4,T; 16¢]]
[4,11; 165]

[[4,11; 165]
[4,1I; 16¢]

[[4,1; 16b]]

4, IL; 165]
4, IL; 16¢]
[4, IL; 16b], [4, IL; 16¢]
[4,11; 160], 4, IT; 16¢]|

Table 7.9: label(K) = [4,1;a], K = {a) L K’

L, label(v£ (K)) (e = 1 or 2)
T 1 ey K': odd 4, 1T; 4a])

K': even [4,1; 4a]
A1 (8e) 2.3 =49K (mod ) [4,1; 4a]

2.7 =149K (mod ) [4,10; 4a]
H 1 (8¢ 5:3= % (mod 8) [4, 1 4a]] x 3

$-T= ‘%K (mod 8) [4,1;4a]), [4,10; 4a]] x 2
T 12 (m =4) [4,1;4a]], [4,10;4a]] x 3
{ey L 2T [4.1;%
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Ly label(v£ (K)) (e = 1 or 2)
{ey L 4T K': odd 4, IT; 4a]

K’ : even [4,1;a]
(e) L 8A 3a =2 (mod 8) [4,1;a]

7a =% (mod 8) 4, 1L; 4a]
ey L 8H 3a =2 (mod 8) 4,1 4a]) x 3

Ta = % (mod 8) [4,T;a], [4,0; 4a] x 2
(&) L 2T (m > 4) [4,T;a]], [4,0;4a]] x 3
(€1, €2, 2€3)
K, : anisotropic K’ : even 4,1;2a]] x 3

K': odd [4,T; 2a]], [[4,10; 2a]] x 2
K, : isotropic K': even [4,T; 2a]

K': odd, a = dK (mod 4) [4,T; 2a]

K’ : odd, a # dK (mod 4) [4,10; 2a]
(1, €, 4€3)
€1 = € (mod 4) a=1 (mod 2) 4, 1L; 2a]|

a=2 (mod 4) M4,1; 2a]
€1 # €2 (mod 4) 4 =3 (mod 8) [4,T;2a] x 3

4K — 7 (mod 8) 4,1; 2a]), [[4,1; 2a]| x 2

<€17 €2, 8€3>
a=1 (mod 2)
a=4 (mod 8)

(€1, €2,2™e3y (M = 4)

<€17 €2, 2m€3> (m = 3)

<617 262, 263>
<€17 262, 4€3>

<€17 2627 8€3>
a=1 (mod 2)

a=2 (mod 4)

a

€1 = € (mod 4)
€169 = % (mod 8)
16 # % (mod 8)
€1 = €z (mod 4)
a=1 (mod 2)
a=0 (mod 8)

€1 # €2 (mod 4)
€162 = 3 (mod 8)
€162 = 7 (mod 8)

a=1 (mod 2)
a=2 (mod 4)
a=1 (mod 2)
a=2 (mod 4)

g = %( (mod 4)
€163 = §9(K)7 (mod 4)
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4, 1L; 2a]
M4,1; 2a]]
[4,10; 2a]

4,10 2a]] x 2
[4,T; 2a], [4,10; 2a]

[4,1;2a] x 3, [4,;2a] x 3
[4,1; 2a]), [4,1; 2a]

4,1; 2a]

[4,5 4]

[4. L 2a] x 2

4,5 2a], [4,1; §

[4,T; 2a]

4.1 4]
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L,

label(v£ (K)) (e = 1 or 2)

<617 262, 863>

a=2 (mod 4)

a=4 (mod 8)

<617 262, 16€5>

a=1 (mod 2)
a=2 (mod 4)
a =8 (mod 16)

<€1, 2627 2m€3> (m =5

<€17 462, 463>
€2 = €2 (mod 4)

€2 # €5 (mod 4)

<€17 4627 4€3>

<€17 462, 8€3>
a=1 (mod 2)

a=2 (mod 4)

%EdTK (mod 4)
€16 # 59 (K)7 (mod 4)
1 1f“+f—

T =

2 # 45 (mod 4)
45 (mod 4)
. % (mod 4)

6 (mod 8)

€162 =

€162 #

Bl sl

€169 = “—b (mod 8)

€162 F %b (mod 8)

(b : See Subcase(4.7.1.20).)
(mod 8)

4K .2 (mod 8)

a=1 (mod 2)

a=2 (mod 4)

a=0 (mod 16)

K, : isotropic

K': odd, a =dK (mod 4)

K': odd, a # dK (mod 4)

K’ : even

K': odd, a =dK (mod 4)

K': odd, a # dK (mod 4)

K': even

—_ dK
€1€9 = 16

x| ol

€1€2

K : anisotropic

K’ : odd

K’ : even

€1 =a (mod 4)

€1 # a (mod 4)
TK = § (mod 4)
€1 =nS2(K) (mod 4)

144

(mod 8),

[4,1I; 2a]]

See Subcase(4.7.1.19-2).
4,1; 2a]
4, IT; 2a]|

[4,T; 2a]
4,1 5]
4, IT; 2a]|

M4,1; 2a]]

[4, IL; 24]

[4,1;2a] x 2

(4.1 51, [4,1; 2a]
[4,1; 2a]), [[4,10; 2a]

[4,L;a]

4,1; 4a]
4, 1I; 4a]
[4,1;4a]] x 2
4,5 a]l, [4,1;4a]
[4,10; 4a] x 2

[4,T;a]], [4,1; 4a] x 2
4,1 4a]) x 3

[4,La]l, [4,1;4a]
[4,1;4a]), [[4,T; 4a]

[4,1;4a]] x 2
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L,

label(7& (K)) (e = 1 or 2)

<€1 ) 4627 8€3>

a=2 (mod 4)

<617 462, 2m63> (m > 4

a=1 (mod 2)

a=0 (mod 4)

<€1a 8627 863>
a=1 (mod 2)

a=2 (mod 4)

<€1 ’ 862 ; 8€3>

a=1 (mod 2)
a=2 (mod 4)
<61, 862, 16€3>

a=1 (mod 2)
a=2 (mod 4)
a=4 (mod 8)

<€17 8627 32€3>

a=1 (mod 2)
a=2 (mod 4)
a =8 (mod 16)

if £+ 95 =2 (mod 8)
-1 1f%+d7Kz6(mod8)
dK # § (mod 4)

€1 = €2 (mod 4)
a =€ # € (mod 4)
€1 % €2 = a (mod 4)
€1 =€z (mod 4)
€1 # €2 (mod 4)

€2 = €3 (mod 4)

€1 = a (mod 8)
€1 % a (mod 8)
e = 2% (mod 8), Sy(K) = “25 (mod 4
e1 = % (mod 8), Sy(K) # “45 (mod 4
e1 # % (mod 8), Sy(K) = “'gK (mod 4
e1 # % (mod 8), Sy(K) # “";K (mod 4
€9 # €3 (mod 4)
€1 =a (mod 4)
#

€1

[
—

IS

T vl vl wis
RS

o
—~
~— ~—

(8
—

™

) )
NN

LN [ N

v vl 2

145

4,1 4a]) x 2

[4,1;4a]), [4,10; 4a]

4,1 al], [4,L; 4a]) x 2, [4,T; 4a]
[4,T;al], [[4,0; 4a]

[4,T; 4a]) x 2

[4. 1 4a] x 2, [4, I da] x 2
[4,1; 4a], [4,1; 4a]

[4,1;a]

[4, I; 4a]
[4.1; 4a]
[4,10; 4a]
4, II; 4a]|
[4,1; 4a]]

[4,L a]l, [4, 15 4a]
4, I; 4a]) x 2
[4,1;4a]), [4,10; 4a]

[4,L;a]

[4,10; 4a]

4,1; 4a]

4, IT; 4a]

See Subcase(4.7.1.30-2).
[4,1; 4a]

4, IT; 4a]|

[4, T a]l, [4, 1 4a]
[4, I; 4a]] x 2
[4,1; 4a] x 2
4, 4a]) x 2
[4,1;4a]), [[4,10; 4a]
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Ly label(v£ (K)) (e = 1 or 2)
(€1,8¢€9,2™Me3) (M = 6)
a=1 (mod 2) €1 = a (mod 8) 4,5 a], [4,1; 4a]
€1 % a (mod 8) [4, 1 4a]) x 2
a=2 (mod 4) €2 =5 (mod 4) [4,T;4a] x 2
€2 # 5 (mod 4) [4,1; 4a]) x 2
a=0 (mod 16) [4.1;4a]], [[4,1; 4a]
(€1, 166, 16€3) a=1 (mod 2) [4,10; 4a]) x 2
a =4 (mod 8) [4,1;4a]), [[4,10; 4a]]
(€1, 1662, 32€3)
a=1 (mod 2) €1 = a (mod 8) [4.1;a], [[4,1; 4a]
€1 # a (mod 8) 4,1 4a]| x 2
a =4 (mod 8) €1 =b (mod 8) [4,1;4a]] x 2
€1 # b (mod 8) [4, 1 4a]) x 2
(b : See Subcase(4.7.1.31-2).)
a =8 (mod 16) [4.1;4a]], [[4,T0; 4a]
(€1, 16€q, 64e3)
a=1 (mod 2) €1 =a (mod 8) [4,1;a], [[4,T; 4a]]
€1 # a (mod 8) [4, 1 4a]) x 2
a=4 (mod 8) See Subcase(4.7.1.34-2).
a=16 (mod 32) [4.1;4a]], [[4,1; 4a]
{€1,16€9,2Me3) (m = 7)
a=1 (mod 2) €1 = a (mod 8) [4,1;a, [[4,0; 4a]
€1 # a (mod 8) [4, 1 4a]) x 2
a=4 (mod 8) €2 = ¢ (mod 8) [4,1; 4a]] x 2
€ # ¢ (mod 8) [4, 10 4a]) x 2
a=0 (mod 32) [4,1;4a]], [[4,0; 4a]]
(€1,2"€9,2Mezy (m=n >=5) a=1 (mod 2) [4,T;a, [4,0;4a]] x 3
a=0 (mod 8) [4,T; 4a]] x 2, [4,10; 4a]] x 2

Table 7.10: label(K) = [[4, II; 2a]|

Ly ‘ label(v£ (K)) (e = 1 or 2)
T 1 (4¢) [4,1I; 2a]]
H L (8¢) [4. 15 2a]), [[2]]
AL B¢ 4, II; 2a]|
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L,

label(v£ (K)) (e = 1 or 2)

T 12 (m=4)
(ey L2T

(ey L AT

{(ey L 8H

{ey L 8A

ey L 2mT (m = 4)
<€1, €9, 2€3>

<617 €9, 4€3>

<€17 €2, 8€3>
a=1 (mod 4)

a=3 (mod 4)

a=2 (mod 4)
(e1,€2,2™e3) (m = 4)
a=1 (mod 2)
a=2 (mod 4)
a=0 (mod 4)

<617 €9, 2m63> (m = 3)

<€1, €9, 2m€3> (m = 3)

a=1 (mod 2)
a=2 (mod 4)
a=4 (mod 8)
a=0 (mod 8)

<617 262, 263>
(€1, 269, 4€3)
<€1, 262, 16€3>

a=1 (mod 2)
a=0 (mod 2)

a=2 (mod 4)
a=0 (mod 4)
K, : isotropic
K, : anisotropic
€1 = €z (mod 4)
€1 # €2 (mod 4)
€1 = €z (mod 4)
Sa(Cer,€2)) =1
So({er, €9)) = —1
Sa({e1,€2)) =1
So({e1,€9)) = —1

€1 = € (mod 4)

label(A\2(K)) = [4,L; a]

label(A2(K)) = [4, II; a]

€162 = 3 (mod 8)
a=1 (mod 2)
a=0 (mod 2)
€162 =7 (mod 8)

—4 — 4K =2 (mod 4)
—2 — 4K =0 (mod 4)
—2 — 4 =2 (mod 4)
—2 — 4K — 0 (mod 4)
147

4,15 2a], [2]]
[2] x 2

[4. IL; 4a]
(4,10 8a]l
[4.1%:8a], [2]
[[4,1L; 8a]]

[2] x 2

4, 1; 8a]] x 2, [2]
[4,1;a]
4.5l [2]
[4. L a]

4% all, [2]

[4.1:a]
4, 1L; 4a])
[4, IL; 4a]
(4,5 a]
4, IT; 4a]

[4, T a]l, [4, 1 4a]
(2]

[4,1; 4a] x 2

(21

[4, T a]l, [4, G 4a]), 2] x 2
[4. 1 4a] x 2, [2] x 2

[4,T;a]], [[4,0; 4a]
4,1 4a]) x 2

[2] x 2

[4, IL; 4a]] x 2

2] x 2

See Subcase(4.7.2.13-2).
[4,10; 4a]

2]

[4,10; 4a]
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L, label(v£(K)) (e = 1 or 2)
{€1,2¢€9,2Me3y (M = 5)
a=2 (mod 4) [4,T;4a]] x 2
a=4 (mod 8) 121
a=0 (mod 8) label(Ao(K)) = [[4,IO; «]) or [8,IV; «] | [2]
label(A2(K)) = [[4,L; «] 4, 4a]) x 2
(€1, 4€a, 4de3)
€s = €3 (mod 4) Ly : isotropic 4, IT; 8a]|
Ly : anisotropic 4,1 8a], 2]
€2 # €3 (mod 4) 2]
(e1,4€9,8¢3) 21
(e1,4€9,2™e3) (M = 4) a=1 (mod 2) 2] x 2
(e1,4€2,2™e3y (m = 4) a=0 (mod 2)
label(Ao(K)) = [4, 1], [8, I €1 =€z (mod 4) [2] x 2
€1 # €2 (mod 4) 2]
label(A2(K)) # [[4, 1], [8,I]] € = €2 (mod 4) 4,1 8a] x 2, [[2]
e1#£ e =d (mod 4), a# 0 (mod 8) | [2]
d=¢ # e (mod 4), a#0 (mod 8) | [4,1;8a]] x 2

<€1 s 862, 8€3>

(€1, 8¢9, 32€3)

(€1, 8€2,2Me3) (m = 6)

(€1, 8€2,2™Me3) (m = 6)
m =20

m=7

(€1, 8€2,2Me3) (m = 6)
label(A\2(K)) = [4,1]
label(A2(K)) = [[4, 1]

<€1, 16627 16€3>
a=2 (mod 4)
a=4 (mod 8)

d : See Subcase(4.7.2.22-2).

€1 % €2 (mod 4), a =0 (mod 8)
€2 = €3 (mod 4)

€2 % €3 (mod 4)

[SEERNISEN SN N -} s

1/ N/ I |

m =6, e = 292=dK (104 4)
m=6,61§é% (mod 4)

m=7

61 = 2e160 — & (mod 8)

2 16
€1 $ %6162 - % (InOd 8)

148

See Subcase(4.7.2.22-2).

4, II; 8a]|
121
21
121

121
4,1 8a] x 2
[4, IL; 8a]] x 2

121

121
4,1 8a] x 2

21

See Subcase(4.7.2.32-3).

[2]
[4,15; 8a]] x 2

121



L,

CHAPTER 7. APPENDIX

label(74,(K)) (e = 1 or 2)

{e1, 1669, 32¢€3)

(€1, 1662, 64€3)
(e1,16€2,2Me5y (m = 7)
a=2 (mod 4)

a=4 (mod 8)

a =8 (mod 16)

a=16 (mod 32)
a =32 (mod 64)

a=0 (mod 64)

<617 2m62a 2m63> (m = 5)

a=2 (mod 4)
a=4 (mod 8)
a=0 (mod 8)

(e1,2"€9,2Me3y (M >n = 5)

a=2 (mod 4)
a=4 (mod 8)
a=8 (mod 16)
a =0 (mod 16)

dK
€1 = ge1ez — H

€1 ?_é
dK

66162 = 128

T6€1€2 # 5 128

_ dK

(
(
€16 = 55 (
(

g€1€2 —
m
m
32 = 256 m

336162 # 56 P

label( Ao (K ))

label (A (K
label(A2(K)) =
label(Ay(K)) #
label(A2(K))
label(Ao (K ))
149

(mod 8)

48 (mod 8)

od 4)
od 4)
od 8)
od 8)
4, T «])
= [4.IL <]

4,10 18, 1]
[4,1], 8, 11]

= [4,1], 8, ]
(14, 1]

121
21

121

121

4,1 8a] x 2

121

121

See Subcase(4.7.2.33-3)
121

See Subcase(4.7.2.33-4)
121

See Subcase(4.7.2.33-5)

2] x 2
2] x 2
2] x 2
4,1 8a] x 2, [[2]

2] x 2
2] x 2
[2] x 2
[2] = 2
4,1 8a] x 2, [[2]
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